Расчеты ожидаемых выбросов, отходов, потребности в водных ресурсах на период добычи осадочных пород месторождения «Кулаколь №3», расположенного в сельской зоне г.Экибастуз Павлодарской области

Директор ТОО "Евразия ЭкоПроек Тучпкерший инстерги

К.К. Тулеубекова

"ЕвразияЭкоПроек

СОДЕРЖАНИЕ

1.	Исходные данные	3
2.	Расчеты выбросов загрязняющих веществ в атмосферный воздух в период добычи	4
3.	Потребность в водных ресурсах	22
4.	Виды и объемы образования отходов, свойства. Рекомендации по управлению отходами.	24
5.	Список использованной литературы	26

1. ИСХОДНЫЕ ДАННЫЕ

Объем земляных работ и инертных материалов приведен в таблице 1.1.

Таблица 1.1

Наименование	Ед. изм.	Всего	Контрактный	период
			Годы отраб	отки
			2023-2027	2028-2032
Горная масса				
	T/M^3		2,06	2,06
	M^3/Γ од	75560	37780	37780
	т/год	155653,6	77826,8	77826,8
ПРС				
	T/M ³		1,8	-
	м³/год	6320	6320	-
	т/год	11376	11376	-

Потребность в материалах, оборудовании и автотехнике, используемых в процессе добычи приведена в таблицах 1.2-1.6.

Таблица 1.5

№ п/п	Наименование	Ед. изм.	Количество	Мощность,	Время работы, час
1	Экскаватор CLG925LC	шт.	3	170	4112
2	Бульдозер –SD16	шт.	3	120	4112

Таблица 1.6

№ п/п	Наименование автотехники	Тип двигателя	Грузо- подъемность, т	Коли- чество	Количество рабочих дней
1	Автосамосвал- HOWOZZ3257M3647W	дизельный	до 12	4	264
2	Поливомоечная машина-HUAWEI sgz5250gsszz3j44	дизельный	до 12	1	264
3	Топливо заправщик— jg5251giy	дизельный	до 12	1	264

2. РАСЧЕТЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ В ПЕРИОД ДОБЫЧНЫХ РАБОТ

Площадка добычи

Источник выделения № № 7001 (01) — земляные работы.

Разработка грунта, с обратной засыпкой, осуществляется в следующем объеме:

Наименование	Ед. изм.	Всего	Контрактный	период
			Годы отраб	отки
			2023-2027	2028-2032
Горная масса				
	T/M ³		2,06	2,06
	м ³ /год	75560	37780	37780
	т/год	155653,6	77826,8	77826,8
ПРС				
	T/M ³		1,8	-
	м ³ /год	6320	6320	-
	т/год	11376	11376	-

Валовые выбросы пыли при разработке и обратной засыпке грунта определяются следующим образом:

$$M$$
год = M сек $x T x 3600 x 10^{-6}$, m /год

Максимально разовые выбросы пыли при разработке грунта и обратной засыпке определяются по формуле 2 [Л.7]:

$$Mce\kappa = \frac{P_1 \times P_2 \times P_3 \times P_4 \times P_5 \times P_6 \times B1 \times G \times 10^6}{3600}$$
, 2/c

где: P_1 – доля пылевой фракции в породе, таблица 1 [Л.7];

 P_2 — доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале, таблица 1 [Л.7];

 P_3 – коэффициент, учитывающий скорость ветра в зоне работы экскаватора, таблица 2 [Л.7];

 P_4 – коэффициент, учитывающий влажность материала, таблица 4 [Л.7];

 P_5 – коэффициент, учитывающий крупность материала таблица 5 [Л.7];

 P_6 – коэффициент, учитывающий местные условия, таблица 3 [Л.7];

 ${\rm B1- \kappao}$ эффициент, учитывающий высоту пересыпки, таблица 7 [Л.7];

G – количество перерабатываемой экскаватором породы, т/час;

Т – годовой фонд времени работы, час/год.

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.1.

Таблица 2.1

Наименование	P1	P2	Р3	P4	P5	P6	B1	G,	Т,	k	Код ЗВ	Наименование	Выбросы ЗВ	
источника выделения								т/час	час/год			загрязняющего вещества	г/с	т/год
									2022	2-2027	год			
Горная масса	0,05	0,03	1,4	0,6	0,5	0,5	0,5	10	7783	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,175	4,90329
ПРС	0,03	0,04	1,4	0,6	0,6	0,1	0,5	10	1138	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,0336	0,13765
Итого по источник	cy №6000	501:									2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,175	5,04094
									2028-	2032 г	оды	-		
ПРС	0,03	0,04	1,4	0,6	0,6	0,1	0,5	10	7783	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,0336	0,94143
Итого по источник	cy №600	101:	•	•	•	•					2908	Пыль неорганическая: 70- 20% двуокиси кремния	0,0336	0,94143

Источник выделения № 7001 (02) – разгрузка инертных материалов.

