Участков недр с указанием вида и сроков права недропользования, их географические координаты (если они известны)

Недропользователем в Акмолинской области является ТОО «ASKUM» лицензия на добычу общераспространенных полезных ископаемых будет выдана после согласования плана горных работ, срок действия лицензии составляет 10 лет.

Координаты участка работ:

	J F		
№	в.д.	с.ш.	Площадь (кв.км)
1	51 ⁰ 01' 27,65"	71 ⁰ 12' 53,06"	
2	51° 01' 30,26"	71 ⁰ 13' 30,89"	
3	51° 01' 45,96"	71 ⁰ 12' 44,15"	0,2009
4	51° 01' 43,73"	71 ⁰ 12' 5,97"	1
5	51° 01' 27.65"	71° 12′ 53.06″	<u> </u>

Общие предполагаемые технические характеристики намечаемой деятельности, включая мощность (производительность) объекта, его предполагаемые размеры, характеристику продукции.

<u>Разработка полезного ископаемого будет отрабатываться 2 уступами</u> вскрышным и добычным без применения буровзрывных работ.

Месторождение приурочено к пойменным отложениям реки Козыкош и расположено восточнее излучены старого русла реки, обозначенного на местности старицами.

Продуктивные горизонты участка представлены двумя линзами песков. Мощность линзы 1 изменяется от 1.5 до 5.8 м, при среднем значении 3.53 м. Мощность линзы 2 изменяется от 2.8 доб.8 м, при среднем значении 3.9 м. К вскрышным породам относятся почвенно-растительный слой мощностью 0.0-0.6 м, прослой суглинков мощностью от 0.2 до 2.7 м, при средней мощности 1.43 м. Коэффициент вскрыши составляет 0.14 м3/м3. Глубина залегания уровня грунтовых вод колеблется от 3.0 до 5.0 м. Воды участка гидродинамически связаны с водой р. Козыкош.

<u>Разработка полезного ископаемого будет отрабатываться 2 уступами</u> вскрышным и добычным без применения буровзрывных работ.

Годовая производительность карьера по ПИ составляет 100 тыс.м3.

Согласно заданию на проектирование годовая производительность карьера по полезному ископаемому в плотном теле составляет 1-5,0 тыс.м3 (1-5 год отработки) и 86,5 тыс.м3 далее. Геологические запасы песчано-гравийной смеси на месторождении ASKUM по состоянию на 01.10.2016 г. составляют по категории C2= 1007,5 тыс.м3.

Срок службы карьера составляет 10 лет, согласно полной отработки утвержденных запасов.

<u>Технология проходки принимается экскаваторная, с разгрузкой в отвал. В этом случае нет простоев экскаватора, связанных с ожиданием самосвала и не требует точной наводки ковша.</u>

Краткое описание предполагаемых технических и технологических решений для намечаемой деятельности.

Геолого-промышленная характеристика месторождения

В геологическом строении его принимают участие нерасчлененные аллювиальные отложение верхнечетвертичного - современного возраста.

Месторождение приурочено к пойменным отложениям реки Козыкош и расположено восточнее излучены старого русла реки, обозначенного на ме¬стности старицами. Добычный участок вытянут в юго-восточном направлении на 470 м, его размеры в плане составляют 470х335 м, площадь- 10.1 га, глубина добычи составляет- 10.0 м, мощность продуктивной части разреза варьирует от 3.6 до 7.42 м.

<u>Размеры продуктивной толщи в плане 470.0х335.0 м, глубина залегания - максимальная 10.0 м.</u>

<u>Характерный разрез продуктивной толщи в пределах месторождения следующий (сверху - вниз):</u>

- 1. Почвенно-растительный слой, суглинки мощностью 0.2-1.2 м;
- 2. Под ним залегают мелкозернистые пески, относимые к продуктивному горизонту. Мощность их варьирует от 1.5 до 5.8 м, при средней 3.53 м.
- <u>3. Под мелкозернистыми песками залегает слой крупнозернистых</u> пес¬ков. Мощность его колеблется от 2.1 до 6.8 м, при средней 3.9 м.
- <u>4. Под крупнозернистыми песками залегают серые, зеленовато-серые</u> глины тенизской свиты неогена.

Физико-механические показатели песчано-гравийной смеси по скважинам:

				ержани		<u> </u>	Модуль	Содержание	
							крупности	_	
	2.5	1.25	0.63	0.315	0.16	менее		глинистых	гравия
						0.16		частиц	
			Линз	a 1. Me.	лкозер	нистые	пески		
От	-	-	4	14	22	16	0.8	5.3	0
До	4	10	15	28	47	50	1.7	27.3	5.0
Среднее	1.9	4.7	10.4	19.5	33.9	29.6.	1.3	12.1	1.9
Среднее (2004 г.)	2.9	7.1	12.2	18.1	37.8	22.0	1.53	6.8	2.8
Групповая (2004	3	7	12	18	38	22	1.5	6.8	2.8
г.)									
			Линза	a 2. Kpy	пнозе	рнисты	е пески		
От	6	8	15	11	10	4	2.0	0.5	0
До	24	26	23	26	27	17	3.0	9.3	25
Среднее	15.6	18.2	19.0	18.1	18.7	10.2	2.6	3.7	12.3
Среднее (2004 г.)	14.1	20.5	18.1	16.1	21.3	9.9	2.6	2.4	15.9
Групповая (2004 14 21 18 16 21 10 2.6							2.4	16.0	
г.)									

Мелкозернистые пески линзы 1 относятся к мелким (31%), очень мелким (56%) и тонким (13%). Крупнозернистые пески линзы 2 относятся: к крупным (75%); средним (25%).

Зерна песков в основном представлены кварцем, полевыми шпатами, граувакками, гранитоидами, вулканитами, кварцитами, роговиками, рудными

минералами (лимонит, гематит, магнетит), хорошо окатаны. Химический анализ

песков подтверждает их минералогический состав:

Компоненты		Содержание, %	
	Крупнозернистые пески	Мелкозернистые пески	
SiO_2	81.5	75.8	
$A1_20_3$	6.90	6.90	
Fe_2O_3	ЗЛО	4.40	
TiO_2	0.19	0.25	
CaO	2.09	3.44	
MgO	< 0.50	1.90	
K_20	1.70	1.90	
Na ₂ 0	1.88	1.88	
MnO	0.062	0.119	
FeO	1.37	2.15	
P_2O_5	0.059	0.06	
C0 ₂	1.38	3.31	
F	0.028	0.028	
Нд г/т	< 0.02	< 0.02	
П.п.п.	1.67	3.41	
S0 ₃	0.052	0.060	

Вредные компоненты и примеси

Реакционная способность песков определена по групповой пробе. Содержание аморфных разновидностей диоксида кремния, растворимых в щелочах, составило 29.4 ммол/л, что позволило отнести их к нереакционным (допустимое по ГОСТ 8736-93- не более 50 ммол/л).

<u>Инженерно-геологические и горно-технические условия разработки</u> <u>участка</u>

Продуктивные горизонты участка представлены двумя линзами песков. Мощность линзы 1 изменяется от 1.5 до 5.8 м, при среднем значении 3.53 м. Мощность линзы 2 изменяется от 2.8 доб.8 м, при среднем значении 3.9 м. К вскрышным породам относятся почвенно-растительный слой мощностью 0.0-0.6 м, прослой суглинков мощностью от 0.2 до 2.7 м, при средней мощности 1.43 м. Коэффициент вскрыши составляет 0.14 м³/м³. Глубина залегания уровня грунтовых вод колеблется от 3.0 до 5.0 м. Воды участка гидродинамически связаны с водой р. Козыкош.

<u>Размеры продуктивной толщи в плане 470.0х335.0 м, глубина залегания -</u> максимальная 10.0 м.

Незначительная мощность вскрышных пород и сравнительно благоприятные горно-технические условия предопределяют открытую разработку песков. Вскрышные породы могут быть удалены любыми средствами механизации, чему способствует ровная поверхность участка и кровли продуктивной толщи, а также рыхлое состояние пород вскрыши. Наиболее целесообразно на вскрышных работах использовать бульдозеры, скреперы, которые при сравнительно небольшом годовом объеме вскрышных работ (около 50 тыс.м³) и дальности транспортировки не более 100 м могут осуществлять полный цикл работ по удалению вскрышных пород. Почвенно-растительный

слой и породы вскрыши необходимо транспортировать и складировать автотранспортными средствами в отвалы, для использования их при рекультивации. Обводненность продуктивной толщи песков обуславливает возможность отработки месторождения экскаватором типа «драглайн» с перфорированным ковшом, без понижения естественного уровня подземных вод. Такой способ добычи сырья способствует улучшению его качества.

