Источниками загрязнения атмосферного воздуха на период проведения работ будут являться следующие работы:

√ Дизель-генератор

Для проведения работ, в качестве источника электроэнергии используется дизель-генератор. Объем используемого дизельного топлива -10 тонн, в период проведения работ.

✓ Работа бурового станка

Бурение будет производиться станком УКБ-4 Π со съемным керно-приемником снарядом Boart Longyear HQ, длиною в 3 м обеспечивающего линейный выход керна не ниже 95%. Фонд рабочего времени бурового станка — 6432 часов.

У Снятие ПРС(канавы)

Перед началом буровых работ и горнопроходческих работ проектируется снятие почвенно-плодородного слоя по всей длине канав, со складированием его в непосредственной близости от места проведения горных работ для дальнейшей рекультивации нарушенных земель. Объем снимаемого ПРС –1166 м³ (1749т) Время работы бульдозера - 16 часов.

√ Снятие ПРС(При проведении буровых работ)

Перед началом буровых работ проектируется снятие почвенно-плодородного слоя. Объем снимаемого $\Pi PC - 67.5 \text{ м}^3 (101.2 \text{ т})$. Время работы бульдозера -1,9час.

✓ Экскавация породы из канав

Экскавация породы из канав планируется осуществлять экскаватором. Объем изъятого материала (ПГС) 19834 м³ –37684 т. Время работы экскаваторов 1247 часов.

✓ Засыпка горных выработок

Засыпка горных выработок будет производиться бульдозером, в труднодоступных местах – вручную после проведения геологической документации и комплекса опробовательских работ.

У Рекультивация нарушенных земель (ПРС)

Рекультивация нарушенного почвенно-плодородного слоя будет происходить за счет временно хранящегося ПРС. Время работы бульдозера -2494 часов. Общее количество ПРС, т/год - 1850.2тонн.

✓ Работа автотранспорта

Доставка грузов и персонала партии к участку разведки и к местам работ предусматривается с применением автомобилей ГАЗ-66 и УАЗ по существующим дорогам.

√ Склад ПРС

Перед началом горнопроходческих работ проектируется снятие почвенно-плодородного слоя по всей длине канав, со складированием его в непосредственной близости от места проведения горных работ для дальнейшей рекультивации нарушенных земель.

✓ Склад ПГС

При проведении горнопроходческих работ, извлекаемая порода из канав, будет временно складироваться в непосредственной близости от места проведения горных работ для дальнейшей рекультивации нарушенных земель.

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 0001, Неорганизованный источник Источник выделения N 009, Дизель-генератор

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 10

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 2

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кВт*ч, 170

Температура отработавших газов T_{o2} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 170 * 2 = 0.0029648$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31/(1 + T_{oz}/273) = 1.31/(1 + 450/273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.0029648 / 0.494647303 = 0.005993766$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального

ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального

ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_9 / 3600 = 7.2 * 2 / 3600 = 0.004$$

$$W_i = q_{Mi} * B_{200} = 30 * 10 / 1000 = 0.3$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M_i = (e_{Mi} * P_9 / 3600) * 0.8 = (10.3 * 2 / 3600) * 0.8 = 0.004577778$$

$$W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (43 * 10 / 1000) * 0.8 = 0.344$$

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)

$$M_i = e_{Mi} * P_9 / 3600 = 3.6 * 2 / 3600 = 0.002$$

 $W_i = q_{Mi} * B_{200} / 1000 = 15 * 10 / 1000 = 0.15$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

$$M_i = e_{Mi} * P_9 / 3600 = 0.7 * 2 / 3600 = 0.000388889$$

$$W_i = q_{Mi} * B_{200} / 1000 = 3 * 10 / 1000 = 0.03$$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

$$M_i = e_{Mi} * P_{3} / 3600 = 1.1 * 2 / 3600 = 0.000611111$$

$$W_i = q_{Mi} * B_{200} / 1000 = 4.5 * 10 / 1000 = 0.045$$

```
Примесь: 1325 Формальдегид (Метаналь) (609) M_i = e_{Mi} * P_9 / 3600 = 0.15 * 2 / 3600 = 0.000083333 W_i = q_{Mi} * B_{200} = 0.6 * 10 / 1000 = 0.006
```

Примесь:0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_9 / 3600 = 0.000013 * 2 / 3600 = 0.0000000007$ $W_i = q_{Mi} * B_{200} = 0.000055 * 10 / 1000 = 0.00000055$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_9 / 3600) * 0.13 = (10.3 * 2 / 3600) * 0.13 = 0.000743889$ $W_i = (q_{Mi} * B_{cod} / 1000) * 0.13 = (43 * 10 / 1000) * 0.13 = 0.0559$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.004577778	0.344	0	0.004577778	0.344
0304	Азот (II) оксид (Азота оксид) (6)	0.000743889	0.0559	0	0.000743889	0.0559
0328	Углерод (Сажа, Углерод черный) (583)	0.000388889	0.03	0	0.000388889	0.03
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.000611111	0.045	0	0.000611111	0.045
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.004	0.3	0	0.004	0.3
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000007	0.00000055	0	0.000000007	0.00000055
1325	Формальдегид (Метаналь) (609)	0.000083333	0.006	0	0.000083333	0.006
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.002	0.15	0	0.002	0.15