Наименование и объемы используемых инертных материалов:

Наименование	Ед. изм.	Всего	Контрактный	
			Годы отраб	ботки
			2023-2027	2028-2032
Горная масса				
	T/M ³		2,06	2,06
	м ³ /год	75560	37780	37780
	т/год	155653,6	77826,8	77826,8
ПРС				
	T/M ³		1,8	-
	м ³ /год	6320	6320	-
	т/год	11376	11376	=

Валовые выбросы пыли при пересыпке пылящих материалов определяются следующим образом:

$$M cod = M ce\kappa x T x 3600 x 10^{-6}, m/cod$$

Максимально разовые выбросы пыли при пересыпке пылящих материалов определяются по формуле 2 [Л.7]:

$$Mce\kappa = \frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B' \times G \times 10^6}{3600}$$
, ε/c

где: k_1 — весовая доля пылевой фракции в материале, таблица 1 [Л.7]. Для щебня и цемента данный коэффициент был принят из таблицы 3.1.1 [Л.8];

 k_2 — доля пыли (от всей массы пыли), переходящая в аэрозоль, таблица 1 [Л.7]. Для щебня и цемента данный коэффициент был принят из таблицы 3.1.1 [Л.8];

k₃ – коэффициент, учитывающий местные метеоусловия, таблица 2 [Л.7];

k₄ – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования, таблица 3 [Л.7];

k₅ – коэффициент, учитывающий влажность материала, таблица 4 [Л.7];

k₇ – коэффициент, учитывающий крупность материала, таблица 5 [Л.7];

Кроме того, исходя из имеющихся данных о распределении размеров частиц с удалением от источника выделения с учетом гравитационного осаждения, рекомендуется принимать значение поправочного коэффициента к различной величине выделения, k - 0.4 [Л.8].

В' – коэффициент, учитывающий высоту пересыпки, таблица 7 [Л.7];

G – суммарное количество перерабатываемого угля, т/час;

Т – годовой фонд времени работы, час/год.

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.2.

Расчеты ожидаемых выбросов, отходов, потребности в водных ресурсах на период добычи осадочных пород месторождения «Кулаколь №3», расположенного в сельской зоне г.Экибастуз Павлодарской области

Таблица 2.2

Наименование	Наименование	$\mathbf{k_1}$	\mathbf{k}_2	k ₃	\mathbf{k}_4	\mathbf{k}_5	k ₇	B'	G,	T,	k	Код ЗВ	Наименование	Выбросы ЗВ	
материала	источника выделения								т/час	час/год			загрязняющего вещества	г/с	т/год
										2023-2027	7 годы				
ПРС	Загрузка в бурты бульдозером	0,05	0,03	1,4	0,5	0,6	0,5	0,5	10	2400	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,175	1,512
Горная масса	Загрузка в автосамосвал	0,03	0,04	1,4	0,5	0,6	0,6	0,5	10	2400	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,168	1,45152
Итого по источн	нику №600102:	,										2908	Пыль неорганическая: 70-20% двуокиси кремния	0,175	2,96352
										2028-2032	годы				
Горная масса	Загрузка в автосамосвал	0,03	0,04	1,4	0,5	0,6	0,6	0,5	10	2400	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,168	1,45152
Итого по источн	нику №600102:											2908	Пыль неорганическая: 70-20% двуокиси кремния	0,168	1,45152

Источник выделения № 6001 (06) — бурты почвенно-растительного слоя.

Валовые выбросы пыли при разгрузке и хранении материала определяются следующим образом:

$$Mzo\partial = Mce\kappa x Tx 3600 x 10^{-6}, m/zo\partial$$

Максимально разовые выбросы пыли при планировке и хранении ПРС определяются по формуле 2 [Л.7]:

$$Mce\kappa = \frac{k_{\scriptscriptstyle 1} \times k_{\scriptscriptstyle 2} \times k_{\scriptscriptstyle 3} \times k_{\scriptscriptstyle 4} \times k_{\scriptscriptstyle 5} \times k_{\scriptscriptstyle 7} \times G \times 10^{\scriptscriptstyle 6} \times B'}{3600} + k_{\scriptscriptstyle 3} \times k_{\scriptscriptstyle 4} \times k_{\scriptscriptstyle 5} \times k_{\scriptscriptstyle 6} \times k_{\scriptscriptstyle 7} \times q' \times F \quad \text{, 2/c}$$

где: k_1 – весовая доля пылевой фракции в материале, таблица 1 [Л.7];

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль, таблица 1 [Л.7];

k₃ – коэффициент, учитывающий местные метеоусловия, таблица 2 [Л.7];

k₄ – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования, таблица 3 [Л.7];

k₅ – коэффициент, учитывающий влажность материала, таблица 4 [Л.7];

k₇ – коэффициент, учитывающий крупность материала, таблица 5 [Л.7];

Кроме того, исходя из имеющихся данных о распределении размеров частиц с удалением от источника выделения с учетом гравитационного осаждения, рекомендуется принимать значение поправочного коэффициента к различной величине выделения, k=0,4 [Л.8].

В' – коэффициент, учитывающий высоту пересыпки, таблица 7 [Л.7];

G – суммарное количество перерабатываемого угля, т/час;

 k_6 — коэффициент, учитывающий профиль поверхности складируемого материала, принято равным k_6 = 1,45 [Л.7];

q – унос пыли с одного квадратного метра фактической поверхности, таблица 6 [Л.7];

F – поверхность пыления в плане, M^2 ;

Т – годовой фонд времени работы, час/год.