Расчет средних мощностей продуктивной толщи и вскрышных пород

		иощностей пр	•		•	
Номер	Номер	Абсолютная	Глубина	Mo	щность	Мощность
блока и	скважины	отметка	скважины,	вскј	оышных	продуктивной
категория		устья	M	ПС	род, м	толщи, м
запасов		скважины, м		всего	в т.ч. ПРС	всего
1	2	3	4	5	6	7
			и контура вы	работок		
	452	342,9	7,0	2,0	0,2	5,0
	453	343,3	7,0	2,0	0,2	5,0
	454	343,8	7,0	2,0	0,2	5,0
$1C_1$	455	343,7	7,0	2,0	0,25	5,0
	456	343,7	7,0	2,0	0,25	5,0
	457	345,2	7,0	1,5	0,25	5,5
	458	345,4	7,0	1,5	0,25	5,5
	459	344,7	7,0	2,5	0,25	4,5
	460	344,5	7,0	1,8	0,2	5,2
	461	345,7	7,0	1,5	0,25	5,5
	462	346,3	7,0	1,0	0,15	6,0
	463	346,4	7,0	1,5	0,15	оди
	464	345,7	7,0	2,5	0,15	4,5
	465	345,3	7,0	2,0	0,2	5,0
	466	344,6	7,0	1,0	0,3	6,0
	467	343,8	7,0	1,0	0,3	6,0
	468	344,5	7,0	0,3	0,3	6,7
	469	344,8	7,0	2,0	0,2	5,0
Итого по	блоку 1С ₁		126,0	30,1	4,05	95,9
Среднее по	блоку 1С1		7,0	1,7	0,2	5,3
			По межконт	урной по	олосе	
	452	342,9	7,0	2,0	0,2	5,0
	453	343,3	7,0	2,0	0,2	5,0
	454	343,8	7,0	2,0	0,2	5,0
	455	343,7	7,0	2,0	0,25	5,0
	456	343,7	7,0	2,0	0,25	5,0
	457	345,2	7,0	1,5	0,25	5,5
	460	344,5	7,0	1,8	0,2	5,2
$2C_1$	461	345,7	7,0	1,5	0,25	5,5
	465	345,3	7,0	2,0	0,2	5,0
	466	344,6	7,0	1,0	0,3	6,0
	467	343,8	7,0	1,0	0,3	6,0
	468	344,5	7,0	0,3	0,3	6,7
	469	344,8	7,0	2,0	0,2	5,0
Итого по	блоку 2С1		91,0	21,1	3,1	69,9
Среднее по	блоку 2С1		7,0	1,6	0,2	5,4
Среді	нее по		7,0	1,65	0,2	5,35

месторождению			
месторождению			

Подсчет запасов полезного ископаемого и вскрышных пород

Номер	Площадь	Средняя	Средняя		Запасы	Объем в	скрышных
блока и	блока, M^2	мощность	мощность		полезного	пород, м ³	
категория		полезной	вскрышных		ископаем		
запасов		толщи, м	поро	од, м	ого, м ³		
			всего в т.ч.			всего	в т.ч. ПРС
				ПРС			
1	2	3	4	5	6	7	8
1C ₁	178864,9	5,3	1,7	0,2	947983,9	304070,3	35772,9
2C ₁	22035,1	5,4	1,6 0,2		59494,7	35256,1	4407,0
Всего					1007478,6	339326,4	40179,9

На утверждение ЦК РГУ МД «Центрказнедра» представляются балансовые запасы гравийно-песчаной смеси участка «ASKUM», подсчитанные по состоянию на 01.10.2016 г. по категории С1 в количестве 1007,5 тыс. м³.

Вскрышные породы составляют 339,3 тыс.м3, в том числе $\Pi PC - 40,2$ тыс.м 3 .

<u>Горные работы</u>

<u>Разработка полезного ископаемого будет отрабатываться 2 уступами</u> вскрышным и добычным без применения буровзрывных работ.

Пустые породы расположен в буртах, по периметру карьера. Годовая производительность карьера по ПИ составляет 100 тыс.м3. Режим работы карьера принят сезонный в соответствии с климатическими условиями района 6 месяцев и при 7-дневной рабочей неделе составляет:

количество рабочих дней в году - 180;

количество смен - 1;

продолжительность смены – 8 часов.

<u>Границы карьера установлены с учетом контура подсчета запасов по</u> площади и на глубину.

Запасы и параметры карьера:

№ п/п	Показатели	Единицы измерения	Всего
1	Геологические запасы полезного ископаемого по категории C2	тыс. м3	1007,5
2	Проектные потери: – при зачистке кровли (1,5 %) – при транспортировке (0,5 %)	— « — — « —	15,1 5,0
3	Эксплуатационные запасы % от геологических запасов	— «— %	987,4 98
4	Длина карьера по поверхности	M	871,0
5	Ширина карьера по поверхности	M	575,0
6	Глубина карьера	M	7,0
7	Угол откосов борта карьера	градус	30
8	Площадь карьера	га	20,09
9	Горная масса в карьере	тыс. м3	1346,8
	в т.ч.: – полезное ископаемое	— « —	1007,5
	– вскрыша	— « —	339,3
10	Средний объемный коэффициент вскрыши	м3	0,3

		м3	
11	Годовая производительность карьера	тыс. м3	100,0
12	Коэффициент разрыхления		1,45
13	Годовая производительность товарной	тыс. м3	145,0
	продукции		
14	Срок обеспечения запасами	лет	10

Промышленные запасы:

<u>Геологические запасы песчано-гравийной смеси на месторождении ASKUM</u> по состоянию на 01.10.2016г. составляют по категории C2= 1007,5 тыс.м3. Проектные потери полезного ископаемого определены исходя из границ проектируемых участков, горно-геологических условий залегания полезной толщи и системы разработки.

Запасы полезного ископаемого и объем пустых пород:

Наименование участка		Потери, тыс. м ³					Объем вскрышных	
участка	Геолог.		Эксплуат.			Пром.	пород (в том	Коэф.
	запасы,	Обще-				запасы,	числе ПРС),	вскрыш
	тыс.м ³	карьер.	I	II	Всего	тыс. м ³	тыс. м ³	$_{\rm H},{\rm M}^3/{\rm M}^3$
ASKUM	1005,4	-	-	20,09	20,09	985,31	379,5	0,37
Итого	1005,4			20,09	20,09	985,31	379,5	0,37

Режим работы, производительность и срок службы карьера:

Согласно заданию на проектирование годовая производительность карьера по полезному ископаемому в плотном теле составляет 1-5,0 тыс.м³ (1-5 год отработки) и 86,5 тыс.м³ далее. Режим работы карьера сезонный с апреля по октябрь.

N_0N_0	Наименование показателей	Един. изм.	Добычные	Вскрышные
ПП			работы	работы
1	Годовая производительность	тыс.м	100	37,95
2	Суточная производительность	M^3	555,5	210,8
3	Сменная производительность	M^3	555,5	210,8
4	Число рабочих дней в году	дни	180	180
5	Число смен в сутки	смен	1	1
6	Продолжительность смены	час	8	8

Вскрышные работы

Вскрышные породы участка представлены ПРС и суглинками. Мощность вскрыши 1,69 м. Средняя мощность ПРС 0,2 м.

Вскрышные породы по трудности разработки механизированным способом относятся к I категории по ЕНиР-90, поэтому проведение предварительного рыхления не требуется.

<u>На проектируемом участке площадью 20,09 га объем вскрышных пород на</u> месторождении составляет 379,5 т.м3 , ПРС 40,2 т.м3.

Снятие ПРС будет происходить по следующей схеме: бульдозер будет перемещать ПРС в бурты на расстояние 15-20 м откуда погрузчиком ZL-50 будет грузится в автосамосвал Камаз-65115 и вывозится на склад ПРС.

Отработку пород вскрыши предполагается осуществлять одним уступом средней высотой 3 м. Погрузочно-выемочные работы по отработке пород вскрыши будет выполняться погрузчиком ZL-50 с вместимостью ковша 3.0 м3,

транспортирование будет осуществляться автосамосвалами Камаз-65115 на расстояние 50 м в бурты. В целях водозащитных мероприятий, для недопущения смешивания карьерных вод с паводковыми водами в весенний период Формирование бурта будет производиться по средствам бульдозера SD-22.

<u>Для создания нормальных условий при выемке полезного ископаемого</u> предполагается опережение вскрышных работ перед добычными.

Отвалообразование

Способ отвалообразования принимаем комбинированный.

Склад ПРС будет распологаться в 50м от карьера на юг. Объем ПРС вывозимых на склад ПРС будет составлять 40,2 т.м3. Склад ПРС будет отсыпать в один ярус высотой 5 м.

Отвал пород вскрыши будет располагаться в 50 м вдоль северо-западного борта карьера, в рамках водоохранных мероприятий. Объем пород вскрыши вывозимых во внешний отвал будет составлять 339.3 т.м³. Отвал будет отсыпан высотой 5м, углы откосов приняты 34°.