Источник загрязнения: 6001, Неорганизованный источник Источник выделения: 6001 01, Работа бурового станка

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды
 - и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ө
 - 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Вид работ: Буровые и др. работы связанные с пылевыделением

Оборудование: Пневматический бурильный молоток при бурении мокрым способом

Интенсивность пылевыделения от единицы оборудования, г/ч (табл.16), G = 18

Количество одновременно работающего данного оборудования, шт., N=1

Максимальный разовый выброс, г/ч, $GC = N \cdot G \cdot (1-N) = 1 \cdot 18 \cdot (1-0) = 18$

Продолжительность работы в течении 20 минут, мин, TN = 20

Максимальный разовый выброс, г/с (9), $Q = GC / 3600 \cdot TN \cdot 60 / 1200 = 18 / 3600 \cdot 20 \cdot 60 / 1200 = 0.005$

Время работы в год, часов, RT = 6432

Валовый выброс, т/год, $O\Gamma OI = GC \cdot RT \cdot 10^{-6} = 18 \cdot 6432 \cdot 10^{-6} = 0.1158$

Итого выбросы от источника выделения: 001 Работа бурового станка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.005	0.1158
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6002, Неорганизованный источник Источник выделения: 6002 02, Снятие ПРС (Канавы)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды
 - и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ө
 - 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.8

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2

```
Скорость ветра (максимальная), м/c, G3 = 6
```

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.4

Коэффициент, учитывающий степень защищенности узла (табл.3), *K4* = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 109.32

Максимальное количество перерабатываемого материала за 20 мин, тонн, G20 = 36.44

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.7), B' = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6$ ·

 $B'/1200 = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.8 \cdot 0.5 \cdot 36.44 \cdot 10^{6} \cdot 0.4 / 1200 = 6.8$

Время работы узла переработки в год, часов, RT2 = 16

Валовый выброс пыли при переработке, т/год (1), $A \Gamma O \mathcal{I} = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B'$

 $RT2 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.5 \cdot 109.32 \cdot 0.4 \cdot 16 = 0.336$

Максимальный разовый выброс пыли , г/сек, Q = 6.8

Валовый выброс пыли, т/год, $Q\Gamma Q = 0.336$

Итого выбросы от источника выделения: 002 Снятие ПРС (Канавы)

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	6.8	0.336
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6003, Неорганизованный источник Источник выделения: 6003 03, Снятие ПРС (При проведении буровых работ)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды
 - и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ө
 - 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.8

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 6

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 1.4

Коэффициент, учитывающий степень защищенности узла (табл.3), *K4* = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 53.27

Максимальное количество перерабатываемого материала за 20 мин, тонн, G20 = 17.76

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.7), B' = 0.4

Макс. разовый выброс пыли при переработке, Γ/C (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot 10^6$

 $B'/1200 = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.8 \cdot 0.5 \cdot 17.76 \cdot 10^{6} \cdot 0.4 / 1200 = 3.3152$

Время работы узла переработки в год, часов, RT2 = 1.9

Валовый выброс пыли при переработке, т/год (1), $A\Gamma O \mathcal{I} = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B'$

 $RT2 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.5 \cdot 53.27 \cdot 0.4 \cdot 1.9 = 0.01943$

Максимальный разовый выброс пыли, г/сек, Q = 3.3152

Валовый выброс пыли, т/год, $Q\Gamma O I = 0.01943$

Итого выбросы от источника выделения: 003 Снятие ПРС (При проведении буровых работ)

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	3.315	0.01943
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства – глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6004, Неорганизованный источник Источник выделения: 6004 04, Работа автотранспорта

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел
- 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ M100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

Расчетный период: Переходный период (t>-5 и t<5)

Температура воздуха за расчетный период, град. С, T = 22

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л (до 92)