Расчеты выбросов загрязняющих веществ сведены в таблицу 3.4.

Масса пыли, выделяющейся при отвалообразовании бульдозером определяется по формуле 6.5 [Л.7]:

$$M\!sod = \frac{q_{yo} \times 3.6 \times \gamma \times V \times t_{cm} \times n_{cm} \times 10^{-3} \times K_1 \times K}{t_{u\delta} \times K_p}$$

где: $q_{yд}$ – удельное выделение твердых частиц с 1 т перемещаемого материала, г/т (таблица

19) согласно приложения к настоящей Методике;

 γ – плотность пород, т/м3;

V – объем призмы волочения, м3;

t_{см} – чистое время работы бульдозера в смену, ч;

n_{см} – количество смен работы бульдозера в год;

 K_1 – коэффициент, учитывающий скорость ветра, (м/с), определяется по наиболее характерному для данной местности значению скорости ветра;

К2 – коэффициент, учитывающий влажность материала;

 $t_{\text{цб}}$ – время цикла, с;

К_р – коэффициент разрыхления горной массы.

Максимальный из разовых выброс вредных веществ при отвалообразовании бульдозером определяется по формуле 6.6 [Л.7]:

$$Mce\kappa = \frac{q_{y\partial} \times \gamma \times V \times K_{I} \times K}{t_{u\delta} \times K_{p}}$$

Расчеты выбросов загрязняющих веществ сведены в таблицу 3.5.

Таблица

Наименование	Наименование	qуд	γ , T/M^3	V	t _{см}	псм	tцб	Kp	k	Код ЗВ	Наименование	Выбросы	3B
материала	источника выделения										загрязняющего вещества	г/с	т/год
						2022-2	2027 год	Ы					
TID G	Формирование бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384
ПРС	Планировка бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384
	Формирование бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси	0,46855	0,71384
ПРС	Планировка бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	кремния Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384
	Формирование бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384
ПРС	Планировка бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384
ПРС	Формирование бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384
	Планировка бурта	2,4	1,7	28,3	2	160	120	1,15	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,46855	0,71384

ТОО "ЕвразияЭкоПроект"

	2908	Пыль неорганическая: 70-20% двуокиси	0,46855	5,71072
Итого по источнику выделения №600103:		70-20% двуокиси кремния		
итого по источнику выделения леооотоз.		кремпия		

Источник выделения N_{2} 6001 (06) — хранение почвенно-растительного слоя на буртах.

Валовые выбросы пыли при разгрузке и хранении материала определяются следующим образом:

$$Mzo\partial = Mce\kappa x Tx 3600 x 10^{-6}, m/zo\partial$$

Максимально разовые выбросы пыли при планировке и хранении ПРС определяются по формуле 2 [Л.7]:

$$Mce\kappa = \frac{k_{\scriptscriptstyle 1} \times k_{\scriptscriptstyle 2} \times k_{\scriptscriptstyle 3} \times k_{\scriptscriptstyle 4} \times k_{\scriptscriptstyle 5} \times k_{\scriptscriptstyle 7} \times G \times 10^{\scriptscriptstyle 6} \times B'}{3600} + k_{\scriptscriptstyle 3} \times k_{\scriptscriptstyle 4} \times k_{\scriptscriptstyle 5} \times k_{\scriptscriptstyle 6} \times k_{\scriptscriptstyle 7} \times q' \times F \quad \text{, 2/c}$$

где: k_1 – весовая доля пылевой фракции в материале, таблица 1 [Л.7];

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль, таблица 1 [Л.7];

k₃ – коэффициент, учитывающий местные метеоусловия, таблица 2 [Л.7];

k₄ – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования, таблица 3 [Л.7];

 k_5 – коэффициент, учитывающий влажность материала, таблица 4 [Л.7];

k₇ – коэффициент, учитывающий крупность материала, таблица 5 [Л.7];

Кроме того, исходя из имеющихся данных о распределении размеров частиц с удалением от источника выделения с учетом гравитационного осаждения, рекомендуется принимать значение поправочного коэффициента к различной величине выделения, k - 0.4 [Л.8].

В' – коэффициент, учитывающий высоту пересыпки, таблица 7 [Л.7];

G – суммарное количество перерабатываемого угля, т/час;

 k_6 — коэффициент, учитывающий профиль поверхности складируемого материала, принято равным k_6 = 1,45 [Л.7];

q – унос пыли с одного квадратного метра фактической поверхности, таблица 6 [Л.7];

F – поверхность пыления в плане, M^2 ;

Т – годовой фонд времени работы, час/год.

Расчеты выбросов загрязняющих веществ сведены в таблицу 3.4.

