ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «АМАНГЕЛЬДЫ ГАЗ ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ПРОЕКТНЫЙ ИНСТИТУТ «ОРТІМИМ»

УТВЕРЖДАЮ:
первый заместитель
Генерального директора
ТОО «Амангельды газ»
С.Н. Ислямов
« » _____2021 г.

ПРОЕКТ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ АЙРАКТЫ по состоянию на 01.07.2021 г. Договор № 555708/2021/1

Генеральный директор
ТОО «Проектный институт «Optimum»

Б.К. Құрманов

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель службы разработки, ответственный исполнитель					
<u> Доруж</u> А.Н. Карайдарова	(разд. 1, 3, 4, 8)				
Зам. генерального директора по науке	(общее руководство)				
А.Е. Малютина					
Руководитель службы подсчета запасов					
К.М. Абекеева	(разд. 2, 10, п.разд. 8.2)				
Главный специалист службы проектирования строительства	скважин				
<i>Повесены</i> Ю.М. Кулиев	(разд. 7)				
Руководитель службы охраны окружающей среды					
	(разд. 9)				
Главный специалист службы петрофизики					
М.С. Овсеенко	(п.разд. 2.2, 2.4, 8.1)				
Ведущий специалист службы подсчета запасов					
	(разд. 2, 10, п.разд. 8.1)				
V					
Главный специалист службы техники и технологии добычи в	нефти и газа				
Г.О. Цой	(разд. 6, 8)				
Экономист службы разработки					
А.С. Мустафина	(разд. 5, 12, п.разд. 3.5)				
Специалист службы оформления проектов					
—————————————————————————————————————	(оформление отчета)				
	¥				
Специалист службы оформления проектов					
Баталова О.Н.	(оформление отчета)				

Құжат «Самұрық-Қязына» ӘАҚ» АҚ электронды порталымен құрылған Документ сформирован порталом электронных закупок АО «ФНБ «Самрук-Казына»

Приложение №2

к Договору №555708/2021/1 от 14.04.2021 г.

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

по закупке 555708 способом Тендер путем проведения конкурентных переговоров

Лот № 1 (10 Р, 1976847)

Заказчик: Товарищество с ограниченной ответственностью "Амангельды Газ" Подрядчик: Товарищество с ограниченной ответственностью "Проектный институт "ОРТІМИМ"

1. Краткое описание ТРУ

Наименование	Значение
Номер строки	10 P
Наименование и краткая характеристика	Работы по технологическому проектированию
Дополнительная характеристика	Проект разработки месторождения Айракты
Г ОЛИЧЕСТВО	1.000
-диница измерения	
Место поставки	КАЗАХСТАН, г.Нур-Султан, район "Есиль", ул. Әлихан Бөкейхан,12
Условия поставки	
Срок поставки	С даты подписания договора в течение 90 календарных дней
Условия оплаты	Предоплата - 0%, Промежуточный платеж - 100%, Окончательный платеж - 0%

2. Описание и требуемые функциональные, технические, качественные и эксплуатационные характеристики

1.Основная задача закупаемых Работ:

На основе анализа и обобщения геолого-геофизических материалов, бурения, опробования, исследований пробуренных скважин, данных обработки и переинтерпретации сейморазведочных материалов МОГТ-3D, лабораторно-аналитических и других исследований, проведенных в рамках составления отчета «Пересчет запасов газа, конденсата и попутных компонентов по нижневизейскому горизонту (C1v1), оценка ресурсов углеводородов по 3-м горизонтам (C1sr, C1v2, C1t) месторождения Айракты» разработать «Проект разработки месторождения Айракты» в соответствии с п.1 Статьи 137 Кодекса «О недрах и недропользовании».

- 2.Объем закупаемых Работ:
- 2.1. Разработка «Проекта разработки месторождения Айракты».
- 2.2. Разработка проекта «Предварительная оценка воздействия на окружающую среду» (ПредОВОС) к «Проекту разработки месторождения Айракты».
- 2.3.Защита «Проекта разработки месторождения Айракты» на заседании Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан.
- 3. Техническое задание для разработки «Проекта разработки месторождения Айракты» представлено в Приложении №1 к Технической спецификации.
- 4. Требования к Подрядчику Работ:
- 4.1.Для сбора исходной геолого-технической информации Подрядчик должен командировать своих сотрудников в головной офис ТОО «Амангельды Газ» (г.Нұр-Сұлтан) и, при необходимости, на месторождение Айракты (Таласский район, Жамбылской области)
- 4.2.Заказчик на основе договора о конфиденциальности предоставляет Подрядчику необходимую существующую разрешительную документацию на пользование недрами и геолого-промысловую информацию.
- 4.3.При необходимости Подрядчик должен за свой счет провести дополнительные исследования кернового материала, оцифровку и переинтерпретацию материалов ГИС (геофизические исследования скважин) и обработку материалов ГДИС (газодинамические исследования скважин), в случае, если Исполнитель сомневается либо не согласен с качеством предоставляемого материала.
- 4.4.При получении государственной экологической экспертизы Подрядчик должен устранить все замечания эксперта, полученные в процессе рассмотрения проекта ПредОВОС.
- 4.5.Исполнитель должен устранить все замечания независимого эксперта Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан, полученные при в процессе рассмотрения «Проекта разработки месторождения Айракты».

Құжат «Самұрық-Қазына» ӘАҚ» АҚ электронды порталымен құрылған Документ сформирован порталом электронных зақупок АО «ФНБ «Самру к-Казына»

- 4.6.Подрядчик должен своими силами произвести защиту «Проекта разработки месторождения Айракты» на заседании Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан для получения согласования государственной экспертизы.
- 4.7.Подрядчик должен обеспечить участие ответственных исполнителей при защите на НТС Заказчика и Заседании Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан.
- 5.Порядок рассмотрения и сдачи результатов Работ:
- 5.1.«Проект разработки месторождения Айракты» должен быть рассмотрен на научно-техническом совете (HTC) ТОО «Амангельды Газ» с участием Подрядчика.
- 5.2.После принятия на НТС ТОО «Амангельды Газ» «Проект разработки месторождения Айракты» направляется на получение государственной экологической экспертизы.
- 5.3.После получения согласования государственной экологической экспертизы «Проект разработки месторождения Айракты» направляется на включение рассмотрения на заседание Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан.
- 5.4.Подрядчик должен устранить все замечания независимых экспертов, назначенных оператором независимой экспертизы базовых проектных документов и анализов разработки.
- 5.5.Защита «Проекта разработки месторождения Айракты» на заседании Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан.
- 5.6.Подрядчик передает «Проект разработки месторождения Айракты» Заказчику после утверждения на заседании Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казакстан и выдачи Протокола ЦКРР РК на бумажном носителе (3 экземпляра), на электронном носителе (CD-R) в форматах. doc, .xls, .pdf, .cdr, .jpeg, .cps, .las со всеми приложениями с составлением Акта приёма-передачи оказанных услуг, подтверждающего отсутствие претензий между Заказчиком и Подрядчиком.
- 6.Сроки выполнения Работ:
- 6.1В течение 90 календарных дней с даты подписания Договора.
- 6.2.Сроки процедур согласования «Проекта разработки месторождения Айракты» на заседании Центральной комиссии по разведке и разработке месторождений углеводородов Республики Казахстан вне компетенции Сторон.
- 6.3.В части взаиморасчетов Договор действует до полного исполнения обязательств Сторонами по Договору.

7. Место выполнения Работ:

Работы должны быть оказаны Заказчику по адресу: г.Нұр-Сұлтан, ул. Әлихан Бөкейхан, 12.

8.3а дополнительной информацией обращаться в ТОО «Амангельды Газ», г. Нұр-Сұлтан, тел.: 8-7172-55-23-15 (0520, 0521).

3. Нормативно-технические документы

№ п/п	Наименование				
1	«Методические рекомендации по составлению проектов разработки газовых и газоконденсатных месторождений», утвержденные Приказом Министерства энергетики Республики Казахстан от 24 августа 2018 года №329.				
2	Кодекс РК «О недрах и недропользовании» от 27 декабря 2017 года № 125-VI ЗРК (с изменениями и дополнениями);				
	«Единые правила по рациональному и комплексному использованию недр», утвержденные Приказом Министра энергетики Республики Казахстан от 15 июня 2018 года №239 (с изменениями и дополнениями);				
4	«Экологический кодекс Республики Казахстан» от 9 января 2007 года № 212-Ш (с изменениями и дополнениями);				

Приложение

Приложение №1 к ТС - ТЗ ПР м. Айракты (15.01.2021г).doc

РЕФЕРАТ

Отчет по договору №555708/2021/1 от 14.04.2021 г. «Проект разработки месторождения Айракты» по состоянию на 01.07.2021 г. состоит из 1 книги, 1 папки:

Книга текст отчета – содержит 244 страниц, включая 58 таблиц, 25 рисунков и 34 табличных приложений.

Папка – 20 графических приложений, на 20 листах, не секретно – 20.

Ключевые слова: МЕСТОРОЖДЕНИЕ, ГОРИЗОНТ, ГЕОЛОГИЧЕСКИЕ ЗАПАСЫ, ИЗВЛЕКАЕМЫЕ ЗАПАСЫ, ГАЗООТДАЧА, СКВАЖИНА, ДОБЫЧА ГАЗА И КОНДЕСАТА, ДЕБИТ, ПЛАСТОВОЕ И ЗАБОЙНОЕ ДАВЛЕНИЕ, ПРОМЫШЛЕННАЯ ЭКСПЛУАТАЦИЯ, РАЗРАБОТКА ЗАЛЕЖИ, ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ.

Цель работы – Выбор рациональной системы разработки газоконденсатной залежи месторождения Айракты.

На месторождении оконтурено 2 продуктивных горизонта, один в серпуховских отложениях (C_1 sr), второй - в нижневизейских.

Нижневизейский продуктивный горизонт. Залежь C_1v_1 при переинтерпретации сейсмики 3Д имееет блоковое строение (I, II, III), и с учетом литологической характеристике была разделена на 2 пачки: C_1v_1 -А и C_1v_1 -Б.

Серпуховский горизонт в основном, заглинизирован, только в единичных скважинах, выделяются пласты-коллекторы. Структура имеют блоковое строение (I, II, III).

Основными проектными решениями Проекта опытно-промышленной эксплуатации (по утвержденному варианту 1) являлись:

- Выделение одного объекта разработки нижневизейский горизонт;
- Технологический режим работы скважин при постоянном устьевом давлении на скважинах: (Руст=const) на каждый год в течение 5 лет, затем по 5 лет снижения устьевого давления по 1,0 МПа до конца разработки;
- Разработку газовых залежей месторождения Айракты планировалось осуществлять с 2017 года;
- Предусмотрено вести разработку объекта эксплуатации с использованием существующего фонда скважин (1Г, 6Г) и дополнительным бурением 9 новых проектных добывающих скважин с плотностью сетки 100 га/скв:

В 2019 г. выполнен «Анализ разработки месторождения Айракты», по утвержденному варианту 2 проектные технологические показатели приняты на 2019-2021 гг.

По состоянию на 01.07.2021 г. на месторождении Айракты пробурено 17 скважин, из 17 пробуренных 6 скважин ликвидированы. Во временной консервации находятся 2 скважины. Эксплуатационный фонд представлен 9 газовыми скважинами, из них одна скважина находится в бездействии.

По состоянию на 01.07.2021 года из месторождения отобрано 128,6 млн.м³ газа и 1,66 тыс.т конденсата.

В настоящем «Проекте разработки...» приведены геолого-физическая характеристика месторождения, физико-химические свойства пластовых флюидов, запасы газа и конденсата, проанализировано состояние фонда скважин, текущее состояние разработки и проведен расчет технологических показателей промышленной разработки по трем вариантам. Согласно технико-экономическому анализу к реализации рекомендован вариант 3.

По рекомендуемому варианту разработки рассмотрены вопросы техники и технологии добычи, бурения и освоения скважин, мероприятия по контролю за разработкой, доразведки месторождения, охраны недр и окружающей среды.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	16
1 ОБЩИЕ СВЕДЕНИЯ О МЕСТОРОЖДЕНИИ	18
2 ГЕОЛОГО-ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ	20
2.1 Характеристика геологического строения месторождения	20
2.2 Характеристика толщин, коллекторских свойств продуктивных горизонтов и их неоднородность	128
2.2.1 Характеристика коллекторских свойств по керну и ГИС	
2.3 Свойства и состав газа, конденсата и воды	
2.3.1 Газоконденсатная характеристика залежей	
2.3.2 Состав пластового газа, газа сепарации и сырого конденсата	
2.3.3 Свойства и фракционный состав стабильного конденсата	
2.3.4 Состав газа с устья скважин	
2.3.5 Характеристика сырого конденсата	
2.3.6 Гидрогеологические исследований	
2.4 Физико-гидродинамическая характеристика	
3 ПОДГОТОВКА ГЕОЛОГО-ПРОМЫСЛОВОЙ И ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ОСНОВ	ы для
ПРОЕКТИРОВАНИЯ РАЗРАБОТКИ	
3.1 Анализ результатов газогидродинамических исследований скважин и пластов, характеристика и продуктивности и режимов	x 59
3.2. Анализ текущего состояния разработки месторождения	75
3.2.1 Анализ структуры фонда скважин и текущих дебитов, технологических показателей разработки	75
3.2.2 Анализ выработки запасов углеводородов и текущего состояния разработки	
3.3 Обоснование принятых расчетных геолого-физических моделей пластов	
3.3.1 Обоснование расчетных геолого-физических моделей пластов-коллекторов, принятых с	
расчета технологических показателей разработки	
3.3.2 Обоснование выделения объектов разработки	
3.3.3 Обоснование расчетных вариантов разработки и их исходные характеристики	
3.4 Обоснование нормативов капитальных вложений и эксплуатационных затрат, принятых для рас экономических показателей	
экономических показателей 4 ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАНТОВ	99
РАЗРАБОТКИ	103
4.1 Технологические показатели вариантов разработки	103
4.2 Экономические показатели вариантов разработки	
4.3 Анализ расчетных коэффициентов извлечения газа и конденсата	135
5 ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПРОЕКТНЫХ РЕШЕНИЙ	136
5.1 Технико-экономический анализ вариантов разработки, обоснование выбора рекомендуемого к	
утверждению варианта	136
6 ТЕХНИКА И ТЕХНОЛОГИЯ ДОБЫЧИ ГАЗА И КОНДЕНСАТА	138
6.1 Обоснование выбора устьевого и внутрискважинного оборудования. Характеристика показателе эксплуатации скважин	
6.2 Мероприятия по предупреждению и борьбе с осложнениями при эксплуатации скважин и промы	
объектов	
6.3 Рекомендации к системе сбора и промысловой подготовки продукции скважин	
6.4 Рекомендации к разработке программы по переработке (утилизации) газа	
7 РЕКОМЕНДАЦИИ К КОНСТРУКЦИЯМ СКВАЖИН И ПРОИЗВОДСТВУ БУРОВЫХ РАБ МЕТОДАМ ВСКРЫТИЯ ПЛАСТОВ И ОСВОЕНИЯ СКВАЖИН	ЮT,
7.1 Рекомендации к конструкциям скважин и производству буровых работ	
7.2 Требования к методам вскрытия продуктивных пластов и освоения скважин	
8 КОНТРОЛЬ ЗА РАЗРАБОТКОЙ ПЛАСТОВ, СОСТОЯНИЕМ И ЭКСПЛУАТАЦИЕЙ СКВА	и И НИЖ
СКВАЖИННОГО ОБОРУДОВАНИЯ	166
8.1 Комплекс промыслово-геофизических исследований скважин	166
8.2 Контроль за состоянием и эксплуатацией скважин и скважинного оборудования	170
8.3 Газодинамические и газоконденсатные исследования	
9 ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ	174

10 МЕРОПРИЯТИЯ ПО ДОРАЗВЕДКЕ МЕСТОРОЖДЕНИЯ	179
11 ОПЫТНО-ПРОМЫШЛЕННЫЕ ИСПЫТАНИЯ НОВЫХ ТЕХНОЛОГИЙ И ТЕХНИ РЕШЕНИЙ	
12 РАСЧЕТ СУММЫ ОБЕСПЕЧЕНИЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ НЕДРОПОЛ	
ТАБЛИЧНЫЕ ПРИЛОЖЕНИЯ	

СПИСОК ТАБЛИЦ

Таблица 2.2.1 – Характеристика толщин пластов-коллекторов по залежам	28
Таблица 2.2.2 – Статистические показатели характеристик неоднородности	30
Таблица 2.1.1.3 – Характеристика коллекторских свойств и газонасыщенности продуктивных горизонтов	33
Таблица 2.2.1.4 – Ряды распределения проницаемости по отложениям	34
Таблица 2.3.1 – Месторождение Айракты. Свойства пластового газа нижневизейского продуктивно горизонта по состоянию на 01.07.2021 г	
Таблица 2.3.2 – Состав пластового газа нижневизейского горизонта	38
Таблица 2.3.3 – Состав газа сепарации, дегазации, дебутанизации	39
Таблица 2.3.4 – Состав сырого конденсата	41
Таблица 2.3.5 – Физико-химическая характеристика стабильного конденсата нижневизейского горизонта	43
Таблица 2.3.6 – Состав газа отобранные с устья скважин	44
Таблица 2.3.7 – Компонентный состав сырого конденсата нижневизейского горизонта	47
Таблица 2.3.8 – Химический состав и физические свойства пластовых вод	49
Таблица 2.4.1 – Результаты эксперимента по определению капиллярного давления, полученные на образцах керна пачек ${f A}$ и ${f G}$ (${f C}_{1V1}$)	51
Таблица 2.4.3 – Петрофизическая характеристика образцов керна, использованных для определени фазовой проницаемости	
Таблица 2.5.1 – Месторождение Айракты. Подсчет начальных запасов газа и конденсата по состоян на 01.07.2020 г	
Таблица 2.5.2 – Месторождение Айракты. Подсчёт запасов этана, пропана, бутанов, гелий в газе по состоянию на 01.07.2021 г	
Таблица 3.1.1 – Данные исследования МУО скв. № 104 (11-13.01.2019 г.)	69
Таблица 3.1.2 – Данные расчета дебитов скв. № 104	69
Таблица 3.1.3 – Результаты газодинамических исследований выполненных за анализируемый пери	
Таблица 3.2.1.1 – Характеристика фонда скважин по состоянию на 01.07.2021 г	
Таблица 3.2.1.2 – Распределение фонда скважин по дебитам газа на 01.07.2021 г	76
Таблица 3.2.1.3 – Сравнение проектных и фактических показателей опытно-промышленной эксплуатации месторождения Айракты	86
Таблица 3.2.2.1 – Начальные запасы газа и степень их выработки на 01.07.2021 г. Месторождение Айракты	87
Таблица 3.2.2.2 – Начальные запасы конденсата и степень их выработки на 01.07.2021 г. Месторождение Айракты	87
Таблица 3.3.2.1 – Исходная геолого-физическая характеристика эксплуатационных объектов месторождения Айракты	93
Таблица 3.3.3.1 – Основные исходные характеристики расчетных вариантов разработки	95
Таблица 3.3.3.2 – Предельно-допустимые величины и диапазоны изменений проектных показателе относимых к контрактным обязательствам	
- Таблица 3.4.1 – Технико-экономические нормативы капитальных вложений и эксплуатационных затрат	.100
Таблица 3.4.2 – Нормативы для расчета эксплуатационных затрат	101
Таблица 3.4.3 – Нормативы для расчета эксплуатационных затрат, связанные с налогообложением ценой продукции	

Таблица 4.1.1 – Месторождение Айракты. Характеристика основного фонда скважин в целом по месторождению. Вариант 31	105
Таблица 4.1.2 – Месторождение Айракты. Характеристика основных показателей разработки в цело по месторождению. Вариант 3	
Таблица 4.1.3 – Месторождение Айракты. Характеристика основного фонда скважин по I объекту. Вариант 3	L 07
Таблица 4.1.4 – Месторождение Айракты. Характеристика основных показателей разработки по I объекту. Вариант 31	L 08
Таблица 4.1.5 – Месторождение Айракты. Характеристика основного фонда скважин по II объекту. Вариант 3	10
Таблица 4.1.6 – Месторождение Айракты. Характеристика основных показателей разработки по II объекту. Вариант 31	11
Таблица 4.1.7 – Технологические показатели разработки рекомендуемого варианта 3 по объектам1	13
Таблица 4.2.1 – Расчет дохода от реализации продукции рекомендуемый 3 вариант, тыс.тенге1	16
Таблица 4.2.2 – Капитальные вложения рекомендуемый 3 вариант, тыс.тенге1	18
Таблица 4.2.3 – Расчет эксплуатационных затрат, включаемых в себестоимость продукции в рекомендуемом 3 варианте тыс.тенге	122
Таблица 4.2.4 – Эксплуатационные затраты, включаемые в расходы периода в рекомендуемом 3 варианте тыс.тенге	 24
Таблица 4.2.5 – Расчет налогооблагаемого дохода в рекомендуемом 3 варианте, тыс.тенге	26
Таблица 4.2.6 – Расчет чистой прибыли в рекомендуемом 3 варианте, тыс.тенге	28
Таблица 4.2.7 – Расчет потоков денежной наличности в рекомендуемом 3 варианте, тыс.тенге	130
Таблица 4.2.8 – Расчет бюджетной эффективности 3 варианта разработки, тыс. тенге	133
Таблица 4.3.1 – Сопоставление утвержденных и расчетных коэффициентов извлечения газа и конденсата1	135
Таблица 5.1.1 – Технико-экономические показатели основных вариантов разработки месторождения	
Таблица 6.1.1 – Компоновка колонны насосно-компрессорных труб	42
Таблица 6.2.1– Результаты гидравлического разрыва пласта добывающих скважин	149
Таблица 6.2.2 – Технологические параметры ГРП1	150
Таблица 6.2.3 – Результаты опытно-промысловых работ по удалению жидкости с забоя с использованием пенно-ингибирующих шашек	151
Таблица 6.4.1 – Добыча и распределение газа на месторождении Айракты1	160
Таблица 7.1.1 – Проектная конструкция для скважин №№ 108, 109, 111, 112, 113, 114, 115, 116	162
Таблица 7.1.2 – Проектная конструкция скважина № 110 (горизонтальная)	162
Таблица 7.1.3 – Фактические конструкции расконсервируемых скважин №№4Г и 8Г1	163
Таблица 8.3.1 – Комплекс исследований по контролю за разработкой1	
Таблица 12.1 – Расчет удельного норматива отчислений в ликвидационный фонд	184
Таблица 12.2 – Расчет стоимости платежей в ликвидационный фонд по 3 варианту, тенге	

СПИСОК РИСУНКОВ

Рисунок 1.1 – Обзорная карта	19
Рисунок 2.4.1 – Связь проницаемости с пористостью по залежам нижнего визея	50
Рисунок 2.4.2 – Кривые капиллярного давления,полученные на керне пачек C ₁ v ₁ -A и C ₁ v ₁ -Б	52
Рисунок 2.4.3 – Сопоставление остаточной водонасыщенности с а) пористостью и б) проницаемост	
Рисунок 2.4.5 – Относительные фазовые проницаемости в системе газ-вода по керну залежи А в скважинам 106 и залежи Б в скважине 107	54
Рисунок 2.4.6 – Относительные фазовые проницаемости в системе газ-вода по керну залежи Б в скважине №101	55
Рисунок 3.1.1 – Месторождения Айракты. График изменения пластового давления скважин по год	
Рисунок 3.1.2 – Месторождение Айракты. Падение пластового давления скважин по годам	70
Рисунок 3.2.1.1 – Динамика дебитов газа и конденсата по скважине 1Г	76
Рисунок 3.2.1.2 – Динамика дебитов газа и конденсата по скважине 6Г	77
Рисунок 3.2.1.3 – Динамика дебитов газа и конденсата по скважине 101 101	78
Рисунок 3.2.1.4 – Динамика дебитов газа и конденсата по скважине 102	79
Рисунок 3.2.1.5 – Динамика дебитов газа и конденсата по скважине 103	80
Рисунок 3.2.1.6 – Динамика дебитов газа и конденсата по скважине 104 104	81
Рисунок 3.2.1.7 – Динамика дебитов газа и конденсата по скважине 105 105	82
Рисунок 3.2.1.8 – Динамика дебитов газа и конденсата по скважине 106 106	83
Рисунок 3.2.1.9 – Динамика основных технологических показателей по месяцам в целом по месторождению	84
Рисунок 6.1.1 – Зависимость скорости потока от дебита газа на І объекте (Рзаб = 4,8 МПа)	140
Рисунок 6.1.2 – Зависимость скорости потока от дебита газа на І объекте (Рзаб = 3,7 МПа)	141
Рисунок 6.1.3 – Зависимость скорости потока от дебита газа на II объекте (Рзаб = 4,4 МПа)	141
Рисунок 6.1.4 – Зависимость скорости потока от дебита газа на II объекте (Рзаб = 3,6 МПа)	142
Рисунок 6.2.1 – Равновесные параметры гидратообразования	147
Рисунок 6.3.1 – Принципиальная схема ГСП месторождения Айракты	157
Рисунок 8.1 – Распределение пористости работающих и не работающих перфорированных толщина залежей А и Б	
Рисунок 11.1 – Предлагаемый профиль бурения горизонтальной скважины 110 110	181

СПИСОК ТАБЛИЧНЫХ ПРИЛОЖЕНИЙ

Приложение 1 – Расчет дохода от продажи продукции по 1 варианту, в тыс. тенге	.189
Приложение 2 – Расчет дохода от продажи продукции по 2 варианту, в тыс. тенге	.191
Приложение 3 – Капитальные вложения 1 варианта, тыс.тенге	.193
Приложение 4 – Капитальные вложения 2 варианта, тыс.тенге	.194
Приложение 5 – Расчет эксплуатационных затрат, включаемых в себестоимость продукции в 1 варианте, тыс. тенге	.195
Приложение 6 – Расчет эксплуатационных затрат, включаемых в себестоимость продукции во 2 варианте, тыс. тенге	.197
Приложение 7 – Эксплуатационные затраты, включаемые в расходы периода в 1 варианте, тыс. те	
Приложение 8 — Эксплуатационные затраты, включаемые в расходы периода во 2 варианте, тыс. тенге	.201
Приложение 9 – Расчет налогооблагаемого дохода в 1 варианте, тыс.тенге	.203
Приложение 10 – Расчет налогооблагаемого дохода во 2 варианте, тыс.тенге	.205
Приложение 11 – Расчет чистой прибыли в 1 варианте, тыс.тенге	.207
Приложение 12 – Расчет чистой прибыли во 21 варианте, тыс.тенге	.209
Приложение 13 – Расчет потоков денежной наличности в 1 варианте, тыс.тенге	.211
Приложение 14 – Расчет потоков денежной наличности во 2 варианте, тыс.тенге	.213
Приложение 15 – Расчет бюджетной эффективности 1 варианта разработки, тыс. тенге	.215
Приложение 16 – Расчет бюджетной эффективности 2 варианта разработки, тыс. тенге	.217
Приложение 17 – Расчет удельного норматива отчислений в ликвидационный фонд по 1 варианту, тыс.тенге	.219
Приложение 18 – Расчет стоимости платежей в ликвидационный фонд по 1 варианту, тыс.тенге	.219
Приложение 19 – Расчет удельного норматива отчислений в ликвидационный фонд по 2 варианту, тыс.тенге	
Приложение 20 – Расчет стоимости платежей в ликвидационный фонд по 2 варианту, тыс.тенге	.220
Приложение 21 – Месторождение Айракты. Характеристика основного фонда скважин в целом по месторождению. Вариант 1	.221
Приложение 22 – Месторождение Айракты. Характеристика основных показателей разработки в целом по месторождению. Вариант 1	.222
Приложение 23 – Месторождение Айракты. Характеристика основного фонда скважин по I объект Вариант 1	•
Приложение 24 – Месторождение Айракты. Характеристика основных показателей разработки по объекту. Вариант 1	
Приложение 25 – Месторождение Айракты. Характеристика основного фонда скважин по II объект Вариант 1	
- Приложение 26 – Месторождение Айракты. Характеристика основных показателей разработки по объекту. Вариант 1	
Приложение 27 – Месторождение Айракты. Характеристика основного фонда скважин в целом по месторождению. Вариант 2	.228
Приложение28 – Месторождение Айракты. Характеристика основных показателей разработки в целом по месторождению. Вариант 2	.229
Приложение 29 – Месторождение Айракты. Характеристика основного фонда скважин по I объект Вариант 2	•
Приложение 30 – Месторождение Айракты. Характеристика основных показателей разработки по объекту. Вариант 2	

Приложение 31 – Месторождение Айракты. Характеристика основного фонда скважин по II объек Вариант 2	
- Приложение 32 – Месторождение Айракты. Характеристика основных показателей разработки по объекту. Вариант 2	II
Приложение 33 – Сопоставление результатов интерпретации ГИС открытого ствола и ГИС по контролю	236
	243

СПИСОК ГРАФИЧЕСКИХ ПРИЛОЖЕНИЙ

№ п/п	Название приложения	Номер прило- жения	Номер листа прило- жения	Масштаб прил.	Гриф ограни- чения доступа
1	2	3	4	5	6
1	Месторождение Айракты. Структурная карта по отражающему горизонту I-P (подошва надсолевых отложений верхней перми)	1	1	1:25000	Не секретно
2	Месторождение Айракты. Структурная карта по отражающему горизонту Па (кровля подсолевых отложений нижней перми)	2	2	1:25000	Не секретно
3	Месторождение Айракты. Структурная карта по отражающему горизонту IIIк (кровля карбонатов серпуховского яруса)	3	3	1:25000	Не секретно
4	Месторождение Айракты. Структурная карта по отражающему горизонту IIId (подошва верхневизейских отложений)	4	4	1:25000	He секретно
5	Месторождение Айракты. Структурная карта по отражающему горизонту III (кровля нижневизейских отложений)	5	5	1:25000	He секретно
6	Месторождение Айракты. Структурная карта по отражающему горизонту IV (подошва турнейских отложений нижнего карбона)	6	6	1:25000	He секретно
7	Месторождение Айракты. Глубинный сейсмический разрез Inline 2248	7	7	гор 1:25 000 верт. 1км=8см	Не секретно
	Месторождение Айракты. Глубинный сейсмический разрез Inline 2314	8	8	гор 1:25 000 верт. 1км=8см	Не секретно
9	Месторождение Айракты. Глубинный сейсмический разрез Crossline 10367	9	9	гор 1:25 000 верт. 1км=8см	Не секретно
10	Месторождение Айракты. Геолого-литологический профиль по линии I-I	10	10	верт. 1:1000 гориз. 1:25000	Не секретно
	Месторождение Айракты. Геолого-литологический профиль по линии II-II	11	11	верт. 1:1000 гориз. 1:25000	Не секретно
	Месторождение Айракты. Залежь C ₁ sr a) Структурная карта по кровле коллектора;	12	12	1:25000	Не секретно

	б) Карта эффективных газонасыщенных толщин.				
13	Месторождение Айракты. Залежь C ₁ v ₁ - A а) Структурная карта по кровле коллектора; б) Карта эффективных газонасыщенных толщин.	13	13	1:25000	Не секретно
14	Месторождение Айракты. Залежь C ₁ v ₁ - Б а) Структурная карта по кровле коллектора; б) Карта эффективных газонасыщенных голщин.	14	14	1:25000	Не секретно
15	Месторождение Айракты. Объект I а) Карта текущих отборов; б) Карта накопленных отборов.	15	15	1:25000	Не секретно
16	Месторождение Айракты. Объект I (нижневизейский горизонт C ₁ v ₁) Карта изобар	16	16	1:25000	Не секретно
17	Месторождение Айракты. Вариант 1 Карта пробуренных и проектных скважин а) Объект I; б) Объект II	17	17	1:25000	Не секретно
18	Месторождение Айракты. Вариант 2 Карта пробуренных и проектных скважин а) Объект I; б) Объект II	18	18	1:25000	Не секретно
19	Месторождение Айракты. Вариант 3 Карта пробуренных и проектных скважин а) Объект I; б) Объект II	19	19	1:25000	Не секретно
20	Месторождение Айракты. Фондовая карта	20	20	1:25000	Не секретно

ВВЕДЕНИЕ 16

ВВЕДЕНИЕ

Недропользователем является ТОО «Амангельды Газ», который имеет контракт на совмещенную разведку и добычу углеводородного сырья с Министерством нефти и газа Республики Казахстан № 611 от 12.12.2000 г. (Дополнение №14 от 11.12.2018 г.). Срок действия контракта — 12.12.2031 г.

ТОО «Амангельды Газ» проводит работы на территории Жамбылской области в границах геологического отвода в пределах 44°14'17" - 44°10'00" северной широты и 71°24'00"- 71°21'00" восточной долготы. На территории геологического отвода расположено месторождение Айракты.

В пределах структуры Айракты первая глубокая скважина (1Г) с забоем 2751 м была пробурена в 1971-1972 гг, был получен промышленный приток газа из нижневизейской залежи, и открыто месторождение Айракты.

В 1981 году специалистами «КАЗНЕФТЕГАЗГЕОЛОГИЯ» составлен «Отчет по подсчету запасов природных газов месторождений Амангельды и Айракты в Мойынкумской впадине Чу-Сарысуйской депрессии по результатам работ за 1971-1981гг.».

В 2008 году специалистами ТОО "Казахская геофизическая компания" на месторождении Айракты были проведены детальные сейсморазведочные работы МОГТ-2D в объеме 85,860 пог.км. полной кратности. По кровле нижневизейских отложений размеры структуры по замкнутой изогипсе –1800 м составляют 5 х 5,5 км, амплитуда 90 м.

В соответствии с «Проектом оценочных работ на месторождении Айракты», составленным ТОО «Даке Барлау», была пробурена в 2013 году оценочная скважина 8, а также восстановлены ранее пробуренные скважины №№ 1, 4, и 6, в которых были получены притоки газа.

В 2014 году ТОО «НПЦ» выполнено и утверждено «Дополнение к проекту оценочных работ на месторождении Айракты» (протокол ЦКРР РК №49/31 от 11.07.2014 г.), с целью доизучения и уточнения геологического строения месторождения.

В 2015 году компанией ТОО «МКБ-АЛ» выполнен «Пересчет запасов газа, конденсата и попутных компонентов нижневизейского горизонта C_1v_1 месторождения Айракты» по состоянию на 02.01.2014 г. (протокол ГКЗ № 1531-15-У от 23.02.2015 г.), запасы которого легли в основу при составлении Проекта опытно-промышленной эксплуатации.

В 2015 году выполнен «Проект опытно-промышленной эксплуатации месторождения Айракты», составленный ТОО «Проектный институт «Optimum» и

ВВЕДЕНИЕ 17

утвержденный Комитетом Геологии и Недропользования Министерства по Инвестициям и Развитию Республики Казахстан (письмо № 27-5-2798-и от 23 декабря 2015 г.).

Месторождение Айракты вступила в опытно промышленную эксплуатацию согласно Дополнения №12 от 28.12.2017 г. к Контракту №611 от 12.12.2000 г. на совмещенную разведку и добычу углеводородного сырья.

В 2018 году составлен «Авторский надзор за реализацией проекта опытнопромышленной эксплуатации месторождения Айракты» выполнен ТОО «Проектный институт «ОРТІМИМ» в соответствии с договором № АГ-17-0925/1 от 25.09.2017 г. и согласно выданному ТОО «Амангельды Газ» техническому заданию.

В 2019 г. выполнен «Анализ разработки месторождения Айракты» составленный ТОО «Проектный институт «ОРТІМИМ» и утвержденный Министерством Энергетики Республики Казахстан (протокол ЦКРР РК №14/1 от 03-04 октября 2019 г.). По утвержденному варианту 2 проектные технологические показатели приняты на 2019-2021 гг.

В 2020 г. выполнен «Авторский надзор за реализацией анализа разработки месторождения Айракты» составленный по состоянию изученности на 01.07.2020 г. на основании договора между ТОО «Амангельды Газ» и ТОО «Проектный институт «ОРТІМUМ» за №389542/2020/1 от 14.02.2020 г.

В 2021 году ТОО «Проектный институт «ОРТІМИМ» был выполнен «Пересчет запасов газа, конденсата и попутных компонентов по нижневизейскому горизонту (C_1v_1), оценка ресурсов углеводородов по 3-м горизонтам (C_1sr , C_1v_2 , C_1t) месторождения Айракты, Жамбылской области Республики Казахстан» по состоянию изученности на 01.07.2020 г. (Протокол ГКЗ РК №2349-21-У от 11.10.2021 г.)

На основе «Пересчета запасов..» был составлен настоящий «Проект разработки месторождения Айракты» по договору №555708/2021/1 от 14.04.2021 г. между ТОО «Проектный институт «ОРТІМИМ» и ТОО «Амангельды Газ» согласно «Методическим рекомендациям по составлению проектов разработки...» [14] с учетом требований «Единых правил по рациональному и комплексному использованию недр» [13] и экологического кодекса [20]. В работе использованы фактические материалы, предоставленные геологической службой ТОО «Амангельды Газ».

1 ОБЩИЕ СВЕДЕНИЯ О МЕСТОРОЖДЕНИИ

В административном отношении месторождение Айракты находится в пределах Таласского района Жамбылской области Республики Казахстан, в 170 км к северу от г. Тараз и в 70 км к северо-востоку от месторождения азотно-гелиевого газа Ушарал-Кемпиртюбе. (рисунок 1.1).

Географически оно расположено в юго-западной части песков Мойынкум, которые в рассматриваемом районе занимают междуречье Чу и Таласа, с юго-запада примыкает предгорная равнина Малого Каратау, являющегося ветвью Большого Каратау.

Ближайший населенный пункт - село Уюк находится в 70 км к югу, у р. Таспас. С населенными пунктами месторождение Айракты соединяется грунтовыми дорогами, которые пригодны для движения только в летнее и морозное зимнее время. Асфальтированная шоссейная дорога соединяет областной центр Тараз с селами Акколь, Уюк и Уланбель.

Источниками водоснабжения непосредственно на площади месторождения являются колодцы и артезианские скважины, уровень воды в которых находится на глубине 10-20 м от устья. Водоносные горизонты палеогена залегают на глубине 160-220 м, содержат воду с минерализацией 3-5 г/л.

Строительный материал - гравий, песок в избытке имеется в русле реки Талас, протекающей в 75 км на юго-западе. Бутовый камень разрабатывается в 120 км на севере, у с.Уланбель. Непосредственно через площадь Амангельды проходит с юго-востока (от Жамбылской ГЭС) на северо-запад высоковольтная линия электропередач (ЛЭП) районного значения.

Климат района резко-континентальный с сухим жарким летом (до $+40^{\circ}$ C) и холодной (до -40° C) малоснежной зимой, продолжительность отопительного сезона 178 суток (с 15 октября по 15 апреля). Господствующее направление ветров - северо-восточное.

Рисунок 1.1 – Обзорная карта

2 ГЕОЛОГО-ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

2.1 Характеристика геологического строения месторождения

Первооткрывательницей месторождения является поисковая скважина 1, в которой в 1972 году при опробовании турнейских и нижневизейских отложении были получены промышленные притоки газа. На месторождении пробурено 17 скважин (1, 2, 3, 4, 5, 6 Γ , 7, 8, 10, 11, 101, 102, 103, 104, 105, 106, 107) общим метражом 39732 м.

Литолого-стратиграфическая характеристика. На месторождении пробуренными скважинами вскрыты палеозойские, мезозойские и кайнозойские отложения максимальной толщиной 2751 метра (скв. 1).

Палеозойская эратема – PZ

Девонская система – D

Нижний-средний отделы – D₁₋₂

Отложения девонской системы нижний-средний отделы относятся к фундаменту и вскрыты в скважине 1 в интервале 2695-2751 м и представлены красноцветными конгломератами, крупнообломочной брекчией гранит-порфиров, сланцев, аргиллитов, песчаников и алевролитов, крепкосцементированных кремнисто-железистым цементом. Перекрываются маломощной корой выветривания. Вскрытая толщина 56 м.

Верхний отдел – D₃

Фаменский ярус (D₃fm)

Отложения вскрыты в скважине 1 и представлены красноцветными неотсортированными, грубо-мелкозернистыми песчаниками и гравелитами.

В верхней части разреза преобладают мелкозернистые песчаники темно-серой окраски с включениями редких прослойков аргиллита и ангидрита.

Нижняя часть разреза представлена гравелитами с размером обломков 1-3 мм, кварцевого состава и полуокатанной формы. Толщина грубозернистой пачки 54 м. Цементирующей массой являются алевролиты, аргиллиты с примесью ангидрита. Вскрытая толщина отложений составляет 253 м.

Каменноугольная система - С

Отложения каменноугольной системы представлены нижним и средним-верхним отделами.

Нижний отдел – С1

Нижнекаменноугольные образования включают в себя турнейский, визейский и серпуховский ярусы.

Турнейский ярус (C1t)

Разрез представлен переслаиванием серых и пестроокрашенных песчаников, темносерых, чисто углистых аргиллитов и алевролитов.

Песчаники коричневые, темно-коричневые, мелкозернистые, кварц-полевошпатовые, на глинистом цементе, слабокарбонатные и окремненные.

Встречаются обломки коричневых аргиллитов.

Алевролиты и аргиллиты коричневые, прослоями зеленоватые, пятнистые, с включениями обуглившегося детрита и округлыми зелеными пятнами, с восстановленным железом в цементе. В породе повсеместно встречаются гнезда ангидрита и пирит. Толщина турнейских отложений 297 м.

Визейский ярус (С1v)

Самая нижняя часть разреза, относимая к нижневизейскому подъярусу (C_1v_1), сложена переслаивающимися пластами песчаников, алевролитов и аргиллитов. В основании разреза встречаются прослои углей и углистых аргиллитов.

Песчаники серые, бурые, мелко – среднезернистые, кварц-полевошпатовые, на глинистом и слабокарбонатном цементе.

Аргиллиты и алевролиты темно-серые, слабоизвестковистые, окремненные, пиритизированные.

К пластам песчаников в сводовой части структуры приурочена газовая залежь.

Толщина нижневизейских отложений колеблется от 72 м (скважина 101) до 91 м (скважина 102).

В отложениях нижневизейского яруса установлены продуктивные горизонты C_1v_1 - A и C_1v_1 -Б.

Средне-верхневизейские подъярусы (C_1v_{2-3}) представлены известняками серыми, темно-серыми, пелитоморфными, плотными, массивными, окремненными с редкими прослоями черных, тонкослоистых аргиллитов и ангидритов. Повсеместно встречаются желваки ангидритов, они приурочены к нижней части разреза и к прослойкам аргиллитов.

В основании средне-верхневизейского разреза имеется маркирующий слой ангидрита толщиной 5-6м.

Толщина средне-верхневизейских отложений варьирует от 309 м (скважина 3) до 326 м (скважина 11) и увеличивается в северном направлении.

Регионально к кровле нижневизейского яруса приурочен отражающий горизонт III, а к подошве верхневизейского яруса – отражающий горизонт IIId.

Серпуховский ярус (С18)

Разрез представлен темно-серыми, серыми, мелкозернистыми песчаниками, аргиллитами, известняками и мергелями, тонко переслаивающимися между собой.

Известняки серые, темно-серые, плотные, массивные, окремненные, с многочисленной фауной.

Аргиллиты темно-серые, зеленоватые, известковистые, с многочисленными желваками ангидрита и гнездами пирита.

Породы сильно ангидритизированы, а мергелистые пропластки доломитизированы. Песчано-алевритовые породы плотно сцементированы сульфатно-карбонатным материалом. В отложениях серпуховского яруса установлен продуктивный горизонт C1sr.

Толщина серпуховских отложений колеблется от 148 м (скважина 104) до 177 м (скважина 2). К кровле данного яруса приурочен отражающий горизонт IIIk.

Средний-верхний отделы - С2-3

В основании среднего карбона залегает переходная пачка пестроцветных аргиллитов, алевролитов, мергелей с прослойками песчаника (уровень башкирского яруса), на котором с незначительным размывом и скрытым угловым несогласием залегают красноцветные отложения, относимые к среднему-верхнему карбону. Толща среднеговерхнего карбона литологически сложена песчаниками и алевролитами с редкими косыми, тонкими линзами аргиллитов темно-коричневой окраски. Среди алевролитов часты включения рассеянных желваков ангидрита.

Толщина отложений среднего-верхнего отделов меняется от 324 м (скважина 107) до 369 м (скважина 102).

Пермская система – Р

Отложения пермского возраста представлены двумя отделами – нижним и верхним, которые резко отличаются по своим литологическим характеристикам.

Нижний отдел – Р1

Нижний отдел разделяется на три толщи: нижняя — соленосно-глинистая толща, средняя - песчано-глинистая и верхняя соленосная — переслаивание терригенных отложений с прослоями галита.

Нижняя — соленосно-глинистая толща залегает согласно на подстилающих отложениях и представлена красно-бурыми аргиллитами с частыми маломощными прослойками алевролитов, каменной соли. Вся толща сильно засолонена и порой на крыльях структуры переходит в глинисто-соленосную толщу (скважины №№ 3, 10). В разрезе частично присутствуют и сероцветные аргиллиты и сульфатизированные

известковисто-глинистые породы, которые характерны для более глубоководной и восстановительной среды. Толщина изменяется от 155 м до 213 м.

Средняя — песчано-глинистая толща представлена переслаиванием аргиллитов и мелкозернистых песчаников. На всей площади в этой толще четко прослеживаются три литологически близкие пачки. Верхняя и нижняя пачки более глинистые, песчаные разности присутствуют в виде микрослоев. Средняя пачка более песчанистая. Толщина изменяется от 194 м до 260 м.

Верхняя — соленосная толща представлена переслаиванием каменной соли, тонкослоистых, плотных аргиллитов с обилием включений сульфатов по прожилкам и трещинам и ангидритов красновато-коричневых, плотных, окремненных, на глинистосульфатном и галитовом цементе. Толщина изменяется от 140 м до 378 м.

Регионально выделяются отражающие горизонты IIa и I-P, которые связаны с подошвой и размытой поверхностью нижнепермских отложений.

Верхний отдел – Р2

Толща верхней перми на подстилающих породах залегает с размывом и резким угловым несогласием и представлена переслаиванием коричнево-красных, плотных, тонкослоистых алевролитов и песчаников на глинисто-сульфатном цементе. Нижняя часть разреза характеризуется многочисленными мелкими кристаллами ангидрита, а верхняя — гнездами и тонкими прослоями белого волокнистого гипса. Толщина верхнепермских отложений изменяется от 292 м до 473 м.

Мезозойская-кайнозойская эратемы – MZ-KZ

Мезозойско-кайнозойские отложения перекрывают чехлом всю площадь месторождения с угловым несогласием.

Данный комплекс представлен верхнемеловыми и палеоген-четвертичными отложениями. Первые из них сложены зеленовато-серыми глинами и алевролитами с редкими пластами песчаников, которые вверх по разрезу сменяются на красноцветные и сероцветные разности. Палеоген-неогеновые и четвертичные осадки представлены песчаниками, глинами, суглинками, пестроцветной окраски. Толщина отложений колеблется от 280 м до 340 м.

В тектоническом отношении структура Айракты расположено в юго-восточной части Миштинского прогиба, Мойынкумской впадины, являющейся структурой II порядка в северо-восточной части Шу-Сарысуйской депрессии.

2008 году ТОО «Казахской геофизической компанией» были проведены сейсморазведочные работы МОГТ-2Д и построены структурные карты масштаба 1:25000

по основным отражающим горизонтам. В 2016 году компанией ТОО «Геоком LTD» были проведены полевые сейсморазведочные работы в объеме 93,08 км², обработка и интерпретация полевого материала выполнена компанией ТОО - «Profesional Geo Solutions Kazakhstan» (2017г).

В 2020 году был составлен отчет «Проведение повторной переинтерпретации материалов сейсморазведочных работ и синхронной инверсии сейсмических данных месторождения Айракты». В результате переинтерпретации были получены структурные построения по отражающим горизонтам:

- І-Р (подошва надсолевых отложений верхней перми);
- Иа (кровля подсолевых отложений нижней перми);
- IIIk (кровля карбонатов серпуховского яруса);
- IIId (подошва верхневизейских отложений);
- III (кровля нижневизейских отложений);
- IV (подошва турнейских отложений).

Ниже приведено описание строения структуры по основным отражающим горизонтам, которые взяты за основу при построении структурных поверхностей по кровле коллектора.

Отражающий горизонт **IIIk**. Свод структуры оконтуривается по изогипсе -1300 м, минимальная отметка в своде составляет -1230 м. Структура осложнена малоамплитудными тектоническими нарушениями F1, F2, F3, f2 и данные нарушений делят структуру на четыре блока I, II, III и IV. Свод структуры расположен в районе скважин 1. В разрезе этих отложений выделен продуктивный горизонт C₁sr.

По поверхности **III** отражающего горизонта структура Айракты выделяется как брахиантиклинальналь субмеридионального простирания, малоамплитудными тектоническими нарушениями F1 северо-восточного и в северной части северо-западного простирания. В разрезе этих отложений выделен продуктивный горизонт C_1v_1 , которые делится на две пачки A и Б.

Газоносность. По результатам бурения, переинтерпретации материалов ГИС и опробования скважин на месторождении оконтурено 2 продуктивных горизонта, один в серпуховских отложениях (C_1 sr), второй - в нижневизейских. В свою очередь в нижневизейском горизонте выделяется две пачки (A и B), с которыми связаны одноименные залежи (C_1 v₁-A, C_1 v₁-B).

Серпуховский горизонт в основном, заглинизирован, только в единичных скважинах, выделяются пласты-коллекторы. В скважинах 8 и 107, коллекторы

газонасыщенные, а в скважине 104 пласты водоносные. Структура имеют блоковое строение (I, II, III).

<u>Блок II.</u> В скважине 8 по данным ГИС пласты-коллекторы продуктивны до отметки -1420,2 м, с отметки -1426,7 м пласт водонасыщенный. Таким образом, ГВК принят на отметке -1420,0 м. В 2013г при опробовании пласта совместно с верхневизейским горизонтом в интервале 2074-2088м, 1791-1783м, 1780-1775м, 1772-1769м (-1706-1720, -1423-1415, -1412-1407, -1404-1401м) был получен слабый приток газа. В июле 2014 года в качестве метода интенсификации притока в скважине применен гидравлический разрыв пласта (ГРП), в результате получен приток газа дебитом 6,5 тыс.м³/сут через 5 мм штуцер.

<u>Блок III.</u> В скважине 107 по данным ГИС подошва продуктивного пласта отмечается на отметке -1388,8 м, с отметки -1390,0 м пласт водоносный. Таким образом, ГВК в данном блоке принят на отметке -1388,8 м.

В 2021г в скважине 107 при опробовании пласта в интервале 1685,0-1688,0м, 1706,0-1710,0м, 1713,5-1717,5м, 1758,0-1766,0м (-1306,6-1309,6, -1327,6-1331,6, -1335,1-1339,1, -1379,6-1387,6м) был получен не промышленный приток газа.

Залежь C_1 sr пластовая, полусводовая, тектонически- и литологически- экранированная.

Нижневизейский продуктивный горизонт. Общая толщина горизонта варьирует от 72 м (скважина 101) до 91 м (скважина 102). По разрезу прослеживается от 3 (скважины 11) до 8 (скважина 4, 6, 104) пластов-коллекторов. Залежь C_1v_1 при переинтерпретации сейсмики 3Д имееет блоковое строение (I, II, III), и с учетом литологической характеристике была разделена на 2 пачки: C_1v_1 -А и C_1v_1 -Б.

<u>Залежь C_1v_1 -А</u> вскрыта всеми пробуренными скважинами и имеет распространение в пределах трех блоков.

В пределах <u>І блока</u> пробурены две скважины 2 и 102, в пределах <u>ІІ блока</u> – одинадцать скважин 1, 4, 6 Γ ,7, 8, 11, 101, 103, 104, 105 и 106, в пределах <u>ІІІ блока</u> – одна скважина 107.

Эффективная газонасыщенная толщина колеблется от 1,8 (скв. 8) до 23,4 м (скв. 104), среднее значение составляет 7,8 м. Коэффициент расчленения равен 2,57, коэффициент песчанистости составил 0,59.

<u>Блок І.</u> Скважина 2 пробурена на севере структуры, по материалам ГИС в разрезе выделяется один продуктивный пласт-коллектор толщиной 4,0 м, подошва находится на абсолютной отметке -1809,6 м, водонасыщенный пласт отмечается с отметки -1814,0м.

Таким образом, ГВК в этом районе принят на отметке -1810 м. Скважина опробована, в результате получен слабый непромышленный приток газа.

В эксплуатационной скважине 102 по данным ГИС выделены четыре газонасыщенных коллектора, подошва нижнего установлена на абсолютной отметке - 1790,1 м, которая принята за отметку УГВК в этом районе -1790 м.

В январе 2018 года при совместном перфорации с нижележащей залежью C_1v_1 -Б интервалов 2130-2134м, 2143-2148м, 2154-2161м, 2163-2169м, 2183-2190м (-1759,8-1763,8м, -1772,8-1777,8м, -1783,8-1790,8м, -1792,8-1798,8м, -1812,8-1819,8м) в скважине 102 получен приток газа с первоначальным дебитом 52,7 тыс.м³/сут.

<u>Блок II.</u> Продуктивность в данном блоке доказана опробованием скважин 1, 4, 6 Γ , 7, 11, 101, 103, 104, 105 и 106.

В период 1973-1975гг в скважинах 1, 6Γ и 11 при опробовании получили промышленные притоки газа с дебитом 21,2 тыс.м³/сут, 10 тыс.м³/сут и 8,27 тыс.м³/сут соответственно.

Скважина 7 в июле 1974 г опробована совместно с залежью C_IV_I -E в интервале 2136-2140м, 2154-2166м (-1758,7-1762,7м, -1776,7-1788,7м), в результате получили на устье слабое выделение газа. В том же году в августе месяце провели дострел в интервале 2128-2136м, 2150-2156м, 2165-2170м (-1750,7-1758,8м, -1772,7-1778,7м, -1787,7-1792,7м), но положительных результатов не получили.

Скважина 4 в январе 1980 г опробована совместно с залежью *С₁t* в интервале 2104 - 2223 м (-1730,9 -1849,9м), в результате получили на устье слабое выделение газа. Позже в марте месяце 1980 г при опробовании в интервале 2092 - 2137 м (-1718,9 -1763,9 м) получили слабый приток газа. Затем в период 11.05-06.06.1980г.г. провели гидропескоструйную перфорацию, но увеличение притока не наблюдалось. В том же году в июне месяце провели глинокислотную обработку, но приток не увеличился. В период 17.04-26.04.2011г.г. при опробовании в интервале 2092-2135м (-1718,9 -1761,9 м) получен незначительный выход газа с водой.

Скважина 8 в октябре 2013 г опробована совместно с залежью C_IV_I -E в интервале 2120-2134 м, 2144-2158м (-1752-1766м, -1776-1790м), в результате получили приток пластовой воды.

В период 2017-2020 гг в эксплуатационых скважинах 101, 103, 104, 105 и 106 при перфорации были получены промышленные притоки газа.

Во всех скважинах в данном блоке по комплексу ГИС выделены только газонасыщенные пласты, наиболее низкая отметка газонасыщенного пласта -1778,6 м установлена в скважине 11. Эта отметка принята за условный ГВК -1779 м.

<u>Блок III.</u> УГВК залежи в этом блоке принят по подошве нижнего продуктивного пласта на отметке -1734,0 м в скважине 107. Суммарная эффективная газонасыщенная толщина составляет 2,3м.

При перфорации в скважине 107 из интервала 2101-2105м, 2110-2113м, 2114-2119м (-1722,5 -1726,5м, -1731,5 -1734,5м, -1735,5 -1740,5м) получили приток пластовой жидкости и слабый выход газа.

Залежь C_{IVI} -A пластовая, сводовая, тектонически-экранированная.

<u>Залежь C_1v_1 -Б</u> вскрыта всеми пробуренными скважинами, также разбита тектоническими нарушениями на три блока. Эффективная газонасыщенная толщина колеблется от 1,3 м (скв. 11) до 16,2 м (скв. 6 Γ), среднее значение составляет 6,5 м. Коэффициент расчленения равен 3,15, коэффициент песчанистости составил 0,51.

Залежь <u>І блока</u> оконтурена по результатам бурения двух скважин 2 и 102, в скважине 102 вскрыты газонасыщенные коллекторы, в скважине 2- водонасыщенные.

При опробовании в скважине 2 из интервала 2178-2191м (-1823-1836м) получили приток воды. По комплексу ГИС водонасыщенный пласт фиксируется с отметки -1830,8 м.

По геофизическим кривым в скважине 102 выделяется четыре газонасыщенных коллектора толщинами 1,3 м, 4,7 м, 2,0 м и 4,7 м до отметки -1819,1 м. УГВК в районе скважины 102 принят на отметке -1819,0 м по подошве продуктивного пласта.

<u>Блок II.</u> Продуктивность в этом блоке доказана опробованием скважин 1, 4, 6, 7, 11, 101, 103, 104, 105 и 106.

Во всех скважинах по комплексу ГИС выделены только газонасыщенные пласты, наиболее низкая отметка газонасыщенного пласта -1804,4 м установлена в скважине 105. Эта отметка принята за условный ГВК залежи -1804 м.

<u>Блок III.</u> По данным ГИС в скважине 107 подошва продуктивного пласта установлена на абсолютной отметке -1752,8 м, а кровля водонасыщенного пласта фиксируется на отметке -1755,7 м. ГВК в данном блоке принят на отметке -1753 м.

При перфорации в скважине 107 из интервала 2128-2132м, 2134-2141м, 2151-2155м (-1749,6 -1753,6м, -1755,6 -1762,6м, 1772,6 -1776,6м) получили приток пластовой жидкости и слабый выход газа.

Залежь C_1v_1 -E пластовая, сводовая, тектонически-экранированная.

2.2 Характеристика толщин, коллекторских свойств продуктивных горизонтов и их неоднородности

Промыслово-геофизические исследования выполнены во всех 17 скважинах, пробуренных на месторождении Айракты.

В данном отчете рассматриваются результаты промыслово-геофизических исследований 16 скважин: $1, 2, 3, 4, 6\Gamma, 7, 8, 10, 11, 101, 102, 103, 104, 105, 106, 107$. Данные комплекса ГИС по скважине 5 утеряны.

Характеристика общих, эффективных, газонасыщенных толщин коллекторов по залежам месторождения представлена в таблице 2.2.1.

Как видно из таблицы 2.2.1 максимальное среднее значение общей толщины пластов-коллекторов установлено по залежи C_1 sr (29,6 м), из нижневизейских залежей наиболее высокое среднее значение общей толщины установлено по залежи C_1 v₁-A (15,4 м).

Наибольшие эффективные толщины отмечаются в серпуховском горизонте и составляют в среднем 9,2 м.

Наименьшее среднее значение газонасыщенной толщины равной 5,6 м имеет залежь C_1 sr. Максимальная средняя газонасыщенная толщина равная 7,6 м отмечается в нижневизейской залежи C_1 v₁-A.

Показатели неоднородности пластовых резервуаров, с которым связаны залежи, коэффициенты распространения коллекторов, песчанистости и расчлененности продуктивного разреза, приведены в таблице 2.2.2.

Таблица 2.2.1 - Характеристика толщин пластов-коллекторов по залежам

				Зоны на	Зоны насыщения		
Залежь	Блок	Толщина	Наименование	газовая	газо- водяная	В целом	
1	2	3	4	5	6	7	
			Средняя, м	-	35,8*	35,8*	
		Общая	Коэф. вариации, д. ед.	-		-	
			Интервал изменения, м	-	-	-	
					13,0		
	II	Эффективная			-	-	
			Интервал изменения, м	м		-	
		Горо	Средняя, м - 8,4*		8,4*	8,4*	
C_1sr		Газо- насыщенная -	Коэф. вариации, д. ед.	-	-	-	
			Интервал изменения, м	-	-	-	
	III		Средняя, м		23,3*	23,3*	
		Общая	Коэф. вариации, д. ед.		-	-	
			Интервал изменения, м		-	-	
			Средняя, м		4,7*	4,7*	
		Эффективная	Коэф. вариации, д. ед.		-	-	
			Интервал изменения, м		-	-	

	ние табли	_ [
1	2	3	4	5	6	7
		Газо-	Средняя, м		2,8*	2,8*
	III	насыщенная	Коэф. вариации, д. ед.		-	-
		,	Интервал изменения, м		-	-
			Средняя, м	-	29,6	29,6
		Общая	Коэф. вариации, д. ед.	-	0,045	0,045
C_1sr			Интервал изменения, м	-	23,3-35,8	23,3-35,8
0101	Итого по		Средняя, м	-	9,2	9,2
	залежи	∷Эффективная	Коэф. вариации, д. ед.	-	0,171	0,171
			Интервал изменения, м	-	5,4-13,0	5,4-13,0
		Газо-	Средняя, м	-	5,6	5,6
		насыщенная	Коэф. вариации, д. ед.	-	0,250	0,250
			Интервал изменения, м	-	2,8-8,4	2,8-8,4
		_	Средняя, м	30,5*	12,2*	21,4
		Общая	Коэф. вариации, д. ед.	-	-	0,184
			Интервал изменения, м	-	-	12,2-30,5
			Средняя, м	11,2*	7,0*	9,1
	I	Эффективная	Коэф. вариации, д. ед.	-	-	0,053
			Интервал изменения, м	-	-	7,0-11,2
		Газо-	Средняя, м	11,2*	4,0*	7,6
		насыщенная	Коэф. вариации, д. ед.	-	-	0,224
		пасыщенная	Интервал изменения, м	-	-	4,0-11,2
		<u> </u>	Средняя, м	15,5	-	15,5
		Общая Эффективная	Коэф. вариации, д. ед.	0,284	-	0,284
	II		Интервал изменения, м	1,8-32,0	-	1,8-32,0
			Средняя, м	8,1	-	8,1
			Коэф. вариации, д. ед.	0,473	-	0,473
			Интервал изменения, м	1,8-23,4	-	1,8-23,4
		Газо- насыщенная	Средняя, м	8,1	-	8,1
			Коэф. вариации, д. ед.	0,473	-	0,473
C_1v_1 -A		пасыщенная	Интервал изменения, м	1,8-23,4	-	1,8-23,4
CIVIII			Средняя, м	2,3*		2,3*
		Общая	Коэф. вариации, д. ед.	-		-
			Интервал изменения, м	-		-
		<u> </u>	Средняя, м	2,3*		2,3*
	III	Эффективная	Коэф. вариации, д. ед.	-		-
			Интервал изменения, м	-		-
		Газо-	Средняя, м	2,3*		2,3*
		насыщенная	Коэф. вариации, д. ед.	-		-
		пасыщенная	Интервал изменения, м	-		-
		<u> </u>	Средняя, м	14,4	12,2*	15,4
		Общая	Коэф. вариации, д. ед.	0,444	-	0,350
			Интервал изменения, м	1,8-32	-	1,8-32,0
	Итого по		Средняя, м	7,6	7,0*	7,8
	залежи	Эффективная	Коэф. вариации, д. ед.	0,584	-	0,448
	залежи		Интервал изменения, м	1,8-23,4	-	1,8-23,4
		Газо-	Средняя, м	7,6	4,0*	7,6
			Коэф. вариации, д. ед.	0,584	-	0,490
		пасыщенная	Интервал изменения, м	1,8-23,4	-	1,8-23,4
			Средняя, м	26,3*		26,3*
		Общая	Коэф. вариации, д. ед.	-		-
С. т	I		Интервал изменения, м	-		
C_1v_1 - \overline{b}	1		Средняя, м	12,7*		12,7*
		Эффективная	Коэф. вариации, д. ед.	-		
	I		Интервал изменения, м	-		-

Продолжение таблицы 2.1.1

продолже 1	2	3	4	5	6	7
	I	Газо- насыщенная	Средняя, м	12,7*		12,7*
	1		Коэф. вариации, д. ед.	-		-
			Интервал изменения, м	-		-
		Общая	Средняя, м	13,0		13,0
			Коэф. вариации, д. ед.	0,527		0,527
			Интервал изменения, м	1,3-30,2		1,3-30,2
		Эффективная	Средняя, м	5,6		5,6
	II		Коэф. вариации, д. ед.	0,386		0,386
	11		Интервал изменения, м	1,3-13,5		1,3-13,5
		Газо- насыщенная	Средняя, м	5,6		5,6
			Коэф. вариации, д. ед.	0,386		0,386
			Интервал изменения, м	1,3-13,5		1,3-13,5
		Общая	Средняя, м		12,2*	12,2*
			Коэф. вариации, д. ед.		-	-
C_1 v_1 -Б			Интервал изменения, м		-	-
	III	Эффективная	Средняя, м		7,0*	7,0*
			Коэф. вариации, д. ед.		-	-
			Интервал изменения, м		-	-
		Газо- насыщенная	Средняя, м		2,2*	2,2*
			Коэф. вариации, д. ед.		-	-
			Интервал изменения, м		-	-
			Средняя, м	14,1	12,2*	13,9
		Общая	Коэф. вариации, д. ед.	0,478	-	0,452
			Интервал изменения, м	1,3-30,2	=	1,3-30,2
	Итого по		Средняя, м	6,2	7,0*	6,2
	залежи	Эффективная	Коэф. вариации, д. ед.	0,390	=	0,354
	Sancakh		Интервал изменения, м	1,3-13,5	-	1,3-13,5
		Газо-	Средняя, м	6,2	2,2*	5,9
		насыщенная	Коэф. вариации, д. ед.	0,390	-	0,431
		насыщенная	Интервал изменения, м	1,3-13,5	-	1,3-13,5

^{* -} значение по одной скважине

Таблица 2.2.2 – Статистические показатели характеристик неоднородности

	Кол-во скв.,	Коэффи		анистости,				
	исполь-		д.ед.		д.ед.			Коэфф.
Залежь	зуемых для опреде-	среднее значе-	коэф.	интер- вал измене-	среднее	коэф.	интер-вал измене-	распрос- транения, д.ед.
	ления	ние	вариа-ции	ния	значение	вариа-ции	ния	грансиил, д.ед.
C_1 sr	2	0,30	0,049	0,231-0,36	5,0	-	5,0-5,0	1,0
C_1v_1-A	14	0,59	0,168	0,328-1	2,64	0,217	1,0-5,0	1,0
C_1 v_1 -Б	13	0,51	0,271	0,194-1	3,38	0,142	1,0-6,0	1,0

Как видно из таблицы 2.2.2 среднее значение коэффициента песчанистости по залежам колеблется от 0,30 д. ед. (залежь C_1 sr) до 0,59 д.ед. (залежь C_1 v₁-A). Средний коэффициент расчлененности по залежам колеблется от 2,64 (залежь C_1 v₁-A) до 5,0 (залежь C_1 sr), наибольшее количество пропластков (до 6) отмечается в залежи C_1 v₁-Б.

2.2.1 Характеристика коллекторских свойств по керну и ГИС

Характеристика коллекторских свойств объектов разработки месторождения основана на результатах изучения керна, отобранного в 15 скважинах и интерпретации материалов ГИС по 16 скважинам.

Всего по месторождению изучено 1183 образца, из них непосредственно по разрезу серпуховского яруса 7 образцов и нижневивейскому подъярусу 903 образца

Для характеристики фильтрационно-ёмкостных свойств пород коллекторов залежей использованы определённые на образцах керна стандартные исследования (литологическое описание, пористость, проницаемость для газа, плотность зерен и объёмную, карбонатность, гранулометрический состав; специальные исследования: капиллярное давление, влияние давления на пористость и проницаемость, относительные фазовые проницаемости, минералогический состава пород методом XRD.

Для характеристики коллекторских свойств и коэффициента газонасыщенности по ГИС использованы результаты интерпретации по 16 скважинам. В том числе 7 скважин пробуренных после 2012 г, в которых запись ГИС выполнена в цифровом формате и наряду с комплексом общих исследований (КС, ПС, КВ, ГК,НГК) выполнен комплекс детальных исследований: многозондовый индукционый каротаж (ИК, Омм), проводимость (ИК, мСм), потенциал зонд (ПЗ), микрозондирование (МКЗ), микробоковой (МБК), акустический каротаж (АК), плотностной каротаж (ГГКП), компенсированный нейтронный каротаж (КНК), термометрия. При выделении коллекторов и разделении по характеру насыщения руководствовались прямыми признаками, основанными на проникновении фильтрата в пласт и по критическим значениям [11].

 C_1v_1 : Кп ≥ 0.08 д.ед, Кпр $\geq 0.35*10^{-3}$ мД, Кгл ≤ 0.20 д.ед., Кг ≥ 0.40 д.ед

C₁sr: Кп≥0,08д.ед, Кпр≥0,35*10⁻³ мД, Кгл≤0,15 д.ед., Кг≥0,40 д.ед.

Ниже приведена петрофизическая характеристика пород коллекторов на базе исследования керна и материалов ГИС по залежам серпуховского яруса и пачек A и Б нежневизейского подъяруса.

Залежь C₁sr (серпуховский ярус). Керн в пределах выделенных коллекторов не отобран. По описанию шлама отложения представлены неравномерным переслаиванием песчаников, известняков, аргиллитов. Коллекторами являются песчаники среднемелкозернистые, полимиктовые, зёрна полуокатанные, полуугловатые, умеренносортированные, цемент глинисто-карбонатный.

По результатам ГИС газонасыщенные коллекторы выделены в скважинах №8 и №107. В скважине №8 выделено четыре газонасыщенных пласта коллектора в общем

интервале 1764,5-1788,2 м (абс. отм -1395,2 - -1419,3 м) с пористостью от 0,12 д.ед до 0,35д.ед, коэффициентом газонасыщенности 0,57 и 0,73 д.ед. Кровля водоносного пласта на глубине 1794,7 м (абс. отм -1425.450 м); В скважине 107 три пласта коллектора с пористостью 0,08 - 0,14д.ед , коэффициентом газонасыщенности 0,53 д.ед.

Нижневизеский подъярус C_1v_1 представлен отложениями переслаивающихся песчаников, алевролитов, аргиллитов, углистых сланцев и углей. Овещен керном из 14 скважин (№№2, 3, 4, 6, 8, 10, 11, 101-107) и является наиболее изученным: отобрано 482,3 м керна, изучено 902 обр.

Залежь C_1v_1 , пачка А. Пачка представлена переслаиванием песчаников, алевролитов, аргиллитов, местами наблюдаются тонкие прослойки углистых сланцев и углей. Коллекторы пачки представлены песчаниками разного оттенка серыми, разнозернистыми, плохо сортированными, преимущественно кварцевыми, умеренно сцементированными, на глинисто-карбонатном цементе. порово-контактового типа, с хорошей видимой пористостью, с пропластками зеленых алевролитов, с включением зерен кальцита.

Из разреза пачки А отобрано 308,6 м (65.75 м) керна, изучено 468 образцов из 13 скважин, в том числе 159 образцов-коллекторов из 10 скважин. пористость которых изменяется от 0,08 до 0,20 д.ед., среднее значение 0,14 д.ед., проницаемость от 0,35 до 55.2*10⁻³ мкм², среднее значение проницаемости 1,91*10⁻³ мкм², содержание объёмной глинистости 8.5%, карбонатность в среднем составляет 6,05%.

По геофизическим исследованиям пористость газонасыщенных коллекторов изменяется от 0,10 до 0,28 д.ед. в среднем 0,17 д.ед., коэффициент газонасыщенности в диапазоне 0,40-0,83 д.ед., и в среднем равен 0,62 д.ед.

 C_1v_1 , пачка Б. Литологическая характеристика пачки Б аналогична отложениям пачки А. Можно отметить увеличение содержания углей особенно в нижней части пачки.

Отбор керна выполнен в 13 скважинах, вынос составил 273,1 м м, изучено 403 образца, на которых полностью или частично выполнен комплекс стандартных анализов. Из них 62 образца кондиционных, которые прошли граничный барьер по пористости и проницаемости. Для характеристики ёмкостных свойств были использованы также часть образцов с литологией песчаник и пористостью, объёмной глинистостью, карбонатностью соответствующих коллекторам, но без определений проницаемости. В результате пористость коллекторов была оценена по 164 образцам.

Пористость образцов - коллекторов изменяется от 0.08 до 0.19 д.ед., среднее значение составляет 0.11 д.ед. проницаемость от 0.35 до $13.9*10^{-3}$ мкм², содержание объёмной глинистости в среднем 8.5%, карбонатности около 5%.

По результатам интерпретации ГИС пористость пластов-коллекторов изменяется в диапазоне 0,10 - 0,27 д.ед., среднее значение составляет 0,15 д.ед.; коэффициент газонасыщенности варьирует в диапазоне 0,40 - 0,86 д.ед., среднее значение K_r =0,63 д.ед.

Статистическая характеристика фильтрационно-емкостных свойств газонасыщенных коллекторов по горизонтам C_1 sr и C_1V_1 (Пачка A и Б), определенная по результатам исследований керна, материалам ГИС и гидродинамическим исследованиям, представлена в таблице 2.1.1.3.

Таблица 2.1.1.3 - Характеристика коллекторских свойств и газонасыщенности продуктивных

горизонтов

Залежь	Метод определения	Наименование	Проницае- мость, *10 ⁻³ мкм ²	Порис- тость, д.ед.	Начальная газонасы- щенность, д.ед.
1	2	3	4	5	6
	лабораторные исследования керна	Не проведены (образцы-коллекторы отсутствуют			
		количество скважин		2	2
	геофизические	кол-во определений		7	6
Communication of the communica	исследования	среднее значение		0,176	0,64
Серпуховский ярус C_1 sr	скважин	коэф-т вариации			
CISI		интервал изменений		0,27-0,35	0,55-0,69
		количество скважин	1		
	гидродинамически	кол-во определений	2		
	е исследования	среднее значение	0,091		
	скважин	коэф-т вариации			
		интервал изменений	0,1625-0,0196		
		количество скважин	13	13	
	лабораторные	кол-во определений	130	130	
	исследования	среднее значение	1,91	0,14	
	керна	коэф-т вариации	2,48	0,18	
		интервал изменений	0,35-55,20	0,08-0,21	
		Количество скважин		14	14
Нижневизейский	геофизические	кол-во определений		36	36
ярус Пачка А	исследования	среднее значение		0,17	0,63
ярус пачка А	скважин	коэф-т вариации		0,31	0,175
		интервал изменений		0,08-0,28	0,40-0,83
		количество скважин	8		
	гидродинамически	кол-во определений	30		
	е исследования	среднее значение	0,390		
	скважин	коэф-т вариации			
		интервал изменений	0,0013-0,1651		
		количество скважин	7	7	
Нижневизейский	лабораторные	кол-во определений	33	33	
ярус Пачка Б	исследования	среднее значение	2,06	0,12	
ярус пачка в	керна	коэф-т вариации	1,48	0,264	
		интервал изменений	0,35-13,96	0,08-0,19	

Продолжение таблицы 2.1.1.3

1	2	3	4	5	6
		Количест во скважин		13	13
	геофизические	кол-во определений		34	33
	исследования	среднее значение		0,15	0,63
	скважин	коэф-т вариации		0,248	0,181
		интервал изменений		0,10-0,27	0,40-0,86
		количество скважин	8		
	гидродинамически	кол-во определений	30		
	е исследования	среднее значение	0,390		
	скважин	коэф-т вариации			
		интервал изменений	0,0013-0,1651		

В таблице 2.2.1.4 приведены ряды распределения проницаемомости, определённой по керну.

Таблица 2.2.1.4 – Ряды распределения проницаемости по отложениям

Интервалы изменения проницаемости,	Количество случаев по горизонтам				
*10 ⁻³ мкм ²	C ₁ sr	C ₁ v ₁ .A	С1V1-Б		
0.35-1	-	52	17		
1-10	-	77	14		
10-50	-	-	2		
50-100		1	-		

2.3 Свойства и состав газа, конденсата и воды

Для изучения газоконденсатной характеристики нижневизейской залежи всего было исследовано **14 проб** пластового флюида из скважин 1, 4, 6, 101, 102, 103, 104, 105 и 106. Пробы составлялись из поверхностных образцов газа сепарации и сырого конденсата, в соответствии с замеренным газоконденсатным фактором. По пробам определены основные свойства пластового газа и его состав. Свойства и фракционный состав стабильного конденсата исследованы по 10 пробам из 7 скважин. Состав газа с устья скважин нижневизейской залежи исследован по **59 устьевым пробам** газа, свойства сырого конденсата изучено – по **5 пробам** из 5 скважин.

Состав газа серпуховского горизонта изучен по **3 устьевым пробам** газа из скважины N₂₈.

Исследования газоконденсатной характеристики проведены в ТОО «КазТехГеостар», химический состав газа и конденсата с устья скважин определялся в лабораториях ЦХЛ ЮКТГУ, СредАзНИИГаза, ВНИГРИ и ВНИГНИ и в промысловой лаборатории ТОО «Амангельдыгаз».

2.3.1 Газоконденсатная характеристика залежей

По нижневизейской залежи газоконденсатная характеристика изучалась по 14 пробам из скважин №№1, 4, 6, 101, 102, 103, 104, 105 и 106. Пластовый флюид составлялся из проб газа с устья и сырого конденсата с тестового сепаратора, которые загружались в ячейку PVT в соотношении, соответствующем замеренному газоконденсатному фактору и доводились до термодинамических условий пласта. После этого проводились опыты контактной и дифференциальной конденсации.

По 2 пробам из скважин 4 и 6, отобранным до 2015 года, были определены низкие значения давления начала и максимальной конденсации, повышенная плотность стабильного конденсата, резко отличающиеся от результатов по остальным пробам. Кроме того, при отборе пробы из скважины 4 было зафиксировано значительно более низкое пластовое давление (17,5 МПа) по сравнению с остальными скважинами (26,2-27,7 МПа). По данной причине результаты исследований этих проб не включены в расчеты средних свойств пластового газа.

Пробы отобранные 2019 г. из скважин 1, 103, 105 и 106 признаны не представительными из-за низких значений Рпл, Рнач.конденсации, Ртах.конденсации и др. параметров.

Таким оброзом, количество представительных проб по нижневизейской залежи составляет **8 проб** из 6 скважин. Свойства пластового газа приведены в таблице 2.3.1.

В среднем по нижневизейской залежи давление начала конденсации составило 20,85 МПа при пластовом давлении 27,07 МПа, что указывает на недонасыщенность пластового газа конденсатом. Давление максимальной конденсации равно 11,35 МПа. Плотность пластового газа в стандартных условиях равна 0,8238 г/см³, динамическая вязкость – 0,0130 Мпа*с. Потенциальное содержание С_{5+высш.} невысокое – 35,88 г/м³, газ низкоконденсатный.