Тип топлива: Неэтилированный бензин

```
Количество рабочих дней в году, дн., DN = 180
Наибольшее количество автомобилей, работающих на территории в течении 30 мин, NKI = 2
Общ. Количество автомобилей данной группы за расчетный период, шт., NK = 2
Коэффициент выпуска (выезда), A = 0.1
Экологический контроль не проводится
Суммарный пробег с нагрузкой, км/день, LIN = 1
Суммарное время работы двигателя на холостом ходу, мин/день, TXS = 1
Макс. Пробег с нагрузкой за 30 мин, км, L2N = 1
Макс. Время работы двигателя на холостом ходу в течение 30 мин, мин, TXM = 1
Суммарный пробег 1 автомобиля без нагрузки по территории \pi/\pi, км, LI = 1
Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км, L2 = 1
Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 19.17
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 4.5
Выброс 3В в день при движении и работе на территории, \Gamma, M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + 1.3 \cdot ML \cdot L1N
MXX \cdot TXS = 19.17 \cdot 1 + 1.3 \cdot 19.17 \cdot 1 + 4.5 \cdot 1 = 48.6
Валовый выброс 3B, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 48.6 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.00175
Максимальный разовый выброс ЗВ одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML.
L2N + MXX \cdot TXM = 19.17 \cdot 1 + 1.3 \cdot 19.17 \cdot 1 + 4.5 \cdot 1 = 48.6
Максимальный разовый выброс 3B, г/с, G = \frac{M2}{NK1} \cdot \frac{NK1}{30} / \frac{60}{60} = 48.6 \cdot \frac{2}{30} / \frac{60}{60} = 0.054
Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 2.25
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 0.4
Выброс 3В в день при движении и работе на территории, \Gamma, M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + 1.3 \cdot ML \cdot L1N
MXX \cdot TXS = 2.25 \cdot 1 + 1.3 \cdot 2.25 \cdot 1 + 0.4 \cdot 1 = 5.58
Валовый выброс 3B, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 5.58 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.000201
Максимальный разовый выброс ЗВ одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML.
L2N + MXX \cdot TXM = 2.25 \cdot 1 + 1.3 \cdot 2.25 \cdot 1 + 0.4 \cdot 1 = 5.58
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 5.58 \cdot 2 / 30 / 60 = 0.0062
РАСЧЕТ выбросов оксидов азота:
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 0.4
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 0.05
Выброс 3В в день при движении и работе на территории, \Gamma, MI = ML \cdot LI + 1.3 \cdot ML \cdot LIN + 1.3 \cdot ML \cdot LIN
MXX \cdot TXS = 0.4 \cdot 1 + 1.3 \cdot 0.4 \cdot 1 + 0.05 \cdot 1 = 0.97
Валовый выброс 3B, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 0.97 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.0000349
Максимальный разовый выброс 3В одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML
L2N + MXX \cdot TXM = 0.4 \cdot 1 + 1.3 \cdot 0.4 \cdot 1 + 0.05 \cdot 1 = 0.97
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 0.97 \cdot 2 / 30 / 60 = 0.001078
```

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_ = 0.8 \cdot M = 0.8 \cdot 0.0000349 = 0.00002792$ Максимальный разовый выброс, г/с, $GS = 0.8 \cdot G = 0.8 \cdot 0.001078 = 0.000862$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13 \cdot M=0.13 \cdot 0.0000349=0.000004537$ Максимальный разовый выброс, г/с, $GS=0.13 \cdot G=0.13 \cdot 0.001078=0.00014$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Пробеговые выбросы ЗВ, г/км, (табл.3.2), ML = 0.081 Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.3.3), MXX = 0.012

Выброс 3В в день при движении и работе на территории,г, $M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + MXX \cdot TXS = 0.081 \cdot 1 + 1.3 \cdot 0.081 \cdot 1 + 0.012 \cdot 1 = 0.1983$ Валовый выброс 3В, т/год, $M = A \cdot Ml \cdot NK \cdot DN \cdot l0^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 2 \cdot 180 \cdot 10^{-6} = 0.1 \cdot 0.1983 \cdot 10^{-6} = 0.10 \cdot$

0.00000714 Максимальный разовый выброс 3В одним автомобилем, г за 30 мин, $M2 = ML \cdot L2 + 1.3 \cdot ML \cdot L2N + MXX \cdot TXM = 0.081 \cdot 1 + 1.3 \cdot 0.081 \cdot 1 + 0.012 \cdot 1 = 0.1983$

Максимальный разовый выброс 3B, г/с, $G = M2 \cdot NK1 / 30 / 60 = 0.1983 \cdot 2 / 30 / 60 = 0.0002203$

ИТОГО выбросы по периоду: Переходный период (t > -5 и t < 5)

Tun A	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8										
do 3.5 π (do 92)											
Dn,	Nk,	\boldsymbol{A}		Nk1	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,	
cym	шm			шm.	км	км	мин	км	км	мин	
180	2	0.	.10	2	1	1	1	1	1	1	
<i>3B</i>	Mx	cx,	1	Ml,		г/c			т/год		
	г/м	ин	2,	/км							
0337	4.5		19.	17			0.054			0.00175	
2704	0.4		2.2	5		0.0062		0.000201			
0301	0.05 0.4			(0.000862	0.0000279					
0304	0.05		0.4				0.00014		0.0	0000454	
0330	0.012	2	0.0	81		0	.0002203		0.0	0000714	

Расчетный период: Теплый период (t>5)

Температура воздуха за расчетный период, град. С, T = 25

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л (до 92)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году, дн., DN = 90

Наибольшее количество автомобилей, работающих на территории в течении 30 мин, NKI = 2