Масса пыли, выделяющейся при отвалообразовании бульдозером определяется по формуле 6.5 [Л.7]:

$$M\!sod = \frac{q_{y\partial} \times 3.6 \times \gamma \times V \times t_{_{CM}} \times n_{_{CM}} \times 10^{-3} \times K_{_{I}} \times K}{t_{_{U\!\bar{O}}} \times K_{_{p}}}$$

где: q_{уд} – удельное выделение твердых частиц с 1 т перемещаемого материала, г/т (таблица 19) согласно приложения к настоящей Методике;

 γ – плотность пород, т/м3;

V – объем призмы волочения, м3;

t_{см} – чистое время работы бульдозера в смену, ч;

 $n_{\text{см}}$ – количество смен работы бульдозера в год;

 K_1 — коэффициент, учитывающий скорость ветра, (м/с), определяется по наиболее характерному для данной местности значению скорости ветра;

К₂ – коэффициент, учитывающий влажность материала;

 $t_{\text{цб}}$ – время цикла, с;

К_р – коэффициент разрыхления горной массы.

Максимальный из разовых выброс вредных веществ при отвалообразовании бульдозером определяется по формуле 6.6 [Л.7]:

$$Mce\kappa = \frac{q_{y\partial} \times \gamma \times V \times K_{I} \times K}{t_{u\delta} \times K_{p}}$$

Расчеты выбросов загрязняющих веществ сведены в таблицу 3.5.

Таблица

Наименование	Наименование	k ₁	\mathbf{k}_2	k ₃	k ₄	k ₅	\mathbf{k}_{6}	k ₇	B'	G,	T,	q'	F, m ²	k	Код ЗВ	Наименование	Выбросы	3B
материала	источника выделения									т/час	час/год					загрязняющего вещества	г/с	т/год
	1,1,5				•	•	ı	•		2023-2	2027 годы				•	. ,		•
ПРС	Разгрузка с автосамосвала и хранение в бурте №1	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	6200	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	1,31693	41,5307
ПРС	Разгрузка с автосамосвала и хранение в бурте №2	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	3999	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,87013	27,44042
ПРС	Разгрузка с автосамосвала и хранение в бурте №3	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	6680,5	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	1,41447	44,60673
ПРС	Разгрузка с автосамосвала и хранение в бурте №4	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	3859,5	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,84181	26,54732

Итого по исто	чникам выделени:	a №№6	00604:												2908	Пыль неорганическая: 70-20% двуокиси кремния	1,41447	41,5307
										2028-2	2032 годы		_					
ПРС	Хранение в бурте №1	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	6200	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	1,31693	41,5307
ПРС	Хранение в бурте №2	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	3999	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,87013	27,44042
ПРС	Хранение в бурте №3	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	6680,5	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	1,41447	44,60673
ПРС	Хранение в бурте №4	0,05	0,03	1,4	0,5	0,2	1,45	0,5	0,5	10	8760	0,002	3859,5	0,4	2908	Пыль неорганическая: 70-20% двуокиси кремния	0,84181	26,54732
Итого по исто	чникам выделени:	а №600	104:												2908	Пыль неорганическая: 70-20% двуокиси кремния	1,41447	140,12517

Расчеты ожидаемых выбросов, отходов, потребности в водных ресурсах на период добычи осадочных пород месторождения «Кулаколь №3», расположенного в сельской зоне г.Экибастуз Павлодарской области

Источник выделения № 7001 (06) – работа ДВС строительной техники.

Работы на площадке добычных работ осуществляются следующей строительной техникой:

	№ п/п	Наименование	Ед. изм.	Количество	Мощность, л.с.	Время работы, час
	1	Экскаватор CLG925LC	шт.	3	170	4112
ĺ	2	Бульдозер –SD16	шт.	3	120	4112

Валовый выброс токсичных веществ газов при работе техники рассчитывается по формуле:

$$G = M x T x 3600 x 10^{-6}, m/200$$

где: Т – время работы строительной техники, час.

Максимальный разовый выброс токсичных веществ газов при работе техники рассчитывается по формуле:

$$M = B x k_{3i} / 3600$$
, c/c

где: В – расход топлива, т/час;

 k_{si} – коэффициент эмиссий i – того загрязняющего вещества (табл. 4.3 [Л.7]).

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.6.

Таблица 2.6

Наименование техники	Коли- чество	В, т/час	Т, час	kэi	Код 3В	Наименование загрязняющего вещества	Выбро	сы ЗВ
							г/с	т/год
		202	23-2032	годы				
Бульдозер –SD16	3	0,051	4112	10000	0301	Азота (IV) диоксид	0,14167	6,29151
				15500	0328	Углерод	0,21958	9,75146
				20000	0330	Сера диоксид	0,28333	12,58257
				0,1	0337	Углерод оксид	0,000001	0,000044
				0,32	0703	Бенз(а)пирен	0,000005	0,00022
				30000	2732	Керосин	0,425	18,87408
Экскаватор CLG925LC	3	0,007	4112	10000	0301	Азота (IV) диоксид	0,01944	0,86332
				15500	0328	Углерод	0,03014	1,33851
				20000	0330	Сера диоксид	0,03889	1,72709
				0,1	0337	Углерод оксид	0,0000002	0,000009
				0,32	0703	Бенз(а)пирен	0,000001	0,00004
				30000	2732	Керосин	0,05833	2,59041
					0301	Азота (IV) диоксид	0,14167	7,15483
					0328	Углерод	0,21958	11,08997
					0330	Сера диоксид	0,28333	14,30966
Итого по источнику №600105:					0337	Углерод оксид	0,000001	0,000053

0703	Бенз(а)пирен	0,000005	0,00026	
2732	Керосин	0,425	21,46449	

Источник выделения № 7001 (07) – работа ДВС автотранспорта.