Формирование, планирование склада ПРС и отвала пород вскрыши будет производиться бульдозером SD-22.

Разгрузка автосамосвала должна производиться за пределами призмы обрушения на расстоянии 5м от бровки отвала. По всему фронту разгрузки устраивается берма, имеющая уклон внутрь отвала не менее 3° и породную отсыпку высотой 0.7м и шириной 1.5м.

Вскрыши будет складироваться в отвале к северо-западу от карьера.

Добычные работы

Представленное полезное ископаемое по трудности разработки механическим способом отнесено к І групее в соответствии с ЕНиР-90. Отработка полезной толщи будет осуществляться одним уступом глубиной с рабочим углом откосов 300.

Выемка полезного ископаемого будет осуществляться экскаватором ЭО-4112 с ковшом вместимостью 1,0 м3. Песчано-гравийная смесь складируется на борту карьера, после чего погрузчиком ZL-50 отгружается в автосамосвалы.

Маркшейдерская служба карьера осуществляет систематический контроль за соблюдением проектной отметки дна карьера, чтобы исключить разубоживание песчаного грунта подстилающими суглинками.

Вспомогательные процессы

Для производства работ по зачистки кровли полезного ископаемого, рабочих площадок, устройства внутрикарьерных подъездных автодорог к карьерному оборудованию предполагается использовать бульдозер SD-22.

<u>Для пылеподавления на автодорогах предусмотрено орошение с расходом</u> воды 1–1.5кг/м2 при интервале между обработками 4 часа водовозом Газ 53.

Заправка различными горюче-смазочными материалами горного и другого оборудования будет осуществляться на рабочих местах с помощью специализированных заправочных агрегатов.

<u>Для проведения работ по устранению различных неисправностей машин и механизмов на промплощадке карьера в специально оборудованной ремонтной мастерской.</u>

<u>Производство вспомогательных процессов будет осуществляться машинами</u> и механизмами:

Наименование машин и механизмов	Тип, модель	Кол-во
Бульдозер	SD-22	1
Автомобиль цистерна для перевозки ГСМ, V=6500л	TCB-6	1
Автомобиль цистерна для питьевой воды, V=3550л	Газ 53	1
Автобус	КАв3	1

Календарный план горных работ

<u>Календарный план горных работ составлен в соответствии с принятой системой разработки и отражает принципиальный порядок отработки месторождения, с использованием принятого горного транспортного оборудования.</u>

В основу составления календарного плана вскрышных и добычных работ положены:

- 1. Режим работы карьера по добыче и вскрыше;
- 2. Годовая производительность карьера по добыче полезного ископаемого;
- 3. Горнотехнические условия разработки месторождения;
- 4. Тип и производительность горно-транспортного оборудования;

<u>Календарный план горных работ составлен на весь срок отработки</u> месторождения. Календарный план вскрышных и добычных работ

				Годы отработки								
наименов												
ание	ед.изм	всего	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Вскрыша	тыс.м3	379,5	37,95	37,95	37,95	37,95	37,95	37,95	37,95	37,95	37,95	37,95
Суглинки	тыс.м3	339,3	33,93	33,93	33,93	33,93	33,93	33,93	33,93	33,93	33,93	33,93
ПРС	тыс.м3	40,2	4,02	4,02	4,02	4,02	4,02	4,02	4,02	4,02	4,02	4,02
Добытое ПИ	тыс.м3	985,3 1	98,51	98,51	98,51	98,51	98,51	98,51	98,51	98,51	98,51	98,51
Потери	тыс.м3	20,09	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Погашен												
ные		1005,	100,5	100,5	100,5	100,5	100,5	100,5	100,5	100,5	100,5	100,5
запасы	тыс.м3	4	4	4	4	4	4	4	4	4	4	4
Горная		1384,	138,4	138,4	138,4	138,4	138,4	138,4	138,4	138,4	138,4	138,4
масса	тыс.м3	9	9	9	9	9	9	9	9	9	9	9

Характеристика возможных форм негативного и положительного воздействий на окружающую среду в результате осуществления намечаемой деятельности, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости, предварительная оценка их существенности.

С целью снижения потерь и сохранения качественных и количественных характеристик полезного ископаемого, т.е. рационального использования недр и охраны окружающей среды необходимо:

- Вести строгий контроль за правильностью отработки месторождения;
- Учет количества добываемого полезного ископаемого и объемов вскрышных работ производить двумя способами: по маркшейдерской съемке горных выработок и оперативным учетом (оперативный учет должен обеспечивать определение объемов, вынутых каждой выемочно-погрузочной единицей с погрешность не более 5%);
 - Проводить регулярную маркшейдерскую съемку;
- Обеспечить полноту выемки почвенно-плодородного слоя и следить за правильным размещением его на рекультивируемые бермы;
- <u>- Использовать внешнюю вскрышу для рекультивации предохранительных берм в процессе отработки и после полной отработки карьера;</u>
 - Обеспечить опережающее ведение вскрышных работ;
- Обеспечить строжайший контроль за карбюраторной и маслогидравлической системой работающих механизмов и машин;
- Следить за состоянием автомобильных дорог, предусмотреть регулярное орошение и планировку полотна автодорог, тем самым снизить величину транспортных потерь, увеличить пробег автотранспорта и уменьшить вредное воздействие выхлопов на окружающую среду;
- Вести постоянную работу среди ИТР, служащих и рабочих карьера по пропаганде экологических знаний;
- <u>- Разработать комплекс мероприятий по охране недр и окружающей</u> среды;
- Наиболее полное извлечение полезного ископаемого с применением рациональной технологии горных работ, что позволит свести потери до минимума;
- <u>- Предотвращение загрязнения окружающей среды при проведении добычи песчано-гравийной смеси (разлив нефтепродуктов и т.д.);</u>
- Обеспечение экологических требований при складировании и размещении промышленных и бытовых отходов;
 - Сохранение естественных ландшафтов;
- И другие требования согласно Законодательству о недропользовании и охране окружающей среды.

<u>При проведении добычных работ в приоритетном порядке будут</u> соблюдаться требования в области охраны недр:

-обеспечение полноты опережающего геологического, гидрогеологического, экологического, санитарно-эпидемиологического, технологического и

инженерно-геологического изучения недр для достоверной оценки величины и структуры запасов полезного ископаемого;

- <u>-обеспечение рационального и комплексного использования ресурсов недр</u> на всех этапах горных работ;
 - -обеспечение полноты извлечения полезного ископаемого;
- -использование Недр в соответствии с требованиями Законодательства Государства по охране окружающей среды, предохраняющими недра от проявлений опасных техногенных процессов при горных работах, а также строительстве и эксплуатации сооружений, не связанных с добычей;
- -охрана недр от обводнения, пожаров, взрывов, а также других стихийных факторов, снижающих их качество или осложняющих эксплуатацию и разработку месторождения;
 - -предотвращение загрязнения недр при проведении горных работ.
- <u>Для выполнения данных требований проектом предусматривается следующие мероприятия:</u>
 - -выбор наиболее рациональных методов разработки месторождения;
 - -строгий маркшейдерский контроль за проведением горных работ;
- <u>-проведение горных работ с учетом наиболее полного извлечения полезного ископаемого из недр и уменьшения потерь при;</u>
 - -ликвидация и рекультивация горных выработок.

Мероприятия по снижению воздействия отходов производства на окружающую среду во многом дублируют мероприятия по охране почв, поверхностных и подземных вод и включают в себя решения по организации работ, обеспечивающих минимальное воздействие на окружающую среду.

Проектом предусматривается проведение комплекса мероприятий при временном складировании и хранении производственных и бытовых отходов с целью уменьшения и сокращения вредного влияния на окружающую среду. Основными мероприятиями являются:

- <u>-тщательная регламентация проведения работ, связанных с загрязнением и</u> нарушением рельефа
 - -организация систем сбора, транспортировки и утилизации отходов
 - -ведение постоянных мониторинговых наблюдений

Отходы, хранящиеся в производственных помещениях, должны быть защищены от влияния атмосферных осадков и не воздействовать на почву, атмосферу, подземные и поверхностные воды. Их воздействие на окружающую среду может проявиться только при несоблюдении правил их сбора и хранения.

При необходимости, в процессе эксплуатации предприятия, с целью предупреждения или смягчения возможных экологических последствий образования и размещения отходов, будут предусмотрены и осуществлены дополнительные, соответствующие современному уровню и стадии производства инженерные и природоохранные мероприятия.

Негативное воздействие проектируемого объекта на растительный покров прилегающих угодий весьма незначительное, и будет ограничиваться выделением пыли во время автотранспортных работ. Растительный покров близлежащих угодий не будет поврежден.