Общ. Количество автомобилей данной группы за расчетный период, $m_{\rm c}$, $N_{\rm c} = 2$

Коэффициент выпуска (выезда), A = 0.1

Экологический контроль не проводится

Суммарный пробег с нагрузкой, км/день, LIN = 1

```
Суммарное время работы двигателя на холостом ходу, мин/день, TXS = 1
Макс. Пробег с нагрузкой за 30 мин, км, L2N = 1
Макс. Время работы двигателя на холостом ходу в течение 30 мин, мин, TXM = 1
Суммарный пробег 1 автомобиля без нагрузки по территории \pi/\pi, км, LI = 1
Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км, L2 = 1
Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 17
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 4.5
Выброс 3В в день при движении и работе на территории, \Gamma, M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + 1.3 \cdot ML \cdot L1N
MXX \cdot TXS = 17 \cdot 1 + 1.3 \cdot 17 \cdot 1 + 4.5 \cdot 1 = 43.6
Валовый выброс 3В, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 43.6 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.000785
Максимальный разовый выброс 3В одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML
L2N + MXX \cdot TXM = 17 \cdot 1 + 1.3 \cdot 17 \cdot 1 + 4.5 \cdot 1 = 43.6
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 43.6 \cdot 2 / 30 / 60 = 0.0484
Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 1.7
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 0.4
Выброс 3В в день при движении и работе на территории, г, MI = ML \cdot LI + 1.3 \cdot ML \cdot LIN + 1.3 \cdot ML \cdot LIN
MXX \cdot TXS = 1.7 \cdot 1 + 1.3 \cdot 1.7 \cdot 1 + 0.4 \cdot 1 = 4.31
Валовый выброс 3B, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot 10^{-6} = 0.1 \cdot 4.31 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.0000776
Максимальный разовый выброс 3B одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML
L2N + MXX \cdot TXM = 1.7 \cdot 1 + 1.3 \cdot 1.7 \cdot 1 + 0.4 \cdot 1 = 4.31
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 4.31 \cdot 2 / 30 / 60 = 0.00479
РАСЧЕТ выбросов оксидов азота:
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 0.4
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 0.05
Выброс 3В в день при движении и работе на территории, г, MI = ML \cdot LI + 1.3 \cdot ML \cdot LIN + 1.3 \cdot ML \cdot LIN
MXX \cdot TXS = 0.4 \cdot 1 + 1.3 \cdot 0.4 \cdot 1 + 0.05 \cdot 1 = 0.97
Валовый выброс 3B, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 0.97 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.00001746
Максимальный разовый выброс 3B одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML
L2N + MXX \cdot TXM = 0.4 \cdot 1 + 1.3 \cdot 0.4 \cdot 1 + 0.05 \cdot 1 = 0.97
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 0.97 \cdot 2 / 30 / 60 = 0.001078
С учетом трансформации оксидов азота получаем:
Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)
```

Валовый выброс, т/год, $_M_ = 0.8 \cdot M = 0.8 \cdot 0.00001746 = 0.000013968$ Максимальный разовый выброс, г/с, $GS = 0.8 \cdot G = 0.8 \cdot 0.001078 = 0.000862$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

```
Валовый выброс, т/год, \_M\_=0.13 \cdot M=0.13 \cdot 0.00001746=0.0000022698 Максимальный разовый выброс, г/с, GS=0.13 \cdot G=0.13 \cdot 0.001078=0.00014
```

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Пробеговые выбросы ЗВ, г/км, (табл.3.2), ML = 0.07 Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.3.3), MXX = 0.012

Выброс 3В в день при движении и работе на территории,г, $M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + MXX \cdot TXS = 0.07 \cdot 1 + 1.3 \cdot 0.07 \cdot 1 + 0.012 \cdot 1 = 0.173$ Валовый выброс 3В, т/год, $M = A \cdot M1 \cdot NK \cdot DN \cdot 10^{-6} = 0.1 \cdot 0.173 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.000003114$

Максимальный разовый выброс 3В одним автомобилем, г за 30 мин, $M2 = ML \cdot L2 + 1.3 \cdot ML \cdot L2N + MXX \cdot TXM = 0.07 \cdot 1 + 1.3 \cdot 0.07 \cdot 1 + 0.012 \cdot 1 = 0.173$

Максимальный разовый выброс 3B, г/с, $G = M2 \cdot NK1 / 30 / 60 = 0.173 \cdot 2 / 30 / 60 = 0.0001922$

ИТОГО выбросы по периоду: Теплый период (t > 5)