Подвоз материалов на площадку осуществляются следующим видом автотранспорта:

№ п/п	Наименование автотехники	Тип двигателя	Грузо- подъемность, т	Коли- чество	Количество рабочих дней
1	Автосамосвал— HOWOZZ3257M3647W	дизельный	до 12	4	264
2	Поливомоечная машина-HUAWEI sgz5250gsszz3j44	дизельный	до 12	1	264
3	Топливо заправщик— jg5251giy	дизельный	до 12	1	264

Величина выбросов от автомобилей при движении и работе на территории предприятия рассчитывается по формулам 3.17, 3.18 [Л.12]:

$$M_1 = M_L \, x \, L_1 + 1,3 \, x \, M_L \, x \, L_{In} + M_{xx} \, x \, T_{xs}$$
 , г $M_2 = M_L \, x \, L_2 + 1,3 \, x \, M_L \, x \, L_{2n} + M_{xx} \, x \, T_{xm}$, г/30 мин

где: M_L – пробеговый выброс загрязняющего вещества автомобилем при движении по территории предприятия, определяется по таблице 3.8 [Л.12], г/км;

 L_1 – пробег автомобиля без нагрузки по территории предприятия, км/день;

 L_2 – максимальный пробег автомобиля без нагрузки по территории предприятия за 30 минут, км;

1,3 – коэффициент увеличения выбросов при движении с нагрузкой;

 L_{1n} – пробег автомобиля с нагрузкой по территории предприятия, км/день;

 L_{2n} — максимальный пробег автомобиля с нагрузкой по территории предприятия за 30 минут, км;

 M_{xx} — удельный выброс вещества при работе двигателя на холостом ходу, определяется по таблице 3.3 [Л.12], г/мин;

Т_{хх} – суммарное время работы двигателя на холостом ходу, мин;

Т_{хм} – максимальное время работы двигателя на холостом ходу за 30 минут, мин.

Валовый выброс загрязняющих веществ рассчитывается по формуле 3.19 [Л.12]:

$$G = A \times M_1 \times N_k \times D_n \times \alpha_N \times 10^{-6}$$
, m/200

где: А – коэффициент выпуска;

 N_k – количество автомобилей, шт;

 α_N –коэффициенты трансформации окислов азота. Принимаются равными 0.8 – для $NO_2,\,0.13$ – для NO [Л.12];

 D_n – количество рабочих дней в расчетном периоде.

Максимально разовый выброс загрязняющих веществ рассчитывается по формуле 3.20 [Л.12]:

$$M = M_2 x N_{kl} x \alpha_N / 1800$$
, c/c

где: N_{k1} – наибольшее количество машин, работающих на территории предприятия в течение получаса.

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.7.

Таблица 2.7

Наименование						Пери	юды						L	L_2	T_x	A	N	N	a_N	Ко	Наименов	$G_{\scriptscriptstyle T}$	G_{π}	Выбро	сы ЗВ
машин			Теплы	ій				Ι	Тереход н	ный			2,	n,	m,		k	k1		д 3В	ание			г/с	т/год
	M _L , г/к м	L ₁ , км/де нь	L _{1n} , км/де нь	М _{хх} , г/м ин	Т _{хs} , ми н	D n	M _L , г/к м	L ₁ , км/де нь	L _{1n} , км/де нь	М _{хх} , г/м ин	Т _{xs} , ми	D n	K M	K M	Н					ЭБ	загрязняю щего вещества				
			•							2023	3-2032	годі	Ы												
Автосамосвал— HOWOZZ3257 M3647W	4	3	3	1	8	11 0	4	3	3	1	8	4 4	1	1	10	1	2	1	0, 8	03 01	Азота (IV) диоксид	0,006 27	0,002 51	0,008 53	0,015 1
	4			1			4			1									0, 13	03 04	Азот (II) оксид	0,001 02	0,000 41	0,001 39	0,002 5
	0,3			0,04			0,3 6			0,04									1	03 28	Углерод	0,000 53	0,000 25	0,000 68	0,001 5
	0,5 4			0,1			0,6 03			0,1									1	03 30	Сера диоксид	0,001	0,000 44	0,001 33	0,002 6
	6,1			2,9			6,6 6			2,9									1	03 37	Углерод оксид	0,014 36	0,006 09	0,024 62	0,036 8
	1			0,45			1,0 8			0,45									1	27 32	Керосин	0,002 31	0,000 97	0,003 88	0,005 9
Поливомоечная машина- HUAWEI sgz5250gsszz3j4 4	4	2	2	1	8	11 0	4	2	2	1	8	4 4	1	1	10	1	1	1	0,	03 01	Азота (IV) диоксид	0,002 47	0,000 21	0,008 53	0,005
	4			1			4			1									0, 13	03 04	Азот (II) оксид	0,000	0,000 03	0,001 39	0,000
	0,3			0,04			0,3 6			0,04									1	03 28	Углерод	0,000	0,000 02	0,000 68	0,000 6
	0,5 4			0,1			0,6 03			0,1									1	03 30	Сера диоксид	0,000 38	0,000 04	0,001	0,001
	6,1			2,9			6,6 6			2,9									1	03 37	Углерод оксид	0,006	0,000 54	0,024 62	0,014 7
	1			0,45			1,0 8			0,45									1	27 32	Керосин	0,000 96	0,000 09	0,003 88	0,002 4
Топливо заправщик— jg5251giy	4	2	2	1	8	11 0	4	2	2	1	8	4 4	1	1	10	1	1	1	0, 8	03 01	Азота (IV) диоксид	0,002 47	0,000 21	0,008 53	0,005
	4			1			4			1									0,	03	Азот (II)	0,000	0,000	0,001	0,000