2.3.2 Состав пластового газа, газа сепарации и сырого конденсата

Состав пластового газа определялся по 14 пробам из скважин 1, 4, 6, 101, 102, 103, 104, 105 и 106. Состав пластового газа, газа сепарации, газа дегазации, газа дебутанизации и сырого конденсата приведены в таблицах 2.3.2, 2.3.3 и 2.3.4.

<u>Пластовый газ</u> нижневизейской залежи преимущественно метанового состава. Объемное содержание метана составляет 78,06%, этана -6,37 %, пропан -2,05 %, гескан+высших -0,36 %. Из неуглеводородных компонентов наиболее высоко содержание азота -11,95 %. Содержание углекислого газа низкое -0,25 %. Содержание гелия

определялось по одной пробе из скважины 6, где оно составило 0,153 %, газ относится к гелиеносным.

Пластовый газ нижневизейской залежи классифицируется как метановый по составу, «полужирный», азотный, гелиеносный, низкоуглекислый.

<u>Газ сепарации</u> по результатам газоконденсатных исследований в среднем по залежи состоит 78,50% из метана. Содержание этана в среднем составляет 6,24%, пропана -1,98%. Из неорганических компонентов содержится азот -12,02%, углекислый газ -0,25%.

<u>Газ дегазации</u> содержит: метана -32,46%, этана -29,7%, пропана -23,52%, бутанов -9,80%, пентанов -3,54% и незначительное количество гексанов и высших -0,36%. Содержание неорганических компонентов также невысокое: азота -1,30%, углекислого газа -0.25%.

<u>Газ дебутанизации</u> состоит в основном из тяжелых углеводородов, и не содержит метана. Содержание этана составляет 2,28%, пропана — 18,35%, бутанов —46,20%, пентанов — 31,28%, гексана и высших — 1,12%. Неорганические компоненты отсутствуют.

Состав сырого конденсата, отобранного после сепаратора для газоконденсатных исследований следующий: метана содержится 12,82%, этана - 12,15%, пропана - 12,53%, бутанов - 12,29%, пентана 6,82% и гексан +высших - 43,12%. Содержится также незначительное количество азота - 0,56%, углекислого газа - 0,14%.

Таблица 2.3.1 – Месторождение Айракты. Свойства пластового газа нижневизейского продуктивного горизонта по состоянию на 01.07.2021 г.

		Интер-вал	Плас-	Плас- товая	Давле- ние	Давле- ние макс.	Плот-	Относи- тельная плот-	Вазилеть	Коэф. сверх-		отенциальн жание С ₅ +1		Молярн газа сеп	ая доля арации:	C_5+B ,	Газо- конден-
№ скв	Дата	перфо- рации, м	товое давле- ние, МПа	темпе- рату- ра, °С	начала конден- сации, Мпа	конден- сации, МПа	ность газа, г/см ³	плот- ность газа по воздуху	газа, мПа*с	сжи- мае- мости газа	на пласт. газ	на газ сепарации	сухой	в пласт. газе	CVXOM	г/см ³ (стаб. конден- сат)	сатный фактор см ³ /м ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
							Нижне	визейски	й горизон	Т							
1Γ	03.10.17	2073-2110	27,4	72,4	21,75	11,6	0,8233	0,6833	0,0132	0,80	28,55	28,69	28,72	0,995	0,994	0,7589	28,99
1Γ	2018 г.	2073-2110	27,2	69,5	21	13,05	0,8117	0,6736	0,0130	0,79	32,25	32,51	32,44	0,992	0,994	0,7618	23,61
1Γ*	2019	2073-2110	17,02*	71,66	16,82	7,87	0,8119	0,6738	0,0131	0,79	29,58	29,7	29,72	0,996	0,995	0,7678	21,37
4*	02.11.15	2092-2054	17,5*	60	14,8	8,4	0,8401	0,6972	0,0127	0,77	39,02	39,22	39,26	0,995	0,994	0,8536*	21,62
6*	ПЗ-2015	2177-2122	27,5	69	-	6	-	-	-	0,93	30,9	-	-	-	-	0,827*	-
6Γ	03.10.17	2115-2155	26,8	74,4	20,53	10,75	0,8207	0,6811	0,0130	0,78	30,66	30,81	30,84	0,995	0,994	0,7589	30,81
6Γ	2018 г.	2115-2155	27,7	77,22	21,2	10,75	0,8107	0,6728	0,0129	0,78	37,84	38,03	38,11	0,995	0,993	0,7642	19,2
101	03.10.17	2074,5-2107	27	72,5	21,04	11,8	0,8173	0,6782	0,0130	0,79	43,32	43,54	43,63	0,995	0,993	0,7887	27,89
102	2017	2130-2190	26,2	70,5	19,93	10,15	0,8396	0,6968	0,0131	0,79	30,52	30,74	30,70	0,993	0,994	0,7472	34,86
103	2017	2089-2115	27,05	70,5	20,09	10,7	0,8421	0,6988	0,0129	0,77	42,61	42,95	42,99	0,992	0,991	0,746	45,92
103*	2019	2073-2110	17,3*	77,3	16,05	9,12	0,8148	0,6762	0,0130	0,78	26,97	27,11	27,14	0,995	0,994	0,7592	21,73
104	2019	2067-2138	27,2	-	21,25	12,01	0,8247	0,6844	0,0132	0,79	41,29	41,37	41,58	0,998	0,993	0,7824	6,2
105*	2019	2129-2200	24,92*	-	18,97	10,19	0,8097	0,6719	0,0130	0,79	24,2	24,25	24,30	0,998	0,996	0,7838	6,4
106*	2019	2115-2163	13,24*		11,89	7,36	0,8167	0,6778	0,0130	0,87	21,82	21,89	21,93	0,997	0,995	0,7591	14,82
	Среді	iee	27,07	72,43	20,85	11,35	0,8238	0,6836	0,0130	0,79	35,88	36,08	36,13	0,99	0,993	0,7635	27,19

Примечание: * – пробы не кондиционны

Таблица 2.3.2 – Состав пластового газа нижневизейского горизонта

				•			Содержан	ие, % мо.	тьные				
№ скв.	Интервал перфорации, м	Дата отбора	Азот	Углекислый газ	Метан	Этан	Пропан	Изо- бутан	Н-бутан	Изо- пентан	Н-Пентан	Гексан+ высше	Гелий
1	2	3	4	5	6	7	8	9	10	11	12	13	14
				Них	кневизейс	кий гори	зонт						
	2073-2110	03.10.17	13,76	0,16	76,99	6,08	1,84	0,26	0,34	0,12	0,11	0,34	-
1	2073-2110	2018 г.	11,71	0,12	79,57	5,49	1,8	0,3	0,39	0,14	0,1	0,38	-
	2073-2110	2019	12,5	0,11	78,76	5,74	1,77	0,26	0,36	0,12	0,11	0,27	-
4	2092-2154,3	02.11.2015	10,35	0,16	76,61	8,27	3,21	0,32	0,51	0,13	0,12	0,32	-
	2090-2210	ПЗ 2015 г.	11,8	0,32	76,66	7,6	2,16	0,26	0,42	0,12	0,1	0,4	0,153
6	2115-2155	03.10.17	11,52	0,17	78,34	6,63	2,03	0,29	0,42	0,14	0,11	0,35	-
	2115-2155	2018 г.	10,67	0,20	80,12	5,9	1,75	0,27	0,4	0,19	0,15	0,35	-
101	2074,5-2107	03.10.17	11,96	0,14	78,66	6,12	1,85	0,26	0,36	0,11	0,11	0,43	-
102	2130-2190	2017	12,36	1,16	76,48	6,39	2,15	0,33	0,49	0,15	0,12	0,37	-
103	2089-2115	2017	11,76	0,28	77,33	6,07	2,52	0,45	0,7	0,17	0,15	0,57	-
103	2089-2115	2019	11,63	-	78,74	6,42	2,01	0,28	0,41	0,12	0,11	0,28	-
104	2067-2138	08.01.19	13,71	0,18	77,08	6,01	1,78	0,25	0,32	0,11	0,07	0,49	-
105	2129-2200	04.01.19	11,71	0,19	79,34	5,8	1,81	0,28	0,43	0,13	0,11	0,2	-
106	2115-2163		11,91	0,09	78,22	6,66	2,00	0,26	0,39	0,12	0,10	0,25	-
Сред	нее по нижневизейс	кой залежи	11,95	0,25	78,06	6,37	2,05	0,29	0,42	0,13	0,11	0,36	0,153

Таблица 2.3.3 – Состав газа сепарации, дегазации, дебутанизации

						C	одержание, '	% мольнь	ie		_	
№ скв.	Интервал перфорации, м	Дата отбора	Азот	Угле- кислый газ	Метан	Этан	Пропан	Изо- бутан	Н-бутан	Изо- пентан	Н-Пентан	Гексан+ высше
1	2	3	4	5	6	7	8	9	10	11	12	13
		_			газ сепар	ации	_				_	
	2073-2110	03.10.17	13,84	0,16	77,40	6,03	1,77	0,24	0,31	0,10	0,10	0,05
1	2073-2110	2018 г.	11,80		80,12	5,44	1,71	0,24		0,10	0,07	0,08
	2073-2110	2019	12,53	0,11	78,98	5,73	1,75	0,25	0,34	0,11	0,1	0,1
4	2092-2154,3	02.11.2015	10,40	0,16	76,94	8,23	3,13	0,28	0,45	0,11	0,10	0,20
6	2115-2155	03.10.17	11,59	0,17	78,76	6,58	1,97	0,26	0,39	0,12	0,10	0,06
U	2115-2155	2018 г.	10,71	0,20	80,45	5,89	1,70	0,24	0,37	0,17	0,14	0,13
101	2074,5-2107	03.10.17	12,02	0,14	78,95	6,08	1,80	0,24	0,33	0,10	0,10	0,24
102	2130-2190	2017	12,45	1,17	76,95	6,35	2,08	0,30	0,45	0,13	0,10	0,02
103	2089-2115	2017	11,85	0,28	77,85	6,03	2,46	0,42	0,67	0,15	0,14	0,15
103	2089-2115	2019	11,67	-	79,04	6,39	1,96	0,26	0,38	0,1	0,1	0,1
104	2067-2138	08.01.19	13,73	0,19	77,17	6,0	1,76	0,24	0,31	0,1	0,06	0,44
105	2129-2200	04.01.19	11,74	0,2	79,49	5,77	1,79	0,27	0,42	0,12	0,1	0,1
106	2115-2163	2019	11,95	0,10	78,44	6,65	1,92	0,25	0,38	0,11	0,10	0,10
Среднее	по нижневизейской за	алежи	12,02	0,25	78,50	6,24	1,98	0,27	0,39	0,12	0,10	0,14
					газ дегаз	ации						
	2073-2110	03.10.17	0,55	0,26	18,15	38,82	28,04	4,48	6,19	1,86	1,23	0,42
1	2073-2110	2018 г.	0,58		21,24	30,01	25,99			3,25	2,22	0,55
	2073-2110	2019	-		64,11	20,98	8,87	1,96	2,43	0,75	0,6	0,3
4	2092-2154,3	02.11.2015	-	-	23,77	28,50	29,30	5,87	8,08	2,20	2,00	0,28
6	2115-2155	03.10.17	0,41	0,26	28,51	35,95	23,49	3,64	4,95	1,47	0,97	0,35
6	2115-2155	2018 г.	0,50	0,28	28,08	23,42	25,75	6,23	9,42	3,28	2,37	0,67

Продолжение таблицы 2.3.3

1	2	3	4	5	6	7	8	9	10	11	12	13
101	2074,5-2107	03.10.17	ı	-	37,23	30,42	22,36	3,25	4,24	1,16	1,00	0,34
102	2130-2190	2017	1	-	27,92	32,02	27,15	3,67	6,90	1,26	0,78	0,30
103	2089-2115	2017	-	-	32,81	30,59	24,32	4,46	5,77	1,13	0,65	0,27
103	2089-2115	2019	4,46	-	30,93	29,85	24,84	3	4,04	1,57	1,04	0,27
104	2067-2138	08.01.19	-	0,2	38,68	27,2	21,47	3,11	4,19	2,11	2,61	0,41
105	2129-2200	04.01.19	-	-	36,72	28,67	20,55	3,44	5,14	2,17	3,04	0,27
106	2115-2163		Ī	0,26	33,86	29,63	23,69	2,75	4,28	2,45	2,83	0,25
Сре	еднее по нижневизейс	кой залежи	1,30	0,25	32,46	29,70	23,52	4,01	5,79	1,90	1,64	0,36
					газ дебутан	изации						
	2073-2110	03.10.17	-	-	-	2,10	19,54	10,91	27,66	16,02	12,64	1,13
1	2073-2110	2018 г.	-	-	-	2,74	18,53	21,10	25,99	16,80	13,49	1,35
	2073-2110	2019	-	-	-	2,14	20,67	19,13	32,57	12,36	11,79	1,34
4	2092-2154,3	02.11.2015	-	-	-	3,00	10,81	18,49	25,00	22,70	18,40	1,60
6	2115-2155	03.10.17	=	-	-	2,35	20,13	22,09	25,75	15,51	12,92	1,25
U	2115-2155	2018 г.	=	-	-	1,93	20,99	22,62	24,39	15,22	13,43	1,42
101	2074,5-2107	03.10.17	=	-	-	2,00	18,20	20,92	26,58	16,82	14,73	0,75
102	2130-2190	2017	=	-	-	2,67	16,37	20,29	27,89	17,64	13,72	1,42
103	2089-2115	2017	-	-	-	2,48	18,53	19,35	27,61	16,89	13,84	1,30
103	2089-2115	2019	Ī	-	-	1,86	19,24	18,36	24,08	21,64	14,57	0,25
104	2067-2138	08.01.19	-	-	-	1,84	15,78	21,57	24,82	17,7	17,11	1,18
105	2129-2200	04.01.19	1	-	_	3,16	19,57	21,88	22,79	16,84	14,76	1,0
106	2115-2163		-	-		1,35	20,19	22,87	25,89	15,65	13,49	0,56
Сре	еднее по нижневизейс	кой залежи	-	-	-	2,28	18,35	19,97	26,23	17,06	14,22	1,12

Таблица 2.3.4 – Состав сырого конденсата

	•					(Содержание	, % моль	ные			
№ скв.	Интервал перфорации, м	Дата отбора	Азот	Угле- кислый газ	Метан	Этан	Пропан	Изо- бутан	Н-бутан	Изо- пентан	Н-Пентан	Гексаны+высш.
1	2	3	4	5	6	7	8	9	10	11	12	13
	2073-2110	03.10.17	0,22	0,17	7,13	15,44	13,4	4,24	5,77	2,72	2,04	48,87
1	2073-2110	2018 г.	0,26	0,13	7,77	11,66	14,12	7,51	9,84	5,31	4,02	39,38
	2073-2110	2019	-	-	26,39	8,96	6,78	3,63	6,05	2,18	2,18	43,83
4	2092-2154,3	02.11.2015	-	-	12,03	15,38	18,93	7,69	12,43	5,13	4,54	23,87
6	2115-2155	03.10.17	0,16	0,16	11,13	14,47	12,24	4,77	5,88	3,02	2,22	45,95
6	2115-2155	2018 г.	0,21	0,21	10,27	8,81	12,79	6,08	7,34	3,77	3,14	47,38
101	2074,5-2107	03.10.17	-	-	16,74	13,95	12,88	4,72	6,01	3	2,57	40,13
102	2130-2190	2017	-	-	9,74	11,6	11,9	4,3	6,59	3,01	2,29	50,57
103	2089-2115	2017	-	-	11,49	10,86	10,6	3,79	5,18	2,4	1,89	53,79
103	2089-2115	2019	1,96	-	13,07	13,07	14,16	4,8	6,32	4,8	3,26	38,56
104	2067-2138	08.01.19	-	0,07	16,44	12,33	13,01	6,85	8,22	5,48	5,48	32,19
105	2129-2200	04.01.19	-	-	12,27	10,45	10,45	5,45	5,91	4,1	3,64	47,73
106	2115-2163		-	0,09	12,22	11,0	11,61	4,58	5,81	3,36	3,06	48,27
Cpe,	днее по нижневизейс	кой залежи	0,56	0,14	12,82	12,15	12,53	5,26	7,03	3,71	3,10	43,12

2.3.3 Свойства и фракционный состав стабильного конденсата

Характеристика стабильного конденсата определена при лабораторных газоконденсатных исследованиях проб пластового газа, после проведения процессов сепарации, дегазации и дебутанизации. Физико-химические свойства исследованы по 10 пробам из скважин 1, 6, 102, 103, 104, 105 и 106 (таблица 2.3.5).

В среднем по нижневизейской залежи плотность и вязкость стабильного конденсата при 20 °C составили 0,7625 г/см³ и 1,23*10⁻⁶ м²/с соответственно. Содержание серы – 0,020 % массовых, парафинов – 0,30 % массовых, смолистых веществ – 0,37 % массовых. Температура застывания – ниже -46 °C. Конденсат относится малосернистым и малопарафинистым Температура начала кипения равна 81 °C, до 300 °C выкипает 91 % фракций. Таким образом, конденсат в основном состоит из легких бензиновых фракций.

2.3.4 Состав газа с устья скважин

По нижневизейской залежи всего исследовано 59 проб газа с устья из скважин 1, 6, 11, 101, 102, 103, 104, 105, 106 и по серпуховской залежи отобраны 3 пробы из одной скважины N8.

В ПЗ-1981 году из нижневизейской залежи были отобраны 21 проба из 6 скважин, из пермской залежи 22 пробы из 7 скважин. Так как эти данные были утерены, в работе ПЗ-2021 взята среднее значение состава газа из Протокола №8884 от 27.11.1981г. Средний состав газа по всем устьевым пробам приведен в таблице 2.3.6.

Нижневизейский горизонт. Состав газа с устья скважин (газ сепарации) близок к составу пластового газа. Газ преимущественно метанового состава с небольшим содержанием этана и повышенным содержанием азота. Средние значения содержания компонентов следующие: метана -77,13%, этана -6,60%, азота и редких газов -12,74%, в том числе содержание гелия среднем составляет 0,22%. Сероводород отсутствует.

Газ сепарации классифицируется как метановый по составу, «полужирный», азотный, гелиеносный, низкоуглекислый.

Серпуховский горизонт. Средние значения содержания компонентов следующие: метана -80,06 %, этана -8,10 %, азота и редких газов -7,68 %. Газ с устья скважин классифицируется как метановый по составу, азотный, низкоуглекислый.

Пермский горизонт. Средние значения содержания компонентов следующие: метана -48.2%, этана -4.4%, азота и редких газов -44.3%, в том числе содержание гелия среднем составляет 0.26%. Газ пермской залежи по составу метано-азотно-гелиевые.

Таблица 2.3.5 – Физико-химическая характеристика стабильного конденсата нижневизейского горизонта

аолица 2.3.5 – Физико-химическ	ан характерист	ika Ciaonii	BHUI U KUH,	денсата пи	жисьизси	ского гори	зипта				1	
Скважина		1	1	(<u> </u>	102	10	03	104	105	106	Среднее
И		2073-	2073-	2090-	2115-	2130-	2089-	2089-	2067-	2129-	2115-	-
Интервал		2110	2110	2210	2155	2190	2115	2115	2138	2200	2163	значе-
Дата		2018	2019	П3-2015	2018	2017	2017	2019	2019	2019	2019	ние
Плотность при 20 °C,	г/см ³	0,7618	0,7678	0,7535	0,7642	0,7472	0,7460	0,7592	0,7824	0,7838	0,7591	0,7625
Молекулярная мас		132,59	143,19	120	136,9	-	-	130,51	152,7	158,99	108,78	135,5
	серы	0,01	0,03	0,011	-	0,01	0,01	0,01	0,04	0,04	0,02	0,020
	меркаптанов	-	-	=	-	-	=	-	-	-	-	-
	сульфидов	-	-	-	-	-	-	-	-	-	-	-
Содержание,%	парафинов	0,004	0,12	-	0,17	0,20	0,7	0,04	не обн.	1,15	0,02	0,301
	масел	-	-	-	-	-	-	-	-	-	-	-
	смол	0,18	0,06	отс.	0,17	1,08	0,45	0,16	0,25	0,89	0,06	0,37
	асфальтенов	не обн.	не обн	-	не обн.	Отс.	Отс.	не обн.	не обн.	не обн.	не обн.	Отс.
Вязкость кинематическая,	При 20 °C	0,97	1,43	0,76	1,16	0,94	0,89	1,34	1,61	1,82	1,41	1,23
10 ⁻⁶ м ² сек ⁻¹	При 50 °C	0,78	1,17	-	0,91	-	0,68	1,15	1,13	1,28	1,19	1,04
	100	-	30	14	-	20	3	-	4	3	17,0	13,0
Выход фракций,% при	150	-	82	58	-	41	65	-	41	41	65,0	56,1
температуре ⁰ С	200		93	90		60	86	-	52	65,5	88,0	76,4
	300	-	-	-	-	-	94	-	84	96	-	91
Температура помутне	ния, ⁰ С	-	-	-	-	-	-	-	-	-	-	-
Температура застыван	ия, ⁰ С	-60	ниже - 60	-	-60	ниже - 20	ниже - 20	-	-20	-30	-60	-46
Температура начала кип	ения, ⁰ С	-	73	65	-	68	78	-	96	98	90	81

Таблица 2.3.6 – Состав газа отобранные с устья скважин

1 аоли	ца 2.3.0	<u>– Состав</u>	1 asa 010	ораннь	те с усты	и скваж	ип												
			ļ						1	Ко	мпонен	гный со	став	1	1			,	
№ скв.	Гори- зонт	Дата	Кисло- род	азот	Угле- кис- лый газ	метан	этан	Про- пан	изо- бутан	н- бутан	Пен- таны	Гек- саны	Геп- таны	Ок- таны	Гелий	Аргон	серо- водо- род	Относи- тельная плотность по воздуху	Плотность газа при 20°C, кг/м ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		16.10.17	0,03	12,29	0,15	78,49	6,41	1,78	0,25	0,34	0,21	0,046	0,006	0,007				0,671	0,808
		06.01.18	0,02	12,61	0,16	77,79	6,51	1,90	0,26	0,37	0,24	0,132	0,005	0,009				0,677	0,816
1	C11	02.09.18	0,02	11,81	0,20	78,96	6,24	1,93	0,26	0,36	0,20	0,011	0,003	0,001				0,669	0,806
1	C1v1	15.01.19	0,01	12,64	0,14	78,31	6,19	1,78	0,32	0,38	0,17	0,049	0,004	0,003				0,672	0,809
		06.07.19	0,03	12,83	0,11	77,97	6,45	1,81	0,23	0,36	0,16	0,037	0,003	0,002				0,672	0,809
		15.01.20	0,02	13,50	0,17	77,22	6,34	1,85	0,30	0,37	0,17	0,045	0,005	0,002				0,677	0,815
		17.10.17	0,01	10,63	0,21	79,13	7,04	2,06	0,28	0,39	0,20	0,043	0,004	0,007				0,671	0,809
		03.02.18	0,02	10,93	0,18	78,83	6,91	2,06	0,26	0,39	0,22	0,209	0,001	0,001				0,675	0,814
		17.07.18	0,01	11,18	0,22	78,07	7,15	2,32	0,24	0,41	0,26	0,121	0,005	0,007				0,680	0,819
6	C1v1	18.12.18	0,01	11,05	0,18	78,61	7,08	2,09	0,35	0,40	0,19	0,038	0,002	0,000				0,674	0,812
		23.02.19	0,02	11,01	0,16	79,42	6,39	1,98	0,33	0,41	0,21	0,067	0,002	0,001				0,670	0,807
		14.12.19	0,02	6,26	0,17	77,48	9,95	3,93	0,56	0,96	0,50	0,168	0,002	0,002				0,708	0,853
		03.02.20	0,02	11,17	0,19	78,91	6,79	2,05	0,25	0,36	0,20	0,057	0,099	0,004				0,671	0,809
		16.10.17	0,01	11,31	0,18	78,90	6,81	1,93	0,26	0,36	0,18	0,036	0,004	0,005				0,670	0,807
		07.03.18	0,02	11,83	0,18	77,85	7,15	2,06	0,26	0,38	0,23	0,036	0,005	0,009				0,677	0,815
101	C1v1	02.09.18	0,02	11,81	0,20	78,96	6,24	1,93	0,26	0,36	0,20	0,011	0,003	0,001				0,669	0,806
101	CIVI	06.03.19	0,03	11,74	0,19	77,88	6,72	2,04	0,45	0,52	0,31	0,116	0,003	0,005				0,683	0,822
		01.09.19	0,02	11,99	0,17	78,30	6,66	1,97	0,27	0,39	0,19	0,049	0,009	0,004				0,673	0,811
		13.03.20	0,02	12,05	0,16	78,55	6,46	1,88	0,29	0,38	0,19	0,029	0,002	0,001				0,671	0,809
		17.04.18	0,01	11,10	0,20	78,40	7,15	2,15	0,30	0,42	0,22	0,031	0,002	0,000				0,675	0,814
		17.09.18	0,01	11,19	0,22	78,30	6,90	2,32	0,30	0,44	0,27	0,033	0,008	0,002				0,678	0,817
102	C1v1	03.04.19	0,04	11,11	0,21	76,75	7,35	2,88	0,58	0,68	0,36	0,035	0,002	0,002				0,695	0,837
		14.10.19	0,03	11,65	0,19	77,80	7,16	2,21	0,25	0,42	0,22	0,060	0,006	0,003				0,678	0,817
		06.04.20	0,06	11,30	0,17	78,59	6,81	2,03	0,40	0,28	0,21	0,108	0,042	0,008				0,674	0,812

Продолжение таблицы 2.3.6

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		18.05.18	0,01	11,08	0,17	79,56	6,44	1,80	0,22	0,32	0,20	0,197	0,000	0,001				0,669	0,806
		04.10.18	0,02	11,20	0,19	79,75	6,24	1,87	0,22	0,32	0,17	0,012	0,002	0,002				0,664	0,800
103	C1v1	13.05.19	0,01	11,12	0,17	79,52	6,60	1,86	0,21	0,31	0,17	0,037	0,004	0,002				0,666	0,802
		04.11.19	0,01	11,81	0,18	78,49	6,66	1,89	0,31	0,41	0,18	0,039	0,016	0,005				0,673	0,811
		06.04.20	0,02	11,70	0,18	78,73	6,60	1,83	0,36	0,26	0,19	0,080	0,047	0,012				0,671	0,809
		23.02.19	0,02	13,17	0,17	77,35	6,39	1,94	0,35	0,40	0,18	0,038	0,001	0,001				0,677	0,816
104	C1v1	08.06.19	0,02	12,01	0,17	78,65	6,61	1,78	0,24	0,32	0,16	0,039	0,003	0,001				0,669	0,806
104	CIVI	05.12.19	0,02	13,07	0,16	77,79	6,37	1,79	0,24	0,34	0,17	0,034	0,004	0,002				0,673	0,810
		13.05.20	0,02	12,50	0,17	78,67	6,04	1,76	0,25	0,33	0,17	0,074	0,021	0,002				0,669	0,806
		08.06.19	0,03	13,34	0,09	77,54	6,40	1,85	0,22	0,32	0,17	0,032	0,004	0,002				0,673	0,811
105	C1v1	05.12.19	0,02	11,89	0,15	79,10	6,33	1,76	0,22	0,31	0,17	0,041	0,009	0,004				0,667	0,803
		13.05.20	0,02	11,60	0,17	79,60	6,19	1,69	0,22	0,30	0,12	0,056	0,025	0,007				0,663	0,799
106	C1v1	07.01.20	0,02	12,15	0,25	78,24	6,57	1,90	0,24	0,34	0,21	0,054	0,010	0,005				0,673	0,811
100	CIVI	13.06.20	0,02	11,90	0,17	78,69	6,41	1,83	0,26	0,35	0,18	0,114	0,049	0,016				0,672	0,810
	Среднее	C_1v_1	0,02	11,67	0,18	78,45	6,70	2,01	0,	69	0,21	0,063	0,011	0,004				0,674	0,812
	C ₁ v ₁ до 19	81г**		13,80		75,8	6,5	1,8	0	,7	-	-	-	-	0,22	0,08	отс	0,665	0,802
Средн	ee C ₁ v ₁ за	весь период	0,02	12,74	0,18	77,13	6,60	1,91	0,	69	0,21	0,063	0,011	0,004	0,22	0,08	отс	0,670	0,807
		24.09.14	0,01	7,60	0,06	80,35	8,15	2,34	0,37	0,60	0,36	0,14	0,007	0,009				0,676	0,814
8	C1sr	28.09.14	0,01	7,71	0,06	79,50	8,15	3,14	0,36	0,58	0,34	0,15	0,008	0,010				0,683	0,823
		17.10.14	0,02	7,75	0,05	80,31	8,00	2,15	0,75	0,58	0,25	0,10	0,005	0,012				0,676	0,815
	Среднее	C1sr	0,01	7,68	0,06	80,06	8,10	2,54	0,49	0,59	0,32	0,13	0,007	0,010				0,678	0,817
Пе	омь Р1с до	1981г**		44,3		48,2	4,4	1,5	0	,8	-	-	-	-	0,26	0,057	отс	-	-

Примечание: **-принятые среднее значение в ПЗ-1981г

2.3.5 Характеристика сырого конденсата

В 2018 году было отобрано 5 проб сырого конденсата из скважин 1, 101, 103 и 102+6Г. Пробы отбирались с тестового сепаратора и исследовались в промысловой лаборатории ТОО «Амангельдыгаз». По пробам определены компонентный и фракционный состав конденсата (таблица 2.3.7).

Конденсат с тестового сепаратора не содержит метана и содержит небольшое количество этана, пропана и бутана (до 5 %). По групповому углеводородному составу конденсат в основном состоит из метано-нафтеновых углеводородов (84-87 %). В пробах содержатся ненасыщенные углеводороды (алкены, алкины), которые обычно встречаются в газовых конденсатах в небольших количествах. Общее содержание ненасыщенных углеводородов составляет 4 %.

Проба из скважины 103 от 25.04.18 г. отличается повышенным содержанием ненасыщенных углеводородов (15,3 %). Также эта проба отличается по содержанию иных компонентов, фракционному составу и плотности, поэтому результаты по данной пробе были отбракованы.

Содержание ароматических углеводородов составляет 9,3-12,0 %. Температура начала кипения конденсата равна 31,7-40,8 °C. Конец кипения приходится на 262-274,5 °C, что соответствует в основном бензиновым и частично керосиновым фракциям. Плотность конденсата равна 0,7366-0,7400 г/см³.

Содержание меркаптановой серы очень низкое и составляет 0,00011-0,00135 %.

Габлица 2.3.7 – Компонентный состав сырого конденсата нижневизейского горизонта

Потраната 101 102+6 103 103* 103* 104* 105-08	<u>Таблица 2.3.7 – Ко</u>								1
Поразант Поразант Поразанта Поразантические углеводороды Поразантические углеводороды роды Поразантические углеводороды Поразантические угл	№								
Насыненные пентаны		, ,		21.05.18	22.05.18		23.04.18	25.04.18	Среднее
Насы- щенные углеводо- роды Ненасы- щенные углеводо- роды Ненасы- щенные углеводо- роды Тексаны 11.546 11.370 11.363 13.982 10.239 12.065 Тексаны 11.546 11.370 11.363 13.982 10.239 12.065 Тексаны 11.546 11.370 11.363 13.982 10.239 12.065 13.102 12.095 12.065 13.102 13.502 15.307 20.987 20.987 20.982 20.372 22.172 22.173 20.113 13.502 15.307 20.987 20.987 10.730 10.750 10.846 10.845 10.845 10.908 10.908 10.908 10.909 10.108 10.909 10.108 10.909 10.109 10.0089 10.0									значение
Насыщенные углеводороды пентаны 1,127 0,912 1,037 0,939 0,931 1,004 0,852 0,846 0,853 0,846 0,852 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,853 0,846 0,855 0,	Me	сто отбора	ļ.						
Насы- шенные углеводо роды Компонентный состав, % масс. Ненасы- щенные углеводо роды Компонентный состав, % масс. Компонентныя Компонентные Компонентные Компонентные Компонентные Компонентные Компонентные Компонентные Компонентн			этан	0,155	0,142	0,128	0,131	0,130	0,139
Менные утлеводо- роды пентаны 5,381 5,008 5,063 5,313 5,419 5,196 11,546 11,370 11,363 13,982 10,239 12,065 11,370 11,363 13,982 10,239 12,065 12,065 13,381 13,982 10,239 12,065 13,381 13,392 10,239 12,065 13,381 13,392 10,239 12,065 13,381 13,392 10,239 12,065 13,381 13,392 10,239 12,065 13,381 13,392 13,502 15,307 20,987 13,381 13,492 13,392 13,502 15,307 20,987 13,381 13,492 13,381 13,492 13,492 13,481			пропан	1,127	0,912	1,037	0,939	0,931	1,004
Компонентный состав, % масс. Ненасыщенные углеводор роды Тентаны Тента		Насы-	изо-бутан	0,931	0,750	0,846	0,853	0,846	0,845
Компонентный состав, % масс. Ненасыщенные углеводор роды Оттосительная плотностъ по воздуху Плотностътьата при 20°С, кг/м³ Вначало кипения Вначало кипения Отостав, % масе. Ненасьщения образороды Плотностътава при 20°С, кг/м³ Отостав, круги образороды О		щенные	н-бутан	2,225	1,703	2,009	2,393	3,280	
Компонентный состав, % масс. гентаны 22,922 22,372 25,153 13,502 15,307 20,987 октаны+высш октаны+высш октаны+высш октаны+высш пенные углеводо-роды бутен 0,272 0,242 0,285 0,916 0,515 0,429 ненасыненые углеводо-роды октен+ 0,598 0,308 0,635 - 1,162* 0,514 октен+ 0,643 0,929 0,550 - 10,227* 0,647 октен+ 3,051 2,002 2,102 2,496 3,203 2,413 Относительная плотность газа при 20°С, кт/м³ 0,6115 0,6143 0,6117 0,6125 0,5921* 0,6125 Плотность газа при 20°С, кт/м³ 0,7366 0,7400 0,7368 0,7378 0,7378 Начало кинения 34,4 31,7 39,5 40,8 - 36,6 Начальны кинения 36,6 0,7400 0,7368 0,7		углеводо-	пентаны	5,381	5,008	5,063	5,331	5,419	5,196
Компонентный состав, % масс. бутен од. 272 од. 242 од. 285 од. 916 од. 515 од. 429 Ненасыщенные углеводо роды гексен од. 598 од. 308 од. 635 од. 1,162* од. 647 состав, % масс. Ненасыщенные углеводо роды гексен од. 463 од. 929 од. 550 од. 10,227* од. 647 октен+ д. 3д. 51 од. 202 од. 102 од. 496 од. 3д. 30 од. 2,413 гексадиен арматические углеводороды Плотность газа при 20°С, кг/м³ 0,6115 од. 6143 од. 6117 од. 6125 од. 9921* од. 202 0,208 од. 203 0,243 0,243 0,274 од. 2496 од. 2496 од. 203 0,208 од. 2413 0,271 од. 2496 од. 2496 од. 2496 од. 2496 од. 2496 од. 2496 0,208 од. 2413 0,271 од. 2496		роды	гексаны	11,546	11,370	11,363	13,982	10,239	12,065
Состав, % масс. бутен бутен 0,272 0,242 0,285 0,916 0,515 0,429	I/a		гептаны	22,922	22,372	25,153	13,502	15,307	20,987
Ненасыщенные углеводороды гексен 0,598 0,308 0,635 - 1,162* 0,542 0,647 0,647 0,647 0,646 0,698 0,929 0,550 - 10,227* 0,647 0,647 0,646 0,698 0,929 0,550 - 10,227* 0,647 0,647 0,646 0,			октаны+высш	40,969	42,083	41,465	48,250	36,805	43,192
Фракционный углеводо-роды гептен октен+ октен+ золот золот золот роды 0,463 золот зол	CUCIAB, /0 MACC.		бутен	0,272	0,242	0,285	0,916	0,515	0,429
пенные углеводороды октен+ 3,051 2,002 2,102 2,496 3,203 2,413 тексадиен ароматические углеводороды 10,271 12,009 9,274 9,380 11,202 10,233 Относительная плотность по воздуху 0,6115 0,6143 0,6117 0,6125 0,5921* 0,6125 Плотность газа при 20°С, кг/м³ 0,7366 0,7400 0,7368 0,7378 0,7133* 0,7378		Homes	гексен	0,598	0,308	0,635	-	1,162*	0,514
Органо роды октен+ роды роды 3,051 гексадиен доматические углеводороды 3,051 гексадиен доматические углеводороды 2,009 гексадиен доматические углеводороды 10,271 гексадиен доматические углеводороды 10,6117 гексадиен доматические углеводороды 10,6117 гексадиен доматические углеводороды 10,6125 гексадиен доматические углеводороды 10,6125 гексадиен доматические доматические углеводороды 10,6125 гексадиен доматические доматические доматические углеводороды 10,6125 гексадиен доматические доматические углеводороды 10,6125 гексадиен доматические доматическа доматические доматическа доматические доматические доматическ			гептен	0,463	0,929	0,550	-	10,227*	0,647
Роды ароматические достав, °С постаток постав, °С постаток постав, °С постаток постав поста		1-	октен+	3,051	2,002	2,102	2,496	3,203	2,413
проды углеводороды углеводородороды углеводороды углеводороды углеводороды углеводороды углеводородороды углеводородородородородородородородородородо		•	гексадиен	0,089	-	0,092	-	0,208	0,090
Плотность газа при 20°С, кг/м³ 0,7366 0,7400 0,7368 0,7378 0,7133* 0,7378 В начало кипения 34,4 31,7 39,5 40,8 - 36,6 10% выкипает при Т, °С 84,8 87,1 84 81,9 27,84 84,5 20 % " 99,9 101,1 98,8 96 63,27 99,0 30 % " 109,6 110,3 107,8 105,6 80,72 108,3 40 % " 119,9 120,3 117,9 115,6 99,53 118,4 50 % " 130,8 130,6 128,7 125,7 114,77 129,0 Фракционный состав, °С 70 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 <th></th> <th>роды</th> <th>ароматические</th> <th>10,271</th> <th>12,009</th> <th>9,274</th> <th>9,380</th> <th>11,202</th> <th>10,233</th>		роды	ароматические	10,271	12,009	9,274	9,380	11,202	10,233
Плотность газа при 20°С, кг/м³ 0,7366 0,7400 0,7368 0,7378 0,7133* 0,7378 Начало кипения 34,4 31,7 39,5 40,8 - 36,6 10% выкипает при Т, °С 84,8 87,1 84 81,9 27,84 84,5 20 % " 99,9 101,1 98,8 96 63,27 99,0 30 % " 109,6 110,3 107,8 105,6 80,72 108,3 40 % " 119,9 120,3 117,9 115,6 99,53 118,4 50 % " 130,8 130,6 128,7 125,7 114,77 129,0 60 % " 144,4 142,8 142,5 140,4 117,5 142,5 70 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - 1,2 - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079	Относительная	плотност	ь по воздуху	0,6115	0,6143	0,6117	0,6125	0,5921*	0,6125
10% выкипает при Т, °C 84,8 87,1 84 81,9 27,84 84,5 20 % " 99,9 101,1 98,8 96 63,27 99,0 30 % " 109,6 110,3 107,8 105,6 80,72 108,3 40 % " 119,9 120,3 117,9 115,6 99,53 118,4 50 % " 130,8 130,6 128,7 125,7 114,77 129,0 Фракционный состав, °C 60 % " 144,4 142,8 142,5 140,4 117,5 142,5 80 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Остаток 1,1 1,4 1,2 - - 1,2 <				0,7366	0,7400	0,7368	0,7378	0,7133*	0,7378
Фракционный состав, °С 20 % " 99,9 101,1 98,8 96 63,27 99,0 Фракционный состав, °С 40 % " 119,9 120,3 117,9 115,6 99,53 118,4 50 % " 130,8 130,6 128,7 125,7 114,77 129,0 Фракционный состав, °С 60 % " 144,4 142,8 142,5 140,4 117,5 142,5 70 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - <th></th> <th>Начал</th> <th>о кипения</th> <th>34,4</th> <th>31,7</th> <th>39,5</th> <th>40,8</th> <th>-</th> <th>36,6</th>		Начал	о кипения	34,4	31,7	39,5	40,8	-	36,6
Фракционный состав, °C 20 % " 99,9 101,1 98,8 96 63,27 99,0 Фракционный состав, °C 109,6 110,3 107,8 105,6 80,72 108,3 40 % " 119,9 120,3 117,9 115,6 99,53 118,4 50 % " 130,8 130,6 128,7 125,7 114,77 129,0 Фракционный состав, °C 60 % " 144,4 142,8 142,5 140,4 117,5 142,5 70 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - -		10% выки	пает при Т, °С	84,8	87,1	84	81,9	27,84	84,5
Фракционный состав, °C 70 % 109,0 110,3 107,8 103,0 80,72 108,3 Фракционный состав, °C 50 % 130,8 130,6 128,7 125,7 114,77 129,0 60 % 144,4 142,8 142,5 140,4 117,5 142,5 80 % 162,1 158,5 161,2 160,3 131,79 160,5 80 % 183,2 180,8 186,3 187,4 150,82 184,4 90 % 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 -		20	% "	99,9	101,1	98,8	96		99,0
Фракционный состав, °C 70 % 119,9 120,3 117,9 113,0 99,33 118,4 60 % " 130,8 130,6 128,7 125,7 114,77 129,0 60 % " 144,4 142,8 142,5 140,4 117,5 142,5 80 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124		30	% "	109,6	110,3	107,8	105,6	80,72	108,3
Фракционный состав, °С 60 % " 144,4 142,8 142,5 140,4 117,5 142,5 80 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079		40	% "	119,9	120,3	117,9	115,6	99,53	118,4
Состав, °C 70 % " 162,1 158,5 161,2 160,3 131,79 160,5 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079		50	% "	130,8	130,6	128,7	125,7	114,77	129,0
Состав, С 70 % 162,1 138,3 161,2 160,3 131,79 160,3 80 % " 183,2 180,8 186,3 187,4 150,82 184,4 90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079	Фракционный	60	0/0 "	144,4	142,8	142,5	140,4	117,5	142,5
90 % " 228,7 223,1 227,5 231,4 174,15 227,7 Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079	состав, ⁰С	70	% "	162,1	158,5	161,2	160,3	131,79	160,5
Конец кипения 262,0 266,2 269,5 274,5 - 268,1 Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079		80	% "	183,2	180,8	186,3	187,4	150,82	184,4
Отогнано 95,0 95,8 95,9 96,2 - 95,7 Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079						227,5	231,4	174,15	227,7
Остаток 1,1 1,4 1,2 - - 1,2 Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079		Коне	ц кипения	262,0	266,2	269,5	274,5	-	268,1
Потери 3,9 2,8 2,9 3,8 - 3,4 Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079		От	огнано	95,0	95,8	95,9	96,2		95,7
Содержание меркаптановой серы, % 0,00135 0,000815 0,0001124 0,000899 - 0,00079		0	статок	1,1	1,4	1,2	-	-	1,2
		П	Готери	3,9	2,8	2,9	3,8	-	3,4
	Содержание мо	еркаптано	вой серы, %	0,00135	0,000815	0,0001124	0,000899	-	0,00079
COGCPMAINCE ANOPHET DIA CONCEN, MITH 55,72 20,05 10,22 7,05 - 21,4	Содержание х	лористых	солей, мг/л	33,42	26,05	16,22	9,83	-	21,4

Примечание: * – отбракованы

2.3.6 Гидрогеологические исследований

На месторождения Айракты в скважинах №№2, 3 и 10 исследования проводились вовремя бурения скважин пластоиспытателем на трубах в открытом стволе. Представительные пробы воды в этих скважинах не получены, так как в трубах поднята смесь бурового раствора с пластовой водой и признаками газа.

В 2013 году из серпуховского горизонта в скважине 8 была отобрана проба пластового флюида. В результате исследования, дегазированная вода по характеристикам – техническая, т.е. при проведении опробования скважина не доочистилась.

В период 2019-2020гг. Были отобраны 4 проб пластовой воды из скважин 106 и 107. Из них 3 пробы были исследованы в лаборатории Департамента аналитических исследований ТОО «КазНИГРИ» (скв.106) и 1 проба была проанализирована в лаборатории

ТОО «Stratum CER» (г.Актау). Исследования проб проводились в соответствии с существующими ГОСТами. Пробы отобранные из скважины 106 при 9мм и 11мм диафрагмах признаны не представительными из-за низких значений минерализации. По данной причине результаты этих проб не были включены в расчет средних значений.

По классификации Сулина вода месторождения Айракты является хлоркальциевого типа, общая минерализация в среднем составило 219,0 г/л (таблица 2.3.8)

Таблица 2.3.8 – Химический состав и физические свойства пластовых вод

				Плот-			Компо	нентны	ый сост	ав, мг/л	/ мг-эк	св/л		Мине-			Жест-	Тип
Сква-	Гори-	Дата отбора/	D.		Соле-ность,									рали-	pН		кость,	по
жина	30HT	Дата поступление	MAN	г/см ³	Ве ⁰	Сумма	Na++K+	Ca ²⁺	Mg^{2+}	Cl.	SO ₄ ²	HCO ³⁻	CO_3	зация,	hm	Сероводород	мг-	B.A.
		дата поступление		1/CN1	De									г/л			экв/л	Сулину
		<u>-</u>	7	1,122	15,2	<u>151396</u>	<u>42163</u>	13279	<u>1749</u>	<u>92090</u>	<u>1808</u>	<u>307</u>		171,8	5.8	н/о	791,59	III кл
		25.11.19Γ	/	1,122	13,2	5280,8	1833,9	662,6	143,8	2597,8	37,7	5,0	-	1/1,0	3,0	H/O	191,39	XK
106	C_1v_1	=	9*	1,118	14,6	146084	38956	12885	2749	89273	<u>1989</u>	<u>232</u>		146,1*	5,4	11/0	869,05	III кл
100	Clv1	25.11.19Γ*	9.	1,110	14,0	5127	1694,5	642,9	226,1	2518,3	41,4	3,8		140,1	3,4	н/о	809,03	XK
		Ξ.	11*	1,115	15,6	<u>143891</u>	<u>40915</u>	<u>10862</u>	<u>2329</u>	<u>87344</u>	<u>2115</u>	<u>326</u>		143,9*	5,2	н/о	733,58	III кл
		25.11.19Γ*	11.	1,113	13,0	5026,4	1779,7	542,0	191,5	2463,9	44,0	5,3	-	143,5	3,2	H/O	755,56	XK
107	C_1v_1	31.05.2020		1,168	20,99	<u>265931</u>	<u>67176</u>	33350	<u>1804</u>	<u>163600</u>	<u>1</u>	<u>0</u>	11/0	266,1	4,31	11/0	1816,0	ХК
107	C_1V_1	-		1,108	20,99	9230,0	2799,0	1667,5	148,5	4615,0	0,0	0	н/о	200,1	4,31	н/о	1010,0	AK
	Cr	оеднее С1v1		1,145	18,1									219,0	5,1	н/о	1303,8	

Примечание: н/о – не обнаружено

^{* –} пробы не кондиционны

2.4 Физико-гидродинамическая характеристика

Для физико-гидродинамической характеристики коллекторов месторождения Айракты использованы результаты определения на образцах керна пористости, проницаемости, кривые капиллярного давления методом полупроницаемой мембраны и относительной фазовой проницаемости методом центрифугирования.

Залежи Слул-А, Слул-Б.

Сопоставление пористости с проницаемостью по залежам нижнего визея (рис.2.4.1) построено по 334 образцам залежи C_1v_1 -A и 256 образцами залежи C_1v_1 -Б.

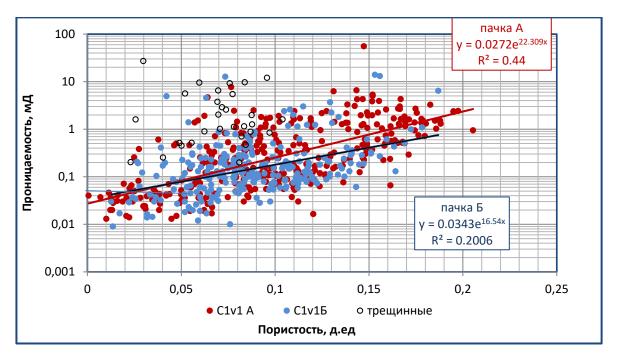


Рисунок 2.4.1 – Связь проницаемости с пористостью по залежам нижнего визея

По обеим пачкам связь проницаемости с пористостью описывается экспоненциальными уравнениями

$$C_1v_1$$
-A, $K\pi p=0.0272e^{22.39*K\pi}$ (R²=0.44) (2.4.1)

$$C_1 v_1$$
-Б, $K \pi p = 0.0343 e^{16.54*K\pi}$ ($R^2 = 0.20$) (2.4.2)

По залежи A связь между пористостью и проницаемостью относительно удовлетворительная, коэффициент аппроксимации равен 0,44 и гораздо ниже для пачки B-0,20, что является косвенным признаком неоднородности порового пространства

Приведенные уравнения были использованы для ориентировочного определения проницаемости по ГИС.

Кривые капиллярного давления, остаточная водонасыщенность.

Кривые ККД получены методом полупроницаемой мембраны в лаборатории ТОО STRATUM-КЭР (г. Актау). Эксперимент проводился на установке в системе дренирования газ-вода. Дренирование воды начиналось при давлении 1.5 рsi (0,01 МПа) и пошагово увеличено до 200 рsi (1.38 МПа). Для проведения эксперимента было отобрано 24 образца керна из пачек А и Б скважин 101, 106 и 107 с проницаемостью в диапазоне 0,05-2,44 *10⁻³мкм², пористостью от 0,04 до 0,14 д.ед.

В таблице. 2.4.1 приведена характеристика образцов по пористости и проницаемости а также результаты замеров водонасыщенности образца на каждом шаге и достигнутая водонасыщенность при 200 psi. На рис. 2.4.2 приведены кривые капиллярного давления.

Таблица 2.4.1 – Результаты эксперимента по определению капиллярного давления, полученные на

образцах керна пачек А и Б (С1V1)

	ах керна			Порис-	Газопрониц		Кап	иллярн	ое дав	ление	(psi)	
Скв	Пачка	Обра- зец	Глубина, отбора,м	тость д.ед	аемость *10 ⁻ ³ мкм ²	1.5	5	10	20	50	100	200
101	C_1v_1B	17ds	2100.7	0.074	0.552	1	1	1	1	1	1	1
101	C_1v_1B	20ds	2102.09	0.042	0.054	1	1	1	1	1	0.958	0.916
101	C_1v_1B	29ds	2106.29	0.098	0.059	1	1	1	1	1	0.91	0.803
101	C_1v_1B	39ds	2109.92	0.047	0.093	1	1	1	1	0.943	0.886	0.849
101	C_1v_1B	66ds	2126.07	0.083	0.091	1	1	1	1	1	0.968	0.883
101	C_1v_1B	71ds	2127.76	0.083	0.098	1	1	1	1	1	0.786	0.679
101	C_1v_1B	81ds	2130.48	0.054	0.327	1	1	1	1	0.900	0.768	0.701
101	C_1v_1B	83ds	2130.91	0.089	1.182	1	1	1	0.903	0.806	0.671	0.632
106	C_1v_1A	2ds	2107.79	0.067	1.444	1	1.00	1.00	1.00	0.983	0.965	0.924
106	C_1v_1A	5ds	2110.22	0.085	1.081	1	0.982	0.962	0.933	0.902	0.866	0.833
106	C_1v_1A	20ds	2118.23	0.084	1.120	1	0.992	0.981	0.963	0.942	0.923	0.896
106	C_1v_1A	21ds	2118.45	0.071	2.444	1	1.000	1.000	0.997	0.987	0.984	0.966
106	C_1v_1A	38ds	2126.37	0.068	1.088	1	1.000	1.000	1.000	0.979	0.963	0.946
106	C_1v_1A	43ds	2128.74	0.069	0.829	1	0.987	0.962	0.933	0.896	0.884	0.863
106	C_1v_1B	59ds	2135.91	0.073	0.284	1	1.000	1.000	1.000	0.981	0.961	0.956
106	C_1v_1B	62ds	2139.83	0.059	0.459	1	0.986	0.963	0.942	0.932	0.921	0.902
107	C_1v_1A	31ds	2124,98	0.114	0.952	1	1	1	1.00	1.00	0.785	0.601
107	C_1v_1B	45ds	2131.71	0.121	1.802	1	1	1	0.922	0.712	0.537	0.427
107	C_1v_1B	48ds	2133.01	0.136	0.608	1	1	1	0.977	0.758	0.569	0.412
107	C_1v_1B	52ds	2135.07	0.103	0.617	1	1	1	1.000	0.713	0.556	0.437
107	C_1v_1B	55ds	2136.60	0.115	2.238	1	1	1	0.865	0.654	0.463	0.402
107	C_1v_1B	58ds	2145.44	0.050	0.427	1	1	1	0.986	0.951	0.935	0.912
107	C_1v_1B	72ds	2153.76	0.080	0.872	1	1	1	1.000	0.985	0.956	0.821
107	C_1v_1B	73ds	2153.98	0.072	0.779	1	1	1	1.000	1.000	0.903	0.812

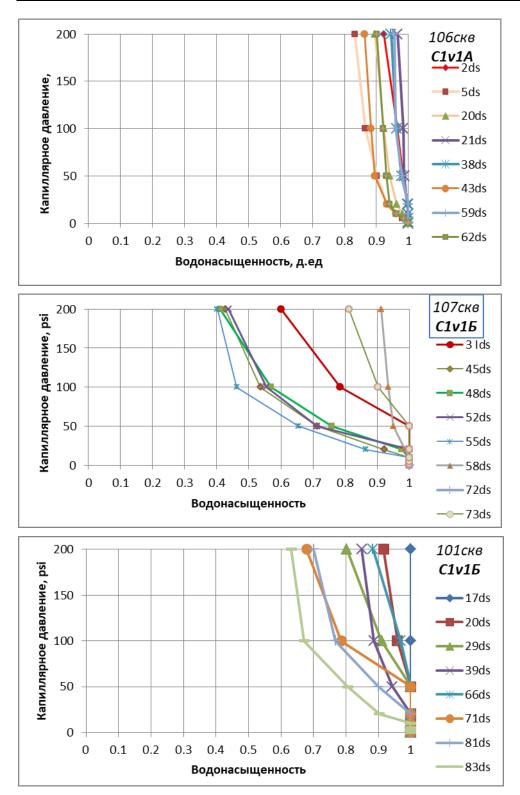


Рисунок 2.4.2 – Кривые капиллярного давления, полученные на керне пачек C₁v₁ -A и C₁v₁-Б

Пачка А. Эксперимент выполнен на семи образцах: шесть образцов керна скв.106 с пористостью от 0,067 д.ед до 0,085 д.ед,, на которых по виду ККД при 200 рsi достигнута неснижаемая водонасыщенность от 0,83 д.ед до 0,97 д.ед; на образце с пористостью 0,114

д.ед (скв.107), Кво=0,60, по виду капиллярной кривой неснижаемая водонасыщенность не достигнута.

Пачка Б. В эксперименте были задействованы образцы скважин 101 и 107. По виду капиллярных кривых из 7 образцов (скв.107) при максимальном капиллярном давлении 1,38 МПа (200рsi) остаточная водонасыщенность достигнута или близка к остаточной на образцах 58ds, 73ds (Кп 0,05 д.ед и 0,072 д.ед) и составляет 0,91 и 0,81 д.ед; на остальных образцах с пористостью 0,08 -0,136 д.ед неснижаемая водонасыщенность не достигнута , Кво колеблется в диапазоне 0,82 – 0,40 д.ед.

Вид кривых ККД на образцах скв. 101 аналогичен ККД скв.107, с той разницей, что эксперимент проводился на образцах с худшей пористостью (диапазон $0,042 \div 0,098$ д.ед) и проницаемостью ($0,054 \div 1,18*10^{-3}$ мкм²) . Остаточная водонасыщенность колеблется от 0,63 до 0,88 д.ед. Эксперимент на 17ds отбракован ввиду отсутствия кривой капиллярного давления.

В нашем контексте под термином остаточная водонасыщенность, имеется ввиду достигнутая водонасыщенность при $Pc=1,38M\Pi a$.

На рис 2.4.3 приведено сопоставление остаточной водонасыщенности (Ков) с пористостью (Кп) и проницаемостью (Кпр).

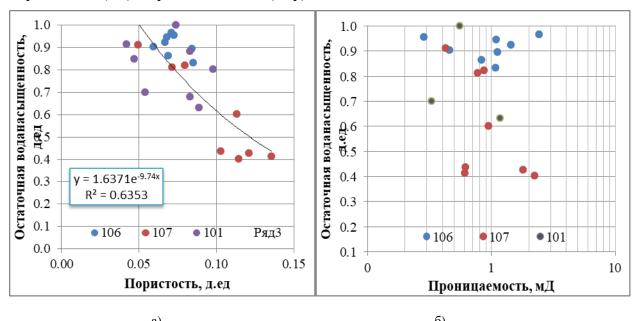


Рисунок 2.4.3 – Сопоставление остаточной водонасыщенности с а) пористостью и б) проницаемостью

Следуя рис. 2.4.3 связь остаточной водонасыщенности с пористостью описывается степенным уравнением с достаточно высоким коэффициентом аппроксимации

$$K_{BO}=1.637e^{-9.76K_{\Pi}}$$
 (R²=0.77) (2.3)

При сопоставлении Кво с проницаемостью связи не установлено. Отсутствие связи может быть связано со сложной структурой порового пространства.

Относительная фазовая проницаемость методом центрифугирования

Эксперимент выполнен на керне 3-х скважинах на 3-х составных образцах по 4 образца: скв.№101 (22ds, 24ds, 30ds, 36ds), скв.№106 (4ds, 15ds, 14ds, 50ds), скв.№107 (43ds, 44ds, 54ds, 56ds).

Петрофизическая характеристика образцов, на которых выполнялся эксперимент приведена в таблице (2.4.3).

Таблица 2.4.3 – Петрофизическая характеристика образцов керна, использованных для определения

фазовой проницаемости

<u>разовои пр</u>	опицасмос	1 11							
Скв.	Пачка	Образец	Глубина отбора, м	Кп., %	Плотн- ость зерновая, г/см ³	Прони- цаемость по газу *10 ⁻³ мкм ²	КІ *10 ⁻	Пелит.%	Карбонат -ность, %
106	A	4ds	2109.78	8.85	2.73	2.502	1.768	1.0	1.0
106	A	15ds	2113.77	14.95	2.69	1.927	1.363		
106	A	14ds	2114.10	16.32	2.68	1.681	1.179		
106	Б	50ds	2131.42	12.00	2.67	0.098	0.058	0.3	4.9
107	Б	43ds	2130.95	15.32	2.66	13.963	11.147		
107	Б	44ds	2131.71	13.38	2.65	1.802	1.269		
107	Б	54ds	2136.17	12.93	2.66	3.67	2.719		
107	Б	56ds	2137.00	12.14	2.66	1.228	0.846	2.1	3
101	Б	22ds	2103.07	14.48	2.70	0.1806			
101	Б	24ds	2104.16	14.03	2.70	0.1936			
101	Б	30ds	2106.65	14.32	2.68	0.0611			
101	Б	36ds	2109.01	14.72	2.68	0.1874			

На рис. 2.4.5 приведены кривые относительной фазовой проницаемости

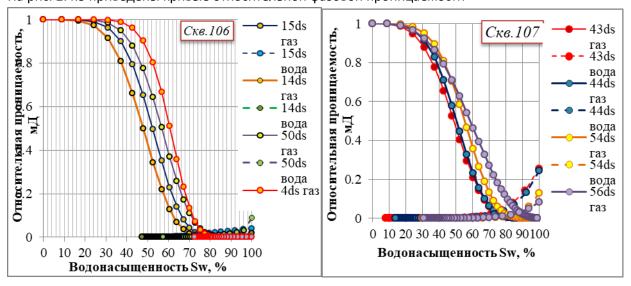


Рисунок 2.4.5 — Относительные фазовые проницаемости в системе газ-вода по керну залежи A в скважинам 106 и залежи Б в скважине 107

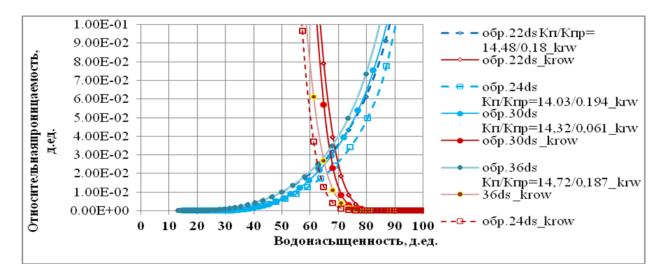


Рисунок 2.4.6 – Относительные фазовые проницаемости в системе газ-вода по керну залежи Б в скважине №101

Фазовые проницаемости воды и газа одинаковы при значениях коэффициента водонасыщенности 0,64-0,70 д.ед или коэффициенте газонасыщенности 0,30-0,36 на образцах с пористостью 14.39 % (скв.101); в скважинах 106, 107 на образцах с пористостью 13,03 % и 13,44 % при коэффициентах водонасыщенности в пределах 0,75 -0,85 д.ед или коэффициенте газонасыщенности 0,15-0,25.

2.5 Запасы газа и конденсата

По месторождению Айракты в 1981 году был первый подсчет запасов. В ГКЗ СССР были утверждены запасы только по залежам пермской и нижневизейской, а по турне были исключены, из за небольших размеров залежи.

По пермской залежи геологические запасы газа составили по категории $C_1 - 780$ млн.м³; по категории $C_2 - 2349$ млн.м³, геологические/извлекаемые запасы конденсата составили по категории $C_1 - 18$ тыс.т/16 тыс.т; по категории $C_2 - 44$ тыс.т/42 тыс.т (Протокол № 8884 от 27.11.1981г). Необходимо отметить, что при рассмотрении и утверждении запасов УВ на ГКЗ СССР по пермскому горизонту были внесены исправления, но к протоколу не приложена утвержденная таблица запасов газа и конденсата с подсчетными параметрами.

На Государственном балансе РК по состоянию изученности на 02.01.2014г. были утверждены запасы только по нижневизейской залежи (Протокол № 1531 – 15 – У от 23.02.2015).

В 2021 году ТОО «Проектный институт «ОРТІМИМ» был выполнен «Пересчет запасов газа и попутных компонентов ...» по состоянию изученности на 01.07.2020 г.

Согласно Протоколу ГКЗ РК №2349-21-У от 11.10.2021 г. на Государственный баланс РК приняты геологические / извлекаемые запасы в следующих количествах:

пластового газа

 $C_1 - 5393 \text{ млн.м}^3 / 2627 \text{ млн.м}^3$

 $C_2 - 948 \text{ млн.м}^3 / 356 \text{ млн.м}^3$;

конденсата

 $C_1 - 194$ тыс.т / 91 тыс.т,

 $C_2 - 34$ тыс.т / 11 тыс.т.

Запасы сухого газа составляют по категории: C_1 - 5338 млн.м³; C_2 - 939 млн.м³.

В таблице 2.5.1 представлены подсчитанные начальные геологические и извлекаемые, остаточные запасы пластового газа, в таблице 2.5.2 – подсчитанные запасы этана, пропана, бутанов, гелий в газе.

Таблица 2.5.1 – Месторождение Айракты. Подсчет начальных запасов газа и конденсата по состоянию на 01.07.2020 г.

1 40,1	ица 2.5.1	1 – Miecio	рожде	ние Аира	<u>кты, 110д</u>	<u>счет нача</u>	льных зап	асов газ	а и кон	денсата				.07.2020	Γ.										1				1
Гори-	Блок		Кате- гори я	ности, тыс м ²	Средне- взвеш. эффект. газонасы -шенная	Объем газонась - щенных	доли ед.		Пластовое		Бойля- Мариотта		Попр	мегапас- калей в	евода апас- ней в	пере- вода	Запасы сухого	1 -	Извле- каемые запасы	газа, _{мпн.м³}	запась	Остаточные запасы газа, млн.м ³ жа		Геологи ческие запасы конден-	коэфф. извле- чение	Извле- каемые запасы конден	е конден- ы сата, н тыс.т	Остато конден тыс	нсата,
залежь		щения	Я	TLIC M2	-шенная толщина , м	I	открытой порис- тости	газона- сыщен- ности	пачал	Конеч -ное	Нача ль- ное	Конеч- ное	ра- туру	физи- ческие атмосф	гязя.	запасов на сухой газ	мпн м3	1	газа, млн.м ³	01.0 7.2 1 г			ного конденс., г/м ³	сата	конден- сата	-сата, тыс.т	на 01.07.21г	гео- логи- ческие	извле каем ые
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	I (р-н	Г	-	1942	4,0	7768	0,16	0,55	27,1	0,1	1,10	1,0	0,848	9,87	170	0,99		0,380		21		23	35,88	6	0,368	2	20	2)	30
	скв 2)	ГВ	C2	1485	2,7	4010	0,16	0,55	27,1		1,10	1,0	0,848	9,87	88	0,99		0,380					35,88	3	0,368	1			
		Г		87	10,6	922	0,10	0,53	27,1	0,1	1,10		0,848	9,87		0,99		0,506		-	-		35,88	1	0,308	0			
	І (р-н	1	C1	0/	10,0	922	0,13	0,01	27,1	0,1	1,10	1,0	0,040	9,07	21	0,99	21	0,300	11				33,00	1	0,490	U			
	скв 102)	ГВ	CI	1600	4,5	7200	0,15	0,61	27,1	0,1	1,10	1,0	0,848	9,87	164	0,99	162	0,506	83				35,88	6	0,490	3			
			C1	1687	4,8	8122									185		183		94					7		3			
	всего по	э I блоку	C2	3427	3,4	11778									258		255		98					9		3			
		Г	C2	3546	1,9	6825	0,18	0,68	27,1	0,1	1,10	1,0	0,848	9,87	208	0,99		0,380					35,88	7	0,368	3			
C_1v_1 -A		ГВ	C2	1015	1,9	1443	0,18	0,68	27,1	0,1	1,10	1,0	0,848	9,87	44	0,99		0,380		-			35,88	2	0,368	1			
	II	Г		9545	8,1	77707	0,18	0,68	27,1	0,1	1,10	1,0	0,848	9,87	2365	0,99		0,506		-	-		35,88	85	0,308	42			
	-	ГВ	C1	3379	3,9	13011	0,18	0,68	27,1		1,10		0,848	9,87	396	0,99		0,506		-	 		35,88	14	0,490	7			
		1 D	C1	12924		90718	0,10	0,08	27,1	0,1	1,10	1,0	0,040	9,07	2761	0,99	2733	0,300	1397	-	-		33,00	99	0,490	49			
	всего по	II блоку	C1 C2		7,0												250		96					99					
		Г	C2	4561	1,8	8268	0.15	0.40	27.1	0.1	1 10	1.0	0.040	0.07	252	0.00		0.200					25.00	9	0.260	4			
	III	I	C2	853	2,2	1877	0,15	0,40	27,1	0,1	1,10	1,0	0,848	9,87	28	0,99		0,380					35,88	1	0,368	0			
		ГВ	CO	486	1,9	923	0,15	0,40	27,1	0,1	1,10	1,0	0,848	9,87	14	0,99		0,380					35,88	1	0,368	0			
	всего по	III блоку	C2	1339	2,1	2800				1					42		42	-	16					2		0			
итог	го по С1у	71-A:	C1	14611	6,8	98840									2946		2916		1491					106		52			
	- I		C2	9327	2,4	22846	0.44	0.70	25.1	0.4	1.10	4.0	0.040	0.05	552	0.00	547	0.505	210				27.00	20	0.400	7			
	l	I.	G1	282	12,3	3469	0,14	0,59	27,1	0,1	1,10	1,0	0,848	9,87	71	0,99	70	0,506	36				35,88	3	0,490	1			
	(р-н скв 102)	ГВ	C1	1852	5,8	10742	0,14	0,59	27,1	0,1	1,10	1,0	0,848	9,87	221	0,99	219	0,506	112				35,88	8	0,490	4			
	всего по	о I блоку	C1	2134	6,7	14211									292		289		148					11		5			
		Γ	C2	3034	3,8	11439	0,14	0,64	27,1	0,1	1,10	1,0	0,848	9,87	255	0,99	252	0,380	97				35,88	9	0,368	3			
СГ	11	ГВ	C2	1528	2,6	3996	0,14	0,64	27,1	0,1	1,10	1,0	0,848	9,87	89	0,99	88	0,380	34				35,88	3	0,368	1			
C_1 v ₁ -Б	II	Γ	C1	11105	6,3	70280	0,14	0,64	27,1	0,1	1,10	1,0	0,848	9,87	1566	0,99	1550	0,506	792				35,88	56	0,490	27			
		ГВ	C1	2097	3,6	7517	0,14	0,64	27,1	0,1	1,10	1,0	0,848	9,87	167	0,99	165	0,506	85				35,88	6	0,490	3			
		п.с	C1	13202	5,9	77797									1733		1715		877					62		30			
	всего по	II блоку	C2	4562		15435									344		340		131					12		4			
	III	ГВ	C2	1218	1,4	1705	0,14	0,45	27,1	0,1	1,10	1,0	0,848	9,87	27	0,99	27	0,380	10				35,88	1	0,368	0			
	всего по	III блоку	C2	1218	1,4	1705									27		27		10					1		0			
	C	г.	C1	15336	6,0	92008									2025		2004		1025					73		35			
итог	о по С1v1	1 -D :	C2	5780	3,0	17140									371		367		141					13		4			
В	СЕГО П	0	C1	29947	6,4	190848									4971		4920		2516	128,63	4791,37	2387,37		179		87	1,66	177,34	85,34
НИЖИН ОТ	ЕВИЗЕЙ(РИЗОНТ		C2	15107	2,6	39986									923		914		351					33		11			
C ₁ Sr	III	ГВ	C2	2108	1,4	2951	0,10	0,53	15,8	0,1	1,18	1,0	0,863	9,87	25	0,99	25	0,197	5		<u> </u>		35,88	1	0,200	0			
C151	II	ГВ	C1	4416	4,0	17664	0,10	0,72	15,8	0,1	1,18	1,0	0,863	9,87	422	0,99		0,263					35,88	15	0,266	4			
		по IV	C1	4416	4,0	17664	0,21	5,72	15,0	0,1	1,10	1,0	0,003	7,07	422	0,77	418	0,203	111				22,00	15	0,200	4			
	ьсего бло		C2	2108	1,4	2951			1	1					25		25		5	 				1		0			
D	СЕГО П		C1	4416	4,0	17664				+		-			422		418	 	111	-	-			15		4			
	YXOBCI				7,0				-	+					722			-		-				13		-			
	у ДОВСТ РИЗОНТ		C2	2108	1,4	2951									25		25		5					1		0			
	того п		C1	34363	6,1	208512									5393		5338		2627	128,63	4791 37	2387 37		194		91	1,66	177,34	85 34
	рожді		C2	17215	2,5	42937			1	1					948		939		356	120,00	1.71,01	_001,01		34		11	1,00	111,554	55,54
	л		C2	11210	-,0	12/01	I .	<u> </u>	l	I		I	<u> </u>		710		,,,		550						<u> </u>	**		1	<u> </u>

Таблица 2.5.2 – Месторождение Айракты. Подсчёт запасов этана, пропана, бутанов, гелий в газе по состоянию на 01.07.2021 г.

·	Кате- гори	орождение Айракты. Запасы газа, млн.м ³		добыча газа,	Остаточные запасы газа, млн.м3		Потенциальное содержание, г/м ³		Содер	Запасы , тыс.т.							Остаточные запасы , тыс.т.							Остаточные запасы гелия млн.м ³		
Горизонт, залежь	я запа-	геологи-	извле-	млн.м3 на	геологи	извле-		Пno-	бутан	жание гелия,		ана	проі Гео-	тана Г	бута: Гео-	нов	<u> </u>	ана	пропа		бут	анов	Гео-	извле	Гео-	Изв-
	сов	ческие	каемые	01.07.21r ·	-ческие	каемые	і эгана	пана		%	Гео- логи- ческие	извле- каемые	логи- ческие	извле- каемые	логи- ческие	извле- каемые	Гео- логи- ческие	извле- каемые	Гео- логи- ческие		1 ео- логи- ческие	извле- каемые	логи- ческие	-кае- мые 25 2,3 0,3 1,6 0,2 3,8 0,5 - 0 0 3,8	логи- ческие	пекае мые
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
C_1v_1 -A	C_1	2946	1491				79,42	37,6	17,41	0,153	234	118,4	110,8	56,1	51,3	26							4,5	2,3		
CIVI-A	C_2	552	210				79,42	37,6	17,41	0,153	43,8	16,7	20,8	7,9	9,6	3,7							0,8	0,3		
С1V1-Б	C_1	2025	1025				79,42	37,6	17,41	0,153	160,8	81,4	76,1	38,5	35,3	17,8							3,1	1,6		
C[V]-D	C_2	371	141				79,42	37,6	17,41	0,153	29,5	11,2	13,9	5,3	6,5	2,5							0,6	0,2		
итого по	\mathbf{C}_{1}	4971	2516	128,63	4842,37	2387,37					394,8	199,8	186,9	94,6	86,5	43,8	384,6	189,6	182,1	89,8	84,3	41,6	7,6	3,8	7,4	3,6
C_1v_1	C_2	923	351								73,3	27,9	34,7	13,2	16,1	6,1							1,4	0,5		
C_1 sr	C_1	422	85				101,31	46,59	24,18	-	42,8	8,6	19,7	4	10,2	2,1							-	-		
Clsi	C_2	25	5				101,31	46,59	24,18	-	2,5	0,5	1,2	0,2	0,6	0,1							-	-		
итого по	$\mathbf{C_1}$	422	111								42,8	8,6	19,7	4	10,2	2,1							0	0		
C ₁ sr	C ₂	25	5								2,5	0,5	1,2	0,2	0,6	0,1							0	0		
Всего по	C ₁	5393	2627								437,5	208,4	206,6	98,6	96,7	45,9	384,6	189,6	182,1	89,8	84,3	41,6	7,6	3,8	7,4	3,6
месторож- дению	C ₂	948	356								75,8	28,4	35,9	13,4	16,7	6,2							1,4	0,5		

З ПОДГОТОВКА ГЕОЛОГО-ПРОМЫСЛОВОЙ И ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ОСНОВЫ ДЛЯ ПРОЕКТИРОВАНИЯ РАЗРАБОТКИ

3.1 Анализ результатов газогидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов

На месторождении Айракты в период ОПЭ проводились 43 газодинамических исследований на стационарных (МУО) и нестационарных (КВД) режимах фильтрации, из них 1 исследование методом МУО и 40 исследований методом КВД на горизонте нижневизей (C₁v₁), и 2 исследования КВД на горизонте серпуховское (C₁sr).

Газодинамические исследования методом неустановившихся отборов — записью кривой восстановления давления (КВД), проведены во всех скважинах, которые позволили уточнить коэффициенты фильтрационных сопротивлений (КФС), а также другие фильтрационно-емкостные свойства (ФЕС) коллекторов призабойной зоны скважин (ПЗС). А также были замерены забойные давления по всем добывающим скважинам.

В таблице 3.1.4 приведены результаты газодинамических исследований по всем скважинам месторождения, за период 2017-2021 гг.

Начальное пластовое давление по нижневизейскому горизонту взято по скважине $№1\Gamma - 27,1$ МПа, по серпуховскому горизонту -15,53 МПа.

Ниже по тексту приводятся результаты ГДИС исследований по скважинам.

<u>В 2017</u> было проведено 2 газодинамических исследований методом КВД по двум скважинам (№1Г и №6).

В скважине 1Г, 29 сентября 2017 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором КСАТ-ПЛТ на глубине 2080 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Проницаемость составила 0,784 мД, пластовое давление — 15,6 МПа, определенная отрицательная величина скин-фактора (-1,47) свидетельствует об улучшенном состоянии призабойной зоны пласта. Из-за короткого времени исследования пластовое давление возможно не восстановленное и при дальнейших исследованиях рекомендуется увеличить длительность регистрации КВД как минимум до 15 дней.

В скважине 6Г, с 8 по 9 октября 2017 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором КСАТ-ПЛТ на

глубине 2120 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Проницаемость составила 0,480 мД, пластовое давление — 13,3 МПа, определенная отрицательная величина скин-фактора (-1,7) свидетельствует об улучшенном состоянии призабойной зоны пласта. Из-за короткого времени исследования пластовое давление возможно не восстановленное и при дальнейших исследованиях рекомендуется увеличить длительность регистрации КВД как минимум до 15 дней.

<u>В 2018</u> было проведено 13 газодинамических исследований по пяти скважинам (№№1 Γ , 6 Γ , 101, 102, 103), из них 7 исследований методом КВД и 6 замеров забойного давления.

С 27 по 28 июня 2018 г., *на скважине 1Г* ТОО «УзеньГеоСервис» провели ГИС-к исследования на профиль притока с оценкой текущей насыщенности пластов-коллекторов методом импульсно нейтрон-нейтронного каротажа (ИННК), с измерениями термометрии и барометрии в статическом и динамическом режимах забойного давления и последующим снятием КВД.

Результаты КВД были обработаны в программном продукте «Saphir NL Ecrin ». По результатам интерпретации КВД было определено пластовое давление, а также другие фильтрационно-емкостные свойства (ФЕС). Пластовое давление составило 11,37 МПа, однако учитывая, что период исследования методом КВД составил 3 дня, определенное пластовое давление является непредставительным.

С 1 августа по 3 сентября 2018 г., в скважине 1Г провели исследования методом КВД специалистами ТОО «Алстрон», обработка данных производилась в программном комплексе «Рап System». Обработка кривой давления по методике Хорнера позволила определить ФЕС пластов-коллекторов. По результатам определена проницаемость, которая составила 0,42 мД, пластовое давление — 16,6 МПа, забойное давление — 8,7 МПа. Скинфактор показал отрицательное значение -2,23, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 6Г, с 1 августа по 1 сентября 2018 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на верхний интервал перфорации *(2090 м)* при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,081 мД, пластовое давление — 21,2 МПа, забойное давление — 7,8 МПа. Скин-фактор показал

отрицательное значение -1,68, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 101, с 1 по 25 августа 2018 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на верхний интервал перфорации (2074.5 м) при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,03 мД, пластовое давление — 20,7 МПа, забойное давление — 7,3 МПа. Скин-фактор показал отрицательное значение -2,48, что говорит о хорошем состоянии призабойной зоны скважины.