Tun.	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л (до 92)										
Dn, cym	Nk, um	A		Nk1 um.	L1, км	L1n, км	Тхs, мин	L2, км	<i>L2n</i> , км	Тхт, мин	
90	2	0.	10	2	1	1	1	1	1	1	
<i>3B</i>	Mx	cx,	1	Ml,		г/ c			т/год		
	г/м	ин	2,	/км							
0337	4.5		17				0.0484		(0.000785	
2704	0.4		1.7	'	0.00479		0.00479	0.0000776			
0301	0.05		0.4		0.000862		0.000862	0.00001397		0001397	
0304	0.05		0.4			0.00014		0.00000227			
0330	0.012	2	0.0	7		0	.0001922	0.000003114			

Расчетный период: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -25

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л (до 92)

Тип топлива: Неэтилированный бензин

Количество рабочих дней в году, дн., DN = 90

Наибольшее количество автомобилей, работающих на территории в течении 30 мин, NKI = 2

Общ. Количество автомобилей данной группы за расчетный период, шт., NK=2

Коэффициент выпуска (выезда), A = 0.1

Экологический контроль не проводится

Суммарный пробег с нагрузкой, км/день, LIN = 1

Суммарное время работы двигателя на холостом ходу, мин/день, TXS = 1

Макс. Пробег с нагрузкой за 30 мин, км, L2N = 1

Макс. время работы двигателя на холостом ходу в течение 30 мин, мин, ТХМ = 1

Суммарный пробег 1 автомобиля без нагрузки по территории π/π , км, LI = 1

Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км, L2 = 1

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

```
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 21.3
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 4.5
Выброс 3В в день при движении и работе на территории, \Gamma, M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + 1.3 \cdot ML \cdot L1N
MXX \cdot TXS = 21.3 \cdot 1 + 1.3 \cdot 21.3 \cdot 1 + 4.5 \cdot 1 = 53.5
Валовый выброс 3В, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot 10^{-6} = 0.1 \cdot 53.5 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.000963
Максимальный разовый выброс 3B одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML.
L2N + MXX \cdot TXM = 21.3 \cdot 1 + 1.3 \cdot 21.3 \cdot 1 + 4.5 \cdot 1 = 53.5
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 53.5 \cdot 2 / 30 / 60 = 0.0594
Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 2.5
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 0.4
Выброс 3В в день при движении и работе на территории, \Gamma, M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + 1.3 \cdot ML \cdot L1N
MXX \cdot TXS = 2.5 \cdot 1 + 1.3 \cdot 2.5 \cdot 1 + 0.4 \cdot 1 = 6.15
Валовый выброс 3В, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 6.15 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.0001107
Максимальный разовый выброс 3В одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML
L2N + MXX \cdot TXM = 2.5 \cdot 1 + 1.3 \cdot 2.5 \cdot 1 + 0.4 \cdot 1 = 6.15
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 6.15 \cdot 2 / 30 / 60 = 0.00683
РАСЧЕТ выбросов оксидов азота:
Пробеговые выбросы 3В, г/км, (табл.3.2), ML = 0.4
Удельные выбросы ЗВ при работе на холостом ходу, г/мин,
(табл.3.3), MXX = 0.05
Выброс 3В в день при движении и работе на территории, \Gamma, MI = ML \cdot LI + 1.3 \cdot ML \cdot LIN + 1.3 \cdot ML \cdot LIN
MXX \cdot TXS = 0.4 \cdot 1 + 1.3 \cdot 0.4 \cdot 1 + 0.05 \cdot 1 = 0.97
Валовый выброс 3B, т/год, M = A \cdot MI \cdot NK \cdot DN \cdot I0^{-6} = 0.1 \cdot 0.97 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.00001746
Максимальный разовый выброс 3B одним автомобилем, г за 30 мин, M2 = ML \cdot L2 + 1.3 \cdot ML
L2N + MXX \cdot TXM = 0.4 \cdot 1 + 1.3 \cdot 0.4 \cdot 1 + 0.05 \cdot 1 = 0.97
Максимальный разовый выброс 3B, г/с, G = M2 \cdot NK1 / 30 / 60 = 0.97 \cdot 2 / 30 / 60 = 0.001078
С учетом трансформации оксидов азота получаем:
Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)
Валовый выброс, т/год, M = 0.8 \cdot M = 0.8 \cdot 0.00001746 = 0.000013968
Максимальный разовый выброс, \Gamma/c, GS = 0.8 \cdot G = 0.8 \cdot 0.001078 = 0.000862
Примесь: 0304 Азот (II) оксид (Азота оксид) (6)
Валовый выброс, т/год, _{M} = 0.13 \cdot M = 0.13 \cdot 0.00001746 = 0.0000022698
Максимальный разовый выброс, GS = 0.13 \cdot G = 0.13 \cdot 0.001078 = 0.00014
Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
(516)
```

Пробеговые выбросы ЗВ, г/км, (табл.3.2), ML = 0.09 Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.3.3), MXX = 0.012

Выброс 3В в день при движении и работе на территории,г, $M1 = ML \cdot L1 + 1.3 \cdot ML \cdot L1N + MXX \cdot TXS = 0.09 \cdot 1 + 1.3 \cdot 0.09 \cdot 1 + 0.012 \cdot 1 = 0.219$

