РЕСПУБЛИКА КАЗАХСТАН ТОО «КАРАГАНДАГИПРОШАХТ»

АО «ЕВРОАЗИАТСКАЯ ЭНЕРГЕТИЧЕСКАЯ КОРПОРАЦИЯ»

ОТЧЕТ

о возможных воздействиях к проекту «План горных работ разработки Экибастузского месторождения каменного угля в границах разреза «Восточный» на период 2020-2044 г.г. Корректировка схемы вскрытия»

Том II. Экологическая часть

Книга 1. Расчетные приложения Часть 1

П7670дк-ІІ-1.3ПЗ

Генеральный диреу А.С.Тихонов

Заместитель ген рального директога

по производству

Главный инженер мостов А.Н. Горбунов

СОСТАВ ПРОЕКТА

№ Томов	№ Книг	Наименование томов, книг	Институт исполнитель
	«План	н горных работ разработки Экибастузского месторож угля в границах разреза «Восточный» на период 202 Корректировка схемы вскрытия. Дополнен	дения каменного 20-2044 г.г.
I		Пояснительная записка	
	1	Книга 1. Дополнение к разделам 7. «Система разработки». 8. «Отвалообразование» П7670дк-I-1П3	
		Экологическая часть	
		Отчет о возможных воздействиях к проекту «План горных работ разработки Экибастузского месторождения каменного угля в границах разреза «Восточный» на период 2020-2044 гг. Корректировка схемы вскрытия. Дополнение» Пояснительная записка	
	1	П7670дк-II-1.1ПЗ Табличные приложения к книге 1 П7670дк-II-1.2ПЗ Расчетные приложения П7670дк-II-1.3ПЗ Часть 1 Расчетные приложения	
II		П7670дк-II-1.4П3 Часть 2 «Проект нормативов эмиссий загрязняющих веществ в атмосферу для разреза «Восточный» на период с 2025 по 2027 г.г.»	
	2	Пояснительная записка П7670дк-II-2.1ПЗ Табличные приложения к книге 2.1 П7670дк-II-2.2ПЗ Расчеты эмиссий загрязняющих веществ в атмосферу от объектов разреза «Восточный» Расчетные приложения П7670дк-II-2.3ПЗ Часть 1 Расчетные приложения П7670дк-II-2.4ПЗ Часть 2	
		Бланки инвентаризации источников выбросов вредных веществ предприятия по состоянию на 01.01.2024 г. П7670дк-II-2.5ПЗ	

№ Томов	№ Книг	Наименование томов, книг	Институт исполнитель
		Расчеты рассеивания загрязняющих веществ в	
		атмосфере на проектное положение	
		П7670дк-II-2.6РР	
		Часть 1	
		П7670дк-II-2.7РР	
		Часть 2	
		Проект нормативов допустимых сбросов	
		загрязняющих веществ со сточными и карьерными	
	3	водами в накопитель Акбидаик и пруд-накопитель	
		щебеночного карьера «Балластный» разреза	
		«Восточный» АО АЭК на 2025-2027 г.г.	
		П7670дк-II-3П3	
	4	Программа управления отходами разреза	
		«Восточный» на период с 2025 по 2027 г.г.	
		П7670дк-II-4П3	
		Программа производственного экологического	
		контроля АО «Евроазиатская энергетическая	
	5	корпорация» разрез «Восточный» на период с 2025	
		по 2027 г.г.	
		П7670дк-II-5П3	

