ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «KAZ Minerals Aktogay» (KA3 Минералз Актогай)

ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ECO AIR»

Государственная лицензия № 01081Р от 08.08.2007 года

отчет о возможных воздействиях

«Реконструкция Обогатительных фабрик №1 и №2 месторождения Актогай. Стадия 1»

«KAZ Minerals Aklogay»

Директор

TOO «KAZ Minerals Aktogay» (КАЗ Минералз Актогай)

Энтони Тодд

Директор ТОО «ECO AIR»

М.А. Кумарбаева

г. Усть-Каменогорск, 2022 г.

ИСПОЛНИТЕЛИ:

1. Главный эколог Макеева К.А.

2. Инженер-эколог Зиновьева Н.А.

3. Инженер-эколог Зауэр А.В.

СОДЕРЖАНИЕ

	Введе	ение	6
1	ОБП	ИЕ СВЕДЕНИЯ О НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	8
	1.1.	Описание предполагаемого места осуществления намечаемой деятельности	8
	1.2.	Определение категории земель и целях их использования при реконструкции и	10
		эксплуатации объекта	•
2		ТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ В ПРЕДПОЛАГАЕМОМ МЕСТЕ	11
	осу	ЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
	2.1.	Краткая характеристика физико-географических условий	11
	2.2.	Характеристика климатических условий района	12
	2.3.	Состояние воздушного бассейна	14
	2.4.	Геоморфология	15
	2.5.	Инженерно-геологические условия площадки строительства	17
	2.6.	Состояние подземных вод	18
	2.7	Состояние поверхностных вод	24
	2.8	Состояние почв и грунтов	24
3	TEX	НИЧЕСКАЯ ХАРАКТЕРИТСИКА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	29
	3.1.	Цель и обоснование проведения работ	29
	3.2.	Существующее состояние	30
	3.3.	Проектные технические решения по реконструкции ОФ-1, ОФ-2	31
	3.4.	Проектные технические решения по реконструкции хвостохранилища и	36
		устройству резервной байпасной линии	
4	ОЦЕ	НКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ	43
	4.1.	Критерии оценки уровня загрязнения атмосферного воздуха	43
	4.2	Ожидаемые виды, характеристики и количество эмиссий в атмосферный воздух	43
		на период строительных работ	ļ
	4.3	Ожидаемые виды, характеристики и количество эмиссий в атмосферный воздух	56
		на период эксплуатации объекта	
	4.4	Определение категории предприятия по значимости и полноте оценки	69
	0.777	хозяйственной деятельности	
5		НКА ВОЗДЕЙСТВИЯ НА ВОДНЫЕ РЕСУРСЫ	99
	5.1	Характеристика поверхностных вод	99
	5.2	Характеристика подземных вод	100
	5.3	Водопотребление и водоотведение на период проведения строительных работ	102
	5.4	Водопотребление и водоотведение на период эксплуатации	104
6.	,	ЦЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ ОТХОДОВ ПРОИЗВОДСТВА И	110
		РЕБЛЕНИЯ	110
	6.1	Образование отходов производства и потребления на период строительных работ	110
	6.2	Образование отходов производства и потребления на период эксплуатации	112
	6.3	Расчет лимитов захоронения отходов	113
	6.4	Программа управления отходами	125
7	,	ЦЕЙСТВИЕ НА ЗЕМЕЛЬНЫЕ РЕСУРЫ И ПОЧВЫ	126
8		НКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ МИР	126
9		НКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ МИР	127
10	ОЦЕ	НКА ВОЗДЕЙСТВИЯ НА ЗДОРОВЬЕ ЧЕЛОВЕКА	127

	І ВЕРОЯТНОСТЬ АВАРИЙНЫХ СИТУАЦИЙ, И		128
	ПОВТОРЯЕМОСТЬ, ЗОНА ВОЗДЕЙСТВИЯ АВАРИЙН	ЫХ СИТУАЦИЙ	
	11.1 Мероприятия по снижению экологического риска		133
12		РОИЗВОДСТВЕННОГО	135
	ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ОКРУЖАЮЩІ		107
	12.1 Цель и задачи производственного экологического конт	гроля	135
	12.2 Операционный мониторинг		136
	12.3 Мониторинг эмиссий		137
	12.4 Мониторинг воздействия		137
	12.5 Мониторинг почвенного покрова		138
	12.6 Контроль водных ресурсов		138
	12.7 Производственный радиационный мониторинг		138 138
12	12.8 Мониторинг отходов производства	TEHINO CMACHEUMO	
13	В МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЦ ВЫЯВЛЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯ	те приости	162
	13.1 Мероприятия по охране по охране атмосферного возду		162
	13.1 Мероприятия по охране по охране атмосферного возду 13.2 Мероприятия по охране водных ресурсов	ула	163
	13.3 Мероприятия по обращению с отходами		163
	13.4 Мероприятия по охране почвенно-растительного покре	ора прицегающей	164
	территории	ова прилегающей	104
14		ІМЕТ СООТВЕТСТВИЯ	164
17	НАИЛУЧШИМ ДОСТУПНЫМ ТЕХНОЛОГИЯМ	·	104
	УДЕЛЬНЫМ НОРМАТИВАМ		
	ЗАКЛЮЧЕНИЕ		173
			1/3
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ		174
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ		
ПРІ			174
ПРI 1.	КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ	ия на окружающую среду»	174
-	КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ . Заключение об определении сферы охвата оценки воздействи №KZ02VWF00063851 от 18.04.2022 г.		174
-	КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ . Заключение об определении сферы охвата оценки воздействи №KZ02VWF00063851 от 18.04.2022 г.		174
1.	КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ . Заключение об определении сферы охвата оценки воздействи №KZ02VWF00063851 от 18.04.2022 г.		174
1.	КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ . Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г.		174
1. 2. 3. 4.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования 	негативное воздействие на	174
1. 2. 3.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер 	негативное воздействие на	174
1. 2. 3. 4.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия 	рритории и наличии	174
1. 2. 3. 4. 5. 6.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова 	рритории и наличии	174
1. 2. 3. 4. 5. 6. 7.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства 	рритории и наличии	174
1. 2. 3. 4. 5. 6. 7. 8.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации 	негативное воздействие на оритории и наличии	174
1. 2. 3. 4. 5. 6. 7. 8. 9.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросов 	негативное воздействие на оритории и наличии а сов загрязняющих веществ	174
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросо Параметры выбросов загрязняющих веществ на период экспл 	негативное воздействие на оритории и наличии а сов загрязняющих веществ туатации	174
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросов Параметры выбросов загрязняющих веществ на период экспл Результаты расчета величин приземных концентраций (карть 	негативное воздействие на оритории и наличии а сов загрязняющих веществ туатации ы расчетов) рассеивания	174
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	 КРАТКОЕ НЕТЕХНИЧЕСКИЕ РЕЗЮМЕ РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросо Параметры выбросов загрязняющих веществ на период экспл Результаты расчета величин приземных концентраций (карть Заключение №ЭКСКОНЦЕНТР-0040/21 от 10.06.2021 г 	негативное воздействие на оритории и наличии а сов загрязняющих веществ туатации ы расчетов) рассеивания с. по Рабочему проекту	174
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросо Лараметры выбросов загрязняющих веществ на период эксплуатации Результаты расчета величин приземных концентраций (карты Заключение №ЭКСКОНЦЕНТР-0040/21 от 10.06.2021 г.	негативное воздействие на оритории и наличии а сов загрязняющих веществ пуатации в расчетов) рассеивания г. по Рабочему проекту V PUDA»	174
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросов. Параметры выбросов загрязняющих веществ на период эксплуатации Результаты расчета величин приземных концентраций (карты Заключение №ЭКСКОНЦЕНТР-0040/21 от 10.06.2021 г «Разработка проектно-сметной документации на здание NEW Заключение государственной экологической экспертизы	негативное воздействие на оритории и наличии ва сов загрязняющих веществ пуатации врасчетов) рассеивания г. по Рабочему проекту V PUDA» на «План горных работ	174
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	РИЛОЖЕНИЯ Заключение об определении сферы охвата оценки воздействи №КZ02VWF00063851 от 18.04.2022 г. Решение по определению категории объекта, оказывающего окружающую среду» от 14.10.2021 г. Ситуационная карта-схема с указанием водного объекта Акты на право временного возмездного пользования Справки о наличии земель особо-охраняемых природных тер памятников историко-культурного наследия Протокола испытаний подземной воды и почвенного покрова Теоретический расчет выбросов на период строительства Теоретический расчет выбросов на период эксплуатации Протокола иснтрументальных замеров на источниках выбросо Лараметры выбросов загрязняющих веществ на период эксплуатации Результаты расчета величин приземных концентраций (карты Заключение №ЭКСКОНЦЕНТР-0040/21 от 10.06.2021 г.	негативное воздействие на оритории и наличии ва сов загрязняющих веществ пуатации врасчетов) рассеивания г. по Рабочему проекту V PUDA» на «План горных работ	174

14.	/ 1 1 1 1 V	
	среду № KZ46VCZ00571572 от 27.04.2020 г. «Расширение Актогайского ГОКа.	
	Обогатительная фабрика сульфидных руд. Аягозский район ВКО» (без сметной	
	документации и без проекта хвостохранилища). Корректировка»	
15.	Заключение государственной экологической экспертизы № F01-0033/21 от 03.08.2021 г.,	
	разрешение на эмиссии в окружающую среду № KZ96VCZ01263737 от 03.08.2021 г. на	
	проект «Реконструкция хвостового хозяйства с устройством дамбы в южной части	
	хвостохранилища (3-й этап, фазы 1-1 и 1-2) обогатительной фабрики сульфидных руд	
	TOO «KAZ Minerals Aktogay»	
16.	Разрешение на эмиссии в окружающую среду с заключением государственной	
	экологической экспертизы №KZ23VCZ00863568 от 25.03.2021 г. на Проект нормативов	
	предельно допустимых выбросов вредных (загрязняющих) веществ в атмосферу для	
	TOO «KAZ Minerals Aktogay» (KA3 Минералз Актогай)	
17.	Планы ликвидации аварий хвостохранилища и сооружений хвостовых хозяйств, а также	
	фабрик по обогащению сульфидных руд рудника №1, №2 «Актогай» ТОО «КАZ	
	Minerals Aktogay» (КАЗ Минералз Актогай) (на 2022 год)	
18.	Государственная лицензия ТОО «ECOAIR».	

ВВЕДЕНИЕ

Проект отчета о возможных воздействиях разработан для «Реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай (Стадия 1) ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай).

Основанием разработки отчета послужило «Заключение об определении сферы охвата оценки воздействия на окружающую среду» №KZ02VWF00063851 от 18.04.2022 г. выданное Комитетом экологического регулирования и контроля Министерство экологии, геологии и природных ресурсов РК (Приложение 1).

Предприятием разработчиком Проекта отчета о возможных воздействиях является ТОО «ECO AIR» (ГЛ № 01081P от 08.08.2007 года).

Под экологической оценкой понимается процесс выявления, изучения, описания и оценки возможных прямых и косвенных существенных воздействий реализации намечаемой и осуществляемой деятельности или разрабатываемого документа на окружающую среду.

Целью экологической оценки является подготовка материалов, необходимых для принятия отвечающих цели и задачам экологического законодательства Республики Казахстан решений о реализации намечаемой деятельности или разрабатываемого документа.

Экологическая оценка по ее видам организуется и проводится в соответствии с Экологическим кодексом Республики Казахстан №400-VI от 02.01.2021 года (далее ЭК РК) и инструкцией, утвержденной уполномоченным органом в области охраны окружающей среды (далее - инструкция по организации и проведению экологической оценки).

Основная цель — оценка современного состояния природных, социальных и экономических условий рассматриваемой территории. Прогноз изменения качества окружающей среды с учетом исходного его состояния, выработка рекомендаций по снижению различных видов воздействий на компоненты окружающей среды и здоровье населения.

Проект отчета о возможных воздействиях выполнен согласно:

- \blacktriangleright Инструкции по организации и проведению экологической оценки, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
 - Экологического кодекса РК от 2 января 2021 года № 400-VI ЗРК. (статья 72).
- ➤ Санитарные правила «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденных приказом Министра здравоохранения РК от 11.01.2022 г. № КР ДСМ-2.
- ➤ Методика определения нормативов эмиссий в окружающую среду (утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63).
- > Заключения об определении сферы охвата оценки воздействия на окружающую среду № №KZ02VWF00063851 от 18.04.2022 г. (Приложение 1).

На основании существующей экологической информации и проекта возможных воздействий производиться оценка воздействия в результате проведения работ при реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай (Стадия 1) ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай). Приводятся мероприятия по охране окружающей среды и рекомендации для возможного уменьшения воздействия.

Намечаемая деятельность, по реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай (Стадия 1) будет проводиться на территории предприятия, для которого определена I категория, согласно «Решения по определению категории объекта, оказывающего негативное воздействие на окружающую среду» от 14.10.2021 г. выданное Комитетом экологического регулирования и контроля Министерство экологии, геологии и природных ресурсов РК (Приложение 2), таким образом согласно п. 3 ст. 12 ЭК РК, намечаемая деятельность также относится к объектам I категории.

Согласно пп.2.3 п.2 Раздела 1 Приложения 1 к Экологическому Кодексу РК участок проектируемых работ (Реконструкция Обогатительных фабрик №1 и №2) относится к объектам, для которых проведение оценки воздействия на окружающую среду является обязательным.

Разработчик	Заказчик
Отчета о возможных воздействиях	Отчета о возможных воздействиях
Товарищество с ограниченной	Товарищество с ограниченной ответственностью
ответственностью (TOO) «ECO AIR»	(TOO) «KAZ Minerals Aktogay» (КАЗ Минералз
	Актогай)
Юридический адрес: 070003, Республика	Юридический адрес:
Казахстан, г. Усть-Каменогорск, ул. Астана, 4.	050021, Республика Казахстан, г. Алматы, Проспект
e-mail: ecoair@mail.ru	Достык, 85 А, корпус 1, тел. 8-727-330-45-52,
www.ecoair.kz	факс 8-727-244-71-96,
тел/факс.: 8 (7232) 41-06-87, 49-20-64,	www.kazminerals.com.
61-45-06, 29-55-40	
Банковские реквизиты:	Банковские реквизиты:
БИН 050940002909	БИН 090840006023
IBAN KZ89998LTB0000959612	ИИК №KZ1583201T0250320019
BIC TSESKZKA	в АО «Ситибанк Казахстан»,
AO «First Heartland Jusan Bank»	БИК СІТІКZКА, КБЕ 17.
г. Усть-Каменогорск	
Лицензия № 01081Р от 08.08.2007 года	Директор ТОО «KAZ Minerals Aktogay» (KA3
Директор: Кумарбаева М. А.	Минералз Актогай) Энтони Тодд

1. ОБЩИЕ СВЕДЕНИЯ О НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

1.1 Описание предполагаемого места осуществления намечаемой деятельности

Актогайский ГОК по административному делению находится на площади Аягозского района Восточно-Казахстанской области, на расстоянии 25 км восточнее пос. Актогай и ж.д. станции «Актогай» Алматинской железной дороги, с которой оно связано грунтовой дорогой, и примерно в 420 км от г. Балхаш. Другие населенные пункты находятся на удалении от ГОКа на расстояния: 26 км (пос. Шынырау), 32 км (пос. Копа), 38 км (пос. Тарлаулы), 56 км (пос. Каракол и Жанама). Районный центр г. Аягоз располагается северовосточнее пос. Актогай на расстоянии около 110 км по прямой. Областной центр г. Усть-Каменогорск расположен северо—восточнее пос. Актогай на расстоянии около 400 км по прямой.

Обзорная карта расположения месторождения Актогая показана на рис. 1.1.

Рисунок 1.1. – Обзорная карта

Аягозский район образован в 1930 году. Площадь составляет 49588 кв.км. Административный центр - г. Аягоз получил статус города в 1937 году. Город застраивался на базе пристанционного поселка, возникшего в годы первой пятилетки, в связи со строительством Туркестано-Сибирской железной дороги.

Районный центр - город Аягоз, является крупной железнодорожной станцией и размещен по обе стороны железной дороги. Имеется 2 локомотивных, 2 вагонных депо, дистанции пути, сигнализации и связи. В городе функционируют 8 средних школ, гимназия, лицей, ДЮСШ, районный дом культуры.

Станция Актогай по асфальтированной дороге II класса имеет выход (86 км) на автодорогу Алматы - Усть-Каменогорск. Железная и автодорога Актогай-Саяк обеспечивают прямую связь с БГМК, расстояние до г. Балхаш по которым составляет 420 км. Станция Актогай является узловой участковой станцией II класса с подходящими к ней магистральными железнодорожными путями Актогай — Саяк, Алматы — Семипалатинск, Актогай — ст. Достык. Автомобильная дорога с асфальтобетонным покрытием подходит к пос. Актогай с юго-восточной стороны от г. Учарал.

Актогайский ГОК расположен в полупустынной местности на солончаках в 100 км юго-западнее хребта Тарбагатай, в 70 км северо-восточнее озера Балхаш и 54 км северо-западнее озера Сасыкколь. Для этого района характерны растительность полупустынь и невысокие холмы. Возвышенность здесь достигает 350 м. В 8 км южнее месторождения начинаются пески. Приблизительно в 10 км к востоку от участка карьера расположен соляной водоем, поблизости которого имеются незначительные участки воды и протоки (пересыхающие).

Угловые точки	Координаты угловых точек											
утловые точки	Северная широта	Восточная долгота										
1	2	3										
1	46° 57' 06''	79° 58′ 31′′										
2	46° 57' 53''	79° 59' 46''										
3	46° 58' 40''	79° 59' 23''										
4	46° 58' 42''	79° 57' 29''										
5	46° 57' 46''	79° 57' 26''										

Таблица 1.1 - Географические координаты следующие:

15 августа 2014 года акционеры Казахмыс PLC проголосовали за реорганизацию Группы. Все условия касательно реорганизации были удовлетворены 31 октября 2014 г., а экономическое разделение вступило в силу с 1 августа 2014 г.

31 октября 2014 года после завершения реорганизации Группа была переименована в KAZ Minerals.

В составе Группы остались горнодобывающие и перерабатывающие предприятия Восточного дивизиона, горно-обогатительный комплекс Бозымчак в Кыргызстане, а также три крупных проекта роста (Бозшаколь, Актогай и Коксай). В результате Группа стала компактной, но с более четким профилем деятельности и значительным потенциалом роста по мере реализации проектов по расширению производства.

Компания является ведущей международной компанией по разработке природных ресурсов с основной деятельностью в Казахстане и близлежащих регионах.

KAZ Minerals владеет 4-мя подземными рудниками в Восточном Казахстане и одним карьером Бозымчак в Кыргызстане.

KAZ Minerals — ведущий производитель меди в Казахстане, также производит и реализует значительные объемы попутной продукции: цинка, серебра и золота.

В 2014 году производство катодной меди от предприятий, входящих в состав Группы KAZ Minerals, составил 84 тыс. тонн. Группа также произвела 121 тыс. тонн цинка в концентрате, 3,4 тыс. унций серебра и 34,6 тыс. унций золота в 2014 году.

Своевременная разработка крупных проектов роста — основная стратегическая задача Компании.

KAZ Minerals выходит на новый уровень развития, и в основе ее роста -

месторождения Бозшаколь и Актогай - два крупнейших проекта, где работы ведутся «с нуля». Оба проекта имеют длительный срок эксплуатации и низкие риски, что обеспечивает стабильный рост и повышает ценность нашего бизнеса.

Перерабатывающие предприятия на руднике производят как катодную медь из окисленной руды, так и медь в концентрате, которая может далее либо экспортироваться потребителям в Китае, либо перерабатываться в катодную медь на существующих медеплавильных мощностях в Казахстане.

Актогай - второй крупный проект по добыче меди Группы, расположен в Восточном Казахстане. Он разработан комбинированным способом (открытым карьером и подземным способом), руда перерабатывается здесь же, на обогатительной фабрике. Первое производство катодной меди из окисленных руд было в 2015 году, а производство медного концентрата из сульфидных руд в 2016 года.

1.2 Определение категории земель и целях их использования при реконструкции и эксплуатации объекта

Реконструкция Обогатительных фабрик №1 и №2 предусматривается на месторождении Актогай в Восточно-Казахстанской области, вовлечение дополнительных площадей при реализации проекта не предусматривается.

Для эксплуатации обогатительной фабрики №1 у предприятия имеется земельный участок с кадастровым номером №05-239-026-177, площадью — 159,28 га согласно Акта на право временного возмездного землепользования. Целевое назначение земельного участка — для строительства и обслуживания обогатительной фабрики.

Для эксплуатации обогатительной фабрики №2 у предприятия имеется земельный участок с кадастровым номером №05-239-026-245, площадью — 78,4726 га согласно Акта на право временного возмездного землепользования. Целевое назначение земельного участка — для строительства и обслуживания обогатительной фабрики сульфидных руд с сопутствующей инфраструктурой.

Для размещения хвостового хозяйства у предприятия имеется земельный участок с кадастровым номером №05-239-026-337, площадью — 8126,41 га. Целевое назначение земельного участка — для обслуживания хвостохранилища.

Акта на право временного возмездного землепользования представлены в Приложении 4.

Согласно ответа Казахского лесоустроительного предприятия №01-04-01/636 от 03.05.2022 года участок намечаемой деятельности расположен за пределами земель государственного лесного фонда и особо охраняемых природных территорий.

На основании историко-культурного заключения ТОО «Институт прикладной археологии» о наличии памятников историко-культурного наследия на территории строительства Второй обогатительной сульфидной фабрики Актогай, в заложенных стратиграфических шурфах залегание культурного слоя и артефактов обнаружено не было.

В попадающих под проектируемые объекты и в 1000 метров от них в районе месторождения в поселке Актогай, Аягозского района, ВКО указанных в приложении письма координаты отсутствуют очаги сибироязвенных захоронений.

Справки представлены в Приложении 5.

2. СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ В ПРЕДПОЛАГАЕМОМ МЕСТЕ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

2.1. Краткая характеристика физико-географических условий

Актогайский ГОК расположен на территории Аягозского района Восточно-Казахстанской области. ГОК находится в благоприятном регионе с точки зрения географического расположения и экономических условий неподалеку от транспортных и энергетических коммуникаций.

Актогайский ГОК находится в 25 км к востоку от железнодорожной станции Актогай, с которой оно связано автомобильной дорогой. Численность населения поселка Актогай приблизительно 7000 человек. Районный центр Аягоз с численностью населения 36725 человек расположен в 150 км к северо-востоку.

Рельеф местности в районе промплощадки мелкосопочный (горы Колдар). Склоны сопок с углами наклона 10–15°, отметки рельефа колеблются от 360 до 470 м. Относительное превышение высот 30–50 м. В зоне будущей промплощадки распространены коренные интрузивные и вулканогенные породы, представленные скальными туфопесчаниками, гранитами, базальтами, порфиритами, конгломератами и другими разностями. Мощность коренных пород измеряется сотнями метров. В верхней части они выветрелые, трещиноватые, с поверхности покрытые чехлом четвертичных отложений — суглинками, дресвянощебёнистыми грунтами мощностью около нуля на сопках и порядка 2,0 м на склонах.

Само месторождение находится на равнинной части рельефа у границы перехода равнин в низкогорья, расположенной севернее месторождений. Расположение района месторождения в приводораздельной части Чингизского нагорья является определяющим моментом в формировании водных ресурсов района. Гидрографическая сеть района проектирования представлена реками Аягуз, Карасу, Тансык, озёрами Колдар, Кошкар, Ешиге.

Типичными для рельефа равнины являются незначительные понижения в виде замкнутых западин и котловин с пологими склонами и плоским дном, чаще всего занятыми солончаками, иногда такырами. Такыры представляют собой глинистую поверхность с плотной коркой, разбитой сетью многочисленных неглубоких трещин. Во время дождей такыры заливаются тонким слоем воды, размокают и также как солончаки превращаются в липкую грязь. Юго-восток равнины занимают закреплённые растительностью пески Каракум. Рельеф песков бугристый; бугры расположены беспорядочно, имеют высоты 3-10 метров (максимально 18 м.). Территория сейсмически активна. Здесь возможны землетрясения до 5 баллов.

Грунты. В инженерно-геологическом разрезе основания принимают участие связные, рыхлообломочные и скальные грунты субвулканического и вулканического происхождения.

Связные грунты представлены супесями и суглинками от твердой до пластичной (туго- и мягкопластичной консистенции суглинка) консистенции. Как правило, они слагают пологие склоны мелких сопок и пониженные участки обширных межсопочных понижений.

Рыхлообломочные грунты представлены дресвой и щебнем делювиального, делювиально-пролювиального и элювиального генезиса. В зависимости от геоморфологических особенностей участков они залегают как с поверхности, так и на определенных глубинах.

Дресва и щебень в коренном залегании (элювий) являются продуктом выветривания скальных пород. Подстилающими слоями разреза, как правило, являются скальные породы, представленные песчаниками от малопрочных до прочных, диоритами от малопрочных до прочных, андезитами средней прочности до прочных, и редко, конгломератами

малопрочными, с цементом, выветрившимся до глины. На отдельных участках встречена монолитная скала прочная.

Грунты, слагающие основание разреза, залегают без определенной закономерности по простиранию и по мощности.

2.2 Характеристика климатических условий района

Климат Аягозского района резко континентальный, для района характерна продолжительная холодная зима и жаркое засушливое лето. На температуру воздуха летом влияют сухие горячие ветра, дующие из пустынь Средней Азии. На температуру зимой влияют холодные потоки воздуха, приходящие с Северного Ледовитого океана, что может продолжаться до пяти месяцев.

По климатическому районированию для строительства согласно СП РК 2.04-01-2017 "Строительная климатология" рассматриваемый район относится к категории 1В.

Характерной особенностью климата рассматриваемого района является его резкая континентальность, засушливость и большая неустойчивость ежегодных погодных условий. Влажные годы часто чередуются с засушливыми периодами с засухами и суховеями. Сильные ветры вызывают снежные и пыльные бури, ветровую эрозию почв и неравномерное залегание снежного покрова на полях.

Зима (начало ноября — конец марта) умеренно холодная, преимущественно с ясной погодой. Преобладающие дневные температуры воздуха — 5 - 13 0 C, ночные — 14-17 0 C. Абсолютная минимальная температура — 46 0 C. Сильные морозы нередко сопровождаются туманами. Осадки выпадают в виде снега. Устойчивый снежный покров толщиной 10-20 см образуется в середине ноября, разрушается в конце марта. Грунты к концу сезона промерзают на глубину 1,5 - 1,7 м. Январь - самый холодный месяц, когда средняя температура может колебаться от -8 C до -20 C.

Весна (конец марта — конец мая) умеренно прохладная, с неустойчивой ветреной погодой. Для начала сезона характерны частые возвраты холодов и резкие колебания температуры воздуха в течение суток. Осадки в начале весны чаще всего выпадают в виде мокрого снега, в конце в виде моросящих дождей.

Лето (конец мая — начало сентября) жаркое, преимущественно, с ясной, безоблачной погодой. Дневные температуры воздуха 25 - 27 0 C, ночные 18 - 20 0 C. Абсолютный максимум +41 0 C. Осадки выпадают редко, в основном в виде кратковременных ливней, сопровождающихся грозами. Июль - самый жаркий месяц со средней температурой от 15 $^{\circ}$ C до 30 $^{\circ}$ C.

Осень (начало сентября — конец ноября) прохладная, в первой половине сезона с ясной, сухой погодой, во второй — с пасмурной, дождливой. В конце октября начинаются регулярные ночные заморозки.

Экстремальные температуры, зарегистрированные в этом районе: минимальная -41,1°C в январе и максимальная +42,4°C в августе. Небольшие контрасты дневных температур масс воздуха приводят к ясной погоде и незначительной облачности. Среднемноголетняя температура 4,3°C. Средняя температура наружного воздуха наиболее холодного месяца составляет -14,2°C., а наиболее жаркого месяца - +25,7°C.

Коэффициент температурной стратификации равен 200.

Среднегодовой уровень выпадение осадков в этом районе составляет 227 мм. Наивысший уровень выпадение осадков ожидается летом и осенью (более 80 мм в месяц). Значительные снегопады можно ожидать с поздней осени до ранней весны (октябрь - март). Самый высокий среднемесячный уровень выпадения снега может достигнуть 18 мм (что соответствует глубине снежного покрова в 72 мм, при отношении твердого снега к мокрому

4:1). Самое большое выпадение мокрого снега - 75 мм (300 мм замерзшего снега) - можно ожидать в конце зимы.

Средняя относительная влажность проявляется в виде годового цикла, с самой низкой средней относительной влажностью в летние месяцы и с самой высокой в зимние. Относительная влажность колеблется между 50% и 100% в январе, тогда как в июне она варьируется в пределах 16% - 85%. Средняя влажность ϕ =72-73% (январь) и 34% (июль). Расчетное испарение с поверхности почвы рекомендуется принимать равным 130-200 мм в год (по аналогии с Центральным Казахстаном).

Ветра в течение года преобладают северные и северо-восточные, летом бывают южные и юго-западные ветра. Их средняя скорость $3 \div 5$ м/с. Сильные ветры со скоростью до 20 м/с возможны в любой из сезонов; летом они вызывают пыльные бури, и зимой метели. Среднегодовая скорость ветра составляет 4,3 м/с. Максимальная скорость ветра достигает 30-40 м. Скорость ветра (U*), повторяемость превышения которой составляет 5%, равна 11 м/с. В годовом ходе направления ветра преобладает ветер северо- восточного направления. Поселок Актогай, к северной оконечности которого примыкает жилая застройка будущего поселка горняков, по отношению к промышленным объектам находится в благоприятных условиях – с наветренной стороны по отношению к господствующим ветрам.

Район месторождения является частью северного обрамления Балхаш-Алакольской депрессии и представляет собой обширную равнину с развитием гряд пологих сопок и мелких соленых озер и такыров между ними. Рельеф местности в районе промплощадки рудника мелкосопочный. Склоны сопок с углами наклона 10-15°, отметки рельефа колеблются от 360 до 470 м. Относительное превышение высот 30-50 м. Коэффициент рельефа местности равен 1.

Метеорологические характеристики района и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере, приведены в таблице 2.2.1.

	Наименование характеристики	Величина
1	2	3
1.	Среднемаксимальная температура наиболее жаркого месяца года, Т ⁰ С (июль)	32,2
2.	Среднеминимальная температура воздуха наиболее холодного месяца года, Т ⁰ С (январь)	- 19,0
5.	Скорость ветра, повторяемость превышения которой составляет 5%, м/с	7
6.	C	16
7.	CB	26
8.	В	19
9.	IOB	9
10.	Ю	4
11.	Ю3	10
12.	3	11
13.	C3	5
14.	Штиль	21

Таблица 2.1 - Метеорологические параметры

2.3 Состояние воздушного бассейна

В современной концепции охраны окружающей среды особое место занимает состояние воздушного бассейна. Любое антропогенное влияние может привести к недопустимым уровням загрязнения компонентов природной среды, биоразнообразия фауны и флоры, деградации почвенно-растительного покрова, изменению мест обитания животного мира, исчезновению и сокращению популяций, а главное – угрозе здоровью населения.

Метеорологические условия, приводящие к накоплению примесей, определяют высокий потенциал и, наоборот, условия, благоприятные для рассеивания, определяют низкий потенциал ПЗА. Потенциалом загрязнения атмосферы является совокупность погодных условий, определяющих меру способности атмосферы рассеивать выбросы вредных веществ и формировать некоторый уровень концентрации примесей в приземном слое.

Климатические условия района расположения месторождения Актогай характеризуется исключительно активным ветровым режимом, благодаря чему обеспечивается непрерывное самоочищение атмосферного воздуха.

Характеристика современного состояния воздушного бассейна Аягозского района, в пределах которого расположены производственные объекты ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай), проведена на основе по данным Восточно-Казахстанского управления статистики;

Район расположения объектов находится в зоне с повышенным потенциалом загрязнения атмосферы, то есть климатические условия для рассеивания вредных веществ не являются благоприятными.

Общее состояние атмосферы характеризуется влиянием выбросов от стационарных источников предприятий и передвижных источников (автотранспорта).

Предприятием ТОО «KAZ Minerals Aktogay» (KA3 Минералз Актогай), являющееся недропользователем Актогайского месторождения, в рамках «Программы производственного мониторинга Актогайского месторождения», в период эксплуатации будут проводить наблюдения за состоянием атмосферного воздуха на границе санитарно-защитной зоны. Контроль уровня загрязнения атмосферы включает наблюдения за содержанием в атмосферном воздухе диоксида азота, диоксида серы, оксида углерода, пыль неорганической. Для контроля уровня загрязнения атмосферы, будет задействована аккредитованная лаборатория.

Критериями качества состояния воздушного бассейна являются значения предельнодопустимых концентраций (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест («ПДК загрязняющих веществ в атмосферном воздухе населенных мест» [7].

Месторождение Актогай находится в малонаселенной территории на значительном расстоянии от населенных и промышленных объектов. Проектируемый рудник Актогай расположен в Аягозском районе Восточно-Казахстанской области, на расстоянии 22 км восточнее пос. Актогай и ж.д. станции «Актогай» Алматинской железной дороги, с которой оно связано грунтовой дорогой, и примерно в 420 км от г. Балхаш. Другие населенные пункты находятся на удалении от месторождения на расстояния: 26 км (пос. Шынырау), 32 км (пос. Копа), 38 км (пос. Тарлаулы), 56 км (пос. Каракол и Жанама). Районный центр г. Аягоз располагается северо–восточнее пос. Актогай на расстоянии около 110 км. Областной центр г. Усть-Каменогорск расположен северо–восточнее пос. Актогай на расстоянии около 400 км.

Вблизи исследуемой площадки постоянные техногенные источники загрязнения воздушного бассейна отсутствуют. Промышленных предприятий и населенных пунктов в радиусе 20 км от района расположения месторождения нет.

Ввиду того, что на территории месторождения Актогай в настоящее время никакая техногенная деятельность не ведется, а крупные источники выбросов других предприятий удалены на десятки километров, проведение инструментальных замеров качества атмосферного воздуха не проводились.

Характеристика состояния окружающей среды определяется значениями фоновых концентраций загрязняющих веществ. В районе расположения месторождения Актогай стационарные посты по наблюдению за состоянием атмосферного воздуха отсутствуют. В связи с этим, согласно РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы», значения фоновых концентраций принимаются в соответствии с численностью населения рассматриваемых населенных пунктов. Значения фоновых концентрации примесей для городов и населенных пунктов с разной численностью населения представлены в таблице 2.2.

Таблица 2.2 - Ориентировочные значения фоновых концентрации примесей (мг/м³)

для городов с разной численностью населения

Численность населения, тыс. жителей	Пыль	Диоксид серы	Диоксид азота	Оксид углерода
250-125	0,4	0,05	0,03	1,5
125-50	0,3	0,05	0,02	0,8
50-10	0,2	0,02	0,01	0,4
Менее 10	0	0	0	0

Так как численность населения пос. Актогай составляет около 7000 человек, то значения фоновых концентраций в районе проектируемого объекта равны нулю. Так же, установлено, что уровни шума составляют 55 дБА в дневное время и 50 дБА в ночное время. Данные величины не превышают государственные стандарты или уровни международных норм. Уровни зашумленности 62 дБА в дневное время и 59 дБА в ночное время были зарегистрированы в поселке Актогай. Эта территория классифицируется как населенная, и зарегистрированные уровни превышают государственные стандарты и величины международных нормативов.

2.4 Геоморфология

Актогайский ГОК расположен в центральной водораздельной части Колдарского гранитоидного массива с абсолютными отметками поверхности 420-455 м. В геоморфологическом отношении участок месторождения представляет собой водораздельную денудационную равнину на мелкосопочнике. На севере и юге мелкосопочник переходит в аккумулятивные равнины, выполненные, соответственно, среднечетвертичными-верхнечетвертичными аллювиально-пролювиальными отложениями Актогайской впадины и озерными отложениями сора Кылы. Уклоны дневной поверхности составляют: на север 0,133, на юг-0,024. Относительное превышение водоразделов над местным базисом эрозии достигает 60-70 м.

С поверхности месторождение перекрыто покровными суглинками и дресвянощебенистыми грунтами мощностью до 2 м (в понижениях рельефа), за исключением отдельных сопок, сложенных устойчивыми к выветриванию монокварцитами.

По геоморфологическим признакам в районе выделяются денудационный, денудационный — тектонический и аккумулятивный рельеф. Общий уклон рельефа от водораздела на юг и юго-запад в направлении к озеру Балхаш и на север и северо-восток к р. Тансык.

Денудационный рельеф развит в водораздельной зоне между месторождениями Актогай, Айдарлы, Кызыл - Кия и на площади выровненной поверхности, вблизи названных месторождений. Ширина водораздельной зоны равна 2,5 км, в центральной части 1,0 — 1,5 км

и у оз. Колдар 2,5-4,0 км. Рельеф мелкосопочный с наличием выровненных понижений. Склоны сопок в основном пологие с углом наклона $10-15^0$. Отметки рельефа колеблются от 360 до 450 м. Относительное превышение высот 20-30 м.

Выровненный рельеф находится южнее и северо — восточнее водораздельной зоны. Рельеф полого — волнистый с широкими долинами временных водотоков и плавными очертаниями отдельных сопок и гряд. Отметки рельефа 400-460 м, относительное превышение 10-15 м.

Денудационно-тектонический рельеф развит в полосе северного склона возвышенности (севернее месторождения Актогай и северо-восточнее месторождения Айдарлы). Склоны возвышенности, резко расчлененные наличием ветвящихся логов, крутыми уклонами и выровненными второстепенными водораздельными участками. Абсолютные отметки 380 – 475 м, относительное превышение 40 –80 м.

Аккумулятивный рельеф распространен в основном с западной и южной части месторождения и у оз. Колдар. Представлен он аллювиальными равнинами. На отдельных небольших участках южнее месторождения Актогай и севернее месторождения Айдарлы к этому типу рельефа относятся делювиальные и проаллювиальные шлейфы и равнины озерной аккумуляции в зоне урочища Кылы и озера Колдар. Аккумулятивный рельеф подразделяется на аллювиальные, аллювиально-пролювиальные, делювиально- пролювиальные, озерные, эоловые.

Аллювиальные равнины современного возраста занимают обширные территории вдоль рек Аягоз, Баканас и Тансык. Поверхность их имеет общий слабый уклон к югу (1^0-3^0) , местами осложнен мелкими округлыми блюдообразными западинками.

Аллювиально-пролювиальная равнина средне - верхнечетвертичного возраста пользуется широким распространением на левобережье реки Баканас и в междуречье рек Аягоз и Тансык. Поверхность равнины покатый, с едва заметным уклоном в юго-западном направлении. В междуречье Аягоз-Тансык встречаются узкие ложбины, а также небольшие сорово-дефляционные котловины, занятые солончаками. Равнина сложена песчаногравийными и щебенистыми отложениями, залегающими от равнистой поверхности неогеновых глин.

Делювиально-пролювиальная равнина верхнечетвертичного возраста получила развитие в западной части описываемого района в урочищах Майкулук, Тайсоган. Абсолютные отметки в пределах равнины составляют 580-700м, поверхность ее повсеместно обладает определенными уклонами (1°-3°), чаще всего к югу. Местами наблюдается небольшой уклон от краев равнины к центру, где располагается ложбины плоскостного стока и русла временных потоков. Равнина сложена делювиально-пролювиальными верхнечетвертичными отложениями, представленными суглинком и щебнем мощностью 10-15м.

Озерная равнина распространена в дельте реки Аягоз. Южнее Колдарского мелкосопочника находится крупнейший в Северо-восточном Прибалхашье солончак Кылы, приуроченный к плоской озерной впадине. Он вытянут в северо-западном направлении на 20 км при ширине 5-7 км. Поверхность ее почти плоская со слабым уклоном в юго-западном направлении к озеру Балхаш. Колебание высот в пределах равнины не превышает 1,0-1,5 м на 1,0 км. Сложена она суглинками, супесями, песками с гравийно-галечниковым материалом. Поверхность равнины бугристо - лунковая, и засоленная, местами здесь наблюдается песчаные бугры высотой 5-10 м, беспорядочно разбросанные и чередующие с округлыми и блюдцеобразными понижениями — лунками.

Эоловая аккумулятивная равнина с грядовым, грядово-бугристым, бугристо-ячеистым и бугристым рельефом пользуется значительным распространением в южной части района.

Рельеф грядовых и грядово-бугристо-ячеистых песков характеризуется равномерно располагающимися грядами. Относительные высоты их колеблются в пределах 5-10 реже 20-25 м. Гряды всюду ассиметричные: юго-западный склон пологий с уклоном наклона 10-15°, северо-восточный — крутой до 23-27°. Минералогический состав песков повсюду однороден, что указывает на их генетическое единство. Состав эоловых песков свидетельствует о том, что они образовались за счет разрушений изверженных и метаморфических пород

Район месторождения по составу и условиям залегания пород делится на две зоны: первая сложена коренными и скальными породами, вторая — четвертичными отложениями. Коренные породы распространены в восточной части района, в зоне месторождений Актогай, Айдарлы и у оз. Колдар. В литологическом составе коренных пород преобладают скальные туфопесчаники, туфы, базальты, порфириты, конгломераты, граниты и др. разности. На территории между месторождениями породы рассечены четырьмя крупными водоносными разломами субширотного направления и сетью мелких тектонических нарушений, неблагоприятных для размещения сооружений. Неотектонические движения в районе не установлены.

Четвертичные отложения имеют распространение между месторождениями, а также в зонах Жузагашского и Жанарского месторождений подземных вод.

2.5 Инженерно-геологические условия площадки строительства

Инженерно-геологические условия представлены в отчете по инженерногеологическим изысканиям, выполненные ТОО «АБС-НС» в 2022 году.

В разрезе отложений, слагающих строительную площадку, до глубины проведенных изысканий (H=15,0м) выделяются 5 основных инженерно-геологических элемента (ИГЭ), обладающих следующими строительными характеристиками.

- ИГЭ-1. Почвенно- растительный слой по полевому описанию глинистый грунт, коричневато-серый, твердый, с корнями растений. 17 Плотность грунтов рекомендуем принять по опыту работ на аналогичных грунтах равной 1,87 г/см3.
- $И\Gamma$ Э-2. Суглинки/супеси суглинки и супеси, залегают под почвеннорастительным слоем и непосредственно с поверхности. Мощность слоя нерасчлененных составляет 0,7-2,8 м.
- ИГЭ-3. Глины плотные (dpQ11-111) с включением дресвы до 10-15%. По составу тяжелые, по консистенции тугопластичные, по влажности слабовлажные. Петрографический состав обломков в составе дресвы: крепкие изверженные и интрузивные образования гранитов, гранодиоритов, диабазов, микрокварцитов, туфов. Глины содержат незначительные 19 включения тонкой дресвы до 5%, с глубиной содержание тонкой и мелкой дресвы увеличивается до 15-20%. Мощность слоя составляет от 1,4 до 3,0м.
- ИГЭ–4. Дресвяно-щебенистые грунты (арQ1V). Дресвяно-щебенистый грунт с песчаным заполнителем до 15%. Гранулометрический состав грунтов следующий: -щебень, галька мелкие >10мм 40.5; -дресва, гравий крупные 10-5мм 20.833; -дресва, гравий мелкие 5-2мм 12.566; -песок крупный 0,5-2,0мм 14.666; 22 песок средней крупности 0,25-0,50мм 7.133; -песок мелкий 0,1-0,25мм 3.666; песок пылеватый 0,1-0,05мм 0.233; пыль 0,05-0,01мм 0.4;
- ИГЭ–5. Скальные грунты представлены породами метариолита, туфа, алевролита, песчаника и аргиллита. Объединены в один инженерно- 23 геологический элемент в следствии схожих физико-механических свойств для строительства. По лабораторным данным характеризуются как плотные (плотность скелета от 2,40 до 2,56 г/см3), размягчаемые (коэффициент размягчаемости $0.63 \div 0.95$)

В геологическом строении на участке изысканий залегают современные отложения,

представленные глинистыми грунтами (глинами, суглинками, супесью), а также элювиальные образования, представленные дресвяно-щебенистыми грунтами с суглинистым заполнением и скальным грунтом, включающие породы метариолита, туфа, алевролита, песчаника и 44 брекчия. Сверху все перечисленные отложения перекрыты маломощным почвенно-растительным слоем.

В пределах строительной площадки подземные воды постоянно действующего аллювиального водоносного горизонта вскрыты изыскательскими выработками (Скв.№4-12) в толще щебенисто-дресвяных (гравийных) и суглинисто-супесчаных отложений, уровень воды установился на глубине 2,4-4,3 м. По данным режимных мониторинговых наблюдений за уровнями подземных вод в районе строительной площадки, среднегодовая амплитуда колебания уровня подземных вод составляет +0,95м, максимальная +2,0 м. В следствии этого можно сделать вывод, что в южной части площадки строительства во возможны подтопления фундаментов, в следствии поднятия уровня грунтовых вод.

По данным химических анализов подземные воды на строительной площадке, преимущественно соленые, сульфатные, щелочные pH = 8,4 - 8,5, с минерализацией 3,315 - 3,334 г/дм3 и общей жесткостью 8,8 - 10,2 мг-экв/дм3 Температура воды 6,0 - 6,2 °C.

По отношению к бетонам и железобетонным конструкциям подземные воды, согласно СП РК 2.01-101-2013 («Защита строительных конструкций от коррозии»), являются среднеагрессивными. На металлоконструкции подземные воды также средне-агрессивные. По степени водопроницаемости толща слагающих грунтов на участке хвостохранилища, представленная связными покровными супесчано-суглинистыми и подстилающими их плотными и крепкими скальными грунтами, характеризуется как слабоводопроницаемая.

При проектировании следует предусмотреть следующие мероприятия: - антикоррозионную защиту подземных конструкций из стали, свинцовых и алюминиевых оболочек кабеля от агрессивного воздействия грунтов и грунтовых вод.

Группы грунтов в зависимости от трудоемкости их разработки, в талом состоянии, согласно СН РК 8.02-05-2002 (Сборник 1. Таблица 1) указаны в отчете.

На участке изысканий не прогнозируется негативные инженерно-геологические процессы и явления: заболачивание, карст, провалы поверхности деформации пучения, способные осложнить условия строительства данного объекта

2.6 Состояние подземных вод

На *площадке сульфидных фабрик* грунтовые воды на момент изысканий вскрыты частью скважин и установились в зависимости от гипсометрического положения дневной поверхности на глубинах от 0,5 м (скв.-7747) до 9,9 м (скв.-7705). Амплитуда сезонного колебания УГВ+1,2-1,5м. Грунтовые воды на площадке слабо-, средне- и сильноминерализованные (сухой остаток 2,628г/л - 10,520г/л). По степени сульфатной агрессивности на бетон марки по водонепроницаемости W4 на портландцементе грунтовые воды — сильноагрессивные, к сульфатостойким цементам — неагрессивные. К арматуре ж/б конструкций (по содержанию хлоридов) грунтовые воды слабо- и среднеагрессивные при периодическом смачивании, при постоянном погружении - неагрессивные.

На площадке сульфидной фабрики грунты выше УГВ, по данным химанализов, от слабо- до среднезасоленых (СТ РК 1413-2005, т. Д-1, Д-2). Тип засоления сульфатный, редко хлоридно-сульфатный. По степени сульфатной агрессивности на бетонные и железобетонные конструкции на портландцементе марки W4 грунты от среднеагрессивных до сильноагрессивных, к сульфатостойким цементам — неагрессивные. По степени хлоридной агрессивности на железобетонные конструкции грунты от слабоагрессивных до среднеагрессивных. Для расчета рекомендуется принять худший вариант.

На участке первичной дробилки грунтовые воды, вскрыты и установились в период изысканий в зависимости от гипсометрического положения на глубине 5,5-13,0м от поверхности земли. Амплитуда колебаний УГВ +1,2-1,5м. В скважинах №№ 7759-7762 грунтовые воды на период изысканий не встречены. Грунтовые воды среднеминерализованные (сухой остаток 4053,2 мг/л), обладают сильной степенью сульфатной агрессивности на бетон марки W4 на портландцементе, к сульфатостойким цементам — неагрессивные, к железобетонным конструкциям по содержанию хлоридов — среднеагрессивные при периодическом смачивании.

Грунты выше УГВ незасоленные (СТ РК 1413-2005 табл. Д-1, Д-2. По степени сульфатной агрессивности на бетон марки W4 на портландцементе — слабоагрессивные, к сульфатостойким цементам - неагрессивные. К железобетонным конструкциям (по содержанию хлоридов) — неагрессивные.

На участке вахтового поселка и ЛЭП грунтовые воды в период изысканий появились на глубине 2,5-3,5м и установились на глубине 1,5-3,2м от поверхности земли. Амплитуда колебаний УГВ +1,2-1,5м. В скважинах №№ 7668-7670 грунтовые воды не встречены. Грунтовые воды среднеминерализованные (сухой остаток 3612,7 мг/л), обладают сильной степенью сульфатной агрессивности на бетон марки W4 на портландцементе, к сульфатостойким цементам — неагрессивные. К железобетонным конструкциям по содержанию хлоридов — среднеагрессивные при периодическом смачивании.

Грунты выше УГВ незасоленные (СТ РК 1413-2005 табл. Д-1, Д-2). По степени сульфатной агрессивности на бетон марки W4 на портландцементе — слабоагрессивные, к сульфатостойким цементам - неагрессивные. К железобетонным конструкциям (по содержанию хлоридов) — неагрессивные и слабоагрессивные.

На участке кучного выщелачивания грунтовые воды в период изысканий не встречены. Грунты незасоленные и слабозасоленные (СТ РК 1413-2005 табл. Д-1, Д-2). По степени сульфатной агрессивности на бетон марки W4 на портландцементе — сильноагрессивные, к сульфатостойким цементам - неагрессивные. К железобетонным конструкциям (по содержанию хлоридов) — слабоагрессивные.

Состояние подземных вод на момент рассмотрения намечаемой деятельности принято по результатам химического анализа подземных вод в районе размещения рудника «Актогай» по данным исследований, проведенных в 2021 г. Результаты представлены в таблице 2.3 (протоколы испытаний, Приложение 6).