Валовый выброс ЗВ, т/год, $M = A \cdot Ml \cdot NK \cdot DN \cdot 10^{-6} = 0.1 \cdot 0.219 \cdot 2 \cdot 90 \cdot 10^{-6} = 0.00000394$ Максимальный разовый выброс ЗВ одним автомобилем, г за 30 мин, $M2 = ML \cdot L2 + 1.3 \cdot ML \cdot L2N + MXX \cdot TXM = 0.09 \cdot 1 + 1.3 \cdot 0.09 \cdot 1 + 0.012 \cdot 1 = 0.219$

Максимальный разовый выброс 3B, г/с, $G = M2 \cdot NK1 / 30 / 60 = 0.219 \cdot 2 / 30 / 60 = 0.0002433$

ИТОГО выбросы по периоду: Холодный период (t<-5) Температура воздуха за расчетный период, град. С, T = -25

Tun.	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8									
	до 3.5 л (до 92)									
Dn,	Nk,	\boldsymbol{A}	<i>Nk1</i>	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,	
cym	шm		шm.	км	км	мин	км	км	мин	
90	2	0.1	0 2	1	1	1	1	1	1	
<i>3B</i>	Mx	x,	Ml,		г/c			т/год		
	г/м	ин	г/км							
0337	4.5	2	1.3		0.0594		0.000963			
2704	0.4	2	.5	0.00683		0.00683	0.0001107			
0301	0.05 0.4		0.000862		0.000862	0.00001397		0001397		
0304	04 0.05 0.4			•	0.00014		0.00000227			
0330	0.012	2 0	.09		0.	.0002433		0.0	0000394	

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000862	0.000055856
0304	Азот (II) оксид (Азота оксид) (6)	0.00014	0.0000090766
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0002433	0.000014194
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0594	0.003498
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.00683	0.0003893

Максимальные разовые выбросы достигнуты в холодный период при температуре -25 градусов С

Источник загрязнения: 6005, Неорганизованный источник Источник выделения: 6005 04, Экскавация породы из канав

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пыляших материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале (табл.3.1.1), KI = 0.03

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 6

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.4

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 30.21

Суммарное количество перерабатываемого материала, т/год, GGOD = 37684

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.9 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30.21 \cdot 10^6 / 3600 \cdot (1-0) = 2.54$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 37684 \cdot (1-0) = 9.77$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 2.54 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 9.77 = 9.77

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 9.77 = 3.91$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 2.54 = 1.016$

Итоговая таблица выбросов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.016	3.91
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6006, Неорганизованный источник

Источник выделения: 6006 03, Засыпка канав

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале (табл.3.1.1), KI = 0.03 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

```
Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон
```

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 6

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.4

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 30.21

Суммарное количество перерабатываемого материала, т/год, GGOD = 37684

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.9 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30.21 \cdot 10^6 / 3600 \cdot (1-0) = 2.54$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 37684 \cdot (1-0) = 9.77$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 2.54 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 9.77 = 9.77

```
С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, M = KOC \cdot M = 0.4 \cdot 9.77 = 3.91 Максимальный разовый выброс, G = KOC \cdot G = 0.4 \cdot 2.54 = 1.016
```

Итоговая таблица выбросов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	1.016	3.91
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6007, Неорганизованный источник

Источник выделения: 6007 04, Склад ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

```
Материал негранулирован. Коэффициент Ке принимается равным 1
```

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 6

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.4

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 15

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.004

Количество дней с устойчивым снежным покровом, TSP = 0

Продолжительность осадков в виде дождя, часов/год, TO = 0

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 0 / 24 = 0$

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 1.4 \cdot 1$

 $0.7 \cdot 1.45 \cdot 0.5 \cdot 0.004 \cdot 15 \cdot (1-0) = 0.0426$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 - (TSP + TD))$ $(I-NJ) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 1.45 \cdot 0.5 \cdot 0.004 \cdot 15 \cdot (365 \cdot (0+0)) \cdot (1-0) = 1.152$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0426 = 0.04263

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 1.152 = 1.15232

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 1.15232 = 0.461$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.04263 = 0.017052$

Итоговая таблица выбросов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.017052	0.461
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6008, Неорганизованный источник

Источник выделения: 6008 05, Склад ПГС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала Материал: Песчано-гравийная смесь (ПГС)