С 1 августа по 1 сентября 2018 г. *в скважине 102* провели исследования методом КВД специалистами ТОО «Алстрон», обработка данных производилась в программном комплексе «Рап System». Обработка кривой давления по методике Хорнера позволила определить ФЕС пластов-коллекторов. По результатам определена проницаемость, которая составила 0,54 мД, пластовое давление — 15,0 МПа, забойное давление — 8,6 МПа. Скинфактор показал отрицательное значение -2,13, что говорит о хорошем состоянии призабойной зоны скважины.

С 29 по 30 июня 2018 г., *в скважине 103* ТОО «УзеньГеоСервис» провели ГИС-к исследования на профиль притока с оценкой текущей насыщенности пластов-коллекторов методом импульсно нейтрон-нейтронного каротажа (ИННК), с измерениями термометрии и барометрии в статическом и динамическом режимах забойного давления и последующим снятием КВД. По кривой МН давление на забое в динамическом режиме составило 8,2 МПа, в статическом – 9,3 МПа.

Результаты КВД были обработаны в программном продукте «Saphir NL Ecrin ». По результатам интерпретации КВД было определено пластовое давление, а также другие фильтрационно-емкостные свойства (ФЕС). Пластовое давление составило 9,4 МПа, однако учитывая что, период исследования методом КВД составил 4 дня, результат определения пластового давления является непредставительным.

С 1 по 25 августа 2018 г. проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на верхний интервал перфорации (2089 м) при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,03 мД,

пластовое давление — 19,2 МПа, забойное давление — 7,7 МПа. Скин-фактор показал отрицательное значение -5,64, что говорит о хорошем состоянии призабойной зоны скважины.

<u>В 2019</u> было проведено 14 газодинамических исследований, одно исследование методом МУО и 13 исследований методом КВД по семи скважинам (№№1 Γ , 6 Γ , 101, 102, 103, 104, 105).

С 1 августа по 21 августа 2019 г., *в скважине 1Г* провели исследования методом КВД специалистами ТОО «Алстрон», обработка данных производилась в программном комплексе «Рап System». Обработка кривой давления по методике Хорнера позволила определить ФЕС пластов-коллекторов. По результатам определена проницаемость, которая составила 0,42 мД, пластовое давление — 17,0 МПа, забойное давление — 10,7 МПа. Скинфактор показал положительное значение 1,24, что может указывать на загрязнение призабойной зоны скважины.

27 декабря 2019 г. в скважине 1Г было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором Сова-3 №23 на глубине 2068 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Определенная отрицательная величина скин-фактора (-2,04) свидетельствует об улучшенном состоянии призабойной зоны пласта. При дальнейших исследованиях рекомендуется увеличить длительность регистрации КВД как минимум до 15 дней.

В скважине 6Г, с 1 августа по 19 августа 2019 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на интервале перфорации 2115.0-2155.0 м при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,090 мД, пластовое давление — 19,6 МПа, забойное давление — 6,8 МПа. Скин-фактор показал отрицательное значение -2,2, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 101, С 1 августа по 19 августа 2019 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на верхний интервал перфорации (2074.5 м) при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие

параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,048 мД, пластовое давление — 17,2 МПа, забойное давление — 9,7 МПа. Скин-фактор показал отрицательное значение -3,42, что говорит о хорошем состоянии призабойной зоны скважины.

12 декабря 2019 г. в скважине 101 было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором АГАТ-К9-Т2 №602 на глубине 2070 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Определенная положительная величина скин-фактора (0,89) свидетельствует о некотором загрязнении призабойной части коллектора. При дальнейших исследованиях рекомендуется выполнять ежесуточный замер дебита газа во время и перед проведением ГДИС, длительность КВД необходимо увеличить как минимум до как минимум до 15 дней.

В скважине 102, С 1 августа по 19 августа 2019 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на интервале перфорации 2135 м при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,106 мД, пластовое давление — 14,5 МПа, забойное давление — 8,3 МПа. Скин-фактор показал отрицательное значение -4,92, что говорит о хорошем состоянии призабойной зоны скважины.

С 15 по 16 июля 2019 г. в скважине 102 было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором Сова-3 №23 на глубине 2061,2 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Определенная отрицательная величина скин-фактора (-0,596) свидетельствует об улучшенном состоянии призабойной зоны пласта. В связи с недовосстановленностю интерполированного пластового давления, в дальнейших исследованиях рекомендуется увеличить длительность регистрации КВД как минимум до 15 дней.

В скважине 103, С 1 августа по 19 августа 2019 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на интервале перфорации 2089.0-2115.0 м при помощи специализированного программного продукта PanSystem. По

результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,193 мД, пластовое давление — 17,3 МПа, забойное давление — 8,8 МПа. Скин-фактор показал отрицательное значение -6, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 104, с 11 января по 16 января 2019 г. проведены газодинамические исследования методом установившегося режима посредством замены шайбы и методом неустановившегося режима запись КВД.

Газодинамические исследования в интервалах 2067-2072, 2073-2075, 2079-2100, 2106-2115, 2134-2138 м проводились 11-16.01.2019 г. Сначала были проведены исследования методом установившихся отборов (МУО) на 7-ми режимах работы путём изменения диаметра шайбы в следующем порядке: 4 мм - 5 мм - 6 мм - 7 мм - 6 мм - 5 мм - 7 мм — 7 мм. На КВД скважина простояла 4 дня (13 — 16 января 2019 г.) (табл. 3.1.2-3.1.3).

На исследование КВД скважина была остановлена на 31.30 час. Дебит газа в скважине перед закрытием на КВД составляло 13.5 тыс. м³/сут. На замер КВД в данной скважине было выделено достаточное время для восстановления давления. Поток в пласте остается радиальным, но его интенсивность резко снижается из-за аномально высокого гидравлического сопротивления призабойной зоны. Скин фактор кольматации — 7.76, связанное с ухудшением проницаемости призабойной зоны вследствие загрязнения пласта (в процессе бурения, освоения, капитального ремонта).

С 1 августа по 19 августа 2019 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на интервале перфорации 2089 м при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,165 мД, пластовое давление — 22,0 МПа, забойное давление — 9,5 МПа. Скин-фактор показал отрицательное значение -4,11, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 105, 29 января 2019 г. проведено газодинамическое исследование методам неустановившейся фильтрации (КВД) специалистами ТОО «УзеньГеоСервис», интерпретация ГДИС выполнялась в программном модуле Saphir NL.

Замеры давления в скважине выполнены прибором Кса-Т-МО на глубине 2130 м (верхний интервал перфорации). По результатам интерпретации КВД было определено пластовое давление, а также другие фильтрационно-емкостные свойства (ФЕС). Пластовое

давление составило 25,3 МПа, однако нужно отметить, что период исследования методом КВД составляет 4 дня, скин-фактор показал отрицательное значение -1,88, что говорит о хорошем состоянии призабойной зоны скважины.

С 17 по 18 июля 2019 г. ТОО «УзеньГеоСервис» провели ГИС-к исследования на профиль притока с оценкой текущей насыщенности пластов-коллекторов методом импульсно нейтрон-нейтронного каротажа (ИННК), с измерениями термометрии и барометрии в статическом и динамическом режимах забойного давления и последующим снятием КВД.

Результаты КВД были обработаны в программном продукте «Saphir NL Ecrin». По результатам интерпретации КВД было определено пластовое давление, а также другие фильтрационно-емкостные свойства (ФЕС). Пластовое давление составило 15,4 МПа, однако учитывая, что период исследования методом КВД составил 2 дня, результат определения пластового давления является непредставительным.

С 1 августа по 19 августа 2019 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на интервале перфорации 2129.0-2200,0 м при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,029 мД, пластовое давление — 27,2 МПа, забойное давление — 15,2 МПа. Скин-фактор показал отрицательное значение -1,36, что говорит о хорошем состоянии призабойной зоны скважины.

В 2020 было проведено 10 газодинамических исследований методом КВД по девяти скважинам (№№1 Γ , 6 Γ , 101, 102, 103, 104, 105, 106, 8 Γ).

В скважине 1Г С 30 июля по 15 августа 2020 года проведены исследования методом КВД специалистами ТОО «Алстрон», обработка данных производилась в программном комплексе «Рап System». Обработка кривой давления по методике Хорнера позволила определить ФЕС пластов-коллекторов. По результатам определена проницаемость, которая составила 0,42 мД, пластовое давление — 18,0 МПа, забойное давление — 7,7 МПа. Скинфактор показал положительное значение 1,66.

В скважине 6Г, с 28 июля по 18 августа 2020 года проведено газодинамическое исследование методом КВД. Обработка данных проводилась при интервале перфорации (2115.0-2155.0 м) с помощью специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры:

проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,182 мД, пластовое давление — 18,3 МПа, забойное давление — 10,1 МПа. Скин-фактор показал отрицательное значение -1,99, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 101, с 28 июля по 18 августа 2020 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационноемкостные свойства. Замеры давления в скважине выполнены прибором АЦМ-6 №6801 на глубине 1900 метров. Обработка данных как кривой восстановления давления выполнялась при помощи программного продукта PanSystem. Определенная отрицательная величина скин-фактора (-3,9) свидетельствует об улучшенном состоянии призабойной зоны скважины. Интерполированное пластовое давление составило 15,3 МПа. Проницаемость составила 0,042 мД.

В скважине 102, с 28 июля по 15 августа 2020 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором АЦМ-6 №6801 на глубине 2000 метров. Обработка данных как кривой восстановления давления выполнялась при помощи программного продукта PanSystem. Определенная отрицательная величина скин-фактора (-4,65) свидетельствует об улучшенном состоянии призабойной зоны скважины. Интерполированное пластовое давление составило 13,5 МПа. Проницаемость составила 0,051 мД.

В скважине 103, С 28 июля по 17 августа 2020 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором АЦМ-6 №6801 на глубине 1900 метров. Обработка данных как кривой восстановления давления выполнялась при помощи программного продукта PanSystem. Определенная отрицательная величина скин-фактора (-5,93) свидетельствует о чистом состоянии призабойной зоны скважины. Интерполированное пластовое давление составило 14,7 МПа. Проницаемость составила 0,19 мД.

В скважине 104, С 30 июля по 20 августа 2020 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором АЦМ-6 №6844 на глубине 2067 метров. Обработка данных как кривой восстановления давления выполнялась при помощи программного продукта PanSystem. Определенная отрицательная величина

скин-фактора (-4,04) свидетельствует о чистом состоянии призабойной зоны скважины. Интерполированное пластовое давление составило 18,3 МПа. Проницаемость составила 0,151 мД.

В скважине 105, С 28 июля по 17 августа 2020 г., в скважине 105 было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором GAMT №21 на глубине 2129 метров. Обработка данных как кривой восстановления давления выполнялась при помощи программного продукта PanSystem. Определенная отрицательная величина скин-фактора (-3,6) свидетельствует об улучшенном состоянии призабойной зоны скважины. Интерполированное пластовое давление составило 23,8 МПа. Проницаемость составила 0,0543 мД.

В скважине 106, с 29 по 30 июня 2020 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационноемкостные свойства. Замеры давления в скважине выполнены прибором КСА-Т12 1088 №23 на глубине 2100 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Определенная отрицательная величина скин-фактора (-0,335) свидетельствует об улучшенном состоянии призабойной зоны пласта. При дальнейших исследованиях рекомендуется увеличить длительность регистрации КВД как минимум до 15 дней.

С 28 июля по 18 августа 2020 г., проведено гидродинамическое исследование методом КВД. Обработка данных проводилась на интервале перфорации 1800 м при помощи специализированного программного продукта PanSystem. По результатам графоаналитической обработки кривых определены следующие параметры: проницаемость, скин-фактор, давление пласта. Проницаемость составила 0,075 мД, пластовое давление — 20,6 МПа, забойное давление — 7,8 МПа. Скин-фактор показал отрицательное значение -3,3, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 8Г, с 30 декабря по 31 декабря 2020 г. ТОО «УзеньГеоСервис» провели ГИС-к исследования на профиль притока с оценкой текущей насыщенности пластов-коллекторов методом импульсно нейтрон-нейтронного каротажа (ИННК), с измерениями термометрии и барометрии в статическом и динамическом режимах забойного давления и последующим снятием КВД.

Результаты КВД были обработаны в программном продукте «Saphir NL Ecrin». По результатам интерпретации КВД было определено пластовое давление, а также другие фильтрационно-емкостные свойства (ФЕС). Определенная отрицательная величина скинфактора -2,2 свидетельствует об улучшеном состоянии околоствольной части коллектора. Пластовое давление составило 11,0 МПа, однако учитывая что, период исследования методом КВД составил 2 дня, определенное пластовое давление является непредставительным.

С 29 сентября по 15 октября 2014 г. *в скважине 8Г* было проведено исследование методом КВД специалистами ТОО «Алстрон» в интервале перфорации 1769-1772, 1775-1780, 1783-1791, 2074-2088 м. Обработка данных производилась в программном комплексе «Рап System». Обработка кривой давления по методике Хорнера позволила определить ФЕС пластов-коллекторов. По результатам определена проницаемость, которая составила 0,1625 мД, пластовое давление — 15,5 МПа, забойное давление — 5,4 МПа. Скин-фактор показал положительное значение -4,5.

В 2021 было проведено 3 газодинамических исследований методом КВД по трем скважинам (№№1Г, 102, 106).

В скважине 1Г, с 21 по 24 сентября 2021 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационноемкостные свойства. Замеры давления в скважине выполнены прибором ПИК-38 на глубине 2073 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. По результатам определена проницаемость, которая составила 0,186 мД, пластовое давление — 22,6 МПа. Скин-фактор показал положительное значение 8,68, что может указывать на загрязнение призабойной зоны скважины.

При дальнейших исследованиях рекомендуется увеличить длительность регистрации КВД как минимум до 15 дней.

В скважине 102, с 26 июля по 28 августа 2021 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором GAMT №609 на глубине 2130 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Проницаемость составила 0,03 мД, пластовое давление – 12,7 МПа, забойное давление – 7,3

МПа. Скин-фактор показал отрицательное значение -4,89, что говорит о хорошем состоянии призабойной зоны скважины.

В скважине 106, с 26 июля по 28 августа 2021 г. было проведено газодинамическое исследование методом КВД, замерено пластовое давление и определены фильтрационно-емкостные свойства. Замеры давления в скважине выполнены прибором GAMT №616 на глубине 2101 метров. Дебит скважины определен по фактической добыче за время проведения работ. Интерпретация ГДИС выполнялась в программном модуле Saphir NL. Проницаемость составила 0,0463 мД, пластовое давление — 19,2 МПа, забойное давление — 7,6 МПа. Скин-фактор показал отрицательное значение -5,5, что говорит о хорошем состоянии призабойной зоны скважины.

Таблица 3.1.1 – Данные исследования МУО скв. № 104 (11-13.01.2019 г.)

Номер режима	Диаметр шайбы dш, мм	Давление на ДИКТе Рд, МПа	Температура на устье ty, оС	Температура на ДИКТе tд, оС	Время работы на режиме, минуты			
1	4	9,3	-6	9	120			
2	5	3,1	-5	6	1320			
3	6	2,0	-10	11	480			
4	7	1,8	-12	9	480			
5	6	2,5	0	11	780			
6	5	5,3	-6	9	240			
7	7	1,9	-9	8	27			

Таблица 3.1.2 – Данные расчета дебитов скв. № 104

Диаметр шайбы, d,мм	Давление, МПа	Дебит, тыс.м³/сут
4	12,1	8,8
5	9,8	9,6
6	3,8	10,44
7	3,2	12,79
6	4,1	12,0
5	7,5	11,35
7	3,6	13,5

Как видно из рисунков 3.1.1 и 3.1.2, пластовое давление скважин снижается по годам, большая часть замеров пластового давления с 2017 г. ниже давления начала конденсации.

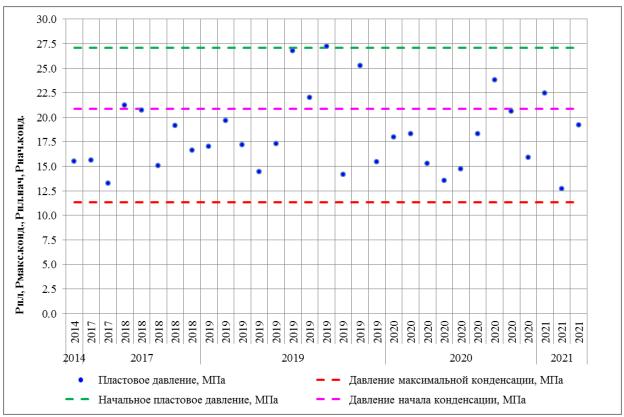


Рисунок 3.1.1 – Месторождения Айракты. График изменения пластового давления скважин по годам

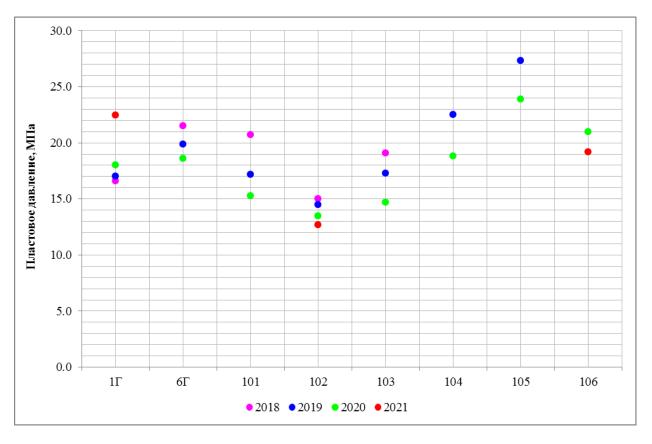


Рисунок 3.1.2 - Месторождение Айракты. Падение пластового давления скважин по годам

Данные замеров пластовых давлений за июнь 2021 года легли в основу построения карты изобар. По полученной карте изобар и экстраполяции данных определено средневзвешенное пластовое давление — 22,6 МПа (граф.прил. 16). Среднее приведенное пластовое давление по отношению к начальному (27,1 МПа) упало на 4,5 МПа.

Выводы

- Ежегодно по всем добывающим скважинам проводится газодинамические исследования с целью получения сведений о текущих емкостно-фильтрационных свойствах пластов, и определить состояние призабойной зоны в скважинах.
- Для анализа отбирались наиболее качественные исследования, отбраковывались некорректные (невосстановленные) замеры пластового, забойных давлений.
- Среднее пластовое давление по годам составило в 2018 г. 18,6 МПа, 2019 г. 19,3 МПа, 2020 г. 17,8 МПа, 2021 18,1 МПа.
- По результатам исследований средняя проницаемость составила 0,345 мД, газопроводимость $-0,475 \text{ мкм}^2*\text{м/(м}\Pi\text{a*c})$, пъезопроводность $-6,417 \text{ см}^2/\text{c}$.
- Коэффициенты фильтрационного сопротивления составили: а -12,505 МПа 2 /(тыс. м 3 /сут) и b -1,674 МПа 2 /(тыс. м 3 /сут)
- Скин фактор почти по всем скважинам отрицательный, что говорит об отсутствии загрязнения призабойной зоны скважин.
- При дальнейших исследованиях рекомендуется выполнять ежесуточный замер дебита газа во время и перед проведением ГДИС, длительность КВД в виду низкой оценочной проницаемости коллектора необходимо увеличить как минимум до 360 часов (15 суток).

Табл	ица 3.1.3	– Результаты газоди	намических і	исследований выпо	лненных за анал	<u>тизируемый</u>	период			T.	T			T.			
NºNº	Скв	Интервал	Горизонт	Дата	Метод	Рпл, МПа	Рпл.пр.,	Рзаб, МПа	Тпл,	Газопрово- димость пласта,	Проницае- мость пласта,	Пъезопро- водность	Скин-			Дебит,	Коэффициент продуктив-
пп	CKB	перфорации, м	торизонт		исследования	1 1131, 171114	МПа	1 340, 11114	°C	мкм ² *м/(мПа*с)	мД	пласта, см ² /с	фактор		В, [МПа ²]/ [тыс,м ³ /сут] ²	тыс.м ³ /сут	ности, тыс. м³/(МПа*сут)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	29.09.2017	КВД	15.6	16.1		69.75	0.83	0.784	20.42	-1.47	1.7	0.0081		18.38
2	6Γ	2090-2211-фильтр	C_{1V1}	08-09.10.2017	КВД	13.3	13.5		58.1	0.21	0.480	10.2	-1.7	3.09	0.042		8.6
3	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	27-28.06.2018	КВД	11.4	11.9		68.93	0.58	0.608	13.36	-1.38	2.158	0.00500		10.54
4	103	2089-2099, 2111- 2115	C_{1V1}	30.06.2018	КВД	9.4	10.0		71.1	1.47	2.539	10.81	-0.503	0.89	2.90000		
5	6Γ	2090-2211-фильтр, 2015-2122,2122- 2132, 2145-2165, 2164-2183	C_{1V1}	01.08-01.09.2018	квд	21.2	21.5	7.8			0.081		-1.68			13.3	
6	101	2074.5-2076.5, 2078- 2090, 2094-2096, 2099-2102, 2104- 2110, 2120-2129	C_{1V1}	01-25.08.2018	квд	20.7	21.2	7.3			0.030		-2.48			6.0	
7	102	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	01.08-01.09.2018	квд	15.0	15.1	8.6			0.540		-2.13			12.9	
8	102	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	31.07.2018	Рзаб			8.0									
9	102	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	01.09.2018	Рзаб			10.0									
10	103	2089-2099, 2111- 2115	C_{1V1}	01-25.08.2018	квд	19.1	19.7	7.7			0.170		-5.64			20.1	
11	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	01.08-03.09.2018	квд	16.6	17.2	8.7			0.42		-2.23			30.957	
12	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	11.05.2018	Рзаб			7.0									
13	6Γ	2090-2211-фильтр, 2015-2122,2122- 2132, 2145-2165, 2164-2183	C_{1V1}	12.05.2018	Рзаб			6.3									
14	101	2074.5-2076.5, 2078- 2090, 2094-2096, 2099-2102, 2104- 2110, 2120-2129	C_{1V1}	14.05.2018	Рзаб			6.2									
15	103	2089-2099, 2111- 2115	C_{1V1}	13.05.2018	Рзаб			6.5									
16	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	01-21.08.2019	КВД	17.0	17.6	10.7			0.415	2.40e ⁻⁷	1.24			23.58	
17	6Γ	2115-2140, 2145- 2155	C_{1V1}	01-19.08.2019	КВД	19.6	19.9	6.8			0.089	5.27e ⁻⁸	-2.2			12.743	
18	101	2074.5-2076.5, 2078- 2090, 2094-2096, 2099-2102, 2104- 2110, 2120-2129	C_{1V1}	01-19.08.2019	квд	17.2	17.7	9.7			0.048	2.39e ⁻⁸	-3.42			6.432	

Продолжение таблицы 3.1.3

		таолицы э.г.э					0		10		1 10	- 10	- 44		4.0		40
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
19	102	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	01-19.08.2019	КВД	14.5	14.6	8.3			0.106	6,98e ⁻⁸	-4.92			11	
20	103	2089-2099, 2111- 2115	C_{1V1}	01-19.08.2019	КВД	17.3	17.8	8.8			0.19	7,89e ⁻⁸	-6			21	
21	104	2067.0-2072.0, 2073.0-2075.0, 2079.0-2100.0, 2106.0-2115.0, 2134.0-2138.0	C_{1V1}	11.01.2019- 16.01.2019	КВД	26.8	27.3				0.0467	0.000267	7.76	0.195883	0.00040995		57.2344
22	104	2067-2072, 2073- 2075, 2079-2100, 2106-2115, 2134- 2138	C_{1V1}	01-19.08.2019	КВД	22.0	22.5	9.5			0.1651	1.08e ⁻⁷	-4.11			50	
23	105	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	01-19.08.2019	КВД	27.2	27.3	15.2			0.029	3.66e ⁻⁸	-1.36			5	
24	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	27.12.2019	КВД	12.1	12.6		48.94	0.47	0.892156863	13.84	-2.04	2.98	0.127		8.13
25	101	2074.5-2076.5, 2078- 2090, 2094-2096, 2099-2102, 2104- 2110, 2120-2129	C_{1V1}	12.12.2019	квд	14.2	14.6		51.41	0.08	0.088235294	4.81	0.89	15	0.6		1.89
26	102	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	15-16.07.2019	КВД	8.26	8.4		75.55	0.96	0.941	18.41	-0.596	1.41	0.25		11.72
27	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	30.07-15.08.2020	квд	18.0	18.5	7.7			0.420	2.88e ⁻³	1.66			11.97	
28	6Γ	2115-2140, 2145- 2155	C_{1V1}	28.07-18.08.2020	КВД	18.3	18.6	10.1			0.1822	1.18E-03	-1.99			10.5	
29	101	2074.5-2076.5, 2078- 2090, 2094-2096, 2099-2102, 2104- 2110, 2120-2129	C_{1V1}	28.07-18.08.2020	КВД	15.3	15.7	8.9			0.042	1.81E-04	-3.9			4.1	
30	102	2130-2134, 2143- 2148, 2154-2161, 2163-2169, 2183- 2190	C_{1V1}	28.07-15.08.2020	квд	13.5	13.6	7.8			0.051	2.92E-04	-4.65			4.2	
31	103	2089-2099, 2111- 2115	C_{1V1}	28.07-17.08.2020	КВД	14.7	15.3	8.0			0.19	8.49e ⁻⁴	-5.93			10.7	
32	104	2067-2072, 2073- 2075, 2079-2100, 2106-2115, 2134- 2138	C_{1V1}	30.07-20.08.2020	КВД	18.3	18.8	7.3			0.151	1.17E-03	-4.04			32.3	
33	105	2129-2136, 2140- 2149, 2160-2162, 2165-2176, 2190- 2200	C_{1V1}	28.07-17.08.2020	КВД	23.8	23.9	13.3			0.0543	5.80E-04	-3.6			5	
34	106	2101-2104, 2105- 2109, 2111-2113, 2115-2124	C_{1V1}	28.07-18.08.2020	КВД	20.6	21.0	7.8			0.0745	6.88E-04	-3.3			5.1	

Продолжение таблицы 3.1.3

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
35	106	2101-2104, 2105- 2109, 2111-2113, 2115-2124, 2126- 2130, 2132-2136, 2138-2140, 2157- 2163	C_{1V1}	29-30.06.2020	квд	15.9	16.3		70.13	0.66	1.245098039		-0.335	2.375	3.28		13.38
36	105	2129-2133, 2133- 2136, 2140-2149, 2160- 2162, 2165- 2173, 2173- 2176, 2190- 2200	C_{1V1}	29.01.2019	квд	25.3	25.4		72.13	0.04	0.117647059	2.27	-1.88	40.9	1.5		
37	105	2129-2133, 2133- 2136, 2140-2149, 2160- 2162, 2165- 2173, 2173- 2176, 2190- 2200	C_{1V1}	17-18.07.2019	КВД	15.4	15.5		72.13	0.51	0.00131	13.39	-1.16	2.5	0.35		12.35
38	8Γ	1769-1772, 1775- 1780, 1783-1791, 2074-2088	C_{1S}	29.09-15.10.2014	КВД	15.5	18.2	5.4			0.1625		-4.5			3	
39	8Γ	1769-1772, 1775- 1780, 1783-1791, реперфорация - 2074-2088	C_{1S}	30-31.12.2020	КВД	11.0	13.7		66.49	0.03	0.019607843	0.65	-2.2	39	10.2	2.04	0.57
40	1Γ	2073-2085, 2091- 2096, 2097-2110	C_{1V1}	21-24.09.2021	КВД	22.5	22.6		70.7	0.07	0.186	12.1	8.68	28.4	0.387		1,58
41	102	2130.0-2134.0, 2143.0-2148.0, 2154.0-2161.0, 2163.0-2169.0, 2183.0-2190.0	C _{1V1}	26.07-28.08.2021	квд	12.7	12.9	7.3			0.03	2.4	-4.89			4	
42	106	2101.0-2104.0, 2105.0-2109.0, 2111.0-2113.0, 2115.0-2124.0	C_{1V1}	26.07-28.08.2021	квд	19.2	19.4	7.6			0.0463	1.12	-5.5			4.569	

3.2. Анализ текущего состояния разработки месторождения

3.2.1 Анализ структуры фонда скважин и текущих дебитов, технологических показателей разработки

По состоянию на 01.07.2021 г. на месторождении Айракты пробурено 17 скважин, из 17 пробуренных 6 скважин ликвидированы. Во временной консервации находятся 2 скважины. Эксплуатационный фонд представлен 9 газовыми скважинами (№№1Г, 6Г, 101, 102, 103, 104, 105, 106, 107), из них в бездействии находится одна скважина №107.

Таблица 3.2.1.1 – Характеристика фонда скважин по состоянию на 01.07.2021 г.

таолица 5.2.1.1 – Ларактеристика фонда скважин по состоянию на 01.07.2021 г.								
Наименование	Характеристика фонда скважин	Количество скважин	Номера скважин					
1	2	3	4					
	Пробурено	17	17					
	Всего:	9	1Γ, 6Γ, 101, 102, 103, 104, 105, 106, 107					
Фонд добывающих	Действующие	8	1Γ, 6Γ, 101, 102, 103, 104, 105, 106					
скважин	Бездействующие	1	107					
	В освоении после бурения	•	-					
В консервации		2	4, 8					
Лик	видированные	6	2, 3, 5, 7, 10, 11,					

Дебит действующих скважин по газу на 01.07.2021 г. изменяется от 4,3 тыс.м³/сут (скважины №№101, 102, 106) до 23,3 тыс.м³/сут (скважина №104) и составляет в среднем 10,7 тыс.м³/сут. По сравнению с предыдущим годом (декабрь 2020 г.) по дебитам газа наблюдается падение в среднем на 21,3% по скважинам №№104, 105, 106 и увеличение в среднем на 11,2 % по остальным скважинам. Конденсат выделяется из продукции во всех скважинах не значительно, дебиты которых в среднем – 0,072 т/сут. Содержание конденсата в газе или конденсатогазовый фактор (КГФ) изменяется по скважинам от 6,4 г/м³ до 7,7 г/м³, составляя в среднем 6,8 г/м³.

За анализируемый период действующие скважины месторождения были остановлены в августе 2020 г., на 17 дней, для проведения газогидродинамических исследований. Начиная с сентября 2020 г. скважины работают без остановки.

Of our convious	Пойотрукомий фонд	Средни	й дебит газа, тыс.м ³ /с	сут
Объект горизонт	Действующий фонд	до 10	от 10 до 50	от 50 до 70
	1Γ		12,7	
	6Γ		12,2	
	101	4,3		
I объект (горизонт	102	4,3		
$C_1V_{1)}$	103	8,6		
	104		23,3	
	105	4,8		
	106	4,3		
В целом по месторожлению	8	5,3	16,1	0,0

Таблица 3.2.1.2 – Распределение фонда скважин по дебитам газа на 01.07.2021 г.

<u>Скважина 1Г</u> была введена в ОПЭ из консервации в сентябре 2017 г. с начальным дебитом газа 89,3 тыс.м³/сут и дебитом конденсата 1,312 т/сут. После ввода в эксплуатацию, в динамике дебита скважины по газу наблюдается заметное снижение и стабилизация в последние месяцы, с февраля по июнь 2018 г. на уровне 32,8-35,3 тыс.м³/сут. С августа 2018 г. наблюдается снижение дебита газа до 5,2 тыс.м³/сут и начиная с января 2019 г. наблюдается увеличение до 22,1 тыс.м³/сут. На дату анализа дебит газа составил 12,7 тыс.м³/сут, дебит конденсата 0,120 т/сут.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №1 Γ составила 29,8 млн.м³ и 0,4 тыс.т, соответственно.

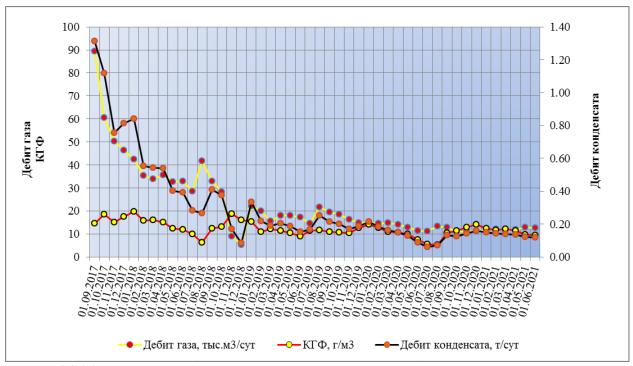


Рисунок 3.2.1.1 – Динамика дебитов газа и конденсата по скважине 1Г

Скважина 6Г была введена в ОПЭ из консервации в сентябре 2017 г с начальным дебитом газа 27,9 тыс.м³/сут и дебитом конденсата 0,014 т/сут. После ввода в эксплуатацию в динамике дебита скважины по газу наблюдается заметное снижение до 12,0 тыс.м³/сут (до апреля 2018 г.), затем скважина работала со стабильным дебитом газа. По состоянию на 01.04.2019 г. дебит газа составляет 13,1 тыс.м³/сут. Как видно из рисунка, в начале эксплуатации, дебит конденсата до ноября 2017 г. составлял 0,014-0,017 т/сут, начиная с декабря 2017 г. по январь 2018 г. наблюдается скачок и дебит конденсата возрастает до 0,432 т/сут., далее идет снижение (с февраля по май 2018 г.) до 0,14 т/сут. На дату анализа дебит газа составил 12,2 тыс.м³/сут, дебит конденсата 0,069 т/сут.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №6Г составила 18,3 млн.м³ и 0,218 тыс.т, соответственно.

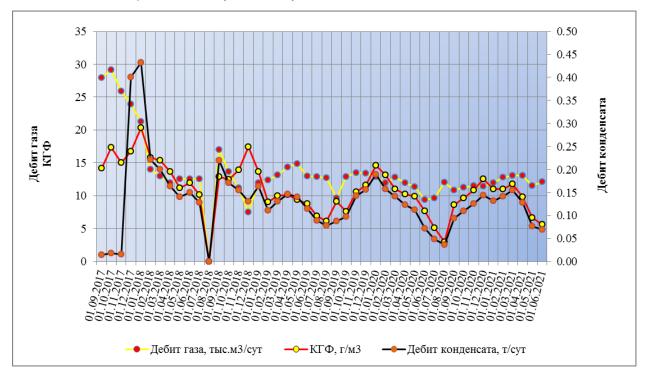


Рисунок 3.2.1.2 – Динамика дебитов газа и конденсата по скважине 6Г

<u>Скважина 101</u> была начата бурением 10.05.2017 г. и завершена – 30.09.2017 г. При освоении после бурения 19.09.2017 г. провели операцию по гидравлическому разрыву пластов (ГРП) с целью интенсификации притока. В ОПЭ скважина вступила 04.10.2017 г. с начальным дебитом газа 11.9 тыс.м³/сут и дебитом конденсата 0.371 т/сут. Как видно из динамики, (рис. 3.2.3) дебит газа по состоянию на 01.07.2021 г., уменьшился почти в 2 раза до 4.8 тыс.м³/сут, уменьшение наблюдается и по дебиту конденсата до 0.032 т/сут. На дату анализа КГФ составил 6.8 г/м³.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №101 составила 8,2 млн.м³ и 0,115 тыс.т, соответственно.

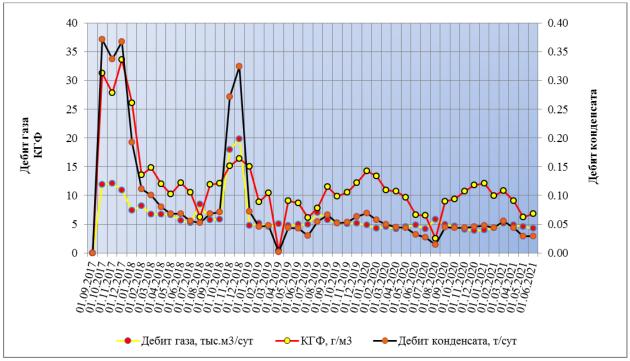


Рисунок 3.2.1.3 – Динамика дебитов газа и конденсата по скважине 101

Скважина 102. При освоении после бурения 30.12.2017 г. в скважине провели операцию по гидравлическому разрыву пластов (ГРП) с целью интенсификации притока, в результате скважина вступила в эксплуатацию 24.01.2018 г. с начальным дебитом газа 52,7 тыс.м³/сут. и дебитом конденсата 2,467 т/сут. После ввода в эксплуатацию дебит газа резко снижается до 25,9 тыс.м³/сут, как и дебит конденсата до 0,486 т/сут. На дату анализа дебит газа составил 4,3 тыс.м³/сут, дебит конденсата 0,029 т/сут.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №102 составила 9,8 млн.м³ и 0,132 тыс.т, соответственно.

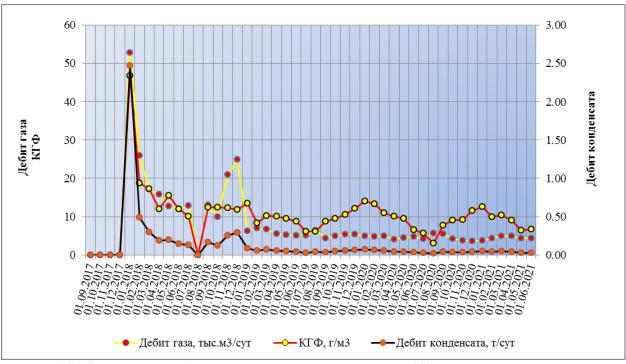


Рисунок 3.2.1.4 – Динамика дебитов газа и конденсата по скважине 102

Скважина 103 была начата бурением 22 августа 2017 г., завершена – 30.09.2017 г. В ОПЭ скважина вступила 19.12.2017 г. с начальным дебитом газа 1,2 тыс.м 3 /сут и КГФ – 4,6 г/м 3 . В декабре 2017 г. в скважине произвели операцию по гидравлическому разрыву пластов (ГРП) с целью интенсификации притока, в результате средний дебит по газу резко увеличился до 54,9 тыс.м 3 /сут. Через месяц в феврале 2018 г. средний дебит скважины по газу несколько уменьшился до 46,1 тыс.м 3 /сут, в последующие месяцы как видно из рисунка 3.2.5 падение не прекратилось и по состоянию на 01.07.2021 г. составил 8,6 тыс.м 3 /сут. Аналогичное падение наблюдается и по дебиту конденсата, текущий дебит составил 0,050 т/сут.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №103 составила 19,9 млн.м³ и 0,261 тыс.т, соответственно.

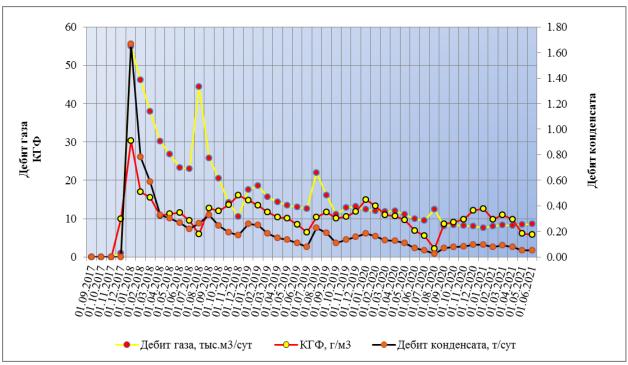


Рисунок 3.2.1.5 – Динамика дебитов газа и конденсата по скважине 103

<u>Скважина 104</u> вступила в эксплуатацию 31.12.2018 г. в ОПЭ с начальным дебитом газа 0,5 тыс.м³/сут. В январе 2019 г. в скважине произвели операцию по гидравлическому разрыву пластов (ГРП) с целью интенсификации притока, в результате средний дебит по газу резко увеличился до 69,5 тыс.м³/сут. На дату анализа дебит газа составляет 23,3 тыс.м³/сут. Дебит конденсата – 0,147 т/сут. КГФ составил 6,3 г/м³.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №104 составила 34,6 млн.м³ и 0,446 тыс.т, соответственно.

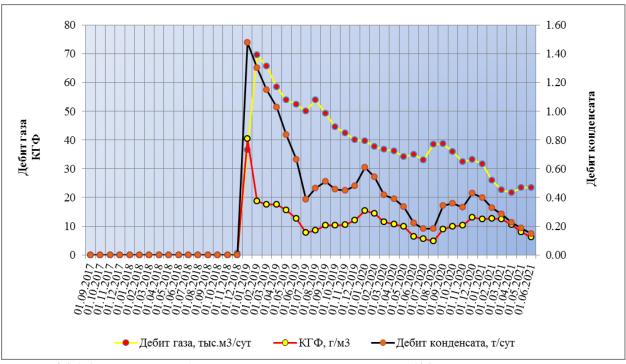


Рисунок 3.2.1.6 – Динамика дебитов газа и конденсата по скважине 104

<u>Скважина 105</u> вступила в эксплуатацию 31.12.2018 г. в ОПЭ с начальным дебитом газа 0,5 тыс.м³/сут. В январе 2019 г. в скважине произвели операцию по гидравлическому разрыву пластов (ГРП) с целью интенсификации притока, в результате средний дебит по газу незначительно увеличился до 6,5 тыс.м³/сут. На дату анализа дебит газа составляет 4,8 тыс.м³/сут. На дату анализа дебит конденсата составил 0,028 т/сут, КГФ – 5,8 г/м³.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №105 составила 4,9 млн.м³ и 0,048 тыс.т, соответственно.

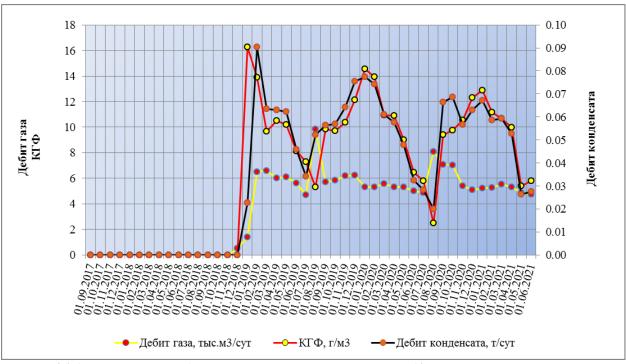


Рисунок 3.2.1.7 – Динамика дебитов газа и конденсата по скважине 105

<u>Скважина №106</u> была начата бурением 14.08.2019 г. и завершена — 27.10.2019 г. В ОПЭ скважина вступила в ноябре 2019 г. с начальным дебитом газа 0,3 тыс.м³/сут и дебитом конденсата 0,016 т/сут. В декабре 2019 г. (31.12.2019 г.) в скважине проведена операция по гидравлическому разрыву пласта (ГРП) с целью интенсификации притока. В результате, с января месяца 2020 г. среднесуточный дебит газа увеличился до 9,9 тыс.м³/сут. Как видно из динамики (рис. 3.2.8) дебит газа и дебит по конденсату по состоянию на 01.07.2021 г. составил 4,3 тыс.м³/сут и 0,049 т/сут, соответственно.

По состоянию на 01.07.2021 г. накопленная добыча газа и конденсата по скважине №106 составила 3,1 млн.м³ и 0,035 тыс.т, соответственно.

<u>Скважина 107</u> была начата бурением 14.08.2019 г. и завершена – 27.10.2019 г. Скважина не вступила в эксплуатацию из-за отсутствия притока. На дату анализа скважина находится в бездействующем фонде.

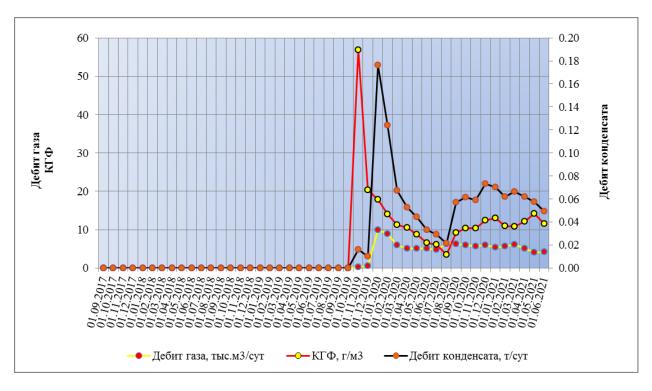


Рисунок 3.2.1.8 – Динамика дебитов газа и конденсата по скважине 106

Характеристика отборов газа, конденсата и воды

По состоянию на 01.07.2021 года из месторождения отобрано 128,6 млн.м³ газа и 1,66 тыс.т конденсата. Указанные отборы углеводородов включают добычу из залежи в период испытания скважин и с начала опытно-промышленной эксплуатации (ОПЭ).

Основные показатели ОПЭ месторождения в целом представлены в таблице 3.2.1.1 и на рисунке 3.2.1.1.

По состоянию на 01.07.2021 г. добыча газа составила 14,0 млн.м³, добыча конденсата 0,14 тыс.т., коэффициент извлечения газа (КИГ) и конденсата (КИК) составили 0,026 д.ед. и 0,009 д.ед. соответственно. Выработка газа и конденсата составили 5,1 % и 1,9 % соответственно.

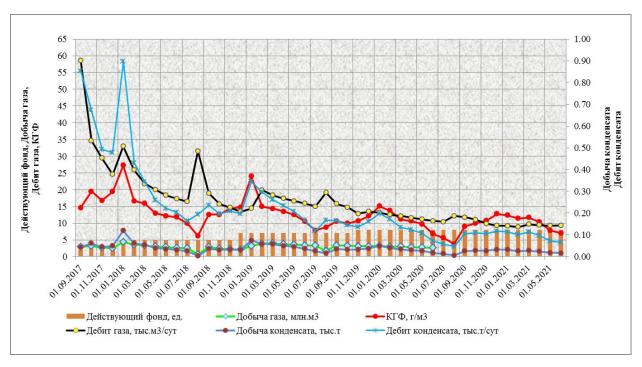


Рисунок 3.2.1.9 – Динамика основных технологических показателей по месяцам в целом по месторождению

Сравнение проектных и фактических показателей разработки

Сопоставление проектных и фактических показателей опытно-промышленной эксплуатации месторождения Айракты за 2017 г. по 6 месяцев 2021 г. проводится с утвержденными ЦКРиР проектными показателями из «Проекта опытно-промышленной эксплуатации месторождения Айракты» [7] и «Анализа разработки месторождения Айракты» [9].

Сопоставление проектных и фактических показателей опытно-промышленной эксплуатации месторождения Айракты представлено в таблице 3.2.1.3.

В 2017 г. причиной несоответствия основных проектных значений от фактических является поздний ввод скважин в эксплуатацию (конец 3 квартала 2017 г.) при запроектированном 1 квартал 2017 г., и фактические дебиты газа оказались меньше проектных. Начальный проектный среднесуточный дебит газа 40 тыс.м³/сут был взят по результатам гидродинамических исследований по скважинам №1Г и №6Г (2011 г.), по которым дебиты газа составляли 42,3 тыс.м³/сут и 247,3 тыс.м³/сут.

В 2017 г. добывающие скважины работали с дебитами газа от 89,3 тыс.м 3 /сут (начальный дебит скважины №1Г) до 10,9 тыс.м 3 (дебит скважины №101), в среднем составив 33,7 тыс.м 3 /сут, что оказались меньше проектного значения на 15,5 %.

В 2018 г. фактическая добыча газа отстает от проекта на 61 %, среднесуточные дебиты по газу и по конденсату (19,5 тыс.м 3 /сут и 0,3 т/сут) отстают от проектных значений (39,7 тыс.м 3 /сут и 0,9 т/сут) на 50,9 % и 61,4 %, соответственно. Фактический действующий фонд скважин на уровне проекта.

В 2019 г. при сравнении фактических показателей по добыче газа и конденсата наблюдается отставание от проектных значений на 9,3 % и 11,7%, соответственно. Среднегодовые дебиты по газу и конденсату отстают от проекта на 6,3 % и 8,8 %, соответственно.

Причиной несоответствия является поздний ввод скважины №106 в эксплуатацию (конец 4 квартала 2019 г.) при запроектированном (2 квартал 2019 г.), и фактические дебиты газа оказались меньше проектных.

В 2020 г. при сравнении фактических показателей по добыче газа и конденсата наблюдается отставание от проектных значений на 46,4 % и 57,5%, соответственно. Среднегодовые дебиты по газу и конденсату отстают от проекта на 40,4 % и 52,7 %, соответственно.

За первое полугодие 2021 г. фактическая добыча газа составила 14,0 млн.м³ против проектного значения 28,0 млн.м³, отставание составляет 49,8 %. Отставание от проекта наблюдается и по добыче конденсата на 21,8 %.

Фонд добывающих скважин отстает от проекта на 2 ед., запланированные скважины не пробурены.

Основной причиной не достижения проектных показателей является низкие дебиты, по причине низких коллекторских свойств пласта, почти во всех скважинах проведено мероприятие по ГРП перед вводом в эксплуатацию, для увеличения продуктивности скважин.

Таблица 3.2.1.3 - Сравнение проектных и фактических показателей опытно-промышленной эксплуатации месторождения Айракты

		20	17	20	18	20	19	20	20		2021	
№ п/п	Показатели	проект	факт	проект	факт	проект	факт	проект	факт	проект	проект	факт 01.07.2021
1	Добыча газа, млн.м ³	56,2	11,2	83,3	32,5	43,2	39,2	59,2	31,7	56,0	28,0	14,0
2	Накопленная добыча газа, млн.м ³	56,2	11,2	139,5	43,8	87	82,97	146,20	114,7	202,50	174,2	128,63
3	Добыча конденсата, тыс.т	1,3	0,2	1,9	0,49	0,6	0,50	0,77	0,33	1,30	0,65	0,14
4	Накопленная добыча конденсата, тыс.т	1,3	0,2	3,2	0,69	1,4	1,19	2,21	1,51	4,50	2,86	1,66
5	Коэффициент извлечения газа, д.ед.	0,01	0,002	0,024	0,009	0,015	0,017	0,025	0,023	0,035	0,035	0,026
6	Коэффициент извлечения конденсата, д.ед.	0,0	0,001	0,018	0,004	0,008	0,007	0,012	0,008	0,025	0,016	0,009
7	Выработанность запасов газа, %	2,2	0,4	5,5	1,7	2,0	3,3	3,3	4,6	4,5	6,9	5,1
8	Выработанность запасов конденсата, %	1,5	0,2	3,7	0,8	1,7	1,4	2,5	1,7	5,2	3,3	1,9
9	Среднесуточный дебит газа, тыс.м ³ /сут	40,0	33,7	39,7	19,5	16,9	15,9	18,9	11,2	15,3	15,3	9,6
10	Среднесуточный дебит конденсата, т/сут	0,9	0,1	0,9	0,3	0,220	0,201	0,2	0,116	0,355	0,355	0,098
11	Конденсато-газовый фактор (КГФ), г/м 3	23,1	17,6	22,8	15,2	13,0	12,7	13,0	10,3	23,2	23,2	10,1
12	Фонд добывающих скважин на конец года, шт.	5	4	7	7	8	8	10	8	11	11	8
13	в т.ч. действующих	5	4	7	7	8	8	10	8	11	11	8
14	Ввод добывающих скважин, шт.	5	4	2	3	1	1	2	0	1	1	0
15	в т.ч. из бурения	2	2	2	3	1	1	2	0	1	1	0
16	из другого объекта	0	0	0	0	0	0	0	0	0	0	0
17	из консервации	3	2	0	0	0	0	0	0	0	0	0
18	Выбытие добывающих скважин, шт.	0	0	0	0	0	0	0	0	0	0	0
19	Коэффициент использования скважин, д.ед.	1,0	1,0	1	1	1	1	1	1			0,9
20	Коэффициент эксплуатации скважин, д.ед.	0,95	0,91	0,95	0,65	0,95	0,85	0,95	0,97	0,95	0,95	0,99
21	Пластовое давление, МПа	27,1	-	27,0	18,6	27,0	19,3	26,6	17,8	26,5	26,5	18,1
22	Забойное давление, МПа	10,0	-	10,0	7,6	8,9	8,9	8,5	8,9	8,5	8,5	7,4
23	Устьевое давление, МПа	8,2	8,2	8,2	6,4	7,4	6,0	7,1	6,0	7,1	7,1	5,4

3.2.2 Анализ выработки запасов углеводородов и текущего состояния разработки

Месторождение Айракты находится на начальной стадии разработки. Опытнопромышленная эксплуатация (ОПЭ) месторождения начата 6 сентября 2017 года.

Геологические и извлекаемые запасы *пластового газа и конденсата* в целом по месторождению составляют по категории $C_1 - 5393$ млн.м 3 / 2627 млн.м 3 газа и 194 тыс.т / 91 тыс.т конденсата, по категории $C_2 - 948$ млн.м 3 / 356 млн.м 3 газа и 34 тыс.т / 11 тыс.т конденсата.

По состоянию на 01.07.2021 года из месторождения отобрано 128,6 млн.м³ газа и 1,66 тыс.т конденсата. Как видно из таблиц 3.2.2.1 и 3.2.2.2 остаточные запасы в целом по месторождению на дату анализа составляют 2498,4 млн.м³ или 4,9% от извлекаемых запасов газа и 89,3 тыс.т или 1,8% от извлекаемых запасов конденсата.

Таблица 3.2.2.1 – Начальные запасы газа и степень их выработки на 01.07.2021 г. Месторождение Айракты

		твержденные в С, млн.м ³	Накопленная	Остаточные за 01.07.2021	Степень выработки	
Объект	геологические запасы	извлекаемые запасы	добыча газа на 01.07.2021 г, млн.м ^з	геологические запасы	ологическиеизвлекаемые запасы запасы	
I	4971	2516	128,6	4842,4	2387,4	5,1
II	422	111	0	422,0	111,0	0,0
Итого	5393	2627	128,6	5264,4	2498,4	4,9

Таблица 3.2.2.2 – Начальные запасы конденсата и степень их выработки на 01.07.2021 г. Месторождение Айракты

Объект	утвержденні	онденсата ые в ГКЗ РК, н.м ³	Накопленная добыча конденсата на 01.07.2021 г,	Остаточны конденсата на млн	Степень выработки запасов на	
	геологические	извлекаемые	на 01.07.2021 1, млн.м ³	геологические	01.07.2021 г,	
	запасы	запасы	141411111	запасы	запасы	%
I	179	87	1,66	177,34	85,34	1,9
II	15	4	0	15,0	4,0	0,0
Итого	194	91	1,7	192,3	89,3	1,8

На дату анализа I объект эксплуатируются 9 скважинами (1 Γ , 6 Γ , 101, 102, 103, 104, 105, 106, 107) одна (107) из которых находится в бездействии, текущий средний дебит газа и конденсата 9,6 тыс.м³/сут и 0,098 т/сут. Объем добычи за шесть месяцев 2021 г составил 14,0 млн.м³ газа и 0,14 тыс.т конденсата. С начала текущего года добыто 128,6 млн.м³ газа и 0,66 тыс.т конденсата. Выработка запасов газа и конденсата составили 5,1 % и 1,9%.

II объект разработки (серпуховский горизонт) ранее не эксплуатировался, накопленная добыча газа и конденсата отсутствуют.

На данном этапе разработки, оценить выработку запасов, определить вовлеченные запасы газа не представляется возможным.

3.3 Обоснование принятых расчетных геолого-физических моделей пластов

3.3.1 Обоснование расчетных геолого-физических моделей пластов-коллекторов, принятых для расчета технологических показателей разработки

Выбор расчетной геолого-физической модели, принятой для прогноза основных технологических показателей разработки газоконденсатных залежей месторождения Айракты выполнен, исходя из наличия в залежах, преимущественно, газового режима.

При газовом режиме приток газа к забоям скважин обуславливается упругой энергией сжатого газа. Анализ экстраполированных и реальных данных по разработанным месторождениям показывает различные возможные коэффициенты извлечения газа (КИГ).

Расчетная геолого-физическая модель учитывает геологическую характеристику залежей, физические и теплофизические свойства флюидов, насыщающих пористой среды (плотности газа и конденсата, свойства и состав газа и конденсата и их изменение при снижении пластового давления, давления начала конденсации, КГФ и т.д.), промысловые данные (тип и конструкция скважин, расположение скважин, сведения о динамике добыче газа и конденсата, технологические режимы, давления и т.д.).

Выбор технологического режима работы скважин проводился на основе результатов опробования и исследования скважин методом установившихся отборов в период разведки и по результатам проведения режимных исследований по добывающим скважинам.

В Проекте ОПЭ [7] технологический режим работ скважин на период опытно - промышленной эксплуаации был принят Руст=const - 8,2 МПа на каждый год в течение 5 лет (с 2017 по 2021 гг.), затем по 5 лет снижения устьевого давления по 1,0 МПа до конца разработки.

В связи с низкими значениями фактических дебитов Недропользователем было решено снизить устьевое давление до 6,4 МПа в 2018 году, к 2021 году текущее устьевое давление снижено до 5,4 МПа.

Учитывая фактический режим эксплуатации скважин рекомендованы варианты с установлением расчетного технологического режима с 2021 года (Py=4,8 МПа) со снижением устьевого давления на 0,5 МПа, и начиная с 2025 года Руст=const=3,1 МПа, в связи с установкой ДКС (дожимная компрессорная станция) на месторождении Амангельды.

При прогнозировании основных технологических показателей разработки месторождения (добыча газа и конденсата), по выбранным технологическим режимам, были рассчитаны изменения пластового, забойного, устьевого давления, дебитов газа и

конденсата как по новым так и по переходящим скважинам, используя промысловые и рассчитанные данные коэффициентов фильтрационных сопротивлений.

Для выработки запасов газа и конденсата было выбрано рациональной количество скважин с использованием новых скважин из бурения.

При моделировании процесса разработки газоконденсатной залежи использовался метод "средней" скважины на основе уравнения материального баланса. Для "средней" скважины взяты средние параметры такие, как глубина, дебит, коэффициенты фильтрационных сопротивлений газоконденсатной залежи. Используемый метод материального баланса перспективен на начальной стадии проектирования, когда недостаточно исходной геолого-промысловой информации о пластовом резервуаре. Кроме того, этот метод используется для оперативных расчетов показателей разработки. Математическая модель включает систему дифференциальных уравнений, полученных исходя из балансовых соотношений флюидов в поровом объеме.

Технологические показатели разработки газоконденсатной залежи для газового режима определялись в следующей последовательности.

1. Определение пластового давления. Изменение во времени среднего пластового давления определяется по уравнению материального баланса для газовой залежи:

$$\widetilde{p}(t) = \left(\frac{p_{\scriptscriptstyle H}}{z_{\scriptscriptstyle H}} - \frac{p_{\scriptscriptstyle cm}Q_{\scriptscriptstyle \partial o o}(t)T_{\scriptscriptstyle H}}{\widetilde{\alpha}\Omega_{\scriptscriptstyle H}T_{\scriptscriptstyle cm}}\right)z(\widetilde{p}), \quad (3.1)$$

Где: $\tilde{p}(t)$ - средневзвешенное по объему порового пространства пластовое давление в момент времени t;

 $p_{_{\scriptscriptstyle H}}$ - средневзвешенное по объему порового пространства начальное пластовое давление;

 $p_{\it am}$ - атмосферное давление;

 $\widetilde{\alpha}\Omega_{_{\scriptscriptstyle H}}$ - поровый объем залежи, занятый газоконденсатной системой;

 $z(\widetilde{p})$ - коэффициенты сжимаемости газа;

 $Q_{\text{доб}}$ - суммарный объем добытого газа из месторождения за время t при стандартной температуре.

2. Определение изменения во времени давления на забое и потребного количества скважин. Давление на забое скважины определяется из двучленной формулы притока газа к забою скважины:

$$\frac{P^2 - P_3^2}{\mu_{cp}^* Z_{cp}} = A * q + B * \frac{q^2}{\mu_{cp}^*},$$
 (3.2)

Где: P и P_3 – текущие давления в пласте и на забое, МПа;

q — дебит газа, м³/c; A и B — коэффициенты фильтрационного сопротивления;

$$\mu^* = \frac{\mu(p)}{\mu_{am}},\tag{3.3}$$

где $\mu(p)$; μ_{am} - динамические коэффициенты вязкости газа при температуре $T_{\pi\pi}$ и давлениях P и $P_{a\pi}$ соответственно,

$$\mu_{cp}^* Z_{cp} = \sigma + \varphi(p_{np}^2 - p_{np}), \quad (3.4)$$

где σ и ϕ - коэффициенты, зависящие от приведенной температуры.

Потребное число скважин для обеспечения заданного темпа отбора и его изменение во времени определялась из соотношения:

$$n(t) = \frac{Q_{\partial o \bar{o}}(t)}{q(t)}.$$
 (3.5)

3. Определение давления на устье скважины. Для расчета потерь давления при движении газа по вертикальным трубам из существующих нескольких формул использована наиболее распространенная:

$$P_{y} = \sqrt{\frac{P_{3}^{2} - \theta q^{2}}{e^{2S}}}, \quad (3.6)$$

где S - величина, учитывающая вес столба газа в скважине, которая рассчитывается по формуле:

$$S = \frac{3.415 * 10^{-2} \Delta H}{zT}, \qquad (3.7)$$

heta - гидравлическое сопротивление движению газа в стволе скважины:

$$\theta = \frac{1,19 * 10^{-6} T_{cp}^2 \lambda z_{cp}^2 (e^{2S} - 1)}{d^5}, \quad (3.8)$$

 λ - коэффициент гидравлического сопротивления определяем по данным исследований согласно формуле:

$$\lambda = \frac{(p_s^2 - p_\Gamma^2 e^{2S}) d_{BH}^5}{1.377 Q^2 z_{cp}^2 T_{cp}^2 (e^{2S} - 1)}$$
(3.9)

4. Фильтрационные коэффициенты, продуктивная характеристика газовых скважин. В качестве прогнозных параметров, определяющих продуктивную

характеристику скважин, приняты результаты математической обработки исследований разведочных скважин. Были получены следующие коэффициенты фильтрационного сопротивления, которые являются средними для залежи (КФС):

Для нижневизейского:

- A = 27 (МПа)/(тыс.м 3 /сут);
- B = $0.017 \, (M\Pi a)^2 / (тыс.м^3 / cyт)^2;$

Для серпуховского:

- $A = 14 (M\Pi a)/(тыс.м^3/сут);$
- B = $0.22 \text{ (МПа)}^2/\text{(тыс.м}^3/\text{сут)}^2$.

По нижневизейскому и серпуховским горизонтам месторождения Айракты для расчета прогнозного КИГ использовался метод падения пластового давления. Для нижневизейского и серпуховского горизонтов использовались фактические замеры пластового давления.

Метод подсчета извлекаемых запасов свободного газа по падению пластового давления применяется при работе залежи на газовом режиме и основан на использовании зависимости между количеством газа, отбираемого из залежи и падением пластового давления. Метод может быть применен при разработке залежи в течение определенного времени по графику зависимости P/z от Qг, где P – текущее пластовое давление, Qг – отбор газа. Экстраполяция графика до пересечения с осью Qг позволяет определить величину запасов газа.

На основании полученных данных проведен расчет технологических и техникоэкономических показателей и определен рентабельный КИГ.

3.3.2 Обоснование выделения объектов разработки

В соответствии с определениями «Единых правил по рациональному и комплексному использованию недр...» — выделение в разрезах месторождений углеводородов эксплуатационных объектов решается с учетом геологических, технических, экологических и экономических факторов в виде оптимизационной задачи.

В единые объекты разработки объединяют продуктивные пласты или горизонты, имеющие один этаж нефтеносности, с близкими физико-химическими свойствами нефти, коллекторскими свойствами, режимами работы залежей, величинами пластовых давлений.

Выделенный объект разработки должен располагать достаточными запасами на единицу площади залежи и достаточной продуктивностью с тем, чтобы обеспечить высокие дебиты скважин в течение продолжительного периода эксплуатации в безводный период и при обводненности.

Месторождение Айракты по объёму запасов относится к мелким, имеющим сложное геологическое строение.

По состоянию на 01.07.2020 г. геологические запасы газа и конденсата по категории C_1 по нижневизейской залежи составили 4971 млн.м³ и 179 тыс.т, по серпуховскому горизонту 422 млн.м³ и 15 тыс.т, соотвественно.

Таким образом на месторождении Айракты выделяется два эксплуатационных объекта разработки:

I объект- нижневизейский горизонт;

II объект – серпуховский горизонт.

Исходная геолого-физическая характеристика продуктивного горизонта представлена в таблице 5.1.

Таблица 3.3.2.1 – Исходная геолого-физическая характеристика эксплуатационных объектов

	Горизонты	T = = ==
		Объект II
		C _{1S}
		4
		1771.7
		IV-1411м
		2.0-
		3487
		15.2
_		7.0
_		0.28
		0.59
_		-
		0,091
		0,57
		0.42
		6.0
		66.49
	27.07	15.5
0.013	0.013	-
0.8238	0.8238	0.817
20.85	20.85	-
35.88	35.88	35.88 (по
33.00	33.00	аналоги C1v1)
1.31	1.31	-
1 121	1 121	
1.131	1.131	-
	5.9	3.4
1.76	1.76	1.67
0.79	0.79	-
1.31	1.31	-
1.131	1.131	-
2946/552	2025/371	422/25
0,506	0,506	0,263
106/20	73/13	15/1
0,490	0,490	0,266
1491/210	1025/141	111/5
52/7	35/4	4/0
	C1V1-A 2 2116.1 I-1800M,-1790M III-1734M IV-1763.5M 22320 15 7.6 0.18 0.61 2.15 0, 8 0.59 2.64 72.43 27.07 0.013 0.8238 20.85 35.88 1.31 1.131 5.9 1.76 0.79 1.31 1.131 2946/552 0,506	O65ert I C1V1-A C1V1-B 2 3 2116.1 2136.4 I-1800m,-1790m I-1802m II-111-1790m III-1790m 1804m III-1734m IV-1763.5m 1796m 22320 18617 15 18.1 7.6 6.5 0.18 0.15 0.61 0.59 2.15 2,12 0,390 8,87 0.59 0.51 2.64 3.38 72.43 72.43 27.07 27.07 0.013 0.013 0.8238 0.8238 20.85 35.88 1.31 1.31 1.131 1.131 1.131 1.131 1.131 1.131 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31

3.3.3 Обоснование расчетных вариантов разработки и их исходные характеристики

В данной работе рассмотрены 3 варианта прогнозных технологических показателей разработки месторождения Айракты.

На месторождении по состоянию на 01.07.2021 г. выделены два объекта разработки, первый объект разработки – нижневизейский горизонт C_1V_1 , второй объект – серпуховский горизонт C_1 sr.

Прогнозные технологические показатели разработки рассчитаны по 3 вариантам, различающиеся между собой размещением, количеством добывающих скважин, вводимых в эксплуатацию, темпами отбора газа и конденсата.

Технологические показатели рассчитаны при следующих условиях:

- режим газовый;
- технологический режим Руст= const;
- коэффициент эксплуатации действующего фонда скважин составляет 0,95 д.ед.;
- добывные ресурсы для проектных скважин определены по параметрам «средней» скважины месторождения;
- прогнозная добыча конденсата и динамика ее снижения в зависимости от снижения пластового давления в процессе отбора газа из залежи по результатам лабораторных исследований.
- ввод пропановой холодильной установки для обеспечения полноценной подготовки товарного газа.

Вариант 1.

Разработку планируется осуществлять существующим фондом добывающих скважин и вводом из консервации двух скважин. Общий добывающий фонд составит 10 ед.

Объект І (нижневизейский горизонт)

• ввод из консервации скважины №4Г;

Объект II (серпуховский горизонт)

• ввод из консервации скважины №8;

Вариант 2.

С целью увеличения извлечения газа и конденсата разработку планируется осуществлять вводом из бурения в эксплуатацию 2 новых проектных скважин (одна из них горизонтальная скважина) и вводом из консервации двух скважин. Общий добывающий фонд составит 12 ед.

Объект I (нижневизейский горизонт)

 бурение 2 проектных скважин (№№ 108, 109) и ввод из консервации скважины №4Г.

Объект II (серпуховский горизонт)

• ввод из консервации скважины №8;

Вариант 3.

С целью увеличения извлечения газа и конденсата разработку планируется осуществлять вводом из бурения в эксплуатацию 9 новых проектных скважин (одна из них горизонтальная скважина) и вводом из консервации двух скважин. Общий добывающий фонд составит 19 ед.

Объект І (нижневизейский горизонт)

• бурение 9 проектных скважин (№№ 108, 109, 110, 111, 112, 113, 114, 115, 116) и ввод из консервации скважины №4Г.

Объект II (серпуховский горизонт)

• ввод из консервации скважины №8;

В вариантах 2 и 3 приняты следующие равные условия:

- в новых пробуренных проектных скважинах провести мероприятия ГРП, с целью увеличения продуктивности призабойной зоны скважины;
 - проектный дебит для вертикальных скважин принят q_r =30 тыс.м³/сут;
 - проектный дебит для горизонтальной скважины принят $q_r = 100$ тыс. m^3/cyt .

Для выработки оставшихся запасов газа и конденсата местоположение проектных скважин заложено в зонах, не охваченных бурением.

Таблица 3.3.3.1 – Основные исходные характеристики расчетных вариантов разработки

			I объект		II объект				
Характе	пистики	нижн	евизейский г	оризонт	серпуховский горизонт				
Aapakie	ристики		Варианты разработки						
		1	2	3	1	2	3		
Режим ра	Режим разработки					газовый			
Система размен	цения скважин		неравномерн	ая	неј	равномерная	I		
Расстояние межд	у скважинами, м	1000	750-1000	750	-	-	-		
Плотность сетки,	10 ⁴ м ² /скв (га/скв)	170,4	139,4	85,2	441,6	441,6	441,6		
Количество добыва	Количество добывающих скважин, ед.			18	1	1	1		
В Т.Ч. ИЗ	бурения	-	2	9	-	-	-		
из консе	ервации	1	1	1	1	1	1		
Резервные	е скважин								
Режим работы доб	ывающих скважин	Py=const=4,8 МПа							
Проектные дебиты	вертикальных	-	30	30	-	-	-		
скважин, тыс.м ³ /сут	горизонтальных	-	100	100	-	-	-		
Коэффициент			(0.05					
добывающих		0,95							
Коэффициент экс	0,5								
добывающих (скважин, д.ед.		0,5			<u> </u>			

Коэффициент эксплуатации переходящих	0.95
скважин, д.ед.	0,93

Обоснование проектных показателей, относимых к контрактным обязательствам, диапазонов их изменения или предельно допустимых значений

Согласно п. 12 статьи 277 Кодекса «О недрах и недропользовании» устанавливается выполнение следующих показателей проектных документов, относимых к контрактным обязательствам недропользователя:

- 1) плотность сетки эксплуатационных скважин;
- 2) соотношение добывающих и нагнетательных скважин по каждому эксплуатационному объекту;
 - 3) коэффициент компенсации по залежам;
- 4) отношение пластового и забойного давления к давлению насыщения или давлению конденсации;
 - 5) отношение пластового давления к забойному давлению;
 - 6) максимально допустимая величина газового фактора по скважинам;
 - 7) объемы добычи углеводородов;
 - 8) объемы обратной закачки рабочего агента для повышения пластового давления;
 - 9) показатели ввода эксплуатационных скважин.

При этом, значения показателей, указанных в настоящем пункте, не включаются в контракт и определяются исходя из проектных документов.

Согласно п. 107 «Единых правил по рациональному и комплексному использованию недр» при проектировании проекта разработки месторождения и изменений и/или дополнений к нему или анализа разработки необходимо обосновать диапазоны или предельно допустимые значения следующих показателей:

- 1) коэффициент компенсации по залежам;
- 2) отношение пластового и забойного давления к давлению насыщения или давлению конденсации;
 - 3) отношение пластового давления к забойному давлению;
 - 4) максимально допустимая величина газового фактора по скважинам;
 - 5) объемы добычи углеводородов;
 - 6) объемы обратной закачки рабочего агента для повышения пластового давления;
 - 7) показатели ввода эксплуатационных скважин.

Ниже приводится обоснование вышеуказанных проектных показателей, диапазоны их изменения или предельно допустимые значения.

Плотность сетки эксплуатационных скважин

Показатель плотности сетки скважин устанавливается исходя из положений расчетных вариантов разработки, определяющих количество пробуренных и проектных скважин по каждому объекту разработки.

Соотношение добывающих и нагнетательных скважин по каждому эксплуатационному объекту

Месторождение разрабатывается на режиме истощения, в связи с этим нагнетательные скважины не предусмотрены.

Коэффициент компенсации по залежам

В соответствии с предыдущим пунктом, данный пункт не актуален.

Отношение пластового давления к забойному давлению

Отношение пластового давления к забойному давлению составляет 2,97 МПа (при Pпл=18,1 МПа и Pзаб=6,8 МПа), депрессия на пласт составила $\Delta P=17,8$ МПа.

Отношение пластового и забойного давлений к давлению конденсации

Давление начала конденсации по месторождению составляет 20,85 МПа, что выше пластового давления 18,1 МПа. Отношение пластового давления к давлению конденсации -0,86 МПа. Отношение забойного давления (Рзаб=7,4 МПа) к давлению конденсации -0,35 МПа.

Объемы добычи углеводородов и объемы обратной закачки рабочего агента для повышения пластового давления

Допустимое отклонение объемов добычи углеводородов по эксплуатационным объектам разработки принято из расчета +/- 10% от годовых проектных показателей по добыче углеводородов, предусмотренного положениями п. 8 статьи 142 Кодекса «О недрах и недропользовании» и п. 162 «Единых правил по рациональному и комплексному использованию недр». Закачка рабочего агента не предусматривается проектом.

Показатели ввода эксплуатационных скважин

Отклонения по вводу эксплуатационных скважин не предусматриваются в связи с небольшим количеством скважин, предусмотренным к бурению.

Установленные настоящим проектом показатели, относимые к контрактным обязательствам по месторождения Айракты по рекомендуемому 3 варианту разработки, приведены в таблице 3.3.3.2.

Таблица 3.3.3.2 – Предельно-допустимые величины и диапазоны изменений проектных показателей, относимых к контрактным обязательствам

THOCHMINA K KONT PARTIDISH GONSAT CIDE TO LINE							
Параметры	I объект						
Плотность сетки скважин, га/скв	85,2						
Отношение пластового давления к	2,4						
забойному давлению	2,4						
Отношение пластового давления к	0,86						
давлению конденсации	0,00						
Отношение забойного давления к	0.35						
давлению конденсации	0,33						
Объемы добычи углеводородов, тыс. т	+/- 10% от годовых показателей объемов добычи углеводородов						
Ооъемы дооычи углеводородов, тыс. г	указанных в таблицах, приведенных в разделе 4.1 настоящего проекта						
Показатели ввода эксплуатационных	В соответствии с показателями ввода скважин из бурения из таблиц,						
скважин, ед.	приведенных в разделе 4.1, настоящего проекта						

3.4 Обоснование нормативов капитальных вложений и эксплуатационных затрат, принятых для расчетов экономических показателей

Расчет капитальных вложений и эксплуатационных затрат на добычу газа и конденсата выполнен на основе технологических показателей разработки и нормативов капитальных вложений и эксплуатационных затрат.

Капитальные вложения определены по отдельным направлениям, включающим в себя затраты на строительство скважин, систему поддержания пластового давления, а также на расширение объектов сбора и подготовки газа и конденсата. Потребность в капитальных вложениях определялась, исходя из объемных показателей, связанных с бурением скважин, реконструкцией объектов обустройства и удельных затрат, сложившихся за 2012-2020 гг. и утвержденному плану капитальных затрат на 2021 г. по бурению скважин, их обустройству, строительству объектов добычи и т.п.

Предполагаемые объемы инвестиционных затрат базируются на укрупненных удельных показателях стоимости, связанных как с бурением скважин, так и исходя из характеристики и необходимого количества оборудования, необходимого на строительство намеченных объектов, которые включают в себя издержки по инвестициям в основной капитал, состоящие из следующих расходов:

- стоимости основного и вспомогательного оборудования, потребных материалов;
- затрат на строительно-монтажные и пусконаладочные работы;
- прочих платежей.

В расчетах экономических показателей разработки месторождения капитальные затраты проекта оценивались укрупнено по следующим направлениям: затраты в строительство скважин; затраты на надземное газопромысловое строительство.

Капитальные вложения в строительство скважин включают в себя: затраты на бурение новых добывающих скважин.

Надземное строительство состоит из капитальных затрат на:

- обустройство проектных скважин затраты на сопутствующее скважинное оборудование для увеличения газоотдачи, обустройства выкидных линий для проектных скважин;
- проведение ГРП.

Капитальные вложения для расчета амортизационных отчислений для целей налогообложения и для включения в себестоимость приняты в соответствии с данными

раздела «Капвложения» настоящей записки. В составе капитальных вложений, также учтен резерв средств на прочие затраты (на экспертизы, авторский надзор, сел.хоз и лесной потери при добыче углеводородного сырья). Проектная стоимость бурения скважины подсчитана в зависимости от глубины бурения и с учетом особенностей скважины (горизонтальная, вертикальная, с боковыми стволами). Исходя из специфики бурения стоимость 1 метра проходки 303,00 тыс. тенге для эксплуатационной вертикальной скважины, 606,00 тыс. тенге для эксплуатационной горизонтальной скважины, которая определена исходя из анализа фактических затрат на бурение существующих скважин, пробуренных в 2012-2020 годах. Таким образом, стоимость строительства 1 (одной) скважины принята с учетом всех выше изложенных показателей. Продолжительность бурения и его окончания для каждой скважины определялось согласно нормативным данным по бурению. Так же капитальные вложения рассчитаны с учетом того, что большая часть оборудования, материалов, сооружений будет приобретаться в Казахстане. Однако, также возможно приобретение оборудования и материалов у производителей из других стран (СНГ) при невозможности приобретения соответствующего оборудования в Казахстане, а также в случаях их неконкурентоспособности с другими аналогами по показателям качества и цены. Нормативы для расчета капитальных затрат представлены в таблице 3.4.1;

Таблица 3.4.1 – Технико-экономические нормативы капитальных вложений и эксплуатационных затрат

№№ п/п	Наименование	Ед. изм.	Значение
1	2	3	4
	<u> Капитальные вложения</u>		
1	Строительство скважин		
1	Средняя стоимость бурения вертикальной эксплуатационной скважины	тыс.тенге	681 550
2	Средняя стоимость бурения горизонтальной эксплуатационной скважины	тыс.тенге	1 363 100
3	Стоимость бурения 1 м проходки, включая наземное оборудование	тыс.тенге	303
4	Расконсервация скважин	тыс.тенге	7 310
2	Надземное строительство		
1	Проведение ГГРП (гидро разрыв пласта)	тыс.тенге	55 900
2	Обустройство месторождения	тыс.тенге	113 090
3	Испытание серуховского горизонта	тыс.тенге	6 880

Нормативы затрат, использованные в расчетах определены в соответствии с фактическими затратами за 2012-2020 гг. и утвержденным Бюджетом ТОО «Амангельды Газ» на 2021 год.