Таблица 2.4 - Результаты химического анализа подземных вод

	средние за 2021 год																			
										№ сь	важины									
Наименование показателя	скв. №1	скв. №2	скв. №3	скв. №4	скв. №5	скв. №6	скв. №7	скв. №8	скв. №9	скв. №10	скв. №11	скв. №12	скв. №13	скв. №14	скв. №15	скв. №16	скв. №22	скв. №23	скв. №24	скв. №25
рН	7,1925	7,5625	7,5175	7,3275	7,7075	7,85	7,8175	7,755	7,05	7,6825	7,575	7,575	7,42	7,0425	7,4475	7,48	7,65	7,515	7,985	7,355
температура	7,675	8,275	7,925	7,675	7,775	8,275	8,15	7,85	7,75	7,75	7,875	7,55	8,4	8,05	7,925	8,425	7,85	7,475	7,875	7,8
уровень	28,9175	12,4725	7,6575	25,7975	22,1275	5,6075	0,74	6,8275	26,87	27,2775	9,5425	24,955	1,845	2,83	1,425	1,355	3,3	8,9625	16,67	3,0275
привкус	2,75	1,75	1,5	3	1,25	1,5	1,5	1,5	1,5	1,5	1,75	1,25	1,75	2,75	1,25	2,25	1,75	1,25	1,75	1,75
цветность	9	3,75	3,75	10	3	3,75	3,75	3	6,25	4,75	7	3	9	8	8	10	5,5	4,5	5,25	5,5
запах	3	1,75	2	3	1,25	1,5	1,5	1,5	1,25	1,25	1,75	1,25	2	2,75	1,5	2,5	1,75	1,5	1,75	2
мутность	1,465	1,0625	1,0625	1,5325	0,7375	0,795	1,0625	0,7375	1,3275	1,1225	1,3325	0,6075	1,3325	1,465	1,4	1,5325	0,9425	1,0625	1,07	1,07
азот аммонийный	0,76575	0,595	0,7585	0,73325	1,86775	2,0195	2,01625	0,867	0,04575	1,00975	0,959	0,032	< 0,20	0,042	0,0715	0,0185		0,82325	0,6215	4,425
азот нитратный	15,02	13,1625	15,4475	15,8225	6,1725	8,6275	1,2625	14,1875	6,5475	18,22	16,515	2,4475	3,6025	0,0285	0,1425	0,0435	18,1775	11,5325	9,46	2,5675
азот нитритный	0,0885	0,124		0,11075	0,39	0,6075	< 0,007	0,37175	0,11375	0,413	0,09425	0,3275	0,19	< 0,007	< 0,007	< 0,007	0,27925	0,43475	0,309	0,613
алюминий	0,02875	0,0185	0,01475	0,02325	0,02225	0,0155	0,0315	0,026	0,03075	0,0335	0,05275	0,0405	0,0305	0,0235	0,044	0,0195	0,033	0,029	0,038	0,04025
анионные поверхностно- активные вещества АПАВ	0,19925	0,23225	0,31175	0,262	0,22975	0,2235	0,04425	0,139	0,139	0,153	0,08705	0,329	0,13725	0,31525	0,1985	0,27	0,14875	0,193	0,174	0,27575
барий	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020
бериллий	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
бор	0,0925	0,1325	0,115	0,11	0,115	0,1125	0,115	0,115	0,065	0,1375	0,22	0,44	0,295	0,455	0,15775	0,23525	0,1325	0,12	0,1325	0,1575
ванадий	0,00655	0,011	0,0115	0,0125	0,0125	0,0125	0,01325	0,01275	0,012	0,0135	0,0125	0,0135	0,01325	0,01225	0,01425	0,0165	0,014	0,013	0,01425	0,01575
гидрокарбонаты	63,3125	93,25	55,025	77,8	138,775	95,775	86,1025	44,4	95,545	80,605	93,45	128,75	239,15	67,5	75,025	112,1	76,275	67,95	101,7	50,9
железо общее	1,5175	1,5275	1,5	1,4225	0,085	0,135	1,5125	1,37	0,5225	1,5025	0,165	0,225	0,14075	2,105	2,085	2,05	1,435	0,225	0,29	0,4
жесткость общая	16,95	8,64	12,58	26,4675	10,505	8,5075	8,4075	9,96	23,9925	10,8625	24,9275	11,3375	9,8625	19,39	18,18	21,8375	18,1625	14,5875	7,605	16,625
кадмий	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010
калий	38,61	40,5	35,375	45,1	33,025	32,1	43,55	42,95	40,3	37,3	60,475	56,75	52	53,85	49,75	51,175	52,625	53,625	46,55	49,75
кальций	134,75	72,75	115,6	91,45	118,375	118,225	61,65	109,6875	244,025	109,375	309,5	156,5	135,25	314,625	228,375	277,25	223	123,5	38,5	173
карбонаты	< 8,0	12,25	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0
кобальт	0,0108	0,0115	0,0315	0,02425	0,024	0,02225	0,022	0,025	0,026	0,02325	0,0215	0,0145	0,0225	0,0215	0,0235	0,0225	0,0315	0,023	0,0215	0,023
магний	38,475	19,075	35,07	32,85	20,075	14,025	17,6875	10,625	22,675	11,875	43,825	16,325	30,6	72,3	35,075	43,125	12,8	20,675	15,425	53,525

_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_	_	
марганец	0,0135	0,0165	0,01425	0,0215	0,018	0,0135	0,01275	0,01175	0,0135	0,0125	0,01225	0,014	0,01275	0,01275	0,01475	0,01175	0,0045	0,0055	0,0065	0,0155
медь	0,03225	0,0215	0,03225	0,0295	0,0225	0,022	0,0235	0,02325	0,03275	0,03775	0,0155	0,024	0,0355	0,03675	0,0225	0,037	0,024	0,02375	0,02975	0,02575
молибден	0,002	0,0075	0,0055	0,00275	0,007	0,00425	0,00425	0,0055	0,0065	0,00275	0,00425	0,0055	0,0055	0,003	0,00525	0,0055	0,0055	0,0045	0,00275	0,0035
МЫШЫЯК	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
натрий	545,7775	531,65	522,5	533,075	644,75	628,925	628,075	620,725	631,825	645,0	634,7	970,975	925,875	913,975	910,675	955,025	741,975	862,9	759,25	970,8
нефтепродукты	0,05675	0,04425	0,0775	0,07525	0,043	0,0475	0,06475	0,07325	0,054	0,08175	0,0355	0,05575	0,05575	0,04525	0,05525	0,05275	0,06575	0,0775	0,074	0,0505
никель	0,01275	0,01525	0,0125	0,011	0,0175	0,01175	0,01075	0,0115	0,01125	0,0115	0,01475	0,012	0,01325	0,0135	0,01525	0,012	0,012	0,0095	0,0115	0,01475
перманганатное число	4,775	5,8775	5,5475	4,7975	6,57	5,5825	5,515	5,56	6,505	5,1775	6,7275	6,525	6,25	6,405	6,7525	5,77	6,07	5,5175	4,7675	6,775
ртуть	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
свинец	0,01325	0,01375	0,011	0,0065	0,00525	0,01325	0,00375	0,0045	0,007	0,01275	0,00475	0,0055	0,01575	0,0165	0,01475	0,0055	0,01675	0,01275	0,0035	0,01625
селен	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
стронций	0,5135	0,522	0,5065	0,517	0,5405	0,542	0,5325	0,514	0,2545	0,50425	0,513	0,5425	0,52225	0,52	0,531	0,517	0,514	0,4425	0,44925	0,534
сульфаты	839,65	462,675	425,05	1235,675	1106,475	576,8	474,2	453,775	968,85	449,45	777,2	587,5	1046,325	1554,5	955,125	1380,7	681,275	474,975	336,075	723,05
сухой остаток	985,5	1013,25	986,5	1641,75	1311,75	1053	955	1099,25	1142,75	1245,25	1204,5	825	2548,75	2681,25	1202	1959,25	957,25	870,75	629,5	975,5
фенол	0,017375	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,029125	< 0,0005	< 0,0005	0,0181	< 0,0005	< 0,0005	< 0,0005	0,047225	0,04725	0,0039	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,04045
фосфаты	0,85575	0,9145	0,9205	0,961	0,8145	0,809	1,161	0,83375	1,21925	0,82625	0,759	0,94225	1,10625	1,053	0,9885	1,05825	0,814	0,876	0,81375	0,7805
фторид-ионы	< 0,04	< 0,04	< 0,04	< 0,04	0,155	0,27	0,6075	< 0,04	< 0,04	< 0,04	0,1675	0,2575	0,2325	0,795	0,615	0,515	< 0,04	< 0,04	< 0,04	0,4325
хлориды	379,2	70,1825	400,0125	654,8425	661,73	237,3375	372,3925	769,05	347,5225	878,935	977,3175	200,54	347,265	1236,525	674,35	773,925	673,795	424,1825	269,225	176,7275
хром	0,001375	0,00115	0,0012	0,00055	0,007725	0,004	0,001025	0,0005	0,00155	0,0014	0,0013	0,001325	0,000325	0,001475	0,004725	0,0013	0,0013	0,0014	0,00125	0,00125
цианиды	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
цинк	0,2225	0,23225	0,22225	0,226	0,213	0,20325	0,2175	0,21225	0,212	0,2225	0,2265	0,22275	0,2245	0,22075	0,223	0,23325	0,225	0,21475	0,2145	0,2235

							(среднее за	2021 год						
Наименование								№ сква	жины						
показателя	скв. №1b	скв. №2b	скв. №3b	скв. №4b	скв. №5b	скв. №6b	скв. №7ь	скв. №8b	скв. №9b	скв. №10b	скв. №11b	скв. №12b	скв. №13b	скв. №14b	скв. №15b
рН	8,0425	7,4875	7,3175	7,2925	7,7425	7,825	7,735	7,6625	7,92	7,795	8,0875	7,7525	7,7125	7,6225	7,1875
температура	8,075	7,6	8,075	8,075	8,025	7,55	7,85	7,6	7,775	7,725	8	7,925	8,1	8,25	8,075
уровень	3,2275	2,5675	4,1275	7,0225	5,665	7,3	2,605	3,9825	10,4225	2,755	2,6875	3,3525	1,715	1,5125	2,2475
привкус	2,25	1,25	2	1,25	2,25	1,5	2	1,5	1	1	1	1,75	1,75	1,5	1
цветность	6,5	6,25	7,25	4,75	8	8	8	5,5	3	3,75	3,75	6,5	8	6	3,75
запах	2,25	1,25	2	1,25	2,25	1,75	2	1,5	1	1	1	1,5	1,75	1,25	1,25
мутность	1,4	1,195	1,4	1,2675	1,2675	1,465	1,465	0,9325	0,665	0,7375	0,8675	1,205	1,4	1,1275	1,0625
азот аммонийный	1,74675	1,66325	1,71875	1,60325	1,519	1,537	1,46875	1,7785	1,628	1,61825	1,67525	1,59	1,534	1,6125	1,73875
азот нитратный	11,81	17,7575	15,07	14,085	15,1325	15,7475	15,0975	17,3825	18,775	16,8275	17,6325	12,23	12,9175	14,3875	15,6675
азот нитритный	0,09175	0,1345	0,114	0,11625	0,518	0,14825	0,13425	0,06225	0,026	0,05275	0,10925	0,3685	0,10925	0,13425	0,03275
алюминий	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04
анионные поверхностно- активные вещества АПАВ	0,121	0,1295	0,2565	0,31325	0,17175	0,16675	0,1775	0,1165	0,11875	0,113	0,1325	0,2315	0,1455	0,26875	0,135
барий	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020	< 0,0020
бериллий	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
бор	0,085	0,085	0,07	0,085	0,085	0,095	0,0975	0,085	0,085	0,0875	0,0925	0,085	0,09	0,0725	0,09
ванадий	0,0125	0,01225	0,0165	0,0135	0,01075	0,0115	0,013	0,014	0,01175	0,014	0,014	0,01675	0,0155	0,01025	0,0135
гидрокарбонаты	41,55	74,575	48,175	46,65	76,9	53,525	62,925	63,9	66,6625	40,45	177,0125	232,53	64,535	199,575	111,0175
железо общее	0,22525	0,23325	0,15125	0,12875	0,18775	0,20725	0,22825	0,14175	0,132	0,12775	0,1325	0,224	0,1535	0,18425	0,2355
жесткость общая	21,065	16,6	17,725	19,5875	18,9375	17,6575	17,675	16,535	24,6125	22,85	9,785	19,175	17,2875	16,65	21,9
кадмий	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010	< 0,0010
калий	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0	< 25,0
кальций	216	294,25	225,95	294,8	254,025	317,75	509,925	358,25	433,5	414,625	212,425	201,125	215,625	220,875	332,875
карбонаты	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0	< 8,0
кобальт	0,014	0,023	0,0155	0,02275	0,0205	0,02275	0,02275	0,0225	0,02275	0,01725	0,022	0,0165	0,0245	0,0115	0,0235
магний	13,25	17,125	12,425	16,7	15,925	17,2	16,725	15,725	17,85	15,225	8,1	12,775	13,025	14,5	30,475
марганец	0,01975	0,02075	0,0145	0,01675	0,01425	0,01375	0,0135	0,01425	0,0225	0,01525	0,016	0,0155	0,022	0,018	0,02325

1	ı			Ī	ı			i				Ī	1		
медь	0,08725	0,12	0,12	0,08625	0,096	0,0145	0,1075	0,1375	0,10625	0,6625	0,075	0,018	0,07825	0,09625	0,0545
молибден	0,007	0,0055	0,016	0,006	0,00375	0,0065	0,0075	0,007	0,00625	0,006	0,0035	0,00725	0,00475	0,00625	0,0075
МЫШЬЯК	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
натрий	917,525	641,775	520,925	512,8	503,35	531,875	732,825	726,275	711,25	625,125	500,75	737,75	702,85	601,725	522,675
нефтепродукты	0,0765	0,042	0,04675	0,06	0,06325	0,04325	0,07275	0,0535	0,04325	0,0545	0,04525	0,0455	0,055	0,05475	0,0545
никель	0,0115	0,0125	0,0135	0,01975	0,009575	0,017	0,0105	0,01425	0,01275	0,01325	0,0165	0,013	0,0125	0,01325	0,0115
перманганатное число	3,845	2,85	3,13	2,865	3,74	3,36	3,78	3,4275	3,7375	3,435	2,64	3,645	3,715	2,725	4,295
ртуть	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
свинец	0,0075	0,0075	0,0135	0,013	0,0075	0,01325	0,00575	0,00625	0,00475	0,0135	0,0055	0,00875	0,0145	0,01275	0,00725
селен	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
стронций	0,52825	0,51225	0,512	0,512	0,433	0,533	0,52325	0,5135	0,51225	0,50825	0,43575	0,53775	0,51325	0,53	0,53325
сульфаты	821,65	859,55	380,25	388,65	540,2	640	544,825	1026,675	859,525	614,85	294,075	428,45	396,975	634,075	878,05
сухой остаток	7093,5	4749,35	1498,75	1368	1870,5	2294,75	2308	4959,5	3251,25	2268,75	1536,75	2738,5	4804	5041	6135,75
фенол	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,050	< 0,0005
фосфаты	0,85	1,013	0,92225	0,92475	0,83775	0,88675	0,88775	0,8255	0,81625	0,7135	0,7565	0,91425	0,71425	0,61525	0,844
фторид-ионы	3,57	4,1125	3,02	4,205	3,2575	4,4225	3,4975	4,6875	4,2075	3,585	3,845	4,69	4,3375	3,2	3,73
хлориды	4653,55	1816,1	1057,7	332,93	371,6275	653,37	480,215	1743,6	961,05	809,125	382,575	760,65	987,25	1548,35	3127,55
хром	0,00115	0,00125	0,00145	0,00715	0,00125	0,00125	0,001275	0,00135	0,001275	0,00125	0,00115	0,00125	0,0014	0,00145	0,00135
цианиды	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
цинк	0,22275	0,21775	0,22275	0,22375	0,21225	0,21475	0,22325	0,221	0,2135	0,21525	0,2135	0,2335	0,21625	0,223	0,22175

2.7 Поверхностные воды

Непосредственно на территории расположения Актогайского ГОКа и близ него естественные водотоки и водоемы отсутствуют.

Участок проектируемых работ расположен за пределами границ водоохранных зон и полос поверхностных водных объектов. Ближайшая река - р. Аягоз, протекающая примерно в 30 км западнее от участка месторождения. На этом отрезке и ниже по течению она не имеет постоянного стока, распадается на отдельные плесы.

Ближайший водный объект – ручей без названия, расстояние рассматриваемого участка реконструкции до водоохранной зоны данного ручья составляет 4382 м (от $O\Phi N 1$) и 4849 м (от $O\Phi N 2$).

Минимальная ширина водоохранной зоны ручья без названия определена от основного русла - 500 метров. На отдельных участках водоохранная зона определена от пояса меандрирования. В связи со спрямлениями границы водоохранной зоны в зависимости от извилистости русла ручья ширина водоохранной зоны в отдельных местах изменяется до 800-1359 метров.

Ситуационная схема с привязкой к местности с указанием водного объекта представлена в Приложении 3.

2.8 Состояние почв и грунтов

Территория месторождения «Актогай» находится в полупустынной зоне.

На территории месторождения выявлены следующие разновидности почв.

Бурые обычные слабо- и среднещебнистые легкосуглинистые. Профиль бурых почв характеризуется наличием на поверхности пористой корочки мощностью 1–5 см. Мощность гумусового горизонта составляет 20–35 см, содержание гумуса в верхнем горизонте – от 0,5 до 1,2 %, у нижней границы горизонта «В» – от 0,5 до 0,9 %.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах колеблется от 0 до $45\,\mathrm{cm}$.

Бурые неполноразвитые слабо- и среднещебнистые легкосуглинистые. Мощность гумусового горизонта составляет 20–26 см, содержание гумуса в верхнем горизонте – от 0.6 до 0.9 %, у нижней границы горизонта «В» – от 0.4 до 0.8 %.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах колеблется от 0 до $35\ \mathrm{cm}$.

Бурые малоразвитые слабо- и среднещебнистые средне- и легкосуглистые. Мощность гумусового горизонта составляет 15-20 см, содержание гумуса в верхнем горизонте – от 0.6 до 0.8 %, у нижней границы горизонта «В» – от 0.5 до 0.7 %.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах -0 см.

Бурые малоразвитые сильнощебнистые средне- и легкосуглистые. Мощность гумусового горизонта составляет 12-18 см, содержание гумуса в верхнем горизонте – от 0.6 до 0.9 %, у нижней границы горизонта «В» – 0.6 %.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах -0 см.

Лугово-бурые солончаковые легкосуглинистые.

Мощность гумусового горизонта составляет 30 см, содержание гумуса в верхнем горизонте – 0.5 %, у нижней границы горизонта «В» – 0.3 %.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах -0 см.

Солонцы автоморфные солончаковые, супесчаные, тяжело- и легкосуглинистые.

Мощность гумусового горизонта составляет 25-30 см, содержание гумуса в верхнем горизонте – от 0.3 до 0.7 %, у нижней границы горизонта «В» – от 0.2 до 0.5 %.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах -0 см.

Солончаки луговые легкосуглинистые.

Мощность гумусового горизонта составляет 25 см, содержание гумуса в верхнем горизонте – от 1 до 0.3%, у нижней границы горизонта «В» – от 0.8 до 0.3%.

Мощность рекомендуемого для снятия плодородного слоя в этих почвах -0 см.

Земли месторождения «Актогай», в основном, трудно осваиваемые и не пахотнопригодные, используются как низко-продуктивные пастбища.

Инженерно-геологическими изысканиями, выполненными в районе месторождения Актогай в период геологоразведочных работ, установлено, что:

- не представляется возможным выделить рыхлый чехол в самостоятельный инженерногеологический комплекс ввиду его малой мощности (от нескольких сантиметров до $2~\mathrm{m}$) на значительной площади месторождения ($80~\mathrm{m}$);
- почва в пределах границ горного отвода является малопродуктивной, каменистой с мизерным содержанием гумуса, характеризуется значительной засоленностью, увеличивающейся с глубиной от 1,33 % до 3,32 % на 100 г абсолютно сухой пробы (засоленность сульфатно-кальциевого состава с содержанием хлора до 7,1 %), в связи с чем, почвы непригодны для сельскохозяйственного использования.

Значительная площадь выхода на дневную поверхность рудоносного штокверка при относительно малой мощности перекрывающих наносов позволила при его оконтуривании применить в большом объеме канавные работы. Проходка канав осуществлялась многоковшовым роторным экскаватором с дальнейшей допроходкой отдельных интервалов вручную. Всего по месторождению за период геологоразведочных работ с 1975 по 1980 гг. было пробурено 140713,7 м скважин, пройдено 134664,2 м³ канав, 2559,8 м мелких шурфов, 1444,3 м подземных горных выработок.

Таким образом, в результате проведенных интенсивных геологоразведочных работ в районе месторождения Актогай (проводившихся в общей сложности с 1955 г. – радиометрическая и гидрогеологическая разведка), характеризующейся тяжелыми почвенно-климатическими условиями, малой мощностью гумусового горизонта, низким количеством плодородного слоя почвы и его засоленностью, земли на всей площади месторождения и части территории местности, прилегающей к месторождению были приведены в нарушенное состояние и длительное время в последующем (с 1985 по 2004 гг.) находились вне какого либо хозяйственного использования.

Топографическими съемками и инженерно-геологическими изысканиями, проведенными Жезказганским проектным институтом в 2005 г., подтверждены нарушенность земель в пределах площади месторождения и части территории, прилегающей к ней, а также значительная засоленность земель в районе возможного земельного отвода для строительства Актогайского ГОКа. Согласно проведенным изысканиям поверхностный почвенный слой представлен желтовато — серыми или светло — коричневыми суглинками с примесью мелкой гальки и щебня до 30 % мощностью от 0,4 м до 2,4 м; средне и сильно засоленных легкорастворимыми солями (ЛРС 1,22 % - 2,12 %). Непригодность земель в районе месторождения Актогай для сельскохозяйственного использования подтверждается характеристикой растительности. Растительность в районе месторождения полупустынная и пустынная, растительный покров разреженный, состоит из засухоустойчивых многолетних злаков (ковыль и типчак), низкорослых кустарников (полынь, верблюжья колючка, различные виды солянок) высотой 1-2 м.

Состояние земель в пределах возможного горного отвода и мест размещения отвалов характеризуется следующими данными:

- нарушенные земли канавами и отвалами породы 665,8 га;
- солончаковые земли

- 88,63 га;

- полевые автодороги

- 0,17 га;
- выход скального грунта на поверхность
- 362,67 га.

В зоне расположения промплощадок рудника распространены коренные интрузивные и вулканогенные породы, представленные скальными туфопесчаниками, гранитами, базальтами, порфиритами, конгломератами и другими разностями. Мощность коренных пород измеряется сотнями метров. В верхней части они выветрелые, трещиноватые, с поверхности покрытые чехлом четвертичных отложений – суглинками, дресвяно-щебёнистыми грунтами мощностью около нуля на сопках и порядка 2,0 м на склонах. Трасса железнодорожного пути от ст. Актогай до гор Колдар проходит по аллювиально-пролювиальной равнине, расположенной в междуречье Аягоз-Тансык. Аллювиально-пролювиальные средне- верхнечетвертичные отложения представлены в основном переслаивающимися супесями и суглинками, залегающими на песках различной крупности. Мощность слоя суглинков колеблется от 0,6 до 2,0 м, на контакте супеси и суглинка иногда встречаются линзы глин мощностью $0,2\div0,8$ м. Суглинки и супеси засолены и обладают коррозийной активностью к металлу. Почвенный покров этих площадок, представлен, в основном, серо – бурыми почвами среднесуглинистого механического состава, очень слабо гумусированный (1,09-1,36% в горизонте А). Выделены они преимущественно в комплексах с малоразвитыми почвами и солонцами, занимающими от 10-30 до 50% территории комплекса.

Серо-бурые почвы являются зональным типом почв пустынной зоны. Поверхностный слой покрыт пористой корочкой мощностью 3-5 см, под ним слоеватый горизонт мощностью 5-7 см, далее уплотненный слой с пятнами карбонатов. Выделения гипса и легкорастворимых солей отмечаются на глубине 40- 50 см. В отличии от бурых почв максимальное количество карбонатов приходится на самый верхний слой. Серо-бурые почвы испытывают резкий дефицит влаги.

Согласно данным доразведки, проведенной в 1986-1987 гг. при оценке безрудности промплощадок будущего Актогайского ГОКа, установлено, что на большей части площади, а именно, северо- западнее, севернее, северо-восточнее, восточнее и юго-восточнее от озера Кошкар, имеет место непосредственный выход на поверхность коренных скальных пород (базальтовых и андезито-базальтовых порфиритов, конгломератов и др.). Западнее, юго-западнее и южнее озера Кошкар поверхность представлена рыхлыми делювиально — пролювиальными отложениями (суглинки, пески, галечники, гравий, щебень) на которых развиты малопродуктивные и засоленные почвы (лугово-бурые и луговые бурые почвы, занимающие пониженные места). В отличие от зональных бурых почв, они значительно менее распространены, но немного лучше гумусированы (1,5-2,5%) и в большинстве случаев засолены по всему профилю водно-растворимыми солями.

Таким образом, почвенный покров района месторождения Актогай весьма беден. Земли в основном трудно осваиваемые и не пахотнопригодные, ограниченное количество которых (~270 га), в пределах земельного отвода, могли бы использоваться как низко-продуктивные пастбища. На крайнем юге - полынная и полынно-солянковая полупустыня на сероземах и бурых почвах. Окрестности Алакольской котловины заняты песками, солонцами и солончаками, и представляют пустыню.

Состояние почвенного покрова приняты по результатам химических анализов, проводимых в 2021 году ТОО «Лаборатория-Атмосфера» на границе СЗЗ рудника Актогай. Результаты химических анализов проб почв, проведенных в 2021 году, приведены в таблице 2.4 (протоколы испытаний, Приложение 6). Пробы отобраны в районе контролируемых скважин подземных вод.

Таблица 2.4 - Результаты химического анализа почв, проведенного в 2021 г.

									Концен	трации за	2021 год								
Наименование										№ точки									
показателя	№1	№2	№3	№4	№5	№6	№7	№8	№9	№ 10	№11	№12	№13	№14	№15	№16	№ 17	№18	№ 19
pН	7,43	7,48	7,68	7,48	7,84	7,46	7,56	7,53	7,83	7,37	7,41	7,27	7,41	7,38	7,33	7,41	7,22	7,54	7,39
Цианиды	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	, ,		T	1	T	Ī		Вал	овое содера	кание					r		7	1	_
Барий	>550,0 >550,0 <td>>550,0</td>															>550,0			
Берилий	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Бор	6,0	4,7	6,5	3,7	5,9	4,0	5,1	5,9	5,2	1,7	5,1	6,0	5,1	5,9	4,3	4,4	5,6	4,8	5,1
Ванадий	123,0	72,0	54,0	72	45,0	65,0	74,0	64,0	81,0	33,0	65,0	56,0	72,0	26,0	31,0	30,0	32,0	39,0	45,0
Диоксид кремния	541600,0	544600,0	562300,0	524900,0	518600,0	608300,0	575300,0	625100,0	<524800,0	595500,0	598200,0	570600,0	525100,0	548300,0	572400,0	569100,0	529600,0	526700,0	532000,0
Диоксид титана	8200,0	5700,0	5400,0	6500,0	5300,0	5700,0	5800,0	6200,0	6500,0	5300,0	6300,0	5410,0	6100,0	8290,0	5100,0	5400,0	5900,0	6000,0	6600,0
Железо	420380,0	21745,0	21040,0	25140,0	17920,0	23044,0	25240,0	2304,0	26920,0	21870,0	23260,0	17120,0	27240,0	28750,0	20460,0	56710,0	27140,0	26480,0	27890,0
Кадмий	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Марганец	>920,0	561,0	550,0	674,0	460,0	576,0	>920,0	632,0	>920,0	549,0	566,0	615,0	683,0	>920,0	583,0	579,0	683,0	703,0	760,0
Медь	113,0	94,0	121,0	137,0	54,0	75,0	75,0	77,0	80,0	64,0	63,0	61,0	128,0	116,0	62,0	71,0	82,0	77,0	82,0
Молибден	3,0	4,0	3,0	2,0	4,0	3,0	3,0	3,0	3,0	3,0	5,0	6,0	3,0	4,0	3,0	2,0	3,0	2,0	3,0
Мышьяк	4,0	2,0	2,0	<2,0	3,0	4,0	3,0	3,0	11,0	2,0	3,0	2,0	<2,0	3,0	2,0	3,0	3,0	2,0	4,0
Нефтепродукты	0,06	0,08	0,06	0,06	0,05	0,07	0,07	0,06	0,05	0,08	0,17	0,12	0,07	0,08	0,07	0,09	0,06	0,04	0,05
Никель	41,0	24,0	24,0	26,0	21,0	25,0	26,0	18,0	38,0	14,0	25,0	23,0	34,0	34,0	15,0	22,0	27,0	31,0	37,0
Нитраты	2,8	2,0	3,1	2,4	2,2	2,3	2,38	3,0	2,6	2,2	2,6	2,2	3,7	2,5	2,7	2,4	2,7	2,4	2,9
Оксид алюминия	124200,0	106541,0	115100,0	127340,0	112900,0	102900,0	106500,0	95300,0	115100,0	104020,0	107000,0	108100,0	119300,0	109600,0	104810,0	103800,0	108400,0	111500,0	118500,0
Оксид железа	64600,0	32130,0	30420,0	35100,0	25700,0	36200,0	33400,0	33100,0	42600,0	27700,0	35100,0	26200,0	39760,0	44200,0	26500,0	31590,0	40900,0	43400,0	47600,0
Оксид калия	22030,0	21900,0	>24600,0	22900,0	23300,0	23500,0	22800,0	16400,0	>24600,0	22600,0	>24600,0	>24600,0	21010,0	21300,0	21900,0	22400,0	23700,0	24000,0	23100,0
Оксид кальция	62400,0	34700,0	42700,0	41000,0	43100,0	58110,0	46900,0	68000,0	34900,0	55400,0	46900,0	54000,0	41900,0	70700,0	50300,0	59600,0	56100,0	37600,0	40800,0
Оксид марганца	>920,0	718,0	702,0	861,0	599,0	721,0	>920,0	809,0	>920,0	710,0	730,0	787,0	892,0	>920,0	720,0	760,0	790,0	850,0	890,0
Оксид фосфора	1610,0	1790,0	1710,0	1644,0	1800,0	1801,0	1781,0	1784,0	>1900,0	1602,0	1880,0	1739,0	1566,0	1810,0	1615,0	1790,0	1830,0	1880,0	1710,0
Ртуть	<2,0	<2,0	2,1	<2,0	<2,0	<2,0	2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	2,1	<2,0	<2,0	<2,0	<2,0	<2,0
Свинец	22,0	21,0	24,0	28,0	17,0	21,0	24,0	17,0	24,0	22,0	20,0	23,0	20,0	21,0	21,0	22,0	23,0	26,0	24,0

Î	1 1		ı	ı	I	1	ı	í	ı	1	ı	ı	ı	I	Ì	I	1	1	I
Сурьма	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Фтор	1,7	1,8	1,8	1,33	1,7	1,2	1,3	1,8	1,8	1,8	1,1	1,2	1,3	1,6	1,4	1,8	1,5	1,7	1,5
Xром (III)	122,8	94,0	91,3	100,7	104,3	106,8	82,0	100,2	92,7	106,6	108,0	104,0	100,0	118,0	103,7	107,0	99,4	95,4	100,7
Xром (IV)	160,9	118,0	122,7	133	140,4	142,1	109,2	136,6	126,0	142,7	146,0	130,0	129,0	149,0	138,2	145,0	133,8	128,0	143,0
Хром общий	84,0	78,0	77,0	78	78,0	78,0	77,0	78,0	78,0	77,0	77,0	78,0	77,0	82,0	74,0	77,0	79,0	76,0	80,0
Цинк	80,0	62,0	56,0	85	39,0	56,0	73,0	50,0	76,0	52,0	61,0	44,0	78,0	75,0	50,0	52,0	60,0	62,0	69,0
								Пе	одвижная ф	орма									
Ванадий	1,33	1,21	1,33	1,38	1,38	1,68	1,53	1,4	1,54	1,66	1,59	1,69	1,46	1,38	1,62	1,53	1,42	1,49	1,37
Железо	3,24	3,64	3,22	3,6	3,5	3,82	3,64	3,53	3,6	3,4	3,4	3,45	3,55	3,53	3,38	3,49	3,55	3,61	3,5
Кадмий	1,81	1,15	1,2	1,77	1,21	1,71	1,31	1,11	1,77	1,31	1,21	1,37	1,11	1,27	1,25	1,31	1,28	1,45	1,64
Кобальт	0,6	0,58	0,49	0,5	0,46	0,57	0,5	0,56	0,63	0,46	0,54	0,44	0,58	0,56	0,49	0,5	0,57	0,6	0,52
Марганец	1,75	1,14	1,21	1,17	1,85	2,11	2,16	1,91	1,9	1,25	1,42	1,8	1,66	2,2	1,31	1,87	1,94	1,91	1,79
Медь	2,14	2,32	2,37	2,15	2,34	2,3	2,3	2,03	2,19	2,5	2,05	2,04	2,13	1,44	2,17	2,1	1,53	1,72	1,85
Молибден	1,2	1,24	1,66	1,33	1,21	1,5	2,22	1,26	1,1	1,37	1,67	1,46	1,26	1,4	1,34	1,46	1,2	1,18	1,16
Мышьяк	0,02	0,02	0,01	0,01	0,02	0,02	0,03	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,01	0,02	0,01	0,02	0,03
Никель	1,12	1,64	1,25	1,57	1,47	1,34	2,04	1,6	1,64	1,69	1,46	1,39	1,2	1,3	1,4	1,38	1,41	1,53	1,28
Нитраты	2,34	2,42	2,49	2,54	2,6	2,51	2,39	2,58	2,55	2,5	2,58	2,41	2,53	2,36	2,56	2,44	2,52	2,56	2,49
Ртуть	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001	<0,0001
Свинец	2,13	2,07	1,69	1,95	1,82	2,22	2,11	1,67	1,9	1,81	1,89	1,94	0,78	1,97	1,77	1,85	1,89	1,91	2,06
Сурьма	0,65	0,62	0,55	0,41	0,45	0,6	0,55	0,5	0,57	0,44	0,66	0,47	0,54	0,52	0,49	0,53	0,51	0,55	0,61
Фтор	1,13	1,17	1,16	1,15	1,19	1,3	1,15	1,17	1,25	1,2	1,11	1,11	1,19	1,19	1,15	1,27	1,18	1,23	1,18
Хром общий	0,85	0,77	1,23	1,06	1,16	1,26	0,89	1,03	1,23	1,29	1,01	0,96	0,78	1,2	1,08	1,14	1,17	1,2	0,97
Цинк	2,29	2,24	2,2	2,22	2,26	2,09	2,4	2,35	2,36	2,42	2,19	2,27	2,24	2,29	2,26	2,19	2,22	2,3	2,25

3. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

3.1 Цель и обоснование проведения работ

Основной стратегической целью данного проекта - является увеличение материальносырьевой базы компании и увеличение производства медного концентрата.

Цель реконструкции предприятия - увеличение годовых показателей производства обогатительных фабрик №1 и №2 по переработке сульфидных руд месторождения Актогай, путем выхода на максимальную производительность имеющегося оборудования, установки дополнительного оборудования, а также за счет внедрения мер по оптимизации технологических процессов.

Исходным проектным показателем для обогатительных фабрик является номинальная производительность процессов обогатительного производства - 25 млн. тонн руды в год (основной режим работы технологического оборудования)

Для увеличения производительности $O\Phi$ -1 до 30 млн. тонн руды в год предусматривается комплекс технических мероприятий, рассматриваемых проекте реконструкции.

При увеличении на ОФ-1 переработки руды до 30 млн. тонн технология обогащения медно-молибденовых руд обеспечивает получение следующих товарных концентратов:

- медного с содержанием меди 23%;
- молибденового с содержанием молибдена 50%.

Товарная продукция обогатительного передела в среднем будет составлять:

- медного концентрата 503 тыс. тонн в год, в нем меди 115,694 тыс. тонн;
- молибденового концентрата 2,342 тыс. тонн в год, в нем молибдена 1,171 тыс. тонн. Извлечение основных металлов в концентраты составит:
- меди в медный концентрат -86%;
- молибдена в молибденовый концентрат -40.0%.

Согласно технико-экономического обоснования (ТЭО) «Строительство обогатительной фабрики рудника «Актогай» с инфраструктурой», разработанного Казахстанским институтом по проектированию предприятий цветной металлургии «КАЗГИПРОЦВЕТМЕТ», в предварительных расчетах было указана максимальная производительность фабрики, при нормальной эксплуатации технологического оборудования, предусмотренного в проекте – 27,5 млн. тонн руды в год.

Исходя из этих данных, проектом предусматривается на 1 стадии реконструкции увеличение производительности ОФ-2 до 27,5 млн. тонн руды в год, за счет оптимизации режима работы существующего технологического оборудования, без внесения технических изменений в технологический процесс производства фабрики.

Для обеспечения гарантированного, безаварийного режима работы обогатительных фабрик, проектом предусматриваются мероприятия по реконструкции хвостового хозяйства в южной части хвостохранилища (3-й этап, фаза 2-1), включающие наращивание существующих дамб и сооружений хвостохранилища в соответствии с долгосрочными планами предприятия по развитию и эксплуатации участка хвостового хозяйства обогатительных фабрик №1 и №2.

Реализация данного проекта содействует:

- развитию минерально-сырьевого комплекса страны;
- увеличению потенциала горнорудной индустрии Казахстана посредством модернизации технологии, которые будут использованы в добыче и переработке руды, а также в производстве конечного продукта.

3.2 Существующее состояние

Проектная мощность обогатительного производства по переработке сульфидных медно-молибденовых руд обогатительных фабрик №1 и №2 составляет на сегодняшний день по 25,0 млн. тонн руды в год.

Основное технологическое оборудование выбрано с учетом коэффициента использования оборудования - 0,92.

Строительство проекта обогатительной фабрики №1 завершено в конце 2016 года, ввод в эксплуатацию и запуск обогатительной фабрики сульфидных медных руд (далее ОФ-1) состоялся в декабре 2016 года.

Строительство проекта обогатительной фабрики № 2 завершено в конце 2021 года, ввод в эксплуатацию и запуск обогатительной фабрики сульфидных медных руд (далее ОФ-2) состоялся осенью 2021 года.

Технологический комплекс предприятия Актогайского ГОКа состоит из объектов – открытый карьер, площадка выщелачивания окисленных руд, цех жидкостной экстракции и электролиза, обогатительная фабрика медной руды, отвал руды, хвостохранилище, площадка отгрузки концентрата, подъездная автомобильная и железная дорога к руднику, инфраструктура и здания рудника.

Электроснабжение Актогайского ГОКа реализовано через подстанцию 220/110 кВ поселка Актогай (Актогайский ГОК) по ВЛ 110 кВ. Для обеспечения питьевого и технического водоснабжения на период строительства и эксплуатации предусмотрен водозабор Жузагаш.

По ранее проведенным геологическим изысканиям и исследованиям на обогатимость, запасы месторождения «Актогай» определены следующие:

Извлекаемые запасы окисленных руд - 119 млн. тонн руды, 0,357% меди, содержат 425 тыс. тонн меди

Извлекаемые запасы сульфидных руд -1~397~ млн. тонн руды, 0.348%~ меди, 0.008%~ молибдена, содержат 4 858 тыс. тонн меди, 114~тыс. тонн молибдена.

Технологический процесс существующих ОФ-1, ОФ-2 переработки сульфидных руд.

Обогащение медно-молибденовых руд осуществляется при помощи технологий дробления, измельчения и флотации. Обогатительные фабрики-1,2 и сопутствующие сооружения предназначены для производства концентратов меди и молибдена. Производится сушка концентрата до транспортного состояния, затем транспортировка с реализацией медного и молибденового концентрата на внеплощадочные медеплавильные заводы в мешках (2 тонны).

Технология переработки медной руды состоит из следующих основных этапов производства:

- Первичное дробление рядовой руды во вращающейся дробилке первичного дробления со стандартным питанием рудой непосредственно от самосвалов.
 - Первичное измельчение дробленой руды в мельнице ПСИ.
 - Классификация измельченного продукта в гидроциклонах.
- Измельчение нижнего продукта гидроциклона на параллельных шаровых мельницах.
- Флотация классифицированного продукта измельчения шаровых мельниц в стандартной схеме флотации для получения медно-молибденового концентрата.
- Флотация медно-молибденового концентрата для получения медного и молибденового концентратов.
 - Сгущение и сброс хвостов.
 - Смешивание и хранение реагентов.

Технологии и технические параметры производства переработки медной руды в проектах ОФ-1 и ОФ-2 аналогичные.

3.3 Проектные технические решения

Проектом предусматривается следующий перечень мероприятий по реконструкции ОФ -1, ОФ-2:

- 1. Модернизация насоса PU-332 установка насоса Weir в тестовом режиме.
- 2. Увеличение диаметра труб 350 на 400 на участке 3340-РU-332333.
- 3. Усовершенствование насоса PU-333 Установка насоса Metso в тестовом режиме.
- 4. Установка дублирующего насоса PU-468.
- 5. Установка резервного насоса № 402.
- 6. Монтаж параллельной трассы PU-406
- 7. Модернизация участка молибдена

Согласно проведенного исследования технического состояния и технических характеристик имеющегося технологического оборудования, при увеличении производительности вспомогательных процессов, предусмотренные проектные решения приведут к увеличению производительности Актогайского ГОКа.

<u>Анализ по основным исходным данным ОФ при модернизации и увеличении</u> производительности технологического оборудования

Для обоснования проектных решений по реконструкции объектов проведен анализ по основным исходным данным обогатительной фабрики при увеличении производительности ОФ-1 до 30 млн.тонн руды и ОФ-2 до 27,5 млн.тонн руды в год.

На основании рассмотренной «Технологической Инструкции ОФ 2018г.» (ТИ ОФ) в которой указываются первоначальные исходные данные виде «Основных технико-экономических показателей» указаны основные расходы, связанные с проектной производительностью, выраженные в натуральных единицах.

Таблица 3.1 - Первоначальные проектные основные технико-экономические показатели при производительности на 25 млн. тонн/год

Наименование	Ед. изм	Показатель
1. Мощность обогатительного комбината	тыс.тонн	25000
2. Годовой выпуск продукции:		
- медный концентрат	тыс.тонн	383,625
- молибденовый концентрат	тыс.тонн	3,644
3. Годовой расход проектируемых объектов:		
- электроэнергия	тыс.кВ/час	853794,0
- вода свежая	м ³ /год	11884530,92
- вода оборотная	м ³ /год	39254691,4
- вода техническая (осветленная из хвостохранилища)	м ³ /год	852682,0
4. Удельный расход (на 1 тонну руды):		
- электроэнергия	кВ/тонн	34,15
- вода свежая	м ³ /тонн	0,47

- вода оборотная	м ³ /тонн	1,57
- вода техническая (осветленная из	м ³ /тонн	0,034
хвостохранилища)		
5. Средняя численность:	чел	1571
6. Режим работы предприятия		
- дней в году	дней	365
- смен в сутки	смена	2
- часов в смену	час	12
7. Режим работы технологического		
оборудования		
- дней в году	дней	336
- смен в сутки	смена	2
- часов в смену	час	12

С увеличением производительности обогатительной фабрики сверх проектного после реконструкции фабрик, необходимо выполнить сравнительное рассмотрение «Основных технико-экономических показателей (ТЭП)» в которой будет содержаться динамика изменения основных натуральных показателей. Данное сравнительное рассмотрение позволит определить эффективность увеличения производительности обогатительной фабрики с учетом норм проектирования, а также с учетом лимитированных потенциалов инфраструктурных составных горно-обогатительного комбината, которые «генерируют» основные и вспомогательные натуральные показатели основного ТЭП.

Таблица 3.2 - Основные технико-экономические показатели производительностей фабрик на 25-27,5-30 млн. тонн/год.

Наименование	Ед. изм	Проектный	Планируемый	Планируемый	
Паимспованис	ед. изм	показатель	показатель	показатель	
1. Мощность	тыс.тонн	25000	27500	30000	
обогатительного					
комбината					
2. Годовой выпуск					
продукции:					
- медный	тыс.тонн	383,625	421,987	460,35	
концентрат					
- молибденовый	тыс.тонн	3,644	4,008	4,372	
концентрат					
3. Годовой расход					
проектируемых					
объектов:					
- электроэнергия	тыс.кВ/час	853794,0	939 173	1024552	
- вода свежая	м3/год	11884530,9	13 072 984	14 261 437,1	
- вода оборотная	м ³ /год	39254691,4	43 180 160	47 105 629,6	
- вода техническая	м ³ /год	852682,0	937 950	1 023 218,4	
(осветленная из					
хвостохранилища)					

4. Удельный расход				
(на 1 тонну руды):				
- электроэнергия	кВ/тонн	34,15	34,15	34,15
- вода свежая	$_{ m M}^{3/_{ m TOHH}}$	0,47	0,47	0,47
- вода оборотная	$_{\rm M}^{3/_{\rm TOHH}}$	1,57	1,57	1,57
- вода техническая	$M^3/TOHH$	0,034	0,034	0,034
(осветленная из				
хвостохранилища)				
5. Средняя	чел	1571	1571	1571
численность:				
6. Режим работы				
предприятия				
- дней в году	дней	365	365	365
- смен в сутки	смена	2	2	2
- часов в смену	час	12	12	12
7. Режим работы				
технологического				
оборудования				
- дней в году	дней	336	336	336
- смен в сутки	смена	2	2	2
- часов в смену	час	12	12	12

На основной схеме цепи аппаратов обогатительной фабрики, представленной в «Технологической Инструкции ОФ 2018 г.» указан весь технологический процесс во взаимосвязи потоков и оборудования (рисунок 3.1.) представлен алгоритм переработки медно-молибденовой руды до концентратов меди, молибдена и выхода хвостов. По схеме цепи аппаратов наглядно видна необходимость проведения в процессе эксплуатации пооперационных расчетов с учетом увеличения производительности обогатительной фабрики с 25 млн. тонн/год до 27,5 и до 30 млн. тонн/год.

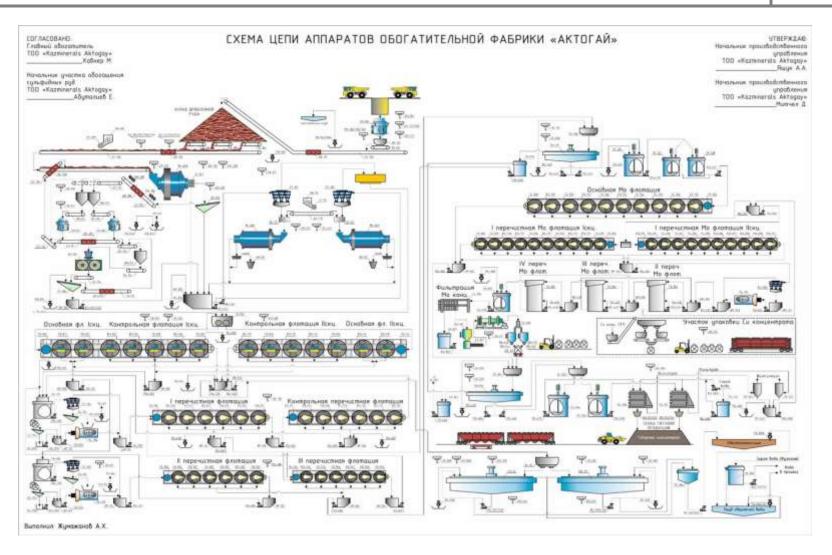


Рисунок 3.1

Таблица 3.3 - Основные параметры и режимы работы корпуса дробления при увеличении производительности участка дробления ОФ-1 до 30 млн. тонн/год и ОФ-2 до 27,5 млн. тонн/год

Показатели	Проектный показатель	Планируемый показатель	Планируемый показатель
Первичное Дробление			
Тип и размер оборудования	Конусная дробилка FLSmidth GYRATORY CRUSHER	Конусная дробилка FLSmidth GYRATORY CRUSHER 1600mm x 2900mm	Конусная дробилка FLSmidth GYRATORY CRUSHER 1600mm x 2900mm
	1600mm x 2900mm		
Количество дробилок, шт	1	1	1
Переработка руды фабрикой, тыс. т/год	25000,0	27500,0	30000,0
Число рабочих дней в год	274 из 365	274 из 365	274 из 365
Количество рабочих часов в год	6570 из 8760	6570 из 8760	6570 из 8760
Количество рабочих часов в сутки	18 из 24	18 из 24	18 из 24
Коэффициент использования оборудования	0,75	0,75	0,75
Поправка на крепость руды	0,95	0,95	0,95
Производительность, т/час / т/сутки	3805 / 68500	4185 / 73350	4566 / 82200
Производительность, т/час	3805	4185	4566

Таблица 3.4 - Основные параметры и режимы работы главного корпуса (измельчения, дробления, коллективной флотации и доизмельчения)

Показатели	Проектный	Планируемый	Планируемый
	показатель	показатель	показатель
Виды процессов главного	По двум	По двум	По двум
корпуса:	технологическим	технологическим	технологическим
Измельчение;	потокам	потокам	потокам
Додрабление; Флотация;			
Доизмельчения)			
Переработка руды	25000,0	27500,0	30000,0
фабрикой, тыс. т/год			
Число рабочих дней в год	336 из 365	336 из 365	336 из 365

запланированных			
Допуск числа рабочих дней	340 раб./дней из	340 раб./дней из	340 раб./дней из
в год	365	365	365
	25 дней ППР из	25 дней ППР из	25 дней ППР из
	365	365	365
Производительность,	68492	89286	89286
т/сутки			
Количество рабочих часов	8059 из 8760	8059 из 8760	8059 из 8760
в год			
Количество рабочих часов	24 из 24	24 из 24	24 из 24
в сутки			
Поправка на крепость руды	0,99	0,99	0,99
Производительность, т/час	3102 / 68492	3412 / 75341	3722 / 89286
/ т/сутки			
Производительность, т/час	3102	3412 при допуске	3722 при допуске
		(3100 - 3600)	(3100 - 3600)

3.4 Проектные технические решения по реконструкции хвостохранилища и устройству байпасной линии

Существующее положение

Хвостовое хозяйство Актогайского ГОК, является неотъемлемой частью технологического процесса обогащения медных руд на обогатительной фабрике и служит для безопасного складирования и хранения хвостов обогащения.

Разработка медного месторождения «Актогай» ведется комплексным методом с наличием открытого карьера и обогатительных фабрик №1 и №2, расположенных на территории объекта.

Согласно проектов, до строительства обогатительной фабрики №2, не предусмотренной ранее в проекте Актогайского ГОКа, схема центрального сброса сгущенных хвостов, предназначенного для предприятия, предусматривалась для хранения номинального количества в 1400 млн. тонн хвостов медного рудника в течение 58 лет, при среднем объеме 25 млн. тонн в год.

Но, в связи с расширением предприятий и введением в эксплуатацию обогатительной фабрики №2 сроки разработки месторождения изменились, производительность ГОКа увеличивается, соответственно плановые показатели составят теперь для хранения номинального количества в 1400 млн. тонн хвостов медного рудника в течение 28 лет, при среднем объеме 57,5 млн. тонн в год.

Хвостохранилище предназначено для складирования хвостов флотации обогатительных фабрик №1 и №2 месторождения «Актогай». Хвосты флотации являются техногенным сырьем, в дальнейшем возможна их переработка.

Хвостохранилище расположено на естественном профиле участка к югу от обогатительной фабрики, и постепенно расширяется в направлении с востока на запад. Вместимость хвостохранилища рассчитана на весь срок эксплуатации предприятия. Хвостохранилище, в конечном итоге, займёт территорию приблизительно в 4500 га.

Хвостохранилище в зависимости от способа устройства относится к хранилищам постепенного возведения, в зависимости от рельефа местности — к косогорным, по способу укладки — с конусным складированием сгущенных хвостов. Дамбы, удерживающие воду, выполнены в виде неоднородных земляных насыпей.

Согласно рабочего проекта «Строительство обогатительной фабрики рудника «Актогай» с инфраструктурой (корректировка) ТОО «KAZ Minerals Aktogay» разработанного в 2017 году, заполнение хвостохранилища Актогайского ГОК, должно быть выполнено в 4 Стадии (проект согласован 3ГЭЭ за № KZ17VCY00092510 от 10.03.2017 года).

Этим же рабочим проектом была выполнена 1-я Стадия строительства хвостохранилища, включающая следующие сооружения: центральную промежуточную дамбу 1 с водосливом; центральную промежуточную дамбу 2; центральную промежуточную дамбу 3; центральную промежуточную дамбу 4; восточные валы 1, 2, 3; юго-восточную дамбу с аварийным водосливом.

Для реализации Стадии 2 реконструкции хвостохранилища был разработан рабочий проект «Реконструкция хвостового хозяйства с устройством дамбы в южной части хвостохранилища (2-й этап) Обогатительной фабрики сульфидных руд ТОО «КАZ Minerals Aktogay», заключение ГЭЭ №F01-0025/20 от 29.09.2020 г. Стадия 2 реконструкции хвостохранилища включала строительство южной ограждающей дамбы с системами оборотного водоснабжения и аварийного водослива.

Способ заполнения хвостохранилища «от берегов к плотине». Распределительный пульповод находится на значительном удалении от уреза воды отстойного пруда хвостохранилища. Пульпа из выпускных отверстий распределительного пульповода сбрасывается непосредственно на естественную поверхность, имеющую уклон в сторону отстойного пруда хвостохранилища. Пульпа стекает к урезу воды отстойного пруда, на пути движения происходит выпадение частиц хвостов, которые образуют пляж. Горизонт воды в отстойном пруде остается на прежнем уровне, пруд служит для осаждения самых мелких частиц хвостов, для окончательного осветления воды с последующим использованием ее в производственном процессе.

Дамбы хвостохранилища подразделяются на два типа:

1 тип – основные дамбы, предназначенные для удерживания, как хвостов, так и воды. Дамбы оснащены противофильтрационным экраном и защитой откосов.

2 тип – промежуточные дамбы, предназначенные для удерживания только твердой фазы (хвостов) и пропускающие воду ниже в хвостохранилище. Это временные сооружения, предназначенные для организации складирования хвостов.

Строительство насыпей и валов по периметру будет выполняется поэтапно в процессе эксплуатации хвостохранилища. Общий необходимый объём земляных работ для насыпей, валов и рампы трубопровода составляет приблизительно 3 млн. м³ при запуске, и увеличится примерно до 5,1 млн. м³ в конце срока эксплуатации рудника.

На сегодняшний день согласно предусмотренным плановым мероприятиям по реконструкции хвостохранилища в рамках проекта Стадии 3 в 2021-2022 году выполнены следующие работы:

Стадия 3, фаза 1-1:

- Наращивание существующей Южной дамбы и Южной промежуточной дамбы.
- Наращивание существующего аварийного водослива на Южной дамбе.
- Наращивание существующих водоприемников оборотного водоснабжения 3 шт. (деканты) на Южной дамбе.
 - Устройство съездов на Южной дамбе.

Стадия 3, фаза 1-2:

- Строительство Западной дамбы с ПК 0 до ПК 64;
- Строительство водоприемников оборотного водоснабжения 4 шт. (деканты) на Западной дамбе;

- Строительство аварийного водослива на Западной дамбе;
- Наращивание существующей Южной дамбы до отметки гребня 367,50 м ширина гребня 14,0 м;
- Наращивание существующих водоприемников оборотного водоснабжения 3 шт. (деканты) на Южной дамбе до отметки 367,50 м;
 - Наращивание существующего аварийного водослива на Южной дамбе;
 - Наращивание существующую Юго-Восточную дамбу;
 - Наращивание существующего аварийного водослива на Юго-Восточной дамбе;
 - Устройство съездов на Южной дамбе;
 - Устройство отстойников и соединительных каналов.