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 6

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.4

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 15

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 0

Продолжительность осадков в виде дождя, часов/год, TO = 0

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 0 / 24 = 0$

Эффективность средств пылеподавления, в долях единицы, NJ=0 Максимальный разовый выброс, г/с (3.2.3), $GC=K3\cdot K4\cdot K5\cdot K6\cdot K7\cdot Q\cdot S\cdot (1-NJ)=1.4\cdot 1\cdot 0.7\cdot 1.45\cdot 0.5\cdot 0.002\cdot 15\cdot (1-0)=0.0213$ Валовый выброс, т/год (3.2.5), $MC=0.0864\cdot K3SR\cdot K4\cdot K5\cdot K6\cdot K7\cdot Q\cdot S\cdot (365-(TSP+TD))\cdot (1-NJ)=0.0864\cdot 1.2\cdot 1\cdot 0.7\cdot 1.45\cdot 0.5\cdot 0.002\cdot 15\cdot (365-(0+0))\cdot (1-0)=0.576$ Сумма выбросов, г/с (3.2.1, 3.2.2), G=G+GC=0+0.0213=0.021315 Сумма выбросов, т/год (3.2.4), M=M+MC=0+0.576=0.57616

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.57616 = 0.230465$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.021315 = 0.008526$

Итоговая таблица выбросов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.008526	0.230465
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		ļ
	месторождений) (494)		

Источник загрязнения: 6009, Неорганизованный источник

Источник выделения: 6009 09, Рекультивация нарушенных площадей ПРС

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале (табл.3.1.1), KI = 0.05

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 2.6

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 6

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.4

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

```
Размер куска материала, мм, G7 = 40
```

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.6

Суммарное количество перерабатываемого материала, т/час, GMAX = 0.74

Суммарное количество перерабатываемого материала, τ/Γ од, GGOD = 1850.2

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Разгрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = KI \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.9 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.6 \cdot 0.74 \cdot 10^6 / 3600 \cdot (1-0) = 0.0777$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.6 \cdot 1850.2 \cdot (1-0) = 0.6$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0777 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.6 = 0.6

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.6 = 0.24$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0777 = 0.0311$

Итоговая таблица выбросов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0311	0.24
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6010, Неорганизованный источник

Источник выделения: 6010 10, Пыление при движении спец. техники

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: < = 5 тонн

Коэфф., учитывающий грузоподъемность (табл.3.3.1), CI = 0.8

Средняя скорость передвижения автотранспорта: >5 - < = 10 км/час

Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 1

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), C3 = 1

Число автомашин, одновременно работающих в карьере, шт., NI = 3

Средняя продолжительность одной ходки в пределах промплощадки, км, L=1

Число ходок (туда + обратно) всего транспорта в час, N=3

Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, QI = 1450

Влажность поверхностного слоя дороги, %, VL = 5

Коэфф., учитывающий увлажненность дороги (табл.3.1.4), K5 = 0.7

```
Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45
```

Наиболее характерная для данного района скорость ветра, м/с, V1 = 2.6

Средняя скорость движения транспортного средства, км/час, V2 = 10

Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (2.6 \cdot 10 / 3.6)^{0.5} = 2.69$

Коэфф., учитывающий скорость обдува материала в кузове (табл.3.3.4), C5 = 1.13

Площадь открытой поверхности материала в кузове, м2, S = 1

Перевозимый материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.004

Влажность перевозимого материала, %, VL = 5

Коэфф., учитывающий влажность перевозимого материала (табл.3.1.4), K5M = 0.7

Количество дней с устойчивым снежным покровом, TSP = 0

Продолжительность осадков в виде дождя, часов/год, TO = 0

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 0 / 24 = 0$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

С учетом коэффициента гравитационного осаждения

Максимальный разовый выброс, г/с (3.3.1), $G = KOC \cdot (CI \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot QI / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot NI) = 0.4 \cdot (0.8 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.01 \cdot 3 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.13 \cdot 0.7 \cdot 0.004 \cdot 1 \cdot 3) = 0.00821$

Валовый выброс, т/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 - (TSP + TD)) = 0.0864 \cdot 0.00821 \cdot (365 - (0 + 0)) = 0.259$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.00821	0.259
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение Без учета ДВС

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	обув,	опас-	Выорос вещества	Выорое вещеетва
J J D	загризниющего вещества	141171413	ная разо-	точная,	мг/м3	ности	г/с	т/год
			вая, мг/м3	мг/м3	WII / WIS	3B	170	1,104
1	2.	3	4	5	6	7	8	9
0301	Азота (IV) диоксид (Азота		0.2	-	0	2	0.004577778	-
0301	диоксид) (4)		0.2	0.04			0.00-377776	0.544
0304	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	0.000743889	0.0559
	Углерод (Сажа, Углерод черный) (0.15			3	0.000743889	
0320	583)		0.13	0.03			0.00030000	0.03
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.000611111	0.045
	Сернистый газ, Сера (IV) оксид) (
	516)							
0337	Углерод оксид (Окись углерода,		5	3		4	0.004	0.3
	Угарный газ) (584)							
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0.000001		1	7e-9	0.00000055
	Формальдегид (Метаналь) (609)		0.05	0.01		2	0.000083333	0.006
2754	Алканы С12-19 /в пересчете на С/		1			4	0.002	0.15
	(Углеводороды предельные С12-С19							
	(в пересчете на С); Растворитель							
	РПК-265П) (10)							
2908	Пыль неорганическая, содержащая		0.3	0.1		3	12.216888	9.481695
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного							
	производства - глина, глинистый							
	сланец, доменный шлак, песок,							
	клинкер, зола, кремнезем, зола							
	углей казахстанских							
	месторождений) (494)							
	ВСЕГО:						12.229293007	10.41259555

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) или (при отсутствии ПДКм.р.) ОБУВ

При проведении работ образуются следующие виды отходов:

ОТХОДЫ НА ПЕРИОД ПРОВЕДЕНИЯ РАБОТ

Твердые бытовые отходы— твердые, не токсичные, не растворимы в воде; собираются в металлические контейнеры. Образуются в результате жизнедеятельности рабочего персонала.