Наименование						Пери	юды						L	L_2	Tx	A	N	N	a _N	Ко	Наименов	G _T	Gπ	Выбро	сы ЗВ
машин			Тепль	ІЙ				I	Тереход н	ный			2,	n,	m,		k	k1		д 3В	ание			г/с	т/год
	M _L	L ₁ , км/де	L _{1n} , км/де	M _{xx}	T _{xs}	D n	M _L	L ₁ , км/де	L _{1n} , км/де	M _{xx}	T _{xs}	D n	K M	K M	МИ H					ЗВ	загрязняю щего вещества				
	г/к	нь	НЬ	г/м	МИ		г/к	НЬ	нь	г/м	МИ										Бещеетва				
	M			ИН	Н		M			ин 2023	н 3-2032 1	голь	J												
												ОДІ	-						13	04	оксид	4	03	39	9
	0,3			0,04			0,3 6			0,04	-								1	03 28	Углерод	0,000	0,000 02	0,000 68	0,000
	0,5 4			0,1			0,6 03			0,1									1	03 30	Сера диоксид	0,000 38	0,000 04	0,001 33	0,001
	6,1			2,9			6,6 6			2,9									1	03 37	Углерод оксид	0,006	0,000 54	0,024 62	0,014 7
	1			0,45			1,0 8			0,45									1	27 32	Керосин	0,000 96	0,000 09	0,003 88	0,002 4
																				03 01	Азота (IV) диоксид			0,025 59	0,026 7
																				03 04	Азот (II) оксид			0,004 17	0,004
																				03 28	Углерод	-		0,002 04	0,002 58
																				03 30	Сера диоксид			0,003 99	0,004 67
																				03 37	Углерод оксид			0,073 86	0,066 21
Итого по источні	ику №	600106:																		27 32	Керосин			0,011 64	0,010 61

Выбросы загрязняющих веществ на период добычных работ

Код ЗВ	Наименование загрязняющего вещества	Выбро	сы ЗВ
		г/с	т/год
0301	Азота (IV) диоксид	0,17143	14,363
0304	Азот (II) оксид	0,00834	0,00866
0328	Углерод	0,44324	22,1851
0330	Сера диоксид	0,57464	28,62866
0337	Углерод оксид	0,147722	0,132526
0703	Бенз(а)пирен	0,00001	0,00052
2732	Керосин	0,87328	42,9502
	Пыль неорганическая: 70-20% двуокиси		
2908	кремния	3,84909	197,764
Итого:	· •	6,067752	306,0327

3. ПОТРЕБНОСТЬ В ВОДНЫХ РЕСУРСАХ

В период добычных работ вода используется на хозбытовые нужды рабочих, на производственные нужды.

Обеспечением строителей питьевой бутилированной водой планируется подрядчиком с доставкой на площадку автотранспортом.

Для хозбытовых нужд рабочих на период добычи планируется использование временных бытовых помещений — гардеробная, умывальная на 10 человек. Вода из заводских сетей соответствует по всем показателям Санитарным правилам Санитарных правил "Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов" [Л.16].

Расход воды на хозбытовые нужды рабочих определяется, исходя из норм водопотребления [Л.16], численности рабочих, количества душевых сеток, фонда времени работы.

Расчет потребности в воде на хозбытовые нужды в период добычи приведен в таблице 3.1.

Таблина 3.1

Иотомуми	Норма водопотр	эебления	Исходные	данные	Кол-во	Dooroz
Источники водопотребления	Наименование	Значение	Наименова ние	Значение	кол-во смен *	Расход воды, м ³
Хозбытовые нужды рабочих	литров в смену на человека	25	Количество человек в смену	35	514	450
Всего:						450

^{*}- продолжительность добычи 12 мес (257 дней,. количество смен в день - 2, общее количество смен -

Общий расход технической воды на хозбытовые нужды составит 450 м^3 .

514).