Система сливной воды состоит из водоприемников с насосными установками с незамерзающими устройствами для низких температур зимой. Сливная вода передается на насосную станцию закрытого типа. Сливная вода перекачивается на обогатительную фабрику по трубопроводу, диаметром 560 мм, из полиэтилена высокой плотности.

Доступ к водопроводу сливной возвратной воды и насосной станции осуществляется через служебную дорогу на восточной стороне хвостохранилища.

Процесс сгущения производится с помощью сгустителей высокого давления. Чистота верхнего слива обеспечивается применением реагентов с расходом флокулянта 15 г/т и расходом коагулянта 10 г/т. Плотность сгущенных хвостов составляет $1,6 \text{ т/m}^3$.

Концентрация твёрдых частиц нижнего слива составляет от 69% до 71%, однако, включая коэффициент надёжности, концентрация твёрдых частиц нижнего слива сгустителя составит до 61-68%. Целью сгущения является сохранение технической воды и максимизация наклонов берега и местной плотности по разумной стоимости.

В состав сооружений также входят корпус сгущения хвостов, сгустители хвостов, пульпонасосная станция, вспомогательные помещения и сооружения, расположенные рядом с обогатительной фабрикой.

Данные сооружения расположены к югу от главного корпуса обогатительных фабрик и предназначены для утилизации хвостовой пульпы от флотационной линии. Переливная вода из сгустителей перекачивается в пруд технической воды, а сгущенные хвосты перекачиваются по трубопроводу в хвостохранилище, расположенное в закрытой чаше примерно в 1,5 км к западу от фабрики.

При эксплуатации хвостохранилища в зимний период низкие температуры вызывают замерзание и нарастание замерзших хвостов. Начальная температура слива хвостов будет выше точки замерзания. Величина составляет несколько градусов выше нуля.

При наземной укладки поток не растекается однородным слоем по всей поверхности берега. Вместо этого, поток концентрируется в узкий, быстро текущий поток. В дальнем конце потока он расходится веером и осаждается. В потоке осаждения не происходит. Замерзание происходит в локализованных местах расхождения потока веером, распределенного по всей площади укладки, а не в каналах. Снег, который будет закрывать поверхность зимой служит изоляцией. Таким образом, хвостохранилище рассчитано на круглогодичную эксплуатацию.

Проектируемые мероприятия по хвостохранилищу

Согласно задания на проектирование рабочим проектом предусматривается реконструкция хвостового хозяйства Актогайского ГОКа ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай).

Реконструкция хвостового хозяйства предусмотрена проектом с необходимостью

размещения дополнительных хвостов, согласно графика работы объекта, в связи с вводом в эксплуатацию ОФ-2 и увеличением производительности обогатительных фабрик №1 и №2

Дамбу хвостохранилища на Стадии 3 согласно режима эксплуатации планировалось построить в четыре фазы (т. е. Фаза 1-1, Фаза 1- 2, Фаза 2-1 и Фаза 2-2).

На сегодняшний день согласно предусмотренных плановых мероприятий по реконструкции хвостохранилища в рамках проекта Стадии 3, ранее были выполнены следующие работы

Фаза 1-1 и фаза 1-2 были завершены в 2021 и 2022 годах соответственно, до начала проектных работ, предусмотренных в данном рабочем проекте.

Строительство фазы 2-1 будет продолжаться в течение 12 месяцев 2022-2023 года, а строительство фазы 2-2 планируется завершить в 2023 году.

В данном проекте выполнены работы для Стадии 3 реконструкции хвостового хозяйства с фазой 2-1.

Проектные решения. Стадия 3 Фаза 2-1

1. Наращивание дамбы стадии 3 фазы 2-1 путем подъема дамбы стадии 3 фазы 1-2 для хвостохранилища (XX) Актогайского ГОКа для ТОО "КАЗ Минералз Актогай". Строительство дамбы Фазы 2-1 предусматривается поверх существующей дамбы фазы 1-2 стадии 3 с использованием метода напорного наращивания.

Отметка поверхности гребня Южной дамбы Фазы 2-1 - 371,5 м всей линий. Южная дамба фазы 2-1 будет построена с применением зонального размещения грунтовых насыпей и дренажных материалов основания с укладкой геомембраны по напорной стороне.

2. Южная промежуточная дамба 1 будет поднята во время работ фазы 2-1 над существующей дамбой. Отметка поверхности гребня - 369,5 м. Наращивание дамбы будет с использованием проницаемого материала каменной отсыпки (дренаж), чтобы вода могла просачиваться в хвостохранилище стадии 2.

Участок Южной промежуточной дамбы будет понижен для перелива, чтобы действовать в качестве водослива для дальнейшего облегчения поступления воды в хвостохранилище стадии 1.

- 3. Вдоль дамбы фазы 2-1 стадии 3 предусматривается переустройство двух аварийных водосливов. Аварийные водосливы предусматривают противофильтрационные мероприятия устройство экрана из геотекстиля.
- 4. В рамках работ Стадии 2-1 планируется поднять на переменную высоту существующие семь декантирующих сооружений стадии 3 фазы 2-1 хвостохранилища.

Декантирующие сооружения 1, 2 и 3 будут подняты до 369,5 м, Декантирующая конструкция 4 будет поднята до 367,0 м, а Декантирующие сооружения 5, 6 и 7 будут подняты до 366,0 м.

5. Система сбора фильтрационной воды и напорная подъездная дорога для обслуживания дамб фазы 2-1 уже построены в рамках работ фазы 1-2.

Основные виды работ по реконструкции хвостохранилища:

- 1) Наращивание южной промежуточной дамбы: Отметка поверхности гребня от 367,5 м до 371,5 м
- 2) Наращивание южной дамбы Отметка поверхности гребня от 366,0 м до 369,5 м
- 3) Аварийный водослив 2 Отметка низа трубопровода 368,5 м
- 4) Аварийный водослив 3 Отметка низа трубопровода 365.0 м

- 5) Наращивание оградительных дамб водоприемного сооружения 1, 2 и 3 до отметки 369,5 м
- 6) Наращивание оградительных дамб водоприемного сооружения 4 до отметки 367.0 м
- 7) Наращивание оградительных дамб водоприемного сооружения 5, 6 и 7 до отметки 366.0 м
- 8) Контрольно-измерительная система и система мониторинга:
 - Перенос геодезических реперов существующих 12 шт.
 - Переустройство пьезометров 22 шт.
 - Переустройство наблюдательных скважин 19 шт.

Проектируемый объем хвостохранилища создается путем устройства ограждающей плотины из вторичных дамб обвалования, устраиваемых на уплотненном основании из хвостов.

Отвальные хвосты складируются на проектируемом хвостохранилище в сгущенном виде. Это способствует укреплению дамбы обвалования частицами складируемых хвостов и позволяет практически свести к нулю возможность ее разрушения и прорыва.

Заполнение хвостохранилища Фазы 2-1 Стадии 3 необходимо проводить после завершения заполнения Фазы 1-2 Стадии 3.

Строительные работы по реконструкции хвостового хозяйства с наращиванием ограждающей дамбы Стадии 3 фазы 2-1 хвостохранилища предусматриваются в период с июня 2022 г. по июнь 2023 г. После наращивания ограждающих дамб емкость хвостохранилища увеличивается на 75 000 тыс. тонн. Эксплуатация фазы 2-1 Стадии 3 хвостохранилища начинается после заполнения емкости фазы 1-2 Стадии 3 хвостохранилища. Согласно баланса, запас свободной емкости фазы 2-1 Стадии 3 хвостохранилища на конец 2023 года составит 66739,541 тыс. тонн.

Складирование сгущенных хвостов Фазы 2-1 предусмотрено через один сосредоточенный выпуск на отметке 401,0 м. Данный выпуск, согласно РП является временным, до введения в эксплуатацию систем распределения хвостов, представляющих собой центральные распределители хвостов с 15-ю выпускными разгрузочными трубами, которые располагаются на земляных рампах/платформах. Для данных систем распределения и укладки хвостов был разработан рабочий проект «Реконструкция систем перекачки и распределения хвостов обогатительных фабрик Актогай I и II (Стадия 3) для ТОО «КАZ Minerals Aktogay» (Положительное заключение к рабочему проекту №06-0178/21 от 14.06.2021 г.).

Для отвода оборотной воды вдоль дамбы предусмотрены 7 водоприемников оборотной воды (деканты) и передвижные насосные станции, которые перекачивают воду с твердыми включениями в основной декант площади хвостохранилища Стадии 1. Далее вода откачивается из основного деканта насосной станцией оборотной воды в пруд технической воды, далее на обогатительную фабрику №1 и №2.

Укладка противофильтрационного материала

Для защиты дамбы от фильтрации в основании и на откосе устраивается противофильтрационный пленочный экран.

Высокопрочная гладкая пленка ПНД - профилированная, черная, высококачественная, высокоплотная полиэтиленовая геомембрана с гладкой поверхностью. Данный тип высокоплотной пленки ПНД содержит приблизительно 97,5% полиэтилена, 2,5% углеродной сажи и ничтожное количество антиоксидантов и термостабилизаторов.

Высокоплотная полиэтиленовая пленка ПНД имеет ярко выраженную стойкость к химическому, механическому воздействию, трещинностойкость при воздействии факторов внешней среды, стабильность размеров и устойчивость к тепловому старению. Поверхность геомембраны -гладкая с двух сторон.

Расчётная толщина плёнки по допускаемым напряжениям при растяжении от действия гидростатического давления 0,67 мм. Толщина принятой пленки 1,5 мм.

Устройство резервной (байпасной) линии ОФ-2

Система гидротранспорта хвостов

Данным проектом предусматривается строительство резервного пульповода системы гидротранспорта обогатительной фабрики №2.

Краткое описание существующей системы.

Сооружения системы гидротранспорта хвостов предназначены для транспортировки на хвостохранилище хвостовой пульпы с обогатительной фабрики. Существующая система гидравлического транспорта хвостов — напорная. Подача пульпы на хвостохранилище осуществляется по пульповоду.

Система гидротранспорта хвостов обогатительной фабрики состоит из насосной станции сгущенных хвостов, магистральных и распределительных пульпопроводов, а также пульпонасосной станции, работающей в период остановки основного оборудования по сгущению хвостов.

В процессе расширения хвостохранилища система гидротранспорта хвостов будет продлеваться в западном направлении.

Данным проектом предусматривается строительство резервного пульповода системы гидротранспорта обогатительной фабрики №2.

Резервный (байпасный) пульповод предназначен для обеспечения безостановочной гарантированной работы обогатительной фабрики №2.

Трасса резервного пульповода проходит по отвалам хвостохранилища Стадий 1,2. Дополнительного отвода земель не требуется. Полоса земли по трассе планируется, вдоль трубопровода предусматривается устройство эксплуатационной дороги.

Общая протяженность трубопровода от станции перекачки пульпы до хвостохранилища Стадии $3-3109~\mathrm{M}$.

Таблица 3.6 - Технические характеристики резервного пульповода ОФ-2

№	Наименование	Марка	Диаметр, мм	Длина, м
1	Труба полипропиленовая	HDPE 800 PN 20	800	970
2	Труба полипропиленовая	HDPE 800 PN 16	800	2139

Полипропиленовые трубы. Изделия с достаточно жесткими стенками, устойчивыми к перепадам температур, благодаря чему они получили свое распространение даже при устройстве систем отопления. Они обладают звукоизоляционными свойствами, а также химически инертны к агрессивным веществам и кислотам. Это качество делает их пригодными для эксплуатации в масштабных канализационных системах.

Полипропиленовые трубы считаются универсальными, они выдерживают большие нагрузки и не требуют особых условий эксплуатации

Наиболее качественным, надежным и универсальным вариантом среди пластиковых труб больших размеров считается полипропиленовые изделия. Иногда полипропиленовые

системы армируют, что способствует увеличению их срока эксплуатации.

Главная задача крупногабаритной трубы — выдерживать максимальное давление транспортируемой среды.

В нашем проекте наиболее приемлемыми являются – полипропиленовые трубы.

4. ОЦЕНКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ

4.1 Критерии оценки уровня загрязнения атмосферного воздуха

В современной концепции охраны окружающей среды особое место занимает состояние воздушного бассейна. Любое антропогенное влияние может привести к недопустимым уровням загрязнения компонентов природной среды, снижения биоразнообразия фауны и флоры, деградации почвенно-растительного покрова, изменение мест обитания животного мира, исчезновению и сокращению популяций, а главное – угрозе здоровью населения.

Уровень воздействия объекта «Реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай. Стадия 1» на качественное состояние атмосферного воздуха характеризуется компонентным составом и объемами выбросов загрязняющих веществ. Настоящим разделом представлены сведения о количестве и видах источников выбросов в период строительства и эксплуатации.

Основными принципами охраны атмосферного воздуха согласно Экологическому кодексу Республики Казахстан:

- охрана жизни и здоровья человека, настоящего и будущих поколений;
- недопущения необратимых последствий загрязнения атмосферного воздуха для окружающей среды.

Критериями качества состояния воздушного бассейна являются значения предельнодопустимых концентраций (ПДК) загрязняющих веществ воздухе населенных мест, принятые в Казахстане (Гигиенические нормативы «ПДК загрязняющих веществ в атмосферном воздухе населенных мест», ГН 2.1.6.698-98, РК 3.02.036.99).

Для оценки уровня загрязнения атмосферного воздуха и установления нормативов ПДВ от источников загрязнения атмосферы приняты следующие критерии:

- максимально-разовые концентрации (ПДК м.р.), согласно списку «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест»;
- Санитарных правил «Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» (утв. Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2).

Для группы веществ, обладающих при совместном присутствии суммирующим эффектом, определена безразмерная концентрация, q

 $q = C1/\Pi$ ДК1 + C2/ПДК2,

Согласно санитарным нормам РК, на границе СЗЗ и в жилых районах приземная концентрация ЗВ, не должна превышать 1 ПДК.

В Разделе рассмотрено воздействие хвостохранилища, связанное со строительством и монтажом от вышеуказанных работ.

4.2 Ожидаемые виды, характеристики и количество эмиссий в атмосферный воздух на период строительных работ

Состояние атмосферного воздуха характеризуется содержанием в нём выбрасываемых объектами строительства загрязняющих веществ. Степень воздействия рассматриваемых объектов на атмосферу характеризуется как объёмами, так и компонентным составом выбросов загрязняющих веществ.

Учитывая сложившуюся на данный момент ситуацию в рамках настоящего Отчета

проводится оценка воздействия проектируемого объекта на здоровье и безопасность окружающей среды при строительных работах.

Следует отметить, что строительные и строительно-монтажные работы носят кратковременный периодический характер, поэтому по их окончании воздействие от них на атмосферный воздух не ожидается.

При проведении строительных работ по реализации проектных решений определено наличие следующих участков, имеющих выбросы загрязняющих веществ в атмосферный воздух:

- работа автотранспорта и спецтехники на участке проведения работ;
- работа по выемке и перемещению грунта
- работы по использованию инертных материалов;

Согласно выполненным в рамках настоящего проекта расчетам в период строительства объекта намечаемой деятельности определены виды работ, условно отнесенные к неорганизованным источникам выбросов.

Основными источниками загрязнения атмосферы при строительных работах будут передвижные и неорганизованные источники загрязнения атмосферы: земляные работы, строительно-монтажная и транспортная техника; выбросы пыли с участков нарушенных земель.

Общая продолжительность строительных работ определена:

- 1) Реконструкция обогатительной фабрики №1 и №2: 4 месяца 2022 года;
- 2) Реконструкция хвостового хозяйства в южной части хвостохранилища (3-й этап, фаза 2-1): 12 месяцев 2022-2023 года (ориентировочно с июля 2022 года по июнь 2023 года).

В таблице 4.1 показан объем земляных работ при строительных работах. В таблице 4.2 показан расход материалов. Перечень, количество используемой техники и ориентировочный расход топлива на период строительства при различных операциях приведены в таблице 4.3.

Таблица 4.1 - Сводная ведомость основных земляных работ фазы 2-1

No	Наименование работ	Ед.измер	Кол-во
1	Зона 3 (Общая насыпь)	м ³	1184000
2	Зона ЗВ	M 3	102000
	(Общая скальная отсыпка)	M	
3	Зона 4 (Защита откоса)	м ³	111000
4	Зона R (Дорожное основание)	м 3	26000
	ВСЕГО	м ³	1423000

Таблица 4.2 – Расход материалов

Наименование материалов	Расход	Единица измерения
Электроды Э-55	88	КГ
Грунтовка	12	КГ

Таблица 4.3 – Используемая спецтехника в период строительства

№ п/п	Наименование машин и механизмов	Марка	Кол-во	Время работ ы, ч/год (1 ед)
1	2	3	4	5
1	Бульдозер	T-170	2	150
2	Кран на автомобильном ходу, 10 т		1	100
3	Экскаваторы одноковшовые дизельные на гусеничном ходу 0,65 м3		2	100
4	Бульдозеры при работе на водохозяйственном строительстве, 59 кВт		2	150
5	Экскаваторы траншейные многоковшовые цепные при работе на водохозяйственном строительстве, 15 л		2	100
6	Экскаваторы одноковшовые дизельные на гусеничном ходу, 1 м3		2	150
7	Катки дорожные прицепные на пневмоколесном ходу, 25 т		2	100
8	Тракторы на гусеничном ходу, 79 кВт		2	150
9	Машина поливочная 6000л		2	100
10	Бульдозеры при работе на гидроэнергетическом строительстве и горно-вскрышных работах, 79 кВт		2	100
11	Бороны дисковые мелиоративные (без трактора)		2	100
12	Катки дорожные прицепные на пневмоколесном ходу, 50 т		1	250
13	Катки дорожные прицепные на пневмоколесном ходу, 25 т		1	100
14	Катки дорожные самоходные на пневмоколесном ходу, 30 т		1	150
15	Катки полуприцепные на пневмоколесном ходу с тягачом, 25 т		1	150
16	Тракторы на гусеничном ходу, 59 кВт		1	100
17	Тракторы на гусеничном ходу, 121 кВт		1	250
18	Тракторы на гусеничном ходу, 132 кВт		1	100
19	Машины шарошечного бурения на базе трактора 118 кВт, глубина бурения 32 м, диаметр скважин 160 мм		1	100
20	Спецавтомашины на шасси типа ГАЗ		2	75
21	Штанга буровая тип БТС-150		2	100
22	Реле пиротехническое одностороннего действия КЗДШ- 69		2	50
23	Автомобили самосвалы, 7 т	Камаз-5511	2	100
24	Автомобили самосвалы, 3 т	Камаз-5549	2	200
25	Погрузчик ковшовый, 3 т	JCB 436 ezx	2	200
26	Прицепной каток, 18 т	ДУ-14	2	200
27	Машина поливочная 6000л	ПК-6	2	100
28	Автомобиль бортовой до 5 т	Камаз- 43118 с	1	100
29	Автомобиль бортовой до 8 т	Камаз-5325	1	100
30	Тракторы на гусеничном ходу, 59 кВт		2	100
31	Вибратор глубинный	ИВ-75	2	150
32	Компрессоры передвижные	МКГ-40	1	150

33	Экскаватор	ЭО-2621, V ковша 0,25 м3	3	100
34	Бетономешалка	БГЦ-1	1	150
35	Трамбовки электрические		2	100
36	Самосвал	Камаз-6520	2	150
37	Электростанции передвижные, до 4кВт	TP12.19.01	2	100
38	Автогрейдеры среднего типа		2	200
39	Рыхлители прицепные (без трактора)		1	100
40	Экскаватор обратная лопата	V ковша 1.0м ³	4	100

Определение выбросов в атмосферу в период проведения строительно-монтажных работ основывается на предварительных расчетах объемов используемого строительной и транспортной техникой, а также исходя из предполагаемых площадей нарушаемых земель. В период строительства виды и количество выбросов в атмосферу могут варьироваться в значительной степени. Обычно значительная часть веществ, загрязняющих воздух, приходится на время монтажа оборудования, когда достигается наибольшее количество строительной техники и строителей. Однако выбросы частиц в атмосферу в виде пыли с нарушенной земли могут быть максимальными во время начальной подготовки и профилирования площадки.

Период строительства

Земляные работы

Планируется общая скальная отсыпка тела основной дамбы, количество перерабатываемых материала — $102~000~{\rm M}^3~(2,65~{\rm T/M}^3),~270~300~{\rm T/год}~(270,3~{\rm T/ч}).$ Время проведения земляных работ — $1000~{\rm Y/год}$.

Выброс загрязняющего вещества в атмосферу при земляных работах будет происходить неорганизованно (источник №7001-001).

Переработка щебня

Проектом предусматривается крепление дорожного основания щебнем. Количество перерабатываемого щебня $-26~000~\text{м}^3~(2,7~\text{т/м}^3)$, 70~200~т/год, 140,4~т/ч. Время работ 500 ч/год.

Выброс загрязняющего вещества в атмосферу будет происходить неорганизованно (источник №7001-002).

Переработка глины

Проектом предусматривается послойная укладка глинистого грунта. Расход глины — $1~184~000~\text{м}^3$ /год, $(2,7~\text{т/m}^3)$, 3~196~800~т/год, 3196,8~т/ч. Время работ 1000~ч/год.

Выброс загрязняющего вещества в атмосферу будет происходить неорганизованно (источник №7001-003).

Переработка каменной наброски

Проектом предусматривается отсыпка пригруза низового откоса дамб из каменной наброски в объеме — $111\ 000\ \text{м}^3/\text{год}$, $(2,7\ \text{т/м}^3)$, $299\ 700\ \text{т/год}$, $599,4\ \text{т/ч}$. Время работ $500\ \text{ч/год}$.

Выброс загрязняющего вещества в атмосферу будет происходить неорганизованно (источник №7001-004).

Сварочные работы

Для ведения сварочных работ при реконструкции будет использоваться передвижной электросварочный аппарат: - электроды 9-55-0,088 т/год;

Время работы -100 ч/год. В час расходуется -1.5 кг.

Выброс загрязняющих веществ в атмосферу будет происходить неорганизованно (источник №7001-005).

Буровые работы.

Проектом предусмотрены буровые работы при помощи машины шарошечного бурения на базе трактора. Время буровых работ -100 ч/год. Скорость бурения -5 м/час. Диаметр буримых скважин -160 мм. Плотность горной породы составляет -2,7 т/м3.

Выброс загрязняющих веществ в атмосферу будет происходить неорганизованно (источник N_2 7001-006).

Покрасочные работы

Для проведения покрасочных работ используются следующие лакокрасочные материалы: грунтовка $\Gamma\Phi$ -021 — 0,012 т/год. Время работы — 20 ч/год. Покраска осуществляется ручным способом - кистью.

Выброс загрязняющих веществ в атмосферу будет происходить неорганизованно (источник N2**7001-007**).

Автотранспортные работы

На период строительства будут применяться следующие машины и механизмы: бульдозер (6 шт.), самосвалы (6 шт.), погрузчики (2 шт.), прицепной каток (8 шт.), автомобиль бортовой (2 шт.), кран на автомобильном ходу (1 шт.), тракторы на гусеничном ходу (7 шт.), экскаватор (13 шт.), автобетономешалка (1 шт).

Выброс загрязняющих веществ в атмосферу будет происходить неорганизованно (источник №7001-008)

При СМР будет иметься 1 неорганизованный источник выброса. В атмосферу всего выбрасывается 12 ингредиентов в количестве 25,3985004 т/год в том числе: твердые вещества – 23,590421 т/год, газообразные и жидкие вещества – 1,8080794 т/год.

Выбросы загрязняющих веществ от передвижных источников (автотранспорт) не нормируются (Согласно «Методике определения нормативов эмиссий в окружающую среду» утв. Приказом Министра экологии, геологии и природных ресурсов от 10 марта 2021 года №63). Нормированию на период СМР подлежат 8 ингредиентов в количестве 23,5606544 т/год в том числе: твердые вещества — 23,553765 т/год, газообразные и жидкие вещества — 0,0068894 т/год.

Перечень загрязняющих веществ, выбрасываемых в атмосферу, приведен в таблице 3.1.1 Параметры источников выброса загрязняющих веществ в атмосферный воздух представлены в таблице 3.3.1 Метеорологические характеристики района проведения проектируемых работ показаны в таблице 3.4.

В составе проекта выполнен расчет выбросов загрязняющих веществ в атмосферу по утвержденным на территории РК методикам (Приложение 7). Определенные расчетным путем величины выбросов загрязняющих веществ в атмосферный воздух предлагается принять в качестве нормативов НДВ.

Нормативы эмиссий на период проведения строительно-монтажных работ представлены в таблице 3.6.1.

ЭРА v3.0 TOO "ECO AIR" Таблица 3.1.1

Перечень загрязняющих веществ, выбрасываемых в атмосферу на период СМР с учетом автотранспорта

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)			0,04		3	0,00579	0,001223	0,030575
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)		0,01	0,001		2	0,000454	0,000096	0,096
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	2,662625	0,3587376	8,96844
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,43227	0,05826	0,971
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,34124	0,036656	0,73312
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,5399	0,05764	1,1528
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	6,03084	1,15247	0,38415667
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,0003875	0,0000818	0,01636
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		0,2	0,03		2	0,000417	0,000088	0,00293333
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,0625	0,0054	0,027
2732	Керосин (654*)				1,2		0,9932	0,17549	0,14624167

2908	Пыль неорганическая, содержащая двуокись	0,3	0,1	3	9,674767	23,552358	235,52358
	кремния в %: 70-20 (шамот, цемент, пыль						
	цементного производства - глина, глинистый						
	сланец, доменный шлак, песок, клинкер, зола,						
	кремнезем, зола углей казахстанских						
	месторождений) (494)						
	ВСЕГО:				20,7443905	25,3985004	248,0522067

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 TOO "ECO AIR"

Таблица 3.1.1

Перечень загрязняющих веществ, выбрасываемых в атмосферу на период СМР без учета автотранспорта

	перстепь загризниющих веществ	, -1		FJF	J	- F				
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК	
1	2	3	4	5	6	7	8	9	10	
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)			0,04		3	0,00579	0,001223	0,030575	
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)		0,01	0,001		2	0,000454	0,000096	0,096	
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,001125	0,0002376	0,00594	
0337	Углерод оксид (Окись углерода, Угарный газ)		5	3		4	0,00554	0,00117	0,00039	
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,0003875	0,0000818	0,01636	
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		0,2	0,03		2	0,000417	0,000088	0,00293333	
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,0625	0,0054	0,027	
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		0,3	0,1		3	9,674767	23,552358	235,52358	
	BCEFO:						9,7509805	23,5606544	235,7027783	

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 ТОО "ECO AIR" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2022-2023 года

		Источник выдел	ения	Число	Наименование	Номер	Высо	Диа-	Параме	етры газовозд.с	меси	К	оординаті	ы источника	a
Про		загрязняющих вец		часов	источника выброса	источ			на вых	оде из трубы пр	ои		•	-схеме, м	
изв	Цех	•		рабо-	вредных веществ	ника	источ	устья		ксимальной раз			•		
одс		Наименование	Коли-	ТЫ	-	выбро	ника	трубы		нагрузке		точечного	источ.	2-го к	онца лин.
тво			чест-	В		сов	выбро					/1-го конца	илин.	/длина, ши	рина
			во,	году			сов,	M	ско-	объем на 1	тем-	/центра пло	ощад-	площа	- дного
			шт.				M		рость	трубу, м3/с	пер.	ного источ	ника	источ	ника
									м/с		оC				
												X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001		Земляные	1	1000	Неорганизованный	7001	2					1	1	1	1
		работы			источник										
		Переработка	1	500											
		щебня													
		Переработка	1	1000											
		глины													
		Переработка	1	500											
		каменной													
		наброски	1	100											
		Сварочные работы	1	100											
		раооты Буровые работы	1	100											
		Покрасочные	1	20											
		работы	1	20											
		Автотранспортн	1	125											
		ые работы													
		1													

ЭРА v3.0 TOO "ECO AIR" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2022-2023 года

Номер	Наименование	Вещество	Коэф	Средняя	Код		Вы	брос загрязняюц	цего вещества	
источ	газоочистных	по кото-	ф обесп	эксплуат	ве-	Наименование				
ника	установок,	рому	газо-	степень	ще-	вещества				
выбро	тип и	произво-	очист	очистки/	ства		г/с	мг/нм3	т/год	Год
сов	мероприятия	дится	кой,	тах.степ						дос-
	по сокращению	газо-	%	очистки%						тиже
	выбросов	очистка								ния
										НДВ
7	17	10	10	20	21	22	22	24	25	26
7	17	18	19	20	21	22	23	24	25	26
7001						Железо (II, III) оксиды	0.00579		0.001223	
						Марганец и его соединения	0.000454		0.000096	
						Азота (IV) диоксид	2.662625		0.3587376	
						Азот (II) оксид	0.43227		0.05826	
						Углерод (Сажа)	0.34124		0.036656	
						Сера диоксид	0.5399		0.05764	
						Углерод оксид	6.03084		1.15247	
						Фтористые газообразные соединения	0.0003875		0.0000818	2022
						Фториды неорганические плохо растворимые	0.000417		0.000088	2022
						Диметилбензол (смесь	0.0625		0.0054	2022
						о-, м-, п- изомеров)				
					2732	Керосин (654*)	0.9932		0.17549	2022
					2908	Пыль неорганическая,	9.674767		23.552358	2022
						содержащая двуокись кремния в %: 70-20				

ЭРА v3.0 TOO "ECO AIR" Таблица 3.4

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города Аягозский район, п. Актогай

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1.00
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, град.С	32.2
Средняя температура наружного воздуха наиболее холодного месяца (для котельных, работающих по отопительному графику), град С	-19.0
Среднегодовая роза ветров, %	
C	16.0
CB	26.0
В	19.0
ЮВ	9.0
Ю	4.0
Ю3	10.0
3	11.0
C3	5.0
Среднегодовая скорость ветра, м/с	4.5
Скорость ветра (по средним многолетним	7.0
данным), повторяемость превышения которой составляет 5 %, м/с	

ЭРА v3.0 TOO "ECO AIR" Таблица 3.6.1

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Аягозский район, п. Актогай, Реконструкция ОФ №1 и №2 месторождения Актогай. Период строительства (без авто)

П			Норм	лативы выбросов з	агрязняющих вещест	ГВ		
Производство цех, участок	Полет	существующе на 202		12 месяцев 20	22-2023 года	ндв		год дос-
Код и наименование загрязняющего вещества	Номер источника	г/с	т/год	г/с	т/год	г/с	т/год	тиже ния НДВ
1	2	3	4	5	6	7	8	11
(0123) Железо (П, ПП) оксидь	ı (диЖелезо т <u>р</u>	риоксид, Железа	оксид) /в пересчет	е на(274)	·	·		
Организованные ис	точники							
Период строительства	7001	0,00579	0,001223	0,00579	0,001223	0,00579	0,001223	2022
Всего по загрязняющему веществу:		0,00579	0,001223	0,00579	0,001223	0,00579	0,001223	
(0143) Марганец и его соедин	нения /в перес	чете на марганца	(IV) оксид/ (327)	<u>.</u>	<u>.</u>			
Организованные ис	точники							
Период строительства	7001	0,000454	0,000096	0,000454	0,000096	0,000454	0,000096	2022
Всего по загрязняющему веществу:		0,000454	0,000096	0,000454	0,000096	0,000454	0,000096	
(0301) Азота (IV) диоксид (Аз	зота диоксид)	(4)			·	·		
Организованные ис	точники							
Период строительства	7001	0,001125	0,0002376	0,001125	0,0002376	0,001125	0,0002376	2022
Всего по загрязняющему веществу:		0,001125	0,0002376	0,001125	0,0002376	0,001125	0,0002376	
(0337) Углерод оксид (Окись	углерода, Уга	арный газ) (584)				•		
Организованные ис	точники							
Период строительства	7001	0,00554	0,00117	0,00554	0,00117	0,00554	0,00117	2022

Всего по загрязняющему		0,00554	0,00117	0,00554	0,00117	0,00554	0,00117	
веществу:		,	1 ((17)					
(0342) Фтористые газообразн		ия /в пересчете на ф	ртор/ (617)					
Организованные ис		T			Ţ	T		
Период строительства	7001	0,0003875	0,0000818	0,0003875	0,0000818	0,0003875	0,0000818	2022
Всего по загрязняющему веществу:		0,0003875	0,0000818	0,0003875	0,0000818	0,0003875	0,0000818	
(0344) Фториды неорганичес	кие плохо ра	створимые - (алюм	иния фторид, кал	ьция фторид,(615	<u> </u>	<u> </u>	<u>.</u>	
Организованные ис	точники							
Период строительства	7001	0,000417	0,000088	0,000417	0,000088	0,000417	0,000088	2022
Всего по загрязняющему		0,000417	0,000088	0,000417	0,000088	0,000417	0,000088	
веществу:								
(0616) Диметилбензол (смесь	о-, м-, п- изо	меров) (203)	·		·	·		
Организованные ис	точники							
Период строительства	7001	0,0625	0,0054	0,0625	0,0054	0,0625	0,0054	2022
Всего по загрязняющему веществу:		0,0625	0,0054	0,0625	0,0054	0,0625	0,0054	
(2908) Пыль неорганическая	, содержаща	я двуокись кремния	в %: 70-20 (шам с	от, цемент,(494)	'	<u>'</u>	•	
Организованные ис	точники							
Период строительства	7001	9,674767	23,552358	9,674767	23,552358	9,674767	23,552358	2022
Всего по загрязняющему веществу:		9,674767	23,552358	9,674767	23,552358	9,674767	23,552358	
Всего по объекту:		9,7509805	23,5606544	9,7509805	23,5606544	9,7509805	23,5606544	
Из них:								
Итого по организованным источникам:		9,7509805	23,5606544	9,7509805	23,5606544	9,7509805	23,5606544	
Итого по неорганизованным источникам:								

4.3 Ожидаемые виды, характеристики и количество эмиссий в атмосферный воздух на период эксплуатации объекта

4.3.1 Краткая характеристика предприятия

Обогатительная фабрика № 1

На обогатительной фабрике предусмотрена коллективно-селективная схема обогащения медно-молибденовых руд месторождения «Актогай» с разделением коллективного концентрата по методу, исключающему пропарку, и использующему в качестве депрессора минералов меди — сульфида натрия в смеси с гидросульфидом натрия. Отказ от использования острого пара способствует снижению энергоемкости и повышению уровня безопасности технологического процесса. Кроме того, достоинством принятой технологии является сравнительно низкий расход сернистого натрия, что улучшает санитарные условия труда.

В состав объектов обогатительной фабрики № 1 входят:

- комплекс дробления руды;
- участок складирования крупнодробленой руды;
- участок дробления рудной гали;
- главный корпус;
- объекты оборотного водоснабжения охлаждения безредукторного привода;
- бункер шаров;
- эстакада конвейерная № 7;
- резервуар известкового молока;
- сгуститель коллективного концентрата;
- сгуститель медного концентрата;
- корпус фильтрации со складом концентратов;
- эстакада трубопроводов № 1;
- бункерный склад извести-пушонки;
- склад реагентов;
- площадка складирования пустой тары реагентов;
- открытый склад оборудования и шаров;
- воздуходувно-компрессорная станция;
- офис фабрики;
- лаборатория;
- автовесовая;
- блок центрального ремонтного пункта и склада материалов;
- электроремонтная мастерская;
- весовая железнодорожная с грузоприемным устройством;
- пункт дозировки;
- дизельная станция.

К вспомогательным объектам общеплощадочного назначения относятся:

- гараж разномарочных машин;
- дорожно-эксплуатационный участок (ДЭУ);
- ремонтно-строительный участок;
- пожарное депо на 4 автомобиля;
- контрольно-пропускной пункт;

- вахтовый поселок на 1200 человек с административно-бытовым корпусом и столовой на 847 посадочных мест;
 - железнодорожная станция «Комбинатская».

Производительность обогатительной фабрики № 1 по руде составит 30,0 млн. т/год. Технология переработки руды включает следующие операции:

- крупное дробление руды до крупности 300 мм;
- полусамоизмельчение руды;
- грохочение продукта полусамоизмельчения;
- двухстадиальное дробление рудной гали;
- ІІ стадию измельчения руды в замкнутом цикле с гидроциклонами;
- основную, контрольную и три перечистных операции коллективной флотации;
- доизмельчение концентрата основной коллективной флотации в замкнутом цикле с гидроциклонами;
- доизмельчение концентрата контрольной коллективной флотации в замкнутом цикле с гидроциклонами;
 - сгущение коллективного концентрата;
 - две стадии агитации пульпы коллективного концентрата;
 - основную и четыре перечистных операций молибденовой флотации;
 - сгущение и фильтрация молибденового и медного концентратов;
 - сгущение хвостов.

В технологическом процессе предполагается применение следующих реагентов:

- известь:
- ксантогенат натрия изобутиловый;
- метилизобутилкарбинол;
- сульфид натрия и гидросульфид натрия;
- собиратель молибдена;
- флокулянт Магнафлок.

Обогащение по указанной схеме исходной руды с содержанием меди и молибдена 0,361 % и 0,009 % соответственно, позволяет добиться следующих технологических показателей:

- содержание меди в медном концентрате 24,3 %;
- содержание молибдена в молибденовом концентрате 46,3 %;
- извлечение меди в медный концентрат 83,8 %;
- извлечение молибдена в молибденовый концентрат 75,0 %;
- содержание меди в отвальных хвостах 0,059 %;
- содержание молибдена в отвальных хвостах 0,002 %.

Участок первичного дробления руды.

Недробленая руда с карьера автотранспортом подается в приемный бункер дробилки крупного дробления (CR-101). Узел загрузки руды в дробилку и перегрузки с передаточного конвейера на магистральный оборудованы укрытиями с удалением пыли посредством рукавного пылеуловителя (аспирационная система АСП-1).

Крупнодробленая руда (до 300 мм) через передаточный конвейер (CV-106) подается на наземный магистральный конвейер (CV-102) для транспортировки на склад крупнодробленой руды, где складируется в виде штабеля.

Наземный магистральный конвейер (CV-102) предназначен для транспортирования руды на склад крупнодробленой руды. Расстояние между ними ориентировочно составляет 2,5 км. На конвейере установлены автоматические весы для взвешивания руды, доставляемой на склад.

Путем подъема линии конвейера, разгрузочный желоб в конечной точке подачи устанавливается на высоту, необходимую для образования насыпного конуса руды на складе.

Участок складирования крупнодробленой руды представляет собой напольный склад, который тоннелем и конвейерной эстакадой соединяется с отделением измельчения главного корпуса. Рабочий объем рудного склада составляет 163000 тонн, что равняется 2-х дневному объему измельчения.

Главный корпус является отдельно стоящим зданием, состоящим из нескольких технологических пролетов: измельчения, флотации, доизмельчения. Пролеты оснащены ремонтными площадками и грузоподъемными механизмами, предназначенными для ремонта технологического оборудования. Реагентное отделение, хвостовой зумпф, эстакада трубопроводов, сантехнические и вспомогательные помещения размещены в пристройках вдоль обеих сторон здания.

Тремя ленточными питателями (FE-104, FE-105, FE-106) крупнодробленая руда со склада поступает на конвейер, который обеспечивает подачу крупнодробленой руды в отделение измельчения главного корпуса, в мельницу полусамоизмельчения (ML-101) диаметром барабана 12,2 м и длиной барабана 7,6 м.

На всех пылящих узлах пересыпок установлены аспирационные системы. Уловленная в установках пыль по мере накопления выгружается на ленточный конвейер и возвращается в технологический процесс.

Корпус дробления рудной гали размещен в отдельно стоящем здании. Корпус предназначен для дополнительного дробления руды, отсортированной при подаче в отделение измельчения главного корпуса.

После полусамоизмельчения руда направляется на грохочение для выведения из разгрузки мельницы рудной гали. Надрешетный продукт грохота (рудная галя) системой конвейеров подается на участок дробления рудной гали, где проходит две стадии дробления в галечных (CR-102, CR-103) и валковой (CR-105) дробилках, затем конвейерным транспортом подается обратно в мельницу полусамоизмельчения. Подрешетный продукт грохота поступает на ІІ стадию измельчения в две шаровые мельницы (ML-002, ML-003), работающие в замкнутом цикле с батареей гидроциклонов. Шары диаметром 80 мм из бункера шаров разгружаются питателем шаров на конвейер и подаются в мельницу второй стадии измельчения.

Слив гидроциклонов II стадии измельчения поступает в камеры флотомашин основной коллективной флотации. Концентрат основной коллективной флотации поступает в мельницу доизмельчения, работающую в замкнутом цикле с батареей гидроциклонов. Слив гидроциклонов направляется на II перечистную флотацию.

Хвосты основной коллективной флотации поступают в камеры флотомашин контрольной коллективной флотации. Концентрат контрольной коллективной флотации доизмельчается в мельнице, работающей в замкнутом цикле с гидроциклонами. Слив гидроциклонов поступает в камеры флотомашин I перечистной флотации, концентрат которой направляется на III перечистную флотацию.

Хвосты I перечистки направляются на операцию контрольной перечистной флотации, концентрат которой возвращается в цикл доизмельчения концентрата контрольной флотации.

Концентрат II и III перечистной флотации, являющийся коллективным медномолибденовым концентратом, сгущается в сгустителе для удаления части реагентов со сливом, который в качестве оборотной воды возвращается в технологию.

Сгущенный коллективный концентрат подвергается агитации гидросульфидом натрия в смеси с сульфидом натрия в двух контактных чанах и поступает во флотомашину основной молибденовой флотации. Концентрат основной молибденовой флотации подвергается I перечистке. Пенный продукт I молибденовой перечистки поступает в мельницу доизмельчения молибдена, работающую в замкнутом цикле с батареей гидроциклонов. Слив гидроциклонов направляется на II перечистную молибденовую флотацию, хвосты которой возвращаются на I молибденовую перечистку. А концентрат подвергается двум последовательным перечисткам. Пенный продукт четвертой молибденовой перечистки является готовым молибденовым концентратом. Камерный продукт основной молибденовой флотации является готовым медным концентратом.

Молибденовый и медный концентраты сгущаются в соответствующих сгустителях, сливы которых в качестве оборотной воды возвращаются в технологию. Сгущенные продукты подаются на соответствующие пресс-фильтры в корпус фильтрации со складом концентратов.

Корпус фильтрации со складом концентратов представляет собой отдельно стоящее здание и предназначен для фильтрации и обезвоживания концентратов и их складирование. Фильтровальное оборудование выгорожено в отдельные помещения.

Концентрат после фильтрации на двух параллельно работающих пресс-фильтрах складируется в виде штабеля. Концентрат со штабеля подается погрузчиком в железнодорожные вагоны, а также упаковывается в «биг-беги» и железнодорожным транспортом отправляется потребителям.

Сооружения хвостового хозяйства.

В состав сооружений входят корпус сгущения хвостов, сгустители хвостов, отделение приготовления флокулянта для хвостов, пульпонасосная станция, вспомогательные помещения, расположенные рядом с обогатительной фабрикой.

В качестве флокулянта используется магнафлок. Установка для приготовления флокулянта состоит из бункера, винтового питателя, емкости с мешалкой, расходной емкости объемом и насосов дозировочных.

Флокулянт из мешков загружается в бункер через загрузочную воронку, являющуюся составной частью системы дозирования.

Емкость смешивания заполняется на 1/3 тёплой водой, затем включается мешалка. После того, как требуемое количество флокулянта и воды загружено, концентрация реагента составляет 0,25 %. Процесс растворения длится не более 60 мин. Готовый раствор перетекает в расходную емкость. Готовый раствор насосами-дозаторами транспортируется в питающую емкость сгустителя. Для разбавления раствора флокулянта до рабочей концентрации 0,05 %, при которой раствор флокулянта должен поступать в сгуститель, в трубопровод подается оборотная вода. Вода на разбавление подается через регулировочные клапаны.

Склад реагентов представляет собой отдельно стоящее здание. Для каждого реагента в складе предусмотрены самостоятельные помещения, с отдельными въездами для автотранспорта. Ввоз реагентов осуществляется электропогрузчиками с железнодорожной платформы. Для ведения погрузочно-разгрузочных работ предусмотрены технологические краны. Вспомогательные помещения склада реагентов примыкают к зданию.

На складе предусмотрены площади для хранения реагентов, необходимых для переработки окисленных руд.

Склад извести-пушонки размещен на отдельной железнодорожной ветке. Представляет собой открытое сооружение из двух бункеров с оборудованием для выгрузки из железнодорожного транспорта и оборудования для гашения извести.

Здание лаборатории расположено к востоку от главного корпуса и к югу от корпуса дробления рудной гали. Здание разделено на две зоны, зону аналитической лаборатории (LAB) и отдельную специальную зону металлургической лаборатории (Met-LAB), которая изолируется от общей лабораторной зоны. Зона Met-LAB состоит из зоны доставки образцов, зоны просеивания и смешивания, дробления и раскалывания, зон измельчения, зоны просеивания.

В лаборатории предусмотрены помещения для проведения лабораторных исследований отобранных образцов грунта, руды, породы и сопутствующие вспомогательные и служебно-бытовые помещения (склады, подготовительные, офисные, санузлы персонала и др.).

Основные расчетные параметры ОФ-1:

Основные расчетные параметры ОФ-1.								
Параметры	Ед. измерения	Значение						
Характеристика руды								
Удельная плотность	T/M^3	2,77						
Объемная плотность (насыпной вес)	T/M^3	1,6						
Средняя влажность рядовой руды	%	3						
Рабочий график								
Количество дней	день	365						
Рабочих часов в день	Ч	24						
Коэффициент использования	%	92,0						
Общее количество рабочих часов в год	Ч	8059						
Производительность при перераб	ботке руды							
Текущая (часовая), тах	сухая-т/ч	3896						
Годовое значение	сухая-т/год	30000000						
Расход реагентов								
Известь	кг/т руды	0,701						
Собиратель 1 (SIBX)	кг/т руды	0,025						
Собиратель молибдена	кг/т руды	0,005						
Ксантогенат натрия изобутиловый	кг/т руды	0,025						
Пенообразователь (сосновое масло)	кг/т руды	0,01						
Натрий сернистый в смеси с гидросульфидом натрия	кг/т руды	0,001						
Флокулянт сгустителя концентрата (Магнафлок)	кг/т руды	0,001						
Метилизобутилкарбинол (МИБК)	кг/т руды	0,025						

Цикл переработки неизмельченной						
Дней в год	день	365				
Рабочих часов в день	Ч	24				
Расчетная длительность производственного цикла за год	%	90				
Расчетное количество рабочих часов в год	Ч	7920				
Извлечение						
Меди из сульфидной руды	%	82				
Молибдена из сульфидной руды	%	50				
Спецификация продукта						
Содержание меди в медном концентрате	%	16-20				
Содержание молибдена в молибденовом концентрате	%	50				

Производительность обогатительной фабрики составит 30,0 млн. тонн в год. Коэффициент крепости пород и руд по М.М. Протодьяконову находится в пределах 8-16. Для ослабленных зон и приповерхностных выветрелых пород он составит 4-6. Коэффициент разрыхления равен 1.5.

Основные физико-механические свойства исходного (перерабатываемого) сырья:

Наименование	Ед. изм.	Показатели
Удельный вес	T/M^3	2,77
Насыпной вес	T/M^3	1,6
Угол естественного откоса	градус	38
Влажность	%	2-4
Крупность	MM	1000

Переработка окисленной руды. Площадка кучного выщелачивания

Строительство завода по переработке окисленных руд на месторождении Актогай (Завод жидкостной экстракции и электролиза оксидных руд и инфраструктуры месторождения Актогай) выполнено отдельным проектом (заключение № KZ88VCY00015378 от 05.09.2014 г.). Производство катодной меди начато в IV квартале 2015 года.

Площадка кучного выщелачивания выполнена в два этапа, каждый этап соответствует этапам штабелирования. Первый этап включает полностью северовосточную и часть северо-западной площадки и выполнен в 2015 г. На втором этапе северо-западная была расширена и ее строительство выполнено в 2019 году. Площадка кучного выщелачивания располагается на отметке 350 метров над уровнем моря, и ее конфигурация соответствует типу стационарной площадки, которая охватывает территорию общей площадью 1 486 861 м².

Действующие нормативы ПДВ для обогатительной фабрики № 1 установлены в действующем проекте нормативов предельно-допустимых выбросов (заключение государственной экологической экспертизы и разрешение на эмиссии №KZ23VCZ00863568 от 25.03.2021 г., представлены в приложении 16).

Источников аварийных выбросов при ведении технологических процессов на производственных объектах Обогатительной фабрики №1 нет, так как основные процессы производства протекают без внезапного выделения больших количеств загрязняющих веществ. Технология обогащения руд, в штатном режиме исключает аварийные выбросы.

Обогатительная фабрика № 2

На обогатительную фабрику № 2 подаются сульфидные медно-молибденовые руды месторождения Актогай. Производительность обогатительной фабрики № 2 составит 27,5 млн. тонн руды в год. На обогатительной фабрике № 2 предусматривается получение медного и молибденового концентратов.

К объектам обогатительной фабрики № 2 относятся:

- участок рудного склада;
- площадка для складирования футеровок мельницы;
- здание разгрузки и распределения извести;
- главное ОРУ;
- здание основной распределительной подстанции;
- главный корпус, участок измельчения и классификаци;
- главный корпус, участок флотации;
- главный корпус, участок извлечения, фильтрации и сгущения молибдена;
- градирня и система технологического водоснабжения;
- система питьевого и противопожарного водоснабжения;
- главный корпус, участок реагентов;
- парковка 1;
- здание дробилки рудной гали;
- парковка 2;
- офисы технического обслуживания завода и раздевалки;
- цех технического обслуживания завода;
- здание первичного дробления;
- здание сгущения хвостов;
- сгустители хвостов;
- сгущение и разгрузка обогатительной фабрики;
- насосная станция технической воды;
- пруд для технической воды;
- пруд-отстойник ливневой воды;
- насосная станция слива;
- открытый контейнерный склад реагентов;
- комплекс по отгрузке медного концентрата в мешках «Биг-Бэг»;
- наземный конвейер.

К основным производственным объектам обогатительной фабрики № 2 относятся: участок рудного склада, площадка для складирования футеровок мельницы, здание разгрузки и распределения извести, здание основной распределительной подстанции, главный корпус (участки измельчения и классификации, участок флотации, участок извлечения, фильтрации и сгущения молибдена, участок реагентов), здание дробилки рудной гальки.

Объекты, непосредственно связанные с работой обогатительной фабрики № 2: главное ОРУ, здание сгущения хвостов, сгустители хвостов, сгущение и разгрузка обогатительной фабрики, градирня и система технологического водоснабжения, система питьевого и противопожарного водоснабжения, насосная станция технической воды, пруд для технической воды, пруд-отстойник ливневой воды, насосная станция слива, открытый контейнерный склад реагентов, наземный конвейер.

Технология переработки руды включает следующие операции:

- крупное дробление руды до крупности 300 мм;
- полусамоизмельчение руды;
- грохочение продукта полусамоизмельчения;
- двухстадиальное дробление рудной гали;
- II стадию измельчения руды в замкнутом цикле с гидроциклонами;
- основную, контрольную и три перечистные операции коллективной флотации;
- доизмельчение концентрата основной коллективной флотации в замкнутом цикле с гидроциклонами;
- доизмельчение концентрата контрольной коллективной флотации в замкнутом цикле с гидроциклонами;
 - сгущение коллективного концентрата;
 - две стадии агитации пульпы коллективного концентрата;
 - основную и четыре перечистных операции молибденовой флотации;
 - сгущение и фильтрация молибденового и медного концентратов;
 - сгущение хвостов.

В технологическом процессе предполагается применение следующих реагентов:

- известь;
- ксантогенат натрия изобутиловый;
- метилизобутилкарбинол;
- сульфид натрия и гидросульфид натрия;
- собиратель молибдена;
- флокулянт.

Обогащение по указанной схеме исходной руды с содержанием меди и молибдена 0,361 % и 0,009 % соответственно позволяет добиться следующих технологических показателей:

- содержание меди в медном концентрате 24,3 %;
- содержание молибдена в молибденовом концентрате 46,3 %;
- извлечение меди в медный концентрат 83,8 %;
- извлечение молибдена в молибденовый концентрат 75,0 %;
- содержание меди в отвальных хвостах 0,059 %;
- содержание молибдена в отвальных хвостах 0,002 %.

Здание первичного дробления руды.

Первичное дробление производится в непосредственной близости от карьера. Загрузка приемного бункера производится карьерными самосвалами. Контроль загрузки бункера диспетчер осуществляет через специальное панорамное окно.

Обслуживание и ремонт дробилки осуществляется краном, для чего предусмотрена ремонтно-монтажная площадка и стенды для хранения конусов и эксцентриковых валов.

Дробленая руда через передаточный конвейер подается на магистральный конвейер для транспортировки на обогатительную фабрику.