ПЕРЕЧЕНЬ ПРИЛОЖЕНИЙ

Номер	Наименование приложения	Стр.
прил. 1	Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная.	17
	Расчет выбросов вредных веществ в атмосферу от котельной на 2025- 2027 г.г. Организованный источник №0005	
2	Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная.	19
	Расчет выбросов вредных веществ в атмосферу от аспирационной	
	системы АУ-1 галерея топливоподачи в котельной на 2025-2027 г.г. Организованный источник №0006	
3	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки	20
	П4В-1, путь №18. Расчет выбросов твердых частиц от аспирационной	
	установки В-1 в период с 2025 по 2027 г.г.	
	Организованный источник № 0015	
4	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки	21
	П4В-1, путь №19. Расчет выбросов твердых частиц от аспирационной	
	установки В-2 в период с 2025 по 2027 г.г.	
_	Организованный источник № 0016	22
5	Разрез «Восточный» АО «ЕЭК». УТКР на ст. Восточная. Пункт погрузки	22
	П4В-2, путь №16, ППУ №2. Расчет выбросов твердых частиц от аспирационной системы В-1 в период с 2025 по 2027 г.г.	
	Организованный источник №0017	
6	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки	23
O	П4В-2, путь №17. Расчет выбросов твердых частиц от аспирационной	23
	установки В-2 в период с 2025 по 2027 г.г.	
	Организованный источник № 0018	
7	Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная.	24
	Расчет выбросов вредных веществ в атмосферу от аспирационной	
	системы АУ-1 здания сортировки на 2025-2027 г.г.	
	Организованный источник №0019	
8	Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная.	25
	Расчет выбросов вредных веществ в атмосферу от аспирационной	
	системы АУ-2 здания сортировки на 2025-2027 г.г. Организованный источник №0020	
9	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункты	26
,	перегрузки ПП1-ПП6 . Подземный тоннель. Уборка просыпей. Расчет	20
	выбросов твердых частиц от аспирационной установки В-3 в период с	
	2025 по 2027 г.г. Организованный источник №0024	
10	Разрез «Восточный». Станция Фестивальная. ЖДЦ. Участок	27
	вспомогательной железнодорожной техники (УВЖТ). Расчет выбросов	
	вредных веществ при проведении сварочных работ и резке металла.	
	Организованный источник №0029 на 2025-2027 г.г.	
11	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонтно-	30
	механический участок (РМУ). Расчет эмиссий загрязняющих веществ в	
	атмосферу от кузнечного горна. Организованный источник 0033 на 2025-2027 г.г.	
12		31
14	Разрез «Восточный». Станция «Фестивальная». РСУ. Расчет эмиссий	31
	загрязняющих веществ в атмосферу от деревообрабатывающих станков. Организованные источники №№ 0054 и 0200 на 2025-2027 г.г.	
	Optiming obtaining note make 1212 003 π 0200 π 0202 1.1.	Ī

Номер	Наименование приложения	Стр.
прил.		22
13	Разрез «Восточный» АО «ЕЭК». ЦПВК-1. ДПП ДУ №2 (южный блок).	33
	Расчет выбросов твердых частиц от аспирационной системы A-2 в	
14	период с 2025 по 2027 г.г. Организованный источник №0089 Разрез Восточный АО «ЕЭК». ДСК на щебкарьере «Балластный». ДСУ-	34
14	1. Расчет выбросов твердых частиц от аспирационной системы AУ-1 в	34
	период с 2025 по 2027 г.г. Организованный источник №0096	
15	Разрез Восточный АО «ЕЭК». ДСК на щебкарьере «Балластный». ДСУ-	35
13	2. Расчет выбросов твердых частиц от аспирационной системы АУ-2 в	33
	период с 2025 по 2027 г.г. Организованный источник №0097	
16	Разрез «Восточный». Станция Восточная. ЖДЦ. УСЦБ. Расчет эмиссий	36
	загрязняющих веществ в атмосферу при зарядке аккумуляторных	
	батарей на 2025-2027 г.г. Организованный источник №0114	
17	Разрез «Восточный». Станция Восточная. АТУ. Ремонтный бокс. Расчет	37
	эмиссий загрязняющих веществ в атмосферу от сварочных работ и резки	
	металла на 2025-2027 г.г. Организованный источник №0116	
18	Разрез «Восточный». Станция Восточная. АТУ. Ремонтный бокс. Расчет	39
	эмиссий загрязняющих веществ в атмосферу от металлообрабатыва-	
	ющих станков на 2025-2027 г.г. Организованный источник № 0116	
19	Разрез «Восточный». Станция Восточная. АТУ. Ремонтный бокс. Расчет	40
	эмиссий загрязняющих веществ в атмосферу при пайке электро-	
	паяльником припоем ПОС-30 на 2025-2027 г.г. Организованный	
	источник №0117	
20	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт электрических	41
	машин (УРЭМ). Расчет эмиссий загрязняющих веществ в атмосферу при	
	обжиге обмоток статора на 2025-2027 г.г. Организованный источник	
21	№0120	42
21	Разрез «Восточный». Станция Восточная. ТБУ. Ремонтный бокс. Расчет	42
	эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ на 2025-2027 г.г. Организованный источник №0122	
22	Разрез «Восточный». Станция Фестивальная.ДПС «Восточное». Расчет	43
22	эмиссий загрязняющих веществ в атмосферу при газовой резке металла	43
	на 2025-2027 г.г. Организованный источник №0124	
23	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС	44
23	«Восточное». Расчет эмиссий загрязняющих веществ в атмосферу при	7-7
	наплавочных работах на 2025-2027 г.г. Организованный источник	
	Nº0125	
24	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт конвейерных	45
	лент (УРКЛ). Отделение сварочное. Пост №2. Расчет эмиссий	
	загрязняющих веществ в атмосферу от сварочных работ на 2025-	
	2027 г.г. Организованный источник №0134	
25	Разрез «Восточный» АО «ЕЭК». ЦПВК-2. Пергрузка вскрыши с ВКС1	46
	(C1) на ВКС 2(C2). Расчет выбросов твердых частиц от аспирационной	
	системы А5 в период с 2025 по 2027 г.г.	
	Организованный источник № 0153	
26	Разрез «Восточный» АО «ЕЭК». ЦПВК-2Перегрузка вскрыши с	47
	ВКС2(С2) на ВКП1-ЦПВК1 в 2023 г.г. Пергрузка вскрыши с ВКС2(С2)	
	на ВКП 2-1(С3) на 2024 г. Расчет выбросов твердых частиц от	
	аспирационной системы А6 в период с 2025 по 2027 г.г.	

