Расчет для ЗОНД

по бурению скважин №№ 3120, 3121

расположенный по адресу г.Алматы, Наурызбайский район, микрорайон Калкаман, кадастровый номер 20-322-003-285 ВОДОСНАБЖЕНИЕ

НА ПЕРИОД ПРОВЕДЕНИЯ БУРОВЫХ РАБОТ

Водопотребление осуществляется:

- на хозяйственно-бытовые нужды
- питьевые нужды;
- на производственные нужды:
- увлажнение грунтов.

4.1.1 Хозяйственно-бытовые нужды

Питьевые нужды. Водопотребление определялось исходя из нормы расхода воды, численности строителей и времени потребления. Вода для питьевых нужд рабочих осуществляется привозной (бутилированной) водой. Для строительных нужд будет использоваться привозная вода технического качества.

Норма расхода воды на питьевые нужды для ИТР - 2 л/сут на 1 человека, 25 л/сут - на 4 рабочего.

Численность строителей – 6 чел, из них: ИТР - 2 чел., рабочие - 4 чел.

$$Q_{\text{в.п.}} = Q_{\text{в.о.}} = (12 * 2) + (25 * 4) / 1000 = 0.124 \text{ м}^3/\text{сут};$$
 Годовой расход: $0,124*30 = 3,72 \text{ м}^3/\text{период.}$

4.1.2 Производственные нужды

Увлажнение грунтов. Расход воды на увлажнение грунтов определяется по периоду максимальных площадей разработки — в период подготовительных работ на площадке 250 м² (площадь земельного участка под бурения скважины) расход воды представлен в следующей таблице:

Этапы	Удельный расход	Площадь, м ²	Расход воды,
	воды на ед. площади		\mathbf{M}^3
Увлажнение грунтов,	$2 \text{ m}^3 / 100 \text{m}^2$	25,0	0,5
подготовка.			
Увлажнение грунтов,	$2 \text{ m}^3 / 100 \text{m}^2$	25,0	0,5
отсыпка			
Итого			1

Число рабочих дней в период бурения -30. 1 м³ / 30 дней = **0.033 м³/сутки** или в год **0.99 м³/период.**

2 ОБОСНОВАНИЕ ПОЛНОТЫ И ДОСТОВЕРНОСТИИСХОДНЫХ ДАННЫХ, ПРИНЯТЫХ ДЛЯ РАСЧЕТА РАССЕИВАНИЯ

Количественно-качественные характеристики выбросов ЗВ определялись расчетным путем в соответствии со «Сборником методик по расчету выбросов вредных веществ в атмосферу различными производствами», Астана, 2004г. и т.д. см. список использованных источников НТД.

ОРГАНИЗОВАННЫЙ ИСТОЧНИК №0001

Буровая установка РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 13.195$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 12.24$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива, $E_{\mathfrak{I}}=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}/3600=13.195\cdot 30/3600=0.1100000$

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=12.24\cdot 30$ / $10^3=0.3670000$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива, E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 13.195 \cdot 1.2 / 3600 = 0.0044000

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=12.24\cdot 1.2$ / $10^3=0.0147000$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива, $E_9=39$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=13.195\cdot 39$ / 3600=0.1430000

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=12.24\cdot 39$ / $10^3=0.4770000$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)</u> (516)

Оценочное значение среднециклового выброса, г/кг топлива, $E_9=10$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=13.195\cdot 10$ / 3600=0.0366500

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива, E_9 = $\mathbf{25}$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $\mathbf{13.195}\cdot\mathbf{25}$ / 3600 = $\mathbf{0.0916000}$

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=12.24\cdot 25$ / $10^3=0.3060000$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в</u> пересчете на С); Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива, E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 13.195 \cdot 12 / 3600 = 0.0440000

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=12.24\cdot 12$ / $10^3=0.1470000$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива, E_{9} = **1.2** Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{9}$ / 3600 = **13.195** · **1.2** / 3600 = **0.0044000**

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=12.24\cdot 1.2$ / $10^3=0.0147000$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива, $E_9=5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=13.195\cdot 5$ / 3600=0.0183300