Норма образования бытовых отходов (m_1 , τ /год) определяется с учетом удельных санитарных норм образования бытовых отходов на предприятиях – $0.3~\rm M^3$ /год на человека, списочной численности работающих и средней плотности отходов, которая составляет $0.25~\rm T/M^3$.

Согласно Приложению №16 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г. № 100-п. «Методика разработки проектов нормативов предельного размещения отходов производства и потребления»

Среднегодовая норма образования отхода, т/год 1 человека, КG = 0,3

Количество человек, N = 14

Объем образующегося отхода, $\tau/\text{год}$, $0.3 \text{ м}^3/\text{год} * 14 чел* <math>0.25 \text{т/м}^3 = 1.05 \text{ т/год}$.

Твердо-бытовые отходы будут складироваться в металлический контейнер временного хранения. Вывоз отходов осуществляется по договору со спец.организацией.

В соответствии с Правилами санитарного содержания территорий населенных мест № 3.01.007.97*п.2.2 рекомендуемый срок хранения ТБО в холодный период года не более 3-х суток, в теплое время года - ежедневный вывоз.

Отходы вывозятся по мере накопления вывозятся специализированной организацией по договору.

Буровой шлам - это смесь выбуренной породы и бурового раствора (или воды), то есть то, что выносится на поверхность при бурении. Он состоит из мелких частиц грунта, глины, песка, гравия и жидкости. После проведения разведочных работ, образовавшиеся шлам будет использоваться при рекультивации.

Для расчета количества образовавшегося при бурении шлама (для составления ОВОС) принимаются следующие параметры:

- начальный диаметр скважины 133 мм;
- начальный диаметр керна 93 мм;
- площадь забоя скважины -0.014 м2;
- площадь столбика керна -0.007 м2;
- объем шлама (0.014-0.007)х100м = 0.7м3;
- -диаметр скважины 96 мм;
- диаметр керна -63,5 мм;
- площадь забоя скважины -0.007 м2;
- площадь столбика керна -0.00314 м2;
- объем шлама (0,007-0,00314) х 17800 м = 68,7 м3.

Общий объем кернового шлама составит: 0.7 + 68.7 = 69.4 м3.

При плотности горных пород 2,5 г/см3 общая масса кернового шлама составит 173 т. На один метр бурения будет образовываться 26,4 кг шлама.

Код отхода 01 05 99, не опасный

Таблица нормативов размещения отходов производства и потребления представлена в табл.2

Нормативы размешения отхолов производства и потребления

Таблица 2

пормативы размещения отходов производства и потреомения										
Наименование отходов	Образование,	Размещение,	Передача сторонним							
	т/период	т/период	организациям, т/период							
1	2	3	4							
	ПЕРИОД ПРО	ВЕДЕНИЯ РАБО	OT							
Всего:	174,05	-	174,05							
в т. ч. отходов		-								
производства	173		173							
отходов потребления	1,05	-	1,05							
ТБО	1,05	-	1,05							
Буровой шлам	173		173							

Расход воды на период разведки.

Нормы для расчета объема хозяйственно-питьевого водопотребления на нужды персонала принимается 25 л/сут. на 1 человека (СН РК 4.01-02-2011), а также на технологические нужды.

$$\frac{14\times25\times365}{1000}$$
=127,75 $\mathrm{M}^3/\mathrm{год}$,

Где:14 – количество персонала;

25 – норма водопотребления на 1 работающего, л/сут;

365- количество рабочих дней

Таким образом, общий объем водопотребления на период проведения работ составит 127,75м³.

Балансовая схема водопотребления и водоотведения на период проведения работ

Таблица 3

	Водопотребление, м ³ /год					Водоотведение, м ³ /год						
		На технол	погические нужды									
		Свежа	я вода								0	
Производство	Всего	Всего	в том числе питьевого качества	Оборотная вода	Повторно используемая вода	На хозяйственно-бытовые нужды	Всего	Объем сточной воды, повторно используемой	Производственные сточные воды	Хозяйственно-бытовые сточные воды	Безвозвратное потребление	Примечание
_	127,75	-	-	-	_	127,75	127,75	-	-	127,75		-
Итог	о по предпри	іятию:	-	-	-	127,75	127,75	-	-	127,75		