Номер	Наименование приложения	Стр.
прил.		
	Организованный источник №0154	
27	Разрез «Восточный». Станция Фестивальная. УППР. Расчет эмиссий	48
	загрязняющих веществ в атмосферу от отопительной печи на	
	2025-2027 г.г. Организованные источники №№ 0163, №0164, №0165	
28	Разрез «Восточный». Станция Восточная.ЦРГО.Участок ремонта	49
	конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в	
	атмосферу от разогрева при горячей вулканизации на 2025-2027 г.г.	
	Организованный источник №0166	
29	Разрез «Восточный». Станция Восточная . АХО. Расчет эмиссий	51
	загрязняющих веществ в атмосферу от стиральных машин на	
	2025-2027 г.г. Организованный источник №0176	
30	Разрез «Восточный». Станция Восточная. Участок колонны	52
	технологического транспорта (УКТТ). Расчет эмиссий загрязняющих	
	веществ в атмосферу от механической обработки металла на	
	2025-2027 г.г. Организованный источник №0178	
31	Разрез «Восточный» АО «ЕЭК». ЦПВК-2. ДПП ДУ №3 (северный блок).	53
	Расчет выбросов твердых частиц от аспирационной системы АЗ в	
	период с 2025 по 2027 г.г. Организованный источник №0179	
32	Разрез «Восточный» АО «ЕЭК». Центральная конвейерная линия №2.	54
	Перегрузка с конвейера КЛП2-3 на конвейер КЛП2-2. Расчет выбросов	
	твердых частиц от аспирационной установки А2 (уголь) на 2025-2027 г.г.	
	Организованный источник №0181	
33	Разрез «Восточный» АО «ЕЭК». Центральная конвейерная линия №2.	55
	Перегрузка с конвейера КЛП2-3 на конвейер КЛП2-2. Расчет выбросов	
	твердых частиц от аспирационной установки А2 (вскрыша внутренняя)	
	на 2025-2027 г.г. Организованный источник №0181	
34	Разрез «Восточный» АО «ЕЭК». Южная конвейерная линия №2.	56
	Перегрузка с конвейера КЛПЗ-3 на конвейер КЛПЗ-2. Расчет выбросов	
	твердых частиц от аспирационной установки А4 (уголь) на 2025-2027 г.г.	
2.5	Организованный источник № 0182	
35	Разрез «Восточный» АО «ЕЭК». Техкомплекс на ст. Восточная. Южная	57
	конвейерная линия №2. Перегрузка с конвейера КЛПЗ-3 на конвейер	
	КЛПЗ-2. Расчет выбросов твердых частиц от аспирационной установки	
	А4 (вскрыша внутренняя) на 2025-2027 г.г. Организованный источник №	
26	0182	70
36	Разрез «Восточный» АО «ЕЭК». Северная конвейерная линия.	58
	Перегрузка с конвейера КЛП4-3 на конвейер КЛП4-2. Расчет выбросов	
	твердых частиц от аспирационной установки АЗ (уголь) на 2025-2027 г.г.	
27	Организованный источник №0183	70
37	Разрез «Восточный» АО «ЕЭК». Северная конвейерная линия.	59
	Перегрузка с конвейера КЛП4-3 на конвейер КЛП4-2. Расчет выбросов	
	твердых частиц от аспирационной установки АЗ (вскрыша внутренняя)	
20	на 2025-2027 г.г. Организованный источник № 0183	60
38	Разрез «Восточный». Энергоцех. Химическая лаборатория. Расчет	60
	эмиссий загрязняющих веществ в атмосферу от шкафа химического на	
20	2025-2027 г.г. Организованный источник №0189	C1
39	Разрез «Восточный». Железнодорожный цех (ЖДЦ). Участок	61
	сигнализации, централизации и блокировки (УСЦБ). Расчет эмиссий	