Наземный магистральный конвейер протяженностью 2504 м предназначен для доставки крупнодробленой руды на склад обогатительной фабрики. На конвейере установлены автоматические весы для взвешивания руды, доставляемой на склад. Путем подъема линии конвейера, разгрузочный желоб в конечной точке подачи устанавливается на высоту, необходимую для образования насыпного конуса руды на складе.

Участок рудного склада представляет собой напольный склад, который тоннелем и конвейерной эстакадой соединяется с отделением измельчения главного корпуса. Крупнодробленая руда поступает на склад по разгрузочному желобу магистрального конвейера и собирается в виде конической насыпи, из которой дозированными частями поступает в конвейерный тоннель, расположенный непосредственно под насыпью. На складе предусмотрена подача шаров для мельницы самоизмельчения на рудный конвейер.

Вспомогательные помещения размещены в отдельно стоящем здании.

Здание дробилки рудной гали предназначено для дополнительного дробления отсортированной при подаче в отделение измельчения главного корпуса рудной гальки. Посредством передаточных конвейеров рудная галька подается в дробильную установку корпуса, после дробления мелкая фракция возвращается на основной конвейер, транспортирующий руду в отделение измельчения. Для аварийной выгрузки на участке предусмотрен отдельный склад рудной гали.

Здание разгрузки и распределения извести представляет собой отдельно стоящее здание с оборудованием для выгрузки с железнодорожного транспорта, гашения и распределения извести. Здание расположено к юго-востоку от подземного конвейерного тоннеля. Загрузка склада предполагается из железнодорожных вагонов, доставляющих дробленую известь-пушонку на предприятие. Из железобетонных вертикальных бункеров известь после измельчения и при одновременном ее гашении поступает в резервуар с мешалкой для получения известкового молока, которое затем подается на реагентную площадку (здание реагентов) главного корпуса.

Главный корпус является отдельно стоящим зданием, состоящим из нескольких технологических пролетов: измельчения, флотации, отделение молибдена, здание ВПВД (вальцовый пресс высокого давления). Основное назначение главного корпуса — обогащение смеси медно-молибденовой руды путем выполнения последовательного технологического процесса измельчения руды, коллективно-селективной флотации и получение в результате медного и молибденового концентрата. Планировка корпуса выполнена исходя из наиболее рациональной организации технологического процесса и удобной взаимосвязи с вспомогательными подразделениями фабрики.

Административное здание сульфидного цеха расположено в пределах здания главного корпуса. Состоит из помещения для ланча на 60 человек за смену, медпункта, серверной IT, технической библиотеки и хранения документов, открытых рабочих станций на 20 человек, зала совещаний, закрытых офисов и сервисных помещений. Данное здание спроектировано как действующее защищенное место, способное обеспечить аварийное убежище в случае аварии в пределах главного корпуса.

Диспетичерская сульфидного цеха расположена в пределах здания главного корпуса. Цокольный этаж здания состоит из рабочих станций на 10 человек. Первый этаж здания РМС включает помещение для кабинетов DCS, офисов для операторов, контрольного помещения и помещений инженеров DCS. Доступ на первый этаж осуществляется с двух открытых лестничных клеток.

Сгущение и разгрузка обогатительной фабрики № 2 расположен к югу-западу от главного корпуса обогатительной фабрики и технологически с ним связан. Назначение корпуса — фильтрация и обезвоживание концентратов и их складирование, для последующей погрузки и отправки потребителям. Отгрузка медного концентрата производится в вагоны, молибденового — в мешки «биг-бэги».

Комплекс по отгрузке медного концентрата в мешках «биг бэг». Комплекс представляет собой отдельно стоящее здание, соединенное с корпусом сгущения и разгрузки.

Открытый контейнерный склад реагентов. Здание реагентов. Склад расположен в непосредственной близости от здания главного корпуса фабрики с юго-восточной стороны и имеет железнодорожный и автомобильный подъезд. Здание реагентов предназначено для складирования и хранения реагентов, используемых в производственных процессах (пенообразователь, ксантогенат натрия изобутиловый, собиратель молибдена, флокулянт для концентрата и др.).

Сооружения хвостового хозяйства. Данные сооружения расположены к югу от главного корпуса обогатительной фабрики и предназначены для утилизации хвостовой пульпы от флотационной линии. К сооружениям хвостового хозяйства относятся корпус отделения сгущения хвостов, сгустители хвостов, аварийный пруд для сброса хвостов.

Цех технического обслуживания завода представляет собой отдельно стоящее здание. Блок рабочего цеха здания технического обслуживания завода с учебным цехом — одноэтажное здание. Здание проектируется для различного персонала рабочих станций. В блоке проектируется передвижной кран на рельсовом ходу грузоподъемностью 25 т, с минимальной высотой рамы 15 м. В здании также предусмотрены склады общего назначения, склады смазывающих веществ и реагентов, электрощитовая, приемная станция, работающая на газе.

Офисы технического обслуживания завода и раздевалки состоят из двух блоков, соединенных переходом:

- блока рабочего цеха технического обслуживания завода с учебным цехом;
- блока офисов технического обслуживания завода и раздевалок.

Здание основной распределительной подстанции. Главная распределительная подстанция блочно-модульного типа полной заводской готовности. Предназначена для приема, преобразования и распределения электрической энергии.

Площадка для складирования футеровок мельницы. Площадка для складирования футеровок мельницы предназначена для складирования отработанных футеровок.

Градирня и система технологического водоснабжения. Установка градирни предназначена для охлаждения воды, отводящей тепло от тепловыделяющей аппаратуры.

Насосная станция технической воды. Здание, отдельно стоящее.

Парковка 1, 2. На территории завода находятся две парковки.

Описание технологического процесса обогатительной фабрики № 2

Руда из карьера автосамосвалами подается в бункер крупного дробления. Дробленая руда пластинчатым питателем выгружается из дробилки на ленточный конвейер, с помощью которого поступает на магистральный конвейер.

Узел загрузки руды в дробилку и перегрузки с передаточного конвейера на магистральный оборудованы укрытиями с удалением пыли посредством рукавного пылеуловителя (аспирационная система АСП-1).

Для удаления металлических включений и последующей передачи их в приемный бункер металлических примесей служит самоочищающийся магнит, расположенный над разгрузочным желобом передаточного конвейера.

Обслуживание и ремонт первичной дробилки осуществляется краном, для чего предусмотрена ремонтно-монтажная площадка для размещения корпуса дробилки и главного вала, а также стенды для хранения конусов и эксцентриковых валов.

Руда после крупного дробления магистральным конвейером подается с комплекса дробления руды на участок складирования крупнодробленой руды, где складируется в виде штабеля. От всех пылящих узлов пересыпок выполнены аспирационные отсосы – АСП.

Система трех ленточных питателей и ленточного конвейера обеспечивает подачу руды со штабеля в отделение измельчения главного корпуса в мельницу полусамоизмельчения. На этот же ленточный конвейер предусмотрена подача шаров для мельницы полусамоизмельчения.

Шары диаметром 125 мм автомобильным транспортом доставляются в бункер шаров, из которого разгружаются при помощи питателя шаров на ленточный конвейер. Для создания санитарных условий на рабочих местах в конвейерном тоннеле под штабелем, предусмотрена система аспирации запыленного воздуха с выбросом очищенного воздуха в атмосферу. От всех пылящих узлов пересыпок выполнены аспирационные отсосы — АСП-2. Уловленная в аппаратах пыль по мере накопления выгружается на ленточный конвейер и возвращается в технологический процесс.

После полусамоизмельчения руда направляется на грохочение для выведения из разгрузки мельницы рудной гали. Надрешетный продукт грохота (рудная галя) системой конвейеров подается на участок дробления рудной гали, где проходит две стадии дробления в галечных и валковой дробилках, затем конвейерным транспортом подается обратно в мельницу полусамоизмельчения. Подрешетный продукт грохота поступает на ІІ стадию измельчения в две шаровые мельницы, работающие в замкнутом цикле с батареей гидроциклонов. Шары диаметром 80 мм из бункера шаров разгружаются питателем шаров на конвейер и подаются в мельницу второй стадии измельчения. От всех пылящих узлов пересыпок выполнены аспирационные отсосы — АСП.

Слив гидроциклонов II стадии измельчения поступает в камеры флотомашин основной коллективной флотации. Концентрат основной коллективной флотации поступает в мельницу доизмельчения, работающую в замкнутом цикле с батареей гидроциклонов. Слив гидроциклонов направляется на II перечистную флотацию.

Хвосты основной коллективной флотации поступают в камеры флотомашин контрольной коллективной флотации. Концентрат контрольной коллективной флотации доизмельчается в мельнице, работающей в замкнутом цикле с гидроциклонами. Слив гидроциклонов поступает в камеры флотомашин I перечистной флотации, концентрат которой направляется на III перечистную флотацию.

Хвосты I перечистки направляются на операцию контрольной перечистной флотации, концентрат которой возвращается в цикл доизмельчения концентрата контрольной флотации.

Концентрат II и III перечистной флотации, являющийся коллективным медномолибденовым концентратом, сгущается в сгустителе для удаления части реагентов со сливом, который в качестве оборотной воды возвращается в технологию.

Сгущенный коллективный концентрат подвергается агитации гидросульфидом натрия в смеси с сульфидом натрия в двух контактных чанах и поступает во флотомашину основной молибденовой флотации. Концентрат основной молибденовой флотации подвергается I перечистке. Пенный продукт I молибденовой перечистки поступает в мельницу доизмельчения молибдена, работающую в замкнутом цикле с батареей гидроциклонов. Слив гидроциклонов направляется на II перечистную молибденовую флотацию, хвосты которой возвращаются на I молибденовую перечистку. А концентрат подвергается двум последовательным перечисткам. Пенный продукт четвертой молибденовой перечистки является готовым молибденовым концентратом. Камерный продукт основной молибденовой флотации является готовым медным концентратом.

Молибденовый и медный концентраты сгущаются в соответствующих сгустителях, сливы которых в качестве оборотной воды возвращаются в технологию. Сгущенные

продукты подаются на соответствующие фильтр-прессы в корпус фильтрации со складом концентратов.

Медный концентрат после фильтрации на двух параллельно работающих фильтрпрессах складируется в виде штабеля. Отгрузка медного концентрата со склада осуществляется погрузчиком в железнодорожные вагоны.

Молибденовый концентрат после фильтрации на фильтр-прессе упаковывается в «биг-бэги» и отправляется потребителям.

Хвосты контрольной коллективной и контрольной перечистной флотаций являются отвальными хвостами, которые самотеком собираются в хвостовой зумпф и далее перекачиваются в сгустители хвостов. Сгущенные хвосты из пульпонасосной станции перекачиваются на хвостохранилище (предусмотренные проектом третьей стадии строительства хвостохранилища).

Переработка руд предусматривается по схеме оборотного водоснабжения. Сливы сгустителей в качестве оборотной воды возвращаются в технологический процесс.

Основные расчетные параметры ОФ-2:

Параметры	Ед. измерения	Значение
Характеристика руды		
Удельная плотность	T/M^3	2,77
Объемная плотность (насыпной вес)	T/M^3	1,6
Средняя влажность рядовой руды	%	3
Рабочий график	.	
Количество дней	день	365
Рабочих часов в день	Ч	24
Коэффициент использования	%	92,0
Общее количество рабочих часов в год	Ч	8059
Производительность при переработь	се руды	
Текущая (часовая), тах	сухая-т/ч	3571
Годовое значение	сухая-т/год	27500000
Расход реагентов		
Известь	кг/т руды	0,701
Собиратель 1 (SIBX)	кг/т руды	0,025
Собиратель молибдена	кг/т руды	0,005
Ксантогенат натрия изобутиловый	кг/т руды	0,025
Пенообразователь (сосновое масло)	кг/т руды	0,01
Натрий сернистый в смеси с гидросульфидом натрия	кг/т руды	0,001
Флокулянт сгустителя концентрата (Магнафлок)	кг/т руды	0,001
Метилизобутилкарбинол (МИБК)	кг/т руды	0,025
Цикл переработки неизмельчени	юй	
Дней в год	день	365
Рабочих часов в день	Ч	24
Расчетная длительность производственного цикла за год	%	90
Расчетное количество рабочих часов в год	Ч	7920
Извлечение		
Меди из сульфидной руды	%	82
Молибдена из сульфидной руды	%	50
Спецификация продукта	_	
Содержание меди в медном концентрате	%	16-20
Содержание молибдена в молибденовом концентрате	%	50

Основные физико-механические свойства исходного (перерабатываемого) сырья:

Наименование	Ед. изм.	Показатели
Удельный вес	T/M^3	2,77
Насыпной вес	T/M^3	1,6
Угол естественного откоса	градус	38
Влажность	%	2-4
Крупность	MM	1000

Действующие нормативы ПДВ для обогатительной фабрики №2 установлены в действующем проекте "Расширение Актогайского ГОК. Обогатительная фабрика сульфидных руд. Аягозский район ВКО». (Без сметной документации и без проекта хвостохранилища) Корректировка» с разделом ОВОС (заключение госэкспертизы № 01-0214/20 от 05.05.2020 г., включая заключение государственной экологической экспертизы № F01-0013/20 от 27.04.2020 г. и разрешение на эмиссии № KZ46VCZ00571572 от 27.04.2020 г., представлены в приложении 14).

Источников аварийных выбросов при ведении технологических процессов на производственных объектах Обогатительной фабрики №2 нет, так как основные процессы производства протекают без внезапного выделения больших количеств загрязняющих веществ. Технология обогащения руд, в штатном режиме исключает аварийные выбросы.

На 2022-2023 гг. на обогатительных фабриках №1 и №2 будет функционировать 114 источников выбросов вредных веществ в атмосферу, из них 85 — организованных и 29 — неорганизованных источников выброса. Количество выбрасываемых вредных веществ — 42, с 1 по 4 класс опасности, из них 39 подлежит нормированию. Суммарные выбросы загрязняющих веществ на 2022 г., подлежащие нормированию, в целом от 2-х фабрик составляют 266,9795407 т/год.

Сравнительный анализ выбросов загрязняющих веществ

		Обогатительная Обогатительная фабрика №1 фабрика №2		Обогатительная фабрика №1 и №2			
Kon 3R		Действующее заключение ГЭЭ на проект ПДВ и разрешение на эмиссии № KZ23VCZ0086356 8 от 25.03.2021 г.	Действующее заключение государственной экологической экспертизы № F01-0013/20 от 27.04.2020 г. на ОВОС и разрешение на эмиссии № KZ46VCZ00571572 от 27.04.2020 г.	Общий действующие лимиты по двум разрешениям	Нормативы выбросов после корректировки (с учетом увеличения производительности)		
Код 3В Наименование 3В Всего:		тонн/год	тонн/год	тонн/год	тонн/год		
		197,54007	25,219096	222,759166	266,9795407		

Примечание:

Суммарный норматив выбросов по двум обогатительным фабрикам составляет 222,759166 т/год (по ОФ-1 - 197,54007 т/г, по ОФ-2 - 25,219096 т/г). Реконструкция проводится с целью увеличения производительности переработки руды на ОФ-1 до 30 млн. тонн/год и на ОФ-2 до 27,5 млн. тонн/год, т.е. на 20 %. Следовательно, суммарный нормативный выброс будет также увеличен по обоим фабрикам (теоретически до 267,31 т/год). Проведенные расчеты нормативов выбросов с увеличенной производительностью по обоим фабрикам показывают, что выбросы составят 266,9795407 т/год.

Общий перечень загрязняющих веществ, выбрасываемых в атмосферу в период эксплуатации обогатительных фабрик с учетом и без учета выбросов от автотранспорта приведен в таблицах 3.1.2.

Параметры выбросов загрязняющих веществ, для расчета нормативов допустимых выбросов, с указанием источников загрязнения, времени работы оборудования, координат источников на карте-схеме промплощадки предприятия представлены в таблице 3.3.2 в Приложении 10.

Расчет приземных концентраций выполнен Программным комплексом «Эра V 3.0» и проводился для максимально возможного числа одновременно работающего оборудования и выполнения технологических операций при их максимальной нагрузке (одновременная работ 2-х обогатительных фабрик), а также с учетом выбросов от передвижных источников (автотранспорта) и выбросов в период строительно-монтажных работ (СМР).

Определение необходимости расчетов приземных концентраций по веществам, а также источники, дающие наибольший вклад в загрязнение атмосферного воздуха, приведены в таблицах в Приложении 11.

Результаты расчета величин приземных концентраций (карты расчетов) рассеивания ЗВ в приземном слое атмосферного воздуха также представлены в Приложении 11.

Расчет рассеивания в жилой зоне не проводился, ввиду ее значительной удаленности, ближайший населённый пункт пос. Актогай расположен в 25 км к западу от предприятия.

Из результатов расчёта приземных концентраций следует, что по всем ингредиентам уровень загрязнения атмосферы на границе СЗЗ, создаваемый выбросами источников промплощадки предприятия, не превышает ПДК $_{\rm MP}$. Приведённые данные показывают, что влияние источников площадки предприятия на уровень загрязнения атмосферы оценивается как допустимое.

В составе проекта выполнен расчет выбросов загрязняющих веществ в атмосферу по утвержденным на территории РК методикам (Приложение 8). Определенные расчетным и инструментальным путем величины выбросов загрязняющих веществ в атмосферный воздух предлагается принять в качестве нормативов НДВ.

Нормативы эмиссий на период эксплуатации объекта представлены в таблице 3.6.2.

4.4 Определение категории предприятия по значимости и полноте оценки хозяйственной деятельности

Согласно статьи 12 Экологического Кодекса РК - объекты, оказывающие негативное воздействие на окружающую среду, в зависимости от уровня и риска такого воздействия подразделяются на четыре категории:

- 1) объекты, оказывающие значительное негативное воздействие на окружающую среду (объекты I категории);
- 2) объекты, оказывающие умеренное негативное воздействие на окружающую среду (объекты II категории);
- 3) объекты, оказывающие незначительное негативное воздействие на окружающую среду (объекты III категории);
- 4) объекты, оказывающие минимальное негативное воздействие на окружающую среду (объекты IV категории).

Отнесение объектов, оказывающих негативное воздействие на окружающую среду к объектам I, II или III категорий устанавливается на основании Приложения 2 ЭК РК.

Намечаемая деятельность, по Реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай будет проводиться на территории предприятия, для которого определена I категория, согласно «Решения по определению категории объекта, оказывающего негативное воздействие на окружающую среду» от 14.10.2021 г. выданное Комитетом экологического регулирования и контроля Министерство экологии, геологии и природных ресурсов РК (Приложение 2), таким образом согласно п. 3 ст. 12 ЭК РК, намечаемая деятельность также относится к объектам I категории.

ЭРА v3.0 TOO "ECO AIR"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2022 год с учетом автотранспорта Аягозский район, п. Актогай, ТОО "KAZ Minerals Aktogay". Обогатительные фабрики № 1 и № 2

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)			0,04		3	0,055	0,1379	3,4475
0128	Кальций оксид (Негашеная известь) (635*)				0,3		0,68878	7,890351	26,30117
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)		0,01	0,001		2	0,0069	0,0099	9,9
0150	Натрий гидроксид (Натр едкий, Сода каустическая) (876*)				0,01		0,0000156	0,000495	0,0495
0155	диНатрий карбонат (Сода кальцинированная, Натрий карбонат) (408)		0,15	0,05		3	0,0130882	0,097314	1,94628
0203	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)			0,0015		1	0,000006	0,000176	0,11733333
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	6,08924	24,0689	601,7225
0302	Азотная кислота (5)		0,4	0,15		2	0,000716	0,022602	0,15068
0303	Аммиак (32)		0,2	0,04		4	0,000147	0,004656	0,1164
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	5,850772	12,20374	203,395667
0316	Гидрохлорид (Соляная кислота, Водород хлорид) (163)		0,2	0,1		2	0,0002348	0,007403	0,07403
0322	Серная кислота (517)		0,3	0,1		2	6,0000698	98,346415	983,46415
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	2,501188	10,351292	207,02584
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	3,7482609	13,3263009	266,526018

0333	Сероводород (Дигидросульфид) (518)	0,008			2	0,0006038	0,0031698	0,396225
0334	Сероуглерод (519)	0,03	0,005		2	0,000201	0,0045	0,9
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	32,5108003	70,2145003	23,4048334
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,02	0,005		2	0,0033	0,00264	0,528
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,2	0,03		2	0,0025	0,0005	0,01666667
0415	Смесь углеводородов предельных С1-С5 (1502*)			50		34,91359	1,49173	0,0298346
0416	Смесь углеводородов предельных С6-С10 (1503*)			30		12,90365	0,55134	0,018378
0501	Пентилены (амилены - смесь изомеров) (460)	1,5			4	1,28988	0,05513	0,03675333
0602	Бензол (64)	0,3	0,1		2	1,18669	0,05073	0,5073
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2			3	0,14964	0,00641	0,03205
0621	Метилбензол (349)	0,6			3	1,11955	0,04783	0,07971667
0627	Этилбензол (675)	0,02			3	0,04893	0,001341	0,06705
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0,000001		1	0,000032	0,000133	133
1048	2-Метилпропан-1-ол (Изобутиловый спирт) (383)	0,1			4	0,0066	0,1466	1,466
1049	4-Метил-2-пентанол (Метилизобутилкарбинол) (378)	0,07			4	0,007	0,0514	0,73428571
1051	Пропан-2-ол (Изопропиловый спирт) (469)	0,6			3	0,0046	0,089	0,14833333
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	5	1,5		4	2,6742	1,042	0,69466667
2732	Керосин (654*)			1,2		5,1839144	17,6345	14,6954167
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)			0,05		0,30838	0,6257	12,514
2744	Синтетические моющие средства: "Бриз", "Вихрь", "Лотос", "Лотос-автомат", "Юка", "Эра" (1132*)			0,03		0,000188	0,003953	0,13176667

		2222		<u> </u>		\	·	
	ВСЕГО:					125,218117	386,678974	3750,092777
2978	Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (1090*)			0,1		0,0678	0,0879	0,879
2936	Пыль древесная (1039*)			0,1		1,989	3,934	39,34
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0,04		0,022	0,0387	0,9675
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	4,8039402	121,198627	1211,98627
2902	Взвешенные частицы (116)	0,5	0,15		3	0,0354	0,0622	0,41466667
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			4	1,031309	2,8669952	2,8669952

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 TOO "ECO AIR"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на 2022 год, с учетом мероприятий по снижению выбросов без учета автотранспорта Аягозский район, п. Актогай, ТОО "KAZ Minerals Aktogay". Обогатительные фабрики № 1 и № 2

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)			0,04		3	0,055	0,1379	3,4475
0128	Кальций оксид (Негашеная известь) (635*)				0,3		0,68878	7,890351	26,30117
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)		0,01	0,001		2	0,0069	0,0099	9,9
0150	Натрий гидроксид (Натр едкий, Сода каустическая) (876*)				0,01		0,0000156	0,000495	0,0495
0155	диНатрий карбонат (Сода кальцинированная, Натрий карбонат) (408)		0,15	0,05		3	0,0130882	0,097314	1,94628
0203	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)			0,0015		1	0,000006	0,000176	0,11733333
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	4,31124	7,8195	195,4875
0302	Азотная кислота (5)		0,4	0,15		2	0,000716	0,022602	0,15068
0303	Аммиак (32)		0,2	0,04		4	0,000147	0,004656	0,1164
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	5,561572	9,96084	166,014
0316	Гидрохлорид (Соляная кислота, Водород хлорид) (163)		0,2	0,1		2	0,0002348	0,007403	0,07403
0322	Серная кислота (517)		0,3	0,1		2	6,0000698	98,346415	983,46415
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,714788	1,283892	25,67784
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	1,4787609	2,7592009	55,184018

0333	Сероводород (Дигидросульфид) (518)	0.008			2	0,0006038	0,0031698	0,396225
0334	Сероуглерод (519)	0,03	0,005		2	0,000201	0,0045	0,90229
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	3,7264003	6,8988003	2,2996001
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,02	0,005		2	0,0033	0,00264	0,528
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,2	0,03		2	0,0025	0,0005	0,01666667
0415	Смесь углеводородов предельных С1-С5 (1502*)			50		34,91359	1,49173	0,0298346
0416	Смесь углеводородов предельных С6-С10 (1503*)			30		12,90365	0,55134	0,018378
0501	Пентилены (амилены - смесь изомеров) (460)	1,5			4	1,28988	0,05513	0,03675333
0602	Бензол (64)	0,3	0,1		2	1,18669	0,05073	0,5073
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2			3	0,14964	0,00641	0,03205
0621	Метилбензол (349)	0,6			3	1,11955	0,04783	0,07971667
0627	Этилбензол (675)	0,02			3	0,04893	0,001341	0,06705
1048	2-Метилпропан-1-ол (Изобутиловый спирт) (383)	0,1			4	0,0066	0,1466	1,466
1049	4-Метил-2-пентанол (Метилизобутилкарбинол) (378)	0,07			4	0,007	0,0514	0,73428571
1051	Пропан-2-ол (Изопропиловый спирт) (469)	0,6			3	0,0046	0,089	0,14833333
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	5	1,5		4	0,021	0,0324	0,0216
2732	Керосин (654*)			1,2		0,9291144	0,3873	0,32275
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)			0,05		0,30838	0,6257	12,514
2744	Синтетические моющие средства: "Бриз", "Вихрь", "Лотос", "Лотос-автомат", "Юка", "Эра" (1132*)			0,03		0,000188	0,003953	0,13176667

	ВСЕГО:					83,402585	266,979541	2744,635143
2978	Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (1090*)			0,1		0,0678	0,0879	0,879
2936	Пыль древесная (1039*)			0,1		1,989	3,934	39,34
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0,04		0,022	0,0387	0,9675
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	4,8039402	121,198627	1211,98627
2902	Взвешенные частицы (116)	0,5	0,15		3	0,0354	0,0622	0,41466667
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			4	1,031309	2,8669952	2,8669952

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 TOO "ECO AIR"

Таблица 3.6

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Аягозский район, п. Актогай, ТОО "KAZ Minerals Aktogay". Обогатительные фабрики № 1 и № 2

Производство цех, участок	Номер	Нормативы выбросов загрязняющих веществ										
	источника	существующее положение на 2022 год		на 2022 год		на 2023 год		ндв				
Код и наименование загрязняющего вещества		г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год			
1	2	3	4	7	8	9	10	7	8	13		
(0123) Железо (II, III) оксидн	ы (диЖелезо т	гриоксид, Жел	еза оксид) /в пер	есчете на(274	4)							
Организованные ис	точники											
Участок обслуживания горной техники (ОФ-1)	0018	0,005	0,036	0,005	0,0432	0,005	0,0432	0,005	0,0432	2022		
	0019	0,007	0,006	0,007	0,0072	0,007	0,0072	0,007	0,0072	2022		
	0021	0,007	0,0039	0,007	0,0048	0,007	0,0048	0,007	0,0048	2022		
	0029	0,005	0,0099	0,005	0,0119	0,005	0,0119	0,005	0,0119	2022		
	0056	0,007	0,006	0,007	0,0072	0,007	0,0072	0,007	0,0072	2022		
Участок обслуживания горной техники (ОФ-2)	0218	0,005	0,036	0,005	0,0395	0,005	0,0395	0,005	0,0395	2022		
	0219	0,007	0,006	0,007	0,0066	0,007	0,0066	0,007	0,0066	2022		
	0229	0,005	0,0099	0,005	0,0109	0,005	0,0109	0,005	0,0109	2022		
	0256	0,007	0,006	0,007	0,0066	0,007	0,0066	0,007	0,0066	2022		
Итого:		0,055	0,1197	0,055	0,1379	0,055	0,1379	0,055	0,1379			
Всего по загрязняющему веществу:		0,055	0,1197	0,055	0,1379	0,055	0,1379	0,055	0,1379			
(0128) Кальций оксид (Нега	шеная извест	ь) (635*)	II.		<u> </u>			L				
Организованные ис	точники	-										

Участок приготовления известкового молока с бункерным складом извести (ОФ-1)	0004	0,000023	0,000338	0,00004	0,000705	0,00004	0,000705	0,00004	0,000705	2022
	0005	0,2994	3,43	0,3593	4,116	0,3593	4,116	0,3593	4,116	2022
Участок приготовления известкового молока с бункерным складом извести (ОФ-2)	0204	0,0000038	0,0000412	0,00004	0,000646	0,00004	0,000646	0,00004	0,000646	2022
	0205	0,000003	0,0000343	0,3294	3,773	0,3294	3,773	0,3294	3,773	2022
Итого:		0,2994298	3,4304135	0,68878	7,890351	0,68878	7,890351	0,68878	7,890351	
Всего по загрязняющему веществу:		0,2994298	3,4304135	0,68878	7,890351	0,68878	7,890351	0,68878	7,890351	
(0143) Марганец и его соедин	ения /в пере	есчете на марган	ца (IV) оксид/ (3	327)	1	•	1			
Организованные ис	точники									
Участок обслуживания горной техники (ОФ-1)	0018	0,0006	0,0011	0,0006	0,0012	0,0006	0,0012	0,0006	0,0012	2022
	0019	0,0009	0,001	0,0009	0,0011	0,0009	0,0011	0,0009	0,0011	2022
	0021	0,0009	0,0006	0,0009	0,0007	0,0009	0,0007	0,0009	0,0007	2022
	0029	0,0006	0,0011	0,0006	0,0013	0,0006	0,0013	0,0006	0,0013	2022
	0056	0,0009	0,001	0,0009	0,0011	0,0009	0,0011	0,0009	0,0011	2022
Участок обслуживания горной техники (ОФ-2)	0218	0,0006	0,0011	0,0006	0,0011	0,0006	0,0011	0,0006	0,0011	2022
	0219	0,0009	0,0007	0,0009	0,0011	0,0009	0,0011	0,0009	0,0011	2022
	0229	0,0006	0,0011	0,0006	0,0012	0,0006	0,0012	0,0006	0,0012	2022
	0256	0,0009	0,0007	0,0009	0,0011	0,0009	0,0011	0,0009	0,0011	2022
Итого:		0,0069	0,0084	0,0069	0,0099	0,0069	0,0099	0,0069	0,0099	
Всего по загрязняющему веществу:		0,0069	0,0084	0,0069	0,0099	0,0069	0,0099	0,0069	0,0099	
(0150) Натрий гидроксид (На	I .									

Химико-аналитическая лаборатория (ОФ-1)	0011	0,000013	0,000413	0,000013	0,000413	0,000013	0,000413	0,000013	0,000413	2022
	0014	0,0000013	0,000041	0,0000013	0,000041	0,0000013	0,000041	0,0000013	0,000041	2022
	0015	0,0000013	0,000041	0,0000013	0,000041	0,0000013	0,000041	0,0000013	0,000041	2022
Итого:		0,0000156	0,000495	0,0000156	0,000495	0,0000156	0,000495	0,0000156	0,000495	
Всего по загрязняющему веществу:		0,0000156	0,000495	0,0000156	0,000495	0,0000156	0,000495	0,0000156	0,000495	
(0155) диНатрий карбонат (С	ода кальциі	нированная, На	грий карбонат)	(408)		•				
Организованные ис-	точники									
Химико-аналитическая лаборатория (ОФ-1)	0011	0,000006	0,000175	0,000006	0,000175	0,000006	0,000175	0,000006	0,000175	2022
	0014	0,0000006	0,000018	0,0000006	0,000018	0,0000006	0,000018	0,0000006	0,000018	2022
	0015	0,0000006	0,000018	0,0000006	0,000018	0,0000006	0,000018	0,0000006	0,000018	2022
Корпус приготовления реактивов (ОФ-1)	0009	0,0065	0,0477	0,0065	0,0477	0,0065	0,0477	0,0065	0,0477	2022
Прачечная (ОФ-1)	0066			0,000081	0,001703	0,000081	0,001703	0,000081	0,001703	2022
Корпус приготовления реактивов (ОФ-2)	0209	0,0065	0,0477	0,0065	0,0477	0,0065	0,0477	0,0065	0,0477	2022
Итого:		0,0130072	0,095611	0,0130882	0,097314	0,0130882	0,097314	0,0130882	0,097314	
Всего по загрязняющему веществу:		0,0130072	0,095611	0,0130882	0,097314	0,0130882	0,097314	0,0130882	0,097314	
(0203) Хром /в пересчете на х	ром (VI) окс	сид/ (Хром шест	ивалентный) (6	47)	•	•				
Организованные ис-	точники									
Химико-аналитическая лаборатория (ОФ-1)	0016	0,000003	0,000088	0,000003	0,000088	0,000003	0,000088	0,000003	0,000088	2022
	0017	0,000003	0,000088	0,000003	0,000088	0,000003	0,000088	0,000003	0,000088	2022
Итого:		0,000006	0,000176	0,000006	0,000176	0,000006	0,000176	0,000006	0,000176	
Всего по загрязняющему веществу:		0,000006	0,000176	0,000006	0,000176	0,000006	0,000176	0,000006	0,000176	
(0301) Азота (IV) диоксид (Аз	ота диоксид) (4)								
Организованные ис-	точники									

Участок обслуживания горной техники (ОФ-1)	0018	0,0021	0,0309	0,0021	0,0371	0,0021	0,0371	0,0021	0,0371	2022
	0019	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	2022
	0021	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	2022
	0032	1,425	2,55	1,425	2,55	1,425	2,55	1,425	2,55	2022
	0033	1,425	2,55	1,425	2,55	1,425	2,55	1,425	2,55	2022
	0034	1,425	2,55	1,425	2,55	1,425	2,55	1,425	2,55	2022
	0056	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	2022
Участок обслуживания горной техники (ОФ-2)	0218	0,0021	0,0309	0,0021	0,034	0,0021	0,034	0,0021	0,034	2022
	0219	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	2022
	0256	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	0,0014	0,0002	2022
Итого:		4,2862	7,7128	4,2862	7,7221	4,2862	7,7221	4,2862	7,7221	
Неорганизованные	источни	ки	.	•	1	<u>'</u>	.			
Система антиобледенения (ОФ-1)	6019	0,00626	0,02435	0,00626	0,02435	0,00626	0,02435	0,00626	0,02435	2022
	6020	0,00626	0,02435	0,00626	0,02435	0,00626	0,02435	0,00626	0,02435	2022
Система антиобледенения (ОФ-2)	6219			0,00626	0,02435	0,00626	0,02435	0,00626	0,02435	2022
	6220			0,00626	0,02435	0,00626	0,02435	0,00626	0,02435	2022
Итого:		0,01252	0,0487	0,02504	0,0974	0,02504	0,0974	0,02504	0,0974	
Всего по загрязняющему веществу:		4,29872	7,7615	4,31124	7,8195	4,31124	7,8195	4,31124	7,8195	
(0302) Азотная кислота (5)	•	1	1	<u>"</u>		1	1	<u>"</u>		
Организованные ис	точники									
Химико-аналитическая лаборатория (ОФ-1)	0011	0,0005	0,015768	0,0005	0,015768	0,0005	0,015768	0,0005	0,015768	2022
	0012	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	2022
	0013	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	2022
	0014	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	2022
	0015	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	0,00005	0,001577	2022

	0016	0,000008	0,000263	0,000008	0,000263	0,000008	0,000263	0,000008	0,000263	2022
	0017	0,000008	0,000263	0,000008	0,000263	0,000008	0,000263	0,000008	0,000263	2022
Итого:		0,000716	0,022602	0,000716	0,022602	0,000716	0,022602	0,000716	0,022602	
Всего по загрязняющему веществу:		0,000716	0,022602	0,000716	0,022602	0,000716	0,022602	0,000716	0,022602	
(0303) Аммиак (32)										
Организованные ис	точники									
Химико-аналитическая лаборатория (ОФ-1)	0011	0,000049	0,001552	0,000049	0,001552	0,000049	0,001552	0,000049	0,001552	2022
	0016	0,000049	0,001552	0,000049	0,001552	0,000049	0,001552	0,000049	0,001552	2022
	0017	0,000049	0,001552	0,000049	0,001552	0,000049	0,001552	0,000049	0,001552	2022
Итого:		0,000147	0,004656	0,000147	0,004656	0,000147	0,004656	0,000147	0,004656	
Всего по загрязняющему веществу:		0,000147	0,004656	0,000147	0,004656	0,000147	0,004656	0,000147	0,004656	
(0304) Азот (II) оксид (Азота	оксид) (6)	1	1	L.	Т.	<u> </u>	<u>'</u>	<u> </u>		
Организованные ис	точники									
Участок обслуживания горной техники (ОФ-1)	0032	1,8525	3,315	1,8525	3,315	1,8525	3,315	1,8525	3,315	2022
	0033	1,8525	3,315	1,8525	3,315	1,8525	3,315	1,8525	3,315	2022
	0034	1,8525	3,315	1,8525	3,315	1,8525	3,315	1,8525	3,315	2022
Итого:		5,5575	9,945	5,5575	9,945	5,5575	9,945	5,5575	9,945	
Неорганизованные	источнин	СИ					l			
Система антиобледенения (ОФ-1)	6019	0,001018	0,00396	0,001018	0,00396	0,001018	0,00396	0,001018	0,00396	2022
	6020	0,001018	0,00396	0,001018	0,00396	0,001018	0,00396	0,001018	0,00396	2022
Система антиобледенения (ОФ-2)	6219			0,001018	0,00396	0,001018	0,00396	0,001018	0,00396	2022
	6220			0,001018	0,00396	0,001018	0,00396	0,001018	0,00396	2022
Итого:		0,002036	0,00792	0,004072	0,01584	0,004072	0,01584	0,004072	0,01584	
Всего по загрязняющему веществу:		5,559536	9,95292	5,561572	9,96084	5,561572	9,96084	5,561572	9,96084	

(0316) Гидрохлорид (Солян	ая кислота, В	одород хлорид)	(163)							
Организованные и	· · · · · · · · · · · · · · · · · · ·									
Химико-аналитическая лаборатория (ОФ-1)	0011	0,000132	0,004163	0,000132	0,004163	0,000132	0,004163	0,000132	0,004163	2022
	0012	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	2022
	0013	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	2022
	0014	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	2022
	0015	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	0,0000132	0,000416	2022
	0016	0,000025	0,000788	0,000025	0,000788	0,000025	0,000788	0,000025	0,000788	2022
	0017	0,000025	0,000788	0,000025	0,000788	0,000025	0,000788	0,000025	0,000788	2022
Итого:		0,0002348	0,007403	0,0002348	0,007403	0,0002348	0,007403	0,0002348	0,007403	
Всего по загрязняющему веществу:		0,0002348	0,007403	0,0002348	0,007403	0,0002348	0,007403	0,0002348	0,007403	
(0322) Серная кислота (517))				l					
Организованные и	сточники									
Участок обслуживания горной техники (ОФ-1)	0022	0,00003	0,00034	0,00003	0,00041	0,00003	0,00041	0,00003	0,00041	2022
	0023	0,000001	0,000015	0,000001	0,000018	0,000001	0,000018	0,000001	0,000018	2022
	0024	0,000001	0,000008	0,000001	0,000009	0,000001	0,000009	0,000001	0,000009	2022
Химико-аналитическая лаборатория (ОФ-1)	0011	0,000027	0,000842	0,000027	0,000842	0,000027	0,000842	0,000027	0,000842	2022
	0012	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	2022
	0013	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	2022
	0014	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	2022
	0015	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	0,0000027	0,000084	2022
Итого:		0,0000698	0,001541	0,0000698	0,001615	0,0000698	0,001615	0,0000698	0,001615	
Неорганизованные	источни	ки								
Площадка кучного выщелачивания (ОФ-1)	6001	6	97,7184	6	98,3448	6	98,3448	6	98,3448	2022
Итого:		6	97,7184	6	98,3448	6	98,3448	6	98,3448	

Всего по загрязняющему веществу:		6,0000698	97,719941	6,0000698	98,346415	6,0000698	98,346415	6,0000698	98,346415	
(0328) Углерод (Сажа, Углер	од черный) (583)		•	<u>.</u>					
Организованные ис	точники									
Участок обслуживания горной техники (ОФ-1)	0032	0,2375	0,425	0,2375	0,425	0,2375	0,425	0,2375	0,425	2022
	0033	0,2375	0,425	0,2375	0,425	0,2375	0,425	0,2375	0,425	2022
	0034	0,2375	0,425	0,2375	0,425	0,2375	0,425	0,2375	0,425	2022
Итого:		0,7125	1,275	0,7125	1,275	0,7125	1,275	0,7125	1,275	
Неорганизованные	источни	ки			<u>.</u>	<u>.</u>				
Система антиобледенения (ОФ-1)	6019	0,000572	0,002223	0,000572	0,002223	0,000572	0,002223	0,000572	0,002223	2022
	6020	0,000572	0,002223	0,000572	0,002223	0,000572	0,002223	0,000572	0,002223	2022
Система антиобледенения (ОФ-2)	6219			0,000572	0,002223	0,000572	0,002223	0,000572	0,002223	2022
	6220			0,000572	0,002223	0,000572	0,002223	0,000572	0,002223	2022
Итого:		0,001144	0,004446	0,002288	0,008892	0,002288	0,008892	0,002288	0,008892	
Всего по загрязняющему веществу:		0,713644	1,279446	0,714788	1,283892	0,714788	1,283892	0,714788	1,283892	
(0330) Сера диоксид (Ангидр	оид сернисты	й, Сернистый га	ıз, Сера (IV) ок	сид) (516)	<u>'</u>	<u> </u>			1	
Организованные ис	точники									
Участок обслуживания горной техники (ОФ-1)	0020	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	2022
	0021	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	2022
	0032	0,475	0,85	0,475	0,85	0,475	0,85	0,475	0,85	2022
	0033	0,475	0,85	0,475	0,85	0,475	0,85	0,475	0,85	2022
	0034	0,475	0,85	0,475	0,85	0,475	0,85	0,475	0,85	2022
Итого:		1,4250006	2,5500006	1,4250006	2,5500006	1,4250006	2,5500006	1,4250006	2,5500006	
Неорганизованные	источни	ки			<u>.</u>				<u>.</u>	
	6012	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	0,0000003	2022

Система антиобледенения (ОФ-1)	6019	0,01344	0,0523	0,01344	0,0523	0,01344	0,0523	0,01344	0,0523	2022
	6020	0,01344	0,0523	0,01344	0,0523	0,01344	0,0523	0,01344	0,0523	2022
Система антиобледенения (ОФ-2)	6219			0,01344	0,0523	0,01344	0,0523	0,01344	0,0523	2022
	6220			0,01344	0,0523	0,01344	0,0523	0,01344	0,0523	2022
Итого:		0,0268803	0,1046003	0,0537603	0,2092003	0,0537603	0,2092003	0,0537603	0,2092003	
Всего по загрязняющему веществу:		1,4518809	2,6546009	1,4787609	2,7592009	1,4787609	2,7592009	1,4787609	2,7592009	
(0333) Сероводород (Дигидро	- осульфид) (5	18)							L	
Организованные ис	точники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,005	0,144							
Склад ГСМ (ОФ-1)	0035	0,00007	0,000003	0,00007	0,000003	0,00007	0,000003	0,00007	0,000003	2022
	0036	0,00007	0,000003	0,00007	0,000003	0,00007	0,000003	0,00007	0,000003	2022
	0037	0,00007	0,00026	0,00007	0,00026	0,00007	0,00026	0,00007	0,00026	2022
	0041	0,00007	0,00023	0,00007	0,00023	0,00007	0,00023	0,00007	0,00023	2022
	0042	0,00007	0,0002	0,00007	0,0002	0,00007	0,0002	0,00007	0,0002	2022
	0047	0,00007	0,00026	0,00007	0,00026	0,00007	0,00026	0,00007	0,00026	2022
	0049	0,00007	0,00026	0,00007	0,00026	0,00007	0,00026	0,00007	0,00026	2022
АЗС (ОФ-1)	0043	0,00003	0,00158	0,00003	0,00158	0,00003	0,00158	0,00003	0,00158	2022
	0046	0,00005	0,00019	0,00005	0,00019	0,00005	0,00019	0,00005	0,00019	2022
Корпус приготовления реактивов (ОФ-1)	0008	0,000012	0,00009	0,000012	0,00009	0,000012	0,00009	0,000012	0,00009	2022
	0065			0,0000049	0,0000019	0,0000049	0,0000019	0,0000049	0,0000019	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,005	0,138							
Корпус приготовления реактивов (ОФ-2)	0208	0,000012	0,00009	0,000012	0,00009	0,000012	0,00009	0,000012	0,00009	2022
	0265			0,0000049	0,0000019	0,0000049	0,0000019	0,0000049	0,0000019	2022
Итого:		0,010594	0,285166	0,0006038	0,0031698	0,0006038	0,0031698	0,0006038	0,0031698	
	1									

Всего по загрязняющему веществу:		0,010594	0,285166	0,0006038	0,0031698	0,0006038	0,0031698	0,0006038	0,0031698	
(0334) Сероуглерод (519)				<u>. </u>		<u>.</u>				
Организованные ис	точники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,003	0,0864							
Корпус приготовления реактивов (ОФ-1)	0006	0,0000335	0,00025	0,0000335	0,00025	0,0000335	0,00025	0,0000335	0,00025	2022
	0007	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	2022
	0008	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,003	0,0864							2022
Корпус приготовления реактивов (ОФ-2)	0206	0,0000335	0,00025	0,0000335	0,00025	0,0000335	0,00025	0,0000335	0,00025	2022
	0207	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	2022
	0208	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	0,0000335	0,001	2022
Итого:		0,006201	0,1773	0,000201	0,0045	0,000201	0,0045	0,000201	0,0045	
Всего по загрязняющему веществу:		0,006201	0,1773	0,000201	0,0045	0,000201	0,0045	0,000201	0,0045	
(0337) Углерод оксид (Окись	углерода, У	гарный газ) (58	4)	•						
Организованные ис	точники									
Участок обслуживания горной техники (ОФ-1)	0018	0,0016	0,0103	0,0016	0,0123	0,0016	0,0123	0,0016	0,0123	2022
	0019	0,0067	0,001	0,0067	0,0012	0,0067	0,0012	0,0067	0,0012	2022
	0020	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	2022
	0021	0,0067001	0,0010001	0,0067001	0,0012001	0,0067001	0,0012001	0,0067001	0,0012001	2022
	0032	1,1875	2,125	1,1875	2,125	1,1875	2,125	1,1875	2,125	2022
	0033	1,1875	2,125	1,1875	2,125	1,1875	2,125	1,1875	2,125	2022
	0034	1,1875	2,125	1,1875	2,125	1,1875	2,125	1,1875	2,125	2022
	0056	0,0067	0,001	0,0067	0,0012	0,0067	0,0012	0,0067	0,0012	2022

						_				
Участок обслуживания горной техники (ОФ-2)	0218	0,0016	0,0103	0,0016	0,0113	0,0016	0,0113	0,0016	0,0113	2022
	0219	0,0067	0,001	0,0067	0,0011	0,0067	0,0011	0,0067	0,0011	2022
	0256	0,0067	0,001	0,0067	0,0011	0,0067	0,0011	0,0067	0,0011	2022
Итого:		3,5992002	6,4006002	3,5992002	6,4044002	3,5992002	6,4044002	3,5992002	6,4044002	
Неорганизованные	источни	ки								
Участок обслуживания горной техники (ОФ-1)	6012	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	0,0000001	2022
Система антиобледенения (ОФ-1)	6019	0,0318	0,1236	0,0318	0,1236	0,0318	0,1236	0,0318	0,1236	2022
	6020	0,0318	0,1236	0,0318	0,1236	0,0318	0,1236	0,0318	0,1236	2022
Система антиобледенения (ОФ-2)	6219			0,0318	0,1236	0,0318	0,1236	0,0318	0,1236	2022
	6220			0,0318	0,1236	0,0318	0,1236	0,0318	0,1236	2022
Итого:		0,0636001	0,2472001	0,1272001	0,4944001	0,1272001	0,4944001	0,1272001	0,4944001	
Всего по загрязняющему веществу:		3,6628003	6,6478003	3,7264003	6,8988003	3,7264003	6,8988003	3,7264003	6,8988003	
(0342) Фтористые газообраз	ные соединен	ия /в пересчете	е на фтор/ (617)	l l		1				
Организованные ис	точники									
Участок обслуживания горной техники (ОФ-1)	0018	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	2022
	0019	0,0005	0,00027	0,0005	0,00028	0,0005	0,00028	0,0005	0,00028	2022
	0021	0,0005	0,0002	0,0005	0,00022	0,0005	0,00022	0,0005	0,00022	2022
	0029	0,0002	0,0004	0,0002	0,0005	0,0002	0,0005	0,0002	0,0005	2022
	0056	0,0005	0,00027	0,0005	0,00028	0,0005	0,00028	0,0005	0,00028	2022
Участок обслуживания горной техники (ОФ-2)	0218	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	2022
	0219	0,0005	0,0027	0,0005	0,00028	0,0005	0,00028	0,0005	0,00028	2022
	0229	0,0002	0,0004	0,0002	0,0004	0,0002	0,0004	0,0002	0,0004	2022
	0256	0,0005	0,0027	0,0005	0,00028	0,0005	0,00028	0,0005	0,00028	2022
Итого:		0,0033	0,00734	0,0033	0,00264	0,0033	0,00264	0,0033	0,00264	

Всего по загрязняющему веществу:		0,0033	0,00734	0,0033	0,00264	0,0033	0,00264	0,0033	0,00264	
(0344) Фториды неорганиче	ские плохо ра	астворимые - (алі	оминия фтори	д, кальция ф	торид,(615)	L	L			
Организованные ис	сточники	•		-						
Участок обслуживания горной техники (ОФ-1)	0019	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
	0021	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
	0056	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
Участок обслуживания горной техники (ОФ-2)	0219	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
	0256	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
Итого:		0,0025	0,0005	0,0025	0,0005	0,0025	0,0005	0,0025	0,0005	
Всего по загрязняющему веществу:		0,0025	0,0005	0,0025	0,0005	0,0025	0,0005	0,0025	0,0005	
(0415) Смесь углеводородов	предельных	C1-C5 (1502*)		I.	"	<u> </u>	<u></u>	L	<u> </u>	
Организованные ис	сточники									
Склад ГСМ (ОФ-1)	0038	4,65908	0,37895	4,65908	0,37895	4,65908	0,37895	4,65908	0,37895	2022
	0041	4,65908	0,37895	4,65908	0,37895	4,65908	0,37895	4,65908	0,37895	2022
	0042	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	2022
	0048	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	2022
	0050	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	2022
	0051	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	2022
	0052	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	4,65908	0,13196	2022
АЗС (ОФ-1)	0044	2,27371	0,07261	2,27371	0,07261	2,27371	0,07261	2,27371	0,07261	2022
	0046	0,02632	0,00142	0,02632	0,00142	0,02632	0,00142	0,02632	0,00142	2022
Итого:		34,91359	1,49173	34,91359	1,49173	34,91359	1,49173	34,91359	1,49173	
Всего по загрязняющему веществу:		34,91359	1,49173	34,91359	1,49173	34,91359	1,49173	34,91359	1,49173	
(0416) Смесь углеводородов	предельных	C6-C10 (1503*)								
Организованные ис	-	, ,								
Склад ГСМ (ОФ-1)	0038	1,72194	0,14006	1,72194	0,14006	1,72194	0,14006	1,72194	0,14006	2022

	0041	1,72194	0,14006	1,72194	0,14006	1,72194	0,14006	1,72194	0,14006	2022
	0042	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	2022
	0048	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	2022
	0050	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	2022
	0051	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	2022
	0052	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	1,72194	0,04877	2022
АЗС (ОФ-1)	0044	0,84034	0,02684	0,84034	0,02684	0,84034	0,02684	0,84034	0,02684	2022
	0046	0,00973	0,00053	0,00973	0,00053	0,00973	0,00053	0,00973	0,00053	2022
Итого:		12,90365	0,55134	12,90365	0,55134	12,90365	0,55134	12,90365	0,55134	
Всего по загрязняющему		12,90365	0,55134	12,90365	0,55134	12,90365	0,55134	12,90365	0,55134	
веществу:										
(0501) Пентилены (амилень	I - смесь изом	еров) (460)	<u>.</u>							
Организованные ис	сточники									
Склад ГСМ (ОФ-1)	0038	0,17213	0,014	0,17213	0,014	0,17213	0,014	0,17213	0,014	2022
	0041	0,17213	0,014	0,17213	0,014	0,17213	0,014	0,17213	0,014	2022
	0042	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	2022
	0048	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	2022
	0050	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	2022
	0051	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	2022
	0052	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	0,17213	0,00488	2022
АЗС (ОФ-1)	0044	0,084	0,00268	0,084	0,00268	0,084	0,00268	0,084	0,00268	2022
	0046	0,00097	0,00005	0,00097	0,00005	0,00097	0,00005	0,00097	0,00005	2022
Итого:		1,28988	0,05513	1,28988	0,05513	1,28988	0,05513	1,28988	0,05513	
Всего по загрязняющему веществу:		1,28988	0,05513	1,28988	0,05513	1,28988	0,05513	1,28988	0,05513	
(0602) Бензол (64)		1 L		<u> </u>						
Организованные ис	сточники									
Склад ГСМ (ОФ-1)	0038	0,15836	0,01288	0,15836	0,01288	0,15836	0,01288	0,15836	0,01288	2022
	0041	0,15836	0,01288	0,15836	0,01288	0,15836	0,01288	0,15836	0,01288	2022
	0042	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	2022
	0048	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	2022