Баланс водопотребления и водоотведения

Таблица 3.2

			Водопо	требление	, м ³ /год				Водоотв	едение, м ³ /год		
Производство	Всего	Све	Производств жая вода в том числе питьевого качества	енные нух Оборот- ная вода	Повторно	Хозяйственно- бытовые нужды	Безвозв- ратное потреб- ление	Всего	Объем сточной воды повторно используемой	Производст- венные сточные воды	Хозяйственно- бытовые и фекальные сточные воды	Примеча- ние
1	2	3	4	5	6	7	8	9	10	11	12	13
						Период добъ	ычи					
Площадка добычи осадочных пород	450	-	-	-	-	450	-	450	-	-	450	-
Всего:	450	-	-	-	-	450	-	450	-	-	450	-

Decreated overlanded by Duffancon, Ottograph Hottpefulotte B Bolling by Bennon, 1961 Hill occupation of Hottpefulotte Mark Bolling of Bolling o

4. ВИДЫ И ОБЪЕМЫ ОБРАЗОВАНИЯ ОТХОДОВ, СВОЙСТВА. РЕКОМЕНДАЦИИ ПО УПРАВЛЕНИЮ ОТХОДАМИ.

В период добычи будут образовываться следующие виды отходов:

ТБО (коммунальные отходы).

В период добычи отходы касок (средств индивидуальной защиты), изношенной спецодежды (текстиля — курток, полукомбинезонов, брюк), резинотехнических изделий (ботинок, сапог) не образуются, в связи с отсутствием износа используются подрядной организацией на других объектах.

Данные об объемах образования отходов, индексах опасности, токсичности, физическом состоянии, а также рекомендации по утилизации, захоронению приведены ниже. Индексы опасности отходов приняты в соответствии с «Классификатором отходов» [Л.17].

ТБО (коммунальные отходы) Данные отходы образуются от жизнедеятельности рабочих, а также представляют собой смет с территории после окончания добычных работ. Состоят из мелких упаковочных материалов, текстиля, песка и т.п. Кроме того, отходы образуются при приготовлении пищи для работников подрядной организации в столовых завода. Представляют собой остатки продуктов питания, пищи.

Количество отходов определяется на основе исходных данных, норм образования на одного работающего, плотности отходов и численности рабочих по формуле [Л.18]:

$$M = n x k x \rho, m/200$$

где: п – численность рабочих, чел;

k – норма образования отходов, принимается равной 0,3 м³/год [Л.18];

 ρ – плотность отходов, принимается равной 0,25 т/м³[Л.18];

Нормативное количество смета (C) с площади убираемых территорий (S) составляет $0.005\ \text{т/m}^2$ в год:

$$C = S \times 0,005$$
, т/год

Расчеты сведены в таблицу 4.6.

Таблица 4.6

Источники	Норма образования	Исходные данные	Количество	Плотность	Количество
образования отходов	отходов	исходные данные	рабочих дней	отходов т/м ³	отходов, т
Деятельность рабочих	0,3 м ³ /год	35 человек	257 (514 смены)	0,25	1,8
Всего:					1,8

Данные отходы не имеют каких-либо опасных свойств, не содержат показатели опасных веществ превышающих лимитирующих показателей, классифицируются как

неопасные отходы.

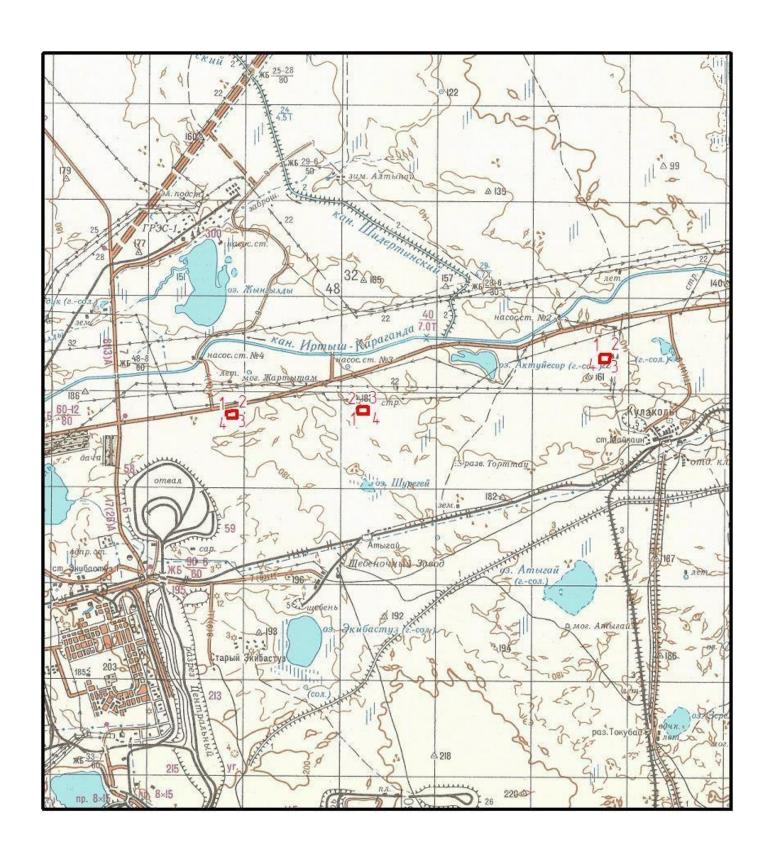
Классификационный код коммунальных отходов (ТБО) – 200301.