Валовый выброс, т/год, $_M_ = G_{FGGO} \cdot E_{\mathfrak{I}} / 10^3 = 12.24 \cdot 5 / 10^3 = 0.0612000$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.11	0.367
0304	Азот (II) оксид (Азота оксид) (6)	0.143	0.477
0328	Углерод (Сажа, Углерод черный) (583)	0.01833	0.0612
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.03665	0.1224
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0916	0.306
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0044	0.0147
1325	Формальдегид (Метаналь) (609)	0.0044	0.0147
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.044	0.147

ОРГАНИЗОВАННЫЙ ИСТОЧНИК №0002

Заправка буровых установок РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт: Дизельное топливо Расчет выбросов от резервуаров

Конструкция резервуара: наземный

Климатическая зона: третья - южные области РК

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), CMAX = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, OOZ = 12.24

Концентрация паров нефтепродуктов при заполнении резервуаровв осеннезимний период, r/m3 (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, $QVL=\mathbf{0}$

Концентрация паров нефтепродуктов при заполнении резервуаровв весеннелетний период, r/м3 (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час,

VSL=1

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 1) / 3600 = 0.000625$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL) \cdot 10^{-6} = (1.19 \cdot 12,24 + 1.6 \cdot 0) \cdot 10^{-6} = 0.0000146$

Удельный выброс при проливах, г/м3, J=50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), MPRR = $0.5 \cdot J \cdot$

 $(QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (12,24 + 0) \cdot 10^{-6} = 0.000306$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000146 + 0.000306 =

0.0003206

<u>Примесь: 2754 Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С): Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=99.72\cdot 0.0003206/100=$

0.0003197

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 99.72 \cdot$

0.000625 / 100 = 0.000623

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.0003206/100=$

0.000000898

Максимальный из разовых выброс, г/с (5.2.4), $_{-}G_{-}=CI\cdot G/100=0.28$ ·

0.000625/100 = 0.00000175

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000175	0.000000898
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.0006230	0.0003197
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

НЕОРГАНИЗОВАННЫЙ ИСТОЧНИК № 6001

(площадка бурения)

Во время подготовки площадки к бурению, на территории проектируемого объекта будет произведено снятие поверхностного растительного слоя — 40,0 м³ или 64,0т.

Грузооборот 660 куб. м или 1056 т/период, 10,56 т/сутки, 1,32 т/час.

Расчистка территории

Характеристика источника соответствует работам первого этапа бурения представлены ниже.

При работе экскаваторов пыль выделяется, главным образом, при погрузкематериала в автосамосвалы.

Расчет выбросов проводим по формуле:

$$M = (P, *P_2 *P_3 *P_4 *P**P6*B*C*10^6) / 3600, r/cek,$$

Рі - доля пылевой фракции в породе - 0,05;

Рг - доля переходящей в аэрозоль летучей ныли с размером частиц 0-50 мкм по отношению ко всей пыли в материале - 0,03;

Рз - коэффициент, учитывающий скорость ветра в зоне работы - 1,0;

Р4 - коэффициент, учитывающий влажность материала - 0,02;

Рз - коэффициент, учитывающий крупность материала - 0,7;

Рб - коэффициент, учитывающий местные условия - 1,0;

В - коэффициент, учитывающий высоту пересыпки - 0,5;

C - количество перерабатываемого материала, т/час - 3,6.

 $M = (0.05 * 0.03 * 1.0 * 0.02 * 0.7 * 1.0 * 0.5 * 3.6 * 10^{6}) / 3600 = 0.01 \text{ r/cek}$

 $B = M * 3600 * T * 10^6$, г/период,

М - максимально-разовый выброс, г/сек;

Т - число часов работы в период, 24 час:

Тогда валовый выброс составит:

 $B = 0.01 * 3600 * 24 * 10^{-6} = 0.00086$ т/период

Этап	Наименовани	Наименовани	Выбросы	
	е источника	е вещества	г/с	т/период
Расчистка	Машины и	Пыль с сод.	0,01	0,00086
территории	механизмы	SiO ₂ 20-70%		

Разгрузка и обратная засыпка грунтом

Грузооборот грунта - 660 куб. м или 1056 т/период, 10,56 т/сутки, 1,32 т/час. Расчет произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов», приложение № 11 к приказу № 100-п МООС РК.