<u>Район проведения горных работ не затрагивает памятников природы, истории, архитектуры, культуры, курганов, заповедников, заказников.</u>

Влияния не изменят коренным образом структуру и направление развития экосистемы и ее способность к самовосстановлению после прекращения или уменьшения степени техногенного воздействия.

<u>Район проведения горных работ не затрагивает памятников природы,</u> истории, архитектуры, культуры, курганов, заповедников, заказников.

Фактор беспокойства или антропогенное вытеснение (присутствие людей, техники, шут, свет в ночное время) окажут наиболее существенное воздействие во время работы в теплый период года. В это время возможно исчезновение из мест постоянного обитания представителей наземных позвоночных. В дальнейшем прогнозируется увеличения их численности.

Эти влияния не изменят коренным образом структуру и направление развития экосистемы и ее способность к самовосстановлению после прекращения или уменьшения степени техногенного воздействия.

<u>Мероприятия по обеспечению промышленной безопасности на</u> месторождении ASKUM.

Организации, имеющие опасные производственные объекты и (или) привлекаемые к работам на них обязаны: применять технологии, технические устройства, материалы, допущенные к применению на территории Республики Казахстан;

Разработка месторождения должна производиться в соответствии с существующими правилами безопасности при разработке месторождений полезных ископаемых открытым способом. На карьере должны быть разработаны инструкции-памятки по технике безопасности для всех видов профессий и по правилам технической эксплуатации горного оборудования.

В каждой памятке для различных профессий необходимо помещать общие указания по передвижению рабочих к месту работы, предупреждения о возможных опасностях при выполнении работ и меры их предотвращения.

Каждый рабочий должен:

- <u>- пройти медицинское освидетельствование и вводный инструктаж по</u> технике безопасности;
- <u>- без разрешения технического руководителя не оставлять место работы</u> и не выполнять не порученную ему работу;
- при переходе на другую работу пройти технический и санитарный минимум, сдать экзамен и получить удостоверение на право выполнения работы по профессии;
- при обнаружении технической не исправности оборудования и агрегатов немедленно предупредить об этом ответственных лиц и принять все возможные меры к устранению;
- <u>в памятке-инструкции должен быть помещен раздел «Оказание первой медицинской помощи пострадавшим при несчастных случаях».</u>

<u>Инструкции составляются на основании существующих инструкций по</u> технике безопасности.

Почвенно-плодородный слой хранится на складе западнее карьера. Склад размещен на ровном участке.

Мероприятия по восстановлению плодородия.

Восстановление нарушенного травостоя требуется на участке размещения отвала ПРС и вскрышного отвала, после их ликвидации общей площадью 4,05 га. Комплекс мероприятий по восстановлению плодородия включает следующие виды работ:

- 1. Подготовка почв
- 2. Посев трав

<u>Дальнейшее освоение восстановленного участка решается</u> землепользователем с учетом существующих в хозяйстве севооборотов.

<u>Кроме того, для уменьшения вредного влияния отвала на окружающую среду на время хранения вскрышных пород предусматривается посев трав на спланированной поверхности отвала.</u>

Для залужения предусматривается бобово-злаковая травосмесь из люцерны и житняка с нормой высева семян соответственно 14кг и 16кг/га. Общая площадь составит — 5 га.

Водопотребление и водоотведение предприятия

Водоснабжение проектируется осуществлять путем завоза воды из близлежащих населенных пунктов. По мере отработки карьера возможен отбор и использование ливневых осадков и талых вод для удовлетворения потребности предприятия в технической воде.

Вода хранится в емкости объемом 900л. Емкость снабжена краном фонтанного типа. Изнутри бочка должна быть покрыта специальным лаком или краской, предназначенной для покрытия баков (цистерн) питьевой воды (полиизобутиленовый лак, лак XC-74), железный сурик на олифе, эпоксидные покрытия на основе смол ЭД-5 и ЭД-6 и т.д.

Расход воды на пылеподавление карьера составит 1,5 тыс.м 3 /год. Расход воды на пожаротушение 10π /сек. Противопожарный запас воды заливается в резервуар объемом 10м^3 и используется только по назначению.

Расход водопотребления

	тискод водопотресмения								
No	Наимено	Ед.	Коли	чество	Норма	Коэффи-	Суточ-	Годово	Продолжи-
Π/Π	-вание	изм.	потреб	бителей	водопотреб-	циент	ный	й	тельность
	потреби-				ления, л	часовой	расход	расход	водопотреб-
	телей					неравно-	воды,	воды,	ления, ч
						мерности	M^3	M^3	
			В	В					
			сутк	макс,					
			И	смену					
1	Хоз.	чел.	13	13	50.0 ^{1*}	1.3	0,84	151,2	8
2	Мытье	M ²	13	-	5.0	1	0,06	10,8	1
	Всего						0,9	162	

Расчет валовых выбросов

Вскрышные работы.

Вскрышные породы участка представлены ПРС и суглинками. Мощность вскрыши 1,69 м. Средняя мощность ПРС 0,2 м.

Вскрышные породы по трудности разработки механизированным способом относятся к I категории по ЕНиР-90, поэтому проведение предварительного рыхления не требуется.

На проектируемом участке площадью 20,09 га объем вскрышных пород на месторождении составляет 379,5 т.м³, ПРС 40,2 т.м³.

Снятие ПРС будет происходить по следующей схеме: бульдозер будет перемещать ПРС в бурты на расстояние 15-20 м откуда погрузчиком ZL-50 будет грузится в автосамосвал Камаз-65115 и вывозится на склад ПРС.

Отработку пород вскрыши предполагается осуществлять одним уступом средней высотой 3 м. Погрузочно-выемочные работы по отработке пород вскрыши будет выполняться погрузчиком ZL-50 с вместимостью ковша 3.0 м³, транспортирование будет осуществляться автосамосвалами Камаз-65115 на расстояние 50 м в бурты. В целях водозащитных мероприятий, для недопущения смешивания карьерных вод с паводковыми водами в весенний период Формирование бурта будет производиться по средствам бульдозера SD-22.

Для создания нормальных условий при выемке полезного ископаемого предполагается опережение вскрышных работ перед добычными.

Отвалообразование

Способ отвалообразования принимаем комбинированный.

Склад ПРС будет распологаться в 50м от карьера на юг. Объем ПРС вывозимых на склад ПРС будет составлять 40,2 т.м³ за 10 лет. Склад ПРС будет отсыпать в один ярус высотой 5 м.

Формирование, планирование склада ПРС и отвала пород вскрыши будет производиться бульдозером SD-22.

Разгрузка автосамосвала должна производиться за пределами призмы обрушения на расстоянии 5м от бровки отвала. По всему фронту разгрузки устраивается берма, имеющая уклон внутрь отвала не менее 3° и породную отсыпку высотой 0.7 м и шириной 1.5м.

Вскрыши будет складироваться в отвале к северо-западу от карьера.

Плотность ПРС составляет 1150 кг/м 3 , суглинка – 1750 кг/м 3 .

Источник загрязнения N 6001, Неорганизованный Источник загрязнения N 001 Работа бульдогата SD

<u>Источник выделения N 001, Работа бульдозера SD-22 на вскрыше и отвалообразовании</u>

Работы ведутся на разборке вскрыши. Бульдозер перемещает ПРС в бурты, также формирует и планирует склад ПРС и отвал. Время работы — 2176 ч/год с объемом вскрыши на 1 год 37,95 тыс. м³/год (из них 33,93 суглинки (59,38 тыс. тонн) и 4,02 ПРС (4,623 тыс. тонн)). В ходе работ предусмотрено пылеполавление -85%.

${\it Источник выделения N 002, Работа погрузчика ZL-50 на вскрыше}$

Работы ведутся на разборке вскрыши. Погрузчик грузит в автосамосвал вскрышу. Время работы -1088 ч/год с объемом ПРС на 1 год 4,02 тыс. м 3 /год (4623 т). В ходе работ предусмотрено пылеподавление -85%.

<u>Источник выделения N 003, Работа автосамосвалами Камаз-65115</u>

Работы ведутся по транспортированию вскрыши. Время работы – 638 ч/год с объемом ПРС на 1 год 4,02 тыс. м³/год (4623 т). В ходе работ предусмотрено пылеполавление -85%.

<u>Источник загрязнения N 6002, Неорганизованный</u>

Источник выделения N 004, Склад ПРС
Предназначен для хранения ПРС. Время работы — 1440 ч/год с объемом ПРС на 1 год $4{,}02$ тыс. ${\rm M}^3/{\rm год}$ (4623 т). В ходе работ предусмотрено пылеполавление -85%.

Добычные работы.