При расчете эксплуатационных затрат выделены две группы нормативов:

- нормативы для расчета затрат на производство;
- нормативы фиксированных платежей и цены продукции.

Нормативы, участвующие при определении эксплуатационных расходов, связанных с добычей и подготовкой газа, приведены в таблице 3.5.2.

Амортизационные отчисления, включаемые в себестоимость продукции рассчитывались, по производственному методу в соответствии со стандартом бухгалтерского учета РК № 20 «Учет и отчетность нефтегазодобывающей промышленности» и методическими рекомендациями к нему.

Экономика предприятия будет основываться на стандартной модели налогообложения с учетом особенностей контракта на недропользование, выданного ТОО «Амангельды Газ. В связи с этим проектирование налоговых обязательств, которые несет предприятие, осуществлялось по принятым в качестве нормативов ставкам налогов и других обязательных платежей в бюджет с корректировкой по некоторым видам налогов.

Величина нормативов, связанных с налогообложением приведена в таблице 3.4.3

Таблица 3.4.2 – Нормативы для расчета эксплуатационных затрат

№	Наименование	Единица измерения	Значение
1	Уровень использования газа на продажу (топливный газ)	%	99,6%
2	Уровень использования конденсата на продажу (средний+легкий дистллят)	%	100%
3	Среднегодовая оплата труда 1-го работника ППП	тыс.тенге	5 973,9
4	Расходы, относимые на себестоимость продукции		
4.1	Ватраты на материалы и химреагенты	тыс.тенге/1000.м ³ .	141,90
4.2	Затраты на ГСМ	тыс.тенге/1000.м ³ .	21,50
4.3	Ватраты на электроэнергию и пр. ресурсы (производство)	тыс.тенге/1000.м ³ .	266,60
4.4	Ватраты производственного характера	тыс.тенге/скв	275,20
4.5	Услуги производственного характера, выполненные сторонними организациями	тыс.тенге/1000.м ³ .	3 276,60
4.6	Затраты на ТБ И ООС	тыс.тенге/раб ПП	623,50
4.8	Ватраты на ремонт скважин	тыс. тенге/скв.	2 558,50
5	Расходы периода:		
5.1	Административные затраты	тыс.тенге/раб.ПП	1 431,90
5.2	Прочие расходы, постоянного характера	тыс.тенге/в год	6 884,30
6	Удельный вес продажи газа на внешний рынок	%	0,00
7	Удельный вес продажи газа на внутренний рынок	%	100,0%
8	Инфляция цены на продукцию	% в год	1,5% с 2027г.
9	Инфляция на капитальные вложения и эксплуатационные затраты	% в год	4,0%

Таблица 3.4.3 – Нормативы для расчета эксплуатационных затрат, связанные с налогообложением и

ценой продукции

No	Наименование	Значение
1	Отчисления в Фонд государственного социального страхования	11%
2	Отчисления в пенсионный фонд	10%
3	Амортизационные отчисления фиксированных активов, подлежащих вычету при налогообложении	по Налоговому Кодексу РК
4	Ватраты на обучение казахстанских специалистов	Экспл.затраты*1%
5	Перечисления в Ликвидационный фонд (по утв.Программе ликвид.)	1% от Экспл затрат
6	Развитие социальной сферы и инфраструктуры, тыс.\$/год	0,5% от экспл.
7	Корпоративный подоходный налог	20%
8	ндпи	по шкале
9	Налог на добавленную стоимость при покупке товаров и услуг	12%
10	Налог на добавленную стоимость при реализации продукции на внутреннем рынке	12%
11	Налог на имущество	1,50%
12	Налог на сверхприбыль	по шкале
13	Прочие налоги и отчисления в бюджет	1,50%
14	Цена реализации газоконденсата на внутреннем рынке(без учета НДС,), генге/тн	116 000
15	Цена реализации газа на внутреннем рынке (без учета НДС), тенге/тыс. м3	39 000
16	Год начала проекта	2021
17	Курс доллара США, тенге/доллар	430

4 ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАНТОВ РАЗРАБОТКИ

4.1 Технологические показатели вариантов разработки

В соответствии с требованиями «Единых правил по рациональному и комплексному использованию недр» расчеты технологических показателей по каждому варианту были выполнены на весь срок разработки месторождения.

Расчеты технологических показателей для газоконденсатной залежи на режиме истощения выполнены по 3 вариантам разработки с учетом ретроградных явлений, происходящих в пласте в процессе снижения пластового давления.

Вариант 1

Проектный период разработки – 2021-2052 годы.

Накопленная добыча газа за проектно-рентабельный период -504,3 млн.м³.

Накопленная добыча конденсата за проектно-рентабельный период – 5,1 тыс.т.

Накопленная добыча газа с начала разработки – 619,0 млн.м³.

Накопленная добыча конденсата с начала разработки – 6,6 тыс.т.

 $KИ\Gamma - 0,115$ д.ед.

КИК – 0,034 д.ед.

Вариант 2

Проектный период разработки – 2021-2071 годы.

Накопленная добыча газа за проектно-рентабельный период -1880,1 млн.м³.

Накопленная добыча конденсата за проектно-рентабельный период – 19,0 тыс.т.

Накопленная добыча газа с начала разработки – 1995,5 млн.м³.

Накопленная добыча конденсата с начала разработки – 20,5 тыс.т.

 $KИ\Gamma - 0.370$ д.ед.

KИK - 0.106 д.ед.

Вариант 3

Проектный период разработки – 2021-2066 годы.

Накопленная добыча газа за проектно-рентабельный период – 2512,4 млн.м³

Накопленная добыча конденсата за проектно-рентабельный период – 25,4 тыс.т.

Накопленная добыча газа с начала разработки – 2627,0 млн.м³.

Накопленная добыча конденсата с начала разработки – 26,9 тыс.т.

 $KИ\Gamma - 0.487$ д.ед.

КИК – 0,139 д.ед.

Согласно технико-экономических расчетов к реализации рекомендуется вариант 3. Основные технологические показатели по 3 варианту разработки объектов приведены в таблицах 4.1.1-4.1.6, по остальным вариантам приведены в табличных приложениях 21-32, карты размещения проектных и пробуренных скважин показаны на графических приложениях 17-19.

Таблица 4.1.1 - Месторождение Айракты. Характеристика основного фонда скважин в целом по

месторождению. Вариант 3

месторождению. Вариант 3										
Готин	Ввод	скважи	н из бурения	Фонд скважин	Эксплуа- тацион-		Фонд добывающих	Среднегодовой дебит на 1 скважину		
Годы и				сначала		скважин,			·	
периоды		И3	И3	разработки,		/	конен гола	/	конденсата,	
	Beero	бурения	консервации	разраоотки, ед.	M	од.	ед.	тыс.м ³ /сут	т/сут	
2021	0	0	0	17	0	0	8	9,4	0,095	
2022	1	0	1	17	0	0	9	9,9	0,100	
2023	2	1	1	18	2,25	0	11	11,4	0,115	
2024	1	1	0	19	2,25	0	12	12,7	0,128	
2025	3	3	0	22	7,40	0	15	13,4	0,135	
2026	3	3	0	25	6,75	0	18	16,4	0,166	
2027	1	1	0	26	2,25	0	19	16,2	0,163	
2028	0	0	0	26	0	0	19	13,8	0,140	
2029	0	0	0	26	0	0	19	12,5	0,126	
2030	0	0	0	26	0	0	19	12,1	0,122	
2031	0	0	0	26	0	0	19	12,7	0,129	
2032	0	0	0	26	0	0	19	12,9	0,130	
2033	0	0	0	26	0	0	19	12,4	0,125	
2034	0	0	0	26	0	0	19	12,3	0,124	
2035	0	0	0	26	0	0	19	12,1	0,122	
2036	0	0	0	26	0	0	19	11,9	0,120	
2037	0	0	0	26	0	0	19	11,7	0,118	
2038	0	0	0	26	0	0	19	11,6	0,117	
2039	0	0	0	26	0	0	19	11,0	0,112	
2040	0	0	0	26	0	0	19	10,8	0,109	
2041	0	0	0	26	0	0	19	10,3	0,104	
2042	0	0	0	26	0	0	19	9,8	0,099	
2043	0	0	0	26	0	0	19	9,4	0,095	
2044	0	0	0	26	0	0	19	9,0	0,091	
2045	0	0	0	26	0	0	19	8,6	0,087	
2046	0	0	0	26	0	0	19	8,2	0,083	
2047	0	0	0	26	0	0	19	7,9	0,079	
2048	0	0	0	26	0	0	19	7,5	0,076	
2049	0	0	0	26	0	0	19	7,3	0,073	
2050	0	0	0	26	0	0	19	7,0	0,071	
2051	0	0	0	26	0	1	18	6,7	0,068	
2052	0	0	0	26	0	0	18	6,5	0,066	
2053	0	0	0	26	0	0	18	6,3	0,064	
2054	0	0	0	26	0	0	18	6,1	0,062	
2055	0	0	0	26	0	1	17	5,9	0,060	
2056	0	0	0	26	0	0	17	5,7	0,058	
2057	0	0	0	26	0	0	17	5,5	0,056	
2058	0	0	0	26	0	0	17	5,4	0,054	
2059	0	0	0	26	0	1	16	5,2	0,053	
2060	0	0	0	26	0	0	16	5,1	0,051	
2061	0	0	0	26	0	0	16	4,9	0,050	
2062	0	0	0	26	0	0	16	4,8	0,048	
2063	0	0	0	26	0	1	15	4,7	0,047	
2064	0	0	0	26	0	0	15	4,6	0,046	
2065	0	0	0	26	0	0	15	4,5	0,045	
2066	0	0	0	26	0	0	15	4,4	0,044	

Таблица 4.1.2 – Месторождение Айракты. Характеристика основных показателей разработки в целом

по месторождению. Вариант 3

no meeto	рожден	ию. Вариан	11.5		Town	r6one			
	Π.σ			Накоп-	Темп от	-	0-5	TC 4 4	Коэффициен
Годы и	Добыч	Добыча	Накопленна	ленная	газа		-	Коэффициен	T
период	а газа,	конденсат	я добыча	добыча			извлекаемы		извлечения
Ы	МЛН. - 3	а, тыс. т	газа, млн. м ³	конденсат	запасо		х запасов,	извлечения	конденсата,
	M^3			а, тыс. т	началь	теку	%	газа, д.ед.	д.ед.
2021	260	0.262	140.6		H	Щ	~ 4	0.026	
2021	26,0	0,262	140,6	1,8	1,0	1,0	5,4	0,026	0,009
2022	29,3	0,296	169,9	2,1	1,1	1,2	6,5	0,032	0,011
2023	39,8	0,402	209,7	2,5	1,5	1,6	8,0	0,039	0,013
2024	50,6	0,511	260,3	3,0	1,9	2,1	9,9	0,048	0,015
2025	63,1	0,637	323,4	3,6	2,4	2,7	12,3	0,060	0,019
2026	94,4	0,953	417,8	4,6	3,6	4,1	15,9	0,077	0,024
2027	104,0	1,050	521,8	5,6	4,0	4,7	19,9	0,097	0,029
2028	91,0	0,919	612,8	6,5	3,5	4,3	23,3	0,114	0,034
2029	82,4	0,832	695,2	7,4	3,1	4,1	26,5	0,129	0,038
2030	79,9	0,807	775,0	8,2	3,0	4,1	29,5	0,144	0,042
2031	84,0	0,848	859,0	9,0	3,2	4,5	32,7	0,159	0,047
2032	85,0	0,858	944,0	9,9	3,2	4,8	35,9	0,175	0,051
2033	81,8	0,826	1025,8	10,7	3,1	4,9	39,0	0,190	0,055
2034	81,0	0,818	1106,8	11,5	3,1	5,1	42,1	0,205	0,059
2035	79,6	0,804	1186,4	12,3	3,0	5,2	45,2	0,220	0,064
2036	78,2	0,790	1264,6	13,1	3,0	5,4	48,1	0,234	0,068
2037	76,9	0,776	1341,4	13,9	2,9	5,6	51,1	0,249	0,072
2038	76,4	0,772	1417,8	14,7	2,9	5,9	54,0	0,263	0,076
2039	72,8	0,735	1490,6	15,4	2,8	6,0	56,7	0,276	0,079
2040	71,2	0,719	1561,8	16,1	2,7	6,3	59,5	0,290	0,083
2041	67,9	0,685	1629,7	16,8	2,6	6,4	62,0	0,302	0,087
2042	64,7	0,654	1694,4	17,5	2,5	6,5	64,5	0,314	0,090
2043	61,8	0,624	1756,2	18,1	2,4	6,6	66,9	0,326	0,093
2044	59,1	0,597	1815,3	18,7	2,2	6,8	69,1	0,337	0,096
2045	56,5	0,571	1871,9	19,3	2,2	7,0	71,3	0,347	0,099
2046	54,1	0,546	1926,0	19,8	2,1	7,2	73,3	0,357	0,102
2047	51,8	0,523	1977,8	20,3	2,0	7,4	75,3	0,367	0,105
2048	49,7	0,502	2027,5	20,8	1,9	7,7	77,2	0,376	0,107
2049	47,8	0,483	2075,3	21,3	1,8	8,0	79,0	0,385	0,110
2050	46,1	0,466	2121,4	21,8	1,8	8,4	80,8	0,393	0,112
2051	44,5	0,449	2165,9	22,2	1,7	8,8	82,4	0,402	0,115
2052	40,6	0,410	2206,5	22,6	1,5	8,8	84,0	0,409	0,117
2053	39,3	0,397	2245,8	23,0	1,5	9,3	85,5	0,416	0,119
2054	38,0	0,384	2283,8	23,4	1,4	10,0	86,9	0,423	0,121
2055	36,8	0,372	2320,6	23,8	1,4	10,7	88,3	0,430	0,123
2056	33,6	0,340	2354,3	24,1	1,3	11,0	89,6	0,437	0,124
2057	32,6	0,330	2386,9	24,5	1,2	12,0	90,9	0,443	0,126
2058	31,7	0,320	2418,6	24,8	1,2	13,2	92,1	0,448	0,128
2059	30,8	0,311	2449,3	25,1	1,2	14,8	93,2	0,454	0,129
2060	28,1	0,284	2477,5	25,4	1,1	15,8	94,3	0,459	0,131
2061	27,4	0,276	2504,8	25,7	1,0	18,3	95,3	0,464	0,132
2062	26,6	0,269	2531,5	25,9	1,0	21,8	96,4	0,469	0,134
2063	25,9	0,262	2557,4	26,2	1,0	27,1	97,3	0,474	0,135
2064	23,8	0,240	2581,2	26,4	0,9	34,2	98,3	0,479	0,136
2065	23,2	0,234	2604,4	26,7	0,9	50,7	99,1	0,483	0,137
2066	22,6	0,229	2627,0	26,9	0,9	100,1	100,0	0,487	0,139

Таблица 4.1.3 – Месторождение Айракты. Характеристика основного фонда скважин по I объекту. Вариант 3

Вариант 3										
Г	Ввод	скважи	н из бурения	Фонд скважин	Эксплуа- тацион-		Фонд добывающих	Среднегодовой дебит на 1 скважину		
Годы и				сначала		скважин,			-	
периоды		и3	И3	разработки,	бурение.		конен гола	/	конденсата,	
		бурения	консервации	ед.	M	****	ед.	тыс.м ³ /сут	т/сут	
2021	0	0	0	16	0	0	8	9,4	0,095	
2022	0	0	0	16	0	0	8	10,2	0,103	
2023	2	1	1	17	2,25	0	10	12,1	0,123	
2024	1	1	0	18	2,25	0	11	13,4	0,136	
2025	3	3	0	21	7,40	0	14	13,7	0,139	
2026	3	3	0	24	6,75	0	17	16,9	0,170	
2027	1	1	0	25	2,25	0	18	16,6	0,167	
2028	0	0	0	25	0	0	18	14,1	0,142	
2029	0	0	0	25	0	0	18	12,7	0,128	
2030	0	0	0	25	0	0	18	12,3	0,124	
2031	0	0	0	25	0	0	18	13,0	0,131	
2032	0	0	0	25	0	0	18	13,1	0,133	
2033	0	0	0	25	0	0	18	12,6	0,128	
2034	0	0	0	25	0	0	18	12,5	0,126	
2035	0	0	0	25	0	0	18	12,3	0,124	
2036	0	0	0	25	0	0	18	12,1	0,122	
2037	0	0	0	25	0	0	18	11,9	0,120	
2038	0	0	0	25	0	0	18	11,8	0,119	
2039	0	0	0	25	0	0	18	11,2	0,113	
2040	0	0	0	25	0	0	18	11,0	0,111	
2041	0	0	0	25	0	0	18	10,4	0,106	
2042	0	0	0	25	0	0	18	10,0	0,101	
2043	0	0	0	25	0	0	18	9,5	0,096	
2044	0	0	0	25	0	0	18	9,1	0,091	
2045	0	0	0	25	0	0	18	8,7	0,087	
2046	0	0	0	25	0	0	18	8,3	0,084	
2047	0	0	0	25	0	0	18	7,9	0,080	
2048	0	0	0	25	0	0	18	7,6	0,076	
2049	0	0	0	25	0	0	18	7,3	0,074	
2050	0	0	0	25	0	0	18	7,0	0,071	
2051	0	0	0	25	0	1	17	6,7	0,068	
2052	0	0	0	25	0	0	17	6,5	0,066	
2053	0	0	0	25	0	0	17	6,3	0,063	
2054	0	0	0	25	0	0	17	6,1	0,061	
2055	0	0	0	25	0	1	16	5,9	0,059	
2056	0	0	0	25	0	0	16	5,7	0,057	
2057	0	0	0	25	0	0	16	5,5	0,055	
2058	0	0	0	25	0	0	16	5,3	0,054	
2059	0	0	0	25	0	1	15	5,2	0,052	
2060	0	0	0	25	0	0	15	5,0	0,051	
2061	0	0	0	25	0	0	15	4,9	0,049	
2062	0	0	0	25	0	0	15	4,7	0,048	
2063	0	0	0	25	0	1	14	4,6	0,046	
2064	0	0	0	25	0	0	14	4,5	0,045	
2065	0	0	0	25	0	0	14	4,4	0,044	
2066	0	0	0	25	0	0	14	4,3	0,043	

Таблица 4.1.4 – Месторождение Айракты. Характеристика основных показателей разработки по І объекту. Вариант 3

таолица	4.1.4 – IV	тесторожден	іне Аиракты.	ларактерис	гика осн	овных	показателеи	разраоотки по	1 объекту. Вар	риант 5			
Годы и периоды	Добыча газа, млн. м ^з	, ,	Накопленная добыча газа, млн. м ³	Накоп- ленная добыча конденсата,	запасо	от емых в, %	извлекаемых запасов, %	коэффициент	Коэффициент извлечения конденсата, д.ед.	Давление, МПа		Коэффициент сверхсжимаемости	
					начальн	•				Рпл	Рзаб	Py	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2021	26,0	0,262	140,6	1,8	1,0	1,1	5,6	0,028	0,010	17,9	5,9	4,8	0,877
2022	28,4	0,287	169,0	2,1	1,1	1,2	6,7	0,034	0,012	17,6	5,1	4,2	0,871
2023	38,1	0,385	207,1	2,4	1,5	1,6	8,2	0,042	0,014	17,5	4,7	3,8	0,871
2024	49,0	0,495	256,1	2,9	1,9	2,1	10,2	0,052	0,016	17,3	4,4	3,6	0,870
2025	59,8	0,604	316,0	3,5	2,4	2,6	12,6	0,064	0,020	17,1	3,8	3,1	0,870
2026	91,2	0,921	407,1	4,5	3,6	4,1	16,2	0,082	0,025	16,8	3,7	3,0	0,869
2027	100,8	1,018	507,9	5,5	4,0	4,8	20,2	0,102	0,031	16,4	3,7	3,0	0,869
2028	87,8	0,887	595,7	6,4	3,5	4,4	23,7	0,120	0,036	15,9	3,7	3,0	0,868
2029	79,3	0,801	675,0	7,2	3,2	4,1	26,8	0,136	0,040	15,5	3,7	3,0	0,867
2030	76,8	0,776	751,8	8,0	3,1	4,2	29,9	0,151	0,044	15,2	3,7	3,0	0,867
2031	80,9	0,817	832,8	8,8	3,2	4,6	33,1	0,168	0,049	14,8	3,6	2,9	0,867
2032	82,0	0,828	914,7	9,6	3,3	4,9	36,4	0,184	0,054	14,5	3,6	2,9	0,867
2033	78,9	0,796	993,6	10,4	3,1	4,9	39,5	0,200	0,058	14,1	3,4	2,8	0,867
2034	78,1	0,789	1071,7	11,2	3,1	5,1	42,6	0,216	0,062	13,8	3,3	2,6	0,867
2035	76,7	0,775	1148,4	12,0	3,0	5,3	45,6	0,231	0,067	13,4	3,1	2,5	0,867
2036	75,3	0,761	1223,7	12,7	3,0	5,5	48,6	0,246	0,071	13,1	3,0	2,4	0,868
2037	74,1	0,748	1297,8	13,5	2,9	5,7	51,6	0,261	0,075	12,8	2,9	2,3	0,868
2038	73,7	0,744	1371,5	14,2	2,9	6,0	54,5	0,276	0,079	12,4	2,7	2,2	0,869
2039	70,1	0,708	1441,5	14,9	2,8	6,1	57,3	0,290	0,083	12,1	2,6	2,1	0,870
2040	68,5	0,692	1510,0	15,6	2,7	6,4	60,0	0,304	0,087	11,8	2,5	2,0	0,871
2041	65,2	0,659	1575,2	16,3	2,6	6,5	62,6	0,317	0,091	11,5	2,4	2,0	0,871
2042	62,1	0,627	1637,3	16,9	2,5	6,6	65,1	0,329	0,094	11,2	2,3	1,9	0,872
2043	59,2	0,598	1696,6	17,5	2,4	6,7	67,4	0,341	0.098	11,0	2,3	1,9	0,873
2044	56,5	0,571	1753,1	18,1	2,2	6,9	69,7	0,353	0,101	10,7	2,2	1,8	0,874
2045	54,0	0,545	1807,1	18,6	2,1	7,1	71,8	0,364	0,104	10,5	2,2	1,8	0,876
2046	51,6	0,521	1858,7	19,1	2,1	7,3	73,9	0,374	0,107	10,3	2,2	1,8	0,877
2047	49,4	0,499	1908,1	19,6	2,0	7,5	75,8	0,384	0,110	10,0	2,1	1,7	0,878
2048	47,2	0,477	1955,4	20,1	1,9	7,8	77,7	0,393	0,112	9,8	2,1	1,7	0,879
2049	45,4	0,459	2000,8	20,6	1,8	8,1	79,5	0,402	0,115	9,6	2,0	1,6	0,880

Продолжение приложения 4.1.4

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2050	43,7	0,442	2044,5	21,0	1,7	8,5	81,3	0,411	0,117	9,4	1,9	1,6	0,881
2051	42,1	0,425	2086,7	21,4	1,7	8,9	82,9	0,420	0,120	9,2	1,8	1,5	0,882
2052	38,3	0,387	2125,0	21,8	1,5	8,9	84,5	0,427	0,122	9,1	1,8	1,4	0,883
2053	37,0	0,374	2162,0	22,2	1,5	9,5	85,9	0,435	0,124	8,9	1,7	1,4	0,884
2054	35,8	0,361	2197,8	22,6	1,4	10,1	87,4	0,442	0,126	8,7	1,6	1,3	0,885
2055	34,6	0,349	2232,3	22,9	1,4	10,9	88,7	0,449	0,128	8,6	1,6	1,3	0,886
2056	31,5	0,318	2263,8	23,2	1,3	11,1	90,0	0,455	0,130	8,4	1,5	1,3	0,888
2057	30,5	0,308	2294,3	23,5	1,2	12,1	91,2	0,462	0,131	8,3	1,5	1,2	0,889
2058	29,5	0,298	2323,8	23,8	1,2	13,3	92,4	0,467	0,133	8,2	1,5	1,2	0,890
2059	28,6	0,289	2352,4	24,1	1,1	14,9	93,5	0,473	0,135	8,1	1,5	1,2	0,890
2060	26,0	0,263	2378,5	24,4	1,0	15,9	94,5	0,478	0,136	7,9	1,4	1,2	0,891
2061	25,3	0,256	2403,8	24,6	1,0	18,4	95,5	0,484	0,138	7,8	1,4	1,2	0,892
2062	24,6	0,248	2428,4	24,9	1,0	21,9	96,5	0,489	0,139	7,7	1,4	1,2	0,893
2063	23,9	0,241	2452,3	25,1	1,0	27,3	97,5	0,493	0,140	7,6	1,4	1,2	0,894
2064	21,8	0,220	2474,1	25,3	0,9	34,2	98,3	0,498	0,142	7,5	1,3	1,1	0,895
2065	21,2	0,215	2495,3	25,6	0,8	50,7	99,2	0,502	0,143	7,4	1,3	1,1	0,896
2066	20,7	0,209	2516,0	25,8	0,8	100,1	100,0	0,506	0,144	7,3	1,3	1,1	0,897

Таблица 4.1.5 – Месторождение Айракты. Характеристика основного фонда скважин по II объекту. Вариант 3

Вариант	3				I -	1		Π	
F	Ввод	скважи	н из бурения	Фонд скважин	Эксплуа- тацион-		Фонд добывающих		довой дебит кважину
Годы и				сначала	ное	скважин,			
периоды	всего	И3	из		бурение.		COHOU FORO	газа,	конденсата,
	20010	бурения	из консервации	ед.	M	50.	ед.	тыс.м ³ /сут	т/сут
2022	1	0	1	1	0	0	1	4,9	0.049
2023	0	0	0	1	0	0	1	4,9	0,049
2024	0	0	0	1	0	0	1	4,7	0,048
2025	0	0	0	1	0	0	1	9,3	0,094
2026	0	0	0	1	0	0	1	9,3	0,094
2027	0	0	0	1	0	0	1	9,2	0,093
2028	0	0	0	1	0	0	1	9,1	0,092
2029	0	0	0	1	0	0	1	9,0	0,091
2030	0	0	0	1	0	0	1	8,9	0,090
2031	0	0	0	1	0	0	1	8,7	0,088
2032	0	0	0	1	0	0	1	8,6	0,087
2032	0	0	0	1	0	0	1	8,5	0,087
2034	0	0	0	1	0	0	1	8,4	0,085
2035	0	0	0	1	0	0	1	8,3	0,083
2036	0	0	0	1	0	0	1	8,2	0,083
2037	0	0	0	1	0	0	1	8,1	0,083
2037	0	0	0	1	0	0	1	8,0	0,082
2039	0	0	0	1	0	0	1	7,9	0,030
2039	0	0	0	1	0	0	1	7,9	0,079
2040	0	0	0	1	0	0	1	7,7	0,078
2041	0	0	0	1	0	0	1	7,7	0,077
2042	0	0	0	1	0	0	1	7,6	0,076
	0	0	0	1	0	0	1	7,3	
2044	0	0	0	1	0	0	1	7,4	0,074
2045	0	0		1	0	0	1	7,3	0,073
2046	0	0	0	1	0	0	1	7,2	0,073
2047	0	0	0	1	0	0	1		0,072
2048	0	0	0	1	0	0	1	7,0	0,071
2049	0	0	0		0	0	1	6,9	0,070
2050	0	0	0	1	0	0	1	6,8 6,7	0,069
2051	0	0	0	1	0	0	1	-	0,068 0.067
2052	0	0	0	1	0	0	1	6,7 6,6	- ,
2054			0	1		0	1	-	0,066 0,066
2054	0	0	0	1	0	0	1	6,5	
2056		0	0	1	0	0	1	6,4 6,3	0,065
2057	0	0	0	1	0	0	1		0,064
2057	0	0	0	1	0	0	1	6,3	0,063 0,062
	0			1			1	6,2	· · · · · · · · · · · · · · · · · · ·
2059	0	0	0	1	0	0	1	6,1	0,062
2060	0	0		1	0	0	1	6,0	0,061
2061	0	0	0	1	0	0	1	6,0 5.0	0,060
2062	0	0	0	1	0	0	1	5,9	0,059
2063	0	0	0	1	0	0	1	5,8	0,059
2064	0	0	0	1	0	0	1	5,7	0,058
2065	0	0	0	1	0	0	1	5,7	0,057
2066	0	0	0	1	0	0	1	5,6	0,057

Таблица 4.1.6 – Месторождение Айракты. Характеристика основных показателей разработки по ІІ объекту. Вариант 3

Таолица	7.1.0 - N	тесторождег	ис миракты.	ларактерис			показателен	разраоотки по	н ооъекту. ва	риант			
Годы и периоды	Добыча газа, млн. м ³		Накопленная добыча газа, млн. м ³	Накоп- ленная добыча конденсата,		от 1емых	Отбор от извлекаемых запасов, %	коэффициент	конденсата,	Да	вление, М	Па	Коэффициент сверхсжимаемости
				тыс. т	начальн	текущ			д.ед.	Рпл	Рзаб	Py	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2022	0,9	0,009	0,9	0,009	0,8	0,8	1	0,002	0,001	11,4	5,3	4,2	0,836
2023	1,7	0,017	2,6	0,026	1,5	1,5	2	0,006	0,002	11,3	4,7	3,8	0,835
2024	1,6	0,017	4,2	0,043	1,5	1,5	4	0,010	0,003	11,3	4,6	3,7	0,835
2025	3,2	0,033	7,5	0,075	2,9	3,0	7	0,018	0,005	11,2	3,8	3,1	0,835
2026	3,2	0,032	10,7	0,108	2,9	3,1	10	0,025	0,007	11,2	3,8	3,0	0,835
2027	3,2	0,032	13,9	0,140	2,9	3,2	12	0,033	0,009	11,1	3,6	2,9	0,836
2028	3,2	0,032	17,0	0,172	2,8	3,3	15	0,040	0,011	11,0	3,6	2,9	0,836
2029	3,1	0,031	20,1	0,203	2,8	3,3	18	0,048	0,014	10,9	3,6	2,9	0,837
2030	3,1	0,031	23,2	0,235	2,8	3,4	21	0,055	0,016	10,9	3,6	2,9	0,837
2031	3,0	0,031	26,3	0,265	2,7	3,5	24	0,062	0,018	10,8	3,6	2,9	0,838
2032	3,0	0,030	29,2	0,295	2,7	3,5	26	0,069	0,020	10,7	3,6	2,9	0,838
2033	3,0	0,030	32,2	0,325	2,7	3,6	29	0,076	0,022	10,6	3,6	2,9	0,838
2034	2,9	0,029	35,1	0,355	2,6	3,7	32	0,083	0,024	10,6	3,6	2,9	0,839
2035	2,9	0,029	38,0	0,384	2,6	3,8	34	0,090	0,026	10,5	3,6	2,9	0,839
2036	2,8	0,029	40,8	0,412	2,6	3,9	37	0,097	0,027	10,4	3,6	2,9	0,840
2037	2,8	0,028	43,6	0,440	2,5	4,0	39	0,103	0,029	10,4	3,6	2,9	0,840
2038	2,8	0,028	46,4	0,468	2,5	4,1	42	0,110	0,031	10,3	3,6	2,9	0,841
2039	2,7	0,028	49,1	0,496	2,5	4,2	44	0,116	0,033	10,2	3,6	2,9	0,841
2040	2,7	0,027	51,8	0,523	2,4	4,3	47	0,123	0,035	10,2	3,6	2,9	0,842
2041	2,7	0,027	54,4	0,550	2,4	4,5	49	0,129	0,037	10,1	3,6	2,9	0,842
2042	2,6	0,026	57,1	0,576	2,4	4,6	51	0,135	0,038	10,0	3,6	2,9	0,843
2043	2,6	0,026	59,7	0,602	2,3	4,8	54	0,141	0,040	10,0	3,6	2,9	0,843
2044	2,6	0,026	62,2	0,628	2,3	5,0	56	0,147	0,042	9,9	3,6	2,9	0,844
2045	2,5	0,025	64,7	0,654	2,3	5,2	58	0,153	0,044	9,8	3,6	2,9	0,844
2046	2,5	0,025	67,2	0,679	2,2	5,4	61	0,159	0,045	9,8	3,6	2,9	0,844
2047	2,5	0,025	69,7	0,704	2,2	5,6	63	0,165	0,047	9,7	3,6	2,9	0,845
2048	2,4	0,025	72,1	0,728	2,2	5,9	65	0,171	0,049	9,7	3,6	2,9	0,845
2049	2,4	0,024	74,5	0,752	2,2	6,2	67	0,177	0,050	9,6	3,6	2,9	0,846
2050	2,4	0,024	76,9	0,776	2,1	6,5	69	0,182	0,052	9,6	3,6	2,9	0,846

Продолжение приложения 4.1.6

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2051	2,3	0,024	79,2	0,800	2,1	6,8	71	0,188	0,053	9,5	3,6	2,9	0,847
2052	2,3	0,023	81,5	0,823	2,1	7,3	73	0,193	0,055	9,4	3,6	2,9	0,847
2053	2,3	0,023	83,8	0,846	2,1	7,7	75	0,199	0,056	9,4	3,6	2,9	0,848
2054	2,3	0,023	86,0	0,869	2,0	8,3	78	0,204	0,058	9,3	3,6	2,9	0,848
2055	2,2	0,022	88,3	0,891	2,0	8,9	80	0,209	0,059	9,3	3,6	2,9	0,849
2056	2,2	0,022	90,5	0,914	2,0	9,7	81	0,214	0,061	9,2	3,6	2,9	0,849
2057	2,2	0,022	92,6	0,936	2,0	10,6	83	0,219	0,062	9,2	3,6	2,9	0,849
2058	2,1	0,022	94,8	0,957	1,9	11,7	85	0,225	0,064	9,1	3,6	2,9	0,850
2059	2,1	0,021	96,9	0,979	1,9	13,0	87	0,230	0,065	9,1	3,6	2,9	0,850
2060	2,1	0,021	99,0	1,000	1,9	14,8	89	0,235	0,067	9,0	3,6	2,9	0,851
2061	2,1	0,021	101,0	1,021	1,9	17,2	91	0,239	0,068	9,0	3,6	2,9	0,851
2062	2,0	0,021	103,1	1,041	1,8	20,5	93	0,244	0,069	8,9	3,6	2,9	0,852
2063	2,0	0,020	105,1	1,061	1,8	25,5	95	0,249	0,071	8,9	3,6	2,9	0,852
2064	2,0	0,020	107,1	1,082	1,8	33,7	96	0,254	0,072	8,8	3,6	2,9	0,853
2065	2,0	0,020	109,1	1,101	1,8	50,3	98	0,258	0,073	8,8	3,6	2,9	0,853
2066	1,9	0,020	111,0	1,121	1,8	100,1	100	0,263	0,075	8,7	3,6	2,9	0,853

Таблица 4.1.7 – Технологические показатели разработки рекомендуемого варианта 3 по объектам

П	Объ	екты
Наименование	I	II
1	2	3
Плотность сетки доб. скв.	85,2	441,6
Проектный уровень добычи газа, млн. м ³	100,8	3,2
Темп отбора при проектном уровне (от утв. нач. извлекаемых запасов), %	4,0	2,9
Год выхода на проектный уровень	2027	2025
Продолжительность проектного уровня, годы	1	4
Фонд скважин за весь срок разработки, всего, шт.	18	1
в том числе: добывающих	18	1
нагнетательных	-	-
специальных	-	-
Фонд скважин для бурения, всего, шт.	9	-
в том числе: добывающих	9	-
нагнетательных	-	-
специальных	-	-
Фонд резервных скважин, шт.	2	-
Фонд скважин-дублеров, шт.	-	-
Накопленная добыча за проектный период, млн. т:		
газа	2401,2	111,0
конденсата	24,3	1,121
Накопленная добыча с начала разработки, млн. т:		
газа	2516,0	111,0
конденсата	25,8	1,121
Конечный коэффициент извлечения газа, доли ед.	0,506	0,263
Конечный коэффициент извлечения конденсата, доли ед.	0,144	0,075

4.2 Экономические показатели вариантов разработки

Оценка экономической эффективности вариантов разработки месторождения Айракты предполагает некоторые экономические и финансовые допущения, приведенные ниже.

Экономические и финансовые допущения, использованные в экономической модели, позволяют на этапе проектирования рассчитать уровень необходимых для оценки финансово-экономических показателей, сопоставить полученные результаты по вариантам, выбрать наиболее оптимальный вариант и определить рентабельный период разработки месторождения.

Срок проекта по вариантам различен, однако первым годом реализации проекта принят 2021 год по всем вариантам. За интервал планирования принят промежуток времени, соответствующий одному календарному году.

Расчеты проводились на весь проектный срок. По результатам расчетов определен рентабельный период, который представляет собой период безубыточной добычи газа до момента, начиная с которого операционный доход принимает положительные значения.

Дисконтирование проводилось исходя из теории временной стоимости денег, то есть для получения суммы потока платежей, приведенной к настоящему моменту времени. Для определения дисконтированных потоков приняты следующие ставки:

- 11,5%;
- 12,0%;
- 12.5%.

Также при расчете денежных потоков был учтен накопленный убыток на конец 2020 гг. в размере 6 450 250 тыс тенге. При расчете данной суммы учитывались вложения в строительство и обустройство месторождения, а также полученные доходы с продажи УВС.

Масштабы цен, приведенные в расчетах, позволяют сопоставить полученные результаты экономической оценки. Все стоимостные показатели, применяемые в расчетах, приведены в текущих ценах в национальной валюте – тенге.

Реализация продукции. Согласно условиям контракта №435394 / 2020 / 1. на осуществление разработки месторождения Айракты, 100% газа и газоконденсата реализуется на внутренний рынок. Согласно сложившейся схеме реализации товарного газа внутри группы АО «КазТрансГаз» у ТОО «Амангельды Газ» отсутствуют расходы по транспортировке.

Цена реализации продукции определена в соответствии с ценовой политикой ТОО «Амангельды Газ». В данном проекте проектируемая цена на газ составляет 39 000 тенге/тыс.м3 без учета НДС, цена на конденсат составляет 116 000 тенге/тонну с учетом НДС.

Инфляция для расчета стоимости капитальных вложений, и эксплуатационных затрат принята в размере 4,0 % в год, в соответствии со средними темпами инфляции в Республике Казахстан за последние годы.

Источники доходов. В расчетах принято, что обеспечение необходимых объемов финансирования капитальных вложений в обустройство и разработку месторождения будет осуществляться за счет собственных средств, получаемых от реализации проекта, реинвестирования чистой прибыли и использования амортизационных отчислений, в случае недостаточности средств, предприятие может использовать кредит. Экономика предприятия будет основываться на обычной модели по налогообложению. В таблице 4.2.1 приведен расчет дохода от продажи реализации газа.

Таблица 4.2.1 – Расчет дохода от реализации продукции рекомендуемый 3 вариант, тыс.тенге

	Добы	Добыча	Объемы	<u>зации проду</u> реализации продукции	-	сомендуемы реализации		реализации	Итого
Г	ча	конденса	Товарн	Газоконден	Товарн	Газоконден	Товарны	Газоконден	
Годы	газа	та	ый газ	сат	ый газ	сат	й газ	сат	
	млн. м ³	тыс. тонн	млн. м ³	млн. м ³	тенге / тыс.м ³	тенге / тыс.т.	тыс. тенге	тыс. тенге	тыс. тенге
1	2	3	4	5	6	7	8	9	10
2021	26,0	0,3	25,9	0,3	39 000	116 000	1 008 625	30 422	1 039 047
2022	29,3	0,3	29,2	0,3	39 000	116 000	1 138 303	34 333	1 172 636
2023	39,8	0,4	39,6	0,4	39 000	116 000	1 544 638	46 589	1 591 227
2024	50,6	0,5	50,4	0,5	39 000	116 000	1 966 395	59 310	2 025 705
2025	63,1	0,6	62,8	0,6	39 000		2 450 693	73 917	2 524 610
2026	94,4	1,0	94,0	1,0	39 000		3 666 868	110 599	3 777 467
2027	104,0	1,0	103,5	1,0	39 585		4 098 483	123 617	4 222 100
2028	91,0	0,9	90,6	0,9	40 179		3 641 575	109 836	3 751 411
2029	82,4	0,8	82,1	0,8	40 781		3 347 465	100 965	3 448 430
2030	79,9	0,8	79,5	0,8	41 393		3 292 518	99 308	3 391 826
2031	84,0	0,8	83,6	0,8	42 014		3 513 633	105 977	3 619 610
2032	85,0	0,9	84,6	0,9	42 644		3 609 237	108 861	3 718 097
2033	81,8	0,8	81,5	0,8	43 284		3 526 558	106 367	3 632 925
2034	81,0	0,8	80,7	0,8	43 933		3 545 924	106 951	3 652 875
2035	79,6	0,8	79,2	0,8	44 592		3 533 826	106 586	3 640 413
2036	78,2	0,8	77,9	0,8	45 261		3 524 045	106 291	3 630 336
2037	76,9	0,8	76,5	0,8	45 940		3 516 567	106 066	3 622 633
2038	76,4	0,8	76,1	0,8	46 629		3 549 430	107 057	3 656 486
2039	72,8	0,7	72,5	0,7	47 329		3 431 033	103 486	3 534 519
2040	71,2	0,7	70,9	0,7	48 038		3 406 115	102 734	3 508 849
2041	67,9	0,7	67,6	0,7	48 759		3 295 364	99 394	3 394 758
2042	64,7	0,7	64,5	0,7	49 490		3 191 367	96 257	3 287 624
2043	61,8	0,6	61,6	0,6	50 233		3 093 384	93 302	3 186 686
2044	59,1	0,6	58,9	0,6	50 986		3 000 904	90 512	3 091 416
2045	56,5	0,6	56,3	0,6	51 751		2 913 453	87 875	3 001 328
2046	54,1	0,5	53,9	0,5	52 527		2 830 600	85 376	2 915 976
2047	51,8	0,5	51,6	0,5	53 315		2 751 946	83 003	2 834 949
2048	49,7	0,5	49,5	0,5	54 115		2 677 124	80 747	2 757 870
2049 2050	47,8	0,5	47,7	0,5 0,5	54 927		2 617 458 2 560 415	78 947	2 696 405
	46,1	0,5	45,9		55 751				2 637 641
2051 2052	44,5	0,4	44,3	0,4	56 587 57 436		2 505 878 2 324 727	75 581 70 118	2 581 460 2 394 845
2053	39,3	0,4	39,1	0,4	58 297		2 281 748	68 821	2 350 570
2054	38,0	0,4	37,9	0,4	59 172		2 240 243	67 569	2 307 812
2054	36,8	0,4	36,6	0,4	60 059	173 998	2 240 243	66 369	2 266 796
2056	33,6	0,4	33,5	0,4	60 960		2 042 851	61 616	2 104 466
2057	32,6	0,3	32,5	0,3	61 875		2 042 831	60 677	2 072 414
2058	31,7	0,3	31,6	0,3	62 803	186 798	1 981 535	59 766	2 041 301
2059	30,8	0,3	30,6	0,3	63 745	189 600	1 952 451	58 889	2 041 301
2060	28,1	0,3	28,0	0,3	64 701	192 444	1 812 556	54 670	1 867 225
2061	27,4	0,3	27,3	0,3	65 671	195 330	1 790 068	53 991	1 844 059
2062	26,6	0,3	26,5	0,3	66 656	198 260	1 768 110	53 329	1 821 440
2063	25,9	0,3	25,8	0,3	67 656	201 234	1 746 865	52 688	1 799 554
2064	23,8	0,2	23,7	0,2	68 671	204 253	1 627 687	49 094	1 676 780
2065	23,2	0,2	23,1	0,2	69 701	207 316	1 611 431	48 603	1 660 035
2066	22,6	0,2	22,6	0,2	70 747	210 426	1 595 464	48 122	1 643 585
Итого2021- 2066	2 512,4	25,4	2 502,3	25,4			121 737 726	3 671 813	125 409 539

Продолжен	ние таблиц	ы 4.2.1							
1	2	3	4	5	6	7	8	9	10
2067	22,2	0,2	22,1	0,2	71 808	213 583	1 587 261	47 874	1 635 136
2068	20,2	0,2	20,2	0,2	72 885	216 786	1 469 698	44 329	1 514 027
2069	19,9	0,2	19,8	0,2	73 978	220 038	1 464 776	44 180	1 508 956
2070	19,5	0,2	19,4	0,2	75 088	223 339	1 459 703	44 027	1 503 730
2071	19,2	0,2	19,1	0,2	76 214	226 689	1 454 653	43 875	1 498 527
2072	17,5	0,2	17,4	0,2	77 358	230 089	1 348 840	40 683	1 389 524
2073	17,2	0,2	17,1	0,2	78 518	233 540	1 346 142	40 602	1 386 744
2074	16,9	0,2	16,9	0,2	79 696	237 043	1 343 307	40 516	1 383 824
2075	16,6	0,2	16,6	0,2	80 891	240 599	1 340 482	40 431	1 380 914
2076	16,4	0,2	16,3	0,2	82 104	244 208	1 337 657	40 346	1 378 003
2077	16,1	0,2	16,0	0,2	83 336	247 871	1 334 833	40 261	1 375 094
2078	15,8	0,2	15,7	0,2	84 586	251 589	1 332 009	40 176	1 372 185
2079	15,5	0,2	15,5	0,2	85 855	255 363	1 329 185	40 090	1 369 276
2080	15,3	0,2	15,2	0,2	87 143	259 194	1 326 362	40 005	1 366 368
Итого 2021-2080	2 760,7	27,9	2 749,7	27,9			141 212 637	4 259 209	145 471 846

В расчетах экономических показателей разработки месторождения капитальные затраты проекта оценивались укрупнено по следующим направлениям: затраты в строительство скважин; затраты на надземное газопромысловое строительство.

Капитальные вложения в строительство скважин включают в себя: затраты на бурение новых добывающих вертикальных и горизонтальных скважин.

Надземное строительство состоит из капитальных затрат на: обустройство проектных скважин - затраты на сопутствующее скважинное оборудование, проведение ГРП.

Потребность в капитальных вложениях определялась, исходя из объемных показателей, связанных с бурением скважин, реконструкцией объектов обустройства.

В данном проекте за 46 лет рентабельного периода предусматривается бурение 8 вертикальных и 1 горизонтальной добывающей скважины. В таблице 4.2.2 приведен расчет капитальных вложений.

Таблица 4.2.2 – Капитальные вложения рекомендуемый 3 вариант, тыс.тенге

140	лица 4.2.2 – Капитальные вложения рекомен	ідуємый 3 і	Барна																						
			Кол-	Стоимость							Pя	спредел	тение ка	апиталь	ных вп	ожений	по голя	ім строі	ительст	B9					ļ
№	Наименование работ, объектов и затрат	Ед. изм.	BO	ед-цы	всего		•			T											ī				·
				тыс.тенге	тыс.тенге	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
T	Строительство скважин (подземное																							1	
	строительство)																							↓	<u> </u>
1	Ввод добывающих вертикальных газовых скважин	скв.	8,0	681 750	5 454 000	0	0	681 750	681 750	1 363 500	2 045 250	681 750	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Ввод добывающих горизонтальных газовых скважин	скв.	1,0	1 363 500	1 363 500	0	0	0	0	1 363 500	0	0													
3	Расконсервация скважин	скв.	2,0	7 299	14 597	0	7 299	7 299	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Выбытие скважин	скв.	6,0	10 750	64 500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин				6 896 597	0	7 299	689 049	681 750	2 727 000	2 045 250	681 750	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин с учетом инфляции				8 717 106	0	7 894	775 086	797 551	3 317 812	2 587 894	897 136	0	0	0	0	0	0	0	0	0	0	0	0	0
II	Надземное строительство																								
	Обустройство промысла																								
1	Обустройство м/р	тыс.тенге	9	113 090	1 017 810	0	0	113 090	113 090	339 270	339 270	113 090	0	0	0	0									
2	Проведение ГГРП (гидро разрыв пласта)	тыс.тенге	26	55 900	1 449 708	0	167 274	167 274	167 274	278 790	167 274	111 516	0	55 758	111 516	167 274	55 758	0	0	0	0	0	0	0	0
3	Испытание серуховского горизонта	тыс.тенге		6 880	6 880	6 880	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
III	Внешние коммуникации и затраты																								
1	Проектные работы	тыс.тенге			26 054	26 054	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Оплата сел.хоз и лесной потери при добыче углеводородного сырья на м/р Айракты	тыс.тенге			139 673	139 673	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого надземное строительство				2 640 124	172 606	167 274	280 364	280 364	618 060	506 544	224 606	0	55 758	111 516	167 274	55 758	0	0	0	0	0	0	0	0
	Итого надземное строительство с учетом инфляции				3 283 475	179 511	180 924	315 371	327 986	751 964	640 940	295 566	0	79 361	165 071	257 511	89 270	0	0	0	0	0	0	0	0
	Всего со строительством скважин				9 536 722	172 606	174 573	969 413	962 114	3 345 060	2 551 794	906 356	0	55 758	111 516	167 274	55 758	0	0	0	0	0	0	0	0
	Всего со строительством скважин в ценах с учетом инфляции				12 000 581	179 511	188 818	1 090 457	1 125 537	4 069 777	3 228 833	1 192 703	0	79 361	165 071	257 511	89 270	0	0	0	0	0	0	0	0

Продолжение таблицы 4.2.2.

No. III.	ъ.												Pa	спред	целени	е капит	гальні	ых вло	ожени	ій по год	ам стј	оител	ІЬСТВ	ı									
№ Наименование работ, объектов и затрат	Ед. изм.	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072-2080
1 2	3	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58
I Строительство скважин (подземное строительство)																																	
1 Ввод добывающих вертикальных газовых скважин	скв.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 Ввод добывающих горизонтальных газовых скважин	скв.																																
3 Расконсервация скважин	скв.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 Выбытие скважин	скв.	0	0	0	0	0	0	0	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0
Итого строительство скважин		0	0	0	0	0	0	0	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0
Итого строительство скважин с учетом инфляции		0	0	0	0	0	0	0	0	0	0	36 261	0	0	0	42 420	0	0	0	49 626	0	0	0	58 055	0	0	0	67 917	0	0	0	79 453	0
II Надземное строительство																																	
Обустройство промысла																																	
1 Обустройство м/р	тыс.тенге																																
2 Проведение ГГРП (гидро разрыв пласта)	тыс.тенге	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 Испытание серуховского горизонта	тыс.тенге	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
III Внешние коммуникации и затраты																																	
1 Проектные работы	тыс.тенге	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oплата сел.хоз и лесной потери при добыче углеводородного сырья на м/р Айракты	тыс.тенге	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Итого надземное строительство		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Итого надземное строительство с учетом инфляции		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Всего со строительством скважин		0	0	0	0	0	0	0	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0	0	0	10 750	0
Всего со строительством скважин в ценах с учетом инфляции		0	0	0	0	0	0	0	0	0	0	36 261	0	0	0	42 420	0	0	0	49 626	0	0	0	58 055	0	0	0	67 917	0	0	0	79 453	0

Затраты на операционные и текущие расходы определялись в соответствии с основными эксплуатационными показателями, рассчитанными на основе фактических и плановых данных ТОО «Амангельды Газ» за 2012-2020 годах. Расходы понесенные предприятием, (операционные затраты) разделяются на расходы, относимые на себестоимость продукции и на расходы периода.

Расходы относимые на себестоимость продукции включают в себя все эксплуатационные затраты, производимые непосредственно на промысле. Расходы периода в свою очередь включают в себя общие и административные расходы и расходы по реализации продукции.

Расходы, относимые на себестоимость продукции включают:

- материальные производственные затраты;
- обслуживание, текущий и капитальный ремонт основных фондов;
- амортизационные отчисления производственных фондов;
- оплату труда промышленно-производственного персонала;
- налоги, отчисления и сборы в бюджет, входящие в себестоимость продукции;
- услуги сторонних организаций производственного и непроизводственного характера;
- затраты на НИОКР;
- прочие необходимые затраты.
- Расходы периода в свою очередь включают в себя:
- амортизационные отчисления нематериальных активов;
- услуги непроизводственного характера, выполненные сторонними организациями;
- налоги и другие обязательные платежи в бюджет за исключением тех налогов и платежей, что платятся из прибыли;
- прочие затраты общепроизводственного назначения.

Согласно Кодекса о недрах Статья 129. Обязательства недропользователей в области обучения, науки и социально-экономического развития региона в течение периода добычи углеводородов, что в течение периода добычи, начиная со второго года, недропользователь обязан ежегодно осуществлять финансирование: обучения казахстанских кадров, научно-

исследовательских, научно-технических и (или) опытно-конструкторских работ, социально-экономического развития региона и развития его инфраструктуры.

Моделирование эксплуатационных затрат и расходов периода по проекту приведено в таблицах 4.2.3-4.2.4.

При определении денежных потоков применялось дисконтирование — метод приведения разновременных затрат и результатов к единому моменту времени, в данном случае к началу реализации проекта 2021 году, отражающий ценность прошлых и будущих поступлений (доходов) с современных позиций. Приведение делалось для того, чтобы, при вычислении значений интегральных показателей (IRR, NPV) исключить из расчета общее изменение масштаба цен, но сохранить (происходящее из-за инфляции) изменения в структуре цен. При выборе дифференцированной ставки процента (дисконтной) в процессе дисконтирования потока инвестиционного проекта учитывались следующие факторы:

- средний уровень ссудного процента (реальной депозитной ставки);
- темп инфляции (или премии за инфляцию);
- премии за риск;
- премии за низкую ликвидность проекта.

Для данного проекта ставка дисконта принята на уровне 12,0%. Расчет чистой прибыли и потоков денежной наличности приведены в таблицах 4.2.5-4.2.7.

Таблица 4.2.3	<u>– Расчет эксплу</u>	атационн	ых затра		в себестоимость прод	•	<u> </u>	емом 3 варианте ть	іс.тенге	F			F	F	r	-
		1		Расходы, отно	симые на себестоимост	гь продук	ции	ı		Налог	ги и платежи	T				
Годы	Материальные затраты	Затраты на текущий ремонт	Топливо и ГСМ	Энергоресурсы	услуги производственного характера (сервисных организаций.)	Затраты по охране труда и ООС	ФОТ ОПП	Прочие производственные расходы	ниокр	Налоги, отчисляемые от ФОТ ППП	Налог на имущество	ндпи	Итого прямые расходы	Амортизационные отчисления включаемые в себестоимость	Итого расходыотносимые на себестоимость продукции с амортизацией	Производственная себестоимость млн.м3 газа
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2021	3 846	21 296	617	7 201	88 435	648	62 150	1 082	9 564	11 670	102 106	5 043	313 657	68 201	381 858	14 706
2022	4 514	24 916	724	8 451	103 797	673	72 716	1 266	10 390	13 654	103 765	5 692	350 559	79 143	429 702	14 663
2023	6 370	31 671	1 021	11 927	146 483	700	92 430	1 609	11 726	17 356	111 935	7 723	440 953	110 845	551 797	13 876
2024	8 434	35 933	1 352	15 791	193 939	728	104 866	1 825	15 912	19 691	126 492	9 832	534 795	164 260	699 056	13 809
2025	10 932	46 713	1 753	20 467	251 371	758	136 326	2 373	20 257	25 598	162 458	12 253	691 259	235 526	926 784	14 690
2026	17 011	58 297	2 727	31 849	391 161	788	170 135	2 962	25 246	31 946	211 496	18 334	961 952	524 747	1 486 700	15 749
2027	19 482	63 997	3 123	36 475	447 972	819	186 770	3 251	37 775	35 070	235 219	20 492	1 090 446	733 678	1 824 124	17 548
2028	17 736	66 557	2 844	33 207	407 834	852	194 241	3 381	42 221	36 473	233 487	18 208	1 057 041	690 012	1 747 053	19 199
2029	16 705	69 220	2 678	31 277	384 130	886	202 011	3 516	37 514	37 932	224 240	16 737	1 026 846	622 249	1 649 095	20 010
2030	16 836	71 988	2 699	31 521	387 131	922	210 091	3 657	34 484	39 449	216 865	16 463	1 032 106	605 469	1 637 575	20 505
2031	18 409	74 868	2 951	34 467	423 305	959	218 495	3 803	33 918	41 027	210 652	17 568	1 080 422	645 476	1 725 898	20 555
2032	19 376	77 863	3 106	36 277	445 532	997	227 235	3 956	36 196	42 668	203 417	18 046	1 114 668	665 997	1 780 665	20 955
2033	19 398	80 977	3 110	36 319	446 049	1 037	236 324	4 114	37 181	44 375	194 260	17 633	1 120 775	644 249	1 765 024	21 577
2034	19 985	84 216	3 204	37 417	459 545	1 078	245 777	4 278	36 329	46 150	184 644	17 730	1 140 353	637 909	1 778 262	21 944
2035	20 407	87 585	3 272	38 208 39 041	469 257	1 121	255 608	4 449 4 627	36 529	47 995 49 915	175 166	17 669 17 620	1 157 268	625 734	1 783 002	22 409
2036 2037	20 852 21 320	91 088 94 732	3 343 3 418	39 918	479 484 490 252	1 166	265 832 276 466	4 812	36 404	51 912	165 867 156 736	17 583	1 175 241	614 188	1 789 430	22 891 23 394
2037	22 050	98 521	3 535	41 283	507 021	1 213 1 261	287 524	5 005	36 303 36 226	53 988	136 736	17 747	1 194 665 1 221 877	603 246 599 687	1 797 912 1 821 564	23 834
2039	21 839	102 462	3 501	40 889	507 021	1 312	299 025	5 205	36 565	56 148	138 946	17 155	1 225 228	569 413	1 794 641	24 657
2040	22 214	102 402	3 562	41 592	510 813	1 364	310 986	5 413	35 345	58 394	130 504	17 133	1 243 779	556 150	1 794 041	25 284
2040	22 022	110 823	3 531	41 231	506 376	1 419	323 426	5 630	35 088	60 730	122 370	16 477	1 249 120	528 481	1 777 601	26 197
2042	21 852	115 256	3 503	40 913	502 474	1 476	336 363	5 855	33 948	63 159	114 636	15 957	1 255 390	502 696	1 758 086	27 155
2043	21 703	119 866	3 480	40 633	499 043	1 535	349 817	6 089	32 876	65 685	107 276	15 467	1 263 470	478 595	1 742 065	28 176
2044	21 572	124 661	3 459	40 390	496 048	1 596	363 810	6 333	31 867	68 313	100 266	15 005	1 273 318	456 029	1 729 347	29 265
2045	21 460	129 647	3 441	40 178	514 954	1 660	378 362	6 586	30 914	71 045	93 585	14 567	1 306 399	434 861	1 741 260	30 806
2046	21 363	134 833	3 425	39 997	491 230	1 726	393 497	6 850	30 013	73 887	87 211	14 153	1 298 184	414 968	1 713 152	31 664
2047	21 281	140 226	3 412	39 844	489 343	1 795	409 237	7 124	29 160	76 842	81 127	13 760	1 313 150	396 239	1 709 388	32 985
2048	21 212	145 835	3 401	39 715	487 763	1 867	425 606	7 409	28 349	79 916	75 316	13 386	1 329 775	378 572	1 708 347	34 394
2049	21 250	151 669	3 407	39 786	488 638	1 942	442 630	7 705	27 579	83 113	69 749	13 087	1 350 556	363 618	1 714 174	35 828
2050	21 299	157 735	3 415	39 878	489 763	2 020	460 335	8 013	26 964	86 437	64 402	12 802	1 373 063	349 407	1 722 469	37 355
2051	21 359	155 411	3 424	39 990	491 137	2 100	453 552	7 895	26 376	85 163	59 534	12 529		335 891	1 694 362	38 108
2052	20 303	161 627	3 255	38 013	466 855	2 184	471 694	8 211	25 815	88 570	54 980	11 624	1 353 129	307 599	1 660 728	40 867
2053	20 418	168 092	3 274	38 229	469 510	2 272	490 561	8 539	23 948	92 113	50 448	11 409	1 378 814	296 593	1 675 406	42 634
2054	20 541	174 816	3 293	38 458	472 323	2 363	510 184	8 881	23 506	95 797	46 079	11 201	1 407 441	286 032	1 693 473	44 551
2055	20 673	171 708	3 314	38 705	475 356	2 457	501 114	8 723	23 078	94 094	42 182	11 002	1 392 406	275 926	1 668 332	45 354
2056	19 665	178 576	3 153	36 818	452 184	2 555	521 158	9 072	22 668	97 858	38 525	10 214	1 392 447	254 160	1 646 608	48 939
2057	19 842	185 720	3 181	37 150	456 265	2 658	542 005	9 435	21 045	101 772	34 775	10 059	1 423 906	245 828	1 669 734	51 150
2058	20 026	193 148	3 211	37 494	460 485	2 764	563 685	9 812	20 724	105 843	31 148	9 908	1 458 247	237 772	1 696 019	53 539
2059	20 218	189 058	3 241	37 854	464 902	2 875	551 748	9 604	20 413	103 602	28 012	9 762	1 441 288	230 003	1 671 291	54 347
2060	19 232	196 620	3 083	36 007	442 221	2 990	573 818	9 989	20 113	107 746	25 054	9 063	1 445 935	213 978	1 659 914	59 015
2061	19 461	204 485	3 120	36 436	447 492	3 109	596 771	10 388	18 672	112 056	21 893	8 950	1 482 833	207 434	1 690 267	61 762
2062	19 695	212 665	3 158	36 876	452 889	3 233	620 642	10 804	18 441	116 538	18 830	8 841	1 522 610	201 035	1 723 646	64 720
2063	19 938	207 348	3 197	37 330	458 468	3 363	605 125	10 534	18 214	113 624	16 297	8 734	1 502 173	194 782	1 696 955	65 460
2064	19 035	215 642	3 052	35 640	437 712	3 497	629 331	10 955	17 996	118 169	13 872	8 138	1 513 039	186 521	1 699 560	71 417
2065	19 310	224 268	3 096	36 153	444 014	3 637	654 504	11 393	16 768	122 896	11 116	8 057	1 555 211	180 930	1 736 141	74 795
2066	19 589	233 238	3 141	36 676	398 842	3 783	680 684	11 849	16 600	127 812	8 445	7 977	1 548 636	175 294	1 723 930	76 137
Итого2021- 2066	862 033	5 792 434		1 613 970	19 791 976	82 160	16 904 663	294 263	1 247 224	3 174 188			55 362 900	18 129 424	73 492 325	29 252
2067	19 968	226 397	3 201	37 386	437 664	3 934	660 717	11 501	16 436	124 063	6 360	7 936	1 555 564	170 567	1 726 131	77 778
2068	18 945	235 453	3 037	35 470	414 127	4 091	687 146	11 961	16 351	129 025	4 230	7 348	1 567 185	181 368	1 748 554	86 367

Продолжение таблицы 4.2.3

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2069	19 346	244 871	3 102	36 222	423 362	4 255	714 632	12 440	15 140	134 186	1 435	7 324	1 616 314	175 089	1 791 403	90 113
2070	19 754	254 666	3 167	36 986	432 740	4 425	743 217	12 937	15 090	139 554	0	7 299	1 669 834	0	1 669 834	85 554
2071	20 171	245 934	3 234	37 765	442 318	4 602	717 735	12 494	15 037	134 769	596	7 273	1 641 929	0	1 641 929	85 682
2072	19 164	255 772	3 073	35 881	419 173	4 786	746 445	12 994	14 985	140 160	1 494	6 744	1 660 670	-40 356	1 620 314	92 555
2073	19 597	266 002	3 142	36 691	429 124	4 978	776 302	13 513	13 895	145 766	2 096	6 731	1 717 838	-39 906	1 677 932	97 479
2074	20 037	276 642	3 213	37 516	439 250	5 177	807 355	14 054	13 867	151 597	2 691	6717	1 778 116	-39 399	1 738 717	102 742
2075	20 488	287 708	3 285	38 359	449 606	5 384	839 649	14 616	13 838	157 661	3 278	6 702	1 840 574	-38 865	1 801 709	108 289
2076	20 948	299 216	3 359	39 221	460 192	5 599	873 235	15 201	13 809	163 967	3 857	6 688	1 905 293	-38 315	1 866 977	114 135
2077	21 419	311 185	3 434	40 102	471 015	5 823	908 164	15 809	13 780	170 526	4 428	0	1 965 684	-37 757	1 927 926	119 882
2078	21 900	323 633	3 511	41 003	482 078	6 056	944 491	16 441	13 751	177 347	4 990	0	2 035 200	-37 196	1 998 003	126 371
2079	22 392	336 578	3 590	41 924	493 388	6 298	982 270	17 099	13 722	184 441	5 543	0	2 107 244	-36 634	2 070 610	133 210
2080	22 894	350 041	3 671	42 865	504 949	85 155	1 021 561	17 783	13 693	191 818	6 089	0	2 260 519	-36 074	2 224 445	145 563
Итого 2021- 2080	1 149 057	9 706 531	184 224	2 151 359	26 090 962	232 725	28 327 581	493 105	1 450 619	5 319 068	4 900 182	679 451	80 684 863	18 311 947	98 996 810	35 859

Таблица 4.2.4 – Эксплуатационные затраты, включаемые в расходы периода в рекомендуемом 3 варианте тыс.тенге

вариан	те тыс.тенг	<u>re</u>					-	
		Расходы период	a					Затраты на
				Прочие	Итого	Истори-	Отчисления	обучение и
Годы	Админис-	06	Затраты на	налоги и	расходы		в ликвида-	повышение
1 Оды	тративные	Обще-админис-	социальные	отчисления	расходы периода		ционный	квалификации
	расходы	тративные	нужды	в Бюджет	периода	sa i pa i bi	фонд	казахстанских
								специалистов
1	2	3	4	5	6	7	8	9
2021	14 319	7 161	1 267	406	23 153	34 180	8 618	2 535
2022	16 109	7 447	1 481	426	25 463	34 180	9 725	2 962
2023	19 689	7 745	2 015	482	29 931	34 180	13 197	4 031
2024	21 479	8 055	2 636	544	32 714	34 180	16 801	5 271
2025	26 848	8 377	3 531	620	39 376	34 180	20 938	7 062
2026	32 218	8 712	5 998	803	47 732	34 180	31 329	11 997
2027	34 008	9 061	7 478	878	51 424	17 090	34 499	14 956
2028	34 008	9 423	7 083	825	51 340	0	30 200	14 167
2029	34 008	9 800	6 663	794	51 265	0	27 351	13 327
2030	34 008	10 192	6 652	798	51 650	0	26 504	13 303
2031	34 008	10 600	7 114	846	52 567	0	27 866	14 227
2032	34 008	11 024	7 402	875	53 308	0	0	14 803
2033	34 008	11 465	7 358	875	53 706	0	0	14 716
2034	34 008	11 923	7 467	893	54 291	0	0	14 934
2035	34 008	12 400	7 528	906	54 842	0	0	15 056
2036	34 008	12 896	7 598	919	55 422	0	0	15 196
2037	34 008	13 412	7 677	934	56 030	0	0	15 354
2038	34 008	13 949	7 829	956	56 741	0	0	15 659
2039	34 008	14 507	7 729	949	57 193	0	0	15 458
2040	34 008	15 087	7 793	961	57 848	0	0	15 587
2041	34 008	15 690	7 715	955	58 367	0	0	15 429
2042	34 008	16 318	7 652	950	58 927	0	0	15 304
2043	34 008	16 971	7 604	945	59 527	0	0	15 208
2044	34 008	17 650	7 569	941	60 168	0	0	15 139
2045	34 008	18 356	7 656	938	60 957	0	0	15 311
2046	34 008	19 090	7 539	935	61 572	0	0	15 079
2047	34 008	19 853	7 542	932	62 336	0	0	15 085
2048	34 008	20 648	7 557	930	63 142	0	0	15 114
2049	34 008	21 473	7 603	931	64 016	0	0	15 206
2050	34 008	22 332	7 659	933	64 932	0	0	15 319
2051	32 218	23 226	7 554	935	63 932	0	0	15 108
2052	32 218	24 155	7 399	903	64 674	0	0	14 797
2053	32 218	25 121	7 487	906	65 732	0	0	14 975
2054	32 218	26 126	7 584	910	66 838	0	0	15 169
2055 2056	30 428	27 171 28 258	7 490 7 387	914 884	66 003 66 956	0	0	14 980 14 773
2056	30 428	28 258	7 510	884 889	68 215	0	0	15 021
2057	30 428 30 428	30 563	7 642	889 894	69 528	0	0	15 021
2058	28 638	31 786	7 548	900	68 872	0	0	15 284
2039	28 638	33 057	7 490	870	70 056	0	0	14 979
2060	28 638	34 380	7 643	877	71 539	0	0	15 287
2061	28 638	35 755	7 805	884	73 082	0	0	15 610
2062	26 848	37 185	7 700	892	72 625	0	0	15 401
2064	26 848	38 673	7 700	865	74 092	0	0	15 414
2065	26 848	40 219	7 887	873	75 827	0	0	15 773
2003	ZU 040	40 219	/ 00/	0/3	13 821	U	U	13//3

Продолжение таблицы 4.2.4

1	2	3	4	5	6	7	8	9
2066	26 848	41 828	7 815	881	77 373	0	0	15 631
Итого20 21-2066	1 419 371	908 511	318 046	39 358	2 685 285	222 173	247 029	636 091
2067	25 058	43 501	7 857	1 050	77 467	0	0	15 713
2068	25 058	45 241	7 958	1 081	79 339	0	0	15 916
2069	25 058	47 051	8 167	1 113	81 388	0	0	16 333
2070	25 058	48 933	7 539	1 145	82 676	0	0	15 079
2071	23 268	50 890	7 421	1 116	82 696	0	0	14 843
2072	23 268	52 926	7 285	1 149	84 628	0	0	14 569
2073	23 268	55 043	7 547	1 184	87 042	0	0	15 094
2074	23 268	57 245	7 819	1 219	89 552	0	0	15 638
2075	23 268	59 535	8 101	1 256	92 161	0	0	16 202
2076	23 268	61 916	8 393	1 295	94 873	0	0	16 787
2077	23 268	64 393	8 696	1 335	97 692	0	0	17 392
2078	23 268	66 968	9 010	1 377	100 623	0	0	18 019
2079	23 268	69 647	9 335	1 421	103 671	0	0	18 669
2080	23 268	372 592	10 064	1 466	407 390	0	0	20 128
Итого 2021- 2080	1 752 288	2 004 392	433 237	56 566	4 246 483	222 173	247 029	866 475

Таблица 4.2.5 – Расчет налогооблагаемого дохода в рекомендуемом 3 варианте, тыс. тенге

				ца в рекомендуемом	e supilarite, islevite.	
	Всего расходы,	Общие				
	связанные с	расходы		Амортизационные	Всего вычитаемые	
	обычной	(включаемые	Гатанаарая	отчисления,	затраты, налоги и	
l ,	цеятельностью	в c/c +	Балансовая	относимые на	специальные	Налого-
Годы	предприятия	расходы	прибыль	вычеты при	фонды,	облагаемый
	(расходы,	периода)	(+),	определении	определяемые для	доход
	включаемые в	- /	убыток (-)		Налогооблагаемого	
	с/с + расходы	на 1000 м3		дохода	дохода	
	периода)	газа		, , , , ,	, , , , ,	
1	2	3	4	5	6	7
2021	450 344	17 344	588 703	26 958	423 386	629 946
2022	502 033	17 132	670 603	51 237	450 796	698 509
2023	633 137	15 922	958 090	207 120	426 017	861 814
2024	788 022	15 567	1 237 683	344 883	443 139	1 057 061
2025	1 028 342	16 299	1 496 268	903 617	124 725	828 177
2026	1 611 938	17 076	2 165 529	1 252 399	359 539	1 437 877
2027	1 942 094	18 683	2 280 007	1 243 445	698 649	1 770 240
2028	1 842 759	20 250	1 908 651	1 056 928	785 831	1 541 735
2029	1 741 038	21 126	1 707 393	910 293	830 744	1 419 348
2030	1 729 032	21 650	1 662 794	798 510	930 522	1 469 753
2030	1 820 558	21 682	1 799 052	717 360	1 103 198	1 727 168
2031	1 848 776	21 757	1 869 321	623 146	1 225 630	1 912 172
2032	1 833 446	22 413	1 799 479	529 675	1 303 771	1 914 054
2033	1 847 488	22 798	1 805 388	450 223	1 397 265	1 993 074
2034	1 852 901	23 288	1 787 512	382 690	1 470 211	2 030 556
						2 050 330
2036	1 860 047	23 794 24 323	1 770 289	325 286	1 534 761	
2037	1 869 296		1 753 337	276 493	1 592 802	2 080 090
2038	1 893 964	24 782	1 762 523	235 019	1 658 944	2 127 190
2039	1 867 292	25 655	1 667 227	199 766	1 667 525	2 036 873
2040	1 873 363	26 315	1 635 486	169 802	1 703 562	2 021 834
2041	1 851 398	27 284	1 543 360	144 331	1 707 067	1 927 509
2042	1 832 317	28 301	1 455 307	122 682	1 709 635	1 835 321
2043	1 816 800	29 385	1 369 886	104 279	1 712 520	1 744 201
2044	1 804 654	30 539	1 286 763	88 637	1 716 016	1 654 154
2045	1 817 528	32 155	1 183 800	75 342	1 742 186	1 543 319
2046	1 789 803	33 080	1 126 173	64 041	1 725 762	1 477 100
2047	1 786 809	34 479	1 048 140	0	1 786 809	1 444 379
2048	1 786 604	35 970	971 267	0	1 786 604	1 349 839
2049	1 793 396	37 483	903 009	0	1 793 396	1 266 627
2050	1 802 720	39 096	834 921	0	1 802 720	1 184 328
2051	1 773 402	39 886	808 058	0	1 773 402	1 143 950
2052	1 740 199	42 822	654 646	0	1 740 199	962 244
2053	1 756 114	44 688	594 456	0	1 756 114	891 049
2054	1 775 480	46 708	532 333	0	1 775 480	818 364
2055	1 749 314	47 555	517 482	0	1 749 314	793 408
2056	1 728 337	51 369	376 130	0	1 728 337	630 290
2057	1 752 970	53 700	319 443	0	1 752 970	565 271
2058	1 780 831	56 216	260 470	0	1 780 831	498 242
2059	1 755 258	57 077	256 082	0	1 755 258	486 085
2060	1 744 949	62 038	122 277	0	1 744 949	336 255
2061	1 777 093	64 935	66 967	0	1 777 093	274 401
2062	1 812 338	68 050	9 102	0	1 812 338	210 137
2063	1 784 981	68 856	14 573	0	1 784 981	209 355
2064	1 789 066	75 178	-112 286	0	1 789 066	74 235
2065	1 827 741	78 741	-167 707	0	1 827 741	13 224
2066	1 816 934	80 245	-173 349	0	1 816 934	1 945

Продолжение таблицы 4.2.5

1	2	3	4	5	6	7
Итого2021- 2066	77 282 903	30 761	48 126 637	11 304 164	65 978 738	54 951 897
2067	1 819 312	81 977	-184 176	0	1 819 312	0
2068	1 843 808	91 072	-329 782	0	1 843 808	0
2069	1 889 125	95 028	-380 168	0	1 889 125	0
2070	1 767 589	90 562	-263 859	0	1 767 589	0
2071	1 739 468	90 772	-240 940	0	1 739 468	0
2072	1 719 511	98 221	-329 988	0	1 719 511	0
2073	1 780 069	103 413	-393 325	0	1 780 069	0
2074	1 843 907	108 958	-460 083	0	1 843 907	0
2075	1 910 072	114 802	-529 158	0	1 910 072	0
2076	1 978 637	120 962	-600 633	0	1 978 637	0
2077	2 043 011	127 039	-667 917	0	2 043 011	0
2078	2 116 646	133 875	-744 461	0	2 116 646	0
2079	2 192 949	141 081	-823 674	0	2 192 949	0
2080	2 651 964	173 538	-1 285 596	0	2 651 964	0
Итого 2021- 2080	104 578 970	37 881	40 892 876	11 304 164	93 274 806	54 951 897

Таблица 4.2.6 – Расчет чистой прибыли в рекомендуемом 3 варианте, тыс.тенге

Годы	Налого- облагаемая прибыль до переноса убытков	Налого- облагаемая прибыль после переноса убытков	Корпо- ративный подоходный налог	Чистая прибыль после выплаты подоходного налога	Налог на сверх- прибыль	Чистая прибыль после выплаты налога на сверх- прибыль
		_	-			-
2021	629 946	629 946	125 989	462 714	158	462 556
2022	698 509	698 509	139 702 172 363	530 902	154	530 747 785 727
2023	861 814 1 057 061	861 814 1 057 061	211 412	785 727 1 026 271	130	1 026 140
2025	828 177	828 177	165 635	1 330 633	0	1 330 633
2026	1 437 877	1 437 877	287 575	1 877 954	0	1 877 954
2027	1 770 240	1 770 240	354 048	1 925 959	107	1 925 851
2028	1 541 735	1 541 735	308 347	1 600 304	106	1 600 198
2029	1 419 348	1 419 348	283 870	1 423 523	106	1 423 417
2030	1 469 753	1 469 753	293 951	1 368 843	110	1 368 733
2031	1 727 168	1 727 168	345 434	1 453 618	119	1 453 499
2032	1 912 172	1 912 172	382 434	1 486 887	128	1 486 759
2033	1 914 054	1 914 054	382 811	1 416 668	132	1 416 536
2034	1 993 074	1 993 074	398 615	1 406 773	137	1 406 636
2035	2 030 556	2 030 556	406 111	1 381 401	141	1 381 260
2036	2 059 191	2 059 191	411 838	1 358 451	144	1 358 306
2037	2 080 090	2 080 090	416 018	1 337 319	146	1 337 173
2038	2 127 190	2 127 190	425 438	1 337 085	149	1 336 935
2039	2 036 873	2 036 873	407 375	1 259 853	147	1 259 705
2040	2 021 834	2 021 834	404 367	1 231 119	147	1 230 972
2041	1 927 509	1 927 509	385 502	1 157 858	144	1 157 714
2042	1 835 321	1 835 321	367 064	1 088 243	141	1 088 102
2043	1 744 201	1 744 201	348 840	1 021 046	138	1 020 908
2044	1 654 154	1 654 154	330 831	955 932	134	955 798
2045	1 543 319	1 543 319	308 664	875 136	128	875 008
2046	1 477 100	1 477 100	295 420	830 753	126	830 627
2047	1 444 379	1 444 379	288 876	759 264	127	759 137
2048	1 349 839	1 349 839	269 968	701 299	122	701 177
2049	1 266 627	1 266 627	253 325	649 683	118	649 566
2050	1 184 328	1 184 328	236 866	598 056	113	597 942
2051	1 143 950	1 143 950	228 790	579 268	112	579 156
2052	962 244	962 244	192 449	462 197	104	462 093
2053	891 049	891 049	178 210	416 246	100	416 146
2054	818 364	818 364	163 673	368 660	97	368 563
2055	793 408	793 408	158 682	358 800	96	358 704
2056	630 290	630 290	126 058	250 072	89	249 983
2057	565 271	565 271	113 054	206 389	86	206 303
2058	498 242	498 242	99 648	160 822	82	160 739
2059	486 085	486 085	97 217	158 865	82	158 783
2060	336 255	336 255	67 251	55 026	76	54 950
2061	274 401	274 401	54 880	12 087	73 70	12 013
2062 2063	210 137 209 355	210 137 209 355	42 027	0	70	0
2063	74 235	74 235	41 871 14 847	0	65	0
2064	13 224	13 224	2 645	0	63	0
2065	1 945	1 945	389	0	62	0
Итого2021-2066	54 951 897	54 951 897	10 990 379	37 667 703	4 885	37 663 150
2067	0	0	0	0	62	0

Продолжение таблицы 4.2.6

1	2	3	4	5	6	7
2068	0	0	0	0	57	0
2069	0	0	0	0	56	0
2070	0	0	0	0	54	0
2071	0	0	0	0	54	0
2072	0	0	0	0	50	0
2073	0	0	0	0	48	0
2074	0	0	0	0	47	0
2075	0	0	0	0	45	0
2076	0	0	0	0	44	0
2077	0	0	0	0	42	0
2078	0	0	0	0	41	0
2079	0	0	0	0	39	0
2080	0	0	0	0	33	0
Итого 2021-2080	54 951 897	54 951 897	10 990 379	37 667 703	5 557	0

Таблица 4.2.7 – Расчет потоков денежной наличности в рекомендуемом 3 варианте, тыс.тенге

1 4031HQ4 1.2		потоков ден	ежной наличн	ости в р	Г	iumre, ibien	l l	
	Чистая	77	Накопленный		. TT		J	Срок
	прибыль с	поток	поток	ВНП		тированны		окупаемости
Годы	учетом	денежной	денежной	(IRR)			ти (Чистая	(дисконт
	всех	наличности	наличности	(1111)	приве,	денная сто	имость)	12%)
	выплат							== , ,
					11,5%	12,0%	12,5%	
1	2	3	4	5	6	7	8	9
2020		-6 450 250	-6 450 250		-6 450 250	-6 450 250	-6 450 250	
2021	462 556	419 235	-6 031 015	60,9%	372 888	370 611	368 052	1
2022	530 747	500 215	-5 530 800	66,6%	399 028	394 820	390 352	1
2023	785 727	-83 041	-5 613 841	-4,7%	-59 410	-58 521	-57 602	1
2024	1 026 140	229 124	-5 384 717	11,7%	147 017	144 171	141 275	1
2025	1 330 633	-2 268 093	-7 652 810	-45,1%	-1 305 216	-1 274 234	-1 243 092	1
2026	1 877 954	-301 385	-7 954 194	-6,5%	-155 549	-151 179	-146 829	1
2027	1 925 851	2 200 505	-5 753 689	79,9%	1 018 578	985 541	952 927	1
2028	1 600 198	2 290 210	-3 463 479	156,7%	950 763	915 819	881 577	1
2029	1 423 417	2 045 666	-1 417 813	138,0%	761 652	730 384	699 950	1
2030	1 368 733	1 974 202	556 390	124,7%	659 233	629 347	600 442	1
2031	1 453 499	2 098 975	2 655 365	118,0%	628 608	597 431	567 459	1
2031	1 486 759	2 152 756	4 808 120	130,1%	578 219	547 088	517 332	1
						467 603		1
2033	1 416 536	2 060 786	6 868 906	131,1%	496 427		440 205	1
2034	1 406 636	2 044 545	8 913 451	127,1%	441 717	414 212	388 210	1
2035	1 381 260	2 006 994	10 920 445	122,9%	388 883	363 040	338 737	1
2036	1 358 306	1 972 495	12 892 940	119,0%	342 779	318 571	295 924	1
2037	1 337 173	1 940 419	14 833 359	115,3%	302 426	279 813	258 766	1
2038	1 336 935	1 936 622	16 769 981	112,6%	270 703	249 344	229 564	1
2039	1 259 705	1 829 118	18 599 099	107,3%	229 306	210 270	192 730	1
2040	1 230 972	1 787 122	20 386 221	103,8%	200 934	183 431	167 382	1
2041	1 157 714	1 686 195	22 072 416	98,7%	170 032	154 528	140 381	
2042	1 088 102	1 590 797	23 663 213	93,8%	143 868	130 166	117 724	
2043	1 020 908	1 499 503	25 162 716	88,9%	121 625	109 550	98 638	
2044	955 798	1 411 826	26 574 542	84,1%	102 702	92 093	82 552	
2045	875 008	1 309 869	27 884 411	77,4%	85 458	76 288	68 080	
2046	830 627	1 245 594	29 130 005	74,6%	72 883	64 772	57 546	
2047	759 137	1 155 376	30 285 381	68,8%	60 631	53 643	47 447	
2048	701 177	1 079 749	31 365 130	64,3%	50 819	44 761	39 415	
2049	649 566	1 013 184	32 378 314	60,2%	42 767	37 501	32 875	
2050	597 942	947 349	33 325 663	56,0%	35 864	31 307	27 324	
2051	579 156	915 048	34 240 711	53,7%	31 068	27 000	23 460	
2052	462 093	769 691	35 010 402	47,4%	23 438	20 278	17 540	1
2053	416 146	712 739	35 723 141	43,5%	19 465	16 765	14 438	1
2054	368 563	654 595	36 377 736	39,6%	16 033	13 748	11 787	
2055	358 704	634 630	37 012 366	37,9%	13 941	11 901	10 158	
2056	249 983	504 143	37 516 509	31,5%	9 932	8 441	7 172	
2057	206 303	452 131	37 968 641	27,9%	7 989	6 759	5 718	
								1
2058	160 739	398 511	38 367 152	24,3%	6 315	5 319	4 480	
2059	158 783	388 786	38 755 938	23,3%	5 526	4 633	3 885	
2060	54 950	268 928	39 024 866	16,8%	3 428	2 862	2 389	
2061	12 013	219 447	39 244 313	13,5%	2 509	2 085	1 733	
2062	0	168 039	39 412 353	10,2%	1 723	1 425	1 179	
2063	0	167 413	39 579 766	9,9%	1 539	1 268	1 044	-
2064	0	59 323	39 639 089	3,7%	489	401	329	
2065	0	10 516	39 649 605	0,6%	78	63	52	ļ
2066	0	1 494	39 651 099	0,1%	10	8	7	
Итого2021- 2066	37 663 150	39 651 099	39 651 099	48,4%	1 248 867	784 876	350 464	20

продолжение таолины 4.2./	іолжение табли	пы 4.2.7
---------------------------	----------------	----------

1	2	3	4	5	6	7	8	9
2067	0	-13 671	39 637 428	-0,8%	-81	-66	-53	
2068	0	-148 470	39 488 959	-8,9%	-792	-638	-514	
2069	0	-205 134	39 283 824	-12,0%	-982	-787	-631	
2070	0	-263 912	39 019 912	-14,9%	-1 133	-904	-722	
2071	0	-320 447	38 699 465	-17,6%	-1 233	-980	-779	
2072	0	-410 750	38 288 716	-23,3%	-1 418	-1 122	-888	
2073	0	-473 184	37 815 532	-26,0%	-1 465	-1 154	-909	
2074	0	-538 927	37 276 605	-28,6%	-1 497	-1 173	-920	
2075	0	-606 932	36 669 673	-31,1%	-1 512	-1 180	-921	
2076	0	-677 306	35 992 367	-33,6%	-1 513	-1 176	-914	
2077	0	-743 473	35 248 894	-35,7%	-1 489	-1 152	-892	
2078	0	-818 893	34 430 001	-38,0%	-1 471	-1 133	-873	
2079	0	-896 980	33 533 021	-40,2%	-1 445	-1 108	-850	
2080	0	-1 357 775	32 175 245	-50,5%	-1 962	-1 498	-1 144	
Итого 2021-2080	37 663 150	32 175 245	32 175 245	29,4%	1 230 874	770 805	339 455	20

Бюджетная эффективность проекта

Анализ бюджетной эффективности инвестиционного проекта показывает влияние результатов осуществляемого проекта на доходы и расходы бюджета Республики Казахстан. В качестве основного показателя доходов государства от реализуемого проекта принимается бюджетный эффект, который выражается в увеличении бюджетных доходов или снижении бюджетных расходов в результате реализации проекта.