Номер прил.	Наименование приложения	Стр.
•	загрязняющих веществ в атмосферу от шлифовального станка на 2025- 2027 г.г. Организованный источник №0191	
40	Разрез «Восточный». Железнодорожный цех (ЖДЦ). Участок сигнализации, централизации и блокировки (УСЦБ). Расчет эмиссий загрязняющих веществ в атмосферу от металлообрабатывающих станков на 2025-2027 г.г. Организованный источник №0192	62
41	Разрез «Восточный». Станция Фестивальная. Железнодорожный цех (ЖДЦ). ДПС «Фестивальная». Пескосушильная установка. Расчет эмиссий загрязняющих веществ в атмосферу от сушил песка на 2025-2027 г.г. Организованный источник №0194	63
42	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная». Расчет эмиссий загрязняющих веществ в атмосферу от пескораздаточных бункеров на 2025-2027 г.г. Организованные источники №№ 0195, 0196, 0197	64
43	Разрез «Восточный». Станция Фесивальная. ЦРЖДО. ДПС Восточное. Расчет эмиссий загрязняющих веществ от горна кузнечного на 2025-2027 г.г. Организованный источник №0199	65
44	Разрез Восточный АО ЕЭК. ЦПВК-1. ДПП ДУ №1. Расчет выбросов твердых частиц от аспирационной системы А-1 в период с 2025 по 2027 г.г., ист. 0088	66
45	Разрез Восточный. Станция Фестивальная. РСУ. Расчет эмиссий загрязняющих веществ в атмосферу от пилорамы на 2025-2027 г.г. Организованный источник №0201	67
46	Разрез «Восточный». СКСиМ. Лаборатория по топливу. Расчет эмиссий загрязняющих веществ в атмосферу от муфельной печи на 2025-2027 г.г. Организованный источник №0202	68
47	Разрез «Восточный». СКСиМ. Химическая лаборатория в здании пожарного депо. Расчет эмиссий загрязняющих веществ в атмосферу от шкафа химического на 2025-2027 г.г. Организованный источник №0203	69
48	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонтномеханический участок (РМУ). Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резки на 2025-2027 г.г. Организованный источник №0210	70
49	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. Вагоноремонтное депо (ВРД). Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ на 2025-2027 г.г. Организованный источник №0212	72
50	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС Восточное. Цех по ремонту вспомогательных машин №2 (ЦРВМ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Организованный источник №0211	73
51	Разрез «Восточный». Служба качества, сертификации и метрологии (СКСиМ). Химическая лаборатория. Расчет эмиссий загрязняющих веществ в атмосферу от проборазделочной машины по топливу на 2025-2027 г.г. Организованные источники №№ 0214 и 0215	74
52	Разрез «Восточный». Станция Восточная. Участок складского хозяйства (УСХ). Склад строительных материалов. Расчет эмиссий загрязняющих	75

Номер прил.	Наименование приложения	Стр.
1	веществ в атмосферу от бытовой печки на складе №3 на 2025-2027 г.г. Организованный источник № 0213	
53	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №18, ПУУ №1.Расчет выбросов твердых частиц от аспирационной системы ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0216	78
54	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №19, ПУУ №1. Расчет выбросов твердых частиц от аспирационной установки ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0217	79
55	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №16, ПУУ №1. Расчет выбросов твердых частиц от аспирационной системы ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0218	80
56	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №17, ПУУ №1. Расчет выбросов твердых частиц от аспирационной системы ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0219	81
57	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №18, ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0220	82
58	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №19, ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0221	83
59	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №16. ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0222	84
60	Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №17, ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0223	85
61	Разрез «Восточный» АО «ЕЭК». Добычные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на добычных уступах в период с 2025 по 2027 г.г. Неорганизованный источник №6001	86
62	Разрез «Восточный» АО «ЕЭК». Добычные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на добычных уступах от работы бульдозеров в период с 2025 по 2027 г.г. Неорганизованный источник №6001	87
63	Разрез «Восточный» АО «ЕЭК». Добычные работы. Расчет количества пыли, выделяющейся при работе бурового оборудования на добычных уступах разреза в период с 2025 по 2027 г.г. Неорганизованный источник №6001	88
64	Разрез «Восточный» АО «ЕЭК». Расчет параметров выбросов пыли и ядовитых газов при ведении взрывных работ на добычных уступах в период с 2025 по 2027 г.г. Неорганизованные источники №6001, №6002	89