Агрегатное состояние отходов - твердое, по физическим свойствам – в большинстве случаев нерастворимые в воде, пожароопасные, невзрывоопасные, некоррозионноопасные.

По химическим свойствам – не обладают реакционной способностью, содержат углеводороды (полимеры, целлюлозу), оксиды кремния, органические вещества.

Сбор отходов предусматривается в контейнеры, установленные подрядной организацией на площадке. Отходы рекомендуется передавать в специализированное предприятие.

5. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


- Экологический кодекс РК, Кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду, утвержденные приказом Вице-министра охраны окружающей среды РК №270-п от 29.10.2010 г.
- 3. СП «Санитарно-эпидемиологические требования по установлению санитарнозащитной зоны производственных объектов», утвержденные приказом Министра национальной экономики РК от 20.03.2015 года №237.
- 4. Гигиенические нормативы к атмосферному воздуху и городских и сельских населенных пунктах «Предельно-допустимые концентрации загрязняющих веществ в атмосферном воздухе населенных мест», утвержденные приказом Министра национальной экономики РК №168 от 28.02.2015 г.
- 5. Методика определения нормативов эмиссий в окружающую среду, утвержденная Министром охраны окружающей среды Республики Казахстан от 16 апреля 2012 года №110-Ө, Астана, 2012.
- 6. Методика расчета нормативов выбросов от неорганизованных источников. Приложение № 8 к приказу Министра ОС и ВР РК от 15.07.2014 г. № 221-ө.
- 7. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение № 3 к приказу МООС РК от 18.04.2008 года № 100-п.
- 8. Санитарные правила «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», утвержденные Приказом Министра национальной экономики РК от 16 марта 2015 года № 209.
- 9. Классификатор отходов, утвержденный приказом и.о. МЭГиПР РК от 06.08.2021г. № 314.
- 10. Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приказ МООС РК №100-п от 18.04.2008 г.
- 11. Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок РНД 211.2.02.04-2004.

ПРИ	Π	WI	\mathbf{H}^{T}	1
		мг	ווח עי	

Обзорная карта района размещения месторождения осадочных пород «Кулаколь №3», расположенного в сельской зоне г.Экибастуз Павлодарской области

Обзорная карта района размещения месторождения осадочных пород «Кулаколь №3», расположенного в сельской зоне г.Экибастуз Павлодарской области

приложение 2

Лицензия ТОО "Евразия ЭкоПроект" на выполнение работ и оказание услуг в области охраны окружающей среды

ЛИЦЕНЗИЯ

<u>30.01.2020 года</u> <u>02165Р</u>

Выдана Товарищество с ограниченной ответственностью

Евразия ЭкоПроект"

140000, Республика Казахстан, Павлодарская область, Павлодар Г.А., г.

Павлодар, Проспект Нұрсұлтан Назарбаев, дом № 204, 519

БИН: 200140007963

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес -идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом

Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

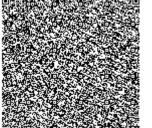
Лицензиар Республиканское государственное учреждение «Комитет

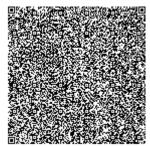
экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов

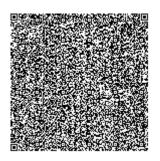
Республики Казахстан.

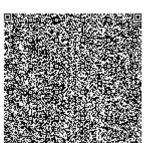
(полное наименование лицензиара)

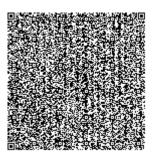
Руководитель Умаров Ермек Касымгалиевич


(фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


(уполномоченное лицо)


Срок действия лицензии


Место выдачи г.Нур-Султан

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02165Р

Дата выдачи лицензии 30.01.2020 год

Подвид(ы) лицензируемого вида деятельности:

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиат

Товарищество с ограниченной ответственностью "Евразия ЭкоПроект"

140000, Республика Казахстан, Павлодарская область, Павлодар Г.А., г. Павлодар, Проспект Нұрсұлтан Назарбаев, дом № 204, 519, БИН: 200140007963

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база

г. Павлодар, проспект Нурсултана Назарбаева, 204, кв. 519

(местонахождение)

Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиар

Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов Республики Казахстан.

(полное наименование органа, выдавшего приложение к лицензии)

Руководитель

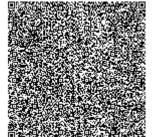
Умаров Ермек Касымгалиевич

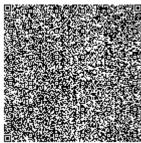
(уполномоченное лицо)

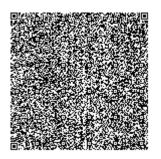
(фамилия, имя, отчество (в случае наличия)

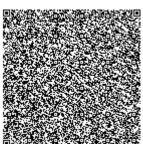
Номер приложения

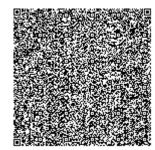
001


Срок действия


Дата выдачи


30.01.2020


приложения Место выдачи


г. Нур-Султан