Основным документом, регламентирующим расчет бюджетной эффективности является Налоговый кодекс РК. Проектирование налоговых обязательств, которые несет предприятие, осуществлялось по принятым в качестве нормативов ставкам налогов и других обязательных платежей в бюджет. Величина нормативов определена в соответствии с Налоговым кодексом РК, действующим на 01.07.2021 года. Все налоговые обязательства недропользователя рассчитываются и уплачиваются в тенге.

В расчете предусмотрены следующие налоги и платежи:

- НДС, при реализации продукции на внутреннем рынке 12% от облагаемого оборота. Предполагается, что возмещение налога на добавленную стоимость (НДС) из бюджета государства производится за счет всех налогов, уплачиваемых предприятием в бюджет РК;
- налоги и сборы, зависимые от фонда оплаты труда: обязательные выплаты в фонд государственного социального страхования (социальный налог), обязательного медицинского страхования и Пенсионный Фонд, ИПН у источника;
- налог на имущество -1.5% от среднегодовой остаточной стоимости основных фондов (балансовая стоимость с вычетом износа оборудования);

- НДПИ в соответствии с налоговым законодательством выплачивается в зависимости от уровня годовой добычи за каждый отдельный год деятельности по скользящей шкале ставок от стоимости добытых углеводородов, исчисленной по средневзвешенной цене их реализации без учета косвенных налогов;
 - корпоративный подоходный налог 20% от налогооблагаемого дохода.

Налог на сверхприбыль начислен в процентах к размеру, превышающему 25% отношения чистого дохода к вычетам и т.д. Результаты расчета бюджетной эффективности представлены в таблице 4.2.8.

Таблица 4.2.8 – Расче	т бюджетной эффектив	вности 3 вариант	а разработки, тыс	. тенге		TOWAR FOOTHER					
						ДОХОД ГОСУДАРСТ	ГВА, тыс. тенге				
Годы	Социальный налог	ипн	Налог на имущество и на	НДПИ на добычу нефти	Прочие налоги и платежи в	КПН	НСП	Суммарный доход РК		онтированный доход 	•
	Социальный налог	******	транспорт	и газа	бюджет	KIIII	nen	Суммариви доход 1 к	11,5%	12,0%	12,5%
1	2	3	4	5	6	7	8	9	10	11	12
2021	6 113	5 557	102 106	5 043	406	125 989	158	245 373	218 247	216 914	215 416
2022	7 152	6 502	103 765	5 692	426	139 702	154	263 393	210 112	207 896	205 543
2023	9 091	8 265	111 935	7 723	482	172 363	0	309 859	221 684	218 368	214 937
2024	10 314	9 377	126 492	9 832	544	211 412	130	368 101	236 191	231 619	226 967
2025	13 408	12 189	162 458	12 253	620	165 635	0	366 565	210 946	205 939	200 906
2026	16 734	15 212	211 496	18 334	803	287 575	0	550 155	283 943	275 966	268 025
2027	18 370	16 700	235 219	20 492	878	354 048	107	645 815	298 937	289 241	279 670
2028	19 105	17 368	233 487	18 208	825	308 347	106	597 445	248 025	238 909	229 976
2029	19 869	18 063	224 240	16 737	794	283 870	106	563 678	209 872	201 256	192 870
2030	20 664	18 785	216 865	16 463	798	293 951	110	567 635	189 547	180 954	172 643
2031	21 490	19 537	210 652	17 568	846	345 434	119	615 646	184 376	175 231	166 440
2032	22 350	20 318	203 417	18 046	875	382 434	128	647 569	173 934	164 569	155 618
2033	23 244	21 131	194 260	17 633	875	382 811	132	640 085	154 191	145 239	136 729
2034	24 174	21 976	184 644	17 730	893	398 615	137	648 168	140 035	131 315	123 071
2035	25 140	22 855	175 166	17 669	906	406 111	141	647 989	125 557	117 213	109 367
2036	26 146	23 769	165 867	17 620	919	411 838	144	646 304	112 314	104 382	96 962
2037	27 192	24 720	156 736	17 583	934	416 018	146	643 329	100 267	92 770	85 792 76 575
2038	28 280	25 709	147 714	17 747	956	425 438	149	645 992	90 297	83 173	76 575
2039	29 411	26 737	138 946	17 155	949	407 375	147	620 720	77 816	71 356	65 404
2040	30 587	27 807	130 504	17 031	961	404 367	147	611 403	68 743	62 755	57 264
2041 2042	31 811	28 919	122 370	16 477	955	385 502	144	586 177	59 109	53 719	48 801
2042	33 083 34 406	30 076 31 279	114 636 107 276	15 957 15 467	950 945	367 064 348 840	141 138	561 906 538 351	50 817 43 666	45 978 39 331	41 583 35 413
2043	35 783	32 530	107 276	15 005	943	330 831	134	515 489	37 499	33 625	30 141
2044	37 214	33 831	93 585	14 567	938	308 664	128	488 927	31 898	28 476	25 412
2045	38 703	35 184	87 211	14 153	935	295 420	126	471 732	27 602	24 530	21 794
2047	40 251	36 592	81 127	13 760	932	288 876	127	461 664	24 227	21 435	18 959
2048	41 861	38 055	75 316	13 386	930	269 968	122	439 638	20 692	18 225	16 048
2049	43 535	39 577	69 749	13 087	931	253 325	118	420 324	17 742	15 558	13 638
2050	45 277	41 161	64 402	12 802	933	236 866	113	401 553	15 202	13 270	11 582
2051	44 609	40 554	59 534	12 529	935	228 790	112	387 063	13 142	11 421	9 923
2052	46 394	42 176	54 980	11 624	903	192 449	104	348 629	10 616	9 185	7 945
2053	48 249	43 863	50 448	11 409	906	178 210	100	333 186	9 099	7 837	6 749
2054	50 179	45 618	46 079	11 201	910	163 673	97	317 756	7 783	6 674	5 722
2055	49 287	44 807	42 182	11 002	914	158 682	96	306 970	6 743	5 756	4 913
2056	51 259	46 599	38 525	10 214	884	126 058	89	273 627	5 391	4 581	3 893
2057	53 309	48 463	34 775	10 059	889	113 054	86	260 634	4 605	3 896	3 296
2058	55 442	50 401	31 148	9 908	894	99 648	82	247 524	3 923	3 304	2 782
2059	54 268	49 334	28 012	9 762	900	97 217	82	239 575	3 405	2 855	2 394
2060	56 438	51 308	25 054	9 063	870	67 251	76	210 060	2 678	2 235	1 866
2061	58 696	53 360	21 893	8 950	877	54 880	73	198 730	2 272	1 888	1 569
2062	61 044	55 494	18 830	8 841	884	42 027	70	187 190	1 919	1 588	1 314
2063	59 518	54 107	16 297	8 734	892	41 871	71	181 489	1 669	1 375	1 132
2064	61 898	56 271	13 872	8 138	865	14 847	65	155 957	1 286	1 055	865
2065	64 374	58 522	11 116	8 057	873	2 645	63	145 650	1 077	879	718
2066	66 949	60 863	8 445	7 977	881	389	62	145 567	966	785	638
Итого2021-2066	1 662 670	1 511 518	4 853 095	608 689	39 358	10 990 379	4 885	19 670 593	3 960 061	3 774 523	3 599 265
2067	64 985	59 078	6 360	7 936	1 050	0	62	139 472	830	671	543
2068	67 585	61 441	4 230	7 348	1 081	0	57	141 742	756	609	491
2069	70 288	63 898	1 435	7 324	1 113	0	56	144 113	690	553	443
2070	73 100	66 454	0	7 299	1 145	0	54	148 051	635	507	405

Продолжение таблицы 4.2.8

1	2	3	4	5	6	7	8	9	10	11	12
2071	70 593	64 176	596	7 273	1 116	0	54	143 809	554	440	350
2072	73 417	66 743	1 494	6 744	1 149	0	50	149 598	516	409	323
2073	76 354	69 413	2 096	6 731	1 184	0	48	155 825	482	380	299
2074	79 408	72 189	2 691	6 717	1 219	0	47	162 271	451	353	277
2075	82 584	75 077	3 278	6 702	1 256	0	45	168 943	421	328	256
2076	85 888	78 080	3 857	6 688	1 295	0	44	175 851	393	305	237
2077	89 323	81 203	4 428	0	1 335	0	42	176 331	353	273	211
2078	92 896	84 451	4 990	0	1 377	0	41	183 755	330	254	196
2079	96 612	87 829	5 543	0	1 421	0	39	191 444	308	237	181
2080	100 476	91 342	6 089	0	1 466	0	33	199 406	287	219	167
Итого 2021-2080	2 786 179	2 532 890	4 900 182	679 451	56 566	10 990 379	5 557	21 951 203	3 967 067	3 780 062	3 603 646

4.3 Анализ расчетных коэффициентов извлечения газа и конденсата

Полученные значения расчетных коэффициентов извлечения газа КИГ из недр по объектам разработки месторождения Айракты для основных вариантов разработки и их сопоставление с утверждёнными в ГКЗ РК по состоянию на 01.07.2021 г., приведены в таблице 4.3.1.

Таблица 4.3.1 – Сопоставление утвержденных и расчетных коэффициентов извлечения газа и конденсата

Объект эксплуатцаии	Категория	КИГ, утвержденный в ГКЗ РК	КИК, утвержденный в ГКЗ РК	Барианты	Коэффициенты извлечения газа, д.ед.	Коэффициенты извлечения конденсата, д.ед
I	C_1	0,506	0,490	1	0,108	0,032
II	C_1	0,263	0,266	1	0,193	0,055
I	C_1	0,506	0,490	2	0,377	0,108
II	C_1	0,263	0,266	2	0,285	0,081
I	C_1	0,506	0,490	3	0,506	0,144
II	C_1	0,263	0,266	3	0,263	0,075
По месторождению в целом		0,487	0,473		0,487	0,139

Как видно из таблицы, по I объекту разработки месторождения Айракты КИГ в базовом 1 варианте при общем количестве добывающих скважин — 9 единиц, составляет 0,108 д.ед. Бурение дополнительного количества добывающих скважин — 2 ед., при общем их количестве — 11 единиц во 2 варианте дает коэффициент газоотдачи — 0,377 д.ед. КИГ в 3 варианте при бурении дополнительного количества добывающих скважин — 9 ед. и при общем количестве добывающих скважин — 18 единиц, составляет 0,506 д.ед.

По II объекту по вариантам 1, 2, 3 при разных рентабельных годах КИГ составил 0,193 д.ед., 0,285 д.ед., 0,263 д.ед., соответственно.

Согласно проведенным технико-экономических расчетов рентабельные сроки разработки по вариантам составили, соответственно: 32, 51 и 46 лет.

Как видно из представленной таблицы 4.3.1, по третьему варианту разработки достигается рентабельный КИГ, соответсвующий утвержденному в ГКЗ РК.

5 ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПРОЕКТНЫХ РЕШЕНИЙ

5.1 Технико-экономический анализ вариантов разработки, обоснование выбора рекомендуемого к утверждению варианта

По данному проекту были рассмотрены технико-экономические показатели 3 вариантов разработки месторождения Айракты.

По 1 варианту разработки месторождения рентабельный период составит 32 года и не предполагает бурение новых скважин. Суммарные поступления за весь рентабельный период составляет 23 341,7 млн.тенге, будет добыто 504,3 млн.м³ газа и 5,1 тыс тн конденсата. Средняя себестоимость 1000 м³ газа – 34 655,1 тенге. Накопленный денежный поток наличных – -717,1 млн.тенге. NPV (Чистая приведенная стоимость) при ставке дисконта 12,0% за рентабельный период составляет – -4 104,1 млн.тенге. Внутренняя норма доходности (IRR) составляет -4,0 %.

По 2 варианту разработки рентабельный период составляет 51 год, суммарные поступления которого составят 95 731,2 млн.тенге. За этот период будет добыто 1 880,8 млн.м³ газа и 19,0 тыс тн конденсата. Капитальные вложения составят 3 859,4 млн.тенге, предполагается бурение 1 вертикальной и 1 горизонтальной добывающей скважины. Средняя себестоимость 1000 м³ газа- 29 033,8 тенге. Накопленный денежный поток наличных –30 135,3 млн.тенге. NPV (Чистая приведенная стоимость) при ставке дисконта 12,0% за рентабельный период составляет – 772,7 млн.тенге. Внутренняя норма доходности (IRR) составляет 47,2 %. Данный вариант имеет положительные экономические показатели.

Вариант 3 в сравнении с рассмотренными первым и вторым вариантами разработки месторождения Айракты имеет наиболее привлекательные экономические показатели. Рентабельный период составляет 46 лет, суммарные поступления которого составят 125 409,5 млн.тенге. За этот период будет добыто 2 512,4 млн. м³ газа и 25,4 тыс.тг конденсата. Капитальные вложения составят 11 853,2 млн.тенге, предполагается бурение 8 вертикальных и 1 горизонтальной новой добывающей скважины. Средняя себестоимость 1000м3 газа – 30 761,1 тенге. Накопленный денежный поток наличных – 39 651,1 млн.тенге. NPV (Чистая приведенная стоимость) при ставке дисконта 12,0% за рентабельный период составляет – 784,9 млн.тенге. Внутренняя норма доходности (IRR) составляет 48,4 %.

Таким образом, вариант 3 с точки зрения экономического анализа и сравнения основных показателей обеспечивает наибольшую экономическую выгоду. В связи с этим данный вариант рекомендован к реализации. Результаты расчетов технико-экономических показателей по вариантам разработки представлены в таблице 5.1.1

Таблица 5.1.1 – Технико-экономические показатели основных вариантов разработки месторождения

		Вари	ант 1	Вари	іант 2	Варі	лант 3
№	Наименование показателей	Расчетный	Прибыльный	Расчетный	Прибыльный	Расчетный	Прибыльный
1	Период расчета, годы	2021-2080	2021-2052	2021-2080	2021-2071	2021-2080	2021-2066
2	Ввод добывающих скважин, шт.	0	0	2	2	9	9
3	Расконсервация скважин, шт.	2	2	2	2	2	2
4	Общий фонд скважин (добывающие), шт.	10	10	12	12	19	19
5	Добыча сырого газа, млн.м ³	734,3	504,3	1 986,5	1 880,8	2 760,7	2 512,4
6	Добыча конденсата, тыс.тн.	7,4	5,1	20,1	19,0	27,9	25,4
7	Суммарная продажа сырого газа, млн.м3	731,3	502,3	1 978,6	1 873,3	2 749,7	2 502,3
8	Суммарная продажа конденсата, тыс.тн.	7,4	5,1	20,1	19,0	27,9	25,4
9	Суммарная выручка от реализации товарной продукции, млн.тенге	39 748,3	23 341,7	104 635,9	95 731,2	145 471,8	125 409,5
10	Эксплуатационные затраты, млн.тенге	40 177,0	17 477,1	65 160,0	54 607,7	104 579,0	77 282,9
11	Удельные эксплуатационные затраты на 1000/м3(с учетом амортизации), тенге	54 716,6	34 655,1	32 800,7	29 033,8	37 881,1	30 761,1
12	Капитальные вложения (без НДС), млн.тенге	616,1	318,7	3 859,4	3 859,4	12 000,6	11 853,2
13	Удельные капитальные вложения, тенге	839,1	631,9	1 942,8	2 052,0	4 346,9	4 718,0
14	Налогооблагаемая балансовая прибыль, млн.тенге	6 928,7	6 928,7	45 094,6	45 094,6	54 951,9	54 951,9
15	Корпоративный подоходный налог, млн.тенге	1 385,7	1 385,7	9 018,9	9 018,9	10 990,4	10 990,4
16	Налог на сверхприбыль, млн.тенге	4,2	2,9	6,4	5,9	5,6	4,9
17	Чистая приведенная стоимость (NPV) при ставке 12 %, млн. тенге	-4 129,9	-4 104,1	770,1	772,7	770,8	784,9
18	Внутренняя норма прибыли (ВНП или IRR), %	-16,7%	-4,0%	37,4%	47,2%	29,4%	48,4%
19	Срок окупаемости, лет	32	32	7	7	9	9
20	Дисконтированный срок окупаемости, лет	32	32	17	17	20	20
21	Накопленный денежный поток чистой прибыли, млн.тенге	-6 622,0	-717,1	28 499,1	30 135,3	32 175,2	39 651,1
22	Суммарные выплаты Государству в виде налогов, млн.тенге	8 522,7	5 442,4	16 696,0	15 970,5	21 951,2	19 670,6
23	Чистый дисконтированный доход Государству (NPV) при ставке 12%, млн.тенге	1 591,3	1 563,5	3 207,3	3 206,0	3 780,1	3 774,5
24	коэффициент газоотдачи, дол.ед	0,157	0,115	0,390	0,370	0,533	0,487

6 ТЕХНИКА И ТЕХНОЛОГИЯ ДОБЫЧИ ГАЗА И КОНДЕНСАТА

6.1 Обоснование выбора устьевого и внутрискважинного оборудования.

Характеристика показателей эксплуатации скважин

На месторождении Айракты на дату составления Проекта фонд скважин составляет 8 единиц, все находятся в действующем фонде.

По состоянию на 01.07.2021 г. на штуцере диаметром 7 мм работают скважины 1Г и 6Г со средним дебитом газа 17 и 15 тыс.м³/сут соответственно.

С использованием 8 мм штуцера работает скважина 104, 106 с дебитом газа 63 и 4,5 тыс. ${\rm M}^3/{\rm cyt}$.

С использованием 12 мм штуцера работает скважина 105 с дебитом газа 6,3 тыс. m^3 /сут.

Без штуцера работают скважины 101, 102, 103 со средним дебитом газа 5,2, 6,6 и 15,0 тыс.м³/сут соответственно.

Выбор техники и технологии добычи газа основан на условиях эксплуатации скважин, которые определяются исходя из геолого-промысловой характеристики продуктивных пластов, физико-химических свойств пластовых флюидов и заданных проектных условий разработки месторождения.

Коллекторы месторождения Айракты представлены переслаиванием пластов песчаников, алевролитов и аргиллитов. В основании разреза встречаются прослои углей и углистых аргиллитов. Песчаники серые, бурые, мелко — среднезернистые, кварцполевошпатовые, на глинистом и слабокарбонатном цементе. Аргиллиты и алевролиты темно-серые, слабоизвестковистые, окремненные, пиритизированные. Природный флюид характеризуется содержанием углекислого газа (СО₂) 0,25% и азота до 11,95%. В условиях добычи газ считается водонасыщенным.

Показатели эксплуатации скважин на проектируемый период приведены в таблице 6.1.1.

Табл. 6.1.1 – Показатели эксплуатации скважин

Помоложови	Годы разработки									
Показатели	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Ввод скважин	1	2	1	3	3	1	ı	ı	-	-
Фонд добывающих.скважин	9	11	12	15	18	19	19	19	19	19
Дебит газа, тыс.м ³ /сут,	9,9	11,4	12,7	13,4	16,4	16,2	13,8	12,5	12,1	12,7
Дебит конденсата, т/сут	0,100	0,115	0,128	0,135	0,166	0,163	0,140	0,126	0,122	0,129

Обоснование устьевых и забойных давлений, выбор режимов эксплуатации скважин. Обоснование выбора подъёмного лифта

Учитывая, что проектируемые забойные давления гораздо ниже давления конденсации газа (давление конденсации близко к пластовому давлению), в скважине будут создаваться условия движения двухфазного потока. При выпадении из потока конденсата возможны осложнения при добыче, связанные с накоплением его на забое, что может привести к снижению дебита газа. Для выявления осложнений такого рода и разработки мероприятий по их предупреждению и устранению, в условиях разработки данного месторождения, необходимо рассмотреть характер и условия выпадения и возможного накопления конденсата на забое.

Для расчёта критической скорости выноса жидкости с забоя можно использовать формулу, выведенную на основе статистической обработки экспериментальных данных с учётом промысловых исследований [18].

$$V_{\rm kp} = 10 * (45 - 0.0455 * P_{\rm 3a6})^{1/4} * P_{\rm 3a6}^{-1/2}$$

где Рзаб – забойное давление (атм).

По рекомендуемому к реализации 3 варианту, скважины I объекта в период с 2021-2025 гг. должны эксплуатироваться при среднем значении забойного давления на 4,8 МПа, далее в период 2026-2030 гг. – при постоянном значении Рзаб= 3,7 МПа. Скорость газового потока необходимая для выноса конденсата с забоя, с учётом коэффициента запаса 1.2, при Рзаб = 4,8 МПа на I объекте составляет 3,69 м/с, при Рзаб = 3,7 МПа составляет 4,22 м/с.

По рекомендуемому к реализации 3 варианту, скважины II объекта в период с 2022-2026 гг. должны эксплуатироваться при среднем значении забойного давления на 4,4 МПа, далее в период с 2027 г. и до конца проектируемого периода — при постоянном значении Рзаб= 3,6 МПа. Скорость газового потока необходимая для выноса конденсата с забоя, с учётом коэффициента запаса 1.2, при Рзаб = 4,4 МПа на II объекте составляет 3,86 м/с, при Рзаб = 3,6 МПа составляет 4,28 м/с.

Поскольку газ в газовой залежи находится под давлением (Рпл = 17,9 МПа I объект и 11,4 МПа II объект), то при вскрытии пласта он способен фонтанировать с большой скоростью. Таким образом, добыча газа и конденсата на месторождении будет производиться фонтанным способом, обусловленным запасом пластовой энергии и режимом разработки залежи. Правильность эксплуатации и обеспечение длительного и бесперебойного фонтанирования скважин заключается в том, чтобы обеспечить оптимальный дебит при возможно меньших гидравлических и технологических потерях.

Для создания таких условий фонтанирования необходимо выбрать и обосновать фонтанный подъёмник (компоновку лифта) и согласовать работу пласта и подъёмника, учитывая проектные параметры (Qг, Ру, Рзаб, А, В), а также подобрать соответствующее наземное и подземное оборудование.

Решение задачи по определению и установлению оптимального режима работы скважин, а также выбор необходимого оборудования для его обеспечения связаны с проведением гидродинамических расчётов движения газожидкостного потока в подъёмных трубах с условием минимальных потерь давления в стволе скважины при заданном дебите.

Кроме того, выбор оборудования и режима работы скважин, для данного месторождения, проводится с учётом выноса с забоя скважины твёрдых и жидких частиц и возможной минимизации скоростного эрозионного потока.

На рисунке 6.1.1-6.1.4 приведены графики зависимости скорости потока от дебита газа для забойных (вынос твёрдых и жидких частиц) условий в НКТ диаметром 60,3 мм, 73 и 89 мм.

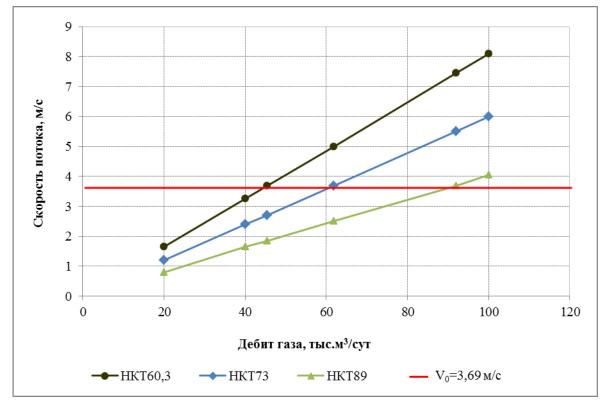


Рисунок 6.1.1 – Зависимость скорости потока от дебита газа на І объекте (Рзаб = 4,8 МПа)

Как видно из графика на рисунке 6.1.1, на I объекте при забойном давлении 4,8 МПа жидкость (конденсат) с забоя скважин в подъёмниках с наружным диаметром 60,3 мм, 73 мм и 89 мм будет полностью выноситься при дебитах более 45,4 тыс. м3/сут, 61,9 тыс. м3/сут и 92,0 тыс. м3/сут, соответственно.

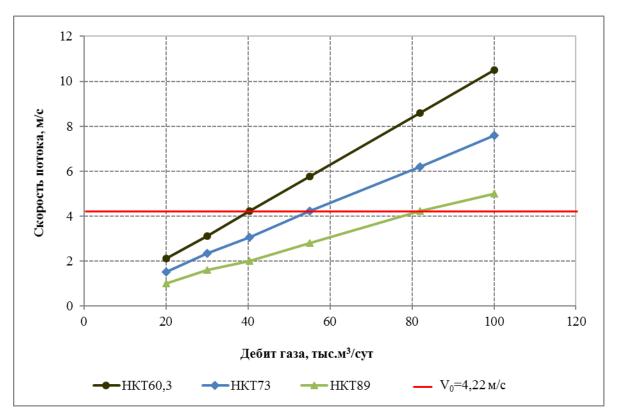


Рисунок 6.1.2 – Зависимость скорости потока от дебита газа на I объекте (Рзаб = 3,7 МПа)

Как видно из графика на рисунке 6.1.2, на I объекте при забойном давлении 3,7 МПа жидкость (конденсат) с забоя скважин в подъёмниках с наружным диаметром 60,3 мм, 73 мм и 89 мм будет полностью выноситься при дебитах более 40,4 тыс. м³/сут, 55,1 тыс. м³/сут и 81,9 тыс. м³/сут, соответственно.

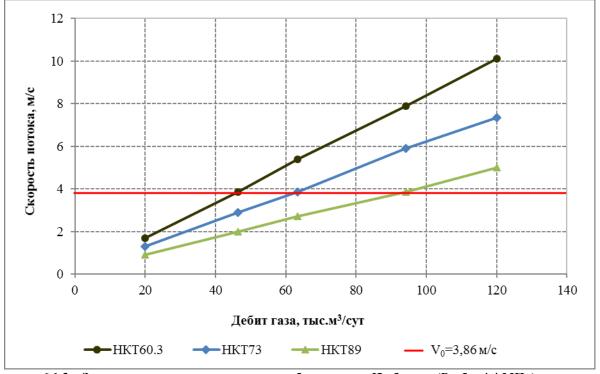


Рисунок 6.1.3 – Зависимость скорости потока от дебита газа на II объекте (Рзаб = 4,4 МПа)

Как видно из графика на рисунке 6.1.3, на II объекте при забойном давлении 4,4 МПа жидкость (конденсат) с забоя скважин в подъёмниках с наружным диаметром 60,3 мм, 73 мм и 89 мм будет полностью выноситься при дебитах более 46,4 тыс. м3/сут, 63,3 тыс. м3/сут и 94,2 тыс. м3/сут, соответственно.

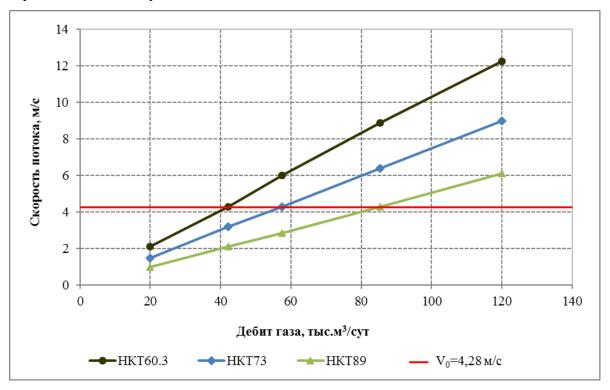


Рисунок 6.1.4 – Зависимость скорости потока от дебита газа на II объекте (Рзаб = 3,6 МПа)

Как видно из графика на рисунке 6.1.3, на II объекте при забойном давлении 3,6 МПа жидкость (конденсат) с забоя скважин в подъёмниках с наружным диаметром 60,3 мм, 73 мм и 89 мм будет полностью выноситься при дебитах более 42,1 тыс. м3/сут, 57,4 тыс. м3/сут и 85,3 тыс. м3/сут, соответственно.

Поскольку в НКТ с наружным диаметром 60,3 мм создаются более выгодные условия выноса жидкости с забоя (при более низких дебитах) следует считать его обоснованным по забойным условиям работы подъёмника.

В таблице 6.1.1 приведена предлагаемая компоновка фонтанного лифта с указанием толщины стенок и глубины спуска НКТ.

Таблица 6.1.1 - Компоновка колонны насосно-компрессорных труб

Наружный диаметр эксплуатационной колонны, мм	Наружный диаметр лифтовой колонны, мм	Толщина стенки НКТ, мм	Глубина спуска НКТ, м	
			На 5 -10 м выше	
168,3	60,3	5	интервала	
			перфорации	

Выбор одноступенчатой компоновки лифтовой колонны, её размеры и глубина спуска основаны на том, что она обеспечивает:

максимальную отдачу скважины;

- установку в скважине подземного оборудования, обеспечивающего эффективную и безопасную эксплуатацию скважины (пакер);
 - проведение необходимых исследовательских и ремонтных работ;
- проведение в скважинах геолого-технических мероприятий (промывки, физико-химической обработки пласта и НКТ;
- достаточную сопротивляемость всем нагрузкам, возникающим в ходе различных операций, которые могут проводиться в течение всего срока службы скважины.

Глубина спуска насосно-компрессорных труб до интервала перфорации обусловлена тем, что при спуске над интервалом (на разную величину) возможна потеря дебита, поскольку увеличивается на этом участке трение на скольжение и уменьшается скорость потока, особенно в скважинах с невысокими дебитами. При спуске НКТ, перекрывая интервал перфорации, увеличивается возможность повреждения башмака колонны за счёт прямого воздействия мехпримесей, поступающих из пласта с флюидом (за счёт эрозии скоростного потока). Кроме того, не возникает опасность прихвата башмака колонны НКТ на забое.

На месторождении целесообразно применять для фонтанного подъёмника трубы марки «Д» по ГОСТ 633-80 гладкие с высаженными концами, рассчитанные по пределу текучести для равнопрочной одноступенчатой колонны по допустимой глубине спуска (3564 м). При расчёте учитывались дополнительные нагрузки при установке пакера и освоении скважины. Расчёт на прочность и предельная глубина спуска одноступенчатой колонны, составленной из труб одинаковой прочности при максимальных толщинах стенки, проведён с коэффициентом запаса прочности на растяжение 1.373. По стандарту АРІ этой марке, соответствуют трубы С-75, с учётом величины растягивающих нагрузок, при которых напряжение в теле достигает предела текучести.

Обоснование выбора устьевого и внутрискважинного оборудования

Устьевое оборудование

Условиям рекомендуемого варианта Проекта и условиям эксплуатации месторождения отвечает фонтанная арматура крестового типа на рабочее давление 35 МПа, с условным проходом стволовой части ёлки — 80 мм и боковых отводов 65 мм, с ручным и автоматическим способом управления запорными устройствами (АФ6А — 80х65х35 по ГОСТ 13846-84 или соответствующая ей по классификации АНИ). Боковые выкиды арматуры оборудуются штуцеродержателями для установки щтуцеров и фонтанными клапанами или дроссельными устройствами. Компоновка устья скважины должна включать также следующее оборудование:

- панели управления (для автоматического закрытия задвижек центральной и отводящих линий), с обеспечением возможности эксплуатации при низких температурах;
- систему нагнетания химреагентов в скважину, на случай применения антикоррозионной защиты внутренней поверхности НКТ и борьбы с гидратообразованием.

В настоящее время для герметизации устьев скважин и направления продукции в систему сбора, скважины оборудованы фонтанными арматурами Российского производства (АФК6-65-35), рассчитанными на рабочее давление 35 МПа. Скважины 1Г и 6Г оборудованы колонными головками ООК2-324х244х146.

Внутрискважинное оборудование

Условия эксплуатации газоконденсатного месторождения (глубина залегания продуктивных объектов, характеристика пород коллектора) определяют выбор подземного оборудования.

Потенциальная опасность, связанная с содержанием CO₂, требует установки скважинной системы безопасности. К этой системе относится клапан–отсекатель и пакер.

Клапан—отсекатель и пакер должны удовлетворять следующим требованиям: быть съёмными, выполненными на рабочее давление не менее 14 МПа; посадочный ниппель клапана-отсекателя и уплотнительные манжеты пакера должны устанавливаться в эксплуатационной колонне на лифтовых трубах. Диаметр внутреннего проходного канала клапана—отсекателя и пакера должен позволять выполнение работ по интенсификации с помощью гибких труб, геофизических исследований и других технологических операций. Выбор клапана—отсекателя основан на том, что он должен эффективно действовать при возникновении аварийных ситуаций, связанных с повышением давления в выкидных линиях, возникновением пожара, уничтожением фонтанной арматуры и др.

Клапаны—отсекатели могут устанавливаться на глубине до 50 м от устья, для более удобного их обслуживания и управления ими.

Всё оборудование, спускаемое в скважину должно изготавливаться из материала согласно AISI, в соответствии с условиями работы в агрессивной среде.

В настоящее время все скважины оборудованы лифтовой колонной диаметром 73 мм. Лифтовые колонны в скважинах спущены выше верхних отверстий интервала перфорации.

Для наилучшего использования пластовой энергии и продления режима фонтанирования все добывающие скважины оборудованы пакерами ПРО-ЯМ2-ЯГ1-(М)-118. В результате чего исключаются потери скорости, что способствует выносу жидкости с забоя, предупреждаются межколонные перетоки при негерметичности колонн и муфтовых

соединений выше интервала перфорации и осуществляется защита внутренней части эксплуатационной колонны и наружной НКТ от воздействия агрессивных компонентов.

Целесообразность установки защитного оборудования (клапан-отсекатель, пакер), определяет Недропользователь, в том числе и при получении новых данных по компонентному составу газа.

Учитывая, что при эксплуатации скважин данного месторождения могут возникнуть осложнения, связанные с накоплением жидкости на забое, особенно в скважинах с низкой продуктивностью, необходимо предусмотреть мероприятия по минимизации этих осложнений.

Для удаления жидкости, скапливающейся на забое газовых скважин, имеются различные методы, которые могут быть опробованы с целью определения самого эффективного для условий месторождения Айракты. Методы удаления жидкости с забоев газовых скважин подразделяются на: механические (плунжерный лифт, различные модификации газлифта, автоматизированные продувки, диспергаторы и др.) и физико-химические (пенообразующие реагенты). Жидкость с забоя скважин может удаляться непрерывно и периодически. Выбор метода удаления жидкости обусловлен, геологопромысловой характеристикой месторождения, конструкцией скважин, количеством и причинами поступления жидкости из пласта в скважину.

6.2 Мероприятия по предупреждению и борьбе с осложнениями при эксплуатации скважин и промысловых объектов

Гидратообразование

В процессе разработки газовых и газоконденсатных месторождений могут возникнуть осложнения, связанные с образованием гидратов, как на устье скважин, так и в выкидных линиях сборной системы. Образование кристаллогидратов происходит при определенной температуре и давлении, при наличии воды и газа, содержащего гидратообразующие компоненты. Основными гидратообразующими компонентами, входящими в состав газа месторождения Айракты, являются: метан, этан, углекислый газ и азот (раздел 2).

С целью определения условий гидратообразования в стволе и на устье скважин нами применены расчетные методы, позволяющие с достаточной степенью точности прогнозировать образование гидратов в зависимости от изменения термодинамических условий в процессе эксплуатации скважин.

При проведении расчетов использованы универсальные эмпирические уравнения В. Г. Пономарева [19] для природных газов с учетом их состава.

Эти уравнения имеют следующий вид:

$$t_p = 18.47 * lgP_y - B$$
,

где: t_P - равновесная температура гидратообразования, ${}^0{\rm C}$;

 $P_{\scriptscriptstyle V}\,$ - устьевое давление, МПа;

B - коэффициент, зависящий от приведённой плотности, взят из табличного материала [19].

Приведённая плотность $\rho_{\scriptscriptstyle \Gamma}'$ определяется по формуле

$$\rho_{\Gamma}' = \frac{\sum y_i' * \rho_i}{\sum y_i'},$$

где: y_i' , ρ_i - мольная доля и относительная плотность гидратообразующих компонентов газа, соответственно.

Для рассчитанного состава газа и технологических характеристик работы скважин на рисунке 6.2.1 представлены равновесные параметры гидратообразования. Согласно рисунку, работа скважин в гидратном режиме будет осуществляться ниже кривой равновесия в присутствии свободной влаги.

К методам по предупреждению образования гидратов относятся: ввод ингибиторов в поток газа, осушка газа от паров воды, поддержание температуры газа выше температуры гидратообразования, поддержание давления ниже давления образования гидратов. Таким образом, устраняя какое — либо из основных условий существования гидратов: высокое давление, низкую температуру или свободную влагу, можно предупредить гидратообразование.

Существующие методы по ликвидации образовавшихся гидратов можно разделить на три группы:

- - понижение давления ниже давления разложения;
- - подогрев газа до температуры, превышающей температуру разложения;
- - ввод ингибиторов в поток газа.

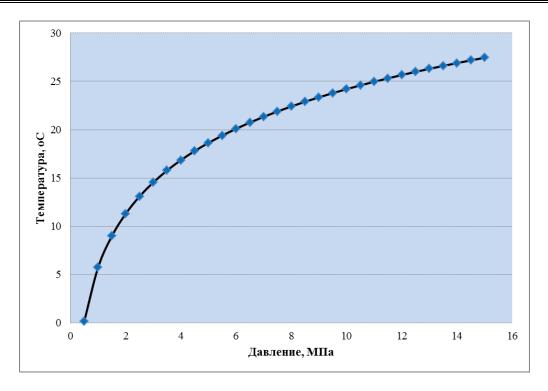


Рисунок 6.2.1 – Равновесные параметры гидратообразования

Исходя из вышеизложенного - подогрев газа, снижение давления и ввод ингибиторов можно использовать как для предупреждения, так и для ликвидации образовавшихся гидратов. Выбор методов определяется местом их накопления, количеством и характером гидратной пробки, составом гидрата, а также имеющимися средствами ликвидации.

В настоящее время для разрушения гидратов, образовавшихся на обратном клапане манифольда УКПГ, используется метод пропарки.

На УКПГ для предупреждения гидратообразования в системе низкотемпературной сепарации перед теплообменником подается диэтиленгликоль, который исключает образование гидратов в турбодетандерном агрегате.

Предотвращение и ликвидация межколонного давления (МКД)

Для недопущения осложнений, связанных с МКД в процессе эксплуатации скважин, необходимо обеспечить безопасные условия их работы.

На месторождении выполняются мероприятия по выявлению МКД, оценки риска, его снижению и ликвидации. Выполнение мониторинга, замеров давления в межколонном пространстве позволяет диагностировать источник МКД. После завершения диагностики производится наблюдение за скважиной на предмет изменения температуры и параметров МКД.

Для исследования причин и параметров МКД применяются диагностические методы: текущий мониторинг, контроль и исследование затрубного пространства,

опрессока уплотнений устьевого оборудования, стравливание МКД, анализ кривых падения и восстановления давления, отбор и анализ флюида, геофизические исследования.

На месторождении Айракты специалистами ТОО «Амангельды Газ» совместно с представителями ТОО «Мунай Сервис ЛТД» проведены работы по диагностике и ликвидации возникновения МКД в скважине 101.

На основании проведённых исследований 14.09.2017 г. были зафиксированы межколонные давления между технической и эксплуатационной колонной МК Π_1 =8 М Π_2 =0 М Π_3 .

Было произведено стравливание давления между технической и эксплуатационной колонной, в результате чего за 10 сек давление упало до 0 МПа.

Увеличение продуктивности

<u>Гидроразрыв пласта</u>

В период 2017-2021 гг. на 7-ми скважинах были выполнены работы по гидроразрыву пласта (ГРП).

Работы проводились в соответствии с индивидуальной программой, составленной с учётом характеристик скважины.

ГРП проводилось специалистами и по технологии сервисной компании ТОО "Петро Велт Технолоджис Казахстан" с применением проппанта производства Fores ForeProp.

Перед началом работ на скважинах 101, 102, 103, 104, 105, 106 и 107 устанавливался пакер типа ПРО-ЯМ2-ЯГ-1(М) на глубину соответственно 18 м, 23 м, 31,3 м, 26,7, 27,1 м, 56 м, 44 м (1 обработка) и 36,3 м (2 обработка) выше обрабатываемого интервала перфорации.

Все работы были проведены в 2 этапа. По результатам мини-ГРП было рассчитано чистое давление, давление смыкания трещин, эффективность жидкости и трение в призайбойной зоне и в интервале перфорации.

Информационный мини-ГРП включал в себя:

- на стадии замещения закачку линейного геля в объёме от 5,6 м³ (скважина 107 2-я обработка) до 8,0 м³ (скважина 104),
- далее закачку сшитой жидкости в объёме от 10,3 м³ (скважина 107 2-я обработка) до 14,0 м³ (скважины 101 и 102) вместе с пропантом 20/40 Fores в количестве от 400 кг (скважина 101) до 662 кг (скважина 107 2-я обработка).
- закачку линейного геля в объёме от 6,6 м³ (скважина 101) до 8,3 м³ (скважина 105) при скорости от 2,57 (скважина 105) до 3,1 м³/мин (скважина 107 2-я обработка). Основной ГРП состоял из:

- закачки сшитой подушки объёмом от 12 м³ (скважины 104, 105, 107 2-я обработка) до 35 м³ (скважины 102, 103, 106, 107 1-я обработка) при скорости подачи от 2,45 м³/мин (скважина 104) до 3,17 м³/мин (скважина 107 2-я обработка). Концентрация реагентов в гелевом растворе в среднем 10 литр/м3 HGA-48 и 10 литр/м3 HGA-37. Было закачено от 15 тонн пропанта 20/40 производства WellProp (скважина 107 2-я обработка) до 50 тонн (скважина 102) производства Fores ForeProp.
- продавки гелевым раствором в объёме от 6.9 м^3 (скважины 101 и 104) до 8.1 м^3 (скважина 102).

Параметры работы скважин до и после ГРП представлены в таблице 6.2.1.

Таблица 6.2.1- Результаты гидравлического разрыва пласта добывающих скважин

			Параметры рабо	ты сква				
		,	До ГРП	После ГРП		Продолжи	Прирост	Прирост
№	Дата ГРП	Дебит		Дебит	Дебит	тельность	дебита	дебита
скв	дини 1111	газа,	Дебит	газа,	конденсата	эффекта, сут		конденсата
		тыс. конденсатат/сут м ³ /сут		тыс. м ³ /сут т/сут		на 01.07.2021	тыс. м ³ /сут	т/сут
101	18.09.2017	При ос	своении после	6,3	0,10	1304	После освоения	
102	30.12.2017	(бурения	9,0	0,10	1190		
103	29.12.2017	1,2	0,01	16,9	0,20	1215	15,7	0,19
104	15.01.2019	0,5	0	39,9	0,50	875	39,4	0,50
105	17.01.2019	1,4	0	5,9	0,10	876	4,5	0,10
106	31.12.2019	0,5	0,01	5,9	0,10	525	5,4	0,09
107	31.12.2019	При ос	своении после		Ravei	плуатацию не вв	опипась	
107	08.05.2021	(бурения		D 5KC	іліуатацию не вв	одилась	

Мощность обрабатываемых интервалов, объёмы закачанных рабочих агентов и давление разрыва представлены в таблице 6.2.2.

После проведённого ГРП скважины 101 и 102 работают на протяжении соответственно 1304 сут и 1190 сут со средним дебитом газа 6,3 тыс.м³/сут и 9,0 тыс.м³/сут и средним дебитом конденсата 0,1 т/сут.

На скважинах 103, 104, 105 и 106 прирост дебита газа составил от 4,5 тыс $\text{м}^3/\text{сут}$ (скважина 105) до 39,4 тыс $\text{м}^3/\text{сут}$ (скважина 104), конденсата – от 0,09 т/сут (скважина 106) до 0,5 т/сут (скважина 104).

Успешность работ составила 75%. По состоянию на 01.07.2021 г. на всех скважинах эффект продолжается.

Удаление жидкости с забоя с помощью пенообразователя

Одной из причин снижения продуктивности газовых скважин является накопление жидкости в стволе вследствие изменения фазового состояния углеводородной смеси или поступления воды к забою скважины. Столб жидкости в стволе создаёт противодавление на пласт, снижает устьевое давление и соответственно производительность скважины.

Таблица 6.2.2 – Технологические параметры ГРП

			•	M	Объ	ьёмы закачаі	ных реаг	гентов		Общая	Средняя	Cranna
№ скв	Дата ГРП	Глубина установки пакера, м	Интервал перфорации	Мощность обрабаты ваемого интервалам	Ко-во пропан та, т	Удельный расход пропанта т/м ³	Объём геля, м ³	Объём продавки, м ³	Давление разрыва, МПа	е закреп-пён	закреп-лённая высота трещины, м	Средняя закрепл. высота трещины в продукт зоне, м
101	18.09.2017	2056,5	2074,5-2076,5 2078,0-2090,0 2094,0-2096,0 2099,0-2102,0 2104,0-2110,0 2120,0-2129,0	34	40	0,374	106,9	6,9	40,0	96,134	45,996	37,672
102	30.12.2017	2107,0	2130,0-2134,0 2143,0-2148,0 2154,0-2161,0 2163,0-2169,0 2183,0-2190,0	29	50	0,534	93,6	8,1	40,0	83,607	78,765	57,430
103	29.12.2017	2057,7	2089,0-2099,0 2111,0-2115,0	14	40	0,513	78,0	7,1	35,0	89,870	59,654	25,959
104	15.01.2019	2040,3	2067,0-2072,0 2073,0-2075,0 2079,0-2100,0 2106,0-2115,0 2134,0-2138,0	41	30	0,216	138,6	6,9	33,0	52,759	53,270	19,597
105	17.01.2019	2101,9	2129,0-2136,0 2140,0-2149,0 2160,0-2162,0 2165,0-2176,0 2190,0-2200,0	39	30	0,277	108,2	7,0	37,0	130,055	102,041	18,782
106	31.12.2019	1959,0	2115,0-2124,0	9	40	0,276	144,8	7,29	34,8	90,835	37,54	8,989
	31.12.2019	2084,76	2128,0-2132,0 2134,0-2141,0 2151,0-2155,0	15	40	0,271	147,4	6,9	53,5	124,88	29,998	22,246
107	08.05.2021	1648,9	1685,0-1688,0 1706,0-1710,0 1713,5-1717,5 1758,0-1766,0	19	15	0,283	52,9	5,6	45,0	н.д.	н.д.	н.д.

Проблема удаления жидкости с забоев скважин может быть решена с использованием одного из нижеследующих способов:

Очистка забоя с помощью колтюбинга, путём установки гибких насоснокомпрессорных труб (ГНКТ) меньшего диаметра внутри существующих НКТ. За счет значительного увеличения скорости восходящего потока газа достигается вынос жидкой фазы с забоя скважины.

Продувка скважин путём увеличения диаметра штуцера по сравнению с режимным, или с подключением компрессирования через затрубное пространство.

Удаление жидкости с забоя с помощью пенообразователя.

В период 25-28.10.2020 г. на скважине 1Г проводились опытно-промысловые работы (ОПР) по удалению жидкости с забоя с использованием пенно-ингибирующих шашек.

Работы проводились специалистами ТОО «УзеньГеоСервис» совместно со специалистами Пермского государственного университета.

Пенно-ингибирующие шашки представляют собой стержни белого цвета, размером ориентировочно 30х400 мм. В скважину через лубрикатор (шлюз) поочерёдно сбрасывали шашки, которые реагируют на конденсат и на воду.

Во время сброса шашек на тестовом сепараторе брали пробы на наличие жидкости и пены. В пробе наличие выноса жидкости не наблюдалось и увеличение дебита газа также не наблюдалось. В результате произошло поддержание стабильной работы скважины.

Параметры работы скважины до и после опытных работ представлены в таблице 6.2.3.

Таблица 6.2.3 – Результаты опытно-промысловых работ по удалению жидкости с забоя с использованием пенно-ингибирующих шашек

	Параметры работы скважин							
№	Период	Перед проведен (среднее за 1 ме	-	После проведением работ				
скв	- I	Дебит газа, тыс.м ³ /сут	Дебит конденсата т/сут	Ртр атм	Дебит газа, тыс.м ³ /сут	Дебит конденсата т/сут	Ртр атм	
1Γ	25-28.10.2020 г.	11,5	0,130	5,9	11,2	0,140	5,9	

Защитные мероприятия по предупреждению и борьбе с коррозией

На месторождении Айракты среднее содержание CO₂ в газе по нижневизейскому горизонту составляет 0,3% мольных.

Количественно для допустимого уровня коррозии предельное парциальное давление углекислого газа составляет 0.01-0.02 МПа и 0.05 МПа — пороговое значение для коррозионного растрескивания.

В данном Проекте значение пластового давления в 2021 г. принято равном 17,9 МПа, для среднего значения углекислого газа парциальное давление углекислого газа составит 0,05 МПа, что является пороговым значением.

В условиях добычи при скоростях отбора газа, не обеспечивающих однородность потока, может происходить конденсация воды в призабойной зоне. Большую коррозионную угрозу для скважин представляет не наличие устойчивого двухфазного потока газожидкостной смеси, а парогазовая смесь, степень воздействия которой определяется влагоемкостью (влагосодержанием) газа, содержащего в своем составе кислый газ. Считается, что при отсутствии жидкой влаги и относительной влажности менее 60%, процесс электрохимической коррозии практически не реализуется. При относительной влажности газа выше 60% возможна сорбция влаги поверхностью труб, обусловливающая протекание электрохимической коррозии.

Кроме того, влажность и наличие кислых газов способствуют гидратообразованию, осложняющему эксплуатацию скважин, приводящему к отказам в системе добычи и сбора. Расчетные температуры гидратообразования в термодинамических условиях скважин при прогнозном значении устьевого давления составляют 20-22°С. В целях предотвращения гидратообразования в выкидные линии низкодебитных скважин рекомендован ввод метанола.

Однако, метанол в присутствии воды участвует в коррозионном процессе, что может приводить к увеличению интенсивности коррозионного процесса. Вследствие сосуществования четырех фаз (причем в числе гидратообразователей в газе месторождения входят коррозионно-активные двуокись углерода в газообразном и растворенном видах и минерализованная вода), возникают потенциально активные коррозионные зоны. Насыщение водометанольной смеси кислыми газами облегчает протекание всех видов коррозии. Метанол вместе с добываемой продукцией и водой, выносимой из скважин, проходит по всей технологической цепочке. Применение этого реагента является фактором, повышающим коррозионную угрозу, как для скважин, так и для систем сбора и транспортирования неподготовленных газа и газожидкостной смеси.

Пластовые воды представляют собой рассолы хлоридно-кальциевого типа. Коррозионная активность пластовых вод обусловлена содержанием хлорид-, сульфат- и бикарбонат-ионов, превышающих предел для допустимой коррозии (в частности, по хлорид-ионам — в сотни раз, по содержанию сульфатов и ионов железа — в полтора раза). По компонентному составу и степени воздействия пластовые воды могут вызывать общую и локальную виды коррозии.

Рекомендуемый комплекс противокоррозионных мероприятий

Внутрискважинное оборудование

Материал для внутрискважинного оборудования по структурно-механическим свойствам, коррозионной стойкости должен соответствовать требованиям для работы в условиях кислых сред.

К применению могут быть рекомендованы обсадные и насосно-компрессорные горячекатаные или подвергнутые закалке и отпуску трубы из нелегированных или низколегированных сталей марок Д (С-75-11), Ј–55, К-55, N-80 последние — при ужесточении требований по механическим свойствам. Трубы из низколегированной стали марки SM-80SU обладают стойкостью к общей коррозии на уровне материала труб общего назначения, производимых по стандартам АНИ. При применении труб с содержанием хрома — 12-14 % и углерода — 0.18-0.22 % перечисленных групп прочности применение дополнительных защитных мероприятий не требуется. Использование труб группы прочности Д (С-75-11) требует применения комплекса защитных мероприятий.

При пакерной конструкции газовых скважин межтрубное пространство должно быть заполнено ингибированной или коррозионно-неактивной жидкостью, в частности, углеводородной, с утяжелителем.

Газопроводы и трубы нефтяного сортамента

Для газовых и газоконденсатных месторождений, содержащих кислые газы, применяются углеродистые и низколегированные трубы, которые должны отвечать ряду требований.

Трубы должны быть бесшовными. Металл труб должен иметь высокую однородность по механическим свойствам. Должна быть предусмотрена нормализация или закалка/отпуск поставляемых бесшовных труб/фитингов со специфическим ограничением содержания серы уровнем 0.015 %. Исполнение соединительных деталей трубопроводов и запорной арматуры должно быть из тех же сталей, что и трубопроводы, и поставляться в штампованном или штампосварном исполнении. Толщина стенки трубопровода, работающего в условиях контакта с влажным газожидкостным потоком, содержащим кислый компонент, должна быть рассчитана с допуском на общую коррозию. При этом должна предусматриваться термообработка готовых изделий (отпуск) и проверка качества основного металла (ультразвуковой контроль) и сварных заводских соединений.

Трубы должны подвергаться 100%-ному неразрушающему контролю. Для газопроводов применимы трубы, изготовленные из низколегированной, спокойной, полностью раскисленной стали, обработанной кальцием или с добавками редкоземельных

металлов. При этом эквивалент углерода не должен превышать 0.38 %. Прочностные показатели металла труб могут быть в пределах норм APJ5LX для трубопроводных сталей. Механические свойства металла труб нефтяного сортамента должны соответствовать группам прочности C-75, L-80, C-95 (по АНИ 5АС) с лимитированием верхнего предела текучести (σ п $\geq 0.8\sigma$ 0 2).

Выкидные линии скважин и основной коллектор могут быть изготовлены из низколегированной углеродистой стали, соответствующей стали 20 российского стандарта ТУ-8731-74. Эти технические условия удовлетворяют требованиям MR-01-75 стандарта NACE по сопротивляемости кислотной коррозии. Применение углеродистых сталей возможно для транспортирования осушенного газа, очищенного от конденсата. Шлейфы скважин, промысловые линии, подводящие продукцию к входным сепараторам, работают в условиях возможного выпадения водной фазы. Скорость коррозии, ожидаемая при превалирующих кислых условиях, зависит от содержания кислого газа и режима течения, содержания воды и степени ее конденсации на стальной поверхности.

Материал для изготовления коммуникаций и оборудования подготовки газа и конденсата должен обладать определенным комплексом свойств, отвечающим требованиям для работы в кислых средах.

Для защиты подземных трубопроводов от грунтовой коррозии должна применяться электрохимзащита (метод катодной поляризации) в сочетании с пассивной защитой (изоляционные покрытия). Рекомендуется антикоррозионное, трёхслойное, полиэтиленовое покрытие шлейфов по DIN30670-91.

Для защиты оборудования от атмосферной коррозии должны применяться защитные покрытия.

Проблемы коррозии в газовых и газоконденсатных средах могут быть связаны с конденсацией водной фазы. Следует обеспечить антикоррозионный режим эксплуатации (соответствующий расход флюида — скорость выше критической с целью выноса конденсированной воды и твердых частиц из ПЗП).

6.3 Рекомендации к системе сбора и промысловой подготовки продукции скважин

Система внутрипромыслового сбора и подготовки добываемой продукции месторождения предназначена для сбора, поскважинного замера и промыслового транспорта к объекту подготовки для доведения её до требуемой кондиции и сдачи потребителю.

При разработке технологии системы сбора и подготовки добываемой продукции проектных скважин в соответствии с [13] необходимо обеспечение следующих требований:

- герметичность сбора добываемой продукции;
- достоверный замер дебита продукции каждой скважины и возможность проведения газодинамических исследований;
- учет промысловой продукции месторождения в целом;
- надежность в эксплуатации всех технологических звеньев;
- автоматизация всех технологических процессов;
- качество подготовки товарной продукции в соответствии с существующими стандартами РК.

При выборе технологии внутрипромыслового сбора и подготовки газа к транспорту по вариантам разработки принято во внимание следующее:

- конфигурация месторождения;
- количество и схемы размещения добывающих скважин;
- проектные дебиты газа;
- физико-химический состав добываемой продукции;
- устьевые параметры добывающих скважин (давление, температура);
- динамика падения устьевого давления в процессе эксплуатации;
- наличие и удаленность источников электроэнергии в регионе;
- размещение месторождения Айракты относительно существующей магистральной газопроводной системы.

Существующее положение в системе сбора, транспорта и подготовки продукции

В настоящее время на месторождении Айракты обустроены следующие основные объекты и сооружения:

- Добывающие скважины;
- Шлейфы диаметром 80 мм от скважин до входного манифольда ГСП;
- Газосборный пункт (ГСП) месторождения Айракты;
- Межпромысловый газопровод Ø-219х7мм протяжённость 24 км до точки врезки в газопровод от месторождения Жаркум до УКПГ «Амангельды».

По состоянию на 01.07.2020 г. действующий фонд состоит из 8-ми скважин №№ 1Г, 6Г, 101, 102, 103, 104, 105, 106.

В основу системы сбора заложена лучевая схема с манифольдной станцией, расположенной непосредственно на ГСП.

На устьях скважин для предотвращения образования гидратов в выкидные линии вводится метанол. На выкидных линиях предусмотрены клапаны-отсекатели.

Приустьевые площадки имеют приямок и ограждения. На приустьевых площадках скважин на расстоянии 30 метров от устья установлены свечи сброса газа.

Подготовка газа и газового конденсата осуществляется на газосборном пункте (ГСП) месторождения Айракты.

Технологическая схема ГСП представлена на рисунке 6.3.1. В состав оборудования ГСП входят следующие технологические блоки:

- Входной манифольд (М-1), рассчитан на 11 подключений;
- Тестовый сепаратор (C-4), объёмом 0,8 м³, рассчитан на рабочее давление 8,2 МПа;
- Газовый сепаратор (С-1), ГСЦ-11-1200, объёмом 3,9 м³, рассчитан на рабочее давление 8,2 МПа;
- Поточные электроподогреватели (П-1,2) газа и газоконденсата;
- Блок дозирования реагента (БР-1) производительностью 2,5 л/час;
- Факельный сепаратор (СФ-1), объёмом 4,0 м³, рассчитан на рабочее давление 0,1 МПа;
- Дренажные подземные емкости (Д-1, Д-2, Д-3) объёмом 8,0 м³, рассчитаны на рабочее давление 0,07 МПа;
- Трехфазный сепаратор (С-2) объёмом 4,0 м³, рассчитан на рабочее давление 0,25 МПа;
- Сепаратор концевой ступени (С-3) объёмом 3,5 м³, рассчитан на рабочее давление 0,1 МПа;
- Резервуары хранения конденсата (P-1/2), V-25 м³, H-0,7 м, по периметру имеют железобетонное обвалование;
- Насосы для откачки конденсата (H-1, H-2) производительностью 12 м³/час;

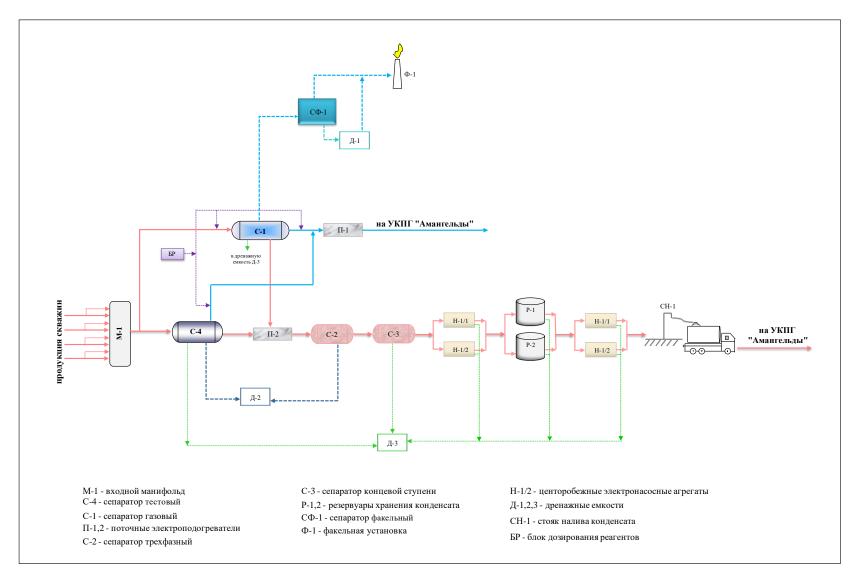


Рисунок 6.3.1 – Принципиальная схема ГСП месторождения Айракты

- Стояк налива конденсата в автоцистерны (СН-1);
- Факельная установка (Ф-1) УФМС-250, Ду-250 мм, H-17 м, имеет ограждение R-50 м, обвалование D-30 м.

Продукция добывающих скважин поступает во входной манифольд, оснащенный приборами измерения давления и температуры, оттуда - в сепаратор 1-й ступени сепарации С-1, предназначенный для отделения жидкой и газообразной фаз. Рабочее давление сепарации 8,0 МПа.

Жидкость, отводимая с 1-й ступени сепарации, объединившись с конденсатом, поступающим из тестового сепаратора C-4, направляется в поточный электроподогреватель П-2, где нагревается до температуры 50°C.

Смесь конденсата, воды и газа, разогретая для лучшего разделения и получения стабильного конденсата при нормальных условиях, поступает на 2-ю ступень сепарации в 3-х фазный сепаратор C-2. Рабочее давление сепарации 0,25 МПа.

Флюид разделяется на три потока: газ, конденсат и пластовую воду. Пластовая вода отводится в отдельную дренажную систему пластовой воды в Д-2.

Конденсат направляется на сепаратор концевой ступени сепарации С-3 для окончательного разгазирования и стабилизации, откуда откачивается в резервуары хранения Р-1/1,2 и вывозится автотранспортом на УКПГ Амангельды.

Газ, очищенный от жидкости, по трубопроводу Ø-219x7мм подается к точке врезки в межпромысловый газопровод «Айракты-Жаркум-Амангельды».

Окончательная подготовка газа месторождения Айракты осуществляется на действующей установке комплексной подготовки газа (УКПГ) месторождения Амангельды, производительностью 700 млн.м3/год.

<u>Рекомендации по системе внутрипромыслового сбора, промыслового транспорта и</u> подготовки газа

Данным Проектом по рекомендованному варианту предусмотрено:

- 2022 г. ввод из консервации 1-й скважины. Общий фонд добывающих скважин составит 9 единиц.
- 2023 г. ввод из бурения 1-й добывающей скважины, ввод из консервации 1-й скважины. Общий фонд добывающих скважин составит 11 единиц.
- 2024 г. ввод из бурения 1-й добывающей скважины. Общий фонд добывающих скважин составит 12 единиц.
- 2025 г. ввод из бурения 3-х добывающих скважин. Общий фонд добывающих скважин составит 15 единиц.

- 2026 г. ввод из бурения 3-х добывающих скважин. Общий фонд добывающих скважин составит 18 единиц.
- 2027 г. ввод из бурения 1-й добывающей скважины. Общий фонд добывающих скважин составит 19 единиц.

В настоящее время входной манифольд ГСП рассчитан на 11 подключений. К началу 2024 г. необходимо предусмотреть увеличение количества подключений от скважин.

При проектировании системы сбора продукции фонда скважин на месторождении для ее оптимизации и учета требований к ней необходимо выполнение следующих рекомендаций:

- каждая скважина от устья до ГСП должна иметь индивидуальный трубопровод;
- все наземные участки трубопроводов должны быть оснащены теплоизоляцией, система выкидных линий должна быть заглублена на глубину ниже глубины промерзания грунта.
- все технологические объекты должны быть оснащены системами автоматического регулирования, сигнализации по верхнему и нижнему уровню давления, системой аварийного останова, срабатывающего при нарушении технологического режима.

Шлейфы рекомендовано прокладывать подземно на глубине 1,4 м и классифицировать по ВСН 51-3-85 как газопроводы III класса, III категории.

Рекомендуется антикоррозионное, трёхслойное, полиэтиленовое покрытие шлейфов по DIN30670-91.

Рекомендуется предусмотреть на устье скважин возможность дозирования ингибитора гидратообразования.

Площадку ГСП предлагается оборудовать дополнительно площадками камер запуска скребка.

Газ, очищенный от жидкости, по трубопроводу Ø-219x7мм будет подаваться к точке врезки в межпромысловый газопровод «Айракты-Жаркум-Амангельды».

Окончательная подготовка газа месторождения Айракты будет осуществляться на действующей установке комплексной подготовки газа (УКПГ) месторождения Амангельды.

Вся система сбалансирована. Выходное давление с ГСП месторождения Айракты привязано к давлению блока входных манифольдов УКПГ. В связи со снижением давления во всей системе предусмотрена установка ДКС на месторождении Амангельды.

6.4 Рекомендации к разработке программы по переработке (утилизации) газа

В настоящее время ТОО «Амангельды Газ» имеет утверждённую «Программу развития переработки сырого газа месторождения Айракты на период 2020-2022 гг.» утвержденную Рабочей группой по выработке предложений по утверждению Программ развития переработки попутного газа, внесению изменений и дополнений в утвержденные Программы утилизации газа и Программы развития переработки газа МЭ РК (Протокол № 6.1 от 08 августа 2019 г.). Разработчик Программы – ТОО «Батыс Гео Консалт».

Объектов потребления сырого газа на промысле нет. Весь добываемый газ через узел замера по трубопроводу \acute{O} -219х7мм подается к точке врезки в межпромысловый газопровод «Айракты-Жаркум-Амангельды».

Основными источниками технологически неизбежного сжигания газа на месторождении Айракты, являются:

- Сжигание при подключении скважин или пуско-наладочных работах (ПНР).
- Сжигание газа на дежурных горелках и при постоянной продувке факельного коллектора.
- Сжигание газа при опорожнении и продувках газопроводов.

Объём технологически неизбежного сжигания газа на 2021 г., в соответствии с разрешением Министерства энергетики РК № KZ09VPC00013677 от 09.11.2020 г. составляет 0,713 млн.м³ при уровне добычи на 2021 г. 131,4 млн.м³. Таким образом, технологические потери газа при сборе, подготовке и транспортировке составят 0,54% от объёма добычи сырого газа.

Баланс расхода сырого газа месторождения Айракты на период 2021-2024 гг. представлен в таблице 6.4.1

Таблица 6.4.1 – Добыча и распределение газа на месторождении Айракты

Период разработки	Добыча газа, млн.м ³	Технологические потери газа при добыче, предварительной подготовке и транспортировке млн.м ³	Сдача газа потребителям, млн.м ³
2021	25,966	0,140	25,826
2022	29,304	0,158	29,146
2023	39,765	0,215	39,550
2024	50,623	0,273	50,350

7 РЕКОМЕНДАЦИИ К КОНСТРУКЦИЯМ СКВАЖИН И ПРОИЗВОДСТВУ БУРОВЫХ РАБОТ, МЕТОДАМ ВСКРЫТИЯ ПЛАСТОВ И ОСВОЕНИЯ СКВАЖИН

7.1 Рекомендации к конструкциям скважин и производству буровых работ

Конструкция скважин по надежности, технологичности и безопасности должна обеспечить: условия безопасного ведения работ без аварий и осложнений на всех этапах строительства и эксплуатации скважины; условия охраны недр и окружающей среды, в первую очередь за счет прочности и долговечности крепи скважины, герметичности обсадных колон и перекрываемых ими кольцевых пространств, а также изоляции флюидосодержащих горизонтов друг от друга, от проницаемых пород и дневной поверхности.

Глубина спуска обсадных колонн определяется геологическими условиями, в которых бурится скважина. Фактическая глубина башмака обсадной колонны различна для разных скважин - она зависит от залегания продуктивного пласта. Однако для большинства скважин глубина будет определяться одним и тем же фактором - свойствами встретившегося разреза.

Конструкция скважин проектируется в соответствии с действующими инструктивно-методическими документами.

На месторождении Айракты планируется бурение 8 вертикальных скважин (№№ 108, 109, 111, 112, 113, 114, 115, 116) и 1 горизонтальная скважина №110. Также планируется расконсервации 2 скважин: №№ 4Г и 8Г

В соответствии с предполагаемым геологическим разрезом, проектной глубиной и с учётом возможных осложнений предусматривалась следующие конструкции скважины:

Таблица 7.1.1 – Проектная конструкция для скважин №№ 108, 109, 111, 112, 113, 114, 115, 116

Наименование обсадной		рвал вки, м	Диам	етр, мм	Рас-е от устья до	Причина спуска колонны
колонн	верх	низ	долота	колонны	уровня цементам	причина спуска колонны
1	2	3	4	5	6	7
Направление	0	30	490	426	0	Цементируется до устья. Устанавливаются с целью предотвращения размыва устья при бурении под кондуктор и возврата восходящего потока бурового раствора из скважины в циркуляционную систему.
Кондуктор	0	350	393,7	323,9	0	Цементируется до устья, спускается с целью перекрытия верхних неустойчивых и поглощающих горизонтов. Устье скважины после спуска кондуктора оборудуется противовыбросовым оборудованием.
Техническая колонна	0	1200	295,3	244,5	0	Цементируется до устья, спускается с целью перекрытия поглощающих горизонтов, предотвращения гидроразрыва пород в процессе ликвидации возможных газоводопроявлений при бурении под эксплуатационную колонну и установки ПВО.
Эксплуатационная колонна	0	2250	215,9	168,3	0	Спускается и цементируется до устья, с целью испытания продуктивных горизонтов

Таблица 7.1.2 – Проектная конструкция скважина № 110 (горизонтальная)

Наименование		гервал 10вки, м	Диам	етр, мм	Рас-е от устья до	Причина спуска колонны
обсадной колонн	верх	низ	долота	колонны	уровня цементам	причина спуска колониві
Направление	0	30	490	426		Цементируется до устья. Устанавливают- ся с целью предотвращения размыва устья при бурении под кондуктор и возврата восходящего потока бурового раствора из скважины в циркуляционную систему.
Кондуктор	0	350	393,7	323,9	0	Цементируется до устья, спускается с целью перекрытия верхних неустойчивых и поглощающих горизонтов. Устье скважины после спуска кондуктора оборудуется противовыбросовым оборудованием.
Техническая колонна	0	1200	295,3	244,5	0	Цементируется до устья, спускается с целью перекрытия поглощающих горизонтов, предотвращения гидроразрыва пород в процессе ликвидации возможных газоводопроявлений при бурении под эксплуатационную колонну и установки ПВО.
Эксплуатационная колонна	0	2250/2900	215,9	168,3	0	Спускается и цементируется до устья, с целью испытания продуктивных горизонтов

Примечание: 2250 - глубина скважины по вертикали; 2900 - глубина скважины по стволу. Длина горизонтального участка скважины - 500м, общее отклонение забоя скважины от вертикали - 650м.