	0050	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	2022
	0051	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	2022
	0052	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	0,15836	0,00449	2022
АЗС (ОФ-1)	0044	0,07728	0,00247	0,07728	0,00247	0,07728	0,00247	0,07728	0,00247	2022
	0046	0,00089	0,00005	0,00089	0,00005	0,00089	0,00005	0,00089	0,00005	2022
Итого:		1,18669	0,05073	1,18669	0,05073	1,18669	0,05073	1,18669	0,05073	
Всего по загрязняющему веществу:		1,18669	0,05073	1,18669	0,05073	1,18669	0,05073	1,18669	0,05073	
(0616) Диметилбензол (смес	ь 0-, м-, п- изо	меров) (203)	'	•	'	1	1	1	<u></u>	
Организованные ис		• / / /								
Склад ГСМ (ОФ-1)	0038	0,01997	0,00162	0,01997	0,00162	0,01997	0,00162	0,01997	0,00162	2022
	0041	0,01997	0,00162	0,01997	0,00162	0,01997	0,00162	0,01997	0,00162	2022
	0042	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	2022
	0048	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	2022
	0050	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	2022
	0051	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	2022
	0052	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	0,01997	0,00057	2022
АЗС (ОФ-1)	0044	0,00974	0,00031	0,00974	0,00031	0,00974	0,00031	0,00974	0,00031	2022
	0046	0,00011	0,00001	0,00011	0,00001	0,00011	0,00001	0,00011	0,00001	2022
Итого:		0,14964	0,00641	0,14964	0,00641	0,14964	0,00641	0,14964	0,00641	
Всего по загрязняющему веществу:		0,14964	0,00641	0,14964	0,00641	0,14964	0,00641	0,14964	0,00641	
(0621) Метилбензол (349)						l .	L			
Организованные ис	точники									
Склад ГСМ (ОФ-1)	0038	0,1494	0,01215	0,1494	0,01215	0,1494	0,01215	0,1494	0,01215	2022
	0041	0,1494	0,01215	0,1494	0,01215	0,1494	0,01215	0,1494	0,01215	2022
	0042	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	2022
	0048	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	2022
	0050	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	2022
	0051	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	2022
	0052	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	0,1494	0,00423	2022

АЗС (ОФ-1)	0044	0,07291	0,00233	0,07291	0,00233	0,07291	0,00233	0,07291	0,00233	2022
	0046	0,00084	0,00005	0,00084	0,00005	0,00084	0,00005	0,00084	0,00005	2022
Итого:		1,11955	0,04783	1,11955	0,04783	1,11955	0,04783	1,11955	0,04783	
Всего по загрязняющему		1,11955	0,04783	1,11955	0,04783	1,11955	0,04783	1,11955	0,04783	
веществу:										
(0627) Этилбензол (675)										
Организованные ис	точники									
Склад ГСМ (ОФ-1)	0038	0,00413	0,00034	0,00413	0,00034	0,00413	0,00034	0,00413	0,00034	2022
	0041	0,00413	0,00034	0,00413	0,00034	0,00413	0,00034	0,00413	0,00034	2022
	0042	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	2022
	0048	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	2022
	0050	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	2022
	0051	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	2022
	0052	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	0,00413	0,00012	2022
АЗС (ОФ-1)	0044	0,02	0,00006	0,02	0,00006	0,02	0,00006	0,02	0,00006	2022
	0046	0,00002	0,000001	0,00002	0,000001	0,00002	0,000001	0,00002	0,000001	2022
Итого:		0,04893	0,001341	0,04893	0,001341	0,04893	0,001341	0,04893	0,001341	
Всего по загрязняющему веществу:		0,04893	0,001341	0,04893	0,001341	0,04893	0,001341	0,04893	0,001341	
(1048) 2-Метилпропан-1-ол (Изобутиловь	лй спирт) (383)	•	<u>, </u>		•		<u></u>		
Организованные ис	точники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,002	0,0576							
Корпус приготовления реактивов (ОФ-1)	0006	0,001	0,0073	0,001	0,0073	0,001	0,0073	0,001	0,0073	2022
	0007	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	2022
	0008	0,001	0,0288	0,001	0,0288	0,001	0,0288	0,001	0,0288	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,002	0,0576							2022
Корпус приготовления реактивов (ОФ-2)	0206	0,001	0,0073	0,001	0,0073	0,001	0,0073	0,001	0,0073	2022

	0207	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	2022
	0208	0,001	0,0286	0,001	0,0288	0,001	0,0288	0,001	0,0288	2022
Итого:		0,0106	0,2616	0,0066	0,1466	0,0066	0,1466	0,0066	0,1466	
Всего по загрязняющему		0,0106	0,2616	0,0066	0,1466	0,0066	0,1466	0,0066	0,1466	
веществу:										
(1049) 4-Метил-2-пентанол (1	Метилизобуті	илкарбинол) (378))	·	·	·				
Организованные ис	точники									
Корпус приготовления реактивов (ОФ-1)	0064			0,0035	0,0257	0,0035	0,0257	0,0035	0,0257	2022
Корпус приготовления реактивов (ОФ-2)	0264			0,0035	0,0257	0,0035	0,0257	0,0035	0,0257	2022
Итого:				0,007	0,0514	0,007	0,0514	0,007	0,0514	
Всего по загрязняющему веществу:				0,007	0,0514	0,007	0,0514	0,007	0,0514	
(1051) Пропан-2-ол (Изопроп	иловый спир	т) (469)	<u> </u>	•				<u>. </u>		
Организованные ис	точники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,002	0,0576							
Корпус приготовления реактивов (ОФ-1)	0006	0,001	0,0073	0,001	0,0073	0,001	0,0073	0,001	0,0073	2022
	0007	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,002	0,0576							2022
Корпус приготовления реактивов (ОФ-2)	0206	0,001	0,0073	0,001	0,0073	0,001	0,0073	0,001	0,0073	2022
	0207	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	0,0013	0,0372	2022
Итого:		0,0086	0,2042	0,0046	0,089	0,0046	0,089	0,0046	0,089	
Всего по загрязняющему веществу:		0,0086	0,2042	0,0046	0,089	0,0046	0,089	0,0046	0,089	
(2704) Бензин (нефтяной, ма.	лосернистый)	/в пересчете на у	тлерод/ (60)	<u></u>		l l		·		
Организованные ис	точники		• • • •							

Участок обслуживания горной техники (ОФ-1)	0020	0,007	0,009	0,007	0,0108	0,007	0,0108	0,007	0,0108	2022
	0021	0,007	0,009	0,007	0,0108	0,007	0,0108	0,007	0,0108	2022
Итого:		0,014	0,018	0,014	0,0216	0,014	0,0216	0,014	0,0216	
Неорганизованные	источни	ки								
	6012	0,007	0,009	0,007	0,0108	0,007	0,0108	0,007	0,0108	2022
Итого:		0,007	0,009	0,007	0,0108	0,007	0,0108	0,007	0,0108	
Всего по загрязняющему веществу:		0,021	0,027	0,021	0,0324	0,021	0,0324	0,021	0,0324	
(2732) Керосин (654*)		<u> </u>		1	"	1			'	
Организованные ис-	гочники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,1667	4,8							
Участок обслуживания горной техники (ОФ-1)	0018	0,2165	0,0935	0,2165	0,1122	0,2165	0,1122	0,2165	0,1122	2022
	0020	0,2165	0,0935	0,2165	0,1122	0,2165	0,1122	0,2165	0,1122	2022
Склад ГСМ (ОФ-1)	0039	0,0867	0,0186	0,0867	0,0186	0,0867	0,0186	0,0867	0,0186	2022
	0041	0,0867	0,0186	0,0867	0,0186	0,0867	0,0186	0,0867	0,0186	2022
	0042	0,0867	0,0186	0,0867	0,0186	0,0867	0,0186	0,0867	0,0186	2022
АЗС (ОФ-1)	0046	0,0194	0,0006	0,0194	0,0006	0,0194	0,0006	0,0194	0,0006	2022
Химико-аналитическая лаборатория (ОФ-1)	0011	0,000104	0,003273	0,000104	0,003273	0,000104	0,003273	0,000104	0,003273	2022
	0014	0,0000104	0,000327	0,0000104	0,000327	0,0000104	0,000327	0,0000104	0,000327	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,1667	1,224							2022
Участок обслуживания горной техники (ОФ-2)	0218	0,2165	0,0935	0,2165	0,1029	0,2165	0,1029	0,2165	0,1029	2022
Корпус приготовления реактивов (ОФ-2)	0210	0,015	0,0281							
Итого:		1,2775144	6,3926	0,9291144	0,3873	0,9291144	0,3873	0,9291144	0,3873	

Всего по загрязняющему веществу:		1,2775144	6,3926	0,9291144	0,3873	0,9291144	0,3873	0,9291144	0,3873	
(2735) Масло минеральное не	фтяное (вер	етенное, машинно	ое, цилиндров	ое и др.) (716	*)	•		•	•	
Организованные ист	гочники									
Участок обслуживания горной техники (ОФ-1)	0019	0,0084	0,0151	0,0084	0,0181	0,0084	0,0181	0,0084	0,0181	2022
	0021	0,0084	0,0151	0,0084	0,0181	0,0084	0,0181	0,0084	0,0181	2022
	0023	0,0084	0,0073	0,0084	0,0087	0,0084	0,0087	0,0084	0,0087	2022
	0054	0,0084	0,0151	0,0084	0,0181	0,0084	0,0181	0,0084	0,0181	2022
Испытание и ремонт топливной аппаратуры (ОФ-1)	0025	0,2066	0,2173	0,11664	0,25205	0,11664	0,25205	0,11664	0,25205	2022
	0053	0,11664	0,21004	0,11664	0,25205	0,11664	0,25205	0,11664	0,25205	2022
Склад ГСМ (ОФ-1)	0040	0,0022	0,0002	0,0022	0,0002	0,0022	0,0002	0,0022	0,0002	2022
	0041	0,0022	0,00015	0,0022	0,00015	0,0022	0,00015	0,0022	0,00015	2022
	0042	0,0022	0,00015	0,0022	0,00015	0,0022	0,00015	0,0022	0,00015	2022
АЗС (ОФ-1)	0045	0,0098	0,0226	0,0098	0,0226	0,0098	0,0226	0,0098	0,0226	2022
	0046	0,0083	0,0023	0,0083	0,0023	0,0083	0,0023	0,0083	0,0023	2022
Участок обслуживания горной техники (ОФ-2)	0219	0,0084	0,0151	0,0084	0,0166	0,0084	0,0166	0,0084	0,0166	2022
	0221	0,0084	0,0151	0,0084	0,0166	0,0084	0,0166	0,0084	0,0166	2022
Итого:		0,39834	0,53554	0,30838	0,6257	0,30838	0,6257	0,30838	0,6257	
Всего по загрязняющему веществу:		0,39834	0,53554	0,30838	0,6257	0,30838	0,6257	0,30838	0,6257	
(2736) Масло сосновое флота	ционное (МС	СФ) (717*)	<u>.</u>	<u> </u>		<u> </u>				
Организованные ист	гочники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,004	0,1152							
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,004	0,1152							
Итого:		0,008	0,2304							

Всего по загрязняющему веществу:		0,008	0,2304							
(2744) Синтетические моющ	ие средства: '	"Бриз", "Вихрь".	, "Лотос", "Л	отос-автомат	",(1132*)	·				
Организованные ис	точники									
Прачечная (ОФ-1)	0066			0,000188	0,003953	0,000188	0,003953	0,000188	0,003953	2022
Итого:				0,000188	0,003953	0,000188	0,003953	0,000188	0,003953	
Всего по загрязняющему веществу:				0,000188	0,003953	0,000188	0,003953	0,000188	0,003953	
(2754) Алканы С12-19 /в пер	есчете на С/ (Углеводороды п	редельные С1	2-С19 (в пере	счете(10)					
Организованные ис	точники				-					
Испытание и ремонт топливной аппаратуры (ОФ-1)	0025	0,2188	0,7496	0,4164	0,89952	0,4164	0,89952	0,4164	0,89952	2022
	0053	0,4164	0,74961	0,4164	0,89952	0,4164	0,89952	0,4164	0,89952	2022
Склад ГСМ (ОФ-1)	0035	0,02353	0,0009	0,02353	0,0009	0,02353	0,0009	0,02353	0,0009	2022
	0036	0,02353	0,0009	0,02353	0,0009	0,02353	0,0009	0,02353	0,0009	2022
	0037	0,02353	0,09284	0,02353	0,09284	0,02353	0,09284	0,02353	0,09284	2022
	0041	0,02353	0,08077	0,02353	0,08077	0,02353	0,08077	0,02353	0,08077	2022
	0042	0,02353	0,0727	0,02353	0,0727	0,02353	0,0727	0,02353	0,0727	2022
	0047	0,02353	0,09284	0,02353	0,09284	0,02353	0,09284	0,02353	0,09284	2022
	0049	0,02353	0,09284	0,02353	0,09284	0,02353	0,09284	0,02353	0,09284	2022
АЗС (ОФ-1)	0043	0,01097	0,56442	0,01097	0,56442	0,01097	0,56442	0,01097	0,56442	2022
	0046	0,01935	0,06841	0,01935	0,06841	0,01935	0,06841	0,01935	0,06841	2022
Корпус приготовления реактивов (ОФ-1)	0065			0,0017395	0,0006676	0,0017395	0,0006676	0,0017395	0,0006676	2022
Корпус приготовления реактивов (ОФ-2)	0265			0,0017395	0,0006676	0,0017395	0,0006676	0,0017395	0,0006676	2022
Итого:		0,83023	2,56583	1,031309	2,8669952	1,031309	2,8669952	1,031309	2,8669952	
Всего по загрязняющему веществу:		0,83023	2,56583	1,031309	2,8669952	1,031309	2,8669952	1,031309	2,8669952	
(2902) Взвешенные частицы	(116)	L			L				l	

Организованные ис-		0.00-5-1		000-01	1	0 00 77	2 2 4 4 -	0.007-	00115	2022
Участок обслуживания горной техники (ОФ-1)	0018	0,0052	0,0094	0,0052	0,0112	0,0052	0,0112	0,0052	0,0112	2022
	0019	0,0052	0,0085	0,0052	0,0101	0,0052	0,0101	0,0052	0,0101	2022
	0020	0,0052	0,0047	0,0052	0,0056	0,0052	0,0056	0,0052	0,0056	2022
	0030	0,0052	0,0094	0,0052	0,0112	0,0052	0,0112	0,0052	0,0112	2022
	0031	0,0042	0,0038	0,0042	0,0045	0,0042	0,0045	0,0042	0,0045	2022
Участок обслуживания горной техники (ОФ-2)	0218	0,0052	0,0094	0,0052	0,0103	0,0052	0,0103	0,0052	0,0103	2022
	0219	0,0052	0,0085	0,0052	0,0093	0,0052	0,0093	0,0052	0,0093	2022
Итого:		0,0354	0,0537	0,0354	0,0622	0,0354	0,0622	0,0354	0,0622	
Всего по загрязняющему веществу:		0,0354	0,0537	0,0354	0,0622	0,0354	0,0622	0,0354	0,0622	
(2908) Пыль неорганическая	, содержащая	двуокись крем	ния в %: 70-20) (шамот, цем	іент,(494)					
Организованные ис-	гочники									
Дробильный комплекс, узлы пересыпки (ОФ-1)	0001	0,0228	0,632016	0,0243	0,673596	0,0243	0,673596	0,0243	0,673596	2022
	0002	0,0804	2,316967	0,071	2,046078	0,071	2,046078	0,071	2,046078	2022
	0003	0,0685	1,9728	0,0385484	1,06219	0,0385484	1,06219	0,0385484	1,06219	2022
	0058	0,12176	3,375	0,1461	4,05	0,1461	4,05	0,1461	4,05	2022
	0059	0,349	9,68	0,4288291	11,8350353	0,4288291	11,8350353	0,4288291	11,835035 3	2022
	0063			0,0113565	0,1073206	0,0113565	0,1073206	0,0113565	0,1073206	2022
Участок обслуживания горной техники (ОФ-1)	0019	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
	0021	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
	0056	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
Химико-аналитическая лаборатория (ОФ-1)	0013	0,00021	0,0000108	0,00018	0,000013	0,00018	0,000013	0,00018	0,000013	2022
Участок фильтрации и упаковки концентрата (ОФ-1)	0060	0,0593	3,92702	0,05893	3,9120785	0,05893	3,9120785	0,05893	3,9120785	2022

	0061	0,009142	0,10625	0,005308	0,1259348	0,005308	0,1259348	0,005308	0,1259348	2022
	0062	0,0003	0,00456	0,000144	0,0021851	0,000144	0,0021851	0,000144	0,0021851	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	0201	0,0432	0,9299	0,0243	0,673596	0,0243	0,673596	0,0243	0,673596	2022
	0202	0,0000897	0,0019185	0,071	2,046078	0,071	2,046078	0,071	2,046078	2022
	0203	0,000298496	0,03910204	0,0360746	0,99415	0,0360746	0,99415	0,0360746	0,99415	2022
	0258	0,0002744	0,00675	0,13392	3,712	0,13392	3,712	0,13392	3,712	2022
	0259	0,0001372	0,003375	0,3938291	10,8650353	0,3938291	10,8650353	0,3938291	10,865035	2022
	0263			0,0113565	0,1073206	0,0113565	0,1073206	0,0113565	0,1073206	
Участок обслуживания горной техники (ОФ-2)	0219	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
	0256	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	0,0005	0,0001	2022
Участок фильтрации и упаковки концентрата (ОФ-2)	0260			0,05893	3,9120785	0,05893	3,9120785	0,05893	3,9120785	2022
	0261			0,005308	0,1259348	0,005308	0,1259348	0,005308	0,1259348	2022
	0262			0,000144	0,0021851	0,000144	0,0021851	0,000144	0,0021851	2022
Итого:		0,757911796	22,99616934	1,5220582	46,2533096	1,5220582	46,2533096	1,5220582	46,253309 6	
Неорганизованные 1	источни	ки				<u>.</u>				
Дробильный комплекс, узлы пересыпки (ОФ-1)	6002	0,4894	13,5654	0,7540921	20,9038062	0,7540921	20,9038062	0,7540921	20,903806	2022
	6003	0,3584	9,9352	0,2843755	7,8828881	0,2843755	7,8828881	0,2843755	7,8828881	2022
	6021			0,0121212	0,2598453	0,0121212	0,2598453	0,0121212	0,2598453	2022
	6022			0,275808	2,4306407	0,275808	2,4306407	0,275808	2,4306407	2022
	6203	0,0003584	0,0088165							2022
Склад крупнодробленой руды (ОФ-1)	6004	0,17095	4,2193	0,2025407	5,0866015	0,2025407	5,0866015	0,2025407	5,0866015	2022
Площадка кучного выщелачивания (ОФ-1)	6001	0,1881	2,2999	0,2187	2,905	0,2187	2,5668	0,2187	2,905	2022

			ı			Ī	,	1		
Участок фильтрации и упаковки концентрата (ОФ-1)	6018	0,0196	0,17876	0,0196	0,24696	0,0196	0,24696	0,0196	0,24696	2022
Автотранспорт (ОФ-1)	6014	0,09425	0,75325	0,12567	1,00435	0,12567	1,00435	0,12567	1,00435	2022
Дробильный комплекс, узлы пересыпки (ОФ-2)	6202	0,54077	11,6253231	0,7121183	19,7414562	0,7121183	19,7414562	0,7121183	19,741456 2	2022
	6203			0,2843755	7,8828881	0,2843755	7,8828881	0,2843755	7,8828881	2022
	6206	0,1484	2,3794							
	6207	0,0565	0,6338							
	6215	0,0476	0,4746							
	6216	0,1484	2,3377							
	6221			0,0121212	0,2598453	0,0121212	0,2598453	0,0121212	0,2598453	2022
	6222			0,0794976	0,7005964	0,0794976	0,7005964	0,0794976	0,7005964	2022
Склад крупнодробленой руды (ОФ-2)	6204	0,2072	4,5656	0,1870119	4,6578691	0,1870119	4,6578691	0,1870119	4,6578691	2022
Участок фильтрации и упаковки концентрата (ОФ-2)	6218			0,0196	0,22932	0,0196	0,22932	0,0196	0,22932	2022
Автотранспорт (ОФ-2)	6214	0,1885	1,5065	0,09425	0,75325	0,09425	0,75325	0,09425	0,75325	2022
Итого:		2,6584284	54,4835496	3,281882	74,9453169	3,281882	74,6071169	3,281882	74,945316 9	
Всего по загрязняющему веществу:		3,416340196	77,47971894	4,8039402	121,1986265	4,8039402	120,8604265	4,8039402	121,19862 65	
(2930) Пыль абразивная (Кор	унд белый,	Монокорунд) (1	1027*)			1			'	
Организованные ист										
Участок обслуживания горной техники (ОФ-1)	0018	0,0032	0,0058	0,0032	0,0069	0,0032	0,0069	0,0032	0,0069	2022
	0019	0,0032	0,0052	0,0032	0,0063	0,0032	0,0063	0,0032	0,0063	2022
	0020	0,0034	0,0031	0,0034	0,0037	0,0034	0,0037	0,0034	0,0037	2022
	0030	0,0032	0,0058	0,0032	0,0069	0,0032	0,0069	0,0032	0,0069	2022
	0031	0,0026	0,0023	0,0026	0,0028	0,0026	0,0028	0,0026	0,0028	2022
Участок обслуживания горной техники (ОФ-2)	0218	0,0032	0,0058	0,0032	0,0063	0,0032	0,0063	0,0032	0,0063	2022

	0219	0,0032	0,0052	0,0032	0,0058	0.0032	0,0058	0,0032	0,0058	2022
Итого:		0,022	0,0332	0,022	0,0387	0,022	0,0387	0,022	0,0387	<u> </u>
Всего по загрязняющему веществу:		0,022	0,0332	0,022	0,0387	0,022	0,0387	0,022	0,0387	
(2936) Пыль древесная (1039	*)	<u> </u>			1					
Организованные ис	точники									
Столярный цех (ОФ-1)	0057	1,989	3,934	1,989	3,934	1,989	3,934	1,989	3,934	2022
Итого:		1,989	3,934	1,989	3,934	1,989	3,934	1,989	3,934	
Всего по загрязняющему веществу:		1,989	3,934	1,989	3,934	1,989	3,934	1,989	3,934	
(2978) Пыль тонко измельче	нного резинс	вого вулканиз	ата из отходов п	одошвенных	x(1090*)	<u>'</u>				
Организованные ис-	точники									
Участок обслуживания горной техники (ОФ-1)	0020	0,0226	0,0244	0,0226	0,0293	0,0226	0,0293	0,0226	0,0293	2022
	0021	0,0226	0,0244	0,0226	0,0293	0,0226	0,0293	0,0226	0,0293	2022
Итого:		0,0452	0,0488	0,0452	0,0586	0,0452	0,0586	0,0452	0,0586	
Неорганизованные	источни	ки								
	6012	0,0226	0,0244	0,0226	0,0293	0,0226	0,0293	0,0226	0,0293	2022
Итого:		0,0226	0,0244	0,0226	0,0293	0,0226	0,0293	0,0226	0,0293	
Всего по загрязняющему веществу:		0,0678	0,0732	0,0678	0,0879	0,0678	0,0879	0,0678	0,0879	
(2985) Полиакриламид анион	ный АК-618	3 (AK-618) (964*	^k)		1					
Организованные ис		, , ,	•							
Дробильный комплекс, узлы пересыпки (ОФ-1)	0003	0,0007	0,0201							
Дробильный комплекс, узлы пересыпки (ОФ-2)	0203	0,0007	0,0201							
Итого:		0,0014	0,0402							
Всего по ЗВ:		0,0014	0,0402							
Всего по объекту:	•	81,782857	224,2116706	83,402585	266,9795407	83,402585	266,6413407	83,402585	266,9795407	

5. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ВОДНЫЕ РЕСУРСЫ

В данном разделе рассматриваются вопросы водопотребления и водоотведения при проведении работ по строительству и эксплуатации реконструируемого хвостохранилища. В основу водохозяйственной деятельности входят источники водоснабжения, системы водопотребления и водоотведения.

Охрана поверхностных и подземных вод при строительстве и эксплуатации данного объекта, будет складываться из рационального водопотребления, правильного обращения со сточными водами и соблюдения всех мероприятий, предусмотренных в части охраны окружающей среды.

Все технологические решения по водоснабжению, водоотведению и пожаротушению согласно техническому заданию, приняты и разработаны в соответствии со строительными нормами и правилами, действующими в Республике Казахстан и международными стандартами.

Сбросы на рельеф местности или в открытые водоемы у предприятия отсутствуют.

5.1 Характеристика поверхностных вод

Гидрографическая сеть района месторождения Актогай представлена реками Аягоз, Баканас и Тансык, озерами Балхаш, Колдар, Кошкар.

Ближайшая река Аягоз протекает в 30 км к западу от месторождения. На этом участке она не имеет постоянного стока, распадается в летний период на отдельные плесы. Более мелкие речки — Ай, Баканас и Тансык также непостоянны и маловодны.

В 8 км к северо-востоку от месторождения находится соленое озеро Колдар, питание которого происходит за счет паводковых вод реки Тансык. Другие поверхностные водотоки отсутствуют. Остальные озера расположены на значительных расстояниях от месторождения.

Месторождение Актогай расположено в центральной водораздельной части Колдарского гранитоидного массива с абсолютными отметками поверхности 420-455 м. В геоморфологическом отношении участок месторождения представляет собой водораздельную денудационную равнину на мелкосопочнике. На севере и юге мелкосопочник переходит в аккумулятивные равнины, выполненные, соответственно, верхнечетвертичными аллювиально-пролювиальными среднечетвертичными отложениями Акогайской впадины и озерными отложениями сора Кылы. Уклоны дневной поверхности составляют: на север 0,133 на юг – 0,024. Относительное превышение водоразделов над местным базисом эрозии достигает 60-70 м.

Участок проектируемых работ расположен за пределами границ водоохранных зон и полос поверхностных водных объектов. Ближайшая река - р. Аягоз, протекающая примерно в 30 км западнее от участка месторождения. На этом отрезке и ниже по течению она не имеет постоянного стока, распадается на отдельные плесы.

Ближайший водный объект – ручей без названия, расстояние рассматриваемого участка реконструкции до водоохранной зоны данного ручья составляет 4382 м (от $O\Phi Neq 1$) и 4849 м (от $O\Phi Neq 2$).

Минимальная ширина водоохранной зоны ручья без названия определена от основного русла - 500 метров. На отдельных участках водоохранная зона определена от пояса меандрирования. В связи со спрямлениями границы водоохранной зоны в зависимости от извилистости русла ручья ширина водоохранной зоны в отдельных местах изменяется до 800-1359 метров. Ширина водоохранной полосы ручья без названия принята равной 35 метров.

Для ручья был разработан проект установления водоохранной зоны (заключение ГЭЭ №KZ24VCY00054554 от 08.12.2015 г.).

Ситуационная схема с привязкой к местности с указанием водного объекта представлена в Приложении 3.

5.2 Характеристика подземных вод

Месторождение Актогай расположено в центральной водораздельной части Колдарского гранитоидного массива с абсолютными отметками поверхности 420-455 м. В геоморфологическом отношении участок месторождения представляет собой водораздельную денудационную равнину на мелкосопочнике. На севере и юге мелкосопочник переходит в аккумулятивные равнины, выполненные, соответственно, среднечетвертичными - верхнечетвертичными аллювиально-пролювиальными отложениями Акогайской впадины и озерными отложениями сора Кылы.

В гидрогеологическом отношении область хвостохранилища представляет собой бассейн подземных вод, зоны открытой трещиноватости вулканогенных и интрузивных пород, находящийся в области очагового питания и транзита подземных вод.

В обводнении месторождения участвуют три водоносных горизонта, описание которых приводится ниже.

Подземные воды зоны открытой трещиноватости нерасчлененных верхнекаменноугольных-нижнепермских отложений развиты в юго-восточной части месторождения за Южно-Колдарским разломом.

Водовмещающими породами являются алевролиты, песчаники, туфопесчаники, туфы липаритового и трахилипаритового состава. Расходометрией наиболее обводненная часть разреза установлена в интервале 18-66. Глубина залегания уровня подземных вод составляет 17,8 м. По скважине 683 зональными откачками опробованы 2 интервала: 0-100 и 0-200 м.

При опробовании первого интервала дебит скважины составил 0,4 л/сек при понижении уровня воды на 22,4 м и интервала 0-200 м - соответственно 0,03 л/сек и 15,6 м. По химическому составу воды сульфатные натриевые с минерализацией 5 г/л.

Подземные воды, зоны открытой трещиноватости каменноугольных отложений (С), характеризуются данными опробования 20 скважин, пройденных в контуре.

Подземные воды в зависимости от отметок дневной поверхности на глубинах 5,3-13,7 м. Глубина развития зоны обводненной трещиноватости по данным расходометрических исследований скважин колеблется от 40 (скв.51) до 158 (скв.60).

Дебиты скважин, в силу неравномерной трещиноватости пород, изменяются от 0,01 (скв.285) до 2,0 л/сек (скв.912) при понижениях уровня воды соответственно на 35,0-18,9 м. Удельные дебиты скважин колеблются от тысячных до 0,12 л/сек. Наиболее обводненными являются зоны сочленения Малого Колдарского разлома с Диагональными и Актогайскими разломами.

Подземные воды открытой трещиноватости разновозрастных интрузивных пород кислого и среднего состава (vб- γ) занимают большую часть площади месторождения Актогай. Водовмещающие породы представлены гранодиоритами, гранодиоритпорфирами, диоритами и габбро-диоритами, слагающими наиболее возвышенные, водораздельные участки. Процессы физического выветривания в совокупности с тектоническими подвижками способствовали образованию различных трещин, глубина распространения которых составляют 60-90 м, а в зонах разломов — до 270 метров. Мощность обводненной зоны составляет, в среднем, 50-80 метров, а максимальная — 270 метров.

Минерализация и химический состав подземных вод месторождения формируются под воздействием сложных процессов: физико-химических, биологических, испарительной концентрации и в результате вторичной аккумуляции солей в породах и водах, сезонного выщелачивания сульфидов в условиях скудного питания.

Химический состав подземных вод месторождения формируется в условиях относительно замедленного продвижения потока, незначительного инфильтрационного питания, и более длительного соприкосновения и взаимодействия системы порода — вода. Вследствие значительного залегания уровня подземных вод (5-10м) процессы испарительной концентрации получили слабое развитие.

Подземные воды месторождения местные и очень жесткие. В целом подземные воды обладают нейтральной реакцией (РН=6,8-7,4) за счет повышенного содержания гидроокислов железа в зоне окисления. Как показывает опыт эксплуатации Коунрадского карьера, в условиях интенсивного окисления сульфидных руд при отработке карьера с глубиной следует ожидать увеличения сульфатной и общекислотной агрессивности.

Минерализация подземных вод различная в зависимости от состава водоносных пород и степени питания атмосферными водами. Установлено преобладание подземных водах сульфатного или хлоридного ионов, на некоторых участках они являются двух или трехкомпонентными.

Жузагашское месторождение подземных пресных вод находится в 27 км к западу от Актогайского месторождения в центральной части Актогайской эрозионно-тектонической впадины (долины р. Аягоз). Подземные воды месторождения повсеместно пресные гидрокарбонатно-сульфатные натриевые с минерализацией 0,7 0,9 г/л. Величина общей жесткости не превышает 5,6 мг-экв/л. Пригодность подземных вод Жузагашского месторождения для хозяйственно — питьевого водоснабжения и ее соответствие требованиям ГОСТ 2874-82 (вода питьевая) подтверждена органами санитарно-эпидемиологического контроля. Балансовые эксплуатационные запасы Жузагашского месторождения утверждены ГКЗ ССР по категории А в количестве 96,768 тыс.м3/сутки.

В геологическом строении месторождения принимают участие современные аллювиальные, нерасчлененные среднечетвертичные и верхнечетвертичные аллювиальное – пролювиальные отложения, залегающие на пестроцветных неогеновых глинах вскрытой мощностью до 125 м. Водовмещающие средне – и верхнечетвертичное отложения слагают широкую надпойменную террасу (междуречье Аягоз – Баканас и Аягоз – Тансык) и представлены хорошо отсортированными песчано-гравийными отложением мощностью до 53.1.

Современные аллювиальные отложения поймы реки Аягоз представлены гравийной – песчаными отложениями мощностью до 5 м, к ним приурочены грунтовые воды. Воды безнапорные. Глубина залегания уровня грунтовых вод не превышает 3,0 м. Оцениваемый водоносный горизонт обладает высокой водообильностью. Расход грунтового потока в среднем сечении впадины составляет 2,0 м3/сек.

Питание оцениваемого водоносного горизонта осуществляется за счет фильтрации паводковых вод р. Аягоз в течение 3.5-4.0 месяцев в году из русла, канав, промоин и с поверхности пойменной террасы, в меньшей степени за счет инфильтрации атмосферных осадков.

Современный аллювиальный водоносный горизонт прослеживается шириной до 10 км вдоль русла р. Аягоз (в пределах поймы). Водовмещающими породами являются гравийно-песчаные отложений с включением мелкой гальки, суглинками с гравием и песком до 20%, мощностью от первых до 3-5 м.

В питание грунтовых вод аллювиальных отложений участвуют поверхностные воды, в меньшей степени – атмосферные осадки.

Подземные воды безнапорные. Глубина залегания уровня подземных вод, в зависимости от отметки дневной поверхности, изменяется от 1,0 в восточной части месторождения (пойма р. Аягоз), до 2,9 м — в юга-западной. Общее направление грунтового потока совпадает с направлением поверхностного стока р. Аягоз.

Водовмещающие отложения обладают высокой водообильностью: дебиты скважин колеблются от 3,0 до 41,3 л/сек при понижениях уровня воды соответственно на 10,0-4,7 м. Средняя величина коэффициента фильтрации составляет 48,3 м/сутки, водопроводимости — 2950 м2, водоотдачи — 0,16.

Разгрузка грунтовых вод происходит в 6 км к юго-востоку от месторождения в виде сети малодебитных родников, которые сливаясь образуют ручей с расходом до 158 л/сек. Питание оцениваемого водоносного горизонта осуществляется за счет фильтрации паводковых вод р. Аягуз из русла, канав, промоин и с поверхности поймы, в меньшей степени - за счет инфильтрации атмосферных осадков.

Подземные воды месторождения с минерализацией 1,1-1,3 г/л гидрокарбонатносульфатные натриевые. Величина общей жесткости не превышает 6,3 мг-экв/л.

5.3 Водопотребление и водоотведение на период проведения строительных работ

5.3.1 Водопотребление на период СМР

Питьевое водоснабжение строительных площадок в период проведения строительных работ будет обеспечиваться привозной бутилированной водой.

При количестве работающих, занятых на строительстве, 180 человек потребление воды будет составлять, при норме на одного рабочего $0,025 \,\mathrm{m}^3/\mathrm{cyt}$.

$$\Pi_{\text{сут}} = 0.025 \text{ м}^3/\text{сут} * 180 \text{ чел} = 4,5 \text{ м}^3/\text{сут}$$
 $\Pi = 0.025 \text{ м}^3/\text{сут} \times 180 \text{ чел} * 365 \text{ день} = 1642,5 \text{ м}^3/\text{период}$

Объем водопотребления за период ведения строительных работ (12 месяцев 2022-2023 г.г.) будет составлять на хозяйственно-питьевые нужды -1642.5 м^3 .

Также на период строительства предусматривается использовать техническую воду для пылеподавления. Источником технического водоснабжения является Жузагашское месторождение подземных вод, находящееся в 30 км западнее месторождения Актогай.

Объем технической воды составит:

- на 12 месяцев 2022-2023 год $-5.0 \text{ м}^3/\text{сутки}$, $1825.0 \text{ м}^3/\text{период}$.

5.3.2 Водоотведение на период СМР

Объем водоотведения хоз-бытовых сточных вод за период ведения строительных работ (12 месяцев 2022-2023 г.г.) будет составлять -1642,5 м³.

Хоз-бытовые сточные воды, образуемые в процессе соблюдения персоналом личной гигиены, отводятся в установленный на площадке биотуалет. Ответственность за своевременный вывоз хозяйственно-бытовых сточных вод, образованных в период строительно-монтажных работ, из водонепроницаемого выгреба (биотуалет) возложена на подрядную организацию, выполняющую СМР, а также соблюдение требований «Санитарно-эпидемиологические требования к объектам коммунального назначения» Приказ Министра национальной экономики РК от 3.03.2015 года №183.

Использование технической воды будет являться безвозвратными потерями.

Баланс водопотребления и водоотведения на период строительных работ представлен в таблице 5.1.

Таблица 5.1 - Баланс водопотребления и водоотведения на период СМР (2022-2023 гг.)

				Норма		Водопотр	ебление	;	Оборотное		Водоотведение					
№	Наименование	Ед. Н	Кол-	водопот- л- ребления/	Хоз-бытовое		производствен ное		водоснабжени е		хоз-бытовое		производствен ное		Потери	
п/п	потребителей	изм.	во	водоотве- дения (литр)	м ³ / сут	м ³ / период	м ³ /сут	м ³ / период	м ³ / сут	м ³ / период	м³/сут	м ³ / период	м ³ /сут	м ³ / период	м ³ /сут	м ³ / период
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	2021 год															
1	На хоз. питьевые нужды	180 раб.	365 дней	25	4,5	1642,5	-	-	-	-	4,5	1642,5	-	-	-	-
2	Производственные нужды (пылеподавление при земляных работах)		365 дней		-	-	5,0	1825,0	-	-	-	-	-	-	5,0	1825,0
	Итого				4,5	1642,5	5,0	1825,0	-	-	4,5	1642,5	-	-	5,0	1825,0

5.4 Водопотребление и водоотведение на период эксплуатации

5.4.1 Водопотребление на период эксплуатации

Водоснабжение обогатительных фабрик №1 и №2 сульфидных руд выполнено от существующих систем технического и питьевого водоснабжения, запитанные от площадки Жузагашского водозабора согласно техническим условиям на водоснабжение за № 206/2018 от 06.06.2018, выданным филиалом компании «KAZ Minerals Projects B.V.».

Потребность в воде на производственные нужды обогатительной фабрики №1 составляет: оборотная вода со сливами сгустителя -5575,83 м³/ч, свежая вода для фабрики -2131,55 м³/ч.

Потребность в воде на производственные нужды обогатительной фабрики №2 составляет: оборотная вода со сливами сгустителя $-4753,74 \text{ м}^3/\text{ч}$, свежая вода для фабрики $-1775,10 \text{ м}^3/\text{ч}$.

Источником водоснабжения существующей обогатительной фабрики служит Жузагашское месторождение подземных вод питьевого качества, находящееся в 30 км на запад от Актогайского месторождения в долине реки Карасу.

Разрешение на специальное водопользование №KZ41VTE00076569 от 31.08.2021 г.

Вид специального водопользования: забор и использование подземных вод с применением сооружений или технических устройств, указанных в пункте 1 статьи 66 Водного кодекса Республики Казахстан от 9 июля 2003 года.

Цель специального водопользования: Забор и использование подземной воды из Жузагашского месторождения подземных вод на хозяйственно-питьевые и производственно-технические нужды Актогайского ГОК ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай).

Существующий водозабор подземных вод состоит из 16-ти скважин.

Схема подачи сырой воды потребителям на период эксплуатации следующая: от Жузагашского месторождения подземных вод сырая вода перекачивается по напорному водоводу диаметром 900 мм на промплощадку обогатительной фабрики в резервуар сырой воды емкостью 1500 м3.

Верхний слив воды от резервуара сырой воды подается в пруд технической воды с футеровкой из полиэтилена высокой плотности объемом 56000 м3, который выполняет функцию емкости оборотной воды обогатительной фабрики, для возмещения потерь воды, поглощенной хвостовой пульпой (подпитка оборотной системы обогатительной фабрики).

Остальная часть воды от резервуара сырой воды насосами (1 рабочий, 1 резервный) насосной станции сырой воды подается на технологические нужды обогатительной фабрики, для приготовления реагентов, известкового молока, на установку обратного осмоса, на пожаротушение, на подпитку оборотных системы компрессорной станции, на пылеподавление, на установку хлорирования.

На обогатительных фабриках для производственных нужд предусмотрен полный водооборот и локальная оборотная система охлаждения безредукторного привода мельницы. Схема полного водооборота следующая: осветленная вода после сгущения хвостов самотеком отводится в пруд технической воды, а затем насосами (2 рабочих, 1 резервный) насосной станции технической воды подается на технологические нужды обогатительной фабрики. Подпитка данной системы предусмотрена из резервуара сырой воды, очищенными сточными водами со станции очистки сточных вод, а также оборотной водой из хвостохранилища.

На подпитку оборотной системы охлаждения безредукторного привода мельницы обогатительной фабрики предусматривается использование обессоленной воды. Для получения обессоленной воды предусмотрена установка обратного осмоса.

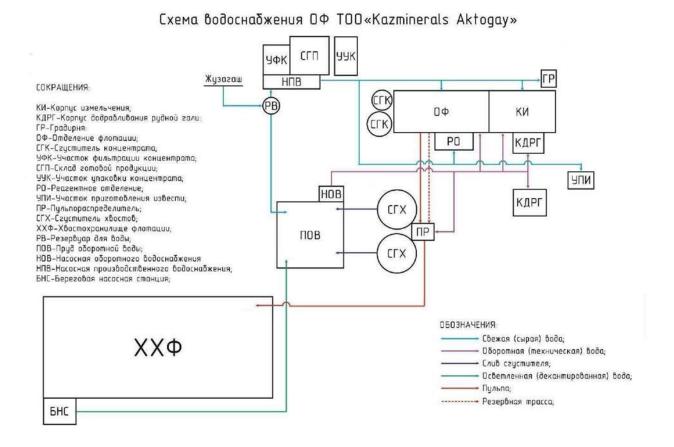


Рисунок 5.1 - Схема технологического водоснабжения

Вода питьевого качества подается к обогатительной фабрике.

Подается проектируемым водозабором подземных вод питьевого качества Жузагашского месторождения. Водозобор расположен в 30 км на запад от Актогайского месторождения в долине реки Карасу (Жузагашское месторождение подземных вод).

Подготовка питьевой воды для обогатительной фабрики осуществляется на территории обогатительной фабрики. Схема подготовки питьевой воды следующая: вода от насосной станции сырой воды подается на установку хлорирования на вахтовом поселке производительностью 2,0 кг/сут по жидкому хлору из расчета дозы хлора 1,9 мг/л с последующим отводом в два резервуара питьевой воды, емкостью 100 м — каждый. Из резервуаров насосами (2 рабочих, 1 резервный) насосной станции хозпитьевого водоснабжения хозпитьевая вода подается на бытовые нужды. Вода питьевого качества после хлораторной, расположенной на территории обогатительной фабрики, подается к санитарным приборам, для смыва растворов реагента, случайно попавших в глаза или на открытые участки тела. С этой целью предусмотрены фонтанчики для промывки глаз и аварийные души.

5.4.2 Водоотведение на период эксплуатации

На обогатительной фабрике для производственных нужд предусмотрен полный водооборот и локальная оборотная система охлаждения безредукторного привода мельницы. В связи с этим нормативы сбросов загрязняющих веществ не устанавливаются.

Бытовые стоки от отдельно стоящих потребителей удаленных участков отводятся в канализационные выгребы с последующим вывозом ассенизационной машиной на существующие очистные сооружения. Вывоз стоков будет осуществляться регулярно по мере накопления в существующее модульное очистное сооружение очистки бытовых стоков на территории существующей обогатительной фабрики.

Предусмотренные очистные сооружения полной биологической очистки представляют собой установку модульного типа производительностью 910 м3/сут контейнерного типа заводского изготовления. Изготовитель КНААNZA. Контейнерная установка размещается наземно. Состоит из контейнерных модулей — емкостей и технического помещения. Процесс очистки включает в себя предварительную очистку сточных вод от грубых механических примесей и усреднение, двухступенчатую аэробную обработку стоков с последующим отделением очищенной сточной воды во вторичных отстойниках и ее доочистка на фильтрах.

Образующийся в процессе очистки сточных вод избыточный ил собирается в илонакопитель, аэробно стабилизируется и насосом подачи ила по трубопроводу подается в блок механического обезвоживания осадка. После периода дезактивации, ил может использоваться в качестве удобрения. Аэрацию осуществляет компрессор. Установка устойчиво работает при изменении гидравлических нагрузок, концентраций стока. При длительных перерывах в подаче стока установка самостоятельно, в течение нескольких суток, входит в оптимальный режим работы.

Очищенные хозяйственно-бытовые стоки хлорируются и отводятся в пруд технической воды для подпитки оборотной системы фабрики.

Дождевые и талые воды с кровель зданий и территории расширения обогатительной фабрики, комплекса цеха технического обслуживания горной техники и складов должны собираться системой дождеприемников и трубопроводов и отводиться через маслоуловитель в пруд-отстойник дождевых вод, предусмотренный возле обогатительной фабрики.

Схема водопотребления и водоотведения представлена на рисунке 5.2.

Баланс по водопотреблению и водоотведению объектов представлены в таблице 5.2.

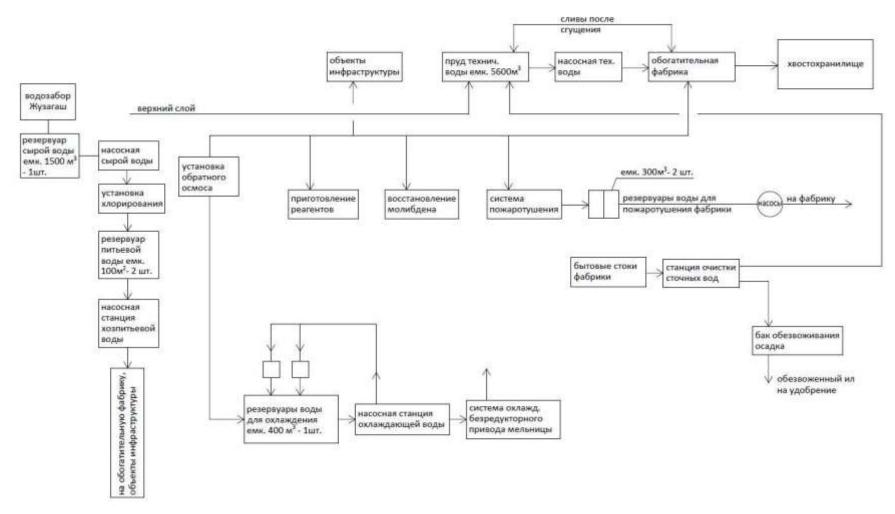


Рисунок 5.2 - Схема водопотребления и водоотведения

Таблица 5.2 - Баланс по водопотреблению и водоотведению Актогайского ГОКа

№ п/п	Наименование показателей	Ед. изм.	2022 год	2023 год
1	2	3	4	5
1.	Забор воды МПВ Жузагашское	тыс.м ³ /год	34152,63	34152,63
	- ПР производственные	тыс.м ³ /год	33569,09	33569,09
	- ХП хозяйственно-питьевые	тыс.м ³ /год	583,539	583,539
2.	Водоснабжение обогатительных фабрик			
2.1	Чистая вода ПР, в т.ч.	тыс.м ³ /год	29595,058	29567,708
	- ОФ-1	тыс.м ³ /год	13879,837	13866,756
	- ОФ-2	тыс.м ³ /год	15715,221	15700,952
2.2	Оборотная вода в т.ч.	тыс.м ³ /год	13994,060	13979,332
2.3	Техническая вода (осветленная) в т.ч.	тыс.м ³ /год	1960,719	1960,719
3	Водоснабжение площадки кучного выщелачивания и других вспомогательных объектов	тыс.м ³ /год	4557,572	4584,922

Таблица 5.3 - Баланс хвостохранилища

	1. ВОДОПОСТУПЛЕНИЕ	год	За предшествующий период эксплуатаци и стадии 3 в 2021 году	2022	2023
		месяцев		12	12
	Объем переработки руды на ОФ АК1	тыс.т/год		30000,014	30000,018
	Объем переработки руды на ОФ АК2	тыс.т/год		25000,01	25000,02
	Объем переработки руды на ОФ Итого	тыс.т/год		55000,024	55000,038
1	Поступление пульпы в хвостохранилище, W	тыс.м ³ /год		49908,428	49862,190
	Поступление пульпы в хвостохранилище, m	тыс.т/год		83668,317	83590,854
1.1	Вода	тыс.м3(т)/год		29595,058	29567,708
	Вода Ак1	тыс.м3(т)/год		13879,837	13866,756
	Вода Ак2	тыс.м3(т)/год		15715,221	15700,952
1.2	Итого хвостов (T)	тыс.т/год		54073,259	54023,146
	Твердая часть хвостов (Т) АК1	тыс.т/год		29494,654	29466,857
	Твердая часть хвостов (Т) АК2	тыс.т/год		24578,605	24556,289
-	Объем хвостов без пор при (T/2,68 т/м ³)	тыс.м3/год		20176,589	20157,890

		1	1		
	Объем уложенных хвостов (T/1,6 т/м ³)	тыс.м3/год		33795,7869	33764,4663
	Объем осадков (в зеркало воды хвостохранилища) F=451700 м2 V=F*h1	тыс.м3/год		2093,5	2093,5
A	Поступление воды в хвостохранилище 1.1+1.3	тыс.м3/год		31688,558	31661,208
	2. ПОТЕРИ	тыс.м3/год			
2.1	Объем испарения с прудка Fпр=451700 м2 V=Fпр* \mathbf{h}_1	тыс.м3/год		4075,300	4075,300
2.2	Потери воды в порах хвостов Wпор= $(T/\gamma_{c\kappa.})*(1-\gamma_{c\kappa}/\gamma_r); \gamma_{c\kappa}=1,5_T/M^3; \gamma_r=3,05_T/M^3;$	тыс.м3/год		13619,198	13606,576
2.3	Потери воды на образование льда	тыс.м3/год			
Б	2.1+2.2+2.3	тыс.м3/год		17694,498	17681,876
В	ИТОГО А-Б	тыс.м ³		13994,060	13979,332
Γ	Объем заполнения хвостохранилища на начало периода	тыс.м ³		69289,630	103085,417
E	Объем хвостов, поступаемых в хвостохранилище ежегодно с фабрики (1.2)	тыс.м ³		33795,787	33764,466
ж	Объем воды поступающий в прудок (=B)	тыс.м ³		13994,060	13979,332
3	Объем воды с хвостами на конец периода (Г+Ж+Е)	тыс.м ³		117079,477	150829,215
И	Забор воды на оборотное водоснабжение	тыс.м ³		13994,060	13979,332
К	Объем хвостов с водой на конец года после забора воды (3-И)	тыс.м ³	69289,630	103085,417	136849,883
-	из них воды	тыс.м ³	1270,000	1270,000	1270,000
-	из них хвосты с накоплением	тыс.м ³	68019,630	101815,417	135579,883
	из них хвосты с накоплением в тоннах	тыс.т	108831,408	162904,667	216927,813
Л	Остаточная емкость хвостохранилища				
-	на начало периода	тыс.м ³	67603,236	62397,466	28601,679
-	на конец периода	тыс.м ³	62397,466	28601,679	41712,213
-	на начало периода в тоннах	тыс.т	108165,178	99835,946	45762,687
-	на конец периода в тоннах	тыс.т	99835,946	45762,687	66739,541

6. ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

Согласно статье 41 ЭК РК в целях обеспечения охраны окружающей среды и благоприятных условий для жизни и (или) здоровья человека, уменьшения количества подлежащих захоронению отходов и стимулирования их подготовки к повторному использованию, переработки и утилизации устанавливаются:

- 1) лимиты накопления отходов;
- 2) лимиты захоронения отходов.

Лимиты накопления отходов устанавливаются для каждого конкретного места накопления отходов, входящего в состав объектов I и II категорий, в виде предельного количества (массы) отходов по их видам, разрешенных для складирования в соответствующем месте накопления, в пределах срока, установленного в соответствии с настоящим Кодексом.

Лимиты захоронения отходов устанавливаются для каждого конкретного полигона отходов, входящего в состав объектов I и II категорий, в виде предельного количества (массы) отходов по их видам, разрешенных для захоронения на соответствующем полигоне.

В соответствии с требованиями классификатора отходов (Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года №314 «Об утверждении Классификатора отходов») каждый вид отходов идентифицируется путем присвоения шестизначного кода.

6.1. Образование отходов производства и потребления на период строительных работ

На период строительных работ 2022-2023 года – 12 месяцев.

В период строительных работ при реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай будут образовываться следующие виды отходов: ТБО, ветошь промасленная, огарки сварочных электродов, использованная тара из-под ЛКМ. За отходы, образующиеся при проведении строительных работ (за исключением отходов, по которым возможна продажа), несет ответственность подрядная организация, осуществляющая данные работы.

Твердо-бытовые отходы.

Согласно Расчета норма образования бытовых отходов определяется с учетом предельных санитарных норм образования бытовых отходов на промышленных предприятиях $-0.3~{\rm M}^3/{\rm год}$ на человека и средней плотности отходов, которая составляет $0.25~{\rm T/M}^3$.