Номер	Наименование приложения	Стр.
прил.		
65	Разрез «Восточный» АО «ЕЭК». Вскрышные работы. Расчет количества	91
	пыли, выделяющейся при выемочно-погрузочных работах на	
	вскрышных уступах в период с 2025 по 2027 г.г. Неорганизованный	
	источник №6002	
66	Разрез «Восточный» АО «ЕЭК». Расчет количества пыли, выделяющейся	92
	при сдувании с верхнего вскрышного уступа в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6002	
67	Разрез «Восточный» АО «ЕЭК». Вскрышные работы. Расчет количества	93
	пыли, выделяющейся при выемочно-погрузочных работах на	
	вскрышных уступах от работы бульдозеров в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6002	
69	Разрез «Восточный» АО «ЕЭК». Вскрышные работы. Расчет количества	94
	пыли, выделяющейся при работе бурового оборудования на вскрышных	
	уступах разреза в период с 2025 по 2027 г.г. Неорганизованный	
	источник №6002	
69	Расчет количества пыли, выделяющейся при транспортировке породы	95
	автосамосвалами в период с 2025 по 2027 г.г. Неорганизованный	
	источник №6002	
70	Разрез «Восточный» АО «ЕЭК». Участок отвальных работ. Расчет	96
	количества пыли, выделяющейся при формировании отвалов в период с	
	2025 по 2027 г.г. Неорганизованный источник №6318	
71	Разрез «Восточный» АО «ЕЭК». Вскрышные работы. Расчет	97
	параметров выбросов пыли и ядовитых газов при ведении взрывных	
	работ на вскрышных уступах разреза и в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6002	
72	Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Внешний	99
	породный отвал Фестивальный. Расчет количества пыли, выделяющейся	
	при сдувании с поверхности отвала в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6004	
73	Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Внешний	101
, -	породный отвал Прибортовой. Расчет количества пыли, выделяющейся	
	при сдувании с поверхности отвала в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6003	
74	Разрез «Восточный». Отвальное хозяйство. Временный перегрузочный	103
, .	склад №2. Расчет количества пыли, выделяющейся при сдувании с	
	поверхности временного перегрузочного склада в период с 2025 по	
	2027 г.г. Неорганизованный источник 6317	
75	Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Временный	104
75	перегрузочный склад №1. Расчет количества пыли, выделяющейся при	101
	сдувании с поверхности временного перегрузочного склада в период с	
	2025 по 2027 г.г. Неорганизованный источник №6291	
76	Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Склад ПСП.	105
70	Расчет количества пыли, выделяющейся при разгрузке автотранспорта и	103
	формировании склада ПСП в период с 2025 по 2027 г.г.	
	формирований склада 11с11 в период с 2023 по 2027 1.1. Неорганизованный источник №6292	
77	Разрез «Восточный». УТКР на ст. Восточная. Расчёт эмиссий пыли в	106
/ /	атмосферу на площадке склада угля №4 от штабеля для котельной на	100
	1 2 2 3	
	2025-2027 г.г. Неорганизованный источник выбросов №6010	

Номер прил.	Наименование приложения	Стр.
78	Разрез «Восточный». Станция Восточная. УДР-2. Расчет эмиссий загрязняющих веществ в атмосферу при окраске металлоконструкций экскаваторов на 2025-2027 г.г. Неорганизованный источник выбросов №6007	108
79	Разрез «Восточный». Станция Фестивальная. Топливозаправочный пункт. Расчет эмиссий загрязняющих веществ в атмосферу от наливного стояка на 2025-2027 г.г. Неорганизованный источник №6030	110
80	Разрез «Восточный». Станция Фестивальная. Топливозаправочный пункт. Заправка путевых машин дизельным топливом на 2025-2027 г.г. Идентификация состава выбросов от наливного стояка дизельного топлива. Неорганизованный источник №6030	111
81	Разрез «Восточный». Станция Фестивальная. Склад ГСМ-2. Идентификация состава выбросов от резервуаров дизельного топлива на 2025-2027 г.г. Неорганизованный источник №6030	112
82	Разрез «Восточный». Станция Фестивальная. Склад ГСМ-2. Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров для хранения топлива. Неорганизованный источник №6030 на 2025-2027 г.г.	113
83	Разрез «Восточный». Станция Фестивальная. Склад ГСМ-2. Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров для хранения топлива на 2025-2027 г.г. Неорганизованный источник №6030	114
84	Разрез «Восточный». Станция Фестивальная. Склад ГСМ-2. Идентификация состава выбросов от резервуаров дизельного топлива. Неорганизованный источник №6030 на 2025-2027 г.г.	115
85	Разрез «Восточный». Станция Восточная. ТЦ.ТБУ. Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-30 на 2025-2027 г.г. еорганизованный источник №6034	116
86	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонтномеханический участок (РМУ). Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей в дизельном топливе на 2025-2027 г.г. Неорганизованный источник №6032	117
87	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонтномеханический участок (РМУ). Идентификация состава выбросов от ванны моечной в дизельном топливе на 2025-2027 г.г. Неорганизованный источник №6032	118
88	Разрез «Восточный». Станция Восточная. ТБУ. Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу при зарядке аккумуляторных батарей на 2025-2027 г.г. Неорганизованный источник №6034	119
89	Разрез «Восточный». Станция Восточная. Склад ГСМ-1. Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров с бензином в период с 2025 по 2027 г.г. Неорганизованный источник №6037	120
90	Разрез «Восточный». Станция Восточная. Склад ГСМ-1. Идентификация состава выбросов от резервуаров с бензином в период с 2025 по 2027 г.г. Неорганизованный источник №6037	121
91	Разрез Восточный. Станция Восточная. Склад ГСМ-1. Идентификация состава выбросов от резервуаров с керосином в период с 2025 по 2027 г.г.	122