При выполнении ИТП, по усмотрению заказчика, допускается изменения проектного профиля скважины.

Фактические конструкции скважин, пробуренные в отчетном периоде, с учетом рекомендации к методам вскрытия продуктивных пластов и освоения скважин, представлены ранее выполненных и защищённых проектах.

Фактические конструкции расконсервируемых скважин №№ 4Г и 8Г представлены в таблице 7.1.3

Таблица 7.1.3 – Фактические конструкции расконсервируемых скважин №№4Г и 8Г

№ скважин	Наименование колонн	Диаметр колонны, мм	Глубина спуска колонны, м	Высота подъема цемента от устья, м
1	2	4	5	6
	Кондуктор	298,5	304	0
4Γ	Тех.колонна	219,1	1947	40
	Экс.колонна	146	2292,24	340
	Направление	426	34,46	
0Г	Кондуктор	323,9	352,03	данные
8Γ	Тех.колонна	244,5	1199,66	отсутствует
	Экс.колонна	168,3	2297,04	

7.2 Требования к методам вскрытия продуктивных пластов и освоения скважин

С целью предотвращения возможных осложнений в процессе бурения, первичное вскрытие продуктивных пластов предполагается осуществить на химически обработанном полимерным растворе, строго соблюдая его проектные параметры. При этом депрессия на пласт не должна превышать 5% пластового давления. С этой целью, вскрытие горизонта производить только после полного выравнивания параметров бурового раствора. В противном случае, неизбежно поглощение бурового раствора без выхода циркуляции, особенно в интервале с низким градиентом пластового давления.

Основные требования, предъявляемые, к жидкостям для вторичного вскрытия продуктивных пластов являются:

- создание противодавления на пласт, достаточное для предупреждения нефтегазопроявлений после вторичного вскрытия перфорацией, не вызывая при этом поглощений этих жидкостей пластом;
- недопущение кольматации перфорационных каналов и околоствольной зоны пласта (ОЗП).

Промысловой практикой и научно-исследовательскими работами подтверждено, что дебит скважины будет больше в том случае, если при проведении перфорационных работ применять чистые жидкости (техническая или минерализованная вода, нефть) и если будет обеспечена промывка перфорационных каналов обратным потоком пластового флюида из

пласта в скважину. А это достигается при перфорации с перепадом давления, направленного в сторону ствола скважины, а не в пласт.

Для снижения вредного воздействия, оказываемого буровым раствором на продуктивный пласт во время бурения, и исключения вредного воздействия перфорационной жидкости во время перфорации при репрессии, рекомендуется перфорировать продуктивные пласты, при депрессии на пласт, в среде чистой жидкости перфораторами, спускаемыми на насосно-компрессорных трубах.

Поэтому в качестве промывочной и перфорационной жидкости рекомендуются:

Направление – бурение вести с использованием технической воды.

Кондуктор – бурение под колонну, для недопущения осложнений и перекрытия зон поглощений, водопроявлений и газопроявлений техногенного характера следует производить заранее приготовленным глинистого раствором, стабилизированным реагентами для уменьшения водоотдачи бурового раствора, глинизации стенок скважины и предупреждения проникновения фильтрата в пласт. В случае возникновения поглощений бурового раствора в альб-сеноманских отложениях использовать 2-3 вида наполнителей с различными размерами частиц (зернистые, волокнистые, чешуйчатые) в количестве 2 % к объему бурового раствора. Для поддержания щелочности бурового раствора на уровне рН=9,0–10,0 вводить каустическую соду (NaOH). По окончании бурения ствол скважины необходимо промыть в течение двух циклов с целью дополнительной очистки ствола скважины от выбуренной породы.

Эксплуатационная колонна - бурение данного интервала, с целью сохранения коллекторских характеристик (пористость, проницаемость) продуктивного пласта и предупреждения негативных явлений, производить с использованием ингибированного полимерно-хлоркалиевого бурового раствора с низким содержанием твердой фазы с ведением дополнительных полимерных реагентов для усиления ингибирующих свойств.

С целью максимального сохранения коллекторских свойств продуктивных пластов в качестве утяжеляющей и временно закупоривающей добавки использовать кислоторастворимый карбонат кальция. В целом система бурового раствора, предусмотренная программой, должна полностью отвечать основным требованиям, предъявляемым к нему при вскрытии продуктивных пластов.

Перед вызовом притока пластового флюида производится замена бурового раствора в скважине на перфорационную жидкость.

В качестве перфорационной среды необходимо применять жидкость с плотностью, соответствующей требованиям на строительство скважин. Перфорационную жидкость рекомендуется закачать в зону перфорации объекта плюс 100-150 м выше верхней границы зоны перфорации. Оставшийся ствол скважины заполнить буровым раствором, использованным при вскрытии продуктивных пластов. Перфорационную жидкость представляющую собой водный раствор солей, очищенных от механических примесей, необходимо обработать неионогенными добавками ПАВ для снижения поверхностного натяжения и капиллярного давления в порах пласта.

8 КОНТРОЛЬ ЗА РАЗРАБОТКОЙ ПЛАСТОВ, СОСТОЯНИЕМ И ЭКСПЛУАТАЦИЕЙ СКВАЖИН И СКВАЖИННОГО ОБОРУДОВАНИЯ

В соответствии с «Едиными правилами по рациональному и комплексному использованию недр» контроль за разработкой месторождения проводится по нескольким направлениям: промыслово-геофизические исследования, газогидрохимические, газодинамические исследования и контроль эксплуатации скважин и скважинного оборудования.

8.1 Комплекс промыслово-геофизических исследований скважин

Геофизические исследования по контролю за разработкой в условиях месторождения должны быть направлены на решение следующих задач:

- уточнение геологического строения, неоднородностей пласта;
- уточнение петрофизических характеристик пород коллекторов;
- контроль за выработкой пластов: выделения работающих толщин, оценки профиля и состава притока, определения текущего характера насыщения пластов, определение положения текущего ГВК;
- контроль технического состояния скважин: герметичность колонны, состояние цементного кольца, наличия заколонных перетоков и причин обводнения.

Задача уточнения геологического строения, неоднородности пласта, уточнения фильтрационных характеристик, текущей насыщенности решается исследованиями в открытом стволе комплексом методов ГИС и продолжением изучения фильтрационноемкостных характеристик на керне. В соответствии с рекомендуемым вариантом разработки на месторождении предполагается бурение девяти добывающих скважин и одной оценочной скважины.

Целью бурения оценочной скважины является прослеживание продуктивных горизонтов по площади и разрезу, уточнение положение ГВК и получение необходимых данных для перевода запасов газа из категории C_2 в категорию C_1 . В случае обнаружения новых залежей УВС или перспективных объектов на получение газа в результате бурения оценочной скважины, предусмотреть их испытание с целью оценки и доизучения месторождения, провести отбор и исследование керна.

Учитывая сложное геологическое строение, неоднозначность геофизических хахарактеристик при выделении коллекторов, в новых скважинах, не зависимо от категории эксплуатационная или оценочная, рекомендуется проведение в открытом стволе следующего комплекса методов ГИС:

- общие исследования, включающие следующие методы: стандартный каротаж (прямой и обращённый градиент зонды, потенциал зонд, ПС), боковой каротаж (БК), кавернометрию (ДС), естественную радиоактивность (ГК) и вторичное гамма-излучение (НГК), акустический каротаж (АК), должны проводится по всему стволу скважины;
- детальные исследования выполняются в интервале продуктивных отложений; принимая во внимание блоковое строение месторождения, сложные геолого-технические условия (повышенная температура, давление), низкие коллекторские свойства, сложности с выделением коллекторов и определением характера насыщения, рекомендуется в дополнение к выше перечисленным включить в комплекс следующие методы: многозондовый боковой каротаж (БК), микробоковой (МБК), однозондовый ИК кривая проводимости, микрозондирование (МКЗ), компенсированный нейтронный каротаж по тепловым нейтронам (КНК), гамма-гамма плотностной (ГГКП), акустический (АК) каротажи, спектральный гамма-каротаж (СГК) в отдельных скважинах.

Геофизические исследования должны проводится при заполнении скважины раствором, на котором вскрывался разрез.

Этапность, интервальность и очерёдность проведения ГИС определяются в проектах на строительство скважин.

Рекомендуемый комплекс при хорошем качестве записи геофизических параметров, позволяет выделить коллекторы, определить пористость, коэффициент газонасыщенности.

Геофизические исследования по контролю за разработкой в обсаженной скважине

Основными задачами ГИС по контролю в период разработки газовых залежей месторождения Айракты являются:

- определение текущей газонасыщенности пластов-коллекторов;
- изучение профилей притока и состава пластового флюида, поступающего в скважину;
 - выделение работающих толщин;
 - определение положения ГВК;
 - контроль технического состояния скважин и скважинного оборудования.

Геофизические исследования по выделению работающих толщин, определению профиля и состава притока на месторождении проведены во всех 11 скважинах добывающего фонда. Комплекс методов включал следующие измерительные датчики: ГК, локатор муфт (ЛМ), термометр (ТМ), манометр (МН), термоиндикация притока (СТД), резистивиметр (РИС), влагомер (ВЛ), плюс модуль механического расходомера (РГД).

Замеры проводились при вводе новых скважин в эксплуатацию, вывода скважин из консервации, а также до и после проведения различных геолого-технических мероприятий (дострелы, перестрелы, ГРП). Всего выполнено 28 замеров. Результаты проведенных исследований представлены в приложении 33. По выполненным исследованиям коэффициент охвата работающими толщинами (К_раб) изменяется по залежи А от 0,23 до 0,77 в среднем составляет 0,52; по залежи Б диапазон изменения и среднее значение коэффициента охвата работающими толщинами существенно ниже - от отсутствия притока до 0,71, среднее значение 0,35. Уменьшение коэфициента охвата работающими толщинами перфорированных интервалов залежи Б, возможно связано с состоянием призабойной зоны и некоторым ухудшением коллекторских свойств (залежь А: Кп_ср=0,13д.ед, Кпр_ср=1,98мД; залежь Б: Кп_ср=0,12д.ед, Кпр_ср=1,90мД). На рис.8.1 показаны распределения пористости работающих и не работающих толщин.

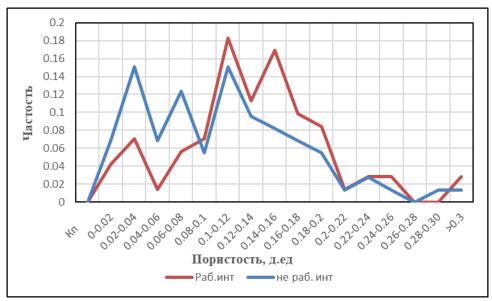


Рисунок 8.1 – Распределение пористости работающих и не работающих перфорированных толщин залежей **A** и **Б**

Получение притока пластового флюида в скважину против интервалов с низкой пористостью и в некоторых скважинах Кох работающими толщинами более эффективной толщины коллектора, вероятно связано с перетоками из интервалов коллекторов и поступлением пластового флюида через перфорационные отверствия против интервалов неколлекторов.

Выполняемый в скважинах месторождения комплекс геофизических методов по контролю эффективен и рекомендуется для дальнейшего использования.

Текущее насыщение. Для контроля за положением уровня газоводояного контакта и оценки текущей нефтенасыщенности коллекторов, а также возможно пропущенных продуктивных коллекторов на месторождении в настоящее время выполнено 11 замеров ИННК в 8 скважинах (приложение 34).

В условиях месторождения Айракты геофизические исследования по определению текущей газонасыщенности методом ИННК выполняются обычно с включением в комплекс с определением профиля притока.

Исследования ИННК необходимо выполнять в скважинах, где продуктивные пласты не вскрыты перфорацией. Достоверность определения текущей нефтенасыщенности и ГВК против перфорированных пластов-коллекторов снижается изза искажающего влияния приствольной зоны пласта на показания зондов ИННК.

В заключение необходимо отметить. Для получения информации, наиболее достоверно отражающей работу пласта, необходимо соблюдать правила компоновки скважинного оборудования: башмак НКТ должен находиться выше верхних перфорационных отверстий более 10 м, расстояние от нижних отверстий до искусственного забоя (зумпф) не менее 10 м.

При проведении исследований должна быть предоставлена вся информация, связанная с компоновкой подземного оборудования и выполненными на скважине работами, которая может оказать помощь при решении поставленных задач-целей исследований. Примеры такой информации приведены ниже:

- время и виды ремонтных работ в скважине (смена подземного оборудования, КРС и ПРС, изоляционные работы, дополнительная перфорация и реперфорация, интенсификация с целью увеличения добычи и т.д.);
 - данные о дебитах, обводнённости;
 - глубина положения башмака НКТ;
- пластовое/забойное давление, продуктивность, депрессия, если проводились гидродинамические исследования скважины.

Техническое состояние скважин.

Неотъемлемой частью контроля за разработкой месторождения является контроль за техническим состоянием скважин, в задачу которого входит выявление нарушений герметичности цементного кольца и обсадной колонны. Первоначальные исследования проводятся непосредственно после выхода скважины из бурения, спуска обсадной колонны и цементажа для определения высоты подъема цемента и сцепления цементного камня с

колонной. Данные этих исследований используются также в качестве фоновых измерений для изучения динамики образования дефектов в процессе эксплуатации скважины.

Периодические исследования в процессе эксплуатации скважин по мере необходимости.

Качество цементирования колонн контролируется выполнением акустической цементометрии (АКЦ).

Задачи контроля технического состояния скважины могут решаться комплексом методов приток-состав-флюида, описанный выше, а также, дополненные в случае необходимости АКЦ, скважинной гамма-дефектомерией-толщинометрией (СГДТ) или электромагнитной дефектоскопией (ЭМДС).

За весь период разработки месторождения Айракты геофизические исследования по контролю технического состояния обсаженных скважин выполнен по 11 скважинам.

Начальный замер качества цементажа после обсадки эксплуатационной колонной (ЭК) был выполнен в 7 новых (101-107) пробуренных скважинах. Кроме скважины 102, качество цементирования э/колонны новых скважин неудовлетворительное — в интервале продуктивной толщи более 31%, контакт цемента с колонной характеризуется как отсутствует и плохой. В скважине 105 контакт цемента в 63% длины колонны отсутствует. Данных о дозаливке цемента и исследований после повторного цементажа скважин к отчету не предоставлено.

Заключение на месторождений Айракты промыслово-геофизические исследования по контролю за разработкой проводятся в объёме, позволяющем своевременно оптимизировать процесс разработки. В частности, за последние три года сервисными компаниями ТОО «ГеоМунайРесурс», ТОО «УзеньГеоСервис» выполнено более 29 исследований, направленных на определение профиля и состава притока, технического состояния эксплуатационных скважин и текущего насыщения пластов.

8.2 Контроль за состоянием и эксплуатацией скважин и скважинного оборудования

На месторождении осуществляется ежесуточный контроль за эксплуатацией скважин, проводятся замеры дебита газа, газового конденсата, трубного, затрубного и межколонных давлений, проводится ежесуточный контроль за значениями устьевой температуры с регистрацией в специальном журнале.

Ведётся контроль за значениями межколонного давления, при обнаружении проводятся работы по ликвидации причин его возникновения.

Для контроля технического состояния наземного оборудования регулярно проводится визуальный осмотр и при необходимости профилактический ремонт (смазка запорных узлов и механизмов).

Данные систематического контроля режимов эксплуатации скважин, проводимых на них ремонтов, изменений режимов должны фиксироваться в специальных журналах и рапортах. По этим данным устанавливается необходимый (оптимальный) режим эксплуатируемой скважины, а также скважин, находящихся в аналогичных условиях.

На основании систематического изучения эксплуатации каждой скважины составляются графики проведения профилактических работ, своевременное выполнение которых обеспечивает нормальную работу скважин.

При накоплении газа (увеличении давления) в межколонном пространстве за короткий период времени, необходимо приостановить эксплуатацию (заглушить скважину) и устранить источник поступления газа.

Для контроля технического состояния наземного оборудования необходимо регулярно проводить: визуальный осмотр и профилактический ремонт (смазка запорных устройств и механизмов).

Контроль за внутрискважинным оборудованием проводится на основании наблюдений за трубным и затрубным давлениями, изменения соотношений которых в большую или меньшую сторону характеризуют состояние подземной части скважины. Проводимые мероприятия по определению технического состояния наземного и подземного оборудования, являются обязательными для выявления и своевременного устранения неисправностей наземного и подземного оборудования.

8.3 Газодинамические и газоконденсатные исследования

К газодинамическим методам исследований относятся методы определения свойств и характеристик продуктивных пластов и скважин.

Замер забойных параметров производится для оценки фактического режима эксплуатации скважины. При регистрации параметров с заданным по глубине или при использовании датчика положения и скорости определяется равномерность распределения фаз в стволе скважины. В результате замера получаем данные такие как: забойное давление; забойная температура.

Газодинамические исследования делаются на стационарных (методом режимных исследований с замером давления глубинным манометром на забое) и нестационарных режимах фильтрации (методом восстановления давления (КВД) и обязательно проводятся

при вводе каждой новой скважины в эксплуатацию, и далее по мере необходимости, но не реже одного раза в год.

При исследовании методом установившихся отборов, при стационарных режимах фильтрации, необходима полная стабилизация устьевых, забойных давлений и дебита на каждом режиме. В зависимости от производительности скважины и создаваемой депрессии исследования следует проводить на 3-5 режимах прямым и обратным ходом с повторением 2-4 режимов на обратном ходе.

Для оценки истинного скин-фактора производится регистрация кривой спада забойных давлений на каждом режиме. Для определения параметров пласта производится регистрация кривой восстановления давления (КВД).

За анализируемый период газодинамические исследования выполнены во всех добывающих скважинах №№1Г, 6Г, 101, 102, 103, 104, 105, 106, с периодичностью один раз в год.

Газогидрохимические исследования включают в себя:

- 1. Лабораторные газоконденсатные исследования (разовые исследования),
- 2.Отбор и исследование устьевых проб газа с периодичностью 2 раза в год,
- 3.Отбор устьевых проб конденсата на определение физико-химических свойств с периодичностью 1 раз в год,
- 4. Отбор устьевых проб конденсата на определение содержание вод 1 раза в квартал, а в обводнившихся скважинах 1 раз в месяц,
 - 5. Химический анализ попутно-добываемой воды при ежемесячном отборе.

Газоконденсатные исследования проводились на месторождении с периодичностью один раз в год в скважинах №№1Г, 6Г, 103, 104, 105, 107. В результате исследований определены: давление начала и максимальной конденсации, компонентный состав пластового газа, коэффициент сверхсжимаемости пластового газа, плотность стабильного конденсата, коэффициент конденсатоотдачи при режиме эксплуатации на истощение.

При изучении химического состава газа, конденсата и воды необходимо определять наличие и содержание в них компонентов, оказывающих вредное влияние на оборудование при добыче, подготовке, транспортировке (коррозионную агрессивность к металлу и цементу, выпадение солей, механических примесей и др.). При анализе проб конденсата обратить внимание на содержание углеводородного и фракционного состава.

В таблице 8.3.1 представлен комплекс исследований по контролю за разработкой.

Таблица 8.3.1 – Комплекс исследований по контролю за разработкой

Таблица 8.3.1 – Комплекс исследований по Виды исследований	Категории и виды скважин	Пормолимироти							
	исследования в открытом ство	Периодичность							
•	Геолого-технические исследования (ГТИ								
газ.каротаж)		3 скв.							
Отбор керна	Во вновь пробуренных	3 скв.* C ₁ s - 10-15 м C ₁ t - 10-15 м							
Исследование образцов стандартным и специальным комплексом лабораторных методов		*C ₁ s - 15-20 обр. *C ₁ t - 15-20 обр.							
Комплекс ГИС в открытом стволе (КС, ПС, Дс, ГК, КНК, АК, ГГКП, БК, ИК, МБК, МКЗ, ТМ, РИ)	Во вновь пробуренных	Разовые исследования при окончании бурения всех проектных скважин							
Геофизические ис	следования в обсаженных скваг	жинах							
Оценка текущей газонасыщенности коллекторов, контроль за перемещением ГВК (ИННК/ИНГК)	Разовые исследования при вводе в эксплуатацию (как фоновый замер)	При переходе на вышележащий объект разработки							
В добывающих скважинах выделение работающих толщин, состава поступающего в скважину флюида, заколонных перетоков (ГК, ЛМ, ТМ, БМ, ВЛ, РИ, ТА и/или РМ)	В добывающих скважинах при эксплуатации	-не менее 30% от действующего фонда; -при изменении технологических показателей скважины; до и после проведения ГТМ по интенсификации добычи							
Техническое состояние эксплуатационных скважин: во всех вновь пробуренных (АКЦ, ТМ, ГК, ЛМ)	Во всех вновь пробуренных	Разовые исследования после окончания строительства скважины В процессе эксплуатации по							
в действующих скважинах (ГК, ЛМ, ТМ, БМ, ВЛ, РИ, ТА и/или РМ, ЭМДС)	В действующих скважинах	мере необходимости							
Газогидр	охимические исследования								
Лабораторные газоконденсатные исследования	По новым скважинам (с учетом графика бурения и ввода в эксплуатацию)	Разовые исследования							
Последования	По эксплуатационным скважинам	Разовые исследования							
Отбор устьевых проб газа	Эксплуатационный фонд скважин	2 раза в год							
Отбор устьевых проб конденсата на определение физико-химических свойств	По эксплуатационным скважинам	1 раз в год							
Отбор устьевых проб конденсата на определение содержания воды	По эксплуатационным добывающим скважинам	1 раз в квартал; в обводнившихся скважинах – 1 раз в месяц							
Отбор проб и химический анализ попутно-добываемой воды	По эксплуатационным скважинам	1 раз в месяц							
	инамические исследования	I a							
Замер дебитов газа	Действующий фонд скважин	1 раз в месяц							
Исследования методом установившихся	По новым скважинам	Разовое исследование							
отборов (МУО). Исследования методом восстановления	в добывающих скважинах По новым скважинам	1 раз в 2 года Разовое исследование							
давления (КВД, УКВД, МВУ).	в добывающих скважинах	1 раз в 2 года							
Определение забойного и пластового	По новым скважинам	Разовое исследование							
давления.	по действующим скважинам	1 раз в квартал.							
Определение пластовой температуры.	По новым скважинам	Разовое исследование							
* HOLL HOUSE		•							

^{*} при признаках продуктивны

9 ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ

В разделе представлены результаты оценки воздействия на окружающую среду при реализации «Проекта разработки месторождения Айракты». Для более углубленной и комплексной оценки потенциального воздействия на природную среду производственных работ разработаны отдельные самостоятельные материалы «Оценки воздействия на окружающую среду к «Проекту разработки месторождения Айракты». В рамках материалов ОВОС проведено изучение современного состояния природной среды, определение характера, степени и масштаба воздействия работ на экологически чувствительную зону района проектируемых работ.

Результаты комплексной оценки потенциального воздействия на природную среду представлены в таблице 9.1.

Таблица 9.1 – Результаты комплексной оценки потенциального воздействия на природную среду

Компоненты	Факторы воздействия	Мероприятия по снижению	Катег	Категория		
окружающей среды	на окружающую среду	отрицательного техногенного воздействия на окружающую среду	Пространственный масштаб	Временной масштаб	Интенсивность воздействия	значимости, балл
1	2	3	4	5	6	7
Атмосфера	Работа основного и вспомогательного оборудования. Шумовые воздействия.	Профилактика и контроль оборудования. Использование противовыбросового оборудования. Контроль за состоянием атмосферного воздуха.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Умеренное воздействие (изменения в природной среде превышают пределы природной изменчивости, но природная среда полностью самовосстанавливается)	Воздействие средней значимости
			2	4	3	24
Грунтовые и подземные воды	Возможное аварийное загрязнение вод.	Размещение объекта с учетом инженерно-геологических условий. Применение конструктивных решений, исключающих подпор грунтовых вод или уменьшение инфильтрационного питания.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Незначительное воздействие (изменения в природной среде не превышают существующие пределы природной изменчивости)	Воздействие средней значимости
		Оперативная ликвидация аварийных разливов.	2	4	2	16
Недра	I Виут п иппастовые	Изоляция водоносных горизонтов. Герметичность подземного и наземного оборудования. Тщательное планирование размещения различных сооружений.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Сильное воздействие (компонент природной среды теряет способность к самовосстановлению)	Воздействие высокой значимости
			2	4	4	32
Ландшафты	Механические нарушения. Возникновение техногенных форм рельефа. Оврагообразование и эрозия.	Оптимизация размещения площадок и прочих объектов. Рекультивация земель. Запрет на движение транспорта вне дорог.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Слабое воздействие (94% от земельного отвода временно выведено вследствие расположения объектов, с последующей рекультивацией в том числе и биологической)	Воздействие средней значимости

Продолжение таблицы 9.1

1	2	2	1	-	-	7
1	2	3	4	5	6	7
Почвы	Нарушение и загрязнение почвенно- растительного слоя.	Создание системы контроля за состоянием почв. Профилактика и ликвидация аварийных разливов. Запрет на движение транспорта вне дорог.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Слабое воздействие (механическими воздействиями нарушены гумусо-аккумулятивный горизонт, нарушено его сложение и структура, уплотнение иллювиального горизонта, активизируются эрозионные процессы, без образования новых форм, загрязнение почв нефтяными углеводородами и/или другими веществами вызывает изменение физико-химических свойств с сохранением направленности основных почвообразовательных процессов и режимов, приобретенные свойства не доминируют над природными, сохраняется способность почв к самовосстановлению)	Воздействие средней значимости
			2	4	2	16

Продолжение таблицы 9.1

1	2	3	4	5	6	7
Растительность	Уничтожение травяного покрова. Химическое, тепловое и электромагнитное воздействие. Иссушение.	Противопожарные мероприятия.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Умеренное воздействие (Выведение земель из оборота вследствие расположения постоянных объектов, площадок хранения отходов и т.д. с последующей рекультивацией без биологической стадии)	Воздействие средней значимости
			2	4	3	24
Животный мир	Незначительное уменьшение мест обитания. Фактор беспокойства. Шум от работающих агрегатов.	Строительство специальных ограждений. Обустройство мест на размещение отходов. Создание маркировок на объектах и сооружениях.	Местное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта)	Многолетнее воздействие (постоянное)	Умеренное воздействие (Выведение земель из оборота вследствие расположения постоянных объектов, площадок хранения отходов и т.д. с последующей рекультивацией без биологической стадии)	Воздействие средней значимости
			2	4	3	24

Таким образом, влияние проектируемых работ на окружающую среду согласно интегральной оценки равной 152 (среднее значение 27,7 баллов).

Анализируя степень вышеперечисленных критериев на каждый компонент окружающей среды по каждому из вариантов разработки можно сказать, что ожидаемое экологическое воздействие на окружающую среду на контрактной территории месторождений допустимо принять как:

- Ограниченное воздействие (площадь воздействия до 10 км2 для площадных объектов или на удалении до 1 км от линейного объекта);
- Умеренное воздействие (изменения среды превышают пределы природной изменчивости, приводят к нарушению отдельных компонентов природной среды. Природная среда сохраняет способность к самовосстановлению поврежденных элементов);
 - Многолетнее воздействие (постоянное).

Таким образом, интегральная оценка воздействия разработки месторождения Айракты оценивается как воздействие средней значимости.

10 МЕРОПРИЯТИЯ ПО ДОРАЗВЕДКЕ МЕСТОРОЖДЕНИЯ

По состоянию на 01.07.2020 г. был выполнен «Пересчет запасов газа, конденсата и попутных компонентов по нижневизейскому горизонту (C_1v_1), оценка ресурсов углеводородов по 3-м горизонтам (C_1 sr, C_1v_2 , C_1 t) месторождения Айракты» (Протокол № 2349-21-У от 11.10.2021 г.).

В результате подсчета в целом по месторождению запасы газа составили по категориям:

пластового

 $C_1 - 5393$ млн.м³ геологические, в том числе извлекаемые 2627 млн.м³,

 $C_2 - 948$ млн.м³ геологические, в том числе извлекаемые 356 млн.м³.

конденсата

 $C_1 - 194$ тыс.т геологические, в том числе извлекаемые 91 тыс.т,

 $C_2 - 34$ тыс.т геологические, в том числе извлекаемые 11 тыс.т.

Запасы *сухого газа* составляют по категории: C_1 - 5338 млн.м³; C_2 - 939 млн.м³.

Протоколом ГКЗ РК (Протокол № 2349-21-У от 11.10.2021 г.) Недропользователям было рекомендовано:

- -продолжить уточнение структурно-тектонической модели месторождения;
- -предусмотреть отбор проб пластовой воды;
- -продолжить проведение специальных исследований на керне;
- -продолжить проведение гидродинамических исследований и замеры пластового давления;
 - -продолжить уточнение ГВК;
 - -доизучить запасы пермских горизонтов;
 - -предусмотреть интенсификационные по увеличению длины трещин;
 - -доразведать запасы, оцененные по категории С2 с целью перевода в С1.

Запасы газа, оцененные по категории C_2 составили всего 15% от подсчитанных по месторождению. В целях дальнейшего доизучения месторождения недропользователю рекомендуется продолжить работы по доизучению запасов, оцененных по категории C_2 бурением оценочной скважины N 9.

Скважину №9 предлагаем пробурить в 2027 году во II блоке на северо-восток 850 м от скважины №8. Целью бурения является прослеживание продуктивных горизонтов по площади и разрезу, уточнение положение ГВК и получение необходимых данных для перевода запасов газа из категории С₂ в категорию С₁.

Проектные координаты оценочной скважины №9: X-12 694 375,40, У-4 888 657,27 (С.Ш. 44° 6' 24,96" и В.Д. 71° 25' 39,89").

Недропользователю по результатам бурения оценочной скважины №9 предлагается рассмотреть возможность бурения еще одной оценочной скважины с целью доразведки блока I нижневизейской залежи С_{1V1}-A, с извлекаемыми запасами 98 млн.м³.

Рекомендуем доразведать блок III нижневизейских залежей с извлекаемыми запасами 26 млн.м³ путем зарезки бокового ствола в направлении северо-востока.

В случае обнаружения новых залежей УВС или перспективных объектов на получение газа в результате бурения оценочной скважины, предусмотреть их испытание с целью оценки и доизучения месторождения, провести отбор и исследование керна.

По данным ГИС в скважине 103 выделен газонасыщенный коллектор в интервале 827-830,7 м (-448,0-451,7 м), 832,9-838,5 м (-453,9-459,5 м) и 846,2-851,1 м (-467,2-472,1 м) с эффективными толщинами 3,7м, 5,6м и 4,9м соответсвенно. Кп и Кг в этих интервалах колеблется в пределах 0,10-0,13д.ед. и 0,60-0,66д.ед. соответсвенно. Таким образом, согласно рекомендации ГКЗ РК с целью доизучение продуктивности пермыской залежи предлагаем в интервалах 827-838м провести опробования. При положительном результате опробования рекомендуем отобрать устьевые и поверхностные пробы газа.

В нижневизейских залежах, в которых сосредоточены 3,8 млн.м³ извлекаемых запасов гелия, рекомендуется отобрать глубинные пробы газа для достоверности информации о гелионосности.

11 ОПЫТНО-ПРОМЫШЛЕННЫЕ ИСПЫТАНИЯ НОВЫХ ТЕХНОЛОГИЙ И ТЕХНИЧЕСКИХ РЕШЕНИЙ

Третий вариант настоящего проекта предусматривает проведение опытнопромысловых испытаний технологии бурения горизонтальной скважины в нижневизейском продуктивном горизонте (C1v1) с использованием МГРП (многостадийного гидроразрыва пласта).

Применение данной технологии на месторождении Айракты было рекомендовано компанией «Schlumberger» на основе анализа обновленной геологической модели после получения новых данных.

Горизонтальное бурение с МГРП возможно будет целесообразным на месторождении Айракты – горизонтальный ствол в длине 500 м будет пересекать и хорошие, и плохие по ФЕС (фильтрационные емкостные свойства) участки, тем самым повышения шанс удачной эксплуатации скважины.

В разделе 7.1 приведена проектная конструкция скважины 110 (горизонтальная).

На рисунке 11.1 представлен предлагаемый профили бурения горизонтальной скважины 110.

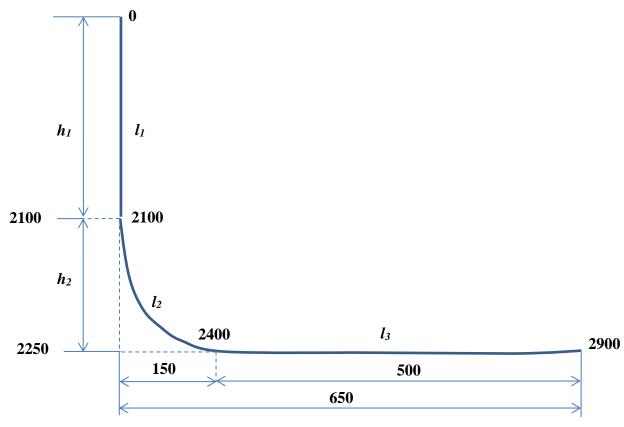


Рисунок 11.1 – Предлагаемый профиль бурения горизонтальной скважины 110

Где: $i_{\alpha} = 3.0$ град/10м — темп набора кривизны;

 $h_1 = l_1 = 2100 \text{ м}$ - вертикальный участок;

 $l_2 = 300 \text{ м}$ - участок набора кривизны;

 $l_3 = 500 \text{ м}$ - горизонтальный участок.

Азимут ствола скважины- 347°.

Количество муфты ГРП- 5 единиц, с расчетом через каждые 100 м горизонтального ствола (уточняется по данным ГИС). Предусматривается проппантовое ГРП. Объём проппанта определяется согласно дизайну ГРП.

Решение по выбору буровой компании и компании-исполнителя проппантного МГРП будет принято непосредственно Недропользователем.

12 РАСЧЕТ СУММЫ ОБЕСПЕЧЕНИЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ НЕДРОПОЛЬЗОВАНИЯ

После окончания разработки месторождения углеводородного сырья на его территории остается ряд стационарных объектов, дальнейшая эксплуатация которых не планируется. В действующем законодательстве предусмотрены особенности ликвидации последствий операций по недропользованию, с учетом их видов, которые определяются Особенной частью Кодекса «О Недрах и недропользовании» Республики Казахстан.

Ликвидацией последствий недропользования является комплекс мероприятий, проводимых с целью приведения производственных объектов и земельных участков в состояние, обеспечивающее безопасность жизни и здоровья населения, охраны окружающей среды.

Кроме того, финансирование ликвидации последствий недропользования проводится за счет недропользователя или лица, непосредственно являющегося недропользователем до прекращения соответствующей лицензии или контракта на недропользование. Исполнение обязательства по ликвидации может обеспечиваться гарантией, залогом банковского вклада и (или) страхованием.

К отношениям по разрешениям и лицензиям на недропользование по углеводородам, выданным, а также по контрактам на недропользование по углеводородам, заключенным до введения в действие Кодекса Республики Казахстан «О недрах и недропользовании» (с изменениями и дополнениями от 24.05.2018г.) по истечении тридцати шести месяцев со дня введения в действие настоящего Кодекса, согласно пунктам 8 и 9 статьи 126:

п.8 «Банковский вклад, являющийся предметом залога, обеспечивающего исполнение обязательств по ликвидации последствий добычи, формируется посредством взноса денег в размере суммы, определенной в проекте разработки месторождения пропорционально планируемым объемам добычи углеводородов»;

Для определения размера ликвидационных расходов, в целях планирования ежегодных отчислений в ликвидационный фонд были рассчитаны:

- затраты на ликвидацию скважин;
- расчет затрат на ликвидацию объектов нефтепромыслового обустройства;
- расчет затрат на рекультивацию земли;
- платежи за выбросы в атмосферу, образующиеся в процессе демонтажных работ, размещение отходов производства.

Таким образом, общие ликвидационные затраты по месторождению составят суммарные затраты на ликвидацию скважин, затраты на демонтажные работы объектов обустройства промысла, рекультивацию земли, платежи за выбросы от демонтажных работ и размещение отходов.

Согласно Программе ликвидации последствий деятельности недропользования общая сметная стоимость отчислений в Ликвидационный фонд по рекомендуемому 3 варианту разработки по текущим ценам на 2021 год составляет **258 868,37** тыс.тенге.(без НДС). Ликвидационный фонд аккумулируется на специальном депозитном счете банка Республики Казахстан.

На депозитный счет предприятия на конец 2020 года перечислено **11 839,15 тыс. тенге.**

Таким образом, от запланированных затрат на ликвидацию месторождения с учетом прочих расходов осталось перечислить на депозитный счет **247 029,37 т.тенге.**

Согласно главы 12 «Методических рекомендаций по составлению проектов разработки газовых и газоконденсатных месторождений», в рамках проекта разработки необходимо определить удельный норматив отчислений в тенге на 1 млн.м³ добытого газа

Расчет удельного норматива отчислений в ликвидационный фонд для обеспечения ликвидации последствий недропользования приведен в таблице 12.1.

Таблица 12.1 – Расчет удельного норматива отчислений в ликвидационный фонд

Показатели	Ед. измерения	Базовая величина
Всего базовая величина отчислений в Ликвидационный фонд, в ценах 2021года (за минусом возвратных сумм), без учета НДС	тыс. тенге	249 932,37
Затраты за выбросы вредных веществ при ликвидации объектов обустройства	тыс. тенге	8 936,00
Всего Ликвидационный фонд в базовых ценах 2021 года, без НДС	тыс. тенге	258 868,37
Курс доллара на момент расчета	тенге/\$	430
Всего Ликвидационный фонд в базовых ценах 2021 года, без НДС	тыс.\$	602,02
Проектируемая добыча газа за проектный период	млн.м ³	746,34
Сумма фактических перечислений в фонд ликвидации	млн.м ³	11 839,00
Остаточная стоимость Ликвид фонда	доли единицы	247 029,37
Базовый норматив отчислений в Фонд ликвидации - в ценах без учета	тыс тенге/1 млн. м ³ . запасов	330,99
инфляции при неизменном курсе доллара	$/ M^3$.	0,77

Согласно п.9 ст.126 Кодекса «О недрах и недропользовании» сумма обеспечения исполнения обязательства по ликвидации последствий добычи определяется в проекте разработки месторождения на основе рыночной стоимости работ по ликвидации последствий добычи углеводородов и подлежит пересчету не реже одного раза в три года в рамках анализа разработки.

В таблице 12.2 представлены проектируемые отчисления в ликвидационный фонд по годам по месторождению Айракты по рекомендуемому 3 варианту. По остальным вариантам расчеты представлены в Приложениях.

Таблица 12.2 – Расчет стоимости платежей в ликвидационный фонд по 3 варианту, тенге

Годы	Добыча сырого газа, млн.м ³	Фактические перечисления сумм на депозитный счет	Отчисления в ликвид.фонд
		в .тыс.тенге	в .тыс.тенге
1	2	3	4
2018		1 202,31	
2019		7 578,30	
2020		3 058,54	
2021	25,97		8 617,54
2022	29,30		9 725,49
2023	39,77		13 197,15
2024	50,62		16 800,57
2025	63,09		20 938,34
2026	94,40		31 329,16
2027	103,95		34 499,32
2028	91,00		30 200,25
2029	82,41		27 350,88
2030	79,86		26 504,36
2031	83,97		27 866,32
Итого 2021-2031	744,34	11 839,15	247 029,37

СПИСОК ЛИТЕРАТУРЫ

- 1. Мамбетов У. М., Филипьев Г. П. и др. Отчет по подсчету запасов природных газов месторождений Амангельды и Айракты в Муюнкумской впадине Чу-Сарысуйской депрессии по работам за 1971-81 г.г. ЮКНЭ, ст. Тогуз, 1981 г.
- 2. Отчет по пересчету запасов газа нижневизейского продуктивного горизонта месторождения Амангельды Жамбылской области, 1996 г.
- 3. Отчет по подсчету запасов газа, конденсата и попутных компонентов месторождения Амангельды (Жамбылская область Республики Казахстан) по состоянию на 01.01.2006 г., г.Актау, АО «НИПИнефтегаз».
- 4. «Проект оценочных работ месторождении Айракты», ТОО «Даке Барлау», г. Тараз, 2011 г.
- 5. «Дополнение к проекту оценочных работ месторождении Айракты», ТОО «НПЦ», 2014 г.
- 6. «Пересчет запасов газа, конденсата и попутных компонентов нижневизейского (C1v1) яруса месторождения Айракты», ТОО «МКБ-АЛ», 2015 г.
- 7. «Проект опытно-промышленной эксплуатации месторождения Айракты», ТОО «Проектный институт «OPTIMUM», 2016 г.
- 8. «Авторский надзор за реализацией проекта опытно-промышленной эксплуатации месторождения Айракты», ТОО «Проектный институт «OPTIMUM», 2018 г.
- 9. «Анализ разработки месторождения Айракты», ТОО «Проектный институт «ОРТІМИМ», 2019 г.
- 10. «Авторский надзор за реализацией анализа разработки месторождения Айракты», ТОО «Проектный институт «ОРТІМИМ», 2020 г.
- 11. «Пересчет запасов газа, конденсата и попутных компонентов по нижневизейскому горизонту (C1v1), оценка ресурсов углеводородов по 3-м горизонтам (C1sr, C1v2, C1t) месторождения Айракты, Жамбылской области Республики Казахстан», ТОО «Проектный институт «ОРТІМИМ», 2021 г.
- 12. Кодекс Республики Казахстан о Недрах и Недропользовании от 27.12.2017 года № 125-VI с изменениями и дополнениями от 24.05.2018 г. №156-VI.
- 13. «Единые правила по рациональному и комплексному использованию недр» утвержден приказом Министра энергетики Республики Казахстан от 15 июня 2018 года № 239.
- 14. «Методические рекомендации по составлению проектов разработки газовых и газоконденсатных месторождений» утвержден приказом Министра энергетики Республики Казахстан от 24 августа 2018 года № 329.

- 15. РД 39-0147103-362-9-86 Руководство по применению антикоррозионных мероприятий при составлении проектов обустройства и реконструкции объектов нефтяных месторождений.
- 16. РД 153-39.0-072-01 «Техническая инструкция по проведению геофизических исследований и работ на кабеле в нефтяных и газовых скважинах», Москва, 2001 г.
- 17. Методические рекомендации по подсчёту геологических запасов нефти и газа объёмным методом Москва-Тверь. 2003 г.
- 18. Ширковский А.И. Разработка и эксплуатация газовых и газоконденсатных месторождений. Москва, Недра, 1979 г.
- 19. Б.В Дегтярев «Борьба с гидратообразованиями при эксплуатации газовых скважин в северных районах». «Недра», Москва, 1976 г.
- 20. Экологический кодекс Республики Казахстан, от 2 января 2021 г., № 400-VI Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п.
- 21. «Методические указания при разработке газовых и газоконденсатных месторождений», согласовано приказом Комитета по государственному контролю за чрезвычайными ситуациями и промышленной безопасностью Министерства по чрезвычайным ситуациям РК от 20 августа 2008 г., №33.
- 22. «Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин», Зотова Г.А., Алиева З.С.

ТАБЛИЧНЫЕ ПРИЛОЖЕНИЯ

Приложение 1 – Расчет дохода от продажи продукции по 1 варианту, в тыс. тенге

Прило	жени	ie I – Pa	счет дохода	а от продажи і	продукции	по 1 вариант	у, в тыс. те	енге	
		Добыч		реализации продукции	Цены ре	ализации	Доход от	реализации	
Годы	Доб ыча газа	a		Газоконденс	Товарный газ	Газоконден сат(средний +легкий	Товарный газ	Газоконденса т(средний+ле гкий	Итого доходов
			13	дистиллят)	143	дистиллят)	15	дистиллят)	
	млн . м ³	тыс. тонн	млн. м ³	млн. м ³	тенге / тыс.м ³	тенге / тыс.т.	тыс. тенге	тыс. тенге	тыс. тенге
1	2	3	4	5	6	7	8	9	10
2021	26,0	0,26	25,9	0,26	39 000	116 000	1 008 625	30 422	1 039 047
2022	22,0	0,22	21,9	0,22	39 000	116 000	854 170	25 763	879 933
2023	26,2	0,26	26,1	0,26	39 000	116 000	1 018 412	30 717	1 049 129
2024	21,3	0,22	21,2	0,22	39 000	116 000	828 333	24 984	853 317
2025	22,1	0,22	22,0	0,22	39 000	116 000	856 632	25 837	882 470
2026	19,5	0,20	19,4	0,20	39 000	116 000	756 091	22 805	778 896
2027	19,3	0,19	19,2	0,19	39 585	117 740	760 785	22 947	783 732
2028	18,3	0,18	18,2	0,18	40 179	119 506	731 411	22 061	753 472
2029	17,1	0,17	17,1	0,17	40 781	121 299	696 174	20 998	717 172
2030	16,3	0,16	16,3	0,16	41 393	123 118	673 497	20 314	693 811
2031	15,9	0,16	15,9	0,16	42 014	124 965	666 805	20 112	686 917
2032	15,3	0,15	15,2	0,15	42 644	126 839	648 206	19 551	667 757
		0,15	14,6	0,15	43 284	128 742	632 634	19 081	651 715
2034	14,1	0,14	14,0	0,14	43 933	130 673	617 054	18 611	635 666
2035	14,0	0,14	14,0	0,14	44 592	132 633	622 066	18 763	640 829
2036	13,9	0,14	13,8	0,14	45 261	134 623	625 741	18 873	644 614
2037	13,8	0,14	13,7	0,14	45 940	136 642	630 878	19 028	649 906
2038	13,7	0,14	13,6	0,14	46 629	138 692	634 633	19 142	653 775
	13,6	0,14	13,5	0,14	47 329	140 772	639 893	19 300	659 193
2040	13,5	0,14	13,4	0,14	48 038	142 884	643 730	19 416	663 146
2041	13,4	0,13	13,3	0,13	48 759	145 027	649 116	19 578	668 694
2042	13,2	0,13	13,2	0,13	49 490	147 202	653 034	19 697	672 731
2043	13,2	0,13	13,1	0,13	50 233	149 410	658 547	19 863	678 410
2044	13,0	0,13	13,0	0,13	50 986	151 652	662 548	19 984	682 531
2045	13,0	0,13	12,9	0,13	51 751	153 926	668 191	20 154	688 345
2046	12,8	0,13	12,8	0,13	52 527	156 235	672 274	20 277	692 551
2047		0,13	12,7	0,13	53 315	158 579	678 050	20 451	698 501
2048	12,7	0,13	12,6	0,13	54 115	160 957	683 892	20 627	704 519
2049	12,6	0,13	12,5	0,13	54 927	163 372	688 119	20 755	708 874
2050	12,5	0,13	12,5	0,13	55 751	165 822	694 097	20 935	715 032
2051	12,4	0,13	12,4	0,13	56 587	168 310	700 142	21 117	721 259
2052	12,3	0,12	12,3	0,12	57 436	170 834	704 517	21 249	725 767
Итого									
: 2021-	504, 3	5,09	502,3	5,09			22 658 300	683 412	23 341 712
2052									
2053	12.2	0,12	12,2	0,12	58 297	173 397	710 703	21 436	732 139
2054		0,12	12,1	0,12	59 172	175 998	715 163	21 571	736 733
2034	14,1	0,12	12,1	0,12	37 174	110 770	/13/103	21 3/1	130 133

Продо.	лжен	ие прил	ожения 1						
1	2	3	4	5	6	7	8	9	10
2055	12,1	0,12	12,0	0,12	60 059	178 638	721 492	21 761	743 253
2056	10,9	0,11	10,8	0,11	60 960	181 317	660 179	19 912	680 091
2057	10,8	0,11	10,8	0,11	61 875	184 037	666 241	20 095	686 336
2058	10,7	0,11	10,7	0,11	62 803	186 798	672 378	20 280	692 658
2059	10,7	0,11	10,6	0,11	63 745	189 600	676 871	20 416	697 286
2060	9,5	0,10	9,5	0,10	64 701	192 444	614 597	18 537	633 135
2061	9,5	0,10	9,4	0,10	65 671	195 330	620 444	18 714	639 158
2062	9,4	0,10	9,4	0,10	66 656	198 260	626 364	18 892	645 257
2063	9,4	0,09	9,3	0,09	67 656	201 234	632 355	19 073	651 428
2064	8,3	0,08	8,3	0,08	68 671	204 253	566 678	17 092	583 770
2065	8,2	0,08	8,2	0,08	69 701	207 316	570 844	17 218	588 062
2066	8,2	0,08	8,1	0,08	70 747	210 426	575 026	17 344	592 370
2067	8,1	0,08	8,1	0,08	71 808	213 583	580 688	17 515	598 203
2068	7,0	0,07	7,0	0,07	72 885	216 786	510 429	15 395	525 825
2069	7,0	0,07	7,0	0,07	73 978	220 038	515 513	15 549	531 062
2070	7,0	0,07	6,9	0,07	75 088	223 339	520 665	15 704	536 369
2071	6,9	0,07	6,9	0,07	76 214	226 689	525 882	15 861	541 743
2072	5,9	0,06	5,9	0,06	77 358	230 089	452 849	13 659	466 508
2073	5,8	0,06	5,8	0,06	78 518	233 540	457 374	13 795	471 169
2074	5,8	0,06	5,8	0,06	79 696	237 043	461 960	13 933	475 893
2075	5,8	0,06	5,8	0,06	80 891	240 599	466 606	14 074	480 680
2076	5,8	0,06	5,7	0,06	82 104	244 208	471 314	14 216	485 530
2077	5,7	0,06	5,7	0,06	83 336	247 871	476 084	14 359	490 443
2078	5,7	0,06	5,7	0,06	84 586	251 589	480 916	14 505	495 422
2079	5,7	0,06	5,7	0,06	85 855	255 363	485 813	14 653	500 465
2080	5,7	0,06	5,6	0,06	87 143	259 194	490 773	14 803	505 576
Итого 2021- 2080	734, 3	7,4	731,3	7,4			38 584 502	1 163 773	39 748 275

Приложение 2 – Расчет дохода от продажи продукции по 2 варианту, в тыс. тенге

IIpinion		1 40 101		реализации	1	о 2 варианту,	D TDICT TOIL		
	Добы	Добыча		продукции	Цены р	с еализации	Доход от	реализации	Итого
_	ча	конденс			Товарны	Газоконденс	Товарны	Газоконденс	
Годы	газа	ата	й газ	ат	й газ	ат	й газ	ат	
	млн.	тыс.	млн. м ³	млн. м ³	тенге /	тенге / тыс.т.	тыс.	тыс. тенге	тыс.
1	м ³	тонн 3	4	5	тыс.м ³	7	тенге 8	9	тенге 10
2021	26,0	0,26	25,9	0,26	39 000	116 000	1 008 625	30 422	1 039 047
2022	29,3	0,30	29,2	0,30	39 000	116 000	1 138 303	34 333	1 172 636
2023	39,8	0,40	39,6	0,40	39 000	116 000	1 544 638	46 589	1 591 227
2024	63,4	0,64	63,1	0,64	39 000	116 000	2 462 627	74 277	2 536 904
2025	71,5	0,72	71,2	0,72	39 000	116 000	2 777 514	83 774	2 861 289
2026	66,3	0,67	66,0	0,67	39 000	116 000	2 574 644	77 656	2 652 300
2027	64,1	0,65	63,9	0,65	39 585	117 740	2 528 075	76 251	2 604 326
2028	61,9	0,62	61,6	0,62	40 179	119 506	2 475 716	74 672	2 550 388
2029	59,9	0,60	59,7	0,60	40 781	121 299	2 432 626	73 372	2 505 998
2030	58,0	0,59	57,8	0,59	41 393	123 118	2 391 527	72 132	2 463 659
2031	56,2	0,57	56,0	0,57	42 014	124 965	2 352 262	70 948	2 423 210
2032	54,5	0,55	54,3	0,55	42 644	126 839	2 314 692	69 815	2 384 507
2033	53,0	0,54	52,8	0,54	43 284	128 742	2 285 569	68 937	2 354 506
2034	51,4	0,52	51,2	0,52	43 933	130 673	2 250 899	67 891	2 318 790
2035	50,1	0,51	49,9	0,51	44 592	132 633	2 224 379	67 091	2 291 470
2036	48,8	0,49 0,48	48,6 47,2	0,49 0,48	45 261 45 940	134 623 136 642	2 198 902 2 167 883	66 323 65 387	2 265 225 2 233 270
2037	47,4	0,48	46,0	0,48	46 629	138 692	2 144 611	64 685	2 209 296
2039	45,0	0,47	44,8	0,47	47 329	140 772	2 122 220	64 010	2 186 230
2040	43,8	0,44	43,6	0,44	48 038	140 772	2 094 237	63 166	2 157 403
2041	42,7	0,43	42,5	0,43	48 759	145 027	2 073 730	62 547	2 136 277
2042	41,7	0,42	41,5	0,42	49 490	147 202	2 053 975	61 951	2 115 926
2043	40,7	0,41	40,5	0,41	50 233	149 410	2 034 942	61 377	2 096 319
2044	39,6	0,40	39,4	0,40	50 986	151 652	2 010 230	60 632	2 070 862
2045	38,7	0,39	38,5	0,39	51 751	153 926	1 992 742	60 104	2 052 846
2046	37,8	0,38	37,6	0,38	52 527	156 235	1 975 871	59 596	2 035 467
2047	36,9	0,37	36,8	0,37	53 315	158 579	1 959 596	59 105	2 018 701
2048	36,1	0,36	35,9	0,36	54 115	160 957	1 943 892	58 631	2 002 523
2049	35,3	0,36	35,1	0,36	54 927	163 372	1 928 734	58 174	1 986 908
2050	34,5	0,35	34,3	0,35	55 751		1 914 101		1 971 834
2051	33,7	0,34	33,6	0,34	56 587	168 310	1 899 970	57 306	1 957 277
2052	30,2	0,30	30,1	0,30	57 436	170 834	1 726 838	52 084	1 778 923
2053	29,6	0,30	29,5	0,30	58 297	173 397	1 717 754	51 810	1 769 564
2054	29,0	0,29	28,9	0,29	59 172	175 998	1 708 850	51 542	1 760 392
2055	28,4	0,29	28,3 25,2	0,29	60 059	178 638	1 700 251	51 282	1 751 533
2056 2057	25,3 24,8	0,26 0,25	23,2	0,26 0,25	60 960 61 875	181 317 184 037	1 536 073 1 531 291	46 331 46 186	1 582 404 1 577 477
2057	24,8	0,25	24,7	0,25	62 803	186 798	1 531 291	46 205	1 578 122
2059	24,1	0,23	24,0	0,23	63 745	189 600	1 527 355	46 068	1 573 422
2060	21,2	0,21	21,2	0,21	64 701	192 444	1 368 705	41 282	1 409 988
2061	20,9	0,21	20,8	0,21	65 671	195 330	1 367 025	41 232	1 408 257
2062	20,6	0,21	20,6	0,21	66 656	198 260	1 370 251	41 329	1 411 580
2063	20,3	0,21	20,2	0,21	67 656	201 234	1 368 666	41 281	1 409 947
2064	17,8	0,18	17,7	0,18	68 671	204 253	1 217 623	36 726	1 254 348
2065	17,5	0,18	17,5	0,18	69 701	207 316	1 218 222	36 744	1 254 965
2066	17,4	0,18	17,3	0,18	70 747	210 426	1 223 135	36 892	1 260 027
2067	17,1	0,17	17,0	0,17	71 808	213 583	1 223 760	36 911	1 260 670
2068	14,7	0,15	14,7	0,15	72 885	216 786	1 069 176	32 248	1 101 424
2069	14,6	0,15	14,5	0,15	73 978	220 038	1 075 222	32 430	1 107 652
2070	14,5	0,15	14,4	0,15	75 088	223 339	1 081 220	32 611	1 113 831

Продола	жение	приложе	ния 2						
1	2	3	4	5	6	7	8	9	10
2071	14,3	0,14	14,3	0,14	76 214	226 689	1 087 264	32 794	1 120 057
Итого 2021- 2071	1 880,8	19,00	1 873,3	19,00			92 928 329	2 802 874	95 731 202
2072	12,1	0,12	12,1	0,12	77 358	230 089	934 387	28 183	962 570
2073	12,0	0,12	12,0	0,12	78 518	233 540	940 836	28 377	969 213
2074	11,9	0,12	11,9	0,12	79 696	237 043	947 260	28 571	975 831
2075	11,8	0,12	11,8	0,12	80 891	240 599	953 741	28 766	982 508
2076	11,7	0,12	11,7	0,12	82 104	244 208	960 274	28 963	989 237
2077	11,6	0,12	11,6	0,12	83 336	247 871	966 858	29 162	996 020
2078	11,6	0,12	11,5	0,12	84 586	251 589	973 496	29 362	1 002 858
2079	11,5	0,12	11,4	0,12	85 855	255 363	980 186	29 564	1 009 750
2080	11,4	0,11	11,3	0,11	87 143	259 194	986 929	29 767	1 016 696
Итого 2021- 2080	1 986,5	20,1	1 978,6	20,1	739 486,2	2 199 497,5	101 572 295	3 063 590	104 635 885

Приложение 3 – Капитальные вложения 1 варианта, тыс.тенге Стоимо Стоимо сть ед-Распределение капитальных вложений по годам строительства Наименование работ, объектов Ед. ЦЫ всего и затрат изм. 206 206 207 8 9 0 2071 2072тыс.\$ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 3 4 5 Строительство скважин (подземное строительство) Строительство 0,0 эксплуатационных газовых 750,0 скважин 7 298,7 14 608,7 0 2 Расконсервация скважин 2,0 3 Выбытие скважин 5,0 10 750,0 53 750,0 68 359 Итого строительство скважин 0 0 0 42 420 0 0 0 49 626 0 0 0 58 0 0 0 67 917 0 0 0 Итого строительство скважин с учетом инфляции **П**Надземное строительство Обустройство промысла Проведение ГГРП (гидро разрыв тыс.те 111 55 55 758 758 55 900,0 пласта) 516,0 нге Испытание серуховского тыс.те 6 880.0 | 6 880 | 0 6 880.0 горизонта нге II Внешние коммуникации и затраты тыс.те 26 053,7 26 053,7 1 Проектные работы нге Оплата сел.хоз и лесной потери 139 139 139 гыс.те 2 при добыче углеводородного 672,6 672,6 нге сырья на м/р Айракты Итого надземное строительство Итого надземное строительство с учетом инфляции Всего со строительством скважин Всего со строительством скважин в ценах с учетом инфляции

Приложение 4 – Капитальные вложения 2 варианта, тыс.тенге

			мо Стоим																																									
Наименование работ,	Ед.	Ко сть е															Pacı	преде	лени	е ка	пита.	тьны	іх вл	ожен	ий по	о года	м ст	роит	ельст	ва														
объектов и затрат	изм.		ен тыс.те	_	2022	2023	2024	2025	202	202	2022	0320	3203	2032	0320	3203	20320	03203	32042	20420	04204	2042	0420	4204	2042	04205	2051	2052	05205	2055	2052	0520	205	9206	5206	206	2063	0620	6206	2067	2062 8	0620	7207	1 2072- 2080
1 2	3	4 5	6	7	8	9	10	11	12 1	3 14	15	16 1	7 18	19 2	20 21	22	23 2	4 25	26	27 2	28 29	30 3	31 32	2 33	34 3	35 36	37	38 3	39 40	41	42	13 44	4 45	46	47	48	49 5	50 5	1 52	53	54 5	55 56	5 57	58
I Строительство скважин (подземное строительство)																																												
1 Ввод добывающих вертикальных газовых скважин	скв.	1,0 681 7	50 681 75	0	0	681 750	0	0	0 (0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0 (0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0
Ввод добывающих 2 горизонтальных газовых скважин	скв.	1,0 1 36 500		0	0	0	1 363 500																																					
3 Расконсервация скважин	скв.	2,0 7 29	9 14 597	0	7 299	7 299	0	0	0 (0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0 (0 0	0	0 0	0	0	0 0		0	0 0	0	0	0 0	T T	_	0		0 (0 0	0	0	0	0 0		0
4 Выбытие скважин	скв.	6,0 10 7	64 500	0	0	0	0	0	0 (0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 0	0	0 0	0	0	0 0	10 750	0	0 0	10 750	0	0 0) 10 750	0	0	0 7	10 750	0 0	0	10 750	0	0 0	10 750	0
Итого строительство скважин			2 124 347	0	7 299	689 049	1 363 500	0	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	10 750	0	0 0	10 750	0	0 0	$\begin{vmatrix} 10 \\ 750 \end{vmatrix}$	$ 0\rangle$	0	0 7	10 750	0 0	0	10 750	0	0 0	10 750	0
Итого строительство скважин с учетом инфляции			2 711 815	0	7 894	775 086	1 595 102	0	0 (0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 0	0	0 0	0	0	0 0	36 261	0	0 0	42 420	0	0 0	626	0	0	0	58 055	0 0	0	67 917	0	0 0	79 453	0
ПНадземное строительство																																												
Обустройство промысла																																												
1 Обустройство м/р	тыс.те нге	2,0 113 0	90 226 18	0	0	113 090	113 090	0	0																																			
2 Проведение ГГРП (гидро разрыв пласта)	тыс.те нге	11, 55 90	00 613 33	8 0	167 274	167 274	111 516	111 516	0 5	55 58 0	0	0 0	0	0	0 0	0	0 (0 0	0	0 (0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0
Испытание серуховского горизонта	тыс.те нге	6 88	0 6 880	6 880	0	0	0	0	0 (0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0
II Внешние коммуникации и I затраты																																												
1 Проектные работы	тыс.те нге	26 0:	54 26 054	26 054	0	0	0	0	0 (0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0 (0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0
Оплата сел.хоз и лесной потери 2 при добыче углеводородного сырья на м/р Айракты	тыс.те нге	139 6	73 139 67	3 139 673	0	0	0			0 0	0	0 0	0	0	0 0	0	0 (0 0	0	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0
Итого надземное строительство			1 012 124		167 274	280 364	224 606	111 516	0 575	55 58 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0 (0 0	0	0	0	0 0	0	0
Итого надземное строительство с учетом инфляции			1 147 613	179 511	180 924	315 371	262 757	135 676	0 3	73 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0
Всего со строительством скважин			3 136 472		174 573	969 413	1 588 106	111 516	0 5	55 58 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	10 750	0	0 0	10 750	0	0 0	10 750	0	0	0 7	10 750	0 0	0	10 750	0	0 0	10 750	0
Всего со строительством скважин в ценах с учетом инфляции			3 859 427	179		1 090 457		135 676	0 3		0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	36 261	0	0 0	42 420	0	0 0	49 626		0		58 055	0 0	0	67 917	0	0 0	79 453	0

Приложени	ие 5 – Расчет	эксплуата	ционных	затрат, включа	емых в себестоимості	ь продукци	и в 1 варі	ианте, тыс. тенге								
				Расходы, отно	осимые на себестоимо	сть продун	сции			Налоги	и и платежи					
Годы	Материаль- ные затраты	Затраты на текущий ремонт	Топливо и ГСМ	Энергоресурсы	услуги производственного характера (сервисных организаций.)	Затраты по охране труда и ООС	ФОТ ОПП	Прочие производ- ственные расходы	ниокр	Налоги, отчисляемые от ФОТ ППП	Налог на имущество	ндпи	Итого прямые расходы	Амортизационные отчисления включаемые в себестоимость	Итого расходы относимые на себестоимость продукции с амортизацией	Производственная себестоимость млн.м3 газа
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2021	3 846	21 296	617	7 201	88 435	648	62 150	2 296	9 564	11 670	102 106	5 043	314 871	68 201	383 072	14 753
2022	3 387	24 916	543	6 342	77 888	673	72 716	2 686	10 390	13 654	103 010	4 271	320 477	59 217	379 695	17 267
2023	4 200	28 792	673	7 864	96 579	700	84 027	3 104	8 799	15 778	103 074	5 092	358 683	71 431	430 115	16 405
2024	3 553	29 944	570	6 652	81 696	728	87 388	3 228	10 491	16 409	102 631	4 142	347 431	58 590	406 021	19 040
2025	3 821	31 142	613	7 154	87 866	758	90 884	3 357	8 533	17 065	101 737	4 283	357 213	60 610	417 822	18 946
2026	3 508	32 387	562	6 567	80 656	788	94 519	3 491	8 825	17 748	100 881	3 780	353 713	53 440	407 153	20 917
2027	3 616	33 683	580	6 771	83 155	819	98 300	3 631	7 789	18 458	100 083	3 804	360 689	52 973	413 662	21 437
2028	3 562	35 030	571	6 670	81 914	852	102 232	3 776	7 837	19 196	99 310	3 657	364 608	50 154	414 762	22 693
2029	3 474	36 431	557	6 505	79 888	886	106 321	3 927	7 535	19 964	98 581	3 481	367 550	47 010	414 561	24 188
2030	3 444	37 889	552	6 448	79 189	922	110 574	4 084	7 172	20 763	97 892	3 367	372 296	44 792	417 088	25 532
2031 2032	3 494 3 480	39 404 40 980	560 558	6 541	80 333 80 016	959 997	114 997 119 597	4 248 4 418	6 938 6 869	21 593 22 457	97 229 96 588	3 334 3 241	379 630 385 715	43 684 41 826	423 314 427 541	26 565
2032	3 480	40 980	558	6 515 6 515	80 017	1 037	124 381	4 594	6 678	23 355	95 972	3 163	392 370	40 208	432 578	28 015 29 478
2033	3 478	44 324	558	6 511	79 969	1 037	129 356	4 778	6 517	24 289	95 381	3 085	399 325	38 629	437 954	31 057
2035	3 592	46 097	576	6 726	82 604	1 121	134 530	4 969	6 357	25 261	94 804	3 110	409 748	38 365	448 113	31 994
2036	3 703	47 941	594	6 932	85 139	1 166	139 912	5 168	6 408	26 271	94 231	3 129	420 593	38 019	458 613	33 040
2037	3 825	49 859	613	7 161	87 952	1 213	145 508	5 375	6 446	27 322	93 662	3 154	432 091	37 764	469 854	34 078
2038	3 942	51 853	632	7 381	90 655	1 261	151 328	5 590	6 499	28 415	93 098	3 173	443 829	37 425	481 254	35 218
2039	4 073	53 927	653	7 626	93 657	1 312	157 382	5 813	6 538	29 552	92 539	3 199	456 271	37 176	493 447	36 351
2040	4 198	56 084	673	7 861	96 540	1 364	163 677	6 046	6 592	30 734	91 984	3 219	468 971	36 844	505 815	37 596
2041	4 338	58 328	695	8 122	99 745	1 419	170 224	6 288	6 631	31 963	91 433	3 246	482 431	36 602	519 033	38 832
2042	4 471	60 661	717	8 372	102 819	1 476	177 033	6 539	6 687	33 241	90 886	3 265	496 168	36 277	532 444	40 190
2043	4 620	63 087	741	8 650	106 241	1 535	184 114	6 801	6 727	34 571	90 344	3 293	510 724	36 041	546 765	41 539
2044	4 763	65 611	764	8 917	109 519	1 596	191 479	7 073	6 784	35 954	89 806	3 313	525 578	35 722	561 300	43 022
2045	4 922	68 235	789	9 215	113 172	1 660	199 138	7 356	6 825	37 392	89 272	3 341	541 317	35 493	576 809	44 495
2046	5 074	70 965	813	9 499	116 668	1 726	207 103	7 650	6 883	38 888	88 742	3 361	557 374	35 180	592 554	46 113
2047	5 243	73 803	841	9 817	120 569	1 795	215 388	7 956	6 926	40 443	88 215	3 390	574 387	34 957	609 343	47 721
2048	5 419	76 755	869	10 146	124 603	1 867	224 003	8 274	6 985	42 061	87 693	3 419		34 735	626 830	49 401
2049 2050	5 587 5 774	79 826 83 019	896 926	10 460 10 810	128 461 132 769	1 942 2 020	232 963 242 282	8 605 8 950	7 045 7 089	43 743 45 493	87 174 86 659	3 441	610 142 629 260	34 432 34 216	644 574 663 476	51 245 53 078
2050	5 968	86 339	957	11 173	137 224	2 100	251 973	9 308	7 150	47 313	86 148	3 501	649 153	34 003	683 156	54 993
2052	6 153	89 793	986	11 520	141 482	2 184	262 052	9 680	7 213	49 205	85 640	3 523	669 431	33 708	703 139	57 094
Итого: 2021-2052	136 007	1 661 022		254 643	3 127 418		4 847 535		235 724	910 221			14 544 135	1 377 724	15 921 858	31 571
2053	6 360	93 385	1 020	11 907	146 240	2 272	272 534	10 067	7 258	51 174	85 136	3 554	690 904	33 500	724 405	59 183
2054	6 557	97 120	1 051	12 277	150 782	2 363	283 435	10 470	7 321	53 221	84 635	3 576	712 809	33 211	746 019	61 478
2055	6 778	90 904	1 087	12 691	155 863	2 457	265 296	9 800	7 367	49 815	84 457	3 607	690 122	33 008	723 130	59 955
2056	6 355	94 540	1 019	11 898	146 130	2 555	275 907	10 192	7 433	51 807	84 303	3 301	695 441	29 965	725 406	66 715
2057	6 571	98 322	1 054	12 303	151 105	2 658	286 944	10 599	6 801	53 879	83 854	3 331	717 422	29 793	747 214	69 117
2058	6 795	102 255	1 089	12 723	156 253	2 764	298 421	11 023	6 863	56 035	83 409	3 362	740 992	29 622	770 614	71 690
2059	7 009	94 529	1 124	13 123	161 171	2 875	275 874	10 190	6 927	51 801	83 339	3 384		29 378	740 723	69 479
2060	6 521	98 310	1 045	12 209	149 947	2 990	286 909	10 598	6 973	53 873	83 292	3 073	715 740	26 502	742 242	77 826
2061	6 745	102 243	1 081	12 629	155 102	3 109	298 385	11 022	6 331	56 028	82 895	3 102	738 673	26 358	765 032	80 651
2062	6 977	106 332	1 119	13 063	160 439	3 233	310 321	11 463	6 392	58 269	82 501	3 132	763 241	26 216	789 457	83 676
2063	7 217	96 762	1 157	13 513	165 963	3 363	282 392	10 431	6 453	53 025	82 544	3 162	725 982	26 075	752 057	80 141
2064	6 627	100 633	1 063	12 408	152 389	3 497	293 688	10 848	6 514	55 146	82 610	2 833	728 256	23 253	751 509	90 705
2065	6 840	104 658	1 097	12 807	157 290	3 637	305 435	11 282	5 838	57 352 50 646	82 262	2 854		23 077	774 430	94 181
2066	7 060	108 845	1 132	13 219	162 345	3 783	317 652	11 734	5 881	59 646	81 917	2 875	776 088	22 902	798 990	97 908

2067	7 305	97 027	1 171	13 678	167 982	3 934	283 164	10 460	5 924	53 170	82 084	2 903	728 802	22 785	751 587	92 570
Продолже	ние приложе	ния 5														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2068	6 580	100 908	1 055	12 319	151 294	4 091	294 491	10 878	5 982	55 297	82 273	2 552	727 720	19 968	747 688	106 337
2069	6 809	104 945	1 092	12 748	156 565	4 255	306 271	11 313	5 258	57 508	41 061	2 578	710 402	19 869	730 271	104 378
2070	7 046	109 142	1 130	13 192	162 024	4 425	318 522	11 766	5 311	59 809	0	2 603	694 970	0	694 970	99 825
2071	7 292	94 590	1 169	13 653	167 678	4 602	276 052	10 197	5 364	51 834	596	2 629	635 657	0	635 657	91 755
2072	6 434	98 374	1 032	12 046	147 948	4 786	287 094	10 605	5 417	53 908	1 190	2 264	631 098	245	631 343	107 417
2073	6 658	102 309	1 068	12 466	153 107	4 978	298 578	11 029	4 665	56 064	1 186	2 287	654 395	244	654 638	111 933
2074	6 891	106 401	1 105	12 902	158 451	5 177	310 521	11 470	4 712	58 307	1 183	2 310	679 428	242	679 670	116 785
2075	7 132	110 657	1 143	13 352	163 986	5 384	322 942	11 929	4 759	60 639	1 179	2 333	705 435	241	705 676	121 847
2076	7 381	115 083	1 183	13 819	169 721	5 599	335 859	12 406	4 807	63 064	1 175	2 357	732 456	240	732 696	127 127
2077	7 639	119 687	1 225	14 303	175 661	5 823	349 294	12 902	4 855	65 587	1 172	0	758 148	239	758 387	132 221
2078	7 907	124 474	1 268	14 804	181 815	6 056	363 266	13 419	4 904	68 210	1 168	0	787 291	238	787 528	137 960
2079	8 184	129 453	1 312	15 323	188 190	6 298	377 796	13 955	4 954	70 939	1 165	0	817 569	237	817 806	143 948
2080	8 471	134 631	1 358	15 861	194 794	32 752	392 908	14 513	5 005	73 776	1 161	0	875 231	235	875 466	154 828
Итого 2021- 2080	332 150	4 597 542	53 252	621 879	7 637 652	180 322	13 417 486	495 623	401 991	2 519 401	4 400 549	183 255	34 841 102	1 835 366	36 676 467	49 949

Приложение 6 –	- Расчет эксплуа	тационнь	іх затрат,	включаемых в	себестоимость прод	укции во	2 вариант	ге, тыс. тенге								
				Расходы, относі	имые на себестоимо	сть проду	кции			Налог	ги и платежи					
Годы	Материальные затраты	Затраты на текущий ремонт	Топливо и ГСМ	Энергоресурсы	услуги производственного характера (сервисных организаций.)	Затраты по охране труда и ООС	ФОТ ОПП	Прочие производственные расходы	ниокр	Налоги,	Налог на		Итого прямые расходы	Амортизационные отчисления включаемые в себестоимость	Итого расходыотносимые на себестоимость продукции с амортизацией	Производственная себестоимость млн.м3 газа
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2021	3 846	21 296	617	7 201	96 563	648	62 150	2 296	9 564	11 670	102 106	5 043	323 000	68 201	391 200	15 066
2022	4 514	24 916	724	8 451	113 337	673	72 716	2 686	10 390	13 654	103 765	5 692	361 519	79 143	440 662	15 037
2023	6 370	31 671	1 021	11 927	159 947	700	92 430	3 414	11 726	17 356	111 935	7 723	456 222	110 845	567 067	14 260
2024	10 563	35 933	1 693	19 776	265 204	728	104 866	3 874	15 912	19 691	131 665	12 313	622 218	206 791	829 009	13 076
2025	12 390	37 370	1 986	23 197	311 080	758	109 061	4 029	25 369	20 478	142 889	13 888	702 494	290 168	992 661	13 883
2026	11 944	38 865	1 915	22 363	299 893	788	113 423	4 190	28 613	21 297	139 689	12 873	695 852	272 273	968 125	14 606
2027	12 017	40 419	1 927	22 499	301 721	819	117 960	4 357	26 523	22 149	136 223	12 640	699 256	263 142	962 398	15 009
2028	12 058	42 036	1 933	22 576	302 750	852	122 679	4 532	26 043	23 035	132 882	12 379	703 755	255 709	959 463	15 509
2029	12 140	43 718	1 946	22 729	304 808	886	127 586	4 713	25 504	23 957	129 110	12 163	709 259	247 313	956 572	15 972
2030	12 229	45 466	1 961	22 896	307 039	922	132 689	4 901	25 060	24 915	125 460	11 958	715 494	239 323	954 817	16 460
2031	12 324	47 285	1 976	23 074	309 436	959	137 997	5 097	24 637	25 912	121 927	11 761	722 384	231 707	954 091	16 973
2032	12 426	49 176	1 992	23 265	311 993	997	143 517	5 301	24 232	26 948	118 506	11 573	729 928	224 438	954 366	17 512
2033	12 572	51 143	2 016	23 538	315 656	1 037	149 257	5 513	23 845	28 026	115 186	11 428	739 218	218 168	957 386	18 058
2034	12 686	53 189	2 034	23 752	318 525	1 078	155 227	5 734	23 545	29 147	111 964	11 254	748 136	211 503	959 639	18 655
2035	12 845	55 317	2 059	24 050	322 525	1 121	161 437	5 963	23 188	30 313	108 834	11 122	758 775	205 766	964 541	19 259
2036	13 011	57 529	2 086	24 360	326 684	1 166	167 894	6 202	22 915	31 525	105 789	10 995	770 157	200 253	970 410	19 895
2037	13 144	59 831	2 107	24 608	330 008	1 213	174 610	6 450	22 652	32 786	102 830	10 839	781 078	194 350	975 428	20 588
2038	13 323	62 224	2 136	24 944	334 507	1 261	181 594	6 708	22 333	34 098	99 953	10 723	793 802	189 284	983 087	21 289
2039	13 508	64 713	2 166	25 291	339 167	1 312	188 858	6 976	22 093	35 462	97 150	10 611	807 307	184 407	991 714	22 028
2040	13 658	67 301	2 190	25 573	342 939	1 364	196 412	7 255	21 862	36 880	94 423	10 471	820 330	179 142	999 472	22 835
2041	13 858	69 993	2 222	25 946	347 945	1 419	204 269	7 545	21 574	38 356	91 770	10 369	835 265	174 643	1 009 908	23 651
2042	14 064	72 793	2 255	26 332	353 118	1 476	212 440	7 847	21 363	39 890	89 183	10 270	851 029	170 304	1 021 333	24 511
2043	14 277	75 705	2 289	26 730	358 463	1 535	220 937	8 161	21 159	41 485	86 660	10 175	867 576	166 117	1 033 693	25 415
2044	14 451	78 733	2 317	27 056	362 832	1 596	229 775	8 488	20 963	43 145	84 202	10 051	883 608	161 549	1 045 157	26 403
2045	14 678	81 882	2 353	27 481	368 535	1 660	238 966	8 827	20 709	44 871	81 808	9 964	901 733	157 669	1 059 402	27 402
2046	14 912	85 158	2 391	27 920	374 415	1 726	248 524	9 180	20 528	46 665	79 471	9 879	920 770	153 919	1 074 690	28 456
2047	15 154	88 564	2 430	28 372	380 477	1 795	258 465	9 547	20 355	48 532	77 189	9 798	940 678	150 294	1 090 972	29 564
2048	15 402	92 106	2 469	28 838	386 724	1 867	268 804	9 929	20 187	50 473	74 961	9 719	961 481	146 788	1 108 269	30 729
2049	15 659	95 791	2 510	29 317	393 160	1 942	279 556		20 025	52 492	72 785	9 644	983 207	143 395	1 126 602	31 955
2050	15 923	99 622	2 553	29 812	399 787	2 020	290 738	10 739	19 869	54 592	70 659	9 571	1 005 884	140 110	1 145 994	33 245
2051	16 194	94 973	2 596	30 320	406 610	2 100	277 170	10 238	19 718	52 044	68 853	9 500	990 319	136 930	1 127 248	33 439
2052	15 081	98 772	2 418	28 236	378 660	2 184	288 257	10 648	19 573	54 126	67 174	8 634	973 764	123 208	1 096 973	36 340
2053	15 371	102 723	2 464	28 780	385 946	2 272	299 787	11 074	17 789	56 291	65 345	8 589	996 431	120 682	1 117 113	37 761
2054	15 668	106 832	2 512	29 336	393 402	2 363	311 779	11 517	17 696	58 543	63 553	8 544	1 021 744	118 216	1 139 960	39 315
2055	15 973	101 005	2 561	29 907	401 064	2 457	294 773	10 888	17 604	55 349	62 116	8 501	1 002 199	115 818	1 118 017	39 335
2056	14 787	105 045	2 371	27 685	371 261	2 555	306 564	11 324	17 515	57 563	60 786	7 680	985 137	103 840	1 088 976	43 044
2057	15 104	109 247	2 421	28 278	379 221	2 658	318 826		15 824	59 866	59 243	7 656	1 010 122	101 939	1 112 061	44 755
2058	15 482	113 617	2 482	28 986	388 720	2 764	331 579	12 248	15 775	62 261	57 725	7 660	1 039 299	100 436	1 139 735	46 538
2059	15 816	106 345	2 536	29 612	397 109	2 875	310 358	11 464	15 781	58 276	56 605	7 637	1 014 413	98 611	1 113 024	46 267
2060	14 522	110 599	2 328	27 190	364 625	2 990	322 773	11 923	15 734	60 607	55 578	6 844	995 712	87 955	1 083 667	51 022
2061	14 862	115 023	2 383	27 825	373 148	3 109	335 684	12 400	14 100	63 031	54 269	6 835	1 022 668	86 516	1 109 184	53 072
2062	15 264	119 624	2 447	28 578	383 240	3 233	349 111	12 896	14 083	65 553	52 980	6 851	1 053 859	85 413	1 139 272	55 199
2063	15 621	110 586	2 505	29 248	392 226	3 363	322 734	11 921	14 116	60 600	52 144	6 843	1 021 906	84 020	1 105 926	54 450
2064	14 240	115 009	2 283	26 661	357 535	3 497	335 643	12 398	14 110	63 024	51 389	6 088	1 001 867	74 671	1 076 538	60 471
2065	14 598	119 609	2 340	27 331	366 521	3 637	349 069	12 894	12 543	65 545	50 278	6 091	1 030 457	73 581	1 104 038	62 915
2066	15 018	124 394	2 408	28 117	377 064	3 783	363 031	13 410	12 550	68 166	49 180	6 116	1 063 236	72 768	1 136 004	65 444
2067	15 395	113 198		28 824	386 548	3 934	330 359	12 203	12 600	62 031	48 606	6 119	1 003 230	71 707	1 093 993	63 937
2068	13 782	117 726		25 804	346 038	4 091	343 573		12 607	64 513	48 106	5 346	996 487	62 847	1 059 334	71 925
2000	13 /02	11/ /20	2 210	2J 00 4) TO 030	T U/1	J7J J1J	12 071	12 007	1 04 213	40 I UU	J J+U	ノノひ サび /	02 07/	1 007 004	11 145