Норма образования отхода составляет:

$$N = M \times P \times \rho$$
,

где: М – численность персонала

P – норма накопления отходов на одного человека в год, 0.3 m^3 /год

Плотность отходов -0.25 т/м^3

Количество персонала при СМР составляет 180 человек.

$$N = 180 * 0.3 * 0.25 = 13.5$$
 т/год (54 м³/год)

Уровень опасности – неопасные отходы. Код отходов – 20 03 01. Способ хранения – временное хранение в металлическом контейнере на территории площадки строительства. По мере накопления отходы будут вывозиться по договору на ближайший полигон ТБО.

Обтирочный материал (ветошь)

Нормативное количество отхода определяется исходя из поступающего количества ветоши (M_0 , т/год), норматива содержания в ветоши масел (M) и влаги (W):

$$N = M_0 + M + W$$
, где:

 $M = 0.12*M_o$

 $W = 0.15* M_o,$

 M_o – количество использованной ветоши (ориентировочное) – 0,03 тонны.

 $M = 0.12 * M_o = 0.12 * 0.03 = 0.0036$ TOHH;

 $W = 0.15 * M_o = 0.15 * 0.03 = 0.0045$ TOHH

Количество промасленной ветоши определяется по формуле:

N = 0.03 + 0.0036 + 0.0045 = 0.0381 тонны.

Уровень опасности - янтарный. Индекс АD090.

Уровень опасности — опасные отходы. Код отходов — $15~02~02^*$. Временно хранится на территории площадки в закрытом металлическом контейнере. По мере накопления будет передаваться специализированным организациям.

Использованная тара из-под ЛКМ

Норма образования отхода составляет:

$$N = M_i * n + M_k * \alpha$$

Наименование	Число	Масса тары	Масса ЛКМ в	Содержание	Количество
ЛКМ	тары	(тонн)	таре	остатков в	отходов
			(тонн)	краске	(тонн)
грунтовка ГФ-021	1	0,0003	0,00021	0,03	0,0003063

Принимаем объем отхода — 0,0003 тонн. Уровень опасности — опасные отходы. Код отхода — 08 01 11*. Способ хранения — временное хранение в металлических контейнерах на территории площадки. По мере накопления будет передаваться специализированным организациям.

Огарки сварочных электродов

Огарки сварочных электродов образуются в процессе проведения сварочных работ. Временно складируется на специальной площадке с твердым покрытием для последующей отправки на предприятие по договору.

Норма образования отхода составляет:

$$N = M_{oct} \cdot \alpha, T/\Gamma O \mu$$

где ${\rm M}_{{\rm oct}}\,$ - фактический расход электродов, т/год;

 α - остаток электрода, $\alpha = 0.015$ от массы электрода.

N = 0.088 * 0.015 = 0.00132 т/год.

Уровень опасности — неопасные отходы. Код отходов — $12\ 01\ 13$. Способ хранения — временное хранение в закрытой металлической емкости на территории площадки. По мере накопления сдаются специализированным организациям.

Лимиты накопления отходов производства и потребления на период строительных работ (2022-2023 г.г.) представлены в таблице 6.1.

Таблица 6.1

Наименование отходов	Объем накопленных отходов на существующее положение,	Лимит накопления, тонн/год		
	тонн/год			
1	2	3		
Всего:	13,53972	13,53972		
в том числе отходов производства:	0,03972	0,03972		
отходов потребления:	13,5	13,5		
	Опасные отходы			
Использованная тара из-под ЛКМ	0,0003	0,0003		
Ветошь промасленная	0,0381	0,0381		
_	Неопасные отходы			
ТБО	13,5	13,5		
Огарки сварочных электродов	0,00132	0,00132		
	Зеркальные отходы			
-	-	-		

6.2. Образование отходов производства и потребления на период эксплуатации

Твердые и жидкие промышленные отходы при эксплуатации производства представлены хвостами обогащения, а также отходами производства и потребления, объемы образования которых занормированы:

- «Раздел «Оценка воздействия на окружающую среду» к Рабочему проекту «Строительство обогатительной фабрики рудника «Актогай» с инфраструктурой» (корректировка) ТОО «KAZ Minerals Aktogay» (заключение государственной экологической экспертизы № KZ17VCY00092510 от 10.03.2017 г.);
- в Разделе «Оценка воздействия на окружающую среду» к Рабочему проекту «Расширение Актогайского ГОКа. Обогатительная фабрика сульфидных руд» (корректировка) согласованного заключением ГЭ № 01-0214/20 от 05.05.2020 года.

При осуществлении производственной и хозяйственной деятельности предприятия принята следующий порядок работы с отходами: снижение объемов образования отходов, повторное использование (регенерация, восстановление), обезвреживание, размещение. Система управления отходами на предприятии включает в себя: инвентаризацию, учет, сбор, сортировку и транспортировку отходов, реализацию и обезвреживанию отходов. Хранение отходов предусматривается в отдельных контейнерах и емкостях, расположенных в специально оборудованных местах (площадках), что предотвращает их смешивание.

Также на все выше перечисленные отходы на предприятии имеются паспорта отходов. Объем занормированных отходов при эксплуатации реконструируемых объектов не изменится, кроме хвостов обогащения.

Таким образом, в настоящем проекте нормированию и рассмотрению подлежат следующие виды отходов:

- хвосты обогашения.

Объемы образования отходов производства и потребления на период эксплуатации представлены в таблице 6.2.

Таблица 6.2 – Годовые объемы образования отходов

№ п/п	Наименование отхода	Код	Годовой объем образования, т/год
	0-22-22-22-22		54083822,5
1	Опасные отходы:	200121*	0.0404
1.	Отработанные люминесцентные лампы	200121*	0,0404
2.	Отработанные фильтры (масляные и топливные)	160107*	0,84
3.	Ветошь промасленная	150202*	1,016
4.	Отработанные масла	130208*	40,4
5.	Отработанные аккумуляторы	160601*	1,96
6.	Отработанный фильтр. материал	150202*	2,0
7.	Твердый осадок с очистных сооружений	190205*	5,8
8.	Отработанные рукава фильтрующие и элементы газоочистного оборудования	150202*	0,294
	Не опасные отходы:		1
9.	Тара от реагентов	150106	146,4
10.	Твердые бытовые отходы	200301	105,0
11.	Смет с твердых покрытий	200303	26,0
12.	Лом черных металлов	160117	4,8
13.	Огарки сварочных электродов	120113	0,344
14.	Металлическая стружка	120101	0,2
15.	Строительные отходы	170904	10,0
16.	Изношенные шины	160103	19,08
17.	Древесные отходы	170201	39,7
18.	Отходы полипропиленовой фильтроткани вакуумного ленточного фильтра	150203	55,6
19.	Отходы резинотехнических изделий	160199	104,0
20.	Отходы и лом стали	170405	10000
	TMO		
21.	Хвосты отвальные (отходы обогащения)	-	54 073 259

Хвосты обогащения

Хвосты обогащения образуются после коллективной флотации сульфидной руды, извлечения меди и молибдена в концентрат. Отвальные хвосты представляют собой пульпу, твердая фаза которой сопоставима с рудой, а жидкая фаза, помимо растворенных металлов, содержит остаточные концентрации цианида.

Планируемый объем образования хвостов обогащения составляет:

- на 2022 год: 54 073 259 тонн;
- на 2023 год: 54 023 146 тонн.

Ежегодно на предприятии проводится учет образования техногенных минеральных образований (ТМО) с ежегодной регистрацией в государственном реестре по использованию недр (паспорта формы «0»).

6.3 Расчет лимитов захоронения отходов

Расчет лимитов захоронения отходов произведен в соответствии с требованиями «Методики расчета лимитов накопления отходов и лимитов захоронения отходов» утвержденной Приказом Министра экологии, геологии и природных ресурсов РК от 22 июня 2021 года №206.

Лимиты захоронения отходов рассчитываются с учетом данных о состоянии компонентов окружающей среды (атмосферного воздуха, поверхностных и подземных

вод, почвенного покрова) в области воздействия, полученных по результатам проводимого производственного экологического контроля.

Лимит захоронения отходов ($M_{\text{норм}}$, т/год) определяется ежегодно по формуле:

$$M_{\text{норм}} = 1/3 * M_{\text{обр}} * (K_B + K_H + K_a) * K_p$$

где, $M_{\text{норм}}$ - лимит захоронения данного вида отходов, т/год;

 $M_{\text{обр}}$ - объем образования данного вида отхода, т/год;

 $K_{\text{в}}$, $K_{\text{п}}$, K_{a} , K_{p} – понижающие, безразмерные коэффициенты учета степени миграции загрязняющих веществ в подземные воды, на почвы прилегающих территорий, эолового рассеивания, рациональности рекультивации.

Понижающие коэффициенты, учитывающие миграцию загрязняющих веществ (ЗВ) из заскладированных отходов в подземные воды (Кв), степень переноса ЗВ из заскладированных отходов на почвы прилегающих территорий (Кп) и степень эолового рассеивания ЗВ в атмосфере путем выноса дисперсий из накопителя в виде пыли (Ка), рассчитываются с учетом экспоненциального характера зависимости «доза-эффект» по формулам:

$$K_{B} = 1 / \sqrt{d_{B}}$$

$$K_{\Pi} = 1 / \sqrt{d_{\Pi}}$$

$$K_{a} = 1 / \sqrt{d_{a}}$$

где, $d_{\scriptscriptstyle B}$, $d_{\scriptscriptstyle \Pi}$, d_a — показатели уровня загрязнения, соответственно, подземных вод, почв и атмосферного воздуха химическими элементами и соединениями, присутствующими в отходах, определяемые по формулам:

$$d_{s} = 1 + \sum_{i=1}^{n} \cdot (d_{is} - 1)$$

$$d_{n} = 1 + \sum_{i=1}^{n} \cdot (d_{in} - 1)$$

$$d_{a} = 1 + \sum_{i=1}^{n} \cdot (d_{ia} - 1)$$

где, α_і – коэффициент изоэффективности для і-го 3В, равный:

для первого класса опасности 1,0;

для второго класса опасности 0,5;

для третьего класса опасности 0,3;

для четвертого класса опасности 0,25;

n – число определяемых 3B.

 $d_{i\pi}\ d_{ia}$ — уровень загрязнения і-ым загрязняющим веществом, рассчитанный по результатам опробования в пределах области воздействия объекта захоронения отходов соответственно подземных вод, почв и атмосферного воздуха;

Уровень загрязнения соответствующего компонента среды определяется по формулам:

$$\begin{split} d_{i\scriptscriptstyle B} &= C_{i\scriptscriptstyle B} \, / \, \Pi \cancel{\square} K_{i\scriptscriptstyle B} \\ d_{i\scriptscriptstyle \Pi} &= C_{i\scriptscriptstyle \Pi} \, / \, \Pi \cancel{\square} K_{i\scriptscriptstyle \Pi} \\ d_{i\scriptscriptstyle a} &= C_{i\scriptscriptstyle a} \, / \, \Pi \cancel{\square} K_{i\scriptscriptstyle a} \end{split}$$

где, C_{in} C_{ia} — усредненное значение концентрации i-го 3B, соответственно в воде (мг/дм3), почве (мг/кг) и атмосферном воздухе, мг/дм3;

 Π Д K_{iB} , Π Д K_{iI} , Π Д K_{ia} , - предельно-допустимая концентрация i-го 3B, соответственно в воде (мг/дм³), почве (мг/кг), и воздухе (мг/м³).

Усредненное значение концентрации 3B в соответствующем компоненте ОС принимается по формулам:

$$\bar{C}_{is} = 1/m \cdot \sum_{j=1}^{m} C_{jis}$$

$$\bar{C}_{in} = 1/k \cdot \sum_{j=1}^{k} C_{jin}$$

$$\bar{C}_{ia} = 1/r \cdot \sum_{j=1}^{r} C_{jia}$$

где m — общее число точек отбора проб воды для определения в них содержания 3B; k — общее число точек отбора проб почвы на содержание 3B;

r – общее число точек отбора проб воздуха на содержание 3B;

 $C_{jiв}$, C_{jin} , C_{jia} — концентрация i-го 3B в j-ой точке отбора проб соответственно воды (мг/дм³), почвы (мг/кг) и воздуха (мг/м³).

Суммарный показатель загрязнения компонента окружающей среды (3_c) определяется как сумма коэффициентов концентрации отдельных 3B ($K_{\kappa i}$) по формуле:

$$3_c = \sum_{i=1}^{n} K_{ki} - (n-1)$$

3_с – суммарный показатель загрязнения компонента окружающей среды,

 $K_{\kappa i}$ – коэффициент концентрации і-го загрязняющего вещества,

і – порядковый номер загрязняющего вещества,

n – число загрязняющих веществ, определяемых в компоненте окружающей среды.

Коэффициент концентрации отдельного ЗВ определяется по формуле:

$$K_{\kappa i} = C_i / \Pi \coprod K_i$$

 C_i — концентрация 3B в компоненте окружающей среды, (мг/дм 3 — для воды, мг/кг — для почв, мг/м 3 — для атмосферного воздуха).

 $\Pi \not \Pi K_i$ – предельно допустимая концентрация 3B в компоненте окружающей среды, $M\Gamma / \chi M^3$, $M\Gamma / \kappa \Gamma$, $M\Gamma / M^3$.

В соответствии с состоянием окружающей среды принимается соответствующее решение о возможности складирования отходов производства в данный объект захоронения. При этом предусматривается следующая градация нагрузок на экосистему:

- 1. допустимая техногенная нагрузка, при которой сохраняется структура и функционирование экосистемы с незначительными (обратимыми) изменениями;
- 2. опасная нагрузка, при которой еще сохраняется структура, но уже наблюдается нарушение функционирования экосистемы с возрастающим числом обратимых изменений;
- 3. критическая при которой в компонентах ОС происходит существенное накопление изменений, приводящих к значительному отрицательному изменению состояния и структуры экосистемы;
- 4. катастрофическая нагрузка, приводящая к выпадению отдельных звеньев экосистемы, вплоть до полного их разрушения (деструкции).

В случае если нагрузка на состояние окружающей среды определена как критическая или катастрофическая, то захоронение отходов не допускается.

Коэффициент учета рекультивации находится как соотношение фактической и плановой площадей рекультивации накопителя отходов на год, предшествующий нормируемому:

$$K_p = P_{\phi} / P_{\pi}$$

где, P_{φ} , P_{π} — запланированная на год, предшествующий нормируемому, площадь рекультивации места размещения, и фактическая площадь, подвергшаяся рекультивации.

Если величина коэффициента учета рекультивации (K_p), выходит за границы интервала от 0,5 до 1,0, то при расчетах $M_{\text{норм}}$ им придают значение ближайшей границы указанного интервала.

Экологическое состояние окружающей среды проводится по параметрам представленным в таблице 6.3

Таблица 6.3 Параметры экологического состояния окружающей среды

	Экологич	ческое состо	яние окружающе	ей среды	
Наименование параметров	допустимое (относительно удовлетвори- тельное	опасное	критическое (чрезвычайное)	катастрофи- ческое (бедственное)	
1	2	3	4	5	
І. Водные ресурсы					
1. Превышение ПДК, раз:					
- для ЗВ 1-2 классов опасности	1	1-5	5-10	более 10	
- для ЗВ 3-4 классов опасности	1	1-50	50-100	более 100	
2. Суммарный показатель					
загрязнения:					
- для ЗВ 1-2 классов опасности	1	1-35	35-80	более 80	
- для ЗВ 3-4 классов опасности	10	10-100	100-500	более 500	
3.Превышение регионального					
уровня минерализации, раз	1	1-2	2-3	3-5	
II. Почвы					
1. Увеличение содержания	до 0,1	0,1-0,4	0,4-0,8	более 0,8	
водно-растворимых солей,					
в 100 г почвы в слое 0-30 см					
2. Превышение ПДК ЗВ					
- 1 класса опасности	до 1	1-2	2-3	более 3	
- 2 класса опасности	до 1	1-5	5-10	более 10	
- 3-4 класса опасности	до 1	1-10	10-20	более 20	
3. Суммарный показатель					
загрязнения	менее 16	16-32	32-128	более 128	
III. Атмосферный воздух					
1. Превышение ПДК, раз					
- для ЗВ 1-2 классов опасности	до 1	1-5	5-10	более 10	
- для ЗВ 3-4 классов опасности	до 1	1-50	50-100	более 100	

Данные для расчета лимитов захоронения отходов приняты на основании протоколов испытаний производственного экологического контроля ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай).

Анализ воздействия накопителя отходов на атмосферный воздух

В районе расположения хвостохранилища предприятия возможно дополнительное загрязнение атмосферного воздуха токсичными веществами, входящими в состав складируемых отходов. Поступление вредных веществ в атмосферу при этом может происходить за счет выноса их поверхности накопителей в сухую и ветреную погоду.

Для непосредственного определения загрязнения атмосферы вредными примесями были произведены инструментальные замеры в атмосферном воздухе на хвостохранилище по 4 точкам (по сторонам света).

Для большей достоверности расчетов лимитов на захоронение отходов рекомендуется использовать показатели состояния компонентов ОС усредненные по трехгодичному циклу наблюдений (2019-2021 г.г.).

Производственный экологический контроль за состоянием атмосферного воздуха в 2019-2021 г.г. проводился с привлечением лаборатории ТОО «Лаборатория-Атмосфера».

Усредненные результаты наблюдений за состоянием атмосферного воздуха на границе санитарно-защитной зоны территории хвостохранилища приведены в таблице 6.4

Таблица 6.4 – Результаты наблюдений за состоянием атмосферного воздуха

Наименование		Фактическая концентрация, мг/м ³														
ингредиентов	Точка №1(ср.)	Точка №2(ср.)	Точка №3(ср.)	Точка №4(ср.)	Точка №5(ср.)	Точка №6(ср.)	Точка №7(ср.)	Точка №8(ср.)	Точка №9(ср.)		С _і (среднее значение)	ПДК _{м.р.,} мг/м ³	Класс опасности		$\Delta d = (d_i - 1)$	da
Взвешенные частицы (пыль)	0,118	0,117	0,12	0,1175	0,125	0,1225	0,135	0,1325	0,12	0,125	0,119	0,3	2	0,395	-0,605	1,0
Диоксид азота	0,069	0,068	0,07	0,0663	<1	<1	<1	<1	<1	<1	0,069	0,2	3	0,344	-0,656	1,0
Диоксид серы	0,011	0,011	0,01	0,0106	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,011	0,5	4	0,022	-0,978	1,0
Оксид углерода	0,113	0,127	0,12	0,1192	0,1525	0,15	0,135	0,1325	0,155	0,1275	0,12	5	3	0,024	-0,976	1,0

Из полученных данных по загрязнению атмосферного воздуха в районе расположения хвостохранилища, видно, что концентрации веществ находятся в пределах нормативов ПДК.

Загрязнение атмосферного воздуха оценено, как допустимое.

Анализ воздействия накопителя отходов на почвенный покров

По сравнению с атмосферой или поверхностными водами почва — самая малоподвижная среда, миграция загрязняющих веществ в которой происходит относительно мелленно.

Для большей достоверности расчетов лимитов на захоронение отходов рекомендуется использовать показатели состояния компонентов ОС усредненные по трехгодичному циклу наблюдений (2019-2021 г.г.).

Производственный экологический контроль за состоянием почвенного покрова в 2019-2021 г.г. проводился с привлечением лаборатории ТОО «Лаборатория Атмосфера». Пробы были отобраны на границе СЗЗ хвостохранилища по 6-ти точкам.

Результаты наблюдений за состоянием почвенного покрова на границе санитарнозащитной зоны территории хвостохранилища приведены в таблице 6.5

Таблица 6.5 – Результаты наблюдений за состоянием почвенного покрова

Наименование					Фактиче	ская концент	рация, мг/кг	,				
ингредиентов	Точка №6	Точка №7	Точка №8	Точка №9	Точка №10	Точка №11	Сі (среднее значение)	ПДК*, мг/кг	Класс опасности	d _i = С _i /ПДК	$\Delta d = (d_i - 1)$	\mathbf{d}_{Π}
рН	7,73	7,81	6,99	7,77	7,60	7,65	7,59	6-9	-	0,9486	-0,0514	
Нефтепродукты	0,08	0,07	0,05	0,08	0,07	0,11	0,08	100	1	0,0008	-0,9992	
Ванадий	1,69	1,49	1,40	1,52	1,59	1,53	1,54	150	3	0,0102	-0,9898	
Железо	3,62	3,59	3,56	3,60	3,38	3,35	3,52	-	-	-	-	
Кадмий	1,58	1,39	1,06	1,73	1,32	1,14	1,37	-	-	-	-	
Кобальт	0,39	0,36	0,38	0,41	0,35	0,38	0,38	-	-	-	-	
Марганец	2,05	2,17	1,90	1,88	1,27	1,49	1,79	1500	3	0,0012	-0,9988	
Медь	2,34	2,29	2,15	2,11	2,49	2,09	2,25	3	2	0,7485	-0,2515	
Молибден	1,48	2,13	1,24	1,13	1,36	1,51	1,48	-	-	ı	-	
Мышьяк	0,02	0,04	0,03	0,02	0,03	0,02	0,03	2	1	0,0136	-0,9864	
Никель	1,30	2,07	1,54	1,62	1,64	1,41	1,60	4	2	0,3993	-0,6007	$d_{\pi(1-3)} = 1$
Нитраты	1,80	1,66	1,59	1,77	1,76	1,54	1,69	-	-	ı	-	()
Ртуть	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	2,1	1	0,00005	-1,0000	
Свинец	2,10	2,08	1,67	1,90	1,81	1,90	1,91	32	1	0,0597	-0,9403	
Сурьма	0,40	0,43	0,39	0,41	0,38	0,42	0,41	-	-	-	-	
Фтор	0,84	0,79	0,94	0,80	0,91	0,92	0,87	-	-	-	-	
Хром общий	1,20	0,85	0,94	1,11	1,18	1,06	1,06	-	-	-	-	
Цинк	2,06	2,35	2,31	2,34	2,39	2,09	2,26	23	1	0,0980	-0,9020	

ПДК* - ПДК загрязняющих веществ в почве по меди, цинку, и рН приняты согласно РНД 03.1.0.3.01-96, приложение 8, ПДК по мышьяку и свинцу приняты согласно приказа Министра национальной экономики РК от 25.06.2015 г. № 452 «Об утверждении Гигиенических нормативов к безопасности окружающей среды (почве)».

Из полученных данных по загрязнению почвенного покрова в районе расположения хвостохранилища, видно, что концентрации веществ находятся в пределах нормативов ПДК.

Загрязнение почвенного покрова оценено, как допустимое.

Анализ воздействия накопителя отходов на подземные воды.

В районе хвостохранилища построена сеть режимных наблюдательных скважин в количестве 16 шт., по которым ведется мониторинг за состоянием подземных вод, что дает возможность иметь объективную информацию об экологическом состоянии компонентов окружающей среды в районе действующего объекта.

Согласно результатов, полученных по инструментальным замерам (2019-2021 года) определение концентрации загрязняющих веществ в подземной воде в районе хвостохранилища проводились ТОО «Лаборатория Атмосфера». Результаты наблюдений за состоянием подземных вод на территории хвостохранилища приведены в таблице 6.6.

Согласно аудиторского отчета для TOO «KAZ Minerals Aktogay» (KA3 Минералз Актогай), рекомендовано и применимо предприятием при проведении производственного экологического контроля за предельно-допустимые концентрации загрязняющих веществ в мониторинговых скважинах наблюдательной сети TOO «KAZ Minerals Aktogay» (KA3 Минералз Актогай) принимать концентрации с учетом приращения природного, естественного фона, определяемого в фоновых наблюдательных скважинах за пределами зоны деятельности горно-обогатительного комплекса месторождения Актогай, к установленной предельно-допустимой концентрации загрязняющего вещества для культурно-бытового водопользования, согласно «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», утвержденных приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209.

Фоновые скважины пробурены согласно «Проекту бурения фоновых наблюдательных скважин и проведения фоновых экологических исследований подземных вод и почвенного покрова за пределами зоны деятельности горно-обогатительного комплекса месторождения Актогай» (заключение государственной экологической экспертизы №KZ50VDC00072891от 10.09.2018 г.).

Средние данные по фоновым скважинам приняты согласно Отчета о научно-исследовательской работе к Проекту бурения фоновых наблюдательных скважин и проведения фоновых экологических исследований подземных вод и почвенного покрова за пределами зоны деятельности горно-обогатительного комплекса месторождения Актогай.

Таблица 6.6 – Результаты наблюдений за состоянием подземных вод

Наименование	Фактическая концентрация, мг/дм ³																	
ингредиентов	скв №11	скв №12	скв №13	скв №14	скв №15	скв №16	скв №17	скв №18	скв №19	скв №20	скв №21	скв №25	С _і (среднее значение)	ПДК*, мг/дм ³	Класс опасности	d _i = С _i /ПДК	$\Delta \mathbf{d} = (\mathbf{d_i} - 1)$	dв
рН	8,4458	8,8156	9,0411	8,4397	8,4406	8,6333	7,8706	8,6269	9,4300	8,5961	8,6742	8,7456	8,6466	6-9	-	0,9607	-0,0393	
температура	8,7361	8,4139	7,4989	8,8083	9,0361	8,6889	8,7917	8,6917	8,4667	8,4250	8,4194	8,5139	8,5409	-	-	_	-	
уровень	7,7392	24,6592	1,9328	2,8553	1,5253	1,6333	3,7069	3,6014	7,7867	3,1003	6,0733	2,4544	5,5890	-	-	-	-	
привкус	1,3333	0,6389	1,4722	2,0000	1,3889	0,9167	1,3333	0,7778	0,4444	1,1389	1,8611	0,7778	1,1736	-	-	-	-	
цветность	3,7500	2,8333	2,9167	3,5833	3,5000	3,5000	3,7778	3,1111	2,4722	3,8333	4,0000	2,0000	3,2731	-	-	1	-	
запах	1,4167	0,6389	1,1944	1,5833	1,4722	0,9167	1,5833	0,9028	0,5556	1,2500	1,8611	0,7778	1,1794	-	-	-	-	
мутность	0,9906	0,7197	0,9189	1,1194	1,1192	0,8906	1,2094	0,9681	0,8944	1,1883	1,1061	0,7267	0,9876	-	-	-	-	
азот аммонийный	1,0526	0,0519	0,0500	0,0625	0,0678	0,0891	0,0884	0,2670	0,2747	0,3010	0,9624	4,7894	0,6714	-	-	-	-	
азот нитратный	24,3953	3,7694	5,1403	0,0639	0,3054	0,2428	15,5775	1,2206	1,2086	0,9494	5,6775	3,9811	5,2110	62,31	3	0,0836	-0,9164	
азот нитритный	0,1220	0,5144	0,3636	0,0010	0,0034	0,0243	0,7992	0,0899	0,0898	0,0922	0,1493	0,8010	0,2542	3,5293	2	0,0720	-0,9280	
алюминий	0,0728	0,0536	0,0389	0,0343	0,0512	0,0360	0,0537	0,0329	0,0422	0,0417	0,0263	0,0510	0,0445	0,5387	2	0,0827	-0,9173	
анионные поверхностно- активные вещества АПАВ	0,1423	0,3591	0,1495	0,3204	0,2099	0,3075	0,1793	0,1298	0,1268	0,1269	0,1947	0,2974	0,2120	0,6793	-	0,3120	-0,6880	$d_{B(1-2)}$
барий	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,0020	0,126	2	0,0159	-0,9841	=1
бериллий	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0003	1	0,3333	-0,6667	1
бор	0,3186	0,4839	0,4067	0,5631	0,4311	0,5325	0,1294	0,2744	0,1297	0,1411	0,1769	0,1433	0,3109	0,507	2	0,6132	-0,3868	$d_{B(3-4)}$
ванадий	0,0120	0,0111	0,0127	0,0126	0,0113	0,0110	0,0116	0,0120	0,0126	0,0126	0,0124	0,0121	0,0120	0,11	3	0,1091	-0,8909	=1
гидрокарбонаты	89,0333	142,5750	265,0556	74,5361	101,8583	152,3972	108,4164	223,8722	173,0833	88,2889	92,9861	33,4778	128,7984	-	=	1	-	
железо общее	0,1300	0,0552	0,1518	2,2778	2,0031	2,0098	1,2847	0,3186	0,4644	0,4533	0,2350	0,3475	0,8109	1,089	3	0,7447	-0,2553	
жесткость общая	25,7625	14,0411	14,0408	18,6486	21,0403	24,6328	28,9856	15,5019	48,0008	28,9642	9,9375	16,7172	22,1894	-	=	1	-	
кадмий	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0010	0,0011	2	0,9091	-0,0909	
калий	51,9167	64,1111	56,8056	56,5556	58,8056	53,3611	54,5833	57,2500	61,6944	61,8611	45,8056	54,5556	56,4421	-	-	-	-	
кальций	349,0194	192,1028	158,1111	349,3889	298,4306	344,4028	170,4167	159,4472	276,1722	411,4222	128,1944	185,7083	251,9014	-	-	-	-	
карбонаты	5,3367	5,3367	5,3367	5,3367	5,3367	5,3367	5,3367	5,3367	5,3367	5,3367	5,3367	5,3392	5,3369	-	-	-	-	
кобальт	0,0245	0,0226	0,0308	0,0280	0,0266	0,0256	0,0318	0,0237	0,0276	0,0296	0,0242	0,0263	0,0268	0,1206	2	0,2219	-0,7781	
магний	52,9444	20,2556	51,3889	82,6111	71,4306	73,7611	28,9111	29,8222	50,9056	54,3944	37,6278	49,5278	50,2984	500	-	0,1006	-0,8994	
марганец	0,0121	0,0122	0,0125	0,0112	0,0118	0,0115	0,0113	0,0123	0,0126	0,0123	0,0124	0,0125	0,0121	0,122	3	0,0988	-0,9012	
медь	0,0319	0,0347	0,0342	0,0335	0,0291	0,0328	0,0355	0,0272	0,0325	0,0344	0,0309	0,0301	0,0322	1,0977	3	0,0294	-0,9706	
молибден	0,0022	0,0050	0,0025	0,0027	0,0050	0,0031	0,0032	0,0038	0,0026	0,0033	0,0022	0,0022	0,0031	0,2532	2	0,0124	-0,9876	

МЫШЬЯК	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0515	2	0,0019	-0,9981
натрий	664,8333	1021,3056	937,3889	914,5278	1007,9722	1010,1389	736,0278	942,2222	954,7667	978,6278	782,5556	997,8889	912,3546	1018,3	2	0,8960	-0,1040
нефтепродукты	0,0491	0,0603	0,0676	0,0588	0,0604	0,0559	0,0777	0,0720	0,0643	0,0656	0,0737	0,0377	0,0619	0,5	-	0,1238	-0,8762
никель	0,0119	0,0114	0,0110	0,0118	0,0117	0,0117	0,0124	0,0124	0,0117	0,0115	0,0112	0,0116	0,0117	0,1123	3	0,1041	-0,8959
перманганатное число	5,4100	5,8411	5,4417	5,5811	5,9542	5,7736	6,1356	6,0992	6,3175	6,3575	5,8006	5,8875	5,8833	1	1	-	-
ртуть	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0105	1	0,0095	-0,9905
свинец	0,0066	0,0076	0,0114	0,0121	0,0115	0,0074	0,0081	0,0081	0,0122	0,0119	0,0108	0,0127	0,0100	0,0318	2	0,3153	-0,6847
селен	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,03	2	0,0033	-0,9967
стронций	0,5127	0,5471	0,5284	0,5314	0,5407	0,5323	0,4761	0,5414	0,5483	0,5479	0,5287	0,5426	0,5315	7,063	2	0,0752	-0,9248
сульфаты	944,4722	675,0556	1325,3333	1547,6944	1216,8333	1523,0278	623,0000	928,5556	501,0556	1688,0278	740,8889	878,0278	1049,3310	1776,2	4	0,5908	-0,4092
сухой остаток	1835,8056	1092,7222	2841,6944	3247,5000	1835,3056	2525,2778	1859,5278	2319,0556	1202,0000	2580,6667	984,2778	1224,2778	1962,3426	6171,2	ı	0,3180	-0,6820
фенол	0,0005	0,0005	0,0562792	0,0515167	0,0044792	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,04145	0,0131	0,2619	4	0,0502	-0,9498
фосфаты	1,0433	0,9859	1,1160	1,0655	0,9730	1,0820	0,9202	0,8705	0,8762	0,8528	0,9235	0,8059	0,9596	3,5423	3	0,2709	-0,7291
фторид-ионы	0,1475	0,2942	0,3086	0,7872	0,6042	0,6689	0,2997	0,4686	0,4431	0,4311	0,0400	0,4717	0,4137	9,604	2	0,0431	-0,9569
хлориды	887,2500	224,5694	459,7556	1128,0917	774,6667	780,4083	289,7861	500,7222	728,5833	1103,8056	209,8944	132,8111	601,6954	1543,7	4	0,3898	-0,6102
хром	0,0013	0,0011	0,0008	0,0011	0,0011	0,0012	0,0012	0,0012	0,0013	0,0012	0,0011	0,0011	0,0011	0,094	3	0,0121	-0,9879
цианиды	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0100	0,0398	2	0,2513	-0,7487
цинк	0,2263	0,2257	0,2249	0,2291	0,2266	0,2334	0,2250	0,2259	0,2293	0,2290	0,2222	0,2302	0,2273	1,2567	3	0,1809	-0,8191
ксантогенаты	0,0919	0,0663	0,0300	0,2850	0,0221	0,0210	0,0196	0,2289	0,1802	0,1664	0,0291	0,0888	0,1024	-	4	-	-

ПДК* - Величины ПДК для загрязняющих веществ приняты с учетом приращения природного, естественного фона, определяемого в фоновых наблюдательных скважинах за пределами зоны деятельности горно-обогатительного комплекса месторождения Актогай, к установленной предельно-допустимой концентрации загрязняющего вещества для культурно-бытового водопользования № 209 «Санитарные правила «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов».

Согласно результатам мониторинга подземных вод из наблюдательных скважин превышений фоновых концентраций не обнаружено, кроме систематических превышений по железу. Данные превышения не связаны с производственной деятельностью предприятия, так как повышенное содержание железа в подземных водах наблюдалось в 2012 году до ввода в эксплуатацию фабрики (протокол представлен в приложении 7).

Экологическое состояние подземных вод наблюдательных скважин в районе хвостохранилища для загрязняющих веществ 1-2, 3-4 класса опасности оценивается, как допустимое.

Анализ воздействия накопителя отходов на поверхностные воды

В районе хвостохранилища расположено русло пересыхающего ручья без названия, по которому с 2017 года планировалось ведение мониторинга за состоянием поверхностных вод, для получения объективной информации об экологическом состоянии компонентов окружающей среды в районе действующего объекта.

Однако ввиду полного пересыхания ручья наблюдение состояния поверхностных вод в 2019-2021 годах не представлялось возможным.

Воздействие накопителя отходов на поверхностные воды не происходило.

<u>Расчет допустимого объема хвостов обогащения для размещения на хвостохранилище.</u>

Исходные данные для расчета объема размещения хвостов обогащения для размещения на хвостохранилище:

- годовое количество образования хвостов обогащения составляют:
- на 2022 год: 54 073 259 тонн;
- на 2023 год: **54 023 146** тонн.
- $K_a = 1;$
- $K_{\Pi} = 1;$
- $K_B = 1.$
- $K_p = 1$, т.к. на данный момент рекультивация не предусмотрена.

Подставляем исходные данные в формулу:

$$M_{\text{норм}} = 1/3 \ M_{\text{обр}} * (K_{\text{B}} + K_{\text{П}} + K_{\text{a}}) * K_{\text{p}} = 1/3 * 54 073 259 * (1+1+1) * 1 =$$
54 073 259 т/год

$$M_{\text{норм}} = 1/3 \ M_{\text{обр}} * (K_{\text{B}} + K_{\text{П}} + K_{\text{a}}) * K_{\text{p}} = 1/3 * 54 \ 023 \ 146 * (1+1+1) * 1 =$$
54 023 146 т/год

Полученные результаты показывают, что без ущерба для ОС возможно складирование хвостов обогащения в количестве:

- на 2022 год: 54 073 259 тонн;
- на 2023 год: 54 023 146 тонн.

Лимиты захоронения отходов на 2022-2023 год представлены в таблице 6.7.

Лимиты захоронения хвостов обогащения в настоящем Отчете установлены на период складирования хвостов обогащения в существующее хвостохранилище по 3 этапу фаза 1-1 и 1-2 сроком на 2 года.

Строительные работы по реконструкции хвостового хозяйства с наращиванием ограждающей дамбы Стадии 3 фазы 2-1 хвостохранилища предусматриваются в период с июня 2022 г. по июнь 2023 г. После наращивания ограждающих дамб емкость хвостохранилища увеличивается на 75 000 тыс. тонн. Эксплуатация фазы 2-1 Стадии 3 хвостохранилища начинается после заполнения емкости фазы 1-2 Стадии 3 хвостохранилища. Согласно баланса, запас свободной емкости фазы 2-1 Стадии 3 хвостохранилища на конец 2023 года составит 66739,541 тыс. тонн.

Таблица 6.7 – Лимиты захоронения отходов на 2022-2023 года

таолица о.	7 711MINT DI SUAO	genennin enner	10B 114 2022 20	25 года	
Наименование отходов	Объем захороненных отходов на существующее положение, тонн/год	Образование, тонн/год	Лимит захоронения, тонн/год	Повторное использование, переработка, тонн/год	Передача сторонним организациям, тонн/год
1	2	3	4	5	6
		2022 го	д		•
Всего:	108831408	54073259,0	54073259,0		
в т.ч. отходов производства		54073259,0	54073259,0		
отходов потребления					
ТМО					
Хвосты отвальные (отходы обогащения)		54073259,0	54073259,0		
		2023 го	д		
Всего:		54023146,0	54023146,0		
в т.ч. отходов производства		54023146,0	54023146,0		
отходов потребления					
TMO					
Хвосты отвальные (отходы обогащения)		54023146,0	54023146,0		

6.4 Программа управления отходами

В соответствии со статьей 335 ЭК РК операторы объектов I категории, обязаны разработать программу управления отходами в соответствии с правилами утвержденными уполномоченным органом в области охраны окружающей среды.

Программа разрабатывается в соответствии с принципом иерархии и должна содержать сведения об объеме и составе образуемых и (или) получаемых от третьих лиц отходов, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления, а также описание предлагаемых мер по сокращению образования отходов, увеличению доли их повторного использования, переработки и утилизации.

Программа для объектов I категории разрабатывается с учетом необходимости использования наилучших доступных техник в соответствии с заключениями по наилучшим доступным техникам, разрабатываемыми и утверждаемыми в соответствии со статьей 113 Кодекса.

Программа управления отходами является неотъемлемой частью экологического разрешения.

Срок разработки программы зависит от срока действия экологического разрешения, но не превышает 10 лет.

Таким образом, разработка программы управления отходами будет осуществлена на стадии получения экологического разрешения на воздействие.

7. ВОЗДЕЙСТВИЕ НА ЗЕМЕЛЬНЫЕ РЕСУРЫ И ПОЧВЫ

Детальное описание почвенного покрова представлено в разделе 2.8 данного проекта.

Реконструкция Обогатительных фабрик №1 и №2, реконструкция хвостового хозяйства предусматривается на месторождении Актогай в Восточно-Казахстанской области, вовлечение дополнительных площадей при реализации проекта не предусматривается.

На участке строительства хвостохранилища предусматривается срезка плодородного слоя грунта (ПСП) предусматривается мощностью 30 см согласно «ПЗ по почвенному обследованию» общий объем плодородного грунта составит 165 тыс.м³. складирование ПСП предусматривается во временные бурты, расположенные в пределах земельного отвода на участках, которые исключают подтопление и загрязнение промышленными отходами с целью использования его при рекультивации территории после ликвидации хвостохранилища.

Осуществление работ предусматривается в границах отвода земельного участка. Движение транспорта и техники будет осуществляться по отсыпанным дорогам.

8. ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ МИР

Основными видами антропогенного воздействия на растительность являются:

- физическое уничтожение растительного покрова в результате проведения земляных работ при строительстве зданий, сооружений, коммуникаций, прудов, отстойников, полигонов хранения отходов и т.д.;
 - нарушение растительности на участках рекреационного назначения;
- изменение влагообеспеченности растений в результате водохозяйственного строительства;
 - воздействие загрязняющих веществ через атмосферу;
 - воздействие загрязняющих веществ через почву.

Нарушения растительности на участках рекреационного назначения происходить не будет ввиду отсутствия таких участков вблизи участка строительства.

Воздействие на растительность будет выражаться двумя факторами: через нарушение растительного покрова и посредством выбросов загрязняющих веществ в атмосферу, которые, оседая, накапливаются в почве и растениях.

Растительность в районе месторождения полупустынная и пустынная, растительный покров разреженный, состоит из засухоустойчивых многолетних злаков (ковыль и типчак), низкорослых кустарников (полынь, верблюжья колючка, различные виды солянок) высотой $1-2\,\mathrm{m}$.

Лесных массивов в районе проектируемой фабрики нет.

Выбросы загрязняющих веществ в атмосферу существенно не повлияют на растительный мир, превышений ПДК по всем ингредиентам на границе СЗЗ и в жилой зоне не ожидается.

Зеленые насаждения на территории проведения работ отсутствуют, в связи с чем уничтожение растительности на территории объекта строительства не предусматривается. Выбросы загрязняющих веществ в атмосферу существенно не повлияют на растительный мир, превышений ПДК по всем ингредиентам на границе СЗЗ и в жилой зоне не ожидается.

Редких и исчезающих растений в зоне влияния месторождения нет. Естественные пищевые и лекарственные растения отсутствуют.

Таким образом, проведенная выше оценка свидетельствует, что отрицательное влияние проектируемой фабрики на растительный покров территории, прилегающей к промплощадке, будет допустимым.

9. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ МИР

Одним из основных факторов воздействия на животный мир является фактор вытеснения животных за пределы их мест обитания.

В настоящее время основными представителями животного мира на территории СЗЗ фабрики являются немногочисленные виды грызунов, земноводных и птиц.

Редкие или вымирающие виды животных, занесенные в Красную Книгу Казахстана, в районе проведения работ не встречаются.

Путей миграции через территории рассматриваемого участка нет. При реализации намечаемой деятельности пользование животным миром не предусматривается.

Непосредственно на рассматриваемых участках комплекса обогатительной фабрики животные отсутствуют в связи с близостью к действующим промышленным объектам и постоянно проводимым производственным работам.

Для селитебных территорий характерно присутствие синатропных видов, находящих жилье или питание рядом с человеком. Наиболее распространенными из птиц являются: домовой воробей и сизый голубь. Кроме них водятся еще: грач, галка, полевой воробей, серая ворона, скворец, сорока и деревенская ласточка. Среди млекопитающих наиболее распространены полевая мышь.

Учитывая длительный эксплуатационный период функционирования комплекса АГОК высокую плотность взаимного расположения производственных объектов и населенных пунктов района исследований, изменений численности и других изменений животного мира, связанных с антропогенным воздействием, в среднесрочной ретроспективе не наблюдается.

Следовательно, при соблюдении всех правил производства работ, существенного негативного влияния на животный мир и изменения генофонда не произойдет, воздействие оценивается как допустимое.

10 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЗДОРОВЬЕ ЧЕЛОВЕКА

Влияние проводимых работ на здоровье человека может осуществляться через две среды: гидросферу и атмосферу.

В состав выбросов при проведении работ входят вещества, преимущественно от работающей техники и пыления.

Ближайший населённый пункт с. Актогай расположен на расстоянии 25 км от участка производства работ.

Загрязнение гидросферы на площади влияния предприятия не происходит.

Негативного влияние на здоровья человека не происходит.

Для обеспечения безопасных условий труда при строительстве, эксплуатации и выполнении требований по промышленной санитарии и гигиене труда рабочий должен быть обеспечен: санитарно-бытовыми помещениями, средствами индивидуальной защиты, спецодеждой, спецобувью, средствами защиты от шума и вибрации, средствами защиты

органов дыхания средствами контроля воздушной среды и необходимым уровнем освещенности.

Для обеспечения безопасности работающих на обогатительной фабрике и профилактики профзаболеваний необходимо предусмотреть средства индивидуальной защиты: спецодежду, спецобувь, средства защиты органов дыхания, органы слуха, рук, лица, головы. Применение средств индивидуальной защиты предусмотрено в обязательном порядке отраслевыми правилами техники безопасности. Выдача спецодежды, спецобуви и других индивидуальных средств защиты регламентирована «Отраслевыми нормами выдачи спецодежды, спецобуви и других средств защиты».

Для создания необходимого и достаточного уровня освещенности на рабочих местах с целью обеспечения безопасных условий труда необходимо руководствоваться «отраслевыми нормами проектирования искусственного освещения предприятия нефтяной промышленности, а также соблюдать требования санитарные требования к освещению.

Обобщая воздействия на здоровье, можно отметить, что все потенциальные отрицательные воздействия низкие.

Все отрицательные воздействия, описанные в данной главе, предположительно будут незначительными. Кроме того, минимальные и незначительные воздействия, связанные с загрязнением воздуха и шумом показаны на основании наихудшего сценария и, фактически, могут не возникнуть.

Необходимо учитывать и положительное воздействие. Увеличатся дополнительные возможности трудоустройства, что приведет к увеличению доходов людей, работающих на объекте, и тех, кто предоставляет услуги на объекте. Увеличение дохода увеличит их покупательскую способность. Это позволит людям покупать продукты, которые улучшат их питание, и, таким образом, сократится уровень заболеваемости и смертности, улучшится общее состояние здоровья и благосостояние. Увеличение дохода даст больший доступ к медицинскому обслуживанию, если понадобится.

11 ВЕРОЯТНОСТЬ АВАРИЙНЫХ СИТУАЦИЙ, ИСТОЧНИКИ, ВИДЫ, ПОВТОРЯЕМОСТЬ, ЗОНА ВОЗДЕЙСТВИЯ АВАРИЙНЫХ СИТУАЦИЙ

Авария — это разрушение зданий, сооружений и (или) технических устройств, неконтролируемые взрыв и (или) выброс опасных веществ (Закон Республики Казахстан «О гражданской защите» №188-V от 11 апреля 2014 года).

Аварийная ситуация - состояние потенциально опасного объекта, характеризующееся нарушением пределов и/или условий безопасной эксплуатации, но не перешедшее в аварию, при котором все неблагоприятные воздействия источников опасности на персонал, население и окружающую среду удерживаются в приемлемых пределах посредством соответствующих предусмотренных проектом технических средств.

Основными причинами возникновения аварийных ситуаций на объектах различного назначения являются нарушения технологических процессов на промышленных предприятиях, технические ошибки обслуживающего персонала, нарушения противопожарных правил и правил техники безопасности, отключение систем энергоснабжения, водоснабжения и водоотведения, стихийные бедствия, террористические акты и т.п.

Потенциальными источниками возможных аварий могут быть:

Опасные вещества - взрывопожароопасные вещества, вредные вещества.

Опасные режимы работы оборудования и объектов, характеризующимися такими технологическими параметрами, как давление, вакуум, температура, напряжение, состав технологической среды и др.

Потенциальными видами опасности для каждой единицы оборудования (аппарата, машины) и протекающего в нем процесса являются пожар, взрыв (внутри оборудования, в зданиях или окружающем пространстве), разрыв или разрушение оборудования, выброс вредных веществ, сочетание перечисленных видов опасности.

В технологическом процессе пожароопасными материалами является токсичные вещества выбросы пары кислоты серной кислоты, отходы (люминесцентные лампы, промасленная ветошь, отработанные масла).

Отработанные ртутные лампы содержат в своем составе вредное токсичное вещество - ртуть.

Общая категория взрыво-пожароопасности для технологических объектов (зданий и сооружений) обогатительной фабрики, определена как категория «Г» и «Д» согласно РНТП 01-94 (МВД РК) Республиканские нормы технологического проектирования. Определение категорий помещения, зданий и сооружений по взрыво- и пожаробезопасности.

К категории Г относятся помещения, в которых находятся (обращаются) негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива.

К категории Д относятся негорючие вещества и материалы в холодном состоянии.

По Критериям оценки степени рисков в области пожарной и промышленной безопасности, Гражданской обороны, утв. приказом Министра по чрезвычайным ситуациям Республики Казахстан от 11.02.2011 года № 46 промышленные объекты с производствами категорий "Г" и "Д" по взрывопожарной и пожарной опасности, относятся к незначительной степени риска.

Комплекс технических решений, заложенных в проекте, направлен на предотвращение или исключение аварийных ситуаций и базируется на следующих принципах:

- сведение к минимуму вероятности аварийных ситуаций, путем применения комплексных мероприятий, направленных на устранение причин их возникновения;
- обеспечение безопасности обслуживающего персонала, населения, сведения к минимуму ущерба от загрязнения окружающей среды.

Пожарная безопасность строительных материалов зависит от их природы, которая предопределяет возможные негативные последствия их деструкции, возникающие при воздействии на материал комплекса экстремальных факторов при пожаре.

Поэтому в ряду основных эксплуатационно-технических свойств строительного материала, наряду с морозостойкостью, коррозионной стойкостью, основное место занимает показатель «огнестойкость».

Огнестойкость характеризует способность материала и изделий сохранять физикомеханические свойства при воздействии огня и высоких температур, развивающихся в условиях пожара.

Вероятность аварийных и залповых выбросов при эксплуатации обогатительной фабрики отсутствует.

К числу организационно-технических мер относятся следующие мероприятия: своевременное проведение ремонта технологического оборудования, проведение режимно-наладочных работ, соблюдение технологии процессов завода.

При складировании отходов производства в хвостохранилище могут возникнуть различные осложнения и аварии. Борьба с осложнениями и авариями требует больших затрат материальных и трудовых ресурсов, ведет к потере времени, что снижает производительность, повышает затраты, вызывает увеличение продолжительности простоев и ремонтных работ. Поэтому знание причин аварий, своевременная разработка мероприятий по их предупреждению, быстрая ликвидация возникших осложнений приобретают большое практическое значение.

Потенциальные опасности, связанные с риском проведения работ по размещению и хранению отвальных хвостов, могут возникнуть в результате воздействия, как природных, так и антропогенных факторов.

Природные факторы воздействия

Под природными факторами понимаются разрушительные явления, вызванные природно-климатическими условиями, которые не контролируются человеком. При возникновении природной чрезвычайной ситуации возникает опасность саморазрушения окружающей среды.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении о риске, связанном с природными факторами.

К природным факторам относятся:

- землетрясения;
- неблагоприятные метеоусловия (ураганные ветры).

Сейсмическая активность. Землетрясения возникают неожиданно и, хотя продолжительность главного толчка не превышает нескольких секунд, его последствия бывают трагическими. Предупредить начало землетрясения точно в настоящее время еще невозможно. Прогноз его оправдывается в 80 случаях и носит ориентировочный характер.

Сейсмичность площадки строительства, согласно СП РК 2.03-30-2017 «Строительство в сейсмических зонах», составляет 6 (шесть) баллов. Устройство хвостохранилища запроектировано с учетом сейсмических нагрузок.

Неблагоприятные метеоусловия. В результате неблагоприятных метеоусловий, таких как сильные ураганные ветры, повышенные атмосферные осадки, могут произойти частичные повреждения оборудования, кабельных линий электричества (ЛЭП) на территории промышленных площадок хвостохранилища и ОФ.

Климат района, находящегося в глубине Евроазиатского материка, является резко континентальным, с жарким сухим летом и холодной малоснежной зимой.

Для территории проектируемых работ зимой характерны сильные ветры преимущественно юго-восточного и южного направлений, с сильными ветрами отмечаются снежные метели и бураны. Максимальные средние скорости ветра наблюдаются в зимние месяцы и составляют 15 и более м/сек. Число дней с ветром более 15 м/сек в исследуемом районе составляет 18-20 дней в году. При проектировании и обустройству месторождения необходимо принимать упреждающие меры для недопущения неблагоприятных ситуаций.

Антропогенные факторы

Под антропогенными факторами понимаются быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации.

К антропогенным факторам относятся факторы производственной среды и трудового процесса.

Трендовые показатели свидетельствуют: в то время как число природных катастроф при небольших колебаниях по годам в целом остается неизменным, техногенные аварии за последние пять лет резко умножились.

Возможные техногенные аварии, которые могут быть при ведении добычи руды открытым способом можно разделить на следующие категории:

аварийные ситуации с автотранспортной техникой;

воздействие электрического тока кабельных линий;

аварийная ситуация, связанная с попаданием техногенных токсичных веществ в окружающую среду.

Аварийные ситуации с автотранспортной техникой. Согласно проектным данным для строительства хвостохранилища и проведения работ будет использован грузовой автотранспорт и автотракторная техника на дизельном топливе.

Причины транспортных происшествий могут быть нарушения правил дорожного движения, техническая неисправность автомобиля, превышение скорости движения, недостаточная подготовка лиц, управляющих автомобилями, слабая их реакция, низкая эмоциональная устойчивость.