Выемка полезного ископаемого будет осуществляться экскаватором ЭО-4112 с ковшом вместимостью 1,0 м³. Песчано-гравийная смесь складируется на борту карьера, после чего погрузчиком ZL-50 отгружается в автосамосвалы. Плотность ПГС – 1620 кг/м^3 .

<u>Источник загрязнения N 6003, Неорганизованный</u> Источник выделения N 005, Работа экскаватора ЭО-4112 на добыче

Работы производятся при выемки песчано-гравийной смеси. Время работы— 752 ч/год с объемом на 1 год 100,51 тыс.м 3 /год (162826,2 т). В ходе работ предусмотрено пылеподавление -85%.

<u>Источник выделения N 006, Работа погрузчика ZL-50 по добыче</u> Работы производятся при отгрузке песчано-гравийной смеси. Время работы— 1088 ч/год с объемом на 1 год 100,51 тыс.м³/год (162826,2 т). В ходе работ предусмотрено пылеподавление -85%.

Источник выделения N 007, Работа автосамосвалами

Работы производятся при транспортировке песчано-гравийной смеси. Время работы— 638 ч/год с объемом на 1 год 100,51 тыс.м³/год (162826,2 т). В ходе работ предусмотрено пылеподавление -85%...

<u>Источник загрязнения N 6004, Неорганизованный</u> Источник выделения N 007, Работа вспомогательного оборудования

К вспомогательному оборудованию относится:

- Бульдозер SD-22 годовой объем по горной массе: годовой объем песчано-гравийной смеси составит 100,5 тыс. ${\rm m}^3$ (162826,2 т), время работы -1088 ч/год. В ходе работ предусмотрено пылеподавление -85%.
 - Автомобиль цистерна для перевозки ГСМ, V=6500л ТСВ-6

- Автомобиль цистерна для питьевой воды, V=3550л, Газ 53 входит в общую его задолженность на горных работах и учтена.
 - Автобус КАвЗ.

<u>Источник загрязнения N 6005, Неорганизованный</u> Источник выделения N 006, Движение автотранспорта

На территории работает 7 единиц техники. Время работы при максимальной нагрузке -1088 ч/год.

<u>Источник загрязнения N 0001, Организованный</u> <u>Источник выделения N 007, Дизельная электростанция</u>

Дизельная электростанция служит энергоснабжением бытовых вагончиков. Режим работы 8 ч в сутки, 1440 часов в год. Мощность двигателя 15 кВт, расход топлива 3,5 л/час, годовой расход топлива 6720 л/год, тип топлива - дизель. Дизельное топливо завозится по мере необходимости

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ –

Вскрышные работы.

Источник загрязнения N 6001, Неорганизованный Источник выделения N 001, Работа бульдозера SD-22 на вскрыше и отвалообразовании

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Суглинки

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, $VL = \mathbf{5}$ Коэфф., учитывающий влажность материала(табл.4), $K5 = \mathbf{0.6}$

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7=0.4 Доля пылевой фракции в материале (табл.1), KI=0.05 Доля пыли, переходящей в аэрозоль (табл.1), K2=0.03 Суммарное количество перерабатываемого материала, \mathbf{T}/\mathbf{vac} , G=27.28 Высота падения материала, \mathbf{M} , GB=10 Коэффициент, учитывающий высоту падения материала (табл.7), B=2.5 Макс. разовый выброс пыли при переработке, \mathbf{T}/\mathbf{c} (1), $GC=K1\cdot K2\cdot K3\cdot K4\cdot K5\cdot K7\cdot G\cdot 10^6\cdot B/3600=0.05\cdot 0.03\cdot 1.7\cdot 1\cdot 0.6\cdot 0.4\cdot 27.28\cdot 10^6\cdot 2.5/3600=11.594$ Время работы узла переработки в год, часов, RT2=2176 Валовый выброс пыли при переработке, \mathbf{T}/\mathbf{rod} (1), $MC=K1\cdot K2\cdot K3SR\cdot K4\cdot K5\cdot K7\cdot G\cdot B\cdot RT2=0.05\cdot 0.03\cdot 1.7\cdot 1\cdot 0.6\cdot 0.4\cdot 27.28\cdot 2.5\cdot 2176=90.822$ Максимальный разовый выброс , \mathbf{T}/\mathbf{rod} , M=90.822

Материал: ПРС

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, $VL = \mathbf{5}$ Коэфф., учитывающий влажность материала(табл.4), $K5 = \mathbf{0.6}$

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 2.12

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала (табл.7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $\mathit{GC} = \mathit{K1} \cdot \mathit{K2} \cdot \mathit{K3} \cdot \mathit{K4} \cdot \mathit{K5} \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 2.12 \cdot 10^6 \cdot 2.5 / 3600 = 0.901$

Время работы узла переработки в год, часов, RT2 = 2176

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 2.12 \cdot 2.5 \cdot 2176 = 7.05$

Максимальный разовый выброс , г/сек, G=0.901

Валовый выброс , T/год , M = 7.05

Итого выбросы от источника выделения: 001 Работа автопогрузчика

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	12.495	97.872
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	1.87425	14.6808
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6001, Неорганизованный Источник выделения N 002, Работа погрузчика ZL-50 на вскрыше

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение N8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. $N9 221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: ПРС

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 4.25

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала (табл.7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 4.25 \cdot 10^6 \cdot 2.5 / 3600 = 1.81$

Время работы узла переработки в год, часов, RT2 = 1088

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 4.25 \cdot 2.5 \cdot 1088 = 7.07$

Максимальный разовый выброс , г/сек, G=1.81

Валовый выброс , $\tau/год$, M = 7.07

MTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	1.81	7.07
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.2715	1.0605
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6001, Неорганизованный Источник выделения N 003, Работа автосамосвалами Камаз-65115

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение N8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. N9 221-17
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: ПРС

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл. 3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 7.25

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала (табл.7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 7.25 \cdot 10^6 \cdot 2.5 / 3600 = 3.08$

Время работы узла переработки в год, часов, RT2 = 638

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 7.25 \cdot 2.5 \cdot 683 = 7.58$

Максимальный разовый выброс , г/сек, G=3.08

Валовый выброс , $\tau/$ год , M = 7.58

NTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	3.08	7.58
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.462	1.137
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Итого по источнику 6001 до пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	17.385	112.522
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого по источнику 6001 после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	2.60775	16.8783
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6002, Неорганизованный Источник выделения N 004, Склад ПРС

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, \mathbb{N}100-\pi$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: ПРС

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.6

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Поверхность пыления в плане, м2, F = 120

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45 Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.005

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot$

 $K7 \cdot Q \cdot F = 1.7 \cdot 1 \cdot 0.6 \cdot 1.45 \cdot 0.4 \cdot 0.005 \cdot 120 = 0.35496$

Время работы склада в году, часов, RT = 1440

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot O \cdot F$

 $RT \cdot 0.0036 = 1.7 \cdot 1 \cdot 0.6 \cdot 1.45 \cdot 0.4 \cdot 0.005 \cdot 12 \cdot 1440 \cdot 0.0036 = 0.18401$

Максимальный разовый выброс , г/сек, G=0.35496

Валовый выброс , $\pi/\text{год}$, M = 0.18401

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.35496	0.18401
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.532	0.0276
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Добычные работы.

Источник загрязнения N 6003, Неорганизованный Источник выделения N 005, Работа экскаватора 90-4112 на добыче

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Песчано-гравийная смесь

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 216.52

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала (табл. 7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 216.52 \cdot 10^6 \cdot 2.5 / 3600 = 92.021$

Время работы узла переработки в год, часов, RT2 = 752

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 216.52 \cdot 2.5 \cdot 752 = 249.119$

Максимальный разовый выброс , г/сек, G = 92.021

Валовый выброс , $\tau/$ год , M = 249.119

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	92.021	249.119
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	13.803	37.367
	в %: 70-20 (шамот, цемент, пыль цементного		

производства - глина, глинистый сланец, доменный	
шлак, песок, клинкер, зола, кремнезем, зола углей	
казахстанских месторождений) (494)	

Источник загрязнения N 6003, Неорганизованный Источник выделения N 006, Работа погрузчика ZL-50 по добыче

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Песчано-гравийная смесь

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, $VL = \mathbf{5}$ Коэфф., учитывающий влажность материала(табл.4), $K5 = \mathbf{0.6}$

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, $\tau/$ час, G=149.66

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала (табл.7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 149.66 \cdot 10^6 \cdot 2.5 / 3600 = 63.606$

Время работы узла переработки в год, часов, RT2 = 1088

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 149.66 \cdot 2.5 \cdot 1088 = 249.13$

Максимальный разовый выброс , г/сек, G=63.606

Валовый выброс , $\tau/\text{год}$, M = 249.13

Итого:

	•		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	63.606	249.13
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		

шлак, песок, клинкер, зола, кремнезем, зола углей	
казахстанских месторождений) (494)	