Номер	Наименование приложения	Стр.
прил. 92	Разрез «Восточный». Станция Восточная. Склад ГСМ-1. Расчет эмиссий загрязняющих веществ в атмосферу от резервуара с керосином в период	123
	с 2025по 2027 г.г. Неорганизованный источник №6037	
93	Разрез «Восточный». Станция Восточная. УДР-2. Расчет эмиссий	124
	загрязняющих веществ в атмосферу от механической обработки металла на подъемном конвейере 3-1 на 2025-2027 г.г. Неорганизованный метализованный метализованный	
94	источник №6043	125
94	Разрез «Восточный». Станция Восточная. УДР-1. Ремонт и обслуживание горных машин. Расчет выбросов вредных веществ при проведении сварочных работ и резке металла на 2025-2027 г.г. Неорганизованный источник выбросов №6042	123
95	Разрез «Восточный». Станция Восточная. УДР-1. Ремонт и	128
	обслуживание горных машин. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 г.г. Неорганизованный источник №6042	
96	Разрез «Восточный». Станция Восточная. УДР-2. Ремонт и обслуживание конвейеров подъема угля. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резки на 2025-2027 г.г. Неорганизованный источник №6043	129
97	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Расчет параметров выбросов пыли и ядовитых газов при ведении взрывных	131
00	работ на горных уступах в период с 2025 по 2027 г.г.	122
98	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Расчет количества пыли, выделяющейся при сдувании с верхнего вскрышного уступа в период с 2025 по 2027 г.г. Неорганизованный источник №6044	133
99	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Горные работы.	134
	Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на горных уступах в период с 2025 по 2027 г.г. Ист. №6044	131
100	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Горные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на горных уступах от работы бульдозеров в период с 2025 по 2027 г.г.	135
101	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Расчет количества пыли, выделяющейся при транспортировке породы автосамосвалами в период с 2025 по 2027 г.г.	136
102	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Горные работы. Расчет количества пыли, выделяющейся при работе бурового оборудования на уступах разреза в период с 2025 по 2027 г.г.	137
103	Разрез Восточный. ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при сдувании с поверхности конвейеров в период с 2025 по 2027 г.г. Неорганизованный источник №6045	138
104	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное». Участок заливки моторно-осевых подшипников (МОП). Расчет эмиссий загрязняющих веществ в атмосферу при лужении припоем ПОС-40 на 2025-2027 г.г. Неорганизованный источник №6052	139
105	Разрез «Восточный». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Расчёт эмиссии пыли в атмосферу от погрузочно-	140

Номер прил.	Наименование приложения	Стр.
	разгрузочных работ в период с 2025 по 2027 г.г. Неорганизованный источник №6050	
106	Разрез «Восточный». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Расчёт эмиссий в атмосферу от сдувания пыли с поверхности ленточных конвейеров при транспортировании рядового угля и продуктов рассева в период с 2025 по 2027 г.г. Неорганизованный источник №6050	142
107	Разрез «Восточный». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Расчет эмиссий пыли в атмосферу при сдувании со складов рядового угля и продуктов рассева в период с 2025 по 2027 г.г. Неорганизованный источник №6050	143
108	Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчет эмиссий пыли в атмосферу при разгрузке камня из автосамосвалов в период с 2025 по 2027 г.г. Неорганизованный источник №6050	144
109	Разрез «Восточный». Станция Восточная. РМУ. Отделение токарное. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 г.г. Неорганизованный источник №6059	145
110	Разрез «Восточный». Станция Фестивальная. ЖДЦ. УПР. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный источник №6055	147
111	Разрез «Восточный». Станция Фестивальная. ЖДЦ. УЗР. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки металла на 2025-2027 г.г. Неорганизованный источник №6056	148
112	Разрез «Восточный». Станция Фестивальная. УКС. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный источник №6057	149
113	Разрез «Восточный». Станция Фестивальная. ЖДЦ. УСЦБ. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный источник №6058	150
114	Разрез «Восточный». Станция Восточная. Цех буровзрывных работ. УВР. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 г.г. Неорганизованный источник №6061	151
115	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ (пост №1) на 2025-2027 г.г. Неорганизованный источник №6060	152
116	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 г.г. Неорганизованный источник №6060	153
117	Разрез «Восточный». Станция Восточная. Цех буровзрывных работ. УВР. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки металла на 2025-2027 г.г. Неорганизованный источник №6061	155
118	Разрез «Восточный». Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Расчет эмиссий загрязняющих веществ в атмосферу при работе металлообрабатывающих станков на 2025-2027	157