Выезд транспорта в неисправном виде, или опрокидывание транспорта может привести к возникновению аварий и, как следствие, к утечке топлива, химически опасных реагентов.

Утечка топлива может привести к загрязнению почвенно-растительного покрова, поверхностных и подземных вод горюче смазочными материалами. Площадь такого загрязнения небольшая.

Рассмотрим модель возникновения следующей ситуации: в результате аварии произошла утечка топлива из бака автомобиля. Ориентировочно заправка автотранспорта составляет 50 литров. Ориентировочная площадь загрязнения в этом случае составит 4 $\rm m^2$. Ориентировочная концентрация нефтеорганики, попавшей в окружающую среду, составит 0,04 т на 4 $\rm m^2$ или 0,01 т/ $\rm m^2$.

Биологическое изучение влияния нефтяного загрязнения на различные свойства почвы в лабораторных условиях показало, что при содержании 100-200 т/га нефтеорганики происходит стимуляция жизнедеятельности всех групп микроорганизмов, при увеличении до 400-1000 т/га наблюдается ингибирование биологической активности, снижение роста и развития микроорганизмов.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная. При своевременном реагировании и ликвидации последствий разлива топлива, произойдет только стимуляция жизнедеятельности микроорганизмов почвы, необратимого процесса нарушения морфологической структуры почвенного покрова не происходит.

Воздействие электрического тока кабельных линий. Для электроснабжения объектов хвостохранилища предусматривается строительство воздушной линии электропередачи на напряжение 6 кВ. Высоковольтная линия электропередачи на напряжение 6 кВ выполняется на железобетонных опорах.

Вопросы безопасных условий труда в электротехнических помещениях при обслуживании и ремонте электрооборудования решены в соответствии с «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами устройства электроустановок».

Компановка оборудования, конструктивное выполнение его, монтаж токоведущих частей, ошиновка и установка изоляторов, несущие конструкции, изоляционные и другие минимальные расстояния выбраны таким образом, чтобы обеспечивалось безопасное

обслуживание оборудования. Для защиты от попадания обслуживающего персонала под опасное для жизни напряжение предусматривается заземление всех металлических нетоковедущих электрооборудования. Для заземления используются металлические строительные конструкции технологического оборудования, зданий, трубопроводы. Металлические части оборудования присоединяются к внутреннему контуру заземления, составляющему с металлическими элементами здания и внешним контуром единую систему заземления. Общая сеть заземления выполняется путем непрерывного электрического соединения между собой заземляющих проводников и заземляющих жил кабелей. Общее сопротивление заземляющего устройства должно быть не более 4 Ом.

Предупреждение аварийных ситуаций на хвостохранилище, связанных с попаданием техногенных минеральных образований в окружающую среду.

Экологические последствия могут иметь аварии на хвостохранилище, связанные с попаданием значительного количества техногенных минеральных образований в окружающую среду.

Анализ исходных данных для оценки риска возможных гидродинамических аварий показывает, что участком возможного разрушения может быть прорыв пульпопровода.

Гидродинамическая авария — это чрезвычайное событие, связанное с выходом из строя (разрушением) гидротехнического сооружения или его части, и неуправляемым перемещением больших масс воды, несущих разрушения и затопления обширных территорий. К основным потенциально опасным гидротехническим сооружениям относятся плотины, водозаборные и водосборные сооружения.

Источниками гидродинамической аварии могут быть воздействия сил природы (землетрясений, ураганов, размывов плотин) или воздействия человека (нанесения ударов ядерным или обычным оружием по гидротехническим сооружениям, крупным естественным плотинам диверсионных актов), а также из-за конструктивных дефектов или ошибки проектирования.

Видами гидродинамической аварии являются перелив через дамбу, или прорыв.

Из вышеизложенного следует, что проектный объем хвостохранилища обеспечит прием всего планируемого объема хвостов без аварийных сбросов и загрязнения окружающей среды.

Для предупреждения чрезвычайных ситуаций на объекте службами предприятия проводится контроль за состоянием ограждающих конструкций хвостохранилища (дамб, насыпей, валов), а также за другими сооружениями хвостохранилища.

При выполнении принятых проектных решений по охране труда и техники безопасности при проведении работ при сооружении хвостохранилища вероятность возникновения аварийной ситуации, связанной с попаданием значительного количества техногенных токсичных веществ в окружающую среду будет малой.

Мониторинг состояния окружающей среды при эксплуатации хвостохранилища включает целый комплекс мер, обеспечивающих безаварийную работу гидротехнического сооружения 2 класса капитальности при складировании веществ (хвосты - пески) относящихся к техногенным минеральным образованиям.

Хвостохранилище входит в состав хвостового хозяйства обогатительной фабрики и предназначено для складирования отвальных хвостов.

Схема хвостового хозяйства разработана с учетом обеспечения заданной производительности фабрики на срок и объем перерабатываемой руды. Максимальное использование существующих сооружений хвостового хозяйства, их высокая оснащенность, позволяют в целом обеспечить бесперебойную безопасную работу фабрики.

Степень надежности проектируемого хвостохранилища подтверждена расчетами его устойчивости до проектной отметки.

При эксплуатации хвостохранилища в перечень контроля диагностируемых параметров входят:

- наблюдения за технологией намыва и укладки хвостовой пульпы, за характеристиками сбрасываемой пульпы;
- отбор проб хвостов, намытых в тело упорной призмы, при этом определяются их физические свойства (влажность, гранулометрический состав, объемный и удельный веса, пористость, коэффициент фильтрации);
 - наблюдения за горизонтом воды;
 - наблюдения за уровнем воды в пьезометрических скважинах;
 - производство замеров деформаций, осадок и смещений дамб хвостохранилища.

При решении задач оптимального управления предприятием главным является необходимость принятия технических решений, обеспечивающих экологическую безопасность при функционировании производства.

11.1 Мероприятия по снижению экологического риска

Одним из основных направлений мероприятий по снижению риска возникновения аварийных ситуаций является внедрение систем контроля технологических процессов, автоматического, автоматизированного и дистанционного управления. Автоматизированная система управления технологическими процессами (АСУТП) позволяет свести к минимуму вероятность возникновения аварийных ситуаций. Постоянным рабочим местом технологического персонала являются специальные помещения, в которых размещены системы управления оборудованием, обеспечивающие безопасное ведение технологического процесса. Работники обогатительного комплекса обеспечиваются спецодеждой, согласно установленным нормам.

Наиболее опасной по своим последствиям на производстве является авария технологического оборудования. При разгерметизации емкостного оборудования и технологических трубопроводов возможен выпуск пульпы, опасность пролитой пульпы заключается в токсическом и химическом воздействии на организм человека, так как они содержат остаточную концентрацию реагентов.

Для предотвращения растекания пульпы полы разбиты на карты, имеют уклоны и приямки, оборудованные насосами. После ликвидации аварии пульпа будет перекачиваться в технологические емкости (зумпфы) и возвращаться в технологический процесс.

Для обеспечения безаварийного и безопасного ведения технологического процесса проектом предусмотрены следующие мероприятия:

- защита емкостного оборудования от переполнения (переливы на емкостях, сигнализация и автоматическая отсечка подачи продуктов в емкости при достижении в них максимального уровня);
 - автоматическое включение резервных насосов при остановке основных;
- полы выполнены из химически стойких материалов и покрыты рулонной коррозионностойкой гидроизоляцией;
- подъезд самосвала к месту разгрузки осуществляется после разрешающих сигналов технологического светофора;
 - бесперебойное обеспечение водой и сжатым воздухом заданных параметров;
- для предотвращения поражения персонала электрическим током предусмотрена электроизоляция и заземление оборудования;

- использование световой и звуковой сигнализации в момент пуска в работу всего оборудования;
- контроль технологического процесса и основных параметров состояния оборудования и противоаварийной защиты с использованием микропроцессорной техники систем КИПиА;
- применение аспирационных установок и местных отсосов в местах, где возможно выделение вредных веществ и пыли;
 - блокирование аспирационных установок с технологическим оборудованием;
 - мокрая уборка помещений (корпусов и галерей).
- поддержание в постоянной готовности сил и средств ликвидации аварийных ситуаций (противопожарные формирования);
- проведение мероприятий, направленных на предупреждение, ликвидацию аварий и их последствий;
- незамедлительное информирование уполномоченного государственного органа в области промышленной безопасности, центральных исполнительных органов и органов местного государственного управления, населения и работников;
 - вести учет аварий;
- страховать гражданско-правовую ответственность за причинение вреда жизни, здоровью или имуществу других лиц и окружающей среде в случае аварий на опасных производственных объектах.

Отвальные хвосты складируются на реконструируемом хвостохранилище без сгущения. Для обеспечения безаварийного и безопасного ведения технологического процесса проектом предусмотрены следующие мероприятия:

- при заборе оборотной воды автоматическое включение резервных насосов при остановке основных;
- контроль технологического процесса и основных параметров состояния оборудования и противоаварийной защиты с использованием микропроцессорной техники систем КИПиА;
- поддержание в постоянной готовности сил и средств ликвидации аварийных ситуаций;
- проведение мероприятий, направленных на предупреждение, ликвидацию аварий и их последствий;
- незамедлительное информирование уполномоченного государственного органа в области промышленной безопасности, центральных исполнительных органов и органов местного государственного управления, населения и работников;
 - вести учет аварий;
- страховать гражданско-правовую ответственность за причинение вреда жизни, здоровью или имуществу других лиц и окружающей среде в случае аварий на опасных производственных объектах.

Чрезвычайные ситуации

Хозяйствующие субъекты, занимающиеся промышленной деятельностью, берут на себя обязательства по соблюдению природоохранного законодательства и обеспечению безаварийной деятельности. За допущенную аварийную ситуацию, повлекшую нарушение природоохранного законодательства, субъект несет полную ответственность, предусмотренную законом. Исключение составляют форс-мажорные обстоятельства, не зависящие от субъекта. Например, землетрясения и ураганы, террористические акты и т.п.

Тем не менее, полностью исключить возможность аварийных ситуаций (отклонений от нормального режима эксплуатации) на обогатительных фабриках и хвостохранилище невозможно. В случае возникновения аварийных ситуаций, выполняются мероприятия, которые разработаны в оперативном плане ликвидации аварии (ПЛА).

На предприятии ежегодно составляются и утверждаются руководителем предприятия план ликвидации аварий (ПЛА). В оперативной части ПЛА рассматриваются: место и вид аварии, мероприятия по спасению людей и ликвидации аварии, маршруты эвакуации. В районе хвостохранилища (в непосредственной близости) имеется карьер строительных материалов, на насосной станции оборотного водоснабжения предусматривается – аварийный запас материалов и технических средств. Для оповещения работников, находящихся в зоне возможного затопления, включаются сирены на насосной станции оборотного водоснабжения. Обслуживающий персонал имеет телефонную связь.

Планы ликвидации аварий хвостохранилища и сооружений хвостового хозяйства, а также фабрик по обогащению сульфидных руд рудника №1, №2 «Актогай» ТОО «KAZ Minerals Aktogay» (KA3 Минералз Актогай) (на 2022 год) представлены в Приложении 17.

12 ПРЕДЛОЖЕНИЯ ПО ОРГАНИЗАЦИИ ПРОИЗВОДСТВЕННОГО ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ

В соответствии со статьей 182 ЭК РК «Операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль». В рамках осуществления производственного экологического контроля выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

12.1. Цель и задачи производственного экологического контроля

Целью производственного экологического контроля (ПЭК) состояния окружающей среды является создание информационной базы, позволяющей осуществлять производственные и иные процессы на «экологически безопасном» уровне, а также решать весь комплекс природоохранных задач, возникающих в результате деятельности предприятия.

Программа производственного экологического контроля должно разрабатываться на основании требований Экологического Кодекса Республики Казахстан. ПЭК на предприятии является основным информационным звеном в системе управления окружающей средой, организованной в соответствии с требованиями ст.185 Экологического кодекса РК.

В Программе ПЭК для объектов предприятия должны, определены основные направления и общая методология мониторинговых работ по компонентам окружающей среды: атмосферный воздух, водные ресурсы, управление отходами, почвы, растительный покров, животный мир и радиационная обстановка.

Основными целями производственного экологического контроля являются:

- получение информации для принятия оператором объекта решений в отношении внутренней экологической политики, контроля и регулирования производственных процессов, потенциально оказывающих воздействие на окружающую среду;
- обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- сведение к минимуму негативного воздействия производственных процессов на окружающую среду, жизнь и (или) здоровье людей;
 - повышение эффективности использования природных и энергетических ресурсов;
 - оперативное упреждающее реагирование на нештатные ситуации;
- формирование более высокого уровня экологической информированности и ответственности руководителей и работников оператора объекта;
 - информирование общественности об экологической деятельности предприятия;

- повышение эффективности системы экологического менеджмента.

При проведении производственного экологического контроля оператор объекта обязан:

- соблюдать программу производственного экологического контроля;
- в отношении объектов I категории установить автоматизированную систему мониторинга эмиссий в окружающую среду на основных стационарных источниках эмиссий в соответствии с утвержденным уполномоченным органом в области охраны окружающей среды порядком ведения автоматизированного мониторинга эмиссий в окружающую среду и требованиями пункта 4 статьи 186 настоящего Кодекса;
- создать службу производственного экологического контроля либо назначить работника, ответственного за организацию и проведение производственного экологического контроля и взаимодействие с государственными органами;
 - следовать процедурным требованиям и обеспечивать качество получаемых данных;
- систематически оценивать результаты производственного экологического контроля и принимать необходимые меры по устранению выявленных несоответствий требованиям экологического законодательства Республики Казахстан;
- представлять в установленном порядке отчеты по результатам производственного экологического контроля в уполномоченный орган в области охраны окружающей среды;
- в течение трех рабочих дней сообщать в уполномоченный орган в области охраны окружающей среды о фактах нарушения требований экологического законодательства Республики Казахстан, выявленных в ходе осуществления производственного экологического контроля;
- по требованию государственных экологических инспекторов представлять документацию, результаты анализов, исходные и иные материалы производственного экологического контроля, необходимые для осуществления государственного экологического контроля.

Ожидаемые результаты:

Получение достоверной информации на основе натурных наблюдений по состоянию компонентов окружающей среды, оценка воздействия проводимой хозяйственной деятельности на окружающую среду, прогнозирование отдаленных последствий хозяйственной деятельности и неблагоприятных ситуаций, разработка при необходимости эффективных мероприятий по минимизации (ликвидации) воздействий.

12.2 Операционный мониторинг

Операционный мониторинг (мониторинг производственного процесса) включает в себя наблюдение за параметрами технологического процесса для подтверждения того, что показатели деятельности находятся в диапазоне, который считается целесообразным для его надлежащей проектной эксплуатации и соблюдения условий технологического регламента данного производства.

В соответствии с пунктом 3 статьи 186 Экологического кодекса Республики Казахстан содержание операционного мониторинга определяется оператором объекта.

В процессе операционного мониторинга Компании, где возможно осуществляется контроль деятельности предприятия с целью сравнения фактических данных природопользования (в штатном режиме) с установленными показателями:

- учёт количества перерабатываемых и используемых сырья и материалов;
- учёт обращения с отходами (объемы образования и способы обращения);
- учёт времени работы оборудования и параметров технологического процесса.

В рамках операционного мониторинга предусматривается проведение контроля эффективности пылеулавливающих установок с периодичностью не менее 1 раз в год.

Результаты операционного мониторинга хранятся на предприятии, в ежеквартальные отчеты по производственному экологическому контролю согласно установленной форме не включаются.

12.3 Мониторинг эмиссий

Мониторингом эмиссий в окружающую среду является наблюдение за количеством, качеством эмиссий и их изменением. Мониторинг эмиссий в окружающую среду на объектах I категории должен включать в себя использование автоматизированной системы мониторинга эмиссий в окружающую среду.

Автоматизированная система мониторинга эмиссий в окружающую среду – автоматизированная система производственного экологического мониторинга, отслеживающая показатели эмиссий в окружающую среду на основных стационарных источниках эмиссий, которая обеспечивает передачу данных в информационную систему мониторинга эмиссий в окружающую среду в режиме реального времени в соответствии с правилами ведения автоматизированной системы мониторинга эмиссий в окружающую среду при проведении производственного экологического контроля, утвержденными уполномоченным органом в области охраны окружающей среды.

Мониторинг эмиссий в атмосферный воздух. Для осуществления мониторинга эмиссий в атмосферный воздух на предприятии используются расчетные и инструментальные методы. Инструментальные методы контроля должны осуществляться производственной или сторонней лабораторией, аккредитованной в соответствии с требованиями законодательства о техническом регулировании. В отношении всех остальных источников выбросов загрязняющих веществ в атмосферу мониторинг эмиссий применяется расчетный метод с использованием методик расчета, примененных при обосновании нормативов эмиссий. Мониторинг эмиссий расчетными методами осуществляется лицом, ответственным за охрану окружающей среды. Контроль за соблюдением установленных нормативов выбросов загрязняющих веществ включает определение массы выбросов загрязняющих веществ в единицу времени (г/с, тонн/год) и сравнение этих показателей с установленными нормативными показателями ПДВ.

12.4 Мониторинг воздействия

Мониторинг воздействия представляет собой наблюдения за изменением состояния компонентов окружающей среды в результате производственной деятельности предприятия. Исходя из специфики производственной деятельности предприятия, и в соответствии с данными проектной и нормативной документации предприятия мониторинг воздействия для Компании проводится на объектах предприятия, относящихся к 1 и 2 классу опасности согласно санитарной классификации. Перечень контролируемых загрязняющих веществ определяется исходя из специфики выбросов загрязняющих веществ от источников производственных площадок предприятия. Мониторинг воздействия осуществляется путем проведения натурных измерений в контрольных точках на границе санитарно-защитной зоны производственного объекта 1 и 2 класса опасности согласно санитарной классификации, проводимых производственной или сторонней лабораторией, аккредитованной в соответствии с требованиями законодательства о техническом регулировании.

12.5 Мониторинг почвенного покрова

Целью мониторинга состояния почвенного покрова является получение аналитической информации о состоянии почв для оценки влияния деятельности предприятия на их качество. Для характеристики состояния почв пробы будут отбираться непосредственно на границе СЗЗ. При проведении мониторинговых исследований проводится визуальное обследование территории предприятия, в ходе которого выявляются места потенциального загрязнения

Отбор, подготовка и анализ проб почвы проводиться независимыми лабораториями, аккредитованными в порядке, установленном законодательством Республики Казахстан о техническом регулировании.

Отбор проб почвы будет проводиться 1 раз в год (в 3 квартале).

12.6 Контроль водных ресурсов

Программа мониторинга водных ресурсов включает проведение контроля за состоянием воды в хвостах обогащения, подземных вод и снежного покрова, находящихся в зоне влияния деятельности предприятия.

12.7 Производственный радиационный мониторинг

В перечень работ по радиационному обследованию входит определение радиационного фона на территории промплощадок и помещений. Радиационный мониторинг проводится один раз в год.

Контроль за уровнем радиационного фона

Наименование источников воздействие	Контролируемые компоненты	Количество замеров	Периодичность контроля
1	2	3	4
Объекты предприятия, периметр карьера	мощность дозы γ-излучения	2067	1 раз в год
Помонилия произволотополиции и	мощность дозы γ-излучения	3181	
Помещения производственных и административных зданий	эквивалентная равновесная объемная активность радона	1818	1 раз в год

12.8 Мониторинг отходов производства

Мониторинг отходов заключается в ежедневном учёте персоналом происхождения, характера и класса опасности всех отходов, образующихся на территории предприятия.

ПРОГРАММА ПРОИЗВОДСТВЕННОГО ЭКОЛОГИЧЕСКОГО КОНТРОЛЯ (ПЭК) ТОО «KAZ MINERALS AKTOGAY» (КАЗ МИНЕРАЛЗ АКТОГАЙ) НА 2022 ГОД

Таблица 1 - Сведения об источниках выбросов загрязняющих веществ, на которых мониторинг осуществляется инструментальными измерениями

Наименование площадки	Проектная мощность	их выоросов загрязняющих веществ, на Источники выброса	•	Местоп (геогра	оложение фические цинаты)	Наименование загрязняющих веществ согласно проекта	Периодичность инструментальны х замеров
	производства	Наименование	Номер				
1	2	3	4		5	6	7
		Загрузка в дробилку, пересыпка с передаточного конвейера	0001			Пыль неорган. 70- 20% SiO ₂	1 раз в квартал
Обогатительн ая фабрика-1		Питатель подачи крупнодробленой руды на мельницу, погрузка руды на транспортер для подачи на мельницу	0002	46,565562	79,565564	Пыль неорган. 70- 20% SiO ₂	1 раз в квартал
		Галечная дробилка (CR-102) Галечная дробилка (CR-103)	0058			Пыль неорган. 70- 20% SiO ₂	1 раз в квартал
		Бункерный склад извести	0004			Пыли извести (кальций оксид)	1 раз в квартал
		Валковый пресс высокого давления (CR-105)	0059			Пыль неорган. 70- 20% SiO_2	1 раз в квартал
		Загрузка в дробилку, пересыпка с передаточного конвейера	0201			Пыль неорган. 70- 20% SiO_2	1 раз в квартал
06		Питатель подачи крупнодробленой руды на мельницу, погрузка руды на транспортер для подачи на мельницу	0202			Пыль неорган. 70- 20% ${ m SiO_2}$	1 раз в квартал
Обогатительн ая фабрика-2		Бункерный склад извести	0204			Пыли извести (кальций оксид)	1 раз в квартал
		Галечная дробилка (CR-102) Галечная дробилка (CR-103)	0258			Пыль неорган. 70- 20% SiO ₂	1 раз в квартал
		Валковый пресс высокого давления (CR-105)	0259			Пыль неорган. 70- 20% SiO ₂	1 раз в квартал

Таблица 2 – Сведения об источниках выбросов загрязняющих веществ, на которых мониторинг осуществляется расчетным методом

Наименование площадки	Источник выброса		а которых мониторинг осуще Местоположение (географические координаты)		Наименование загрязняющих веществ	Вид потребляемого сырья/ материала (название)
	Наименование	Номер	Широта	Долгота		(11110)
	Мельницы, флотомашины, сгуститель, баковая аппаратура	0003	46,565562	79,565564	Пыль неорганическая: 70- 20% SiO2	Сульфидные медно- молибденовые руды
	Участок гашения извести	0005			Кальций оксид	Сульфидные медно- молибденовые руды
Обогатительная	Чан контактный (Емкость приготовления изобутил ксантогената натрия (Sibx) ТК-168 (49 м3))	0006			2-Метилпропан-1-ол (Изобутиловый спирт) Пропан-2-ол (Изопропиловый спирт) Сероуглерод	Сульфидные медно- молибденовые руды
	Чан расходный (Емкость хранения изобутил ксантогената натрия (Sibx) ТК-169 (72 м3))	0007			Сероуглерод 2-Метилпропан-1-ол (Изобутиловый спирт) Пропан-2-ол (Изопропиловый спирт)	Сульфидные медно- молибденовые руды
фабрика-1	Установка для растаривания барабанов, чан, емкость расходная Чан контактный	0008			Сероводород	Сульфидные медно- молибденовые руды
					Сероуглерод	
	(Емкость приготовления гидросульфид натрия ТК-179 (48 м3)) Емкость расходная (Емкость хранения гидросульфид натрия ТК-180 (72 м3))				2-Метилпропан-1-ол (Изобутиловый спирт)	
	Чан контактный ТК-167	0009			диНатрий карбонат	Сульфидные медно- молибденовые руды
	Шкаф для реактивов	0011			Натрий гидроксид диНатрий карбонат	Сульфидные медно- молибденовые руды
					Азотная кислота Аммиак	

		1			
				Гидрохлорид	
				Серная кислота	
				Керосин	
				Хром	
	Спектрометр атомно-	0016		Азотная кислота	Сульфидные медно-
	абсорбционный	0010		Аммиак	молибденовые руды
				Гидрохлорид	
		0017		Хром	
	Спектрометр атомно-			Азотная кислота	Сульфидные медно-
	абсорбционный	0017		Аммиак	молибденовые руды
				Гидрохлорид	
				лезо (II, III) оксиды	
				нец и его соединения	
	Сварочный участок	0018-01		зота (IV) диоксид	Сульфидные медно-
	Сварочный участок	0010-01		Углерод оксид	молибденовые руды
			Фтор	оистые газообразные	
				соединения	
	Точильно-шлифовальный	0018-02	Взя	вешенные частицы	Сульфидные медно-
	станок	0018-02	Ι	Тыль абразивная	молибденовые руды
	Ванна для мойки деталей	0018-03		Керосин	Сульфидные медно- молибденовые руды
		0019-01	Жел	лезо (II, III) оксиды	
				нец и его соединения	
			A	зота (IV) диоксид	
	Стол сварщика			Углерод оксид	
			Фтор	оистые газообразные	Сульфидные медно-
				соединения	молибденовые руды
			Фтор	оиды неорганические	
			пл	юхо растворимые	
			Пы.	ль неорганическая: 70-20% SiO2	
	Металлообрабатывающие станки	0019-02	Взя	вешенные частицы	Сульфидные медно-
			Γ	Тыль абразивная	молибденовые руды
	Ванна для мойки деталей	0019-03		асло минеральное	Сульфидные медно-
				нефтяное	молибденовые руды

	Шиномонтажный участок	0020-02	Сера диоксид	
			Углерод оксид	
			Бензин (нефтяной	Сульфидные медно-
			малосернистый) /в	
			пересчете на углерод/	молибденовые руды
			Пыль тонко измельченного	1
			резинового вулканизата	
	Кругло-шлифовальный	0020.02	Взвешенные частицы	Сульфидные медно-
	станок	0020-03	Пыль абразивная	молибденовые руды
	Ванна для мойки деталей	0020-04	Керосин	Сульфидные медно-
	Ванна дзя монки детален	0020 04	•	молибденовые руды
			Железо (II, III) оксиды	_
			Марганец и его соединения	
			Азота (IV) диоксид	
	Стол сварщика	0021-02	Углерод оксид	Сульфидные медно-
	Стол сварщика		Фтористые	молибденовые руды
			газообразные соединения	
			Железо (II, III) оксиды	
			Марганец и его соединения	
		0021-03	Сера диоксид	
	Шиномонтажный участок		Углерод оксид	
			Бензин (нефтяной	Сульфидные медно-
			малосернистый) /в	молибденовые руды
			пересчете на углерод/	молиоденовые руды
			Пыль тонко измельченного	
			резинового вулканизата	
	Ванна для мойки деталей	0021-04	Масло минеральное	Сульфидные медно-
		0021-04	нефтяное	молибденовые руды
	Участок ремонта аккумуляторов	0022	Серная кислота	Сульфидные медно-
			Серпая кислота	молибденовые руды
	Вытяжной шкаф	0023-01	Серная кислота	Сульфидные медно-
	рытяжной шкаф	0023-01	Сернал кислота	молибденовые руды
	Ванна мойки деталей	0023-02	Масло минеральное	Сульфидные медно-
	ванна моики деталеи	0023-02	нефтяное	молибденовые руды

Вытяжной шкаф	0024	Серная кислота	Сульфидные медно- молибденовые руды
Стенд для испытаний топливной аппаратуры	0025	Масло минеральное нефтяное Алканы C12-19 /в пересчете на C/	Сульфидные медно- молибденовые руды
Стол для электросварки	0029	Железо (II, III) оксиды Марганец и его соединения Фтористые газообразные соединения	Сульфидные медно- молибденовые руды
Точильно- шлифовальный станок	0030	Взвешенные частицы Пыль абразивная	Сульфидные медно- молибденовые руды
Заточной станок	0031	Взвешенные частицы Пыль абразивная	Сульфидные медно- молибденовые руды
Дизель-генераторная	0032	Азота (IV) диоксид Азот (II) оксид Углерод оксид	Сульфидные медно- молибденовые руды
		Углерод Сера диоксид	
Дизель-генераторная	0033	Азота (IV) диоксид Азот (II) оксид Углерод оксид Углерод Сера диоксид	Сульфидные медно- молибденовые руды
Дизель-генераторная	0034	Азота (IV) диоксид Азот (II) оксид Углерод оксид Углерод Сера диоксид	Сульфидные медно- молибденовые руды
Резервуар с дизельным топливом	0035	Сера днокенд Сероводород Алканы С12-19 /в пересчете на С/	- Сульфидные медно- молибденовые руды
Наливное устройство (дизтопливо)	0036	Сероводород Алканы С12-19 /в пересчете на С/	Сульфидные медно- молибденовые руды

		T		T	
	Резервуар с дизельным топливом	0037	Сероводород	Сульфидные медно- молибденовые руды	
			Алканы С12-19 /в пересчет		
			на С/	молподеновые руды	
		0038	Смесь углеводородов		
			предельных С1-С5		
			Смесь углеводородов		
			предельных С6-С10		
			Пентилены (амилены –	Сульфидные медно-	
	Резервуар с бензином		смесь изомеров)	молибденовые руды	
			Бензол		
			Диметилбензол (смесь о-, м	-	
			, п- изомеров)		
			Метилбензол		
			Этилбензол		
	Резервуар с керосином	0039	Керосин	Сульфидные медно-	
	гезервуар с керосином		Керосин	молибденовые руды	
	Резервуар с маслом	0040	Масло минеральное	Сульфидные медно-	
	тезервуар с маслом	0040	нефтяное	молибденовые руды	
		0041	Сероводород	ı	
			Смесь углеводородов		
			предельных С1-С5		
			Смесь углеводородов		
			предельных С6-С10		
			Пентилены (амилены –		
			смесь изомеров)		
			Бензол	Сульфидные медно-	
	Слив с ж/д транспорта		Диметилбензол (смесь о-, м		
				, п- изомеров)	молибденовые руды
			Метилбензол		
			Этилбензол		
			Керосин		
			Масло минеральное		
			нефтяное		
			Алканы С12-19 /в пересчет		
			на С/		

			Сероводород		
			Смесь углеводородов		
			предельных С1-С5		
			Смесь углеводородов		
			предельных С6-С10		
			Пентилены (амилены –		
			смесь изомеров)		
			Бензол	Сульфидные медно-	
	Налив в автоцистерны	0042	Диметилбензол (смесь о-, м-	сульфидные медно- молибденовые руды	
	_		, п- изомеров)	молиоденовые руды	
			Метилбензол		
			Этилбензол		
			Керосин		
			Масло минеральное		
			нефтяное		
			Алканы С12-19 /в пересчете		
			на С/	I	
			Сероводород	Сульфидные медно-	
	Наливное устройство	0043	Алканы С12-19 /в пересчете	молибденовые руды	
			на С/		
			Смесь углеводородов		
			предельных С1-С5		
			Смесь углеводородов		
			предельных С6-С10		
			Пентилены (амилены –	Cyrr hymnys yearns	
	Наливное устройство	0044	смесь изомеров)	Сульфидные медно-	
			Бензол	молибденовые руды	
			Диметилбензол (смесь о-, м-		
			, п- изомеров)		
			Метилбензол		
			Этилбензол		
	II.	0045	Масло минеральное	Сульфидные медно-	
	Наливное устройство	0045	нефтяное	молибденовые руды	
			Сероводород		
	Насосная для перекачки	0046	Смесь углеводородов	Сульфидные медно-	
	нефтепродуктов		предельных С1-С5	молибденовые руды	

Смесь углеводородов предельных С6-С10 Пентилены (амилены — смесь изомеров) Бензол Диметилбензол (смесь о-, м-	
Пентилены (амилены — смесь изомеров) Бензол Диметилбензол (смесь о-, м-	
смесь изомеров) Бензол Диметилбензол (смесь о-, м-	
Бензол Диметилбензол (смесь о-, м-	
Диметилбензол (смесь о-, м-	
, п- изомеров)	
Метилбензол	
Этилбензол	
Керосин	
Масло минеральное	
нефтяное	
Алканы С12-19 /в пересчете	
на С/	
Сероводород	
Резервуар с дизельным 00/47 Ангони С12 10 /р нарасиета Сульфидные ме	Сульфидные медно- молибденовые руды
топливом на С/ молибденовые	руды
Смесь углеводородов	
предельных С1-С5	
Смесь углеводородов	
предельных С6-С10	
Пентилены (амилены – Сульфидные ме	
Бензол молибденовые	руды
Диметилбензол (смесь о-, м-	
, п- изомеров)	
Метилбензол	
Этилбензол	
Сероводород Сульфидные мо	
на С/ молибденовые	руды
Смесь углеводородов	
предели и у С1 С5	едно-
Заправка автомобилей 0050 Смесь углеводородов молибденовые	молибденовые руды
предельных С6-С10	

			Пентилены (амилены –
			смесь изомеров)
			Бензол
			Диметилбензол (смесь о-, м-
			, п- изомеров)
			Метилбензол
			Этилбензол
			Смесь углеводородов
			предельных С1-С5
			Смесь углеводородов
			предельных С6-С10
			Пентинения (эминения
	Резервуар с бензином	0051	смесь изомеров) Сульфидные медно-
	т свервуар с оснаином	0031	Бензол молибденовые руды
			Диметилбензол (смесь о-, м-
			, п- изомеров)
			Метилбензол
			Этилбензол
			Смесь углеводородов
			предельных С1-С5
			Смесь углеводородов
			предельных С6-С10
			Пентипены (эмипены —
	Наливное устройство	0052	смесь изомеров) Сульфидные медно-
	J		Бензол молибденовые руды
			Диметилбензол (смесь о-, м-
			, п- изомеров)
			Метилбензол
			Этилбензол
			Масло минеральное
	Стенд для испытаний топливной аппаратуры	0052	нефтяное Сульфидные медно-
		0053	Алканы С12-19 /в пересчете молибденовые руды
			на С/
	D	0054	Масло минеральное Сульфидные медно-
	Ванна для мойки деталей	0054	нефтяное молибденовые руды

		Железо (II, III) оксиды	
		Марганец и его соединения	
		Азота (IV) диоксид	
		Углерод оксид	_
Стол для электросваро	чных 0056	Фтористые газообразные	Сульфидные медно-
работ	0030	соединения	молибденовые руды
		Фториды неорганические	
		плохо растворимые	
		Пыль неорганическая:	
		70-20% SiO2	
Деревообрабатываюц	цие 0057	Пыль древесная	Сульфидные медно-
станки)	0037	Пыль древесная	молибденовые руды
Склад концентрата	0060	Пыль неорганическая:	Сульфидные медно-
		70-20% SiO2	молибденовые руды
Здание расфасовки	и 0061	Пыль неорганическая:	Сульфидные медно-
отгрузки концентра	га	70-20% SiO2	молибденовые руды
Здание расфасовки	и 0062	Пыль неорганическая:	Сульфидные медно-
отгрузки концентра	га	70-20% SiO2	молибденовые руды
Конвейер CV-110		Серная кислота	
Бункер для хранения ру			
гали № 1 (BN-109)			
Бункер для хранения ру	дной		Сульфидные медно-
гали № 2 (BN-109)	0063	Пыль неорганическая:	молибденовые руды
Питатель рудной гали	№ 1	70-20% SiO2	молиоденовые руды
(FE-112)			
Питатель рудной гали	№ 2		
(FE-112)			
Емкость хранения мет	гил-		Cymy dynnu io Money
изобутил-карбинола ТК-172	ζ-172 0064	4-Метил-2-пентанол	Сульфидные медно-
(14 m3)			молибденовые руды
Емкость для хранен	RN	Алканы С12-19 /в пересчете	C 1
дизельного топлива ТК	G-171 0065	на С/	Сульфидные медно-
(14 m3)		Сероводород	- молибденовые руды

Стиральные машины	0066	ср	диНатрий карбонат Синтетические моющие редства: "Бриз", "Вихрь", Потос", "Лотос-автомат", "Юка", "Эра"	Сульфидные медно- молибденовые руды
Площадка кучного выщелачивания	6001		Серная кислота Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Загрузка руды в бункер, узлы пересыпо	6002-001		Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Передаточный транспортер	6002-02		Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Магистральный транспортер	6003		Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Разгрузка с манистрального конвейера	6004-01	Π	ыль неорганическая: 70- 20% SiO2	Сульфидные медно- молибденовые руды
Формирование бульдозером	6004-02	Π	ыль неорганическая: 70- 20% SiO2	Сульфидные медно- молибденовые руды
Хранение руды	6004-03	Π	ыль неорганическая: 70- 20% SiO2	Сульфидные медно- молибденовые руды
Шиномонтаж	6012	Пь	Углерод оксид Бензин (нефтяной, малосернистый) /в пересчете на углерод/ Сера диоксид ыль тонко измельченного езинового вулканизата из отходов подошвенных	Сульфидные медно- молибденовые руды
Транспортные работы	6014	Π	ыль неорганическая: 70- 20% SiO2	Сульфидные медно- молибденовые руды
Загрузка концентрата навалом в вагоны	6018	П	ыль неорганическая: 70- 20% SiO2	Сульфидные медно- молибденовые руды
Система антиобледенения	6019		Азота (IV) диоксид Азот (II) оксид Углерод	Сульфидные медно- молибденовые руды

	Ţ		1	T		
					Сера диоксид	
			=		Углерод оксид	
					Азота (IV) диоксид	
					Азот (II) оксид	Сульфидные медно-
	Система антиобледенения	6020			Углерод	молибденовые руды
					Сера диоксид	ментеденовые руды
					Углерод оксид	
	Конвейер CV-109 Конвейер CV-112 Конвейер CV-113 Конвейер CV-114 Конвейер CV-115	6021			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
	Временное хранение дробленного материала на территории ОФ-1	6022			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
	Загрузка руды в бункер, узлы пересыпок	6202-001			Пыль неорган. 70- 20% SiO2	Сульфидные медно- молибденовые руды
	Передаточный транспортер	6202-002			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
	Магистральный транспортер	6203			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
	Разгрузка с манистрального конвейера	6204-001			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
Обогатительная фабрика	Формирование Бульдозером	6204-002			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
№2	Хранение	6204-003	46,564807	79,571271	Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
	Загрузка концентрата навалом в вагоны	6218			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
					Азота (IV) диоксид Азот (II) оксид	
	Система антиобледенения	6219			Углерод	Сульфидные медно- молибденовые руды
					Сера диоксид	
					Углерод оксид	
	Система антиобледенения	6220			Азота (IV) диоксид	Сульфидные медно-
	опотома антиооподенения	0220			Азот (II) оксид	молибденовые руды

			-			
					Углерод	
					Сера диоксид	
					Углерод оксид	
	Конвейер CV-109 Конвейер CV-112 Конвейер CV-113 Конвейер CV-114 Конвейер CV-115	6221]	Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
дроб	ременное хранение 5ленного материала на территории ОФ-2	6222			Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
	ьницы, флотомашины, ггуститель, баковая аппаратура	0203]	Пыль неорган. 70 - 20% SiO2	Сульфидные медно- молибденовые руды
Уча	сток гашения извести	0205			Кальций оксид	Сульфидные медно- молибденовые руды
при	контактный (Емкость иготовления изобутил тогената натрия (Sibx) ТК-168 (49 м3))	0206			2-Метилпропан-1-ол (Изобутиловый спирт) Пропан-2-ол (Изопропиловый спирт) Сероуглерод	Сульфидные медно- молибденовые руды
, x	и расходный (Емкость хранения изобутил тогената натрия (Sibx) ТК-169 (72 м3))	0207			Сероуглерод 2-Метилпропан-1-ол (Изобутиловый спирт) Пропан-2-ол (Изопропиловый спирт)	Сульфидные медно- молибденовые руды
бар	новка для растаривания рабанов, чан, емкость коднаяЧан контактный				Сероводород Сероуглерод	
(Ем гидро Емкоо хра	икость приготовления исульфид натрия ТК-179 (48 м3)) сть расходная (Емкость внения гидросульфид трия ТК-180 (72 м3))	0208			2-Метилпропан-1-ол (Изобутиловый спирт)	Сульфидные медно- молибденовые руды

		Г		T -
	Чан контактный ТК-167	0209	диНатрий карбонат	Сульфидные медно- молибденовые руды
			Железо (II, III) оксиды	
			Марганец и его соединения	
	Сварочный участок	0218-01	Азота (IV) диоксид	Сульфидные медно-
	Сварочный участок	0218-01	Углерод оксид	молибденовые руды
			Фтористые газообразные	
			соединения	
	Точильно-шлифовальный	0218-02	Взвешенные частицы	Сульфидные медно-
	станок	0210 02	Пыль абразивная	молибденовые руды
	Ванна для мойки деталей	0218-03	Керосин	Сульфидные медно- молибденовые руды
			Железо (II, III) оксиды	
			Марганец и его соединения	
			Азота (IV) диоксид	
	Стол сварщика		Углерод оксид	
		0219-01	Фтористые газообразные	Сульфидные медно-
		0217 01	соединения	молибденовые руды
			Фториды неорганические	
			плохо растворимые	
			Пыль неорганическая:	
			70-20% SiO2	
	Металлообрабатывающие	0219-02	Взвешенные частицы	Сульфидные медно-
	станки	0217 02	Пыль абразивная	молибденовые руды
	Ванна для мойки деталей	0219-03	Масло минеральное	Сульфидные медно-
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		нефтяное	молибденовые руды
	Ванна для мойки деталей		Масло минеральное	Сульфидные медно-
			нефтяное Железо (II, III) оксиды	молибденовые руды
				Comp. documents are a second
Стол для электросварки	0229	Марганец и его соединения	Сульфидные медно- молибденовые руды	
			Фтористые газообразные соединения	молиоденовые руды
			Железо (II, III) оксиды	
	Стол для электросварочных работ	0256	Марганец и его соединения	Сульфидные медно-
			Марганец и его соединения Азота (IV) диоксид	молибденовые руды
			лзота (ту) диоксид	

		Углерод оксид Фтористые газообразные соединения Фториды неорганические	
		плохо растворимые Пыль неорганическая: 70-20% SiO2	G - 1
Склад концентрата	0260	Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Здание расфасовки и отгрузки концентрата	0261	Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Здание расфасовки и отгрузки концентрата	0262	Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Конвейер CV-110 Бункер для хранения рудной гали № 1 (BN-109) Бункер для хранения рудной гали № 2 (BN-109) Питатель рудной гали № 1 (FE-112) Питатель рудной гали № 2 (FE-112)		Серная кислота Пыль неорганическая: 70-20% SiO2	Сульфидные медно- молибденовые руды
Емкость хранения метил- изобутил-карбинола ТК-172 (14 м3)	0264	4-Метил-2-пентанол	Сульфидные медно- молибденовые руды
Емкость для хранения дизельного топлива ТК-171 (14 м3)	0265	Алканы C12-19 /в пересчете на C/ Сероводород	Сульфидные медно- молибденовые руды

№ контрольной точки (поста)	Контролируемое вещество	Периодичность контроля	Периодичность контроля в периоды неблагоприятных метеорологических условий (НМУ), раз в сутки	Кем осуществляется контроль	Метод проведения контроля
		Месторождение А	ктогай. Граница СЗЗ		
	Взвешенные частицы пыли Диоксид азота	4		Аккредитованная	П
№ 1	Диоксид серы Оксид углерода Углеводороды			лаборатория	Инструментальный
№ 2	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода Углеводороды	4 раза в год		Аккредитованная лаборатория	Инструментальный
№3	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода Углеводороды	4 раза в год		Аккредитованная лаборатория	Инструментальный
№ 4	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода Углеводороды	4 раза в год		Аккредитованная лаборатория	Инструментальный
№18	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода Углеводороды	4 раза в год		Аккредитованная лаборатория	Инструментальный

	Р аранизин на на аттич		<u> </u>		
	Взвешенные частицы				
	ПЫЛИ			A	1
№ 19	Диоксид азота	4 раза в год		Аккредитованная	Инструментальный
	Диоксид серы	1		лаборатория	17
	Оксид углерода				
	Углеводороды				
		Хвостохранили	ще. Граница СЗЗ		
	Взвешенные частицы				
	пыли			Аккредитованная	
№7	Диоксид азота	4 раза в год		лаборатория	Инструментальный
	Диоксид серы			лаооратория	
	Оксид углерода				
	Взвешенные частицы				
	пыли	4 раза в год		Аккредитованная	
№8	Диоксид азота			лаборатория	Инструментальный
	Диоксид серы				
	Оксид углерода				
	Взвешенные частицы			Аккредитованная лаборатория	Инструментальный
	пыли				
№9	Диоксид азота	4 раза в год			
	Диоксид серы	_			
	Оксид углерода				
	Взвешенные частицы				
	пыли			A	
№10	Диоксид азота	4 раза в год		Аккредитованная	Инструментальный
	Диоксид серы	1		лаборатория	17
	Оксид углерода				
	Взвешенные частицы				
	пыли				
№ 11	Диоксид азота	4 раза в год		Аккредитованная	Инструментальный
	Диоксид серы	1		лаборатория	17
	Оксид углерода				
	Взвешенные частицы				
	пыли				Инструментальный
№ 12	Диоксид азота	4 раза в год		Аккредитованная	
1.212	Диоксид серы	. p 2 1 5A	лаборатория	лаборатория	
	Оксид углерода				
	окенд утпереда				

№13	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода	4 раза в год	Аккредитованная лаборатория	Инструментальный
№14	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода	4 раза в год	Аккредитованная лаборатория	Инструментальный
№ 15	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода	4 раза в год	Аккредитованная лаборатория	Инструментальный
№16	Взвешенные частицы пыли Диоксид азота Диоксид серы Оксид углерода	4 раза в год	Аккредитованная лаборатория	Инструментальный

Таблица 4 – График мониторинга воздействия на водном объекте

Nº	Контрольный створ	Наименование контролируемых показателей	Предельно-допустимая концентрация, миллиграмм на кубический дециметр (мг/дм3)	Периодичность	Метод анализа
		Водородный показатель(рН) Температура	6-9		
		Уровень	_		
		Привкус	2 балла		
		Цветность	20 град		
		Запах	2 балла		
		Мутность	2,6		
		Азот аммонийный	2		
	Азот нитратный 45	45			
		Азот нитритный	3,3		
		Алюминий	0,5		
Наблюдательная сеть подземных вод (34 скважины)		Анионные поверхностно- активные вещества (АПАВ)	0,5	4 раза в год	Инструментальный
,		Барий	0,1		
		Бериллий	0,0002		
		Бор	0,5		
		Ванадий	0,1		
		Гидрокарбонаты	_		
		Железо общее	0,3		
		Жесткость общая	7		
		Кадмий	0,001		
		Калий	_		
		Кальций	_		
		Карбонаты	_		
		Кобальт	0,1		
		Магний	_		

	Марганец	0,1		
<u> </u>	Медь	1,0		
	Молибден	0,3		
	Мышьяк	0,05		
	Натрий	200,0		
-	Нефтепродукты	0,1		
_	Никель	0,1		
-	Перманганатное число	5,0		
-	Ртуть	0,0005		
	Свинец	0,003		
	Селен	0,03		
	Стронций	7,0		
	Стронции	500,0		
<u> </u>	Сульфаты Сухой остаток	1000,0 (1500)		
<u> </u>				
<u> </u>	Фенол	0,25		
<u> </u>	Фосфаты	3,5		
	Фторид-ионы	1,2		
	Хлориды	350,0		
	Хром	0,05		
	Цианиды	0,035		
	Цинк	5,0		
	Ксантогенаты			
	(массовая	_		
	концентрация			
	ксантогенатов по			
	CT PK2728-2015)			
Вода в хвостах	Водородный	6-9		
обогащения (пруд	показатель(рН)			
№ 1	Температура	_		
хвостохранилища,	Уровень	-	_	
водоприемник	Привкус	2 балла	4 раза в год	Инструментальный
оборотного	Цветность	20 град		
водоснабжения	Запах	2 балла		
хвостохранилища	Мутность	2,6		
(южная дамба);	Азот аммонийный	2		

		45	T	
водоприемник	Азот нитратный	45	4	
оборотного	Азот нитритный	3,3	-	
водоснабжения	Алюминий	0,5	-	
хвостохранилища	Анионные			
(западная дамба);	поверхностно-	0,5		
верхний слив	активные вещества			
сгустителей ОФ-1;	(АПАВ)	0.1	4	
верхний слив	Барий	0,1	1	
сгустителей ОФ-2)	Бериллий	0,0002		
	Бор	0,5		
	Ванадий	0,1		
	Гидрокарбонаты	1		
	Железо общее	0,3		
	Жесткость общая	7	1	
	Кадмий	0,001	1	
	Калий	_	1	
	Кальций	_	1	
	Карбонаты	_	1	
	Кобальт	0,1	1	
	Магний	_	1	
	Марганец	0,1	1	
	Медь	1,0	1	
	Молибден	0,3	1	
	Мышьяк	0,05	†	
	Натрий	200,0	†	
	Нефтепродукты	0,1	1	
	Никель	0,1	1	
		5,0	-	
	Перманганатное число	0,0005	4	
	Ртуть	*	4	
	Свинец	0,03	-	
	Селен	0,01	4	
	Стронций	7,0		
	Сульфаты	500,0		
	Сухой остаток	1000,0 (1500)	_	
	Фенол	0,25		

x 1	2.7
Фосфаты	3,5
Фторид-ионы	1,2
Хлориды	350,0
Хром	0,05
Цианиды	0,035
Цинк	5,0
Ксантогенаты	
(массовая	_
концентрация	
ксантогенатов по	
CT PK	
2728-2015)	

Таблица 5 – Мониторинг уровня загрязнения почвы

Точка отбора проб	Наименование контролируемого вещества	Предельно-допустимая концентрация, миллиграмм на килограмм (мг/кг)	Периодичность	Метод анализа
	Водородный показатель (рН)	-	1 мар в год	Инструментальный
	Нефтепродукты	-	1 раз в год	инструментальный
		Подвижная форма		
	Ванадий	-		
	Железо	-		
	Кадмий	-		
	Кобальт	5,0		
	Марганец	-		
Точки №1-19	Медь	-		
104КИ №1-19	Молибден	-	1 (
	Мышьяк	-	1 раз в год (сентябрь-	Инструментальный
	Никель	-	октябрь)	
	Нитраты	-		
	Ртуть	-		
	Свинец	-		
	Сурьма	-		
	Фтор	2,8		
	Хром общий	6,0		

	Цинк	-		
·	r	Гвердая часть отвальных хвост	гов	
	Алюминий	-		
	Барий	-		
	Бериллий	-		
	Ванадий	-		
	Железо	-		
	Кадмий	-		
	Калий	-		
	Кальций	-		
	Кобальт	-		
	Магний (вод)	-		
	Марганец	-		
	Медь	-		
	Молибден	-		
Твердая часть конечных хвосто	Мышьяк	-	4 раза в год	Инструментальный
обогатительнойфабрики, т.1	Натрий (вод)	-		ттегрументальным
	Никель	-		
	Олово	-		
	Ртуть	-		
	Свинец	-		
	Селен	-		
	Стронций	-		
	Сурьма	-		
	Титан	-		
	Фтор	-		
	Хром	-		
	Цинк	-		
	Плотность хвостов обогащения	-		

13. МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ ВЫЯВЛЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

13.1 Мероприятия по охране по охране атмосферного воздуха

Период эксплуатации

Для уменьшения влияния работающего технологического оборудования предприятия на состояние атмосферного воздуха, снижения их приземных концентраций и предотвращения сверхнормативных и аварийных выбросов вредных веществ в атмосферу ежегодно на предприятии разрабатывается комплекс планировочных и технологических мероприятий.

Технологические мероприятия включают:

- тщательную технологическую регламентацию проведения работ;
- обеспечение безопасности производства на наиболее опасных участках и системах контрольно-измерительными приборами и автоматикой;
- обучение персонала правилам техники безопасности, пожарной безопасности и соблюдению правил эксплуатации при выполнении работ;
- регулярные технические осмотры оборудования, замена неисправных материалов и оборудования;
- применение материалов, оборудования и арматуры, обеспечивающих надежность эксплуатации;
- проведение испытаний вновь монтируемых систем и оборудования на герметичность;
- техосмотр и техобслуживание автотранспорта и спецтехники, а также контроль токсичности выбросов, что обеспечивается плановыми проверками оборудования.

Мероприятия согласно Приложения 4 Экологического Кодекса РК:

- мониторинг атмосферного воздуха на границе санитарно-защитной зоны;
- выполнение мероприятий по предотвращению и снижению выбросов загрязняющих веществ от стационарных и передвижных источников;
- внедрение оборудования, установок и устройств очистки, по подавлению и обезвреживанию выбросов загрязняющих веществ и их соединений в атмосферу от стационарных и передвижных источников загрязнения;
- проведение работ по пылеподавлению на горнорудных предприятиях и строительных площадках, в том числе хвостохранилищах, шламонакопителях, карьерах и внутрипромысловых дорогах.

Реализация этих мероприятий в сочетании с хорошей организацией производственного процесса и производственного контроля за состоянием окружающей среды позволит обеспечить соблюдение нормативов предельно допустимых выбросов (ПДВ) и уменьшить негативную нагрузку на воздушный бассейн при эксплуатации предприятия.