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	9.5409	37.3695
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6003, Неорганизованный Источник выделения N 007, Работа автосамосвалами

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение N8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. N9 $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Песчано-гравийная смесь

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл. 5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 255.21

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала(табл.7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 255.21 \cdot 10^6 \cdot 2.5 / 3600 = 108.464$

Время работы узла переработки в год, часов, RT2 = 638

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 255.21 \cdot 2.5 \cdot 638 = 249.12$

Максимальный разовый выброс , г/сек, G=108.464 Валовый выброс , т/год , M=249.12

NTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	108.464	249.12
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	16.2696	37.368
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Итого по источнику №6003 до очистки:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	264.091	747.369
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	39.6105	112.1054
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6004, Неорганизованный Источник выделения N 007, Работа вспомогательного оборудования (Бульдозер SD-22)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, \mathbb{N}100-\pi$

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Песчано-гравийная смесь

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.7

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 177.23

Высота падения материала, м, GB = 10

Коэффициент, учитывающий высоту падения материала (табл.7), B=2.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 177.23 \cdot 10^6 \cdot 2.5 / 3600 = 75.323$

Время работы узла переработки в год, часов, RT2 = 1088

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot$

 $K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1.7 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 177.23 \cdot 2.5 \cdot 1088 = 295.024$

Максимальный разовый выброс , г/сек, G = 75.323

Валовый выброс , $\pi/\text{год}$, M = 295.024

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	75.323	295.024
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Эффективность средств пылеподавления -85%

Итого после пылеподавления:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	11.298	44.2536
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6005, Неорганизованный Источник выделения N 008, Движение автотранспорта

Список литературы:

1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Расчетный период: Переходный период (t>-5 и t<5)

Температура воздуха за расчетный период, град. С, T=-2

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 71

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа,

NK1 = 3

Общ. количество автомобилей данной группы за расчетный период, шт., $NK=\mathbf{4}$ Коэффициент выпуска (выезда), $A=\mathbf{2}$

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 6

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LB1=20

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LD1=20

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2=20

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2=20

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1)/2 = (20 + 20)/2 = 20

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2)/2 = (20 + 20)/2 = 20

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 7.38

Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 6.66 Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 2.9

Выброс ЗВ при выезде 1-го автомобиля, грамм, $\emph{M1} = \emph{MPR} \cdot \emph{TPR} + \emph{ML} \cdot \emph{L1} + \emph{MXX} \cdot$

 $TX = 7.38 \cdot 6 + 6.66 \cdot 20 + 2.9 \cdot 1 = 180.4$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 6.66 \cdot 20 + 2.9 \cdot 1 = 136.1$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 3 \cdot (180.4 + 136.1) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.2697$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 180.4 \cdot 2/3600 = 0.1002$

Примесь: 2732 Керосин (654*)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), $MPR = \mathbf{0.99}$ Пробеговые выбросы ЗВ, г/км, (табл.3.8), $ML = \mathbf{1.08}$

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.45

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.99 \cdot 6 + 1.08 \cdot 20 + 0.45 \cdot 1 = 28$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1.08 \cdot 20 + 0.45 \cdot 1 = 22.05$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (28 + 22.05) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.0426$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 28 \cdot 2/3600 = 0.01556$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR=2 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML=4 Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.3.9), MXX=1

Выброс ЗВ при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 2 \cdot 6 + 4 \cdot 20 + 1 \cdot 1 = 93$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 4 \cdot 20 + 1$ $\cdot 1 = 81$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (93 + 81) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.1482$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 93 \cdot 2/3600 = 0.0517$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8\cdot M=0.8\cdot 0.1482=0.1186$ Максимальный разовый выброс, г/с, $GS=0.8\cdot G=0.8\cdot 0.0517=0.0414$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13\cdot M=0.13\cdot 0.1482=0.01927$ Максимальный разовый выброс, г/с, $GS=0.13\cdot G=0.13\cdot 0.0517=0.00672$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.144 Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.36 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.04

Выброс ЗВ при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.144 \cdot 6 + 0.36 \cdot 20 + 0.04 \cdot 1 = 8.1$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.36 \cdot 20 + 0.04 \cdot 1 = 7.24$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (8.1 + 7.24) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.01307$

Максимальный разовый выброс ЗВ, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 8.1 \cdot 2/3600 = 0.0045$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.1224 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 0.603

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.1

Выброс 3В при выезде 1-го автомобиля, грамм, $MI = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.1224 \cdot 6 + 0.603 \cdot 20 + 0.1 \cdot 1 = 12.9$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.603 \cdot 20 + 0.1 \cdot 1 = 12.16$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (12.9 + 12.16) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.02135$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 12.9 \cdot 2/3600 = 0.00717$

ИТОГО выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)							
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	L2,		
cym	um		um.	км	км		
71	4	2.00	3	20	20		
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/ми	н мин	г/мин	г/км		
0337	6	7.38	1	2.9	6.66	0.1002	0.2697
2732	6	0.99	1	0.45	1.08	0.01556	0.0426
0301	6	2	1	1	4	0.0414	0.1186
0304	6	2	1	1	4	0.00672	0.01927
0328	6	0.144	1	0.04	0.36	0.0045	0.01307
0330	6	0.122	1	0.1	0.603	0.00717	0.02135

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.2 до 1.8 л (до 92)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году, дн., DN = 71

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, NKI=1 Общ. количество автомобилей данной группы за расчетный период, шт., NK=1

Коэффициент выпуска (выезда), A=1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 4

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, $LB1=\mathbf{0.5}$

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со

стоянки, км, LD1 = 0.5

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LR2=0.5

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2=0.5

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1)/2 = (0.5 + 0.5)/2 = 0.5

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2)/2 = (0.5 + 0.5)/2 = 0.5

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.1), MPR = 6.39 Пробеговые выбросы ЗВ, г/км, (табл.3.2), ML = 17.82

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.3), MXX = 3.5

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 6.39 \cdot 4 + 17.82 \cdot 0.5 + 3.5 \cdot 1 = 38$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 17.82 \cdot 0.5 + 3.5 \cdot 1 = 12.4$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (38 + 12.4) \cdot 1 \cdot 71 \cdot 10^{-6} = 0.06552$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 38 \cdot 1 / 3600 = 0.01056$

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.1), MPR = 0.54

Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 2.07

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.3), MXX = 0.3

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.54 \cdot 4 + 2.07 \cdot 0.5 + 0.3 \cdot 1 = 3.495$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 2.07 \cdot 0.5 + 0.3 \cdot 1 = 1.335$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^6 = 1 \cdot (3.495 + 1.335) \cdot 1 \cdot 71 \cdot 10^{-6} = 0.00628$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 3.495 \cdot 1 / 3600 = 0.00097$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.1), MPR = 0.04

Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 0.28

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.3), MXX = 0.03

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.04 \cdot 4 + 0.28 \cdot 0.5 + 0.03 \cdot 1 = 0.33$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.28 \cdot 0.5 + 0.03 \cdot 1 = 0.17$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.33 + 0.17) \cdot 1 \cdot 71 \cdot 10^{-6} = 0.001301$

Максимальный разовый выброс ЗВ, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.33 \cdot 1 / 1000 = 0.30 \cdot$

3600 = 0.0000917

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8\cdot M=0.8\cdot 0.001301=$ **0.001041** Максимальный разовый выброс, г/с, $GS=0.8\cdot G=0.8\cdot 0.0000917=$ **0.0000734**

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13\cdot M=0.13\cdot 0.001301=0.000169$ Максимальный разовый выброс, г/с, $GS=0.13\cdot G=0.13\cdot 0.0000917=0.00001192$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.1), MPR = 0.0117 Пробеговые выбросы ЗВ, г/км, (табл.3.2), ML = 0.063 Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.3.3), MXX = 0.01

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.0117 \cdot 4 + 0.063 \cdot 0.5 + 0.01 \cdot 1 = 0.0883$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.063 \cdot 0.5 + 0.01 \cdot 1 = 0.0415$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.0883 + 0.0415) \cdot 1 \cdot 71 \cdot 10^{-6} = 0.000117$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.0883 \cdot 1 / 3600 = 0.00002453$

ИТОГО выбросы по периоду: Переходный период (t>-5 и t<5)

Тип ма	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.2 до 1.8 л (до 92)								
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L2,				
cym	иm		шm.	км	км				
5	1	1.00	1	0.5	0.5				
<i>3B</i>	Tpr	Mpr	Tx	Mxx	, <i>Ml</i> ,	z/c	т/год		
	мин	г/ми	н ми	н г/ми	н г/км	!			
0337	4	6.39	1	3.5	17.82	0.01056	0.06552		
2704	4	0.54	1	0.3	2.07	0.00097	0.00628		
0301	4	0.04	1	0.03	0.28	0.0000734	0.001041		
0304	4	0.04	1	0.03	0.28	0.00001192	0.000169		
0330	4	0.012	2 1	0.01	0.063	0.00002453	0.000117		