Номер прил.	Наименование приложения	Стр.
I	г.г. Неорганизованный источник №6068	
119	Разрез «Восточный». Станция Восточная. Цех буровзрывных работ. УВР. Расчет эмиссий загрязняющих веществ в атмосферу от	158
	лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник №6061	
120	Разрез «Восточный». Станция Восточная. Цех буровзрывных работ. УБР. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резки на 2025-2027 г.г. Неорганизованный источник №6063	160
121	Разрез «Восточный». Ст. Восточная. Добычной цех. УВиПЭП (участок водоотлива и профилактики эндогенных пожаров). Передвижные сварочные посты. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный источник №6064	162
122	Разрез «Восточный». Ст. Восточная. Добычной цех. УВПЭП (участок водоотлива и профилактики эндогенных пожаров). Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 г.г. Неорганизованный источник №6064	166
123	Разрез «Восточный». Станция Фестивальная. Вскрышной цех. Участок отвальных работ (УОР). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ при текущем обслуживании экскаваторов на 2025-2027 г.г. Неорганизованный источник №6065	167
124	Разрез «Восточный». Станция Фестивальная. УЭС. Ремонт и обслуживание систем электроснабжения. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки на 2025-2027 г.г. Неорганизованный источник №6079	171
125	Разрез «Восточный». Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный источник №6071	172
126	Разрез «Восточный». Весодозировочный комплекс на ст. Восточная. Расчёт выбросов пыли в атмосферу на весодозировочном пункте №1 от дозирования угля в период 2025-2027 г.г. Неорганизованный источник №6072	174
127	Разрез «Восточный». Весодозировочный комплекс на ст. Восточная. Расчёт объёмов эмиссий пыли в атмосферу на весодозировочном пункте №1 от дозирования щебня в период 2025-2027 г.г. Неорганизованный источник №6072	176
128	Разрез «Восточный». Весодозировочный комплекс на ст. Восточная. Расчёт объёмов эмиссий пыли в атмосферу на весодозировочном пункте №2 от дозирования угля в период 2025-2027 г.г. Неорганизованный источник №6073	177
129	Разрез «Восточный». Станция Восточная. Добычной цех. Участок технологического комплекса разреза (УТКР). Расчет выбросов вредных веществ при проведении сварочных работ и резке металла на 2025-2027 г.г. Неорганизованный источник №6076	178
130	Разрез «Восточный». Станция Балластная. Дробильно-сортировочный комплекс (ДСК). Мастерская. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 г.г.	181

Номер прил.	Наименование приложения	Стр.
-	Неорганизованный источник №6080.03	
131	Разрез «Восточный». Станция Балластная. Дробильно-сортировочный комплекс (ДСК). Мастерская. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резке на 2025-2027 г.г. Неорганизованный источник №6080.01	182
132	Разрез «Восточный». Станция Балластная. ДСК. Мехмастерская. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40, ПОС-60 на 2025-2027 г.г. Неорганизованный источник №6080.02	184
133	Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Склад ПСП. Расчет количества пыли, выделяющейся при сдувании с поверхности склада ПСП в период с 2025 по 2027 г.г. Неорганизованный источник №6292	185
134	Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Внешний породный отвал Конвейерный 1. Расчет количества пыли, выделяющейся при сдувании с поверхности отвала в период с 2025 по 2027 г.г. Неорганизованный источник №6090	186
135	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу от ванны для приготовления электролита на 2025-2027 г.г. Неорганизованный источник №6120	187
136	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Отвальное хозяйство. Отвал Балластный. Расчет количества пыли, выделяющейся при сдувании с поверхности внешнего отвала в период с 2025 по 2027 г.г. Неорганизованный источник №6095	188
137	Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Отвальное хозяйство. Отвал Балластный. Расчет количества пыли, выделяющейся при разгрузке автотранспорта и формировании внешнего отвала в период с 2025 по 2027 г.г. Неорганизованный источник №6095	189
138	Разрез «Восточный». Станция Фестивальная. УСХ. Склад аммиачной селитры. Заправка зарядных машин аммиачной селитрой. Расчет выбросов пыли в атмосферу при пересыпке аммиачной селитры в приемный бункер зарядной машины на 2025-2027 г.г. Неорганизованный источник №6098	190
139	Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при сдувании с поверхности складов щебня в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105	191
140	Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при разгрузке щебня с конвейеров на конус в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105	192
141	Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при перевалке щебня бульдозером на складах щебня в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105	194
142	Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при погрузке щебня экскаватором в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105	196
143	Разрез «Восточный». Станция Восточная. УТС. Котельная. Склад соли. Расчет эмиссий загрязняющих в атмосферу от склада соли на 2025-2027	197