Продолжение приложения 6

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2069	14 201	122 435	2 277	26 589	356 566	4 255	357 316	13 199	11 014	67 093	23 817	5 376	1 004 139	62 257	1 066 396	73 078
2070	14 632	127 333	2 346	27 396	367 387	4 425	371 608	13 727	11 077	69 777	0	5 406	1 015 113	0	1 015 113	70 215
2071	15 076	113 508	2 417	28 227	357 040	4 602	331 262	12 236	11 138	62 201	596	5 436	943 742	0	943 742	65 889
Итого 2021- 2071	692 632	4 117 350	111 047	1 296 803	17 369 168	103 468	12 016 092	443 857	955 676	2 256 261	4 189 317	464 642	44 016 312	7 418 128	51 434 440	27 347
2072	13 276	118 048	2 128	24 856	333 327	4 786	344 513	12 726	11 201	64 689	1 182	4 672	935 404	1 370	936 774	77 245
2073	13 697	122 770	2 196	25 644	343 895	4 978	358 293	13 235	9 626	67 277	1 161	4 704	967 475	1 359	968 834	80 531
2074	14 130	127 681	2 265	26 455	354 771	5 177	372 625	13 764	9 692	69 968	1 141	4 736	1 002 406	1 348	1 003 753	84 111
2075	14 577	132 788	2 337	27 292	365 996	5 384	387 530	14 315	9 758	72 767	1 121	4 769	1 038 634	1 336	1 039 970	87 852
2076	15 038	138 100	2 411	28 156	377 580	5 599	403 031	14 887	9 825	75 677	1 101	4 801	1 076 207	1 326	1 077 532	91 762
2077	15 514	143 624	2 487	29 047	389 532	5 823	419 153	15 483	9 892	78 704	1 081	0	1 110 341	1 315	1 111 656	95 433
2078	16 005	149 369	2 566	29 967	401 867	6 056	435 919	16 102	9 960	81 852	1 061	0	1 150 725	1 304	1 152 029	99 698
2079	16 512	155 344	2 647	30 916	414 595	6 298	453 355	16 746	10 029	85 127	1 042	0	1 192 611	1 293	1 193 904	104 156
2080	17 035	161 557	2 731	31 895	427 729	39 302	471 490	17 416	10 097	88 532	1 022	0	1 268 808	1 283	1 270 091	111 696
Итого 2021- 2080	828 417	5 366 632	132 817	1 551 030	20 778 460	186 872	15 662 001	578 532	1 045 756	2 940 853	4 199 228	488 324	53 758 922	7 430 061	61 188 982	30 802

						Пј	одолжение п	риложения 7
1	2	3	4	5	6	7	8	9
2065	12 529	40 219	3 131	496	56 376	0	0	6 261
2066	12 529	41 828	3 243	503	58 104	0	0	6 487
2067	10 739	43 501	3 038	616	57 894	0	0	6 075
2068	10 739	45 241	3 008	629	59 617	0	0	6 016
2069	10 739	47 051	3 119	642	61 552	0	0	6 239
2070	10 739	48 933	3 136	656	63 465	0	0	6 272
2071	8 949	50 890	2 876	608	63 324	0	0	5 752
2072	8 949	52 926	2 843	620	65 339	0	0	5 686
2073	8 949	55 043	2 952	634	67 578	0	0	5 904
2074	8 949	57 245	3 066	647	69 907	0	0	6 132
2075	8 949	59 535	3 184	662	72 329	0	0	6 368
2076	8 949	61 916	3 306	676	74 848	0	0	6 613
2077	8 949	64 393	3 434	692	77 468	0	0	6 868
2078	8 949	66 968	3 566	708	80 192	0	0	7 132
2079	8 949	69 647	3 704	725	83 025	0	0	7 407
2080	8 949	143 305	3 978	742	156 974	0	0	7 955
Итого 2021- 2080	907 467	1 775 105	145 856	29 544	2 857 972	222 173	128 640	291 713

Приложение 8 – Эксплуатационные затраты, включаемые в расходы периода во 2 варианте, тыс. тенге

тенге	Pacxo	ды периода						Затраты на
		-1		П.,,,,,,,	17		Отчис-	обучение и
			2	Прочие	Итого		ления в	повышение
Год	A	Общеадми-	Затраты	налоги и	расход	Историческ	ликвид	квалификаци
ы	Административн	нистративн		отчислени я в	ы период	ие затраты	a-	И
	ые расходы	ые	социальны	ь в Бюджет	а		ционны	казахстански
			е нужды	Бюджет			й фонд	X
					_			специалистов
1	2	3	4	5	5	6	7	8
2021	14 319	7 161	1 314	406	23 200	34 180	6 747	2 628
2022	16 109	7 447	1 536	426	25 518	34 180	7 615	3 072
2023	19 689	7 745	2 092	482	30 008	34 180	10 333	4 183
2024	21 479	8 055	3 247	609	33 389	34 180	16 474	6 494
2025	21 479	8 377	3 950	664	34 470	34 180	18 580	7 900
2026	21 479	8 712	3 828	650	34 670	34 180	17 223	7 657
2027	21 479	9 061	3 824	653	35 016	17 090	16 661	7 649
2028	21 479 21 479	9 423 9 800	3 826 3 829	654	35 381 35 764	0	16 075 15 562	7 651 7 658
2029 2030	21 479	10 192	3 829	656 659	36 167	0	15 073	7 658
2030	21 479	10 192	3 849	662	36 590	0	15 073	7 674
2031	21 479	11 024	3 866	665	37 033	0	0	7 731
2032	21 479	11 465	3 895	669	37 507	0	0	7 789
2034	21 479	11 923	3 919	673	37 993	0	0	7 837
2035	21 479	12 400	3 955	678	38 512	0	0	7 911
2036	21 479	12 896	3 996	683	39 053	0	0	7 992
2037	21 479	13 412	4 032	687	39 609	0	0	8 063
2038	21 479	13 949	4 080	692	40 199	0	0	8 160
2039	21 479	14 507	4 132	698	40 815	0	0	8 264
2040	21 479	15 087	4 179	702	41 447	0	0	8 358
2041	21 479	15 690	4 239	708	42 116	0	0	8 478
2042	21 479	16 318	4 303	714	42 814	0	0	8 606
2043	21 479	16 971	4 371	721	43 541	0	0	8 742
2044	21 479	17 650	4 434	726	44 288	0	0	8 868
2045	21 479	18 356	4 510	733	45 077	0	0	9 021
2046	21 479	19 090	4 591	740	45 899	0	0	9 181
2047	21 479	19 853	4 675	747	46 755	0	0	9 351
2048	21 479	20 648	4 765	755	47 646	0	0	9 529
2049	21 479	21 473	4 858	763	48 573	0	0	9 717
2050	21 479	22 332	4 957	771	49 538	0	0	9 913
2051	19 689	23 226	4 886	779	48 579	0	0	9 771
2052	19 689	24 155	4 737	745	49 326	0	0	9 475
2053	19 689	25 121	4 845	754	50 409	0	0	9 691
2054	19 689	26 126	4 958	763	51 535	0	0	9 916
2055	17 899	27 171	4 872	772	50 714	0	0	9 744
2056	17 899	28 258	4 727	736	51 620	0	0	9 454
2057	17 899	29 388	4 847	746	52 880	0	0	9 695
2058	17 899	30 563	4 982	757	54 201	0	0	9 963
2059	16 109	31 786	4 874	767	53 536	0	0	9 747
2060	16 109	33 057	4 725	728	54 619	0	0	9 449
2061	16 109	34 380	4 855	739	56 082	0	0	9 709
2062	16 109	35 755	4 999	751	57 613	0	0	9 998
2063	14 319	37 185	4 861	761	57 127	0	0	9 722
2064	14 319	38 673	4 710	720	58 421	0	0	9 419
2065	14 319	40 219	4 848	731	60 117	0	0	9 696
2066	14 319	41 828	5 000	743	61 890	0	0	10 000
2067	12 529	43 501	4 823	670	61 524	0	0	9 646

Продол	Продолжение приложения 8												
1	2	3	4	5	5	6	7	8					
2068	12 529	45 241	4 644	685	63 100	0	0	9 288					
2069	12 529	47 051	4 795	701	65 077	0	0	9 591					
2070	12 529	48 933	4 644	718	66 824	0	0	9 289					
2071	10 739	50 890	4 322	671	66 623	0	0	8 644					
Итого					2 360								
2021-	962 953	1 144 128	217 843	35 482	405	222 173	154 949	435 685					
2071					405								
2072	10 739	52 926	4 275	686	68 627	0	0	8 550					
2073	10 739	55 043	4 430	702	70 915	0	0	8 861					
2074	10 739	57 245	4 591	719	73 294	0	0	9 182					
2075	10 739	59 535	4 758	736	75 768	0	0	9 516					
2076	10 739	61 916	4 931	754	78 340	0	0	9 861					
2077	10 739	64 393	5 110	772	81 014	0	0	10 220					
2078	10 739	66 968	5 296	792	83 795	0	0	10 592					
2079	10 739	69 647	5 489	812	86 687	0	0	10 977					
2080	10 739	72 433	5 852	833	89 857	0	0	11 704					
Итого 2021- 2080	1 059 606	1 704 233	262 574	42 287	3 068 700	222 173	154 949	525 148					

Приложение 9	– Расчет нало	огооблагаемо	го дохода і	з 1 варианте, тыс	.тенге	
	Всего					
	расходы,	0.5			D	
	связанные с	Общие			Всего	
	обычной	расходы	_	Амортизационн	вычитаемые	
	деятельност	(включаемы			затраты, налоги	
	ью	е в с/с +	ая	относимые на	и специальные	Налогооблагаем
Годы	предприятия	расходы	прибыль	вычеты при	фонды,	ый доход
	(noovour	периода)	(+),	определении	определяемые	ын долод
	ключаемые	приходящие	убыток (-)	налогооблагаем	для	
	в с/с +	ся на 1000		ого дохода	Налогооблагаем	
	расходы	м3 газа			ого дохода	
	периода)					
1	<u> 1 сриода)</u>	3	4	5	6	7
2021	457 870	17 633	581 177	26 958	430 912	622 419
2022	454 178	20 654	425 756	33 145	421 033	451 828
2023	509 873	19 447	539 257	38 813	471 060	571 875
2024	482 884	22 644	370 433	32 991	449 894	396 032
2025	495 642	22 475	386 828	28 042	467 600	419 395
2026	483 657	24 848	295 239	23 836	459 821	324 843
2027	473 446	24 536	310 286	20 260	453 185	342 999
2028	457 249	25 018	296 223	17 221	440 028	329 156
2029	456 772	26 650	260 400	14 638	442 134	292 772
2030	459 272	28 114	234 539	12 442	446 830	266 888
2031	465 772	29 230	221 145	10 576	455 196	254 253
2032	461 335	30 229	206 422	8 990	452 345	239 258
2033	466 887	31 816	184 828	7 641	459 246	217 394
2034	472 801	33 528	162 865	6 495	466 306	194 998
2035	483 590	34 527	157 239	5 521	478 069	190 083
2036	494 738	35 642	149 876	4 693	490 045	183 203
2037	506 660	36 747	143 246	3 989	502 671	177 021
2038	518 761	37 963	135 014	3 390	515 371	169 048
2039	531 690	39 168	127 504	2 882	528 808	161 798
2040	544 817	40 494	118 329	2 450	542 367	152 724
2041	558 830	41 809	109 865	2 082	556 747	144 384
2042	573 062	43 256	99 669	1 770	571 292	134 176
2043	588 242	44 691	90 169	1 504	586 737	124 705
			78 868	1 279	602 385	
2044	603 664	46 269				113 311
	620 102	47 834	68 243	1 087	619 015	102 649
2046	636 805	49 557	55 746	924	635 881	90 002
2047	654 599	51 265	43 902	0	654 599	78 859
2048	673 130	53 050	31 390	0	673 130	66 125
2049	691 952	55 012	16 921	0	691 952	51 353
2050	711 983	56 958	3 049	0	711 983	37 266
2051	732 836	58 992	-11 577	0	732 836	22 426
2052	754 031	61 226	-28 265	0	754 031	5 443
Итого: 2021- 2052	17 477 129	34 655	5 864 583	313 619	17 163 510	6 928 687
2053	776 565	63 445	-44 427	0	776 565	0
2054	799 491	65 884	-62 757	0	799 491	0
2055	775 572	64 303	-32 319	0	775 572	0
2056	778 933	71 638	-98 842	0	778 933	0
2057	802 189	74 202	-115 853	0	802 189	0
2058	827 095	76 945	-134 437	0	827 095	0
2059	796 258	74 688	-98 972	0	796 258	0
2060	790 238	83 780	-165 896	0	790 238	0
2061	823 474			0	823 474	0
		86 813	-184 316			
2062	849 619	90 053	-204 362	0	849 619	0
2063	811 382	86 463	-159 954	0	811 382	0

Продолжение приложения 9												
1	2	3	4	5	6	7						
2064	812 267	98 038	-228 496	0	812 267	0						
2065	837 067	101 799	-249 005	0	837 067	0						
2066	863 580	105 823	-271 210	0	863 580	0						
2067	815 556	100 448	-217 354	0	815 556	0						
2068	813 321	115 671	-287 496	0	813 321	0						
2069	798 061	114 067	-266 999	0	798 061	0						
2070	764 707	109 842	-228 339	0	764 707	0						
2071	704 733	101 726	-162 989	0	704 733	0						
2072	702 367	119 501	-235 859	0	702 367	0						
2073	728 121	124 497	-256 951	0	728 121	0						
2074	755 709	129 851	-279 815	0	755 709	0						
2075	784 373	135 435	-303 694	0	784 373	0						
2076	814 157	141 262	-328 627	0	814 157	0						
2077	842 722	146 924	-352 279	0	842 722	0						
2078	874 853	153 258	-379 431	0	874 853	0						
2079	908 238	159 866	-407 773	0	908 238	0						
2080	1 040 395	183 996	-534 819	0	1 040 395	0						
Итого 2021- 2080	40 176 965	54 717	-428 690	313 619	39 863 346	6 928 687						

2065

1 173 850

66 894

0

81 115

1 173 850

154 696

2066 1 207 8	395	59 586	52 132	0	1.2	207 895	124 901
Продолжение г	риложени	я 10					
1	2		3	4	5	6	7
2067	1 165 16	53	68 096	95 507	0	1 165 16	63 167 213
2068	1 131 72	21	76 840	-30 297	0	1 131 72	21 32 550
2069	1 141 06	54	78 194	-33 412	0	1 141 06	54 28 845
2070	1 091 22	26	75 480	22 605	0	1 091 22	26 22 605
2071	1 019 00)8	71 144	101 049	0	1 019 00	08 101 049
Итого 2021- 2071	54 607 6	52	29 034	41 123 550	3 447 103	51 160 5	49 45 094 575
2072	1 013 95	51	83 609	-51 381	0	1 013 95	51 0
2073	1 048 60)9	87 162	-79 396	0	1 048 60	09 0
2074	1 086 22	29	91 022	-110 398	0	1 086 22	29 0
2075	1 125 25	53	95 056	-142 745	0	1 125 25	53 0
2076	1 165 73	33	99 273	-176 496	0	1 165 73	33 0
2077	1 202 89	90	103 265	-206 869	0	1 202 89	90 0
2078	1 246 41	5	107 867	-243 558	0	1 246 41	15 0
2079	1 291 56	58	112 676	-281 818	0	1 291 56	68 0
2080	1 371 65	52	120 628	-354 956	0	1 371 65	52 0
Итого 2021- 2080	65 159 9	53	32 801	39 475 932	3 447 103	61 712 8	45 094 575

Приложение 11 – Расчет чистой прибыли в 1 варианте, тыс.тенге

Hajotoobjataen Hajo	приложение т	– Расчет чистой	приобли в т вар	иапте, тыслепт	. C	T	T
Поды Налогооблагаем и прибыть подколный излог Подоходный по					И истоп		Чистая
Подава После вереное водення видент водент вод		Подоборожногом	Ца дорооб дороом	Г опионативи			прибыль
					_	Налог на	после
Incrementary Solution Incrementary Solution Incrementary Solution Incrementary I	Годы	-	-			сверхприбы	выплаты
1	, ,	-	-				налога на
1		убытков	убытков	налог			
1					го налога		
2021	1	2	3	4	5	6	7
2002				18			156 537
2023							
2024 396 032 396 032 79 206 291 226 116 291 110 2025 419 395 419 395 83 879 302 949 119 302 830 2026 324 843 324 843 64 969 230 270 107 230 163 2027 342 999 342 999 68 600 241 686 111 241 575 2028 329 156 329 156 65 831 230 392 111 230 281 2029 292 772 292 772 58 554 2018 45 105 2017 40 2030 266 888 266 888 53 378 181 161 101 181 060 2031 254 253 254 253 50 851 170 294 99 170 195 2032 239 258 239 258 47 852 158 570 97 158 473 2033 217 394 217 394 43 479 141 349 94 141 255 2034 194 998 194 998 39 000 123 865 90 123 775 2035 190 083 190 083 38 017 119 222 89 119 134 2036 183 203 183 203 36 641 113 236 87 113 149 2037 177 021 177 021 35 404 107 842 86 107 756 2038 169 048 169 048 33 810 101 204 84 101 120 2039 161 798 161 798 32 360 95 144 83 95 062 2040 152 724 152 724 30 545 87 84 81 87 703 2041 144 384 144 384 28 877 80 988 80 80 908 2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 662 56 206 75 56 131 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2049 51 353 51 353 10 271 6651 67 6584 2050 37 266 37 266 74 53 0 66 0 0 0 0 0 0 0							
2025							
2026 324 843 324 843 64 969 230 270 107 230 163 2027 342 999 342 999 68 600 241 686 111 241 575 2028 329 156 329 156 65 831 230 392 111 230 281 2029 292 772 292 772 58 554 201 845 105 201 740 2030 266 888 266 888 53 378 181 161 101 181 060 2031 254 253 254 253 50 851 170 294 99 170 195 2032 239 258 239 258 47 852 158 570 97 158 473 2033 217 394 217 394 43 479 141 349 94 141 255 2034 194 998 194 998 39 000 123 865 90 123 775 2035 190 083 190 083 38 017 119 222 89 119 134 2037 177 021 177 021 35 404 107 842 86 107 756 2038 169 048 169 048 33 810 101 204 84 101 120 2039 161 798 161 798 32 360 95 144 83 95 062 2040 152 724 152 724 30 545 87 784 81 87 703 2041 144 384 144 384 28 877 80 988 80 80 908 2045 102 649 102 649 205 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 877 3 45 2866 29 33 45 246 22 426 22 426 4855 06 64 00 2055 00 00 00 00 00							
2027							
2028 329 156 329 156 65 831 230 392 111 230 281 2029 292 772 292 772 85 554 201 845 105 201740 2030 266 888 266 888 53 378 181 161 101 181 060 2031 254 253 254 253 50 851 170 294 99 170 195 2032 239 258 239 258 47 852 158 570 97 158 473 2033 217 394 217 394 43 479 141 349 94 141 255 2034 194 998 194 998 39 000 123 865 90 123 775 2035 190 083 190 083 38 017 119 222 89 119 134 2036 183 203 183 203 36 641 113 236 87 113 149 2037 177 021 177 021 35 404 107 842 86 107 756 2039 161 798 161 798 32 360 95 144 83 95 062 2040 152 724 152 724 30 545 87 784 81 87 703 2041 144 384 144 384 28 877 80 988 80 80 908 2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 133 311 113 311 22 662 56 206 75 56 131 2045 60 49 102 649 20 530 47 713 73 47 640 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2055 54 43 5443 1089 0 63 0 0 0 0 0 0 0 0 0							
2029							
2030							
2031							
2032							
2033							
2034							
2035							
2036							
2037 177 021 177 021 35 404 107 842 86 107 756 2038 169 048 169 048 33 810 101 204 84 101 120 2039 161 798 161 798 32 360 95 144 83 95 062 2040 152 724 152 724 30 545 87 784 81 87 703 2041 144 384 144 384 28 877 80 988 80 80 908 2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 660 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 660 2048							
2038							
2039 161 798 161 798 32 360 95 144 83 95 062 2040 152 724 152 724 30 545 87 784 81 87 703 2041 144 384 144 384 28 877 80 988 80 80 908 2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 662 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2050 37 266 37 266 7 453 0 66 0 2051 22 426<							
2040 152 724 152 724 30 545 87 784 81 87 703 2041 144 384 144 384 28 877 80 988 80 80 908 2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 662 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 5 443							
2041 144 384 144 384 28 877 80 988 80 80 908 2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 662 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 6 928 687 <							
2042 134 176 134 176 26 835 72 834 78 72 756 2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 662 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Utroro: 2021- 2052 6 928 68							
2043 124 705 124 705 24 941 65 228 76 65 151 2044 113 311 113 311 22 662 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Wrore: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053							
2044 113 311 113 311 22 662 56 206 75 56 131 2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Hroro: 2021- 2052 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 60 0 2054 0 0 0							
2045 102 649 102 649 20 530 47 713 73 47 640 2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Wrore: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 60 0 2054 0 0 0 0 62 0 2055 0 0 0							
2046 90 002 90 002 18 000 37 745 72 37 674 2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Hroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 60 0 2054 0 0 0 0 62 2933 4 525 925 2053 0 0 0 0 62 0 0 2055 0 0							
2047 78 859 78 859 15 772 28 130 70 28 060 2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Wrore: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 62 0 2055 0 0 0 0 62 0 2055 0 0 0 0 57 0 2056 0 0 0 0 55 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2048 66 125 66 125 13 225 18 165 69 18 096 2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Mroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 60 0 2055 0 0 0 62 0 2056 0 0 0 57 0 2057 0 0 0 57 0 2058 0 0 0 57 0 2059 0 0 0 57 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2049 51 353 51 353 10 271 6 651 67 6 584 2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Mroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2055 0 0 0 0 57 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 57 0 2060							
2050 37 266 37 266 7 453 0 66 0 2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Uroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 57 0 2059 0 0 0 0 57 0 2060 0 0 0 50 0 2061 0 0 <							
2051 22 426 22 426 4 485 0 64 0 2052 5 443 5 443 1 089 0 63 0 Wroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 57 0 2059 0 0 0 0 57 0 2060 0 0 0 51 0 2061 0 0 0 50 0 2062 0 0 0 0 49		51 353			6 651	67	6 584
2052 5 443 5 443 1 089 0 63 0 Wroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2055 0 0 0 0 57 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 57 0 2061 0 0 0 50 0 2062 0 0 0 0 49 0 </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td>					0		0
Utroro: 2021- 2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 57 0 2061 0 0 0 57 0 2062 0 0 0 51 0 2063 0 0 0 0 49 0 2064 0 0 0 0 46 0	2051	22 426	22 426	4 485	0	64	0
2052 6 928 687 6 928 687 1 385 737 4 528 665 2 933 4 525 925 2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 51 0 2061 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 46 0 2064 0 0 0 0 46 0		5 443	5 443	1 089	0	63	0
2053 0 0 0 0 61 0 2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 57 0 2060 0 0 0 51 0 2061 0 0 0 50 0 2062 0 0 0 49 0 2063 0 0 0 46 0 2064 0 0 0 45 0 2065 0 0 0 0 44							
2054 0 0 0 0 60 0 2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 57 0 2061 0 0 0 51 0 2062 0 0 0 0 50 0 2063 0 0 0 0 449 0 2064 0 0 0 0 46 0 2065 0 0 0 0 44 0		6 928 687	6 928 687	1 385 737	4 528 665		4 525 925
2055 0 0 0 0 62 0 2056 0 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 57 0 2061 0 0 0 51 0 2062 0 0 0 50 0 2063 0 0 0 49 0 2064 0 0 0 46 0 2065 0 0 0 0 44 0			-	, ,		_	
2056 0 0 0 57 0 2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 0 51 0 2061 0 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 44 0					0	60	0
2057 0 0 0 0 55 0 2058 0 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 0 51 0 2061 0 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 44 0							
2058 0 0 0 54 0 2059 0 0 0 0 57 0 2060 0 0 0 0 51 0 2061 0 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 44 0	2056			0	0		0
2059 0 0 0 0 57 0 2060 0 0 0 0 51 0 2061 0 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 44 0 2066 0 0 0 0 44 0				0			-
2060 0 0 0 51 0 2061 0 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 45 0 2066 0 0 0 0 44 0				0	0		0
2061 0 0 0 50 0 2062 0 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 45 0 2066 0 0 0 0 44 0				0	0		0
2062 0 0 0 49 0 2063 0 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 45 0 2066 0 0 0 0 44 0	2060	0	0	0	0	51	0
2063 0 0 0 52 0 2064 0 0 0 0 46 0 2065 0 0 0 0 45 0 2066 0 0 0 0 44 0	2061			0	0	50	0
2064 0 0 0 46 0 2065 0 0 0 0 45 0 2066 0 0 0 0 44 0	2062	0	0	0	0	49	0
2065 0 0 0 0 45 0 2066 0 0 0 0 44 0	2063	0	0	0	0	52	0
2066 0 0 0 0 44 0	2064	0	0	0	0	46	0
	2065	0	0	0	0	45	0
2067 0 0 0 47 0	2066	0	0	0	0	44	0
	2067	0	0	0	0	47	0
2068 0 0 0 0 41 0	2068	0	0	0	0	41	0

Продолжение приложения 11												
1	2	3	4	5	6	7						
2069	0	0	0	0	43	0						
2070	0	0	0	0	44	0						
2071	0	0	0	0	48	0						
2072	0	0	0	0	41	0						
2073	0	0	0	0	40	0						
2074	0	0	0	0	39	0						
2075	0	0	0	0	38	0						
2076	0	0	0	0	37	0						
2077	0	0	0	0	36	0						
2078	0	0	0	0	35	0						
2079	0	0	0	0	34	0						
2080	0	0	0	0	30	0						
Итого 2021- 2080	6 928 687	6 928 687	1 385 737	4 528 665	4 231	4 525 925						

Приложение 12 – Расчет чистой прибыли во 21 варианте, тыс.тенге

1101111	жение 12 – Расчет ч 	photon inputoblem bo		Чистая		Чистая
				บทุกกระบาน		прибыль
	Налогооблагаемая	Налогооблагаемая	Корпоративный	после	Налог на	приоыль после
Годы		прибыль после	подоходный		талог на сверхприбыль	
	переноса убытков	переноса убытков	налог	выплаты подоходного		налога на
				подоходного налога		налога на сверхприбыль
1	2	3	4	5	6	сверхприовіль 7
2021	622 334	622 334	124 467	456 625	155	456 469
2022	689 495	689 495	137 899	523 690	151	523 539
2023	849 181	849 181	169 836	775 620	0	775 620
2024	1 369 417	1 369 417	273 883	1 343 474	0	1 343 474
2025	1 656 792	1 656 792	331 358	1 442 139	148	1 441 991
2026	1 516 876	1 516 876	303 375	1 287 070	146	1 286 925
2027	1 523 681	1 523 681	304 736	1 260 774	150	1 260 624
2028	1 528 300	1 528 300	305 660	1 226 157	156	1 226 002
2029	1 517 413	1 517 413	303 483	1 186 959	158	1 186 801
2030	1 501 960	1 501 960	300 392	1 149 536	160	1 149 376
2031	1 482 733	1 482 733	296 547	1 113 677	161	1 113 517
2032	1 474 498	1 474 498	294 900	1 090 477	163	1 090 314
2033	1 454 972	1 454 972	290 994	1 060 829	163	1 060 666
2034	1 427 056	1 427 056	285 411	1 027 909	162	1 027 747
2035	1 403 171	1 403 171	280 634	999 873	161	999 712
2036	1 377 386	1 377 386	275 477	972 293	159	972 133
2037	1 344 479	1 344 479	268 896	941 274	157	941 118
2038	1 316 099	1 316 099	263 220	914 630	154	914 476
2039	1 286 464	1 286 464	257 293	888 145	151	887 993
2040	1 250 395	1 250 395	250 079	858 047	148	857 898
2041	1 219 075	1 219 075	243 815	831 959	145	831 814
2042	1 186 835	1 186 835	237 367	805 805	142	805 663
2043	1 153 816	1 153 816	230 763	779 580	139	779 441
2044	1 114 849	1 114 849	222 970	749 579	135	749 444
2045	1 080 655	1 080 655	216 131	723 216	132	723 084
2046 2047	1 045 710 1 021 918	1 045 710 1 021 918	209 142 204 384	696 555 667 240	128 126	696 427 667 113
2047	983 867	983 867	196 773	640 306	120	640 183
2049	945 412	945 412	189 082	612 934	119	612 815
2050	906 499	906 499	181 300	585 089	115	584 973
2051	908 608	908 608	181 722	589 957	116	589 841
2052	746 358	746 358	149 272	473 878	107	473 771
2053	713 033	713 033	142 607	449 745	104	449 640
2054	677 196	677 196	135 439	423 541	101	423 440
2055	688 876	688 876	137 775	435 283	103	435 180
2056	536 193	536 193	107 239	325 115	94	325 021
2057	504 781	504 781	100 956	301 886	92	301 794
2058	474 658	474 658	94 932	279 291	89	279 201
2059	495 726	495 726	99 145	297 970	91	297 879
2060	350 208	350 208	70 042	192 211	83	192 128
2061	319 798	319 798	63 960	169 323	81	169 242
2062	290 109	290 109	58 022	146 675	78	146 596
2063	321 192	321 192	64 238	172 933	81	172 853
2064	184 641	184 641	36 928	73 041	73	72 968
2065	154 696	154 696	30 939	50 176	71	50 104
2066	124 901	124 901	24 980	27 152	69	27 083
2067	167 213	167 213	33 443	62 064	72	61 992
2068	32 550	32 550	6 510	0	64	0
2069	28 845	28 845	5 769	0	64	0
2070	22 605	22 605	4 521	18 084	64	18 021

Продолжение приложения 12												
1	2	3	4	5	6	7						
2071	101 049	101 049	20 210	80 840	69	80 771						
Итого 2021-												
2071	45 094 575	45 094 575	9 018 915	32 180 623	5 875	32 174 876						
2072	0	0	0	0	62	0						
2073	0	0	0	0	61	0						
2074	0	0	0	0	59	0						
2075	0	0	0	0	57	0						
2076	0	0	0	0	56	0						
2077	0	0	0	0	55	0						
2078	0	0	0	0	53	0						
2079	0	0	0	0	52	0						
2080	0	0	0	0	49	0						
Итого 2021- 2080	45 094 575	45 094 575	9 018 915	32 180 623	6 379	32 174 876						

			денежной нал		1	,		
	Чистая		Накопленный				J	Срок
_	прибыль с	Поток	поток	ВНП	, ,	тированнь		окупаемости
Годы	учетом	денежной	денежной	(IRR)		і наличност	•	(дисконт
	всех	наличности	наличности	(IIII)	приве	денная сто	имость)	12%)
	выплат		паличности					12 /0)
					11,5%	12,0%	12,5%	
1	2	3	4	5	6	7	8	9
2020	-	-6 450 250	-6 450 250				-6 450 250	
2021	456 537	413 216	-6 037 034	59,5%	367 535	365 290	362 769	1
2022	335 262	385 495	-5 651 539	69,6%	307 514	304 271	300 828	1
2023	424 745	496 176	-5 155 363	79,5%	354 982	349 671	344 178	1
2024	291 110	349 700	-4 805 663	69,4%	224 384	220 040	215 621	1
2025	302 830	363 440	-4 442 223	70,0%	209 148	204 184	199 193	1
2026	230 163	283 603	-4 158 620	57,3%	146 372	142 260	138 166	1
2027	241 575	294 548	-3 864 072	60,2%	136 342	131 920	127 554	1
2028	230 281	280 435	-3 583 636	59,3%	116 421	112 142	107 949	1
2029	201 740	248 750	-3 334 886	53,1%	92 616	88 814	85 113	1
2030	181 060	225 852	-3 109 035	48,3%	75 417	71 998	68 691	1
2030	170 195	213 879		45,2%	64 053	60 876	57 822	1
			-2 895 155					
2032	158 473	200 299	-2 694 856	42,8%	53 799	50 903	48 134	1
2033	141 255	181 463	-2 513 393	38,6%	43 713	41 175	38 762	1
2034	123 775	162 404	-2 350 989	34,3%	35 087	32 902	30 837	1
2035	119 134	157 499	-2 193 491	32,6%	30 518	28 490	26 582	1
2036	113 149	151 168	-2 042 323	30,6%	26 270	24 415	22 679	1
2037	107 756	145 520	-1 896 803	28,9%	22 680	20 984	19 406	1
2038	101 120	138 545	-1 758 258	26,9%	19 366	17 838	16 423	1
2039	95 062	132 237	-1 626 021	25,1%	16 578	15 202	13 934	1
2040	87 703	124 548	-1 501 473	23,1%	14 003	12 784	11 665	1
2040	80 908	117 510	-1 383 963	21,3%	11 849	10 769	9 783	1
								ł
2042	72 756	109 033	-1 274 930	19,3%	9 861	8 922	8 069	1
2043	65 151	101 192	-1 173 738	17,5%	8 208	7 393	6 656	1
2044	56 131	91 853	-1 081 885	15,6%	6 682	5 992	5 371	1
2045	47 640	83 133	-998 752	13,7%	5 424	4 842	4 321	1
2046	37 674	72 854	-925 898	11,8%	4 263	3 788	3 366	1
2047	28 060	63 017	-862 882	9,9%	3 307	2 926	2 588	1
2048	18 096	52 831	-810 051	8,1%	2 487	2 190	1 929	1
2049	6 584	41 015	-769 035	6,1%	1 731	1 518	1 331	1
2050	0	29 747	-739 288	4,3%	1 126	983	858	1
2051	0	17 877	-721 412	2,5%	607	527	458	1
2052	0	4 292	-717 120	0,6%	131	113	98	1
	U	4 272	-/1/ 120	0,070	131	113	70	1
Итого:	4 505 005	717 120	717 100	4.00/	4 027 770	4 104 120	4.160.117	22
2021-	4 525 925	-717 120	-717 120	-4,0%	-4 03 / //8	-4 104 130	-4 169 117	32
2052	_							
2053	0	-10 988	-780 023	-1,5%	-300	-258	-223	ļ
2054	0	-29 606	-768 895	-3,9%	-725	-622	-533	
2055	0	-8 785	-730 197	-1,1%	-193	-165	-141	<u> </u>
2056	0	-68 933	-786 053	-9,2%	-1 358	-1 154	-981	
2057	0	-86 116	-803 236	-11,1%	-1 522	-1 287	-1 089	
2058	0	-104 870	-908 105	-13,1%	-1 662	-1 400	-1 179	
2059	0	-89 899	-998 005	-11,0%	-1 278	-1 071	-898	
2060	0	-139 445	-1 137 450	-18,0%	-1 777	-1 484	-1 239	
2061	0	-158 008	-1 295 458	-19,8%	-1 806	-1 501	-1 239	1
				-				
2062	0	-178 195	-1 473 653	-21,6%	-1 827	-1 512	-1 251	1
2063	0	-165 911	-1 639 564	-19,7%	-1 526	-1 257	-1 035	
2064	0	-205 289	-1 844 853	-26,0%	-1 693	-1 388	-1 138	ļ
20.65	0	-225 973	-2 070 826	-27,8%	-1 671	-1 364	-1 114	
2065	U							
2065	0	-248 352	-2 319 178	-29,5%	-1 647	-1 339	-1 088	

Продолжен	Іродолжение приложения 13											
1	2	3	4	5	6	7	8	9				
2068	0	-267 570	-2 826 495	-33,7%	-1 428	-1 150	-926					
2069	0	-247 173	-3 073 668	-31,8%	-1 183	-948	-761					
2070	0	-228 382	-3 302 051	-29,9%	-980	-782	-625					
2071	0	-242 490	-3 544 541	-30,9%	-933	-742	-590					
2072	0	-235 656	-3 780 197	-33,6%	-814	-644	-509					
2073	0	-256 748	-4 036 945	-35,3%	-795	-626	-493					
2074	0	-279 612	-4 316 557	-37,0%	-776	-609	-477					
2075	0	-303 491	-4 620 048	-38,7%	-756	-590	-461					
2076	0	-328 424	-4 948 472	-40,3%	-734	-570	-443					
2077	0	-352 077	-5 300 549	-41,8%	-705	-546	-422					
2078	0	-379 229	-5 679 778	-43,4%	-681	-525	-404					
2079	0	-407 571	-6 087 348	-44,9%	-657	-504	-386					
2080	0	-534 614	-6 621 963	-51,4%	-773	-590	-450					
Итого 2021-2080	4 525 925	-6 740 275	-6 621 963	-16,7%	-4 069 404	-4 129 910	-4 190 153	32				

Приложение 14 – Расчет потоков денежной наличности во 2 варианте, тыс.тенге

	Чистая		денежной нал					
	прибыль с	Поток	Накопленный	DIIII	Дискон	ый поток	Срок	
Годы	учетом	денежной	поток	ВНП	денежной наличности (Чистая			окупаемости
	всех	наличности	денежной	(IRR)		денная сто	`	(дисконт
	выплат		наличности				,	12%)
					11,5%	12,0%	12,5%	
1	2	3	4	5	6	7	8	9
2020		-6 450 250	-6 450 250		-6 450 250	-6 450 250	-6 450 250	
2021	456 469	413 148	-6 037 102	59,5%	367 474	365 230	362 709	1
2022	523 539	493 007	-5 544 095	65,0%	393 277	389 131	384 727	1
2023	775 620	-93 148	-5 637 243	-5,2%	-66 641	-65 644	-64 613	1
2024	1 343 474	-100 804	-5 738 047	-3,5%	-64 681	-63 429	-62 155	1
2025	1 441 991	1 732 158	-4 005 889	137,0%	953 802	930 142	906 358	1
2026	1 286 925	1 559 197	-2 446 692	142,6%	761 726	739 117	716 610	1
2027	1 260 624	1 523 766	-922 925	132,0%	662 327	639 450	616 866	1
2028	1 226 002	1 481 710	558 785	138,6%	615 121	549 513	527 359	1
2029	1 186 801	1 434 114	1 992 899	133,8%	533 956	469 036	447 700	1
2030	1 149 376	1 388 699	3 381 598	129,2%	463 719	442 697	379 365	1
2031	1 113 517	1 345 223	4 726 821	124,8%	402 872	382 891	320 682	1
2032	1 090 314	1 314 752	6 041 574	122,9%	353 136	334 123	315 950	1
2033	1 060 666	1 278 834	7 320 408	118,9%	308 061	290 174	273 172	1
2034	1 027 747	1 239 250	8 559 658	114,8%	267 736	251 064	235 304	1
2035	999 712	1 205 478	9 765 135	111,0%	233 578	218 056	203 459	1
2036	972 133	1 172 386	10 937 521	107,3%	203 736	189 348	175 888	1
2037	941 118	1 135 467	12 072 989	103,4%	176 969	163 737	151 421	1
2038	914 476	1 103 760	13 176 749	99,8%	154 285	142 111	130 838	
2039	887 993	1 072 400	14 249 149	96,3%	134 440	123 280	112 996	
2040	857 898	1 037 041	15 286 189	92,6%	116 599	106 442	97 129	
2041	831 814	1 006 457	16 292 646	89,1%	101 489	92 235	83 791	
2042	805 663	975 967	17 268 613	85,6%	88 264	79 858	72 225	
2043	779 441	945 558	18 214 172	82,2%	76 694	69 080	62 199	
2044	749 444	910 992	19 125 164	78,5%	66 270	59 424	53 267	
2045	723 084	880 753	20 005 917	75,1%	57 462	51 296	45 777	
2046	696 427	850 346	20 856 263	71,8%	49 756	44 219	39 286	
2047	667 113	817 408	21 673 671	68,0%	42 896	37 952	33 568	
2048	640 183	786 971	22 460 642	64,7%	37 039	32 624	28 727	
2049	612 815	756 210	23 216 852	61,4%	31 920	27 990	24 537	
2050	584 973	725 084	23 941 936	58,2%	27 450	23 962	20 913	
2051	589 841	726 770	24 668 706	57,4%	24 676	21 445	18 633	
2052	473 771	596 979	25 265 685	50,5%	18 179	15 728	13 605	
2053	449 640	570 322	25 836 007	47,6%	15 576	13 415	11 553	
2054	423 440	541 656	26 377 663	44,4%	13 267	11 376	9 753	
2055	435 180	550 998	26 928 661	44,3%	12 104	10 332	8 819	
2056	325 021	428 860	27 357 521	37,2%	8 449	7 180	6 101	
2057	301 794	403 733	27 761 254	34,4%	7 134	6 035	5 106	
2058	279 201	379 637	28 140 892	31,7%	6 016	5 067	4 268	
2059	297 879	396 490	28 537 382	32,3%	5 635	4 725	3 962	
2060	192 128	280 083	28 817 465	24,8%	3 570	2 980	2 488	1
2061	169 242	255 758	29 073 223	22,2%	2 924	2 430	2 019	1
2062	146 596	232 009	29 305 232	19,7%	2 379	1 968	1 628	1
2063	172 853	256 873	29 562 105	21,2%	2 362	1 945	1 602	1
2064	72 968	147 639	29 709 744	13,3%	1 218	998	819	
2065	50 104	123 685	29 833 430	10,9%	915	747	610	1
2066	27 083	99 851	29 933 281	8,6%	662	538	437	
2067	61 992	133 699	30 066 980	11,2%	795	644	521	
2068	0	25 976	30 092 956	2,4%	139	112	90	
2069	19 021	23 012	30 115 968	2,1%	110	88	71	
2070	18 021	18 021	30 133 989	1,6%	77	62	49	<u> </u>

Тродолжение приложения 14										
1	2 3		4	5	6	7	8	9		
2071	80 771	1 318	30 135 307	0,1%	5	4	3			
Итого										
2021-	32 174 876	30 135 307	30 135 307	47,2%	1 226 673	772 676	337 940	17		
2071										
2072	0	-50 071	30 085 236	-4,9%	-173	-137	-108			
2073	0	-78 095	30 007 141	-7,5%	-242	-190	-150			
2074	0	-109 106	29 898 035	-10,1%	-303	-238	-186			
2075	0	-141 463	29 756 571	-12,6%	-352	-275	-215			
2076	0	-175 223	29 581 348	-15,0%	-391	-304	-236			
2077	0	-205 606	29 375 742	-17,1%	-412	-319	-247			
2078	0	-242 304	29 133 438	-19,5%	-435	-335	-258			
2079	0	-280 574	28 852 864	-21,7%	-452	-347	-266			
2080	0	-353 719	28 499 145	-25,8%	-511	-390	-298			
Итого										
2021-	32 174 876	28 499 145	28 499 145	37,4%	1 223 401	770 142	335 976	17		
2080										

	асчет бюджетной эффективности 1 варианта разработки, тыс. тенге ДОХОД ГОСУДАРСТВА, тыс. тенге											
Годы		ИПН	Налог на	НДПИ на добычу нефти и газа	Прочие налоги	H			Дисконтированный доход РК при			
	Социальный налог		имущество и на транспорт			КПН	НСП	Суммарный доход РК	11,5%	12,0%	12,5%	
1	2	3	4	5	6	7	8	9	10	11	12	
2021	6 113	5 557	102 106	5 043	406	124 484	155	243 865	216 905	215 580	214 092	
2022	7 152	6 502	103 010	4 271	392	90 366	128	211 821	168 972	167 190	165 298	
2023	8 265	7 513	103 074	5 092	417	114 375	137	238 872	170 898	168 341	165 696	
2024	8 595	7 814	102 631	4 142	397	79 206	116	202 901	130 191	127 671	125 106	
2025	8 939	8 126	101 737	4 283	405	83 879	119	207 488	119 403	116 569	113 720	
2026	9 297	8 451	100 881	3 780	396	64 969	107	187 881	96 968	94 244	91 532	
2027	9 668	8 789	100 083	3 804	399	68 600	111	191 454	88 621	85 747	82 909	
2028	10 055	9 141	99 310	3 657	397	65 831	111	188 502	78 255	75 379	72 561	
2029	10 457	9 507	98 581	3 481	395	58 554	105	181 080	67 421	64 653	61 959	
2030	10 876	9 887	97 892	3 367	394	53 378	101	175 895	58 736	56 073	53 497	
2031	11 311	10 282	97 229	3 334	395	50 851	99	173 501	51 961	49 383	46 906	
2032	11 763	10 694	96 588	3 241	395	47 852	97	170 629	45 830	43 363	41 004	
2033	12 234	11 121	95 972	3 163	395	43 479	94	166 458	40 098	37 770	35 557	
2034	12 723	11 566	95 381	3 085	395	39 000	90	162 240	35 051	32 869	30 805	
2035	13 232	12 029	94 804	3 110	398	38 017	89	161 678	31 327	29 246	27 288	
2036	13 761	12 510	94 231	3 129	402	36 641	87	160 760	27 937	25 964	24 118	
2037	14 312	13 011	93 662	3 154	405	35 404	86	160 034	24 942	23 077	21 341	
2038	14 884	13 531	93 098	3 173	409	33 810	84	158 989	22 224	20 470	18 846	
2039	15 479	14 072	92 539	3 199	413	32 360	83	158 145	19 826	18 180	16 663	
2040	16 099	14 635	91 984	3 219	417	30 545	81	156 978	17 650	16 112	14 703	
2041	16 742	15 220	91 433	3 246	421	28 877	80	156 019	15 733	14 298	12 989	
2042	17 412	15 829	90 886	3 265	425	26 835	78	154 731	13 993	12 661	11 451	
2043	18 109	16 462	90 344	3 293	429	24 941	76	153 654	12 463	11 226	10 107	
2044	18 833	17 121	89 806	3 313	434	22 662	75	152 243	11 075	9 931	8 902	
2045	19 586	17 806	89 272	3 341	438	20 530	73	151 046	9 854	8 797	7 851	
2046	20 370	18 518	88 742	3 361	443	18 000	72	149 506	8 748	7 774	6 907	
2047	21 185	19 259	88 215	3 390	448	15 772	70	148 339	7 784	6 887	6 092	
2048	22 032	20 029	87 693	3 419	453	13 225	69	146 920	6 915	6 091	5 363	
2049	22 913	20 830	87 174	3 441	458	10 271	67	145 154	6 127	5 373	4 710	
2050	23 830	21 663	86 659	3 470	464	7 453	66	143 606	5 437	4 746	4 142	
2051	24 783	22 530	86 148	3 501	470	4 485	64	141 981	4 821	4 189	3 640	
2052	25 774	23 431	85 640	3 523	476	1 089	63	139 995	4 263	3 688	3 190	
ого: 2021-2052	476 783	433 439	3 016 802	113 291	13 380	1 385 737	2 933	5 442 365	1 620 428	1 563 541	1 508 947	
2053	26 805	24 368	85 136	3 554	482	0	61	140 406	3 835	3 303	2 844	
2054	27 877	25 343	84 635	3 576	488	0	60	141 979	3 478	2 982	2 556	
2055	26 093	23 721	84 457	3 607	494	0	62	138 436	3 041	2 596	2 216	
2056 2057	27 137	24 670	84 303	3 301	482	0	57	139 949	2 757	2 343	1 991	
2057	28 223	25 657	83 854 83 409	3 331 3 362	488 495	0	55	141 609	2 502	2 117	1 791	
2059	29 351 27 134	26 683 24 667	83 339	3 384	501	0	54 57	143 354 139 082	2 272 1 977	1 913 1 657	1 611 1 390	
2060	28 219	25 654	83 292	3 073	487	0	51	140 775	1 794	1 498	1 250	
2060	29 348	26 680	82 895	3 102	493	0	50	140 775	1 630	1 354	1 126	
2061	30 522	20 080	82 501	3 102	500	0	49	142 369	1 481	1 225	1 014	
2062	27 775	25 250	82 544	3 162	508	0	52	139 290	1 281	1 055	869	
2063	28 886	26 260	82 610	2 833	490	0	46	139 290	1 164	954	783	
2064	30 041	27 310	82 262	2 854	496	0	45	143 009	1 058	863	705	
2065	31 243	28 403	81 917	2 875	503	0	43	143 009	962	782	635	
2067	27 851	25 319	82 084	2 903	616	0	47	138 820	826	668	541	
2068	28 965	26 332	82 273	2 552	629	0	41	140 792	751	605	487	
2068	30 123	26 332	41 061	2 578	642	0	43	101 832	487	391	313	
2070	31 328	28 480	0	2 603	656	0	43	63 112	271	216	173	

Продолжение приложения 15

1	2	3	4	5	6	7	8	9	10	11	12
2071	27 151	24 683	596	2 629	608	0	48	55 715	214	170	135
2072	28 237	25 670	1 190	2 264	620	0	41	58 024	200	158	125
2073	29 367	26 697	1 186	2 287	634	0	40	60 211	186	147	116
2074	30 542	27 765	1 183	2 310	647	0	39	62 486	174	136	107
2075	31 763	28 876	1 179	2 333	662	0	38	64 851	162	126	98
2076	33 034	30 031	1 175	2 357	676	0	37	67 310	150	117	91
2077	34 355	31 232	1 172	0	692	0	36	67 487	135	105	81
2078	35 729	32 481	1 168	0	708	0	35	70 122	126	97	75
2079	37 158	33 780	1 165	0	725	0	34	72 863	117	90	69
2080	38 645	35 132	1 161	0	742	0	30	75 710	109	83	63
Итого 2021-2080	1 319 686	1 199 715	4 400 549	183 255	29 544	1 385 737	4 231	8 522 717	1 653 568	1 591 293	1 532 202

						цоход государст	ГВА, тыс, тенге				
Γ			Налог на	НДПИ на	Прочие налоги	Torrow Torrow			Лиск	сонтированный доход	РК при
Годы	Социальный налог	ИПН	имущество и на транспорт		и платежи в бюджет	кпн	НСП	Суммарный доход РК	11,5%	12,0%	12,5%
1	2	3	4	5	6	7	8	9	10	11	12
2021	6 113	5 557	102 106	5 043	406	124 467	155	243 848	216 890	215 565	214 077
2022	7 152	6 502	103 765	5 692	426	137 899	151	261 587	208 671	206 471	204 134
2023	9 091	8 265	111 935	7 723	482	169 836	0	307 332	219 877	216 587	213 184
2024	10 314	9 377	131 665	12 313	609	273 883	0	438 161	281 145	275 702	270 165
2025	10 727	9 752	142 889	13 888	664	331 358	148	509 426	293 158	286 200	279 205
2026	11 156	10 142	139 689	12 873	650	303 375	146	478 031	246 719	239 787	232 887
2027	11 602	10 547	136 223	12 640	653	304 736	150	476 552	220 588	213 434	206 371
2028	12 066	10 969	132 882	12 379	654	305 660	156	474 766	197 095	189 851	182 753
2029	12 549	11 408	129 110	12 163	656	303 483	158	469 526	174 816	167 640	160 654
2030	13 051	11 864	125 460	11 958	659	300 392	160	463 543	154 788	147 771	140 984
2031	13 573	12 339	121 927	11 761	662	296 547	161	456 969	136 855	130 067	123 542
2032	14 116	12 832	118 506	11 573	665	294 900	163	452 755	121 608	115 060	108 802
2033	14 680	13 346	115 186	11 428	669	290 994	163	446 467	107 550	101 306	95 370
2034	15 268	13 880	111 964	11 254	673	285 411	162	438 612	94 761	88 860	83 282
2035	15 878	14 435	108 834	11 122	678	280 634	161	431 742	83 656	78 097	72 869
2036	16 513	15 012	105 789	10 995	683	275 477	159	424 628	73 792	68 580	63 705
2037	17 174	15 613	102 830	10 839	687	268 896	157	416 195	64 866	60 016	55 502
2038	17 861	16 237	99 953	10 723	692	263 220	154	408 840	57 148	52 639	48 463
2039	18 575	16 887	97 150	10 611	698	257 293	151	401 365	50 317	46 140	42 291
2040	19 318	17 562	94 423	10 471	702	250 079	148	392 704	44 153	40 307	36 781
2041	20 091	18 265	91 770	10 369	708	243 815	145	385 163	38 839	35 298	32 066
2042	20 895	18 995	89 183	10 270	714	237 367	142	377 566	34 146	30 894	27 941
2043	21 730	19 755	86 660	10 175	721	230 763	139	369 942	30 006	27 027	24 335
2044	22 600	20 545	84 202	10 051	726	222 970	135	361 229	26 277	23 563	21 122
2045	23 504	21 367	81 808	9 964	733	216 131	132	353 638	23 072	20 596	18 380
2046	24 444	22 222	79 471	9 879	740	209 142	128	346 026	20 247	17 994	15 986
2047	25 422	23 110	77 189	9 798	747	204 384	126	340 777	17 883	15 822	13 994
2048	26 438	24 035	74 961	9 719	755	196 773	123	332 805	15 664	13 796	12 149
2049	27 496	24 996	72 785	9 644	763	189 082	119	324 885	13 714	12 025	10 542
2050	28 596	25 996	70 659	9 571	771	181 300	115	317 007	12 001	10 476	9 143
2051	27 261	24 783	68 853	9 500	779	181 722	116	313 014	10 628	9 236	8 025
2052	28 352	25 774	67 174	8 634	745	149 272	107	280 058	8 528	7 378	6 382
2053	29 486	26 805	65 345	8 589	754	142 607	104	273 689	7 475	6 438	5 544
2054	30 665	27 877	63 553	8 544	763	135 439	101	266 943	6 538	5 606	4 807
2055	28 993	26 357	62 116	8 501	772	137 775	103	264 617	5 813	4 962	4 235
2056	30 152	27 411	60 786	7 680	736	107 239	94	234 099	4 612	3 919	3 331
2057	31 358	28 508	59 243	7 656	746	100 956	92	228 559	4 039	3 417	2 890
2058	32 613	29 648	57 725	7 660	757	94 932	89	223 424	3 541	2 982	2 512
2059	30 526	27 750	56 605	7 637	767	99 145	91	222 521	3 163	2 652	2 223
2060	31 747	28 860	55 578	6 844	728	70 042	83	193 881	2 471	2 063	1 722
2061	33 016	30 015	54 269	6 835	739	63 960	81	188 914	2 160	1 795	1 491
2062	34 337	31 215	52 980	6 851	751	58 022	78	184 234	1 889	1 563	1 293
2063	31 743	28 857	52 144	6 843	761	64 238	81	184 668	1 698	1 399	1 152
2064	33 012	30 011	51 389	6 088	720	36 928	73	158 222	1 305	1 070	877
2065	34 333	31 212	50 278	6 091	731	30 939	71	153 654	1 137	928	757
2066	35 706	32 460	49 180	6 116	743	24 980	69	149 255	990	805	654
2067 2068	32 493	29 539	48 606	6 119	670	33 443	72	150 941	898	727	588
2068	33 792	30 720	48 106	5 346 5 376	685	6 510	64	125 224 102 821	668	538 395	433 316
2069	35 144 36 550	31 949 33 227	23 817	5 3/6	701	5 769	64		492 345		
ZU / U	36 550	33 ZZI	0	3 406	718	4 521	64	80 485	343	276	220

1	2	3	4	5	6	7	8	9	10	11	12
Итого 2021-2071	1 181 851	1 074 410	4 189 317	464 642	35 482	9 018 915	5 875	15 970 492	3 349 034	3 205 991	3 070 350
2072	33 885	30 804	1 182	4 672	686	0	62	71 291	246	195	154
2073	35 240	32 037	1 161	4 704	702	0	61	73 905	229	180	142
2074	36 650	33 318	1 141	4 736	719	0	59	76 623	213	167	131
2075	38 116	34 651	1 121	4 769	736	0	57	79 449	198	154	121
2076	39 640	36 037	1 101	4 801	754	0	56	82 389	184	143	111
2077	41 226	37 478	1 081	0	772	0	55	80 612	161	125	97
2078	42 875	38 977	1 061	0	792	0	53	83 759	150	116	89
2079	44 590	40 536	1 042	0	812	0	52	87 032	140	108	82
2080	46 374	42 158	1 022	0	833	0	49	90 436	130	99	76
Итого 2021-2080	44 571	40 519	4 199 228	488 324	42 287	9 018 915	6 379	16 695 987	3 350 685	3 207 278	3 071 353

Приложение 17 – Расчет удельного норматива отчислений в ликвидационный фонд по 1 варианту, тыс.тенге

1BIC.1EHI E				
Показатели	Ед. измерения	Базовая величина		
Всего базовая величина отчислений в Ликвидационный фонд, в ценах 2021 года (за минусом возвратных сумм), без учета НДС	тыс. тенге	131 543,35		
Затраты за выбросы вредных веществ при ликвидации объектов обустройства	тыс. тенге	8 936,00		
Всего Ликвидационный фонд в базовых ценах 2016 года, без НДС	тыс. тенге	140 479,35		
Курс доллара на момент расчета	тенге/\$	430		
Всего Ликвидационный фонд в базовых ценах 2021 года, без НДС	тыс.\$	326,70		
Проектируемая добыча газа за проектный период	млн.м3	224,00		
Сумма фактических перечислений в фонд ликвидации	тыс. тенге	11 839,00		
Остаточная стоимость Ликвид фонда	тыс. тенге	128 640,35		
Базовый норматив отчислений в Фонд ликвидации - в ценах без	тыс тенге/1 млн. м3. запасов	140 479,35 430 326,70 224,00 11 839,00		
учета инфляции при неизменном курсе доллара	\$/ m3	1,34		

Приложение 18 – Расчет стоимости платежей в ликвидационный фонд по 1 варианту, тыс.тенге

Годы	Добыча сырого газа, млн.м ³	Отчисления в ликвид.фонд	Фактические перечисления сумм на депозитный счет
	MJIH.M	в .тыс.тенге	в .тыс.тенге
1	2	3	4
2018			1 202,31
2019			7 578,30
2020			3 058,54
2021	25,97	14 911,98	
2022	21,99	12 628,45	
2023	26,22	15 056,68	
2024	21,32	12 246,46	
2025	22,05	12 664,85	
2026	19,46	11 178,40	
2027	19,30	11 081,58	
2028	18,28	10 496,28	
2029	17,14	9 842,95	
2030	16,34	9 381,61	
2031	15,93	9 151,11	
Итого 2021-2031	224,00	128 640,35	11 839,15

Приложение 19 – Расчет удельного норматива отчислений в ликвидационный фонд по 2 варианту, тыс.тенге

Показатели	Ед. измерения	Базовая величина
Всего базовая величина отчислений в Ликвидационный фонд, в ценах 2021года (за минусом возвратных сумм), без учета НДС	тыс. тенге	157 852,03
Затраты за выбросы вредных веществ при ликвидации объектов обустройства	тыс. тенге	8 936,00
Всего Ликвидационный фонд в базовых ценах 2016 года, без НДС	тыс. тенге	166 788,03
Курс доллара на момент расчета	тенге/\$	430
Всего Ликвидационный фонд в базовых ценах 2021 года, без НДС	тыс.\$	387,88
Проектируемая добыча газа за проектный период	млн.м3	598,32
Сумма фактических перечислений в фонд ликвидации	млн.м3	11 839,00
Остаточная стоимость Ликвид фонда	доли единицы	154 949,03
Базовый норматив отчислений в Фонд ликвидации - в ценах без	тыс тенге/1 млн. м3. запасов	258,98
учета инфляции при неизменном курсе доллара	\$/ m3.	0,60

Приложение 20 – Расчет стоимости платежей в ликвидационный фонд по 2 варианту, тыс.тенге

Годы	Добыча сырого газа, млн.м ³	Отчисления в ликвид.фонд	Фактические перечисления сумм на депозитный счет
		в .тыс.тенге	в .тыс.тенге
1	2	3	4
2018			1 202,31
2019			7 578,30
2020			3 058,54
2021	25,97	6 747,12	
2022	29,30	7 614,59	
2023	39,77	10 332,74	
2024	63,40	16 473,56	
2025	71,50	18 579,97	
2026	66,28	17 222,89	
2027	64,12	16 661,44	
2028	61,86	16 075,25	
2029	59,89	15 562,02	
2030	58,01	15 073,00	
2031	56,21	14 606,43	
Итого 2021-2031	596,32	154 949,03	11 839,15

Приложение 21 – Месторождение Айракты. Характеристика основного фонда скважин в целом по месторождению. Вариант 1

месторож	денин	ю. Вариа	HT 1							
	Вроп	скражи	н из бурения	Фонд	Эксплуа-		Фонд	газа, тыс.м³/сут т/сут 9,4 0,095 7,4 0,075 7,9 0,080 6,1 0,062 6,4 0,064 5,6 0,056 5,3 0,053 4,9 0,040 4,0 0,044 4,2 0,044 4,2 0,044 4,0 0,041 4,0 0,040 4,0 0,040 4,0 0,040 3,9 0,039 3,9 0,039 3,8 0,039 3,8 0,038 3,7 0,037 3,7 0,037 3,7 0,037 3,7 0,037 3,7 0,037 3,7 0,037		
Годы и	рвод	СКВажи	н из бурсния	скважин	тацион-	Выбытие	добывающих	на 1 сн	сважину	
попиони		из	из	сначала	ное	скважин,	скважин на	гозо	конденсата ут т/сут 0,095 0,075 0,080 0,062 0,064 0,057 0,056 0,053 0,050 0,048 0,044 0,043 0,041 0,041 0,041 0,040 0,040 0,040 0,039 0,039 0,038 0,038 0,037 0,037	
псриоды	всего	ns Synauua	из консервации	разработки,	разработки, бурение, ед. конец го		конец года,			
			консервации		M		ед.		1/031	
2021	0	0	0	17	0	0	8			
2022	1	0	1	18	0	0	9			
2023	1	0	1	19	0	0	10	7,9		
2024	0	0	0	19	0	0	10	6,1		
2025	0	0	0	19	0	0	10	6,4		
2026	0	0	0	19	0	0	10	5,6	0,057	
2027	0	0	0	19	0	0	10		0,056	
2028	0	0	0	19	0	0	10	5,3	0,053	
2029	0	0	0	19	0	0	10	4,9	0,050	
2030	0	0	0	19	0	0	10	4,7	0,048	
2031	0	0	0	19	0	0	10	4,6	0,046	
2032	0	0	0	19	0	0	10	4,4	0,044	
2033	0	0	0	19	0	0	10	4,2	0,043	
2034	0	0	0	19	0	0	10	4,1	0,041	
2035	0	0	0	19	0	0	10	4,0	0,041	
2036	0	0	0	19	0	0	10	4,0	0,040	
2037	0	0	0	19	0	0	10	4,0	0,040	
2038	0	0	0	19	0	0	10	3,9	0,040	
2039	0	0	0	19	0	0	10	3,9	0,040	
2040	0	0	0	19	0	0	10	3,9	0,039	
2041	0	0	0	19	0	0	10	3,9	0,039	
2042	0	0	0	19	0	0	10	3,8	0,039	
2043	0	0	0	19	0	0	10	3,8	0,038	
2044	0	0	0	19	0	0	10	3,8	0,038	
2045	0	0	0	19	0	0	10		0,038	
2046	0	0	0	19	0	0	10	3,7	0,037	
2047	0	0	0	19	0	0	10	3,7	0,037	
2048	0	0	0	19	0	0	10	3,7	0,037	
2049	0	0	0	19	0	0	10	3,6	0,037	
2050	0	0	0	19	0	0	10	3,6	0,036	
2051	0	0	0	19	0	0	10	3,6	0,036	
2052	0	0	0	19	0	0	10	3,6	0,036	

Приложение 22 – Месторождение Айракты. Характеристика основных показателей разработки в

целом по месторождению. Вариант 1

целом по	месторо	эждению. Ва	риант 1						
				Накоп-	Темп от	гбора	Отбор от	Коэффи-	Коэффи-
Годы и	Добыча	Добыча	Накопленная	ленная	газа	OT	извлека-	циент	циент
			добыча газа,	добыча	извлека	емых	емых	циент извлечения	извлечения
периоды	млн. м ³	тыс. т	млн. м ³	конденсата,	запасо	в, %	запасов,	извлечения газа, д.ед.	конденсата,
				тыс. т	начальн	текущ	%	таза, д.ед.	д.ед.
2021	26,0	0,262	140,6	1,778	1,0	1,0	19,6	0,026	0,009
2022	22,0	0,222	162,6	2,000	0,8	0,9	22,7	0,030	0,010
2023	26,2	0,265	188,8	2,265	1,0	1,1	26,3	0,035	0,012
2024	21,3	0,215	210,2	2,481	0,8	0,9	29,3	0,039	0,013
2025	22,1	0,223	232,2	2,703	0,8	0,9	32,4	0,043	0,014
2026	19,5	0,197	251,7	2,900	0,7	0,8	35,1	0,047	0,015
2027	19,3	0,195	271,0	3,095	0,7	0,8	37,8	0,050	0,016
2028	18,3	0,185	289,3	3,279	0,7	0,8	40,3	0,054	0,017
2029	17,1	0,173	306,4	3,452	0,7	0,7	42,7	0,057	0,018
2030	16,3	0,165	322,7	3,617	0,6	0,7	45,0	0,060	0,019
2031	15,9	0,161	338,7	3,778	0,6	0,7	47,2	0,063	0,019
2032	15,3	0,154	353,9	3,933	0,6	0,7	49,3	0,066	0,020
2033	14,7	0,148	368,6	4,081	0,6	0,6	51,4	0,068	0,021
2034	14,1	0,142	382,7	4,223	0,5	0,6	53,3	0,071	0,022
2035	14,0	0,141	396,7	4,365	0,5	0,6	55,3	0,074	0,022
2036	13,9	0,140	410,6	4,505	0,5	0,6	57,2	0,076	0,023
2037	13,8	0,139	424,4	4,644	0,5	0,6	59,1	0,079	0,024
2038	13,7	0,138	438,0	4,782	0,5	0,6	61,0	0,081	0,025
2039	13,6	0,137	451,6	4,919	0,5	0,6	62,9	0,084	0,025
2040	13,5	0,136	465,1	5,055	0,5	0,6	64,8	0,086	0,026
2041	13,4	0,135	478,4	5,190	0,5	0,6	66,7	0,089	0,027
2042	13,2	0,134	491,7	5,324	0,5	0,6	68,5	0,091	0,027
2043	13,2	0,133	504,9	5,457	0,5	0,6	70,4	0,094	0,028
2044	13,0	0,132	517,9	5,589	0,5	0,6	72,2	0,096	0,029
2045	13,0	0,131	530,9	5,720	0,5	0,6	74,0	0,098	0,029
2046	12,8	0,130	543,7	5,849	0,5	0,6	75,8	0,101	0,030
2047	12,8	0,129	556,5	5,978	0,5	0,6	77,6	0,103	0,031
2048	12,7	0,128	569,2	6,106	0,5	0,6	79,3	0,106	0,031
2049	12,6	0,127	581,7	6,233	0,5	0,6	81,1	0,108	0,032
2050	12,5	0,126	594,2	6,360	0,5	0,6	82,8	0,110	0,033
2051	12,4	0,125	606,7	6,485	0,5	0,6	84,5	0,112	0,033
2052	12,3	0,124	619,0	6,610	0,5	0,6	86,3	0,115	0,034

Приложение 23 – Месторождение Айракты. Характеристика основного фонда скважин по I объекту. Вариант 1

Фонд Эксплуа-Фонд Среднегодовой дебит Ввод скважин из бурения тацион- Выбытиедобывающих на 1 скважину скважин Годы и сначала ное скважин, скважин на периоды конденсата, бурения консервации разработки, бурение, из газа, всего ед. конец года, гыс.м³/сут T/CVT ед. M ед. 9,4 0,095 7,6 0,077 0,084 8,3 0,064 6,3 6.0 0.061 5,2 0,053 5,2 0,052 4,8 0,049 4,5 0,045 4,2 0,043 0,042 4,1 3,9 0,040 3,8 0,038 3,6 0,036 3,6 0,036 3,5 0,036 0,036 3,5 3,5 0,035 3.5 0,035 0,035 3,4 3,4 0,035 3,4 0,034 3,4 0,034 3,4 0,034 3,3 0,034 3,3 0,034 0,033 3,3 3,3 0,033 3,3 0,033 3,2 0,033 3,2 0,033 0,032 3,2

Приложение 24 – Месторождение Айракты. Характеристика основных показателей разработки по І объекту. Вариант 1

приложен	ие 24 – Mec	горождение .	Аиракты. Лар	актеристика				тки по I объек	ту. вариант 1				
Годы и периоды	Добыча газа, млн.	Добыча конденсата,	Накопленная добыча газа,	Накоп- ленная добыча	Темп отб от извле запасо	каемых	Отбор от извлекаемых	Коэффициент извлечения	Коэффициент извлечения конденсата,	Дав.	ление, М	1Па	Коэффициент сверхсжимаемости
Периоды	M ³	тыс. т	млн. м ³	конденсата, тыс. т	начальн	текущ	запасов, %	газа, д.ед.	д.ед.	Рпл	Рзаб	Py	СВерхежимаемости
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2021	26,0	0,262	140,6	1,778	1,0	1,1	5,59	0,028	0,010	17,9	5,9	4,8	0,877
2022	21,1	0,213	161,7	1,991	0,8	0,9	6,43	0,033	0,011	17,6	5,1	4,2	0,871
2023	24,5	0,248	186,3	2,239	1,0	1,0	7,40	0,037	0,013	17,5	4,7	3,8	0,871
2024	19,7	0,199	205,9	2,438	0,8	0,8	8,19	0,041	0,014	17,4	4,6	3,7	0,870
2025	18,8	0,190	224,8	2,628	0,7	0,8	8,93	0,045	0,015	17,3	3,8	3,1	0,870
2026	16,3	0,164	241,0	2,792	0,6	0,7	9,58	0,048	0,016	17,2	3,8	3,1	0,870
2027	16,1	0,163	257,1	2,955	0,6	0,7	10,22	0,052	0,017	17,2	3,8	3,1	0,870
2028	15,1	0,153	272,2	3,107	0,6	0,7	10,82	0,055	0,017	17,1	3,8	3,1	0,869
2029	14,0	0,142	286,3	3,249	0,6	0,6	11,38	0,058	0,018	17,0	3,7	3,0	0,869
2030	13,3	0,134	299,5	3,383	0,5	0,6	11,90	0,060	0,019	16,9	3,7	3,0	0,869
2031	12,9	0,130	312,4	3,513	0,5	0,6	12,42	0,063	0,020	16,9	3,7	3,0	0,869
2032	12,3	0,124	324,7	3,637	0,5	0,6	12,90	0,065	0,020	16,8	3,7	3,0	0,869
2033	11,7	0,118	336,4	3,756	0,5	0,5	13,37	0,068	0,021	16,8	3,7	3,0	0,869
2034	11,2	0,113	347,6	3,869	0,4	0,5	13,82	0,070	0,022	16,7	3,7	3,0	0,869
2035	11,1	0,112	358,7	3,981	0,4	0,5	14,26	0,072	0,022	16,7	3,7	3,0	0,869
2036	11,0	0,112	369,8	4,093	0,4	0,5	14,70	0,074	0,023	16,6	3,7	3,0	0,868
2037	11,0	0,111	380,8	4,204	0,4	0,5	15,13	0,077	0,023	16,6	3,7	3,0	0,868
2038	10,9	0,110	391,7	4,314	0,4	0,5	15,57	0,079	0,024	16,5	3,7	3,0	0,868
2039	10,8	0,110	402,5	4,423	0,4	0,5	16,00	0,081	0,025	16,5	3,7	3,0	0,868
2040	10,8	0,109	413,3	4,532	0,4	0,5	16,43	0,083	0,025	16,4	3,7	3,0	0,868
2041	10,7	0,108	424,0	4,640	0,4	0,5	16,85	0,085	0,026	16,4	3,7	3,0	0,868
2042	10,6	0,107	434,6	4,748	0,4	0,5	17,27	0,087	0,027	16,3	3,7	3,0	0,868
2043	10,6	0,107	445,2	4,854	0,4	0,5	17,69	0,090	0,027	16,3	3,7	3,0	0,868
2044	10,5	0,106	455,7	4,960	0,4	0,5	18,11	0,092	0,028	16,2	3,7	3,0	0,868
2045	10,4	0,105	466,1	5,066	0,4	0,5	18,53	0,094	0,028	16,2	3,7	3,0	0,868
2046	10,4	0,105	476,5	5,170	0,4	0,5	18,94	0,096	0,029	16,1	3,7	3,0	0,868
2047	10,3	0,104	486,8	5,275	0,4	0,5	19,35	0,098	0,029	16,1	3,7	3,0	0,868
2048	10,3	0,104	497,1	5,378	0,4	0,5	19,76	0,100	0,030	16,0	3,6	2,9	0,868
2049	10,2	0,103	507,2	5,481	0,4	0,5	20,16	0,102	0,031	16,0	3,7	3,0	0,868

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2050	10,1	0,102	517,4	5,583	0,4	0,5	20,56	0,104	0,031	15,9	3,6	2,9	0,867
2051	10,1	0,102	527,5	5,685	0,4	0,5	20,96	0,106	0,032	15,9	3,6	2,9	0,867
2052	10,0	0,101	537,5	5,786	0,4	0,5	21,36	0,108	0,032	15,8	3,6	3,0	0,867

Приложение 25 — Месторождение Айракты. Характеристика основного фонда скважин по II объекту. Вариант 1

вариант				Фонд	Эксплуа-		Фонд	Среднегод	довой дебит
_	Ввод	скважи	н из бурения	скважин			добывающих		сважину
Годы и				сначала	ное	скважин,			
периоды	всего	и3	ИЗ	разработки,	бурение,	ед.	конец года,		конденсата,
		оурения	из консервации	ед.	M		ед.	тыс.м ³ /сут	т/сут
2022	1	0	1	1	0	0	1	4,9	0,049
2023	0	0	0	1	0	0	1	4,9	0,049
2024	0	0	0	1	0	0	1	4,7	0,048
2025	0	0	0	1	0	0	1	9,3	0,094
2026	0	0	0	1	0	0	1	9,3	0,094
2027	0	0	0	1	0	0	1	9,2	0,093
2028	0	0	0	1	0	0	1	9,1	0,092
2029	0	0	0	1	0	0	1	9,0	0,091
2030	0	0	0	1	0	0	1	8,9	0,090
2031	0	0	0	1	0	0	1	8,7	0,088
2032	0	0	0	1	0	0	1	8,6	0,087
2033	0	0	0	1	0	0	1	8,5	0,086
2034	0	0	0	1	0	0	1	8,4	0,085
2035	0	0	0	1	0	0	1	8,3	0,084
2036	0	0	0	1	0	0	1	8,2	0,083
2037	0	0	0	1	0	0	1	8,1	0,082
2038	0	0	0	1	0	0	1	8,0	0,080
2039	0	0	0	1	0	0	1	7,9	0,079
2040	0	0	0	1	0	0	1	7,8	0,078
2041	0	0	0	1	0	0	1	7,7	0,077
2042	0	0	0	1	0	0	1	7,6	0,076
2043	0	0	0	1	0	0	1	7,5	0,075
2044	0	0	0	1	0	0	1	7,4	0,074
2045	0	0	0	1	0	0	1	7,3	0,073
2046	0	0	0	1	0	0	1	7,2	0,073
2047	0	0	0	1	0	0	1	7,1	0,072
2048	0	0	0	1	0	0	1	7,0	0,071
2049	0	0	0	1	0	0	1	6,9	0,070
2050	0	0	0	1	0	0	1	6,8	0,069
2051	0	0	0	1	0	0	1	6,7	0,068
2052	0	0	0	1	0	0	1	6,7	0,067

Приложение 26 – Месторождение Айракты. Характеристика основных показателей разработки по II объекту. Вариант 1