Расчетный период: Теплый период (t>5)

Температура воздуха за расчетный период, град. С, T=25

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 71

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа,

NK1 = 1

Общ. количество автомобилей данной группы за расчетный период, шт., $NK=\mathbf{5}$ Коэффициент выпуска (выезда), $A=\mathbf{2}$

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 4

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LB1=20

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LD1=20

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2=20

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2=20

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1)/2 = (20 + 20)/2 = 20

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2)/2 = (20 + 20)/2 = 20

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 3 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 6.1

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 2.9

Выброс ЗВ при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot L1 + MXX$

 $TX = 3 \cdot 4 + 6.1 \cdot 20 + 2.9 \cdot 1 = 136.9$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 6.1 \cdot 20 + 2.9 \cdot 1 = 124.9$

Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (136.9 + 124.9)$ $\cdot 6 \cdot 71 \cdot 10^{-6} = 0.223$

Максимальный разовый выброс ЗВ, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 136.9 \cdot 2/3600 = 0.076$

Примесь: 2732 Керосин (654*)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.4 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 1

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.45

Выброс ЗВ при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot$

 $TX = 0.4 \cdot 4 + 1 \cdot 20 + 0.45 \cdot 1 = 22.05$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1 \cdot 20 + 0.45 \cdot 1 = 20.45$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (22.05 + 20.45)$ $\cdot 6 \cdot 71 \cdot 10^{-6} = 0.0362$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 22.05 \cdot 2/3600 = 0.01225$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 1 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 4

Удельные выбросы 3B при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 1

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot$

 $TX = 1 \cdot 4 + 4 \cdot 20 + 1 \cdot 1 = 85$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 4 \cdot 20 + 1 \cdot 1 = 81$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (85 + 81) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.1414$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 85 \cdot 2/3600 = 0.0472$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8\cdot M=0.8\cdot 0.1414=0.1131$ Максимальный разовый выброс, г/с, $GS=0.8\cdot G=0.8\cdot 0.0472=0.03776$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13\cdot M=0.13\cdot 0.1414=0.0184$ Максимальный разовый выброс, г/с, $GS=0.13\cdot G=0.13\cdot 0.0472=0.00614$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.04 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 0.3

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.04

Выброс ЗВ при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.04 \cdot 4 + 0.3 \cdot 20 + 0.04 \cdot 1 = 6.2$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.3 \cdot 20 + 0.04 \cdot 1 = 6.04$

Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (6.2 + 6.04) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.01043$

Максимальный разовый выброс ЗВ, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 6.2 \cdot 2/3600 = 0.003444$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.113 Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.54

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.1

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.113 \cdot 4 + 0.54 \cdot 20 + 0.1 \cdot 1 = 11.35$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.54 \cdot 20 + 0.1 \cdot 1 = 10.9$

Валовый выброс 3B, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 2 \cdot (11.35 + 10.9) \cdot 6 \cdot 71 \cdot 10^{-6} = 0.01896$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 11.35 \cdot 2/3600 = 0.0063$

	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)									
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,					
cym	шт		шm.	км	км					
71	5	2.00	1	20	20					
<i>3B</i>	Tpr	Mpr,	Tx	Mxx,	Ml,	z/c	т/год			
	мин	г/ми	н мин	г/мин	г/км					
0337	4	3	1	2.9	6.1	0.076	0.223			
2732	4	0.4	1	0.45	1	0.01225	0.0362			
0301	4	1	1	1	4	0.03776	0.1131			
0304	4	1	1	1	4	0.00614	0.0184			
0328	4	0.04	1	0.04	0.3	0.003444	0.01043			
0330	4	0.113	1	0.1	0.54	0.0063	0.01896			

Расчетный период: Теплый период (t>5)

Температура воздуха за расчетный период, град. С, $T=\mathbf{25}$

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.2 до 1.8 л (до 92)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году, дн., DN = 71

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, $NKI = \mathbf{1}$ Общ. количество автомобилей данной группы за расчетный период, шт., $NK = \mathbf{1}$

Коэффициент выпуска (выезда), A = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 4

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, $LB1=\mathbf{0.5}$

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LD1 = 0.5

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, $LB2 = \mathbf{0.5}$

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0.5

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1)/2 = (0.5 + 0.5)/2 = 0.5

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2)/2 = (0.5 + 0.5)/2 = 0.5

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.1), MPR = 4

Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 15.8

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.3), MXX = 3.5

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 4 \cdot 4 + 15.8 \cdot 0.5 + 3.5 \cdot 1 = 23.4$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 15.8 \cdot 0.5 + 3.5 \cdot 1 = 11.4$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (23.4 + 11.4) \cdot 1$

```
71 \cdot 10^{-6} = 0.027144
```

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 23.4 \cdot 1 / 3600 = 0.0065$

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.1), MPR = 0.38

Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 1.6 Удельные выбросы 3В при работе на холостом ходу, г/мин,

(табл.3.3), *MXX* = **0.3**

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.38 \cdot 4 + 1.6 \cdot 0.5 + 0.3 \cdot 1 = 2.24$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1.6 \cdot 0.5 + 0.3 \cdot 1 = 1.1$

Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (2.24 + 1.1) \cdot 1 \cdot 71$ $\cdot 10^{-6} = 0.0026052$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 2.24 \cdot 1 / 3600 = 0.000622$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.1), MPR = 0.03 Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 0.28 Удельные выбросы 3В при работе на холостом ходу, г/мин,

(табл.3.3), MXX = 0.03

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.03 \cdot 4 + 0.28 \cdot 0.5 + 0.03 \cdot 1 = 0.26$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.28 \cdot 0.5 + 0.03 \cdot 1 = 0.17$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.26 + 0.17) \cdot 1 \cdot 71 \cdot 10^{-6} = 0.000335$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.26 \cdot 1 / 3600 = 0.0000722$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8\cdot M=0.8\cdot 0.000335=0.000268$ Максимальный разовый выброс, г/с, $GS=0.8\cdot G=0.8\cdot 0.0000722=0.0000578$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13\cdot M=0.13\cdot 0.000335=0.0000435$ Максимальный разовый выброс, г/с, $GS=0.13\cdot G=0.13\cdot 0.0000722=0.00000939$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.1), MPR = 0.01 Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 0.06 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.3), MXX = 0.01

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX =$

$0.01 \cdot 4 + 0.06 \cdot 0.5 + 0.01 \cdot 1 = 0.07$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.06 \cdot 0.5 + 0.01 \cdot 1 = 0.04$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.07 + 0.04) \cdot 1 \cdot 71 \cdot 10^{-6} = 0.000086$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.07 \cdot 1 / 3600 = 0.00001944$

ИТОГО выбросы по периоду: Теплый период (t>5)

Тип ма	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.2 до 1.8 л (до 92)								
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L2,				
cym	um		шm.	км	км				
71	4	1.00	1	0.5	0.5				
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,	z/c	т/год		
	мин	г/ми	н мин	г/мин	г/км				
0337	4	4	1	3.5	15.8	0.0065	0.027144		
2704	4	0.38	1	0.3	1.6	0.000622	0.000335		
0301	4	0.03	1	0.03	0.28	0.0000578	0.000268		
0304	4	0.03	1	0.03	0.28	0.00000939	0.0000435		
0330	4	0.01	1	0.01	0.06	0.00001944	0.000086		

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0792912	0,233009
0304	Азот (II) оксид (Азота оксид) (6)	0,01288131	0,0378825
0328	Углерод (Сажа, Углерод черный) (583)	0,007944	0,0235
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,		
	Сера (IV) оксид) (516)	0,01351397	0,040513
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,19326	0,585364
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0,001592	0,006615
	углерод/ (60)		
2732	Керосин (654*)	0,02781	0,0788

Источник загрязнения N 0001,Организованный Источник выделения N 001, ДЭС

Список литературы:

1. 1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, BS = 0.84 Годовой расход дизельного топлива, т/год, BG = 1.21