Номер прил.	Наименование приложения	Стр.
1	г.г. Неорганизованный источник №6106	
144	Разрез «Восточный». Станция Восточная. Транспортный цех. Автотранспортный участок. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-2027 г.г. Неорганизованный источник №6107	198
145	Разрез «Восточный». Станция Восточная. Транспортный цех. (АТУ). Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу при вулканизации автомобильных камер на 2025-2027 г.г. Неорганизованный источник №6107	199
146	Разрез «Восточный». Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей на 2025-2027 г.г. Неорганизованный источник №6107	201
147	Разрез «Восточный». Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Идентификация состава выбросов от моечной ванны в дизельном топливе на 2025-2027 г.г. Неорганизованный источник №6107	202
148	Разрез «Восточный». Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Идентификация состава выбросов от стенда для испытания топливной аппаратуры на 2025-2027 г.г. Неорганизованный источник №6107	203
149	Разрез «Восточный». Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от стенда для испытания топливной аппаратуры на 2025-2027 г.г. Неорганизованный источник №6107	204
150	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Цех по ремонту топливной аппаратуры. Идентификация состава выбросов от ванны моечной в дизельном топливе и стенда на 2025-2027 г.г. Неорганизованный источник №6118	205
151	Разрез «Восточный». Станция Фестивальная. ЖДЦ. УВЖТ. Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу при зарядке кислотных аккумуляторных батарей на 2025-2027 г.г. Неорганизованный источник №6115	206
152	Разрез «Восточный». Станция Фестивальная. ЖДЦ. УВЖТ. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-30 на 2025-2027 г.г. Неорганизованный источник №6115	207
153	Разрез «Восточный». Станция Фестивальная. ЖДЦ. Участок вспомогательной железнодорожной техники (УВЖТ). Расчет эмиссий загрязняющих веществ при проведении лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник выбросов №6115	208
154	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Цех по ремонту топливной аппаратуры. Расчет эмиссий загрязняющих веществ в атмосферу от стенда для опрессовки дизельных форсунок на 2025-2027 г.г. Неорганизованный источник №6119	211
155	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Цех по ремонту топливной аппаратуры. Расчет эмиссий загрязняющих веществ	212

Номер	Наименование приложения	Стр.
прил.		
	в атмосферу от стенда для опрессовки дизельных форсунок на 2025-2027	
	г.г. Неорганизованный источник №6118	
156	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Цех по	213
	ремонту топливной аппаратуры. Расчет эмиссий загрязняющих веществ	
	в атмосферу от ванны для мойки деталей в дизельном топливе на 2025-	
	2027 г.г. Неорганизованный источник №6118	
157	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное».	214
	Автоматный цех. Цех по ремонту вспомогательных машин №2.	
	Идентификация состава выбросов от ванны моечной в дизельном	
	топливе на 2025-2027 г.г. Неорганизованный источник №6119	
158	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Расчет	215
	эмиссий загрязняющих веществ в атмосферу при зарядке аккумуля-	
	торных батарей на 2025-2027 г.г. Неорганизованный источник №6120	
159	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное».	216
	Автоматный цех. Расчет эмиссий загрязняющих веществ в атмосферу	
	от ванны для мойки деталей в дизельном топливе на 2025-2027 г.г.	
	Неорганизованный источник №6119	
160	Разрез «Восточный». Станция Фестивальная. ДПС «Восточное». Цех по	217
	ремонту вспомогательных машин №2. Расчет эмиссий загрязняющих	
	веществ в атмосферу от емкости для мойки деталей в масле осевом на	
	2025-2027 г.г. Неорганизованный источник №6119	
161	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт электрических	218
	машин (УРЭМ). Расчет эмиссий загрязняющих веществ в атмосферу от	
	ванны для пропитки обмоток статоров ЭД на 2025-2027 г.г.	
	Неорганизованный источник №6121	
162	Разрез «Восточный». Станция Восточная. Транспортный цех. ТЦ.	220
	Тракторно-бульдозерный участок (ТБУ). Расчет выбросов вредных	
	веществ при газовой резке металла на 2025-2027 г.г. Неорганизованный	
	источник выбросов №6123	

Приложение 1
 Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная.
Расчет выбросов вредных веществ в атмосферу от котельной на 2025-2027гг.
 Организованный источник №0005

Наименование показателей	Показатели
1	2
Исходные данные	-
1.Диаметр трубы, D, м	3,5
2.Высота трубы, Н, м	88,9
3. Температура уходящих газов, t, оС	105
4.Продолжительность отопительного периода, Т1, дн.	243
5.Количество часов в сутках, t1, час	24
6.Количество дней работы котельной в году,Т2, дн.	243
7. Число часов работы