Период строительства:

Учитывая то, что проведение строительных работ по реализации проектных решений, сопровождается значительными выбросами пыли в атмосферный воздух, предусмотрены мероприятия по снижению пыления в районе расположения предприятия. На неорганизованных источниках загрязнения атмосферы предусмотрены следующие мероприятия по снижению количества поступающей в атмосферу пыли:

- применение технически исправных машин и механизмов;

- орошение открытых грунтов и разгружаемых сыпучих материалов при производстве работ (гидрообеспыливание);
 - укрывание грунта и сыпучих материалов при перевозке их автотранспортом.

13.2 Мероприятия по охране водных ресурсов

Период эксплуатации

С целью охраны подземных и поверхностных вод от загрязнения, разработаны следующие мероприятия:

- соблюдение природоохранных требований законодательных и нормативных актов Республики Казахстан, внутренних документов и стандартов компании;
- ограждающие дамбы выполняются насыпными из крупнообломочных грунтов Актогайского месторождения с противофильтрационными мероприятиями. В качестве противофильтрационного устройства предусмотрена полиэтиленовая геомембрана, укладываемая на внутренних откосах оградительных дамб;
- осуществляется контроль за состоянием ограждающих дамб хвостохранилища и противофильтрационных мероприятий;
 - мониторинг за подземными водами на наблюдательных скважинах;
- выполнение мероприятий по предотвращению загрязнения поверхностных и подземных вод от хвостохранилищ.

Период СМР

Во избежание загрязнения подземных и поверхностных вод в процессе проведения работ предусматриваются следующие водоохранные мероприятия:

- заправка машин и механизмов топливом будет осуществляться на АЗС;
- предотвращение сброса мусора, образующегося на территории участка проведения работ.

13.3 Мероприятия по обращению с отходами

Временное хранение образующихся отходов на стадии строительства и на стадии эксплуатации будет организовано на специально организованных площадках в зависимости от агрегатного состояния и физико-химических свойств. Предусматривается, что все отходы, образующиеся в период строительства и эксплуатации, будут перевозиться в герметичных специальных контейнерах. Это исключит возможность загрязнения окружающей среды отходами во время их транспортировки или в случае аварии транспортных средств.

Отходы производства и потребления в основном могут оказывать воздействие на почвы и растительный покров. Для уменьшения воздействия предлагается следующий комплекс мероприятий:

- соблюдать санитарно-гигиенические требования, своевременно производить утилизацию отходов производства и потребления, их хранение и транспортировку на спец полигоны; очистка территории от бытовых отходов;
- внедрить систему управления отходами на предприятии (с контролем за процессом образования, приема, сортировки, раздельном хранении и утилизации отходов);
 - проведение постоянного мониторинга воздействия;
- строгий контроль за временным складированием отходов производства и потребления на территории проектируемого производства в специально отведённых местах.

Складирование хвостов обогащения должно выполняться с соблюдением правил экологической безопасности и техники безопасности, предусматривающих создание и

соблюдение условий, при которых отходы не могут оказывать отрицательного воздействия на окружающую среду и здоровье человека.

Мероприятия по снижению влияния образующихся отходов на состояние окружающей среды:

- обеспечить регулярный контроль за подземными водами по наблюдательным скважинам. Мониторинг состояния ОС;
 - постоянный визуальный контроль за состоянием дамб и насыпей;
 - недопущение разгерметизации трубопроводов подачи пульпы и оборотной воды;
 - учет объемов образования и размещения отходов.

13.4 Мероприятия по охране почвенно-растительного покрова прилегающей территории

Проектом разработан комплекс природоохранных мероприятий, которые будут способствовать снижению негативного воздействия строительства и эксплуатации проектируемых объектов на почвенно-растительный покров и обеспечат сохранение ресурсного потенциала земель и экологической ситуации в целом.

Снижение негативных последствий будет обеспечиваться реализацией комплекса технических, технологических и природоохранных мероприятий, включающих:

- строгое соблюдение технологического плана работ;
- обеспечение герметизации емкостей и трубопроводов для предотвращения утечек углеводородного сырья;

выделение и обустройство мест для установки контейнеров для различных отходов;

- сбор и вывоз отходов по договору сторонней организацией;
- проведение работ в границах выделенных земельных отводов;
- проведение мероприятий по борьбе с чрезмерным запылением;
- заправка строительной техники в специально организованных местах;
- своевременное проведение технического обслуживания, проверки и ремонта оборудования, строительной техники;
 - не допущение разброса бытового и строительного мусора по территории;
 - не допущение слива бытовых и хозяйственных сточных вод на почвы.

14. АНАЛИЗ ПРИМЕНЯЕМОЙ ТЕХНОЛОГИИ НА ПРЕДМЕТ СООТВЕТСТВИЯ НАИЛУЧШИМ ДОСТУПНЫМ ТЕХНОЛОГИЯМ И ТЕХНИЧЕСКИМ УДЕЛЬНЫМ НОРМАТИВАМ

Компания поддерживает экологические инициативы и подтверждает свою приверженность, поэтому в 2020-2021 г. НАО «Международный центр зеленых технологий и инвестиционных проектов» был проведен технологический аудит на соответствие принципам НДТ, после которого был получен ОТЧЕТ об экспертной оценке технологических процессов ТОО «KAZ Minerals Aktogay» (КАЗ Минералз Актогай), определяющий фактическое состояние технологических процессов в природоохранной сфере с выявленными возможностями внедрения НДТ на условии их доступности на соответствие принципам наилучших доступных технологий.

В результате проведённого технологического комплекса аудита и выполненной экспертной оценки технологических процессов ТОО «KAZ Minerals Aktogay» (KA3 Минералз Актогай), членами экспертной группы установлены ряд НТД которые уже внедрены и используются:

No		Наименование внедренной технологии (НДТ)	Вид эффекта от внедрённых технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая стоимость, мпрд Т
	ИДТ	Технологическое/техническое решение				- 2
1	2	3	4	5	6	7
1	НДТ 1. Повышение общей результативности природоохранной деятельности и реализация системы экологического менеджмента (ИТС 16 НДТ 5.1.1, ИТС 23 НДТ 1)	Виедрение и поддержание системы жологического менеджмента (СЭМ), соответствующей требованиям ГОСТ Р ИСО 14001 или ISO 14001. Соответствие систем менеджмента указанным спандартам не означает их обязательную сертификацию	Улучшения (результативно- сти) природоохранной дея- тельности	Административная деятельность	2015	н/д
2	НДТ 2. Проведение инженерно-экологических изысканий (ИТС 16 НДТ 5.1.2)	НДТ способствует сокращению возможных финансовых и других рисков недропользователя в будущем (дополнительные расходы на корректировку проектной документации, изменение проектных решений, либо на снижение экологических и социальных рисков на этапе эксплуа- тации предприятия); сохранению экосистем, редких и исчезающих видов растений и живот- ных, и др.	Сохранение экосистем, редких в исчезающих видов растений и животных.	Административная деятельность	2015	н/д
3	НДТ 3. Выполнение оценки воздействия на окружающую среду (ОВОС) (ИТС 16 НДТ 5.1.3)	 выполнение ОВОС на наиболее ранних стадиях (предпроектвой) реализации намечаемой деятельности по строительству гориодобывающего предприятия; качественную проработку альтернативных вариантов (в отличие от практикуемого формального подхода); качественное и точное выполнение процедур по обеспечению общественного участия в пропедуре ОВОС, включая подготовку документации, выкладываемой на общественный доступ, в понятном формате; подробный учет социально-экономической составляющей, учет интересов заинтересованных сторон (в т. ч. местных общин). 	Снижение рисков деградации экосистем	Административная деятельность	2015	н/д
4	НДТ 4. Организация взаимодействия с местным сообществом (ИТС 16 НДТ 5.1.4)	НДГ предусматривает организацию эффективного взаимодействия с общественностью на всех этапах жизненного писла предприятия	Совершенствование проект- ных решений	Административная деятельность	2015	н/д
5	НДТ 7. Повышение квалификации персонала (ИТС 16 НДТ 5.1.7)	Предотвращение негативного воздействия на окружающую среду во многом зависит от правиль- вого ведения технологического процесса, выполнения технологических и иных производствен- ных операций, а также надлежащего уровня информированности персонада в области экологиче- ской безопасности, соответствующего выполняемым работам и уровню ответственности	Качественного выполнения работ. Осознания своей роли в процессе охраны окружающей среды	Административная деятельность	2015	11/Д
6	НДТ 8. Организация взаимодействия с местным сообществом (ИТС 16 НДТ 5.1.8)	НДТ предусматривает включение в критерии отбора при проведении тендеров на осуществление различных видов работ, вомимо обычных требований, учет экологической и социальной ответственности подрядчиков	Определение экологической и социальной ответственности подрядчиков	Административная деятельность	2015	н/д
7	НДТ 9. Применение современных экологичных материалов и оборудования для производства работ (ИТС 16 НДТ 5.2.1)	Современные материалы и техника, как правило, обладают лучшими экологическими характе- ристиками, и их применение, в целом приводит к снижению эмиссий и меньшему воздействию на окружающую среду	Снижение объемов эмиссий	Административная деятельность	2015	н/д
8	НДТ 10. Оптимизация технологических процес- сов (ИТС 16 НДГ 5.2.2)	НДГ предусматривает оптимизацию технологических процессов, включая: - оптимизацию грузопотоков (синжение выбросов вредных веществ, уровня шума, вибращии и других факторов беспокойства для населения и объектов животного мира); - распределение технологических процессов во времени (снижение уровня шума и максимально-разовых выбросов загрязняющих веществ); - оптимизацию проведения втрывных работ (снижение уровня шума, вибращки и максимально-разовых выбросов загрязняющих веществ).	Снижение объемов эмиссий	Добычные работы	2015	н/д
9	НДТ 11. Автоматизация технологических про- пессов (ИТС 16 НДТ 5.2.3)	НДТ предусматривает применение автоматизированных систем управления технологическими процессами и параметрами добычи и обогащения полезных ископаемых, позволяющих более точно регулировать технологические режимы работы оборудования, оптимизировать состав продукта, контролировать транспортировку сырья и горной массы	Повышение эффективности технологических процессов. Повышение энергоэффектив- ности	Административная деятельность	2015	н/д

No.		Наименование янедренной технологии (НДТ)	Вид эффекта от впедрённых технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая стоимость, млрд Т
	НДТ	Технологическое/техническое решение				
1	2	3	4	5	6	7
10000	при получении селективных концентратов цвет-	НДТ заключается в сокращении негативного воздействия при получении селективных концентратов цветных метадлов методом флотации за счет снижения расхода токсичных флотационных реагентов (например, пианида натрия), применения новых нетоксичных реагентов, снижения потерь ценных компонентов с отходами, применения безотходных технологий, повышения комплексности использования сырья, применения флотационной техники с большой удельной производительностью и оборотного водоснабжения, очистки стоков. Применимо при использовании метода флотации при получении селективных концентратов для следующих типов рудь медно-молибденовые руды; медно-пинково-пиритные руды; свинцовые полиметаллические руды; медно-микелевые руды	Сокращение выбросов твер- дых частиц при получении се- лективных концентратов	Флотация	2015	н/д
11	НДТ 15. Управление системой потребления энергетических ресурсов (ИТС 23 НДТ 26, ИТС 16 НДТ 5.2.1)	НДТ заключается в управлении системой потребления электроэнергии	Экономия электроэнергии	Вспомогательные объекты	20115	н/д
12		Проведение энергетического аудита технологических процессов (87.1) Применение современного оборудования автоматизации систем и элементов управления для повышения энергоэффективности (87.2) Использование автоматических средств измерения и учета энергоресурсов (87.3)	Сокращение энергопотребления	Добычные работы	2015	н/д
100	емых в недрах (ИТС 23 НДТ 28, ИТС 16 НДТ 5.3.3)	Эффективных технологий разведки месторождений в том числе эксплуатационной (88.1) Оценки запасов руд с учетом прогрессивных технологий их переработки (88.2) Предварительного воздействия на продуктивные пласты для снижения потерь руд (88.3) Эффективных способов разработки месторождения для снижения потерь руд (88.4) Предварительного дофабричного обогащения (88.5)	Увеличение добычи	Добычные работы	2015	н/д
	НДТ 18. Максимально полное извлечение цен- ных компонентов из добываемого полезного ис- копаемого (ИТС 16 НДТ 5.3.4)	Применение технологий исследования физико-химических свойств и состава полезных ископа- емых с формированием оптимальных параметров их переработки и обогащения, технологиче- ских и технических решений, специального оборудования и др., позволяющих максимально полно извлекать пенные компоненты из добываемого полезного ископаемого, сократить по- тери ценных компонентов с отходами	Рациональное использование природных ресурсов	Добычные работы	2015	н/д
		НДТ предусматривает переоценку запасов месторождений с изменением способов обогащения руд, технических решений и оборудования, позволяющих извлекать металлы из некондицион- ного ранее сырья и отходов с целью ресурсосбережения.	Доизвлечение металлов из не- кондиционного ранее сырья и отходов с целью ресурсосбе- режения	Добычные работы	2015	11/Д
	НДТ 20. Использование вскрышных и вмещаю- щих пород, хвостов обогащения, в том числе для доязвлечения ценных компонентов на ос- нове определения кондиций (ИТС 23 НДТ 30) (частично)	Доизвлечение металлов сопутствующих компонентов (90.1) Произволство строительных материалов (90.2) Рекультивационные работы (90.3)	Сокращение отходов	Вепомогательные объекты	2015	н/д
17	НДТ 21. Сокращение потерь руд при транспор- тировке (ИТС 23 НДТ 31, ИТС 16 НДТ 5.3.7)	 укрытия желенюдорожных вагонов и кузовов автотранспорта обеспечения целостности вагонов конвейсров и других видов закрытого транспорта 	Обеспечение ресурсосбереже- ния	Вепомогательные объекты	2015	н/д
18	НДТ 22. Сокращение забора воды из природ- ных источников (ИТС 23 НДТ 32, ИТС 16 НДТ 5.3.8)	Применение систем оборотного водоснабжения (91.1) Использование технологической воды в производственных процессах (91.2) Использование технологической воды в производственных процессах (91.3)	Рациональное использование водных ресурсов	Вспомогательные объекты	2015	н/д
19	НДТ 33, ИТС 16 НДТ 5.4.1)	НДТ обеспечивает контроль технологических процессов и операций, воздействия на окружаю- шую среду путем применения систем инструментов и средств автоматизации с целью энерго- сбережения и ресурсосбережения.	Соблюдение нормативов предприятием	Добычные работы	2015	H/X

Ne	,	Наименование внедренной технологии (НДТ)	Вид эффекта от впедрённых технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая стоимость, млрд Т
НДТ	- 1	Технологическое/техническое решение				
1 2		3	4	5	6	7
20 НДТ 24. Производственный эко питорият (ИТС 16 НДТ 5.4.2)	ологический мо-	НДТ предусматривает проведение производственного экологического мониторинга в районе расположения предприятия, предусмотренного лицеизионными условиями пользования недрами, в том числе может включать: - мониторинг состояния и загрязнения атмосферного воздуха; - мониторинг состояния и загрязнения воверхностных и подземных вод; - мониторинг состояния и загрязнения земель и почв; - мониторинг состояния и загрязнения недр; - мониторинг состояния и загрязнения растительного и животного мира (включая биоресурсы и среду их обитания).	Контроль качества окружаю- щей среды на предприятии	Админетративная деятельность	2015	п/д
21 НДТ 25. Снижение выбросов п	пи буповзнывных	1) Оснащение буровой техники средствами пыленодавления и пылеулавливания	Снижение выбросов пыли	Добычные работы	2015	B/X
работах (ИТС 23 НДТ 2, ИТС 1	6 H/IT 5.5.6)	2) Применение гидрозабойки взрывных скважин	Children Children	parties areas parties		3,000
		3) Использование забоечного материала с минимальным пылеобразованием	1			
		4) Орошение зоны выпадения пыли из пылегазового облака	1			
		5) Применение систем электронного инициирования взрывов	1			
		б) Применение неэлектрических систем взрывания	1			
		7) Внедрение компьютерных технологий выбора параметров буровзрывных работ				
		8) Применение взрывчатых веществ с нулевым кислородным балансом	1			
22 НДТ 26. Снижение выбросов при	и ховнения, пере-	1) Сокращение числа мест перегрузок	Снижение выбросов твердых	Веномогательные	2015	н/д
	горной массы при	 Рациональная организация процессов хранения, погрузочно-разгрузочных работ и транспортировки и направленная в том числе на снижение выбросов пыли 	частиц	объекты		
23 НДТ 27. Орошение пылящих ги		1) Пылеподавление водой с использованием поливочных машин, установок, распылителей	Синжение выбросов твердых	Административная	2015	11/21
добыче руд (ИТС 23 НДТ 4)		 Пъвенюдавление растворами неорганических и органических вещести, ПАВ, полимерными веществами, эмульскими и другими химическими реагентами, создающими на поверхности ма- териала корку 	частиц	деятельность		
24 НДТ 28. Применение современ очистки выбросов от пыли (ИТ	С 16 НДТ 5.5.5)	Оборудование пылеобразукицих операций аппаратами очистки выбросов. Применение современных высокоэффективных технологий очистки выбросов, таких как очистка запыленного воздуха в устиновках сухой очистки газов (циклоны, пылеосадительные камеры, тканевые (рукавные) фильтры, электрофильтры), применение аппаратов мокрой очистки (скрубберы Вентури и другие), использование многоступенчатой очистки, обеспечивающие степень очистки 90 % — 99,99 %.	Снижение выбросов пыли	Дробление и измельчение	2015	н/д
25 НДГ 29. Улавливание выбросог сти максимально близко к исто ющей их очисткой (ИТС 23 НД	чнику с последу-	Улавлинание выбросов по возможности максимально бличко к источнику с последующей их очисткой	Спижение выбросов ЗВ	Дробление и измельчение	2015	н/д
26 НДТ 30. Снижение выбросов о		Использование закрытых помещений или бункеров	Синжение выбросов твердых	Вепомогательные	2015	н/д
продуктов их переработки при	обогащении руд	Разбрызгивание воды	частиц при хранении руд и	объекты	2010180	CV/ORE, II
пветных металлов (ИТС 23 НД	T 15)	Размещение устройств для улавливания пыли/газов в местах загрузки и перегрузки	продуктов их переработки			
Persentant de la compresentant de la compresen	0012/04	Синжение выбросов при хранении руд и продуктов их переработки: Сооружение укрытий над плошадками хранения				
		Снижение выбросов при хранении руд и продуктов их переработки. Герметичная упаковка]			
		Синжение выбросов при хранении руд и продуктов их переработки: Использование для сооружения емкостей строительных материалов, устойчивых к загруженным материалам				
		Проектирование площадок для хранения таким образом, чтобы дюбые утечки из емкостей и систем доставки удерживались внутри обвадования				
l. I.I	- 1	Регудирная уборка и, при необходимости, увлажнение площадки хранения				

Ne.		Наименование внедренной технологии (НДП)	Вид эффекта от внедрённых технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая стоимость, млрд Т
	НДТ	Технологическое/техническое решение				
1	2	3	4	5	6.	7
17		Снижение площади пылищей поверхности руд с помощью их рационального свладирования			71.	
27	НДТ 31. Снижение выбросов от переработки и транспортировке сырья при обогащении руд	Сооружение закрытых коннейеров или пневматических систем для транспортировки и перера- ботке материалов	Снижение выбросов твердых частиц при переработке и	Добычные работы	2015	10/Д
	цветных металлов (ИТС 23 НДТ 16)	Установка устройств для сбора пыли в пунктах доставки, вентиляционных отверстиях, пневма- тических гранспортных систем в точках перегрузки на конвейсрах передачи, и их подключение в системе фильтрации	транспортировки сырья			
		Использование с измельченными или водорастворимыми материалами закрытых емкостей				
		Разбрызгивание воды для увлажнения материалов в местах их обработки				
		Спижение выбросов при переработке и транспортировки сырья: Использование максимально коротких маршрутов гранспортировки				
		Регулировка скорости открытых ленточных конвейеров (<3,5 м/с)	1			
		Применение плановых мероприятий по обеспыливанию дорог	1			
	7	Уменьшение высоты паления с конвейерных лент, механических лопат или захватов				
		Минимизация материальных потоков между процессами				
28	НДТ 32. Оптимизация параметров и систем удавливания и очистки выбросов при обогаще-	Использование е закрытых супплыных барабанов /печей, оснащенных системами пылеулавли- вания или оснащение печей и другого тех оборудования вытяжными системами	Снижение выбросов NOx	Вспомогательные объекты	2015	н/д
	ник руд цветных металлов (ИТС 23 НДТ 17)	Оснащение сущитьных барабанов /печей вторичными системами отведения газов в местах за- грузки и выгрузки			1	
29	НЛТ 33. Сокращение выбросов от операций ру-	Закрытие рабочих зон аппаратов рудо подготовки и системы транспортировки (78.1).	Снижение выбросов пыли	Пробление и	2015	В/Д
	доподготовки при обогащении руд цветных ме- тадлов (ИТС 23 НДТ 18)	Организация систем выдеудавливания в цехах рудо подготовки и при проведении погрузочно- разгрузочных работ (78.2)	50	измельчение		
30	НДТ 34. Снюжение выбросов при проведении химических процессов в комбинированных схе- мах обогащения руд цветных металлов (ИТС 23 НДТ 19)	Реакционные сосуды и резервуары, подключенные к общей системе воздуховодов для утилиза- пии отходящих газов (79.3).	Синжение выбросов NOx	Флотация	2015	н/д
31	НДТ 35. Снижение выбросов пыли от стацио-	Рукавный фильтр (80.1)	Снижение выбросов твердых	Дробление и измель-	2015	н/д
	нарных источников при обогащении руд цвет- ных металлов (ИТС 23 НДТ 20)		частиц	чение		155525
32	НДТ 36. Управление водим балансом гориодо- бывающего предприятия (ИТС 23 НДТ 8, ИТС 16 НДТ 5.7.1., ЕС НДТ 18)	Управление водным балансом горнодобывающего предприятия (68.2)	Рациональное водопользова- ние	Административная деятельность	2015	н/д
33	НДТ 38. Внедрение систем оборотного водо- снабжения (ИТС 16 НДТ 5.7.3)	Система оборотного водоснабжения обеспечивает многократное использование оборотной воды в технологическом процессе (напрямер, бессточное хностовое холяйство с замкнутым водным циклом).	Снижение/исключение сбро- сов сточных вод	Флотация	2015	н/д
34	НДТ 39. Повторное использование технической воды (ИТС 16 НДТ 5.7.4)	Повторяюе (последовательное) использование технической воды заключается в употреблении воды, использованной в одном производственном процессе, на другие технологические нужды. Например: вода, нагретая в процессе охлаждения оборудования компрессорной станции, может использоваться в системе отопления или на промывку оборудования всред ремоитом; линиевые сточные воды могут использоваться в процессах пылегюдавления, для полива растений, для мойки дорожной техники и т. д. НДТ позволяет сократить забор воды из природных источников на технологические нужды.	Рациональное использование водных ресурсов	Флотация	2015	в/д
35	НДТ 40. Сокращение водопотребления в техно- логических процессах (ИТС 16 НДТ 5.7.5)	Применение водосберетиющих или безнодных технологий, характеритующихся низким потреблением воды дибо ее полным отсутствием. Например, дозированная подача воды в производство, автомитиче- ское отключение воды при остановке технологического процесса, кроме процессов охлаждении обору- дования. НДТ позволяет сократить забор воды из природных источников на технологические нужды	Рациональное использование водных ресурсов	кцинтов.Ф	2015	н/д

No.		Наименование внедренной технологии (НДТ)	Вид эффекта от впедрёпных технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая етоимость,
-	HZT	Технологическое/техническое решение			-	мпра ₹
1.1	7	1 exhautor receive rexine ecoce penienne		5	6	7
26	НДТ 41. Внедрение систем раздельного сбора	,		n	2015	n/a
		Система раздельного сбора сточных вод заключается в разделения потоков сточных вод по сте- нени и видам загрязиений для проведения докальной очистки онтимпльным способом, макси- мального возврата в процесс очищенной воды; снижения тидравлической нагрузки на очист- ные сооружении. ИДТ позволяет совратить объем сброса сточных вод в водиме объекты	Сокращение сбросов сточных вод	Всимогательные объекты	2015	н/д
	НДТ 42. Использование локальных систем очистки и обезиреживания сточных вод (ИТС 16 НДТ 5.7.7)	Создание локальных систем очистки и обезвреживания сточных вод отдельных производств позволяет извлечь специфичные вещества (например, остатки реагентов) с целью их последую- щей утилизации или возврата в технологический процесс, а также обеспечить максимальный возврат очищенной воды в технологический процесс	Снижение конпентраций за- грязияющих веществ в сточ- ных водах	Вепомогательные объекты	2015	и/п
	НДТ 43. Применение современных методов очистки и нейтрализации сточных вод перед сбросом в водиме объекты (ИТС 16 НДТ 5.7.8)	Выбор технологических подходов, методов, мер и мероприятий, направленных на очистку сточных вод, определяется составом сточных вод, особенностями технологического процесса, техническими условиями к качеству воды (в случае оборотного водоснабжения или повторного использования), нормативами допустимого сброса, установленными с учетом качества воды водного объекта-приемника сточных вод	Снижение концентраций за- грязияющих веществ в сточ- ных водях.	Вспомогательные работы	2015	₩Д
39	НДТ 44. Управление поверхностими стоком территории начемной инфраструктуры	НДТ предусматривает управление ливневыми и талыми сточными водами территории назем- ной вифраструктуры гориодобывающего предприятия с учетом особенности размещения пред- приятия и его специфики с целью сведения к манимуму попадавия ливневых и талых сточных вод на загрязнённые участки, отделения чистой воды от загрязнённой, предотвращения эрозии незащищенных участков почвы, предотвращения заиливания дренажных систем	Снижение объемов сбросов сточных вод	Вепомогательные объекты	2015	₩/Д
	НДТ 45. Внедрение автоматизированных систем управления очистными сооружениями	Применение автоматизированных систем управления очистными сооружениями полюзяет осу- ществлять управление технологическими процессами очистных сооружений, контроль техно- логических параметров, и том числе расхода реагентов для очистки сточных вод и обработки осадка, миникальным для осуществления технологических процессов очистки, а также поддер- жание оптимального режима работы очистных сооружений в ручном, полуавтоматическом и автоматическом режимах	Контроль качества сточных вод. Регулирование гидравли- ческой нагрузки на очистные сооружения	Вспомогательные объекты	2015	н/д
41	НДТ 46. Определение вариантов обращения,	Определение вариантов размещения отходов добывающей промышленности	Уменьшение объемов образу-	Добычные работы	2015	н/д
		Определение вариантов обращения с/транспортировки, переработки и складирования отходов добычи	емых отходов добычи			
42	НДТ 47. Управление неопасными и опасными отхо-	Управление отходами добычи, накопленными в ходе разведки разведки месторождений	Рациональное обращение с от-	Добычные работы	2015	n/n
9	дами гориодобывающей деятельности (ЕС НДГ 7)	Сортировка и селективное обращение с отходами добычи полечных ископаемых	ходами	180		
8	НДТ 48. Управление накопителями отходами на основании планирования закрытия (ликияда- ции, рекультивации) (ЕС НДТ 11)	Конструкция для закрытия	Оценка жологического риска и воздействия на ОС	Флогация	2015	н/д
44	НЛТ 49. Организационное и корпоративное	Система обеспечения вачества и контроля качества	Рациональное обращение с от-	Флотация	2015	19/31
	управление объектами размещения отходов гор-	Управление изменениями	ходами			
	нодобывающей деятельности (ЕС НДТ 12)	Руководство по эксплуатации, надзору и техническому обслуживанию плотин	1 22			
		Процедуры смягчения последствий аварии, включая планирование действий в чрезвычайных ситуациях.	275	324	1711001.70	
	НДТ 50. Исследование геотехнических свойств груптов участков расположения объектов раз- мещении отходов горнодобывающей деятельно- сти (ЕС НДТ 13)	Исследование геотехнических свойств несущих пластов	Рациональное обращение с от- ходами	Флотиция	2015	л/д
- 1	НДТ 51. Выбор материалов для строительства плотин объектов размещении отходов горнодо- бывающей деятельности (ЕС НДТ 14)	Выбор материалов для строительства плотии	Рациональное обращение с от- ходами	Флотиция	2015	н/ц

No		Наименование внедренной технология (НДТ)	Вид эффекта от внедрённых технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая стоимость, млрд Т
	НДТ	Технологическое/техническое решение				-
1	2	3	4	5	6	7
1	НДТ 52. Организация противофиль грационных экранов хвостохранилищ и пламонакопителей (ЕС НДТ 15, ИТС 23 НДТ 10, ИТС 16 НДТ 5.8,1)	НДТ заключается в экранировании дна и ограждающих поверхностей отстойников сточных вод, хвостохранилищ, паламохранилищ и т.п. противофильтрационными гидроизоляционными покрытиями	Экранирование дна противо- фильтрационными гидроизо- ляционными покрытиями.	Флотация	2015	н/д
	НДТ 53. Использование природных грунтов и противофильтрационных барьеров с целью ми-	Непроницаемая естественная базальная структура почвы	Рациональное обращение с от- ходами	Флотация	2015	н/д
	нимизации воздействия накопителей отходов на подземные воды и почвы (ЕС НДТ 35)	Непроницаемая искусственная базальная структура	Рациональное обращение с от- ходами	Флотация	2015	н/д
1000	НДТ 54. Обеспечение краткосрочной и долго- срочной структурной устойчивости хвостохра- нилищ и пламонакопителей фильтрующего (дренирующего) типа (ЕС НДТ 16)	Стартовая плотина для полного удержания твердых частиц и частичного водоудерживающего метода строительства плотины Метод подъема снизу вверх по течению Низкопроницаемая естественная базальная структура почвы Стартовая плотина для полного удержания твердых частиц и частичного водоудерживающего	Обеспечение структурной устойчивости участка хране- ния отходов	Флотиция	2015	₩/Д
		метода строительства плотины	100			
1	НДГ 55. Обеспечение краткосрочной и долгосроч- ной структурной устойчивости отвалов отходов горнодобывающей деятельности (ЕС НДГ 17)	Низкопроницаемая естественная базальная структура почвы	Обеспечение структурной устойчивости участка хране- ния отходов	Флотация	2015	н/д
	НДТ 56. Использование дренажных систем для хвостохранилип, піламонакопителей и отвалов с целью обеспечения физической устойчивости объектов (ЕС НДТ 21)	Дренажные системы для прудов и плотин Дренажные системы для отвалов	Обеспечение структурной устойчивости участка хране- ния отхолов	Флотация	2015	н/д
52	НДТ 57. Использование отходов горяодобываю- щей деятельности для наращивания и укрепле-	НДТ позволяет сократить риск возникновення аварийных ситуаций (разрушения дамбы) при эксплуатации ГТС, а также снизить выбросы загрязняющих веществ в атмосферный воздух, обусловленные пылением с поверхности откосов ограждающих дамб	Спижения риска возникнове- ния чрезвычайной ситуации на гидротехнических соору- жениях	Вспомогательные объекты	2015	н/д
	НДТ 58. Рациональная эксплуатации хвостохра- нилищ и піламонакопителей (ИТС 16 НДТ 5.8.3)	Эксплуатиция пламохранилищ и хвостохранилищ с использованием систем равномерно рас- пределенных пульнопроводов, поддержание уровня воды над поверхностью складируемых от- ходов, если это допускается правидами технической эксплуатации	Снижение выбросов твердых частиц	Добычные работы	2015	10/Д
-	НДТ 59. Предотвращение или минимизация воз- действия на подъемные воды и почвы путем ис- пользования покрытий для объектов отходов гор- нодобывающей деятельности (частично)	В целях исключения или сокращения ухудшения состояния подземных вод и загрязнения почв использование одного или нескольких технологических решений, связанных с ЕС НДТ 38	Снижение воздействия на подземные воды и почвы	Вспомогательные работы	2015	н/д
	НДТ 60. Предотвращение или минимизация воз- действия на поверхностные воды от объектов	Повторное использование или переработка избыточной воды при добыче, переработке и/или утилизации отходов добычи полезных ископаемых	Рациональное использование водных ресурсов	Дробление и измельчение	2015	н/д
	размещения отходов горнодобывающей дея- тельности (ЕС НДТ 42)	Использование реагентов или химических веществ с низким воздействием на окружающую среду	Минимизация загрязнения компонентов ОС	Дробление и измельчение	2015	11/3
	НДТ 66. Механическая обработка отходов гор- нодобывающей деятельности с целью обеспече- ния физической устойчивости объектов разме- шения отходов (ЕС НДТ 27)	Обезвоживание с помощью градиента давления или центробежной силы	Обеспечение структурной устойчивости участка хране- ния отходов	Флотация	2015	н/д
	НДТ 67. Уплотнение, смещение и складирова- ние отходов гориодобывающей деятельности (ЕС НДТ 29)	Субаоральное осаждение сгущенных/отходящих отходов в виде стущенных/отходящих отходов	Минимизация загрязвения компонентов ОС	Фаотация	2015	м/д

Ne			Вид эффекта от внедрённых технологий (НДТ)	Наименование Технологического этапа	Год внедрения	Текущая балансовая стоимость, млрд Т
	НДТ	Технологическое/техническое решение				
1	2	3	4	5	- 6	7
58	НДТ 68. Использование отходов добычи и переработки в качестве материалов для рекультивации, отсыпки дорог (ИТС 23 НДТ 12, ИТС 16 НДТ 5.8.10.)	НДТ предусматривает использование отходов добычи и переработки в производстве, напри- мер, строительных материалов, а также в качестве средств рекультивации.	Рациональное использование отходов	Административная деятельность	2015	н/д
59	НДТ 69. Выбор технологии размещения отходов обогашения руд (ИТС 23 НДТ 22)	Обезвоживанные хвосты обогащения руд с влажиюстью 40-50%	Рациональное складирование отходов с разной влажностью	Флотиция	2015	п/д
		а) система управления ARD	Рациональное обращение с от- ходими	Флотация	2015	n/a
60	отхолов добычи и обогащения путем предотвраще-	 б) сетрегация отходов добычи РАС и NAG путем сортировки и селективной обработки/отложения 				
		е) непроницаемая естественная базальная структура почвы;				
	илли продуктов выщелачивания (ЕС НДТ 30,31)	 непроницаемая искусственная базальная структура; 				
61	НДТ 74. Снижение пъления с открытых поверх- ностей отходов методами орошения, ветроза- щиты, рекультивации и организации покрытий (ЕС НДТ 49)		Рациональное обращение с от- ходами	Фдотация	2015	и/д:
62	НДТ 82. Повышение безопасности хвостохрани- лиц / шламонакопителей с целью обеспечения	В ложе хвостохранилиц должны отсутствовать горизонты подземных вод хозяйственно-питье- вого назначения (101.2).	Предотвращение прорывов за- грязняющих веществ	Фжиция	2015	н/д
	краткосрочной и долгосрочной структурной устойчивости (ИТС 23 НДТ 41,43)	Подстилающие породы должны иметь малую водопроницаемость (101.3).				
		Хвостохранилища должны располагаться гипсометрически ниже обогатительных фабрик и других потенциальных объектов ушерба (101.4).				
63	НДТ 83. Технологическое соблюдение баланса водооборотной системы хвостохранилища (ИТС 23 НДТ 42)	Гехнологическое соблюдение баланса НДТ состоит в технологическом соблюдении баланса между объемом поступающих сточных вод (отходов) в отстойный пруд хвостохранилинда и возвратом осветленных вод в технологический процесс с учетом количества атмосферных осадков и объема испарения и исключением сброса дебалансных вод из хвостохранилинда.	Исключение сброса дебаланс- ных вод из хвостохранилища	Фдотация	2015	н/д
64	НДТ 84. Учет орографических особенностей местности (ИТС 23 НДТ 44)	Перехватка поверхности вод с помощью достаточной по объему отводной нагорной канавы (104.1).	Предотвращение прорывов за- грязияющих веществ	Флотация	2015	н/д
		Сооружение по периметру хвостохранилища у основания дамбы дренажной канавы или соору- жения для перехвата фильтрационного и возврата его в хвостохранилище или технологический процесс (104.2)	Предотвращение затопления санитарно-защитной зоны па- водковыми вода	Флотиция	2015	н/д
65	туалий (ИТС 23 НДТ 45)	Под емкостями с реагентами предусматривается установка подлонов с насосами (105.1)	Предотвращение попадания загрязияющих веществ за пре- делы фабрики	Реагентный участок	15-003-00 0-1-0000000	н/д
		Система вторичного удержания растворов химических реагентов (105.2)				
		Устройство противопожарного водопровода (105.3)				
		Сооружение емкостей для стока пульпы (105.4)				
		Проектирование сейсмоустойчивых строений 8-9 баллов (105.5)				
		Восстановление растительного покрова вдоль трассы пульпопровода (105.6)				
		Остановка загрузки руды при угрозе землетрясения (105.7)				
66	6 НДТ 86. Транспортировка и хранение реагентов и материалов (ИТС 23 НДТ 46)	Составление карты маршрута транспортировки хим. реагентов (106.1)	ситуаций деятельност	Административная деятельность	2015	н/д
		Наличне идентификационных знаков различия машин (106.2)				
		Наличие оперативной ВЧ связи машины сопровождения с диспетчером пункта доставки (106.3)				
		Строгое выполнение графика движения колонны и своевременность выхода на ВЧ связь при прохождении колонной контрольных точек маршрута движений (106.4)				
		При возникновении аварийной ситуации транспорта на маршруте, немедленное уведомление о случившемся лидером колонны (106.5)				
		Место складирования каждого реагента должно быть обозначено надписью с наименованием хранимого реагента. Хранение реагентов в не рассортированном виде запрещается (106.6)				

No.		Наименование внедренной технологии (НДТ)	Вид эффекта от внедрённых технологий (НДТ)	Наименование Технологического этапа	Год виедрения	Текущая балансова: стоимость млрд Т
-1	НДТ	Технологическое/техническое решение				
1	2		4	5	6	7
	НДТ 87. Обеспечение геотехнического анализа и мониторинга физической устойчивости объек- тов размещения отходов горнодобывающей дея- тельности (ЕС НДТ 22, 23, 24)		Рациональное обращение с от- ходами	Флотация	2015	10/Д
68	НДТ 88. Снижение уровня шума и вибрации (ЕС НДТ 53, ИТС 16 НДТ 5.6.1., 5.6.2)	Снижение акустического воздействия и вибрации на атмосферный воздух предусматривает применение спедующих подходов: - звукоизоляцию плужинего оборудования, применение звукопоглощающих конструкций; - виброизоляцию оборудования и механизмов, исключение резонавеных режимов работы; - ограничение продолжительности работы и рассредоточение по времени работы техники с высоким уровнем шума, организация и управление транспортными потоками; - шумозащитное озеленение (высадка деревьев в защитных лесополосах). Снижение воздействия физических факторов на этмосферный воздух при производстве взрывных работ предусматривает применение следующих технологических подходов: - установка защитных устройств для гашения ударных воздупных воли; - использование рациональной технологии взрывных работ, применение систем электронного инипширования взрывов, неэлектрического взрывания при производстве взрывных работ; - прекращение буров зрывных работ в ночное время при нахождении населенных пунктов в зоне влияния горных работ; - установление периода производства взрывных работ с учетом метеоусловий, экологической обстановки и природных биологических ритмов (нерест, гнездование, миграции и т. п.) в зоне производства работ	Минимизировать негативное воздействие шума и вибращии на атмосферный воздух, места обитания, создать безопасные и комфортные условия труда работающих. Снижение ин- тенсивности ударных воздуш- ных воли и сейсмическое дей- ствие производимых массо- вых взрывов	Добычные работы	2015	н/д
	НДТ 89. Снижение уровня неприятных запахов (ЕС НДТ 54)	Свободные водяные чехлы	Сокращение выбросов ЗВ	Флотация	2015	н/д
Ar	ого по предприятию, шт.: 69 (в том числе 2 НД	Гчистично)	10		•	
Hr	ого по предприятию, %: 97,1 (с учетом 2 НДТ ч	астично), без учета блока НДТ 75-81 в отношении этапа ликвидации (НДТ в части рекульт	пвашии)			

ЗАКЛЮЧЕНИЕ

При комплексной экологической оценке учитывают прогноз взаимоотношений проектируемого производства с окружающей средой.

Масштаб и характер планируемой деятельности предопределяет необходимость рассмотрения всех видов воздействия.

В предыдущих разделах была выполнена покомпонентная оценка воздействия на окружающую среду.

При этом были определены:

- объем водопотребления;
- качественный и количественный состав выбросов в атмосферу от ИЗА и их влияние на формирование уровня загрязнения приземного слоя атмосферы;
- качественный и количественный состав отходов и степень их опасности для здоровья человека и окружающей среды.

Выполненный покомпонентный анализ показал, что остаточные воздействия на компоненты ОС соответствуют минимальным показателям.

В соответствии с выполненным математическим моделированием рассеивания выбросов загрязняющих веществ, произведенного с учетом выбросов загрязняющих веществ от проектируемых объектов, концентрация загрязняющих веществ на границе санитарно-защитной зоны предприятия не превышает 1 ПДК.

В целом воздействие проектируемых объектов на этапе строительства и эксплуатации на атмосферный воздух оценивается как допустимое.

Реконструкция проектируемых объектов будет производиться в границах существующего промышленного узла со сложившейся застройкой и существующей организацией рельефа, поэтому дополнительного отвода земли не требуется.

Экологическое состояние окружающей среды территории предприятия и санитарно-защитной зоны на этапе строительства и эксплуатации проектируемых объектов по расчетам допустимое (относительно удовлетворительное), в системе экспертных оценок низкого уровня, когда негативные изменения не превышают предела природной изменчивости.

Регулярные наблюдения за состоянием окружающей среды, обеспечение безаварийной работы и выполнение всех предусмотренных проектом мероприятий, позволят осуществить реализацию намечаемой деятельности по строительству объектов без значимого влияния на окружающую среду и здоровье населения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Экологический Кодекс РК от 02 января 2021 года №400-VI 3РК;
- 2. Инструкция по организации и проведению экологической оценки, приказ Министра экологии, геологии и природных ресурсов РК от 30.07.2021 г. №280;
- 3. Санитарные правила «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов» №237 от 20 мата 2015 г
- 4. Гигиенические нормативы «Санитарно-эпидемиологические требования к атмосферному воздуху в городских и сельских населенных пунктах» от 23.06.2015 года.
- 5. Методики разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу МООС РК от 18.04.2008 г. №100-п»
- 6. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 7. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 8. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005
- 9. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 10. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ

1. Описание предполагаемого места осуществления намечаемой деятельности

Актогайский ГОК по административному делению находится на площади Аягозского района Восточно-Казахстанской области, на расстоянии 25 км восточнее пос. Актогай и ж.д. станции «Актогай» Алматинской железной дороги, с которой оно связано грунтовой дорогой, и примерно в 420 км от г. Балхаш. Другие населенные пункты находятся на удалении от ГОКа на расстояния: 26 км (пос. Шынырау), 32 км (пос. Копа), 38 км (пос. Тарлаулы), 56 км (пос. Каракол и Жанама). Районный центр г. Аягоз располагается северовосточнее пос. Актогай на расстоянии около 110 км по прямой. Областной центр г. Усть-Каменогорск расположен северо-восточнее пос. Актогай на расстоянии около 400 км по прямой.

Географические координаты представлены в таблице 1.1

Таблица 1.1

Угловые точки	Координаты угловых точек		
	Северная широта	Восточная долгота	
1	2	3	
1	46° 57' 06''	79° 58′ 31′′	
2	46° 57' 53''	79° 59' 46''	
3	46° 58' 40''	79° 59' 23''	
4	46° 58' 42''	79° 57' 29''	
5	46° 57' 46''	79° 57' 26''	

Планируемая намечаемая деятельность предусматривается на территории существующей производственной площадки предприятия.

2. Характеристика намечаемой деятельности

Реконструкция Обогатительных фабрик №1 и №2 предусматривается на месторождении Актогай в Восточно-Казахстанской области. Проектные решения:

- увеличение производительности фабрики №1 до 30 млн. т/год;
- увеличение производительности фабрики №2 до 27,5 млн. т/год;
- реконструкция хвостового хозяйства в южной части хвостохранилища (3-й этап, фаза 2-1).

При реализации намечаемой деятельности увеличение годовых показателей производства обогатительных фабрик №1 и №2 по переработке сульфидных руд месторождения Актогай достигается путем выхода на максимальную производительность имеющегося оборудования, установки дополнительного оборудования, а также за счет внедрения мер по оптимизации технологических процессов. Исходной проектной документацией для обогатительных фабрик принималась номинальная производительность процессов обогатительного производства 25 млн. тонн руды в год.

Работы по модернизации, замене и установке дополнительного оборудования будут включать модернизацию насосов PU-332, PU-333, установку дублирующего насоса PU-468, установку резервного насоса №402, монтаж параллельной трассы PU-406, замену труб на

участке 3340-PU-332333 с переходом диаметра труб с 350 мм на 400 мм, модернизацию оборудования на участке молибдена.

Предусматривается наращивание южной дамбы хвостохранилища стадии 3 фазы 2-1 поверх существующей дамбы фазы 1-2 стадии 3 с использованием метода напорного подъема с изменением отметки поверхности гребня дамбы от 366,0 м до 369,5 м по всей линий.

Поднятие дамбы фазы 2-1 будет производиться с применением зонального размещения грунтовых насыпей и дренажных материалов основания с укладкой геомембраны по напорной стороне. Южная промежуточная дамба 1 будет наращиваться с отметки 369,5 м до отметки 371,5 м. Подъем дамбы будет производиться с использованием проницаемого материала каменной отсыпки.

Объемом работ также предусматривается установка резервного пульповода обогатительной фабрики №2.

В рамках работ фазы 2-1 планируется поднять на переменную высоту существующие семь водоприемников оборотного водоснабжения (декантирующих сооружений). Декантирующие сооружения № 1,2 и 3 будут подняты до отметки 369,5 м, декантирующая конструкция 4 будет поднята до отметки 367,0 м, а декантирующие сооружения 5, 6 и 7 будут подняты до отметки 366,0 м.

Предположительные сроки реконструкции:

- Реконструкция обогатительной фабрики №1: начало июнь 2022 г., окончание сентябрь 2022 г.
- Реконструкция обогатительной фабрики №2: начало июнь 2022 г., окончание сентябрь 2022 г.

Реконструкция хвостового хозяйства в южной части хвостохранилища (3-й этап, фаза 2-1): начало – июнь 2022 г., окончание – июнь 2023 г.

Планируемая намечаемая деятельность предусматривается на территории существующей производственной площадки предприятия.

3. Оценка воздействия на состояние атмосферного воздуха

Период эксплуатации

На 2022-2023 гг. на обогатительных фабриках №1 и №2 будет функционировать 114 источников выбросов вредных веществ в атмосферу, из них 85 — организованных и 29 — неорганизованных источников выброса. Количество выбрасываемых вредных веществ — 42, с 1 по 4 класс опасности, из них 39 подлежит нормированию. Суммарные выбросы загрязняющих веществ на 2022 г., подлежащие нормированию, в целом от 2-х фабрик составляют 266,9795407 т/год.

Период строительства

При СМР будет иметься 1 неорганизованный источник выброса. В атмосферу всего выбрасывается 12 ингредиентов в количестве 25,3985004 т/год в том числе: твердые вещества – 23,590421 т/год, газообразные и жидкие вещества – 1,8080794 т/год.

Выбросы загрязняющих веществ от передвижных источников (автотранспорт) не нормируются (Согласно «Методике определения нормативов эмиссий в окружающую среду» утв. Приказом Министра экологии, геологии и природных ресурсов от 10 марта 2021 года №63). Нормированию на период СМР подлежат 8 ингредиентов в количестве 23,5606544 т/год в том числе: твердые вещества — 23,553765 т/год, газообразные и жидкие вещества — 0,0068894 т/год.

4. Оценка воздействия на водные ресурсы

Период строительства

Питьевое водоснабжение строительных площадок в период проведения строительных работ будет обеспечиваться привозной бутилированной водой.

При количестве работающих, занятых на строительстве, 180 человек потребление воды будет составлять, при норме на одного рабочего 0,025 м3/сут.

 Π сут = 0,025 м3/сут * 180 чел = 4,5 м3/сут

 $\Pi = 0.025 \text{ м3/сут x } 180 \text{ чел * } 365 \text{ день} = 1642,5 \text{ м3/период}$

Объем водопотребления за период ведения строительных работ (12 месяцев 2022-2023 г.г.) будет составлять на хозяйственно-питьевые нужды -1642,5 м3.

Также на период строительства предусматривается использовать техническую воду для пылеподавления. Источником технического водоснабжения является Жузагашское месторождение подземных вод, находящееся в 30 км западнее месторождения Актогай.

Объем технической воды составит:

на 12 месяцев 2022-2023 год – 5,0 м3/сутки, 1825,0 м3/период.

Период эксплуатации

Водоснабжение обогатительных фабрик №1 и №2 сульфидных руд выполнено от существующих систем технического и питьевого водоснабжения, запитанные от площадки Жузагашского водозабора согласно техническим условиям на водоснабжение за № 206/2018 от 06.06.2018, выданным филиалом компании «KAZ Minerals Projects B.V.».

Потребность в воде на производственные нужды обогатительной фабрики №1 составляет: оборотная вода со сливами сгустителя -5575,83 м³/ч, свежая вода для фабрики -2131,55 м³/ч.

Потребность в воде на производственные нужды обогатительной фабрики №2 составляет: оборотная вода со сливами сгустителя — $4753,74 \text{ м}^3/\text{ч}$, свежая вода для фабрики — $1775,10 \text{ м}^3/\text{ч}$.

Источником водоснабжения существующей обогатительной фабрики служит Жузагашское месторождение подземных вод питьевого качества, находящееся в 30 км на запад от Актогайского месторождения в долине реки Карасу.

Водоотведение

На обогатительной фабрике для производственных нужд предусмотрен полный водооборот и локальная оборотная система охлаждения безредукторного привода мельницы. В связи с этим нормативы сбросов загрязняющих веществ не устанавливаются.

Бытовые стоки от отдельно стоящих потребителей удаленных участков отводятся в канализационные выгребы с последующим вывозом ассенизационной машиной на существующие очистные сооружения. Вывоз стоков будет осуществляться регулярно по мере накопления в существующее модульное очистное сооружение очистки бытовых стоков на территории существующей обогатительной фабрики.

Предусмотренные очистные сооружения полной биологической очистки представляют собой установку модульного типа производительностью 540 910 м3/сут контейнерного типа заводского изготовления. Изготовитель КНААNZA. Контейнерная установка размещается наземно. Состоит из контейнерных модулей — емкостей и технического помещения. Процесс очистки включает в себя предварительную очистку сточных вод от грубых механических примесей и усреднение, двухступенчатую аэробную обработку стоков с последующим отделением очищенной сточной воды во вторичных отстойниках и ее доочистка на фильтрах.

Образующийся в процессе очистки сточных вод избыточный ил собирается в илонакопитель, аэробно стабилизируется и насосом подачи ила по трубопроводу подается в блок механического обезвоживания осадка. После периода дезактивации, ил может использоваться в качестве удобрения. Аэрацию осуществляет компрессор. Установка устойчиво работает при изменении гидравлических нагрузок, концентраций стока. При длительных перерывах в подаче стока установка самостоятельно, в течение нескольких суток, входит в оптимальный режим работы.

Очищенные хозяйственно-бытовые стоки хлорируются и отводятся в пруд технической воды для подпитки оборотной системы фабрики.

Дождевые и талые воды с кровель зданий и территории расширения обогатительной фабрики, комплекса цеха технического обслуживания горной техники и складов должны собираться системой дождеприемников и трубопроводов и отводиться через маслоуловитель в пруд-отстойник дождевых вод, предусмотренный возле обогатительной фабрики.

5. Отходы производства и потребления

Период строительства

В период строительных работ при реконструкции Обогатительных фабрик №1 и №2 месторождения Актогай будут образовываться следующие виды отходов: ТБО, ветошь промасленная, огарки сварочных электродов, использованная тара из-под ЛКМ.

Период эксплуатации

В проекте нормированию и рассмотрению подлежат следующие виды отходов:

- хвосты обогащения.

Хвосты обогащения образуются после коллективной флотации сульфидной руды, извлечения меди и молибдена в концентрат. Отвальные хвосты представляют собой пульпу, твердая фаза которой сопоставима с рудой, а жидкая фаза, помимо растворенных металлов, содержит остаточные концентрации цианида.

Планируемый объем образования хвостов обогащения составляет:

- на 2022 год: 54 073 259 тонн;
- на 2023 год: 54 023 146 тонн.

Вывол

Экологическое состояние окружающей среды территории предприятия и санитарнозащитной зоны на этапе строительства и эксплуатации проектируемых объектов по расчетам допустимое (относительно удовлетворительное), в системе экспертных оценок низкого уровня, когда негативные изменения не превышают предела природной изменчивости.

Регулярные наблюдения за состоянием окружающей среды, обеспечение безаварийной работы и выполнение всех предусмотренных проектом мероприятий, позволят осуществить реализацию намечаемой деятельности по строительству объектов без значимого влияния на окружающую среду и здоровье населения.