<u>Примесь: Пыль неорганическая (2908, SiO = 20 – 70 %)</u>

Mcek = 0.05 * 0.03 * 1.0 * 0.3 * 0.01 * 0.8 * 1.0 * 0.2 * 0.7 * 1.32 * 1000000/3600 * 0.4 = 0.000462 г/сек.

Мпериод = 0,05 * 0,03 * 1,0 * 0,3 * 0,1 * 0,8 * 1,0 * 0,2 * 0,7 * 1056 = 0,0532224 т/период.

Примечание: При расчете максимально - разовых выбросов (г/с), в расчет введен поправочный коэффициент на гравитационное оседание пыли - 0.4.

Итого:

Код	Примесь	Выброс г/с	Выброс т/период
2908	Пыль неорганическая, $SiO = 20 - 70 \%$	0,000462	0,0532224

Выбросы сварочных работ

Сварочные работы производятся ручной электродуговой сваркой с использованием электродов марки MP-3. Расчёт произведён согласно «Методике расчёта выбросов загрязняющих веществ при сварочных работах», Астана, 2004 г.

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при сварочных работах (по величинам удельных

выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): MP-3

Расход сварочных материалов, кг/год, B = 100

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, $\mathit{BMAX} = 1$

Удельное выделение сварочного аэрозоля,

r/кг расходуемого материала (табл. 1, 3), GIS = 11.5

в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ,

r/kr расходуемого материала (табл. 1, 3), GIS = 9.77

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 9.77 \cdot 100 / 10^6 = 0.0009770$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 9.77 \cdot 1/2000 = 9.77 \cdot 1/2$

3600 = 0.0027140

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ,

r/кг расходуемого материала (табл. 1, 3), GIS = 1.73

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 1.73 \cdot 100 / 10^6 = 0.0001730$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX/3600 = 1.73 \cdot 1/2$

3600 = 0.0004810

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), GIS = 0.4

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 0.4 \cdot 100 / 10^6 = 0.0000400$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX/3600 = 0.4 \cdot 1/$

3600 = 0.0001110

NTOFO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид,	0.002714	0.000977
	Железа оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на	0.000481	0.000173
	марганца (IV) оксид/ (327)		
0342	Фтористые газообразные соединения /в	0.000111	0.00004
	пересчете на фтор/ (617)		

ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

Собственного полигона для складирования отходов предприятие не имеет.

В результате деятельности рассматриваемого объекта образуются следующие виды отходов: твердые бытовые отходы, смет с территории.

ТВЕРДЫЕ БЫТОВЫЕ ОТХОДЫ

ТБО. Расчет твердого бытового отхода от людей, производящих работы по строительству посчитаны в соответствии с приложением №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.08г. №100 п.

Для строителей норма образования отходов составляет $-0.3~{\rm m}^3/{\rm год}$. Количество образования ТБО на строительной площадке рассчитывалось, исходя из численности рабочих. Штат строителей составляет 9 человек.

Следовательно, отходы составят:

G.стр. = $0.3 \text{ м}^3/\text{год}^* 6$ чел. * $0.2 \text{ т/м}^3/ 12 \text{ мес} * 1 \text{ мес} = 0.03 \text{ т/период}$.

ОТХОДЫ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Отходы жестяных банок от ЛКМ

Норма образования отхода определяется по формуле:

 $N = \Sigma M_i * n + \Sigma M_{ki} * \alpha_i$. т/годгде $M_i -$ масса $^i -$ го вида тары, т/год

n- число видов тары

 M_{ki} – масса краски в i – ой таре, т/год

 α_i - содержание остатков краски в i - той таре в долях от M_{ki} (0,01-0,05)N = 0.0005*23*0.01=0.013 т/период

Отходы огарок сварочных электродов

Норма образования отходов огарок сварочных электродов определяется по фактическому расходу электродов (т/год) им нормативному коэффициенту

=0,015 от массы электрода. Расход электродов 0,1/период. N=0,05*0.1=0.005 т/период.

Буровой шлам

Количество шлама (тонн) определяется по формуле: $W_{\rm III} = V_{\rm III} * \rho_{\rm III}$ где $\rho_{\rm III} = 1,75$ плотность шлама, $\tau/{\rm M}^3$;

$$W_{III} = 4.83*1.75 = 8.2 \text{ T}.$$