	11020	рождение		Накоп-	Темп отб				кту. вариант 1	-			
	Добыча	Добыча	Накопленная		от извле	-	Отбор от	Коэффициент	Коэффициент	Дав.	ление, М	Пα	TC 11
Годы и	газа, млн.	конденсата,	добыча газа,	добыча	запас	ов, %	извлекаемых	извлечения	извлечения				Коэффициент
периоды	M^3	тыс. т	млн. м ³	конденсата,	начальн	текущ	запасов, %	газа, д.ед.	конденсата, д.ед.	Рпл	Рзаб	Py	сверхсжимаемости
				тыс. т		текущ			д.ед.	1 1171			
2022	0,9	0,009	0,9	0,009	0,8	0,8	0,8	0,002	0,001	11,4	5,3	4,2	0,836
2023	1,7	0,017	2,6	0,026	1,5	1,5	2,3	0,006	0,002	11,3	4,7	3,8	0,835
2024	1,6	0,017	4,2	0,043	1,5	1,5	3,8	0,010	0,003	11,3	4,6	3,7	0,835
2025	3,2	0,033	7,5	0,075	2,9	3,0	6,7	0,018	0,005	11,2	3,8	3,1	0,835
2026	3,2	0,032	10,7	0,108	2,9	3,1	9,6	0,025	0,007	11,2	3,8	3,0	0,835
2027	3,2	0,032	13,9	0,140	2,9	3,2	12,5	0,033	0,009	11,1	3,6	2,9	0,836
2028	3,2	0,032	17,0	0,172	2,8	3,3	15,3	0,040	0,011	11,0	3,6	2,9	0,836
2029	3,1	0,031	20,1	0,203	2,8	3,3	18,2	0,048	0,014	10,9	3,6	2,9	0,837
2030	3,1	0,031	23,2	0,235	2,8	3,4	20,9	0,055	0,016	10,9	3,6	2,9	0,837
2031	3,0	0,031	26,3	0,265	2,7	3,5	23,6	0,062	0,018	10,8	3,6	2,9	0,838
2032	3,0	0,030	29,2	0,295	2,7	3,5	26,3	0,069	0,020	10,7	3,6	2,9	0,838
2033	3,0	0,030	32,2	0,325	2,7	3,6	29,0	0,076	0,022	10,6	3,6	2,9	0,838
2034	2,9	0,029	35,1	0,355	2,6	3,7	31,6	0,083	0,024	10,6	3,6	2,9	0,839
2035	2,9	0,029	38,0	0,384	2,6	3,8	34,2	0,090	0,026	10,5	3,6	2,9	0,839
2036	2,8	0,029	40,8	0,412	2,6	3,9	36,8	0,097	0,027	10,4	3,6	2,9	0,840
2037	2,8	0,028	43,6	0,440	2,5	4,0	39,3	0,103	0,029	10,4	3,6	2,9	0,840
2038	2,8	0,028	46,4	0,468	2,5	4,1	41,8	0,110	0,031	10,3	3,6	2,9	0,841
2039	2,7	0,028	49,1	0,496	2,5	4,2	44,2	0,116	0,033	10,2	3,6	2,9	0,841
2040	2,7	0,027	51,8	0,523	2,4	4,3	46,7	0,123	0,035	10,2	3,6	2,9	0,842
2041	2,7	0,027	54,4	0,550	2,4	4,5	49,0	0,129	0,037	10,1	3,6	2,9	0,842
2042	2,6	0,026	57,1	0,576	2,4	4,6	51,4	0,135	0,038	10,0	3,6	2,9	0,843
2043	2,6	0,026	59,7	0,602	2,3	4,8	53,7	0,141	0,040	10,0	3,6	2,9	0,843
2044	2,6	0,026	62,2	0,628	2,3	5,0	56,0	0,147	0,042	9,9	3,6	2,9	0,844
2045	2,5	0,025	64,7	0,654	2,3	5,2	58,3	0,153	0,044	9,8	3,6	2,9	0,844
2046	2,5	0,025	67,2	0,679	2,2	5,4	60,6	0,159	0,045	9,8	3,6	2,9	0,844
2047	2,5	0,025	69,7	0,704	2,2	5,6	62,8	0,165	0,047	9,7	3,6	2,9	0,845
2048	2,4	0,025	72,1	0,728	2,2	5,9	65,0	0,171	0,049	9,7	3,6	2,9	0,845
2049	2,4	0,024	74,5	0,752	2,2	6,2	67,1	0,177	0,050	9,6	3,6	2,9	0,846
2050	2,4	0,024	76,9	0,776	2,1	6,5	69,2	0,182	0,052	9,6	3,6	2,9	0,846
2051	2,3	0,024	79,2	0,800	2,1	6,8	71,4	0,188	0,053	9,5	3,6	2,9	0,847
2052	2,3	0,023	81,5	0,823	2,1	7,3	73,4	0,193	0,055	9,4	3,6	2,9	0,847

Приложение 27 – Месторождение Айракты. Характеристика основного фонда скважин в целом по

месторождению. Вариант 2

месторож	дени	о. Вариа	HT 2	T				<u> </u>	
	Ввол	скважи	н из бурения	Фонд	Эксплуа-		Фонд		довой дебит
Годы и	ВВОД	СКВИЖП	п из бурении	скважин	тацион-		добывающих	на 1 сн	сважину
периолы		из	из	сначала	ное	скважин,	скважин на	газа,	конденсата,
перподы	всего	бупения	из консервации	разработки,	бурение,	ед.	конец года,	тыс.м ³ /сут	
		оурсини	консервации	ед.	M		ед.	•	
2021	0	0	0	17	0	0	8	9,4	0,095
2022	1	0	1	18	0	0	9	9,9	0,100
2023	2	1	1	20	2,25	0	11	11,4	0,115
2024	1	1	0	21	2,90	0	12	15,9	0,160
2025	0	0	0	21	0	0	12	17,2	0,174
2026	0	0	0	21	0	0	12	15,9	0,161
2027	0	0	0	21	0	0	12	15,4	0,156
2028	0	0	0	21	0	0	12	14,9	0,150
2029	0	0	0	21	0	0	12	14,4	0,145
2030	0	0	0	21	0	0	12	13,9	0,141
2031	0	0	0	21	0	0	12	13,5	0,136
2032	0	0	0	21	0	0	12	13,1	0,132
2033	0	0	0	21	0	0	12	12,7	0,129
2034	0	0	0	21	0	0	12	12,4	0,125
2035	0	0	0	21	0	0	12	12,0	0,122
2036	0	0	0	21	0	0	12	11,7	0,118
2037	0	0	0	21	0	0	12	11,4	0,115
2038	0	0	0	21	0	0	12	11,1	0,112
2039	0	0	0	21	0	0	12	10,8	0,109
2040	0	0	0	21	0	0	12	10,5	0,106
2041	0	0	0	21	0	0	12	10,3	0,104
2042	0	0	0	21	0	0	12	10,0	0,101
2043	0	0	0	21	0	0	12	9,8	0,099
2044	0	0	0	21	0	0	12	9,5	0,096
2045	0	0	0	21	0	0	12	9,3	0,094
2046	0	0	0	21	0	0	12	9,1	0,092
2047	0	0	0	21	0	0	12	8,9	0,090
2048	0	0	0	21	0	0	12	8,7	0,088
2049	0	0	0	21	0	0	12	8,5	0,086
2050	0	0	0	21	0	0	12	8,3	0,084
2051	0	0	0	21	0	1	11	8,1	0,082
2052	0	0	0	21	0	0	11	7,9	0,080
2053	0	0	0	21	0	0	11	7,8	0,078
2054	0	0	0	21	0	0	11	7,6	0,077
2055	0	0	0	21	0	1	10	7,5	0,075
2056	0	0	0	21	0	0	10	7,3	0,074
2057	0	0	0	21	0	0	10	7,2	0,072
2058	0	0	0	21	0	0	10	7,1	0,071
2059	0	0	0	21	0	1	9	6,9	0,070
2060	0	0	0	21	0	0	9	6,8	0,069
2061	0	0	0	21	0	0	9	6,7	0,068
2062	0	0	0	21	0	0	9	6,6	0,067
2063	0	0	0	21	0	1	8	6,5	0,066
2064	0	0	0	21	0	0	8	6,4	0,065
2065	0	0	0	21	0	0	8	6,3	0,064
2066	0	0	0	21	0	0	8	6,3	0,063
2067	0	0	0	21	0	1	7	6,2	0,062
2068	0	0	0	21	0	0	7	6,1	0,061
2069	0	0	0	21	0	0	7	6,0	0,061
2070	0	0	0	21	0	0	7	6,0	0,060
2071	0	0	0	21	0	1	6	5,9	0,060
2071	U	U	U	<i>L</i> 1	U	1	U	٦,٦	0,000

Приложение 28 – Месторождение Айракты. Характеристика основных показателей разработки в

целом по месторождению. Вариант 2

целом по) местој	ождению.	Вариант 2		•		T	T	,
				Накоп-	Темп от	гбора			Коэффициен
Годы и	Добыч	Добыча	Накопленна	пакон- ленная	газа	OT	Отбор от	Коэффициен	
11 ' '	а газа,		я добыча	ленная добыча	извлека	емых	извлекаемы	T	Т
период	млн.	конденсат	газа, млн.		запасо	в, %	х запасов,	извлечения	извлечения
ы	M^3	а, тыс. т	M^3	конденсат	началь	теку	%	газа, д.ед.	конденсата,
				а, тыс. т	Н	Щ			д.ед.
2021	26,0	0,262	140,6	1,8	1,0	1,0	7,7	0,026	0,009
2022	29,3	0,296	169,9	2,1	1,1	1,2	9,3	0,032	0,011
2023	39,8	0,402	209,7	2,5	1,5	1,6	11,5	0,039	0,013
2024	63,4	0,640	273,1	3,1	2,4	2,6	15,0	0,051	0,016
2025	71,5	0,722	344,6	3,8	2,7	3,0	18,9	0,064	0,020
2026	66,3	0,669	410,9	4,5	2,5	2,9	22,5	0,076	0,023
2027	64,1	0,648	475,0	5,2	2,4	2,9	26,0	0,088	0,027
2028	61,9	0,625	536,9	5,8	2,4	2,9	29,4	0,100	0,030
2029	59,9	0,605	596,8	6,4	2,3	2,9	32,7	0,111	0,033
2030	58,0	0,586	654,8	7,0	2,2	2,9	35,8	0,121	0,036
2031	56,2	0,568	711,0	7,5	2,1	2,9	38,9	0,132	0,039
2032	54,5	0,550	765,5	8,1	2,1	2,8	41,9	0,142	0,042
2033	53,0	0,535	818,5	8,6	2,0	2,8	44,8	0,152	0,044
2034	51,4	0,520	869,9	9,1	2,0	2,8	47,6	0,161	0,047
2035	50,1	0,506	920,0	9,7	1,9	2,9	50,4	0,171	0,050
2036	48,8	0,493	968,8	10,1	1,9	2,9	53,0	0,180	0,052
2037	47,4	0,479	1016,2	10,6	1,8	2,9	55,6	0,188	0,055
2038	46,2	0,466	1062,4	11,1	1,8	2,9	58,2	0,197	0,057
2039	45,0	0,455	1107,4	11,5	1,7	2,9	60,6	0,205	0,059
2040	43,8	0,442	1151,1	12,0	1,7	2,9	63,0	0,213	0,062
2041	42,7	0,431	1193,8	12,4	1,6	2,9	65,4	0,221	0,064
2042	41,7	0,421	1235,5	12,8	1,6	2,9	67,6	0,229	0,066
2043	40,7	0,411	1276,2	13,2	1,5	2,9	69,9	0,237	0,068
2044	39,6	0,400	1315,8	13,6	1,5	2,9	72,0	0,244	0,070
2045	38,7	0,390	1354,4	14,0	1,5	2,9	74,1	0,251	0,072
2046	37,8	0,381	1392,2	14,4	1,4	3,0	76,2	0,258	0,072
2047	36,9	0,373	1429,1	14,8	1,4	3,0	78,2	0,265	0,074
2047	36,1	0,364	1465,2	15,2	1,4	3,0	80,2	0,203	0,078
2049	35,3	0,356	1500,4	15,5	1,3	3,0	82,1	0,272	0,078
2050	34,5	0,348	1534,9	15,9	1,3	3,1	84,0	0,278	0,080
2051	33,7	0,340	1568,6	16,2	1,3	3,1	85,9	0,283	0,082
2052	30,2	0,340	1598,8		1	2,9	87,5	0,291	0,084
2052	29,6	0,303	1628,4	16,5	1,1	2,9	89,1	0,302	0,083
2054	29,0	0,299	1657,4	16,8 17,1	1,1	2,9	90,7	0,302	0,087
2055	28,4	0,293					90,7	0,307	0,088
	25,3		1685,8	17,4	1,1	2,9		· · · · · · · · · · · · · · · · · · ·	
2056 2057		0,256 0,251	1711,1 1735,9	17,6	1,0	2,7	93,7	0,317 0,322	0,091
2057	24,8	·		17,9	0,9	2,7	95,0		0,092
	24,5	0,247	1760,4	18,1	0,9	2,7	96,4	0,326	0,093
2059	24,1	0,243	1784,5	18,4	0,9	2,8	97,7	0,331	0,095
2060	21,2	0,215	1805,7	18,6	0,8	2,5	98,9	0,335	0,096
2061	20,9	0,211	1826,6	18,8	0,8	2,5	100,0	0,339	0,097
2062	20,6	0,208	1847,3	19,0	0,8	2,6	101,1	0,343	0,098
2063	20,3	0,205	1867,6	19,2	0,8	2,6	102,2	0,346	0,099
2064	17,8	0,180	1885,4	19,4	0,7	2,3	103,2	0,350	0,100
2065	17,5	0,177	1902,9	19,6	0,7	2,4	104,2	0,353	0,101
2066	17,4	0,175	1920,3	19,8	0,7	2,4	105,1	0,356	0,102
2067	17,1	0,173	1937,4	19,9	0,7	2,4	106,1	0,359	0,103
2068	14,7	0,149	1952,1	20,1	0,6	2,1	106,9	0,362	0,103
2069	14,6	0,147	1966,7	20,2	0,6	2,2	107,7	0,365	0,104
2070	14,5	0,146	1981,2	20,4	0,6	2,2	108,5	0,367	0,105
2071	14,3	0,145	1995,5	20,5	0,5	2,2	109,2	0,370	0,106

Приложение 29 – Месторождение Айракты. Характеристика основного фонда скважин по I объекту. Вариант 2

Вариант				T				<u> </u>	
	Вроп	CKDOWN	н из бурения	Фонд	Эксплуа-		Фонд		довой дебит
Годы и	рвод	СКВажи	н из бурсния	скважин	тацион-	Выбытие	добывающих	на 1 сн	сважину
периольт		шэ	шэ	сначала	ное	скважин,	скважин на	газа,	конденсата,
псриоды	всего	ทง ดีงทอบนส	из консервации	разработки,	бурение,	ед.	конец года,	таза, тыс.м ³ /сут	
		оурения	консервации	ед.	M		ед.	·	1/Cy1
2021	0	0	0	17	0	0	8	9,4	0,095
2022	0	0	0	17	0	0	8	10,2	0,103
2023	2	1	1	19	2,25	0	10	12,1	0,123
2024	1	1	0	20	2,90	0	11	16,9	0,171
2025	0	0	0	20	0	0	11	17,9	0,181
2026	0	0	0	20	0	0	11	16,5	0,167
2027	0	0	0	20	0	0	11	16,0	0,161
2028	0	0	0	20	0	0	11	15,4	0,155
2029	0	0	0	20	0	0	11	14,9	0,150
2030	0	0	0	20	0	0	11	14,4	0,145
2031	0	0	0	20	0	0	11	13,9	0,141
2032	0	0	0	20	0	0	11	13,5	0,136
2033	0	0	0	20	0	0	11	13,1	0,133
2034	0	0	0	20	0	0	11	12,7	0,129
2035	0	0	0	20	0	0	11	12,4	0,125
2036	0	0	0	20	0	0	11	12,0	0,122
2037	0	0	0	20	0	0	11	11,7	0,118
2038	0	0	0	20	0	0	11	11,4	0,115
2039	0	0	0	20	0	0	11	11,1	0,112
2040	0	0	0	20	0	0	11	10,8	0,112
2040	0	0	0	20	0	0	11	10,5	0,106
2041	0	0	0	20	0	0	11	10,3	0,103
2042	0	0	0	20	0	0	11	10,2	0,103
2043	0	0	0	20	0	0	11	9,7	0,101
2044	0	0	0		0	0	11	9,7	·
	0	0		20			11		0,096
2046 2047	0		0	20	0	0		9,2	0,093
-		0	0	20	0	0	11	9,0	0,091
2048	0	0	0	20	0	0	11	8,8	0,089
2049	0	0	0	20	0	0	11	8,6	0,087
2050	0	0	0	20	0	0	11	8,4	0,085
2051	0	0	0	20	0	1	10	8,2	0,083
2052	0	0	0	20	0	0	10	8,0	0,081
2053	0	0	0	20	0	0	10	7,9	0,080
2054	0	0	0	20	0	0	10	7,7	0,078
2055	0	0	0	20	0	1	9	7,6	0,076
2056	0	0	0	20	0	0	9	7,4	0,075
2057	0	0	0	20	0	0	9	7,3	0,073
2058	0	0	0	20	0	0	9	7,2	0,072
2059	0	0	0	20	0	1	8	7,0	0,071
2060	0	0	0	20	0	0	8	6,9	0,070
2061	0	0	0	20	0	0	8	6,8	0,069
2062	0	0	0	20	0	0	8	6,7	0,068
2063	0	0	0	20	0	1	7	6,6	0,067
2064	0	0	0	20	0	0	7	6,5	0,066
2065	0	0	0	20	0	0	7	6,4	0,065
2066	0	0	0	20	0	0	7	6,4	0,064
2067	0	0	0	20	0	1	6	6,3	0,063
2068	0	0	0	20	0	0	6	6,2	0,062
2069	0	0	0	20	0	0	6	6,1	0,062
2070	0	0	0	20	0	0	6	6,1	0,061
2071	0	0	0	20	0	1	5	6,0	0,061

Приложение 30 – Месторождение Айракты. Характеристика основных показателей разработки по I объекту. Вариант 2

		Лобыча	Накопленная , добыча газа,	Накоп-		бора газа каемых		Коэффициент	Коэффициент извлечения конденсата,		ление, М	ЛПа	Коэффициент сверхсжимаемости
периоды	газа, млн. м	тыс. т	млн. м ³	конденсата, тыс. т	начальн	текущ	запасов, %	газа, д.ед.	д.ед.	Рпл	Рзаб	Py	сверхскимаемости
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2021	26,0	0,262	140,6	1,778	1,0	1,1	5,59	0,028	0,010	17,9	5,9	4,8	0,877
2022	28,4	0,287	169,0	2,065	1,1	1,2	6,72	0,034	0,012	17,6	5,1	4,2	0,871
2023	38,1	0,385	207,1	2,450	1,5	1,6	8,23	0,042	0,014	17,5	4,7	3,8	0,871
2024	61,8	0,624	268,9	3,074	2,5	2,7	10,69	0,054	0,017	17,3	4,4	3,6	0,870
2025	68,3	0,689	337,1	3,763	2,7	3,0	13,40	0,068	0,021	17,0	3,7	3,0	0,870
2026	63,1	0,637	400,2	4,400	2,5	2,9	15,91	0,081	0,025	16,7	3,7	3,0	0,869
2027	60,9	0,615	461,1	5,015	2,4	2,9	18,33	0,093	0,028	16,4	3,6	2,9	0,869
2028	58,7	0,593	519,8	5,608	2,3	2,9	20,66	0,105	0,031	16,1	3,6	3,0	0,868
2029	56,8	0,573	576,6	6,182	2,3	2,8	22,92	0,116	0,035	15,9	3,6	2,9	0,868
2030	54,9	0,555	631,6	6,737	2,2	2,8	25,10	0,127	0,038	15,6	3,5	2,9	0,867
2031	53,2	0,537	684,7	7,274	2,1	2,8	27,22	0,138	0,041	15,4	3,5	2,8	0,867
2032	51,5	0,520	736,2	7,794	2,0	2,8	29,26	0,148	0,044	15,1	3,4	2,8	0,867
2033	50,1	0,506	786,3	8,300	2,0	2,8	31,25	0,158	0,046	14,9	3,3	2,7	0,867
2034	48,5	0,490	834,8	8,790	1,9	2,8	33,18	0,168	0,049	14,7	3,3	2,7	0,867
2035	47,2	0,477	882,0	9,266	1,9	2,8	35,06	0,177	0,052	14,5	3,2	2,6	0,867
2036	45,9	0,464	928,0	9,730	1,8	2,8	36,88	0,187	0,054	14,3	3,1	2,5	0,867
2037	44,6	0,450	972,6	10,181	1,8	2,8	38,66	0,196	0,057	14,0	3,0	2,5	0,867
2038	43,4	0,439	1016,0	10,619	1,7	2,8	40,38	0,204	0,059	13,9	3,0	2,4	0,867
2039	42,3	0,427	1058,3	11,046	1,7	2,8	42,06	0,213	0,062	13,7	2,9	2,3	0,867
2040	41,1	0,415	1099,4	11,461	1,6	2,8	43,69	0,221	0,064	13,5	2,9	2,3	0,868
2041	40,0	0,404	1139,4	11,866	1,6	2,8	45,29	0,229	0,066	13,3	2,8	2,3	0,868
2042	39,0	0,394	1178,5	12,260	1,6	2,8	46,84	0,237	0,068	13,1	2,7	2,2	0,868
2043	38,1	0,385	1216,5	12,645	1,5	2,8	48,35	0,245	0,071	13,0	2,7	2,2	0,868
2044	37,0	0,374	1253,6	13,019	1,5	2,8	49,82	0,252	0,073	12,8	2,7	2,2	0,869
2045	36,1	0,365	1289,7	13,384	1,4	2,9	51,26	0,259	0,075	12,6	2,6	2,1	0,869
2046	35,3	0,356	1325,0	13,740	1,4	2,9	52,66	0,267	0,077	12,5	2,6	2,1	0,869
2047	34,4	0,348	1359,4	14,088	1,4	2,9	54,03	0,273	0,079	12,3	2,5	2,0	0,870
2048	33,6	0,340	1393,1	14,428	1,3	2,9	55,37	0,280	0,081	12,2	2,5	2,0	0,870
2049	32,9	0,332	1425,9	14,760	1,3	2,9	56,67	0,287	0,082	12,0	2,4	2,0	0,870

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2050	32,1	0,324	1458,0	15,084	1,3	2,9	57,95	0,293	0,084	11,9	2,4	1,9	0,871
2051	31,4	0,317	1489,4	15,401	1,2	3,0	59,20	0,300	0,086	11,7	2,3	1,9	0,871
2052	27,9	0,282	1517,3	15,682	1,1	2,7	60,31	0,305	0,088	11,6	2,3	1,9	0,872
2053	27,3	0,276	1544,6	15,958	1,1	2,7	61,39	0,311	0,089	11,5	2,3	1,9	0,872
2054	26,7	0,270	1571,3	16,228	1,1	2,8	62,45	0,316	0,091	11,4	2,3	1,9	0,873
2055	26,2	0,265	1597,5	16,493	1,0	2,8	63,50	0,321	0,092	11,3	2,3	1,8	0,873
2056	23,1	0,233	1620,6	16,726	0,9	2,5	64,41	0,326	0,093	11,2	2,3	1,8	0,873
2057	22,7	0,229	1643,3	16,955	0,9	2,5	65,31	0,331	0,095	11,1	2,3	1,8	0,874
2058	22,3	0,226	1665,7	17,181	0,9	2,6	66,20	0,335	0,096	11,0	2,2	1,8	0,874
2059	21,9	0,222	1687,6	17,403	0,9	2,6	67,07	0,339	0,097	10,9	2,2	1,8	0,875
2060	19,1	0,193	1706,8	17,596	0,8	2,3	67,84	0,343	0,098	10,8	2,2	1,8	0,875
2061	18,8	0,190	1725,6	17,786	0,7	2,3	68,58	0,347	0,099	10,7	2,2	1,8	0,875
2062	18,6	0,188	1744,2	17,974	0,7	2,4	69,32	0,351	0,100	10,6	2,1	1,7	0,876
2063	18,3	0,185	1762,5	18,159	0,7	2,4	70,05	0,355	0,101	10,5	2,1	1,7	0,876
2064	15,8	0,160	1778,3	18,319	0,6	2,1	70,68	0,358	0,102	10,5	2,1	1,7	0,876
2065	15,6	0,157	1793,9	18,476	0,6	2,1	71,30	0,361	0,103	10,4	2,1	1,7	0,877
2066	15,4	0,156	1809,3	18,632	0,6	2,1	71,91	0,364	0,104	10,3	2,0	1,6	0,877
2067	15,2	0,153	1824,5	18,785	0,6	2,1	72,51	0,367	0,105	10,3	2,1	1,7	0,877
2068	12,8	0,130	1837,3	18,915	0,5	1,9	73,02	0,370	0,106	10,2	2,1	1,7	0,878
2069	12,7	0,128	1850,0	19,043	0,5	1,9	73,53	0,372	0,106	10,1	2,0	1,7	0,878
2070	12,6	0,127	1862,6	19,170	0,5	1,9	74,03	0,375	0,107	10,1	2,0	1,6	0,878
2071	12,5	0,126	1875,1	19,296	0,5	1,9	74,53	0,377	0,108	10,0	1,9	1,6	0,879

Приложение 31 – Месторождение Айракты. Характеристика основного фонда скважин по II объекту.

Вариант 2

				Фонд	Эксплуа-		Фонд	Спепнего	довой дебит
	Ввод	скважи	н из бурения	скважин			Фонд добывающих		кважину
Годы и						скважин,	скважин на	na i ci	
периоды	всего	И3	из консервации	разработки,		/	конец года,	газа,	конденсата,
		бурения	консервации	ед.	M	, ,	ед.	тыс.м ³ /сут	т/сут
2022	1	0	1	1	0	0	1	4,9	0,049
2023	0	0	0	1	0	0	1	4,9	0,049
2024	0	0	0	1	0	0	1	4,7	0,048
2025	0	0	0	1	0	0	1	9,3	0,094
2026	0	0	0	1	0	0	1	9,3	0,094
2027	0	0	0	1	0	0	1	9,2	0,093
2028	0	0	0	1	0	0	1	9,1	0,092
2029	0	0	0	1	0	0	1	9,0	0,091
2030	0	0	0	1	0	0	1	8,9	0,090
2031	0	0	0	1	0	0	1	8,7	0,088
2032	0	0	0	1	0	0	1	8,6	0,087
2033	0	0	0	1	0	0	1	8,5	0,086
2034	0	0	0	1	0	0	1	8,4	0,085
2035	0	0	0	1	0	0	1	8,3	0,084
2036	0	0	0	1	0	0	1	8,2	0,083
2037	0	0	0	1	0	0	1	8,1	0,082
2038	0	0	0	1	0	0	1	8,0	0,080
2039	0	0	0	1	0	0	1	7,9	0,079
2040	0	0	0	1	0	0	1	7,8	0,078
2041	0	0	0	1	0	0	1	7,7	0,077
2042	0	0	0	1	0	0	1	7,6	0,076
2043	0	0	0	1	0	0	1	7,5	0,075
2044	0	0	0	1	0	0	1	7,4	0,074
2045	0	0	0	1	0	0	1	7,3	0,073
2046	0	0	0	1	0	0	1	7,2	0,073
2047	0	0	0	1	0	0	1	7,1	0,072
2048	0	0	0	1	0	0	1	7,0	0,071
2049	0	0	0	1	0	0	1	6,9	0,070
2050	0	0	0	1	0	0	1	6,8	0,069
2051	0	0	0	1	0	0	1	6,7	0,068
2052	0	0	0	1	0	0	1	6,7	0,067
2053	0	0	0	1	0	0	1	6,6	0,066
2054	0	0	0	1	0	0	1	6,5	0,066
2055	0	0	0	1	0	0	1	6,4	0,065
2056	0	0	0	1	0	0	1	6,3	0,064
2057	0	0	0	1	0	0	1	6,3	0,063
2058	0	0	0	1	0	0	1	6,2	0,062
2059	0	0	0	1	0	0	1	6,1	0,062
2060	0	0	0	1	0	0	1	6,0	0,061
2061	0	0	0	1	0	0	1	6,0	0,060
2062	0	0	0	1	0	0	1	5,9	0,059
2063	0	0	0	1	0	0	1	5,8	0,059
2064	0	0	0	1	0	0	1	5,7	0,058
2065	0	0	0	1	0	0	1	5,7	0,057
2066	0	0	0	1	0	0	1	5,6	0,057
2067	0	0	0	1	0	0	1	5,5	0,056
2068	0	0	0	1	0	0	1	5,5	0,055
2069	0	0	0	1	0	0	1	5,4	0,055
2070	0	0	0	1	0	0	1	5,3	0,054
2071	0	0	0	1	0	0	1	5,3	0,053

Приложение 32 – Месторождение Айракты. Характеристика основных показателей разработки по II объекту. Вариант 2

приложен	<u> 1ие 32 – Мес</u>	горождение .	Аиракты. Лар	*				тки по 11 ооъе	кту. Вариант 2	4			
F	Добыча	Добыча	Накопленная	Накоп- ленная	Темп отб от извле	-		Коэффициент	Коэффициент	Дав	ление, М	ИПа	ICan de de conse
Годы и	газа, млн.	конденсата,	добыча газа,	добыча	запас	ов, %	извлекаемых	извлечения	извлечения				Коэффициент
периоды	\mathbf{M}^{3}	тыс. т	млн. м ³	конденсата,			запасов, %	газа, д.ед.	конденсата,	D	Doof	D	сверхсжимаемости
				тыс. т	начальн	текущ			д.ед.	Рпл	Рзаб	Py	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2022	0,9	0,009	0,9	0,009	0,8	0,8	0,81	0,002	0,001	11,4	5,3	4,2	0,836
2023	1,7	0,017	2,6	0,026	1,5	1,5	2,33	0,006	0,002	11,3	4,7	3,8	0,835
2024	1,6	0,017	4,2	0,043	1,5	1,5	3,80	0,010	0,003	11,3	4,6	3,7	0,835
2025	3,2	0,033	7,5	0,075	2,9	3,0	6,72	0,018	0,005	11,2	3,8	3,1	0,835
2026	3,2	0,032	10,7	0,108	2,9	3,1	9,61	0,025	0,007	11,2	3,8	3,0	0,835
2027	3,2	0,032	13,9	0,140	2,9	3,2	12,50	0,033	0,009	11,1	3,6	2,9	0,836
2028	3,2	0,032	17,0	0,172	2,8	3,3	15,34	0,040	0,011	11,0	3,6	2,9	0,836
2029	3,1	0,031	20,1	0,203	2,8	3,3	18,15	0,048	0,014	10,9	3,6	2,9	0,837
2030	3,1	0,031	23,2	0,235	2,8	3,4	20,92	0,055	0,016	10,9	3,6	2,9	0,837
2031	3,0	0,031	26,3	0,265	2,7	3,5	23,65	0,062	0,018	10,8	3,6	2,9	0,838
2032	3,0	0,030	29,2	0,295	2,7	3,5	26,34	0,069	0,020	10,7	3,6	2,9	0,838
2033	3,0	0,030	32,2	0,325	2,7	3,6	29,00	0,076	0,022	10,6	3,6	2,9	0,838
2034	2,9	0,029	35,1	0,355	2,6	3,7	31,63	0,083	0,024	10,6	3,6	2,9	0,839
2035	2,9	0,029	38,0	0,384	2,6	3,8	34,22	0,090	0,026	10,5	3,6	2,9	0,839
2036	2,8	0,029	40,8	0,412	2,6	3,9	36,77	0,097	0,027	10,4	3,6	2,9	0,840
2037	2,8	0,028	43,6	0,440	2,5	4,0	39,29	0,103	0,029	10,4	3,6	2,9	0,840
2038	2,8	0,028	46,4	0,468	2,5	4,1	41,78	0,110	0,031	10,3	3,6	2,9	0,841
2039	2,7	0,028	49,1	0,496	2,5	4,2	44,23	0,116	0,033	10,2	3,6	2,9	0,841
2040	2,7	0,027	51,8	0,523	2,4	4,3	46,66	0,123	0,035	10,2	3,6	2,9	0,842
2041	2,7	0,027	54,4	0,550	2,4	4,5	49,05	0,129	0,037	10,1	3,6	2,9	0,842
2042	2,6	0,026	57,1	0,576	2,4	4,6	51,41	0,135	0,038	10,0	3,6	2,9	0,843
2043	2,6	0,026	59,7	0,602	2,3	4,8	53,74	0,141	0,040	10,0	3,6	2,9	0,843
2044	2,6	0,026	62,2	0,628	2,3	5,0	56,04	0,147	0,042	9,9	3,6	2,9	0,844
2045	2,5	0,025	64,7	0,654	2,3	5,2	58,31	0,153	0,044	9,8	3,6	2,9	0,844
2046	2,5	0,025	67,2	0,679	2,2	5,4	60,56	0,159	0,045	9,8	3,6	2,9	0,844
2047	2,5	0,025	69,7	0,704	2,2	5,6	62,77	0,165	0,047	9,7	3,6	2,9	0,845
2048	2,4	0,025	72,1	0,728	2,2	5,9	64,96	0,171	0,049	9,7	3,6	2,9	0,845
2049	2,4	0,024	74,5	0,752	2,2	6,2	67,12	0,177	0,050	9,6	3,6	2,9	0,846
2050	2,4	0,024	76,9	0,776	2,1	6,5	69,25	0,182	0,052	9,6	3,6	2,9	0,846

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2051	2,3	0,024	79,2	0,800	2,1	6,8	71,35	0,188	0,053	9,5	3,6	2,9	0,847
2052	2,3	0,023	81,5	0,823	2,1	7,3	73,43	0,193	0,055	9,4	3,6	2,9	0,847
2053	2,3	0,023	83,8	0,846	2,1	7,7	75,48	0,199	0,056	9,4	3,6	2,9	0,848
2054	2,3	0,023	86,0	0,869	2,0	8,3	77,51	0,204	0,058	9,3	3,6	2,9	0,848
2055	2,2	0,022	88,3	0,891	2,0	8,9	79,51	0,209	0,059	9,3	3,6	2,9	0,849
2056	2,2	0,022	90,5	0,914	2,0	9,7	81,49	0,214	0,061	9,2	3,6	2,9	0,849
2057	2,2	0,022	92,6	0,936	2,0	10,6	83,45	0,219	0,062	9,2	3,6	2,9	0,849
2058	2,1	0,022	94,8	0,957	1,9	11,7	85,38	0,225	0,064	9,1	3,6	2,9	0,850
2059	2,1	0,021	96,9	0,979	1,9	13,0	87,28	0,230	0,065	9,1	3,6	2,9	0,850
2060	2,1	0,021	99,0	1,000	1,9	14,8	89,17	0,235	0,067	9,0	3,6	2,9	0,851
2061	2,1	0,021	101,0	1,021	1,9	17,2	91,03	0,239	0,068	9,0	3,6	2,9	0,851
2062	2,0	0,021	103,1	1,041	1,8	20,5	92,87	0,244	0,069	8,9	3,6	2,9	0,852
2063	2,0	0,020	105,1	1,061	1,8	25,5	94,68	0,249	0,071	8,9	3,6	2,9	0,852
2064	2,0	0,020	107,1	1,082	1,8	33,7	96,48	0,254	0,072	8,8	3,6	2,9	0,853
2065	2,0	0,020	109,1	1,101	1,8	50,3	98,25	0,258	0,073	8,8	3,6	2,9	0,853
2066	1,9	0,020	111,0	1,121	1,8	100,1	100,00	0,263	0,075	8,7	3,6	2,9	0,853
2067	1,9	0,019	112,9	1,141	1,7	-99199,3	101,73	0,268	0,076	8,7	3,6	2,9	0,854
2068	1,9	0,019	114,8	1,160	1,7	-98,7	103,44	0,272	0,077	8,6	3,6	2,9	0,854
2069	1,9	0,019	116,7	1,179	1,7	-49,1	105,13	0,277	0,079	8,6	3,6	2,9	0,855
2070	1,9	0,019	118,6	1,197	1,7	-32,5	106,81	0,281	0,080	8,5	3,6	2,9	0,855
2071	1,8	0,019	120,4	1,216	1,7	-24,3	108,46	0,285	0,081	8,5	3,6	2,9	0,856

Приложение 33 – Сопоставление результатов интерпретации ГИС открытого ствола и ГИС по контролю

риложение 3			e peojuzia			ткрытого		120011111	110 110 110	111 00110				P	езультаты ГИ	С по контро	пю		
			Глубі	ина, м		лкрытого цина,м	Ствола					Интери	зал перфорац			ощий интерв			
Скважина	Ярус	Пачка	Кровля	Подошва	Нобщ	ффсН	К _{гл} , д.ед.	Кп, д.ед.	Кг, д.ед.	Характер насы-щения	Дата ГИС-к	Кровля	Подошва	Нобщ	Кровля	Подошва	Hpa6	К охв	Состав притока по ГИС-к
1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	C1v1	A	2075	2079.3	4.3	4.3	0.08	0.28	0.75	газ	2010г.	2073	2086	13	2073.9	2074.3	0.4	20	газ
	CIVI		2075	2017.5	1.5	15	0.00	0.20	0.75	143	20101.	2073	2000	13	2075.4	2075.9	0.5		газ
															2077.9	2078.2	0.3		газ
															2079.6	2080.1	0.5		газ
															2080.4	2080.8	0.4		газ
															2081.3	2081.8	0.5		газ
															2085.6	2085.9	0.3		газ
1	C1v1	A	2091.3	2094.2	2.9	2.5	0.21	0.23	0.71	газ		2091	2096	5	2091.4	2091.8	0.4		газ
-	CIVI		2071.5	2071.2	2.7	2.5	0.21	0.23	0.71	143		2071	2070		2093	2093.7	0.7		газ
															2095	2095.6	0.6		газ
1	C1v1					6.8									2000	2075.0	4.6	0.68	1405
1	C1v1	Б	2096.9	2098.1	1.2	1	0.18	0.18	0.61	газ		2097	2110	13	2097.3	2097.6	0.3	0.00	газ
1	C1v1	Б	2098.7	2099.7	1	1	0.18	0.27	0.74	газ			2110	10	2098.4	2098.8	0.4		газ
1	C1v1					2	0.120	0.127									0.7	0.35	
1	C1v1	A	2075	2079.3	4.3	4.3	0.08	0.28	0.75	газ	02.10.2017	2073	2086	13	2077.4	2078.3	0.9		газ
														-	2081.4	2083	1.6		газ
1	C1v1	A	2091.3	2094.2	2.9	2.5	0.21	0.23	0.71	газ		2091	2096	5	2092.4	2093.2	0.8		Газ+жидкость
1	C1v1					6.8											3.3	0.49	
1	C1v1	Б	2096.9	2098.1	1.2	1	0.18	0.18	0.61	газ									
1	C1v1	Б	2098.7	2099.7	1	1	0.18	0.27	0.74	газ									
1	C1v1	Б	2101.7	2109.4	7.7	7.2	0.02	0.13	0.57	газ		2097	2110	13	2101.4	2102.4	1		Газ+жидкость
1	C1v1	Б	2116.8	2125.1	8.3	4.3	-	0.17	0.43	газ									, ,
1	C1v1					13.5											1	0.07	
1	C1v1	A	2075	2079.3	4.3	4.3	0.08	0.28	0.75	газ	28.06.2018	2073	2086	13	2077	2078	1		газ
															2078.6	2080.3	1.7		газ
															2083.5	2085	1.5		газ
1	C1v1	A	2091.3	2094.2	2.9	2.5	0.21	0.23	0.71	газ		2091	2096	5	2092.4	2093.4	1		Газ+жидкость
1	C1v1					6.8											5.2	0.76	
1	C1v1	Б	2096.9	2098.1	1.2	1	0.18	0.18	0.61	газ									
1	C1v1	Б	2098.7	2099.7	1	1	0.18	0.27	0.74	газ		2097	2110	13	2098.7	2099.9	1.2		Газ+жидкость
1	C1v1	Б	2101.7	2109.4	7.7	7.2	0.02	0.13	0.57	газ									
1	C1v1					9.2											1.2	0.13	
1	C1v1	A	2075	2079.3	4.3	4.3	0.08	0.28	0.75	газ	28.12.2019	2073	2086	13	2076.6	2077.5	0.9		газ
															2080.2	2082.1	1.9		газ

Продолжение						Ι ο		10			1 10			1		1.0	1 10	1	
1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
															2084	2085	1		газ
1	C1v1	A	2091.3	2094.2	2.9	2.5	0.21	0.23	0.71	газ		2091	2096	5					Не работает
1	C1v1					6.8											3.8	0.56	
1	C1v1	Б	2101.7	2109.4	7.7	7.2	0.02	0.13	0.57	газ	-	2097	2110	13	-	-	-	-	перекрыт осадком
4	C1v1	A	2091.6	2093.9	2.3	2.3	0.16	0.1	0.56	газ	2011г.	2092	2134	42	2092.1	2092.6	0.5		газ+вода
												2104.4	2154.3	49.9	2094.8	2095.1	0.3		газ+вода
												2106	2135	29	2097.6	2098	0.4		газ+вода
															2099.4	2099.9	0.5		газ+вода
															2101.8	2102.2	0.4		газ+вода
4	C1v1	A	2103.3	2104.7	1.4	1.4	0.16	0.22	0.73	газ					2102.6	2103	0.4		газ+вода
4	C1v1	A	2106	2106.9	0.9	0.9	0.19	0.1	0.61	газ					2104.2	2104.5	0.3		газ+вода
4	C1v1	A	2109.8	2110.6	0.8	0.6	0.19	0.16	0.66	газ					2107	2107.3	0.3		газ+вода
4	C1v1	A	2111.8	2117.8	6	5.8	0.19	0.15	0.61	газ					2113.7	2115.1	1.4		газ+вода
4	C1v1					11											4.5	0.41	
6	C1v1	A	2117.8	2119.9	2.1	2.1	0.23	0.14	0.65	газ	26.08.2011	2115	21.40	25					
6	C1v1	Α	2123	2123.8	0.8	0.8	0.35	0.15	0.67	газ		2115	2140	25	2124.8	2125.4	0.6		Газ
6	C1v1	Α	2125.3	2131.4	6.1	6.1	0.17	0.14	0.58	газ					2126.1	2126.5	0.4		Газ
															2127.9	2128.3	0.4		Газ
															2129.7	2130.4	0.7		Газ
															2131	2131.4	0.4		Газ
															2132.9	2133.2	0.3		Газ
6	C1v1	A	2137.9	2138.8	0.9	0.9	0.4	0.19	-	газ					2137.4	2138.1	0.7		Газ
6	C1v1				412	9.9	011	0.127									3.5	0.35	
6	C1v1	Б	2145.5	2147.8	2.3	2.3	0.22	0.13	0.64	газ									
6	C1v1	Б	2149.8	2154.8	5	5	0.09	0.1	-	газ		2145	2155	10	2149.5	2150.5	1		Газ + вода
							0.00	0.12							2151.9	2152.7	0.8		Газ + вода
6	C1v1	Б	2158.4	2162	3.6	3.6	0.33	0.25	0.86	газ					2101.5	210217	0.0		Тиз Води
6	C1v1	Б	2171.6	2176.9	5.3	5.3	0.29	0.1	0.5	газ									
6	C1v1		217110	21700	0.0	16.2	0.27	0.1	0.0	1.00							1.8	0.11	
6	C1v1	Α	2117.8	2119.9	2.1	2.1	0.23	0.14	0.65	газ	08.10.2017	2090	2211	121					Не работает
6	C1v1	A	2123	2123.8	0.8	0.8	0.35	0.15	0.67	газ	00.13.2017				2124.7	2125.6	0.9		Газ
6	C1v1	A	2125.3	2131.4	6.1	6.1	0.17	0.14	0.58	газ					2126.8	2128.8	2		Газ
6	C1v1	A	2137.9	2138.8	0.9	0.9	0.4	0.19	-	газ					2130	2130.9	0.9		Газ+жидкость
6	C1v1		2131.7	2130.0	0.7	9.9	· · · ·	0.17		143			1		2130	2130.7	3.8	0.38	т из - жидкость
6	Clv1	Б	2145.5	2147.8	2.3	2.3	0.22	0.13	0.64	газ			1		2145.9	2147.1	1.2	0.00	Газ+жидкость
6	C1v1	Б	2149.8	2154.8	5	5	0.09	0.13		газ			1		2148.9	2149.8	0.9		Газ+жидкость
6	Clv1	Б	2158.4	2162	3.6	3.6	0.33	0.25	0.86	газ	+				2152	2153.7	1.7		Газ+жидкость
6	C1v1	Б	2171.6	2176.9	5.3	5.3	0.29	0.23	0.5	газ	+				2154.6	2155.8	1.2		Газ+жидкость
6	C1v1	ע	21/1.0	21/0.7	5.5	16.2	0.23	0.1	0.5	1 43	+ -		+		2134.0	2133.0	5	0.31	т аз і мидкость
8	Clvi		1764.5	1765.8	1.3	1.3	0.1	0.17	0.57	FOD	26.11.2013						3	0.31	
8	Clsr		1764.3	1763.8	1.3	0.5	0.1	0.17	0.37	газ	20.11.2013	1769	1772	3	 	1	-		
			_							газ		1/09	1//2	3	-	-	-	-	-
8	C1sr		1771.1	1774.3	3.2	3.2	0.06	0.27	0.55	газ					<u> </u>		<u> </u>		

Продолжение	-									1						ı		ı	
1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
8	C1sr		1776.9	1778.9	2	2	0.06	0.35	0.69	газ		1775	1780	5	1777	1777.6	0.6		Газ + вода
8	C1sr		1783.6	1788.2	4.6	3.6	0	0.11	0.65	не ясно		1783	1791	8	1787.9	1790	2.1		Вода
8	C1sr		2175.3	2176	0.7	-	0.2	-	-	уголь		2074	2088	14	-	-	-		-
8	C1sr					10.6											2.7	0.25	
8	C1sr		1764.5	1765.8	1.3	1.3	0.1	0.17	0.57	газ									
8	C1sr		1767.7	1768.9	1.2	0.5	0.29	0.27	0.4	газ	31.12.2020	1769	1772	3	-	-	-		-
8	C1sr		1771.1	1774.3	3.2	3.2	0.06	0.27	0.55	газ									
8	C1sr		1776.9	1778.9	2	2	0.06	0.35	0.69	газ		1775	1780	5	1775	1776.5	1.5		Газ + вода
8	C1sr		1783.6	1788.2	4.6	3.6	0	0.11	0.65	не ясно		1783	1791	8	1782.3	1790.9	8.6		Вода
8	C1sr		2175.3	2176	0.7	-	0.2	-	-	уголь		2074	2088	14	-	-	-		-
8	C1sr					10.6											10.1	0.95	
101											12.12.2019	2074.5	2076.5	2					Не работает
101	C1v1	A	2080.6	2082.1	1.5	1.5	0.21	0.2	0.68	газ		2078	2090	12	2082	2083.4	1.4		Газ ч/з столб жидкости
101	C1v1	A	2085.4	2086.4	1	1	0.12	0.24	0.83	газ					2085.9	2087.3	1.4		Газ ч/з столб жидкости
101	C1v1	Б	2099.4	2101.5	2.1	2.1	0.24	0.16	0.74	газ		2094	2096	2					Не работает
101												2099	2102	3	2099.7	2101.1	1.4		Газ ч/з столб жидкости
101	C1v1	Б	2104.1	2105.2	1.1	1.1	0.2	0.2	0.72	газ		2104	2110	6	2104.1	2105	0.9		Газ ч/з столб жидкости
101	C1v1	Б	2106.5	2107.4	0.9	0.9	0.18	0.19	0.76	газ					2105.5	2107.3	1.8		Газ ч/з столб жидкости
101	C1v1					6.6											6.9	1.00	
												2120	2129	9	2125.5	2129	3.5		Слабый газ+вода
102	C1v1	A	2129.8	2130.8	1	1	0.06	0.11	0.54	газ	30.12.2017	2130	2134	4	2130.6	2131.4	0.8		Газ ч/з столб жидкости
102	C1v1	A	2131.6	2133.5	1.9	0.9	0.22	-	-	газ					2132.3	2133.3	1		Газ ч/з столб жидкости
												21.12	21.10	5	2143.3	2144.8	1.5		Газ ч/з столб жидкости
102	C1v1	A	2142.8	2147.6	4.8	4.8	0.08	0.21	0.77	газ		2143	2148		2145.5	2147.7	2.2		Газ ч/з столб жидкости
100	G1 1				5.5	4.5	0.2	0.1	0.5	газ		2154	2161	7	2154.7	2155.6	0.9		Газ ч/з столб жидкости
102	C1v1	A	2154.8	2160.3											2158.2	2160.4	2.2		Газ ч/з столб жидкости
102	C1v1					11.2											8.6	0.77	, ,
102	C1v1	Б	2163	2164.3	1.3	1.3	0.07	0.14	0.67	газ		2163	2169	6	2163	2164	1		Газ ч/з столб жидкости
															2166.3	2169	2.7		Газ ч/з столб жидкости
102	C1v1	Б	2183.6	2189.3	5.7	4.7	0.21		-	не ясно/газ		2183	2190	7					Замерами охвачен частично
102	C1v1					6											3.7	0.62	
102	C1v1	A	2129.8	2130.8	1	1	0.06	0.11	0.54	газ	03.03.2018	2130	2134	4	2131	2131.5	0.5		Газ ч/з столб жидкости
102	C1v1	A	2131.6	2133.5	1.9	0.9	0.22	-	-	газ			<u> </u>		2131.9	2132.6	0.7		Газ ч/з столб жидкости
				1 1 1 1 1											2133.4	2134	0.6		Газ ч/з столб жидкости
102	C1v1	A	2142.8	2147.6	4.8	4.8	0.08	0.21	0.77	газ		2143	2148	5	2147.2	2148	0.8		Газ ч/з столб жидкости
102	C1v1	A	2150.9	2152.4	1.5	-	0.23	-	-	уголь		-1.0				21.0	0.0		2 23 23 TONG MILANOVIII
					5.5	4.5	0.23	0.1	0.5	газ		2154	2161	7					
102	C1v1	A	2154.8	2160.3	0.0	1.0	0.2	0.1	0.0	143		210 .	2101	,					
102	C1v1					11.2				1							2.6	0.23	
102	C1v1	Б	2163	2164.3	1.3	1.3	0.07	0.14	0.67	газ		2163	2169	6			2.0	0.00	
102	CIVI	ע	2103	210T.J	1.3	1.5	0.07	0.17	0.07	1 43		2103	2107				<u> </u>	0.00	

1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
102	C1v1					1.3											0	0.00	
102	C1v1	A	2129.8	2130.8	1	1	0.06	0.11	0.54	газ	20.03.2018	2130	2134	4	2130.7	2132.1	1.4		Газ ч/з столб жидкости
102	C1v1	A	2131.6	2133.5	1.9	0.9	0.22	-	-	газ					2133.2	2134	0.8		Газ ч/з столб жидкости
												2143	2148	5	2143	2143.9	0.9		Газ ч/з столб жидкости
102	C1v1	A	2142.8	2147.6	4.8	4.8	0.08	0.21	0.77	газ					2146	2147.5	1.5		Газ ч/з столб жидкости
102	C1v1	A	2154.8	2160.3	5.5	4.5	0.2	0.1	0.5	газ		2154	2161	7	2155.3	2156.6	1.3		Газ ч/з столб жидкости
															2158.4	2159.4	1		Вода с газом
102	C1v1					11.2											6.9	0.62	
102	C1v1	Б	2163	2164.3	1.3	1.3	0.07	0.14	0.67	газ		2163	2169	6	2165.5	2167.4	1.9		Вода
															2167.8	2169	1.2		Вода
102	C1v1	Б	2183.6	2189.3	5.7	4.7	0.21		-	не ясно/газ		2183	2190	7	2183	2190	5.7		замерами охвачен частично
102	C1v1					6											8.8	1.47	
102	C1v1	A	2129.8	2130.8	1	1	0.06	0.11	0.54	газ	15.07.2019	2130	2134	4					Не работает
102	C1v1	A	2131.6	2133.5	1.9	0.9	0.22	-	-	газ									
102	C1v1	A	2142.8	2147.6	4.8	4.8	0.08	0.21	0.77	газ		2143	2148	5	2143.2	2146.9	3.7		Газ ч/з столб жидкости
102	C1v1	A	2150.9	2152.4	1.5	-	0.23	-	-	уголь									
102	C1v1	A	2154.8	2160.3	5.5	4.5	0.2	0.1	0.5	газ		2154	2161	7	2154.5	2157.8	3.3		Газ ч/з столб жидкости
102	C1v1					11.2											7	0.63	
102	C1v1	Б	2163	2164.3	1.3	1.3	0.07	0.14	0.67	газ		2163	2169	6	2164.6	2167.4	2.8		Газ ч/з столб жидкости
102	C1v1	Б	2183.6	2189.3	5.7	4.7	0.21		-	не ясно/газ		2183	2190	7					Не работает
102	C1v1					6											2.8	0.47	
102	C1v1	A	2129.8	2130.8	1	1	0.06	0.11	0.54	газ	19.07.2020	2130	2134	4					Не работает
102	C1v1	A	2131.6	2133.5	1.9	0.9	0.22	-	-	газ									
102	C1v1	A	2142.8	2147.6	4.8	4.8	0.08	0.21	0.77	газ		2143	2148	5	2146.6	2148	1.4		Газ ч/з столб жидкости
102	C1v1	A	2150.9	2152.4	1.5	-	0.23	-	-	уголь									
102	C1v1	A	2154.8	2160.3	5.5	4.5	0.2	0.1	0.5	газ		2154	2161	7	2154.8	2157	2.2		Газ ч/з столб жидкости
															2157.8	2159.3	1.5		Газ ч/з столб жидкости
102	C1v1					11.2											5.1	0.46	
102	C1v1	Б	2163	2164.3	1.3	1.3	0.07	0.14	0.67	газ		2163	2169	6	2165.5	2168	2.5		Вода
102	C1v1	Б	2183.6	2189.3	5.7	4.7	0.21		-	не ясно/газ		2183	2190	7	-	-	-		Не работает
102	C1v1					6											2.5	0.42	
103	C1v1	A	2089.8	2098.6	8.8	8.8	0.1	0.16	0.69	газ	28.12.2017	2089	2099	10	2090	2090.9	0.9		газ ч/з столб жидкости
															2092.4	2093.3	0.9		газ ч/з столб жидкости
															2095.3	2096.3	1		газ ч/з столб жидкости
															2097.4	2098.2	0.8		слабо газ ч/з столб жидкости
103	C1v1					8.8											3.6	0.41	
103	C1v1	Б	2112.1	2114.3	2.2	2.2	0.16	0.14	0.66	газ		2111	2115	4	2113.5	2114.3	0.8		слабо вода с газом
103	C1v1					2.2											0.8	0.36	

1 1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
103	C1v1	A	2089.8	2098.6	8.8	8.8	0.1	0.16	0.69	газ	29.06.2018	2089	2099	10					
															2095.7	2096.7	1		Газ
															2098	2099	1		газ ч/з столб жидкости
103	C1v1					8.8											2	0.23	
103	C1v1	Б	2112.1	2114.3	2.2	2.2	0.16	0.14	0.66	газ		2111	2115	4	2112.2	2113.1	0.9		терм.
103	C1v1	Б				2.2											0.9	0.41	·
103	C1v1	A	2089.8	2098.6	8.8	8.8	0.1	0.16	0.69	газ	22.12.2019	2089	2099	10	2089.8	2091.7	1.9		Газ
															2094.4	2095.4	1		Газ
															2095.8	2097.3	1.5		Газ
															2098.1	2099	0.9		Газ
103	C1v1					8.8											5.3	0.60	
103	C1v1	Б	2112.1	2114.3	2.2	2.2	0.16	0.14	0.66	газ		2111	2115	4	2112.8	2113.8	1		Слабый газ
103	C1v1					2.2											1	0.45	
104	C1v1	A	2067.6	2070	2.4	2.4	0.17	0.1	0.45	газ	10.01.2019	2067	2072	5	2069	2070.6	1.6		Газ ч/з столб жидкости
104	C1v1	A	2073.8	2074.6	0.8	0.8	0.19	0.1	0.58	газ		2073	2075	2	2074.2	2075	0.8		Газ ч/з столб жидкости
104	C1v1	A	2079.4	2092.5	13.1	13.1	0.17	0.18	0.74	газ		2079	2100	21	2079	2079.8	0.8		Газ ч/з столб жидкости
															2080.7	2081.7	1		Газ ч/з столб жидкости
															2083	2085.6	2.6		Газ ч/з столб жидкости
															2086	2088.4	2.4		Газ ч/з столб жидкости
															2091.2	2092.5	1.3		Газ ч/з столб жидкости
104	C1v1	A	2092.5	2099.6	7.1	7.1	0.16	0.16	0.68	газ					2093.2	2094.8	1.6		Газ ч/з столб жидкости
															2095.8	2096.7	0.9		Газ ч/з столб жидкости
															2098	2099	1		Газ ч/з столб жидкости
104	C1v1					23.4											14	0.60	
104	C1v1	Б	2105.9	2106.6	0.7	0.7	0.36	0.18	0.74	газ	-	2106	2115	9	-	-	-		Не работает
104	C1v1	Б	2107.4	2108.6	1.2	1.2	0.18	0.12	0.66	газ					2107.4	2108.6	1.2		Газ ч/з столб жидкости
104	C1v1	Б	2109	2111.7	2.7	2.7	0.25	0.13	0.69	газ					2109.6	2110.6	1		Газ ч/з столб жидкости
104	C1v1	Б	2112.4	2113.7	1.3	1.3	0.26	0.12	0.64	газ					2111.7	2113.7	2		Слабый газ
104	C1v1	Б				5.9											4.2	0.71	
104			2134.5	2138.8	4.3	4.3	0.28	-	-	сланцы		2134	2138	4					Не работает
105	C1v1	A	2129.2	2131.5	2.3	2.3	0.1	0.2	0.68	газ	16.01.2019	2129	2136	7					Не работает
105	C1v1	A	2140.4	2146.7	6.3	6.3	0.12	0.21	0.71	газ		2140	2149	9	2143.4	2144.8	1.4		Газ ч/з столб жидкости
															2145.3	2147.4	2.1		Газ ч/з столб жидкости
105	C1v1	A	2159.6	2161.4	1.8	1	0.21	0.19	0.7	не ясно		2160	2162	2					Не работает
105	C1v1					9.6											3.5	0.36	
105	C1v1	Б	2165.3	2166.3	1	1	0.14	0.21	0.5	газ		2165	2176	11					Не работает
105	C1v1	Б	2194.5	2199.7	5.2	3.5	0.21	0.16	0.69	не ясно		2190	2200	10					Не работает
105	C1v1					4.5											0	0.00	
105	C1v1	A	2129.2	2131.5	2.3	2.3	0.1	0.2	0.68	газ	18.07.2019	2129	2136	7					Не работает

Продолжение	приложен	ия ээ																	
1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
105	C1v1	A	2140.4	2146.7	6.3	6.3	0.12	0.21	0.71	газ		2140	2149	9	2141	2145.3	4.3		Газ ч/з столб жидкости
															2147.2	2148.2	1		Газ ч/з столб жидкости
105	C1v1	A	2159.6	2161.4	1.8	1	0.21	0.19	0.7	не ясно		2160	2162	2					Не работает
105	C1v1					9.6											5.3	0.55	
105	C1v1	Б	2165.3	2166.3	1	1	0.14	0.21	0.5	газ		2165	2176	11	2165.2	2167.1	1.9		Газ ч/з столб жидкости
105	C1v1	Б	2194.5	2199.7	5.2	3.5	0.21	0.16	0.69	не ясно		2190	2200	10					Не работает
105	C1v1					4.5											1.9	0.42	
105	C1v1	A	2129.2	2131.5	2.3	2.3	0.1	0.2	0.68	газ	29.01.2019	2129	2136	7					Не работает
105	C1v1	A	2140.4	2146.7	6.3	6.3	0.12	0.21	0.71	газ		2140	2149	9	2141.6	2143.8	2.2		Газ ч/з столб жидкости
															2146.4	2149	2.6		Слабая работа
105	C1v1	A	2159.6	2161.4	1.8	1	0.21	0.19	0.7	не ясно		2160	2162	2	2161	2162	1		Слабая работа
105	C1v1					9.6											5.8	0.60	
105	C1v1	Б	2165.3	2166.3	1	1	0.14	0.21	0.5	газ		2165	2176	11					
105	C1v1	Б	2173.5	2175.9	2.4	2.4	0.1	0.19	0.62	газ					2170.9	2174.6	3.7		Слабая работа
105	C1v1	Б	2194.5	2199.7	5.2	3.5	0.21	0.16	0.69	не ясно		2190	2200	10					не охвачен
105	C1v1					6.9											3.7	0.54	
106	C1v1	A	2114.9	2117.5	2.6	2.6	0.13	0.19	0.78	газ	25.11.2019	2115	2124	9	2115	2116.6	1.6		Газ ч/з столб жидкости
106	C1v1	A	2123.6	2127.2	3.6	-	0.32	-	-	уголь		2126	2130	4	2126	2130	4		не работает
106	C1v1					2.6											5.6	2.15	
106	C1v1	Б	2133	2133.8	0.8	0.8	0.12	0.2	80	газ		2132	2136	4	2132.3	2133.8	1.5		Вода с газом
106	C1v1	Б	2134.6	2135.9	1.3	1.3	0.09	0.18	0.77	газ					2134.6	2136	1.4		Вода с газом
106	C1v1	Б	2138.6	2139.7	1.1	1.1	0.07	0.14	0.7	газ		2138	2140	2	2138	2140	2		Вода с газом
106	C1v1	Б	2158.6	2163.2	4.6	4.6	0.18	0.13	0.75	газ		2157	2163	6					Замерами не охвачен
106	C1v1					7.8											4.9	0.63	
106	C1v1	A	2114.9	2117.5	2.6	2.6	0.13	0.19	0.78	газ	12.01.2020	2115	2124	9	2115	2116.9	1.9		Газ
106	C1v1	A	2118.7	2119.3	0.6	0.6	0.1	0.15	0.73	газ					2117.7	2119	1.3		Газ
106	C1v1	A	2123.6	2127.2	3.6	-	0.32	-	-	уголь					2120.5	2121.1	0.6		Газ
106	C1v1	A	2114.9	2117.5	2.6	2.6	0.13	0.19	0.78	газ	29.12.2019	2115	2124	9	2116.6	2118.7	2.1		Слабая работа
106	C1v1	A	2123.6	2127.2	3.6	-	0.32	-	-	уголь		2126	2130	4	2126.7	2127.8	1.1		Слабая работа
106	C1v1					5.8											7	1.21	
106	C1v1	Б	2133	2133.8	0.8	0.8	0.12	0.2	80	газ		2132	2136	4	2133	2134.1	1.1		Слабая работа
106	C1v1	Б	2138.6	2139.7	1.1	1.1	0.07	0.14	0.7	газ		2138	2140	2	2138.6	2140	1.4		Газ с незн.
100	CIVI	ъ	2130.0	2139.7	1.1	1.1	0.07	0.14	0.7	143				<u> </u>					кол-вом воды
											29-30.06.2020г	2101	2104	3	2103.5	2104	0.5		Газ
106	C1v1					1.9											3	1.58	
106	C1v1	A	2107.4	2108.1	0.7	0.7	0.15	0.12	0.74	газ		2105	2109	4	2105.4	2106.3	0.8		Газ
															2108.2	2109	0.8		Газ
												2111	2113	2	2111.9	2113	1.1		Газ
106	C1v1	A	2114.9	2117.5	2.6	2.6	0.13	0.19	0.78	газ		2115	2124	9	2116.1	2117.1	1		Газ ч/з столб жидкости
106	C1v1	A	2118.7	2119.3	0.6	0.6	0.1	0.15	0.73	газ									

1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
106	C1v1	A	2123.6	2127.2	3.6	-	0.32	ı	ı	уголь					2121.5	2122.4	0.9		Газ ч/з столб жидкости
106	C1v1					3.9											4.6	1.18	
107	C1v1	A	2109.3	2110.1	0.8	-	0.57	-	ı	сланцы	23.04.2020	2102	2105	3					Не работает
107	C1v1	A	2110.1	2112.4	2.3	2.3	0.04	0.15	0.4	газ		2110	2113	3					Не работает
107	C1v1	A	2112.9	2113.6	0.7	-	0.78	ı	ı	сланцы		2114	2119	5					Не работает
107	C1v1					2.3											0	0.00	
107	C1v1	Б	2130.7	2131.3	0.6	0.6	0.2	0.11	ı	газ	31.12.2019	2128	2132	4					Не работает
107	C1v1	Б	2134.2	2135.7	1.5	1.5	-	0.14	0.01	вода		2134	2141	7	2134	2136.8	2.8		Вода
107	C1v1	Б	2139.3	2140.4	1.1	1.1	-	0.12	0.01	вода				0	2138.7	2140.4	1.7		Слабая работа
107	C1v1	Б	2153.8	2155.4	1.6	1.6	0.22	0.11	0.12	не ясно		2151	2155	4					Не работает
107	C1v1	Б	2130.7	2131.3	0.6	0.6	0.2	0.11	-	газ	22.01.2020	2128	2132	4					не отмечается
107	C1v1	Б	2134.2	2135.7	1.5	1.5	-	0.14	0.01	вода		2134	2141	7	2134	2136.8	2.8		вода
107	C1v1	Б	2139.3	2140.4	1.1	1.1	-	0.12	0.01	вода					2138.7	2140.4	1.7		слабая работа
107	C1v1	Б	2153.8	2155.4	1.6	1.6	0.22	0.11	0.12	не ясно		2151	2155	4					не отмечается
107	C1v1					9.6											9	0.94	

Приложение 34 – Сопостовление результатов интерпретации ГИС открытого ствола и ИНГК по скважинам месторождение Айракты

		Текущи	е параметры по ИНГК									
№скв	Дата ГИС-к	№ плас- та			ИС открыто пласта, м подошва	Н общ., м	Кгл, д.ед.	Кп эф, д.ед.	Кг, д.ед.	Характер насыщения	Кг, д.ед.	Характер насыщения
1	2	3	4	5	6	7	8	9	10	11	12	13
1г	27-28.12.2019 г.	A	$C_1 v_1$	2075,1	2078,5	3,4	26	0,31	0,71	газ	0,52	газ
1г		A	$C_1 v_1$	2078,5	2081	2,5	24,2	0,27	0,55	газ	0,31	остаточный газ
1г		A	$C_1 v_1$	2081	2082,5	1,5	17,8	0,30	0,3	газ	0,23	обводнен
1г		Б	$C_1 v_1$	2091,4	2094,2	2,8	32	0,28	0,35	газ	0,30	остаточный газ
1г		Б	$C_1 v_1$	2097,2	2098,3	1,1	31,1	0,27	0,27	газ	0,19	обводнен
1г		Б	$C_1 v_1$	2098,3	2099,2	0,9	29	0,30	0,34	газ	0,25	обводнен
1г		Б	$C_1 v_1$	2099,2	2100,5	1,3	33,3	0,26	0,39	газ	0,28	обводнен
8Γ	30-31.12.2020 г		C1sr	1768.3	1775	6.7	14.2	15.1	52	УВ	0.35	остаточно газонасыщенный
8Γ			C1sr	1775	1779.8	4.8	3.1	15.1	55	УВ	0.37	остаточно газонасыщенный
8Γ			C1sr	1779.8	1783.5	3.7	11	8.6	30-50	УВ	0.27	остаточно газонасыщенный
8Γ			C1sr	1783.5	1791.2	7.7	1.75	11.1	65	УВ	0.35	остаточно газонасыщенный
8г			C1sr	1868.6	1870.6	2	17	8.8	50	УВ	0.13	обводнен
8Γ			C1sr	1870.6	1872	1.4	27.9	7.5	22	ост.газ.	0.15	обводнен
8г			C1v2-3	1906	1909	3	18.1	8.55	42	пониж.газ.	0.23	обводнен
8г			C1v2-3	1910.6	1915	4.4	20.2	4.2	32	пониж.газ.	0.22	обводнен
8г			C1v2-3	1968	1974	6	17	9.9	50	УВ	0.32	остаточно газонасыщенный
8г			C1v2-3	2074	2087.8	13.8	13.4	15.4	50	УВ	0.36	остаточно газонасыщенный

продолж	ение приложения	דע										
1	2	3	4	5	6	7	8	9	10	11	12	13
101	12.12.2019 г.	A	$C_1 v_1$	2072.9	2073.7	0.8	18.2	0.18	0.44	газ	0.45	газ
101		A	$C_1 v_1$	2075.1	2076	0.9	83.6	0.13	0.54	газ	0.47	газ
101		A	$C_1 v_1$	2078.5	2079.3	0.8	15.3	0.17	0.37	газ	0.44	газ
101		A	$C_1 v_1$	2080.9	2081.8	0.9	16.7	0.2	0.39	газ	0.27	слабый газ
101		A	$C_1 v_1$	2085.8	2086.4	0.6	24.8	0.2	0.49	газ	0.42	газ
101		Б	$C_1 v_1$	2099.9	2100.9	1	17.2	0.19	0.4	газ	0.41	газ
101		Б	$C_1 v_1$	2104.1	2105.2	1.1	16.1	0.22	0.39	газ	0.48	газ
101		Б	$C_1 v_1$	2107	2107.9	0.9	25.6	0.18	0.39	газ	0.27	слабый газ
101										газ	0.22	слабый газ
102	15-16.07.2020 г.	A	$C_1 v_1$	2129.8	2130.8	1	0.08	0.1	0.3	газ	0.44	остаточно газонасыщенный
102		A	$C_1 v_1$	2131.6	2133.5	1.9	0.26	0.1	0.22	газ	0.25	остаточно газонасыщенный
102		A	$C_1 v_1$	2143.4	2147.6	4.2	0.08	0.17	0.63	газ	0.44	остаточно газонасыщенный
102		A	$C_1 v_1$	2154.8	2160.3	5.5	0.21	0.09	0.21	газ	0	насыщение не отмечается
102		Б	$C_1 v_1$	2163.2	2164.1	0.9	0.08	0.13	0.52	газ	0.05	насыщение не отмечается
102		Б	$C_1 v_1$	2165.9	2170.6	4.7	0.07	0.14	0.57	газ	0.25	обводнен
102		Б	$C_1 v_1$	2170.6	2172.6	2	0.11	0.13	0.38	газ	0.2	обводнен
102	18-19.07.2020г.	Б	$C_1 v_1$	2129.8	2130.8	1	0.08	0.1	0.3	газ	0.38	остаточно газонасыщенный
102		Б	$C_1 v_1$	2131.6	2133.5	1.9	0.26	0.1	0.22	газ	0.25	остаточно газонасыщенный
102		Б	$C_1 v_1$	2143.4	2147.6	4.2	0.08	0.17	0.63	газ	0.55	остаточно газонасыщенный
102		Б	$C_1 v_1$	2154.8	2160.3	5.5	0.21	0.09	0.21	газ	0.05	обводнен
102		Б	$C_1 v_1$	2163.2	2164.1	0.9	0.08	0.13	0.52	газ	0.26	обводнен
102		Б	$C_1 v_1$	2165.9	2170.6	4.7	0.07	0.14	0.57	газ	0.25	обводнен
102		Б	$C_1 v_1$	2170.6	2172.6	2	0.11	0.13	0.38	газ	0.19	обводнен
103	29.06.2018г.	A	$C_1 v_1$	2089.8	2090.3	0.5	0.2	0.1	0.46	газ	0.45	остаточно газонасыщенный

продолж	родолжение приложения 34												
1	2	3	4	5	6	7	8	9	10	11	12	13	
103		A	$C_1 v_1$	2091.4	2096	4.6	0.06	0.16	0.64	газ	0.6	остаточно газонасыщенный	
103		A	$C_1 v_1$	2096	2097.7	1.7	0.15	0.15	0.55	газ	0.54	остаточно газонасыщенный	
103			$C_1 v_1$	2101.2	2102	0.8	-	-	-	уголь	-	уголь	
103			$C_1 v_1$	2102.9	2104.1	1.2	-	-	-	уголь	-	уголь	
103			$C_1 v_1$	2104.7	2105.7	1	-	-	-	уголь	-	уголь	
103			$C_1 v_1$	2110.1	2110.9	0.8	-	-	-	уголь	-	уголь	
103		Б	$C_1 v_1$	2112.1	2114.3	2.2	0.16	0.13	0.55	газ	0.2	обводнен	
103			$C_1 v_1$	2121	2124.3	3.3	-	-	-	уголь	-	уголь	
103	21-22.12.2019 г.	A	$C_1 v_1$	2089,8	2090,3	0,5	0,2	0,1	0,46	газ	0,42	слабый газ	
103		A	$C_1 v_1$	2091,4	2096	4,6	0,06	0,16	0,64	газ	0,56	газ	
103		A	$C_1 v_1$	2096	2097,7	1,7	0,15	0,15	0,55	газ	0,34	остаточный газ	
103			$C_1 v_1$	2101,2	2102	0,8	-	-	-	уголь	-	уголь	
103			$C_1 v_1$	2102,9	2104,1	1,2	-	-	-	уголь	-	уголь	
103			$C_1 v_1$	2104,7	2105,7	1	-	-	-	уголь	-	уголь	
103			$C_1 v_1$	2110,1	2110,9	0,8	-	-	-	уголь	-	уголь	
103		Б	$C_1 v_1$	2112,1	2114,3	2,2	0,16	0,13	0,55	газ	0,17	обводнен	
103			$C_1 v_1$	2121	2124,3	3,3	-	-	-	уголь	-	уголь	
104	10.01.2019Γ.	A	$C_1 v_1$	2067.6	2070.0	2.4	0.09	0.1	0.42	газ	0.52	остаточно газонасыщенный	
104		A	$C_1 v_1$	2073.8	2074.6	0.8	0.12	0.12	0.43	газ	0.52	остаточно газонасыщенный	
104		A	$C_1 v_1$	2079.4	2086.2	6.8	0.07	0.17	0.61	газ	0.57	остаточно газонасыщенный	
104		A	$C_1 v_1$	2086.2	2092.6	6.4	0.07	0.17	0.61	газ	0.53	остаточно газонасыщенный	
104		A	$C_1 v_1$	2092.6	2099.6	7	0.07	0.17	0.61	газ	0.47	остаточно газонасыщенный	
104		Б	$C_1 v_1$	2105.9	2106.6	0.7	0.29	0.15	0.63	газ	0.33	остаточно газонасыщенный	

Продоля	Тродолжение приложения 34												
1	2	3	4	5	6	7	8	9	10	11	12	13	
104		Б	$C_1 v_1$	2107.4	2108.6	1.2	0.13	0.13	0.51	газ	0.36	остаточно газонасыщенный	
104		Б	$C_1 v_1$	2109.0	2113.7	4.7	0.2	0.13	0.52	газ	0.32	остаточно газонасыщенный	
104			$C_1 v_1$	2155.5	2157.8	2.3	0.29	0.16	0.33	вода	0	водонасыщенный	
104			$C_1 v_1$	2158.0	2162.0	3.6	0.35	0.17	0.29	вода	0	водонасыщенный	
104			$C_1 v_1$	2162.5	2169.0	6.5	0.37	0.16	0.21	вода	0	водонасыщенный	
105	16.01.2019г.	A	$C_1 v_1$	2129.6	2131.5	1.9	0.08	0.13	0.41	газ	0.5	остаточно газонасыщенный	
105		A	$C_1 v_1$	2140.4	2146.7	6.3	0.1	0.16	0.49	газ	0.54	остаточно газонасыщенный	
105		Б	$C_1 v_1$	2165.3	2166.3	1	0.13	0.16	0.42	газ	0.4	остаточно газонасыщенный	
105		Б	$C_1 v_1$	2168.0	2170.8	2.8	0.22	0.13	0.47	газ	0.4	остаточно газонасыщенный	
105		Б	$C_1 v_1$	2173.5	2174.7	1.2	0.13	0.15	0.49	газ	0.35	остаточно газонасыщенный	
105		Б	$C_1 v_1$	2175.1	2175.9	0.8	0.22	0.14	0.38	газ	0.28	остаточно газонасыщенный	
105			$C_1 v_1$	2190.0	2195.8	5.8	0.27	0.12	0.48	газ	0.4	остаточно газонасыщенный с ГВК на глубине 2193.5 м	
105			$C_1 v_1$	2197.0	2198.0	1	0.16	0.12	0.54	газ	0.27	обводнен	
105			$C_1 v_1$	2217.1	2218.5	1.4	0.26	0.15	0.33	вода	0	водонасыщенный	
105			$C_1 v_1$	2219.8	2220.6	0.8	0.43	0.21	0.35	вода	0	водонасыщенный	
105			$C_1 v_1$	2221.9	2223.6	1.7	0.35	0.2	0.39	вода	0	водонасыщенный	
105	17-18.07.2019	A	$C_1 v_1$	2129.6	2131.5	1.9	0.08	0.13	0.41	газ	0.41	остаточно газонасыщенный	
105		A	$C_1 v_1$	2140.4	2146.7	6.3	0.1	0.16	0.55	газ	0.5	остаточно газонасыщенный	
105		Б	$C_1 v_1$	2165.3	2166.3	1	0.13	0.16	0.42	газ	0.03	обводнен	
105		Б	$C_1 v_1$	2168	2170.8	2.8	0.22	0.13	0.47	газ	0.1	обводнен	
105		Б	$C_1 v_1$	2173.5	2174.7	1.2	0.13	0.15	0.49	газ	0.1	обводнен	
105		Б	$C_1 v_1$	2175.1	2175.9	0.8	0.22	0.14	0.38	газ	0.15	обводнен	
105			$C_1 v_1$	2190	2195.8	5.8	0.27	0.12	0.48	газ	0.15	обводнен	
105			C1 v1	2197	2198	1	0.16	0.12	0.54	газ	0.16	исследованием не охвачен	
106	29-30.06.20г	A	C1 v1	2107,4	2108,1	1,9	0,15	0,11	0,27	газ	0,27	остаточно газонасыщенный	
106		A	C1 v1	2114,9	2117,5	6,3	0,17	0,17	0,50	газ	0,50	остаточно газонасыщенный	
106		A	C1 v1	2118,7	2119,3	1,0	0,09	0,14	0,40	газ	0,36	остаточно газонасыщенный	
106			C1 v1	2122,6	2123,3	2,8	0,02	0,16	0,48	газ	0,37	остаточно газонасыщенный	