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30 Максимальный разовый выброс, г/с, $\underline{G}_{-}=BS\cdot E/3600=0.84\cdot 30/3600=0.007$ Валовый выброс, т/год, $\underline{M}_{-}=BG\cdot E/I0^3=1.21\cdot 30/10^3=0.0363$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $\underline{G}=BS\cdot E/3600=0.84\cdot 1.2/3600=0.00028$ Валовый выброс, т/год, $M=BG\cdot E/10^3=1.21\cdot 1.2/10^3=0.001452$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=39 Максимальный разовый выброс, г/с, $\underline{G}=BS\cdot E/3600=0.84\cdot 39/3600=0.0091$ Валовый выброс, т/год, $\underline{M}=BG\cdot E/10^3=1.21\cdot 39/10^3=0.04719$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10 Максимальный разовый выброс, г/с, $\underline{G}=BS\cdot E/3600=0.84\cdot 10/3600=0.0023$ Валовый выброс, т/год, $\underline{M}=BG\cdot E/10^3=1.21\cdot 10/10^3=0.0121$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25 Максимальный разовый выброс, г/с, $\underline{G}=BS \cdot E / 3600 = 0.84 \cdot 25 / 3600 = 0.00583$ Валовый выброс, т/год, $M=BG \cdot E / 10^3 = 1.21 \cdot 25 / 10^3 = 0.03025$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12 Максимальный разовый выброс, г/с, $_G_=BS\cdot E/3600=0.84\cdot 12/3600=0.0028$ Валовый выброс, т/год, $_M_=BG\cdot E/10^3=1.21\cdot 12/10^3=0.01452$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=BS\cdot E/3600=0.84\cdot 1.2/3600=0.00028$ Валовый выброс, т/год, $_M_=BG\cdot E/I0^3=1.21\cdot 1.2/10^3=0.001452$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=5 Максимальный разовый выброс, г/с, $\underline{G}=BS\cdot E/3600=0.84\cdot 5/3600=0.00116$ Валовый выброс, т/год, $M=BG\cdot E/10^3=1.21\cdot 5/10^3=0.00605$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.007	
0304	Азот (II) оксид (Азота оксид) (6)	0.0091	0.04719
0328	Углерод (Сажа, Углерод черный) (583)	0.00116	0.00605
0330	Сера диоксид (Ангидрид сернистый,	0.0023	0.0121
	Сернистый газ, Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный	0.00583	0.03025
	газ) (584)		
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид)	0.00028	0.001452
	(474)		

1325	Формальдегид (Метаналь) (609)	0.00028	0.001452
2754	Алканы С12-19 /в пересчете на С/	0.0028	0.01452
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-265П)		
	(10)		

Нур-Султан, ТОО "ASKUM"

Нур-Сул	тан, TOO "ASKUM"								
Код	Наименовани е	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир	опас-	вещест	вещества	KOB	вещества,
веще-		разовая,	суточная,	безопасн	ности	r/c	т/год	(М/ПДК)** a	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3				a	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид	0.2	0.04		2	0.007	0.0363	0	0.9075
	(Азота диоксид)								
	(4)								
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.0091	0.04719	0	0.7865
0328	Углерод (Сажа,	0.15	0.05		3	0.0011	0.00605	0	0.121
0320	Углерод черный) (583)	0.13	0.03		3	6	0.00003	Ü	0.121
0330	Сера диоксид	0.5	0.05		3	0.0023	0.0121	0	0.242
	(Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)								
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	0.0058	0.03025	0	0.0100833
1301	Проп-2-ен-1-аль (Акролеин,	0.03	0.01		2	0.0002	0.001452	0	0.1452
1325	Акрилальдегид) (474) Формальдегид	0.05	0.01		2	0.0002	0.001452	0	0.1452
2754	(Метаналь) (609) Алканы С12-19 /в	1			4	0.0028	0.01452	0	0.01452
	пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)								
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3	0.1		3	25	173.2649	1732.649	1732.649
	всего:					54.077	173.4142 14	1732.6	1735.021
	1	l	l	1	l	1			l .

Расчет образования отходов на период добычи

Смешанные коммунальные отходы, Код 20 03 01

При строительстве будет задействовано 13 человека, при средней норме накопления коммунальных отходов $0,3\,\mathrm{m}^3$ /год на одного человека и плотностью отходов $0,25\,\mathrm{t/m}^3$, количество рабочих дней в году -180, за год образуется:

$$13 \times 0,3 \times 0,25 = 0,975$$
 т/год

Количество отходов составит:

$$(0,975 \text{ т/год}: 365 \text{ дней/год}) \times 180 \text{ дней работы} = 0,481 \text{ т.}$$

Отходы планируется вывозить своевременно на специализированное предприятие по договору без накопления. Срок хранения отходов в контейнерах при температуре 0С и ниже —не более 3-х суток, при плюсовой температуре —не более суток. Отходы относятся к 5 классу опасности.

В своем составе отходы не содержат вредных химических веществ, в связи с этим отнесены к зеленому уровню опасности. По агрегатному состоянию отходы - твердые, по физическому – в большинстве случаев, нерастворимы в воде, пожароопасные.

МОЛА ОБЛЫСЫНЫҢ КӘСІПКЕРЛІК ЖӘНЕ ТУРИЗМ БАСҚАРМАСЫ»

государственное учреждение

«УПРАВЛЕНИЕ ПРЕДПРИНИМАТЕЛЬСТВА И ТУРИЗМА АКМОЛИНСКОЙ ОБЛАСТИ»

020000, r. Kommeray, yr. Aбак, 96 ren.24-00-00, фикс: 24-00-38 e-mail: depprom/caqmola.gov.kz

EMJEKETTIK MEKEMECI

00, Kosmeray szancia, Afail someci, 96 ren 24-00-00, dusc: 24-00-38 e-mail: deppromit/aqmola.gov/kz

03 LOLRE No 01-06/149

TOO «Sand ground»

Ha ucx. No 2-02/22 om 10.02.2022 200a

Управление предпринимательства и туризма Акмолинской области (далее - Управление) на Ваше заявление о выдаче лицензии на добычу общераспространенных полезных ископаемых, сообщает следующее.

В соответствии со ст. 205 Кодекса РК «О недрах и недропользовании» (далее - Кодекс) МД «Севказнедра» письмом от 02.03.2022 года № 26-12-03/223 согласовало месторождение осадочных пород (гравийно-песчаной смеси) «Аskum» Целиноградского района для выдачи лицензии на добычу общераспространенных полезных ископаемых.

Ввиду изложенного, Управление уведомляет Вас о необходимости согласования плана горных работ, проведения экспертизы плана ликвидации,

предусмотренных статьями 216 и 217 Кодекса.

Согласованные план горных работ и план ликвидации с положительными заключениями экспертизы необходимо предоставить в Управление не позднее одного года со дня данного уведомления.

Приложение: письмо МД «Севказнедра»,

Руководитель управления

Е.Оспанов

Нурмагамбетова Д.Ж. 240027 *QAZAOSTAN RESPÝBLIKASY EKOLOGIA,
GEOLOGIA JÁNE TABIĞI RESÝRSTAR
MINIS RLIĞİ GEOLOGIA KOMITETİNİN
SOLTÜNTÜ QAZIERQOINAYY SOLTÜSTİK
QAZAQSTAN ÖNÜRARALYQ GEOLOGIA
DEPARTAMENTİ*
RESPÝBLIKALYQ MEMLEKETTİK MEKEMESİ

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «СЕВЕРО-КАЗАХСТАНСКИЙ МЕЖРЕГИОНАЛЬНЫЙ ДЕПАРТАМЕНТ ГЕОЛОГИИ КОМИТЕТА ГЕОЛОГИИ МИНИСТЕРСТВА ЭКОЛОГИИ, ГЕОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН «СЕВКАЗНЕДРА»

> 020000, Акмелинская область, г.Коюшетау, ул. Каналия Сатпасва, д.1Б Тел. 7162) 25-66-85, факс. 8 (7162) 25-50-06 e-mail: kgkukshetan@ecogeo.gov.kz

020000, Aqmola oblysy, Kokshetay qalasy, Qunysh Sathaev konhesi, 1B ur tel: 8 (7162) 25-66-85, faks: 8(7162) 25-50-06 c-mail: kgkokshetami/ecoegoc.gov.kz

02.03.2022-гы № 26-12-03/223 шығыс хаты

No.

Ақмола облысының кәсіпкерлік және туризм басқармасы

КТПК, өндіруге арналған лицензия беру туралы

«Солтүстікказжеркойнауы» ӨД, «Жер қойнауы және жер қойнауын пайдалану туралы» ҚР Кодексінің 205-бабының 2-тармағына сәйкес, Ақмола облысы Целиноград ауданында орналасқан Askum кен орнында шөгінді жыныстарды (қиыршық тас-құм қоспасы) өндіруге арналған «Sand ground» ЖШС-нің лицензияны беру өтінішін қарастырып, лицензияны беруді төменде көрсетілген координаттарға сәйкес келіседі;

Бұрыштық нүктелердің №	Солтүстік ендік	Шығыс бойлық
1	51° 1' 27,65"	71° 12' 53,06"
2	51° 1' 30,26"	71° 12' 30,89"
3	51° 1' 45,96"	71° 12' 44,15"
4	51° 1' 43,73"	71° 13' 5.97"
5	51° 1' 27,65"	71° 12' 53,06"

Басшының м.а.

А.Галымжанова

Орынд. А.Сафурин Тел. 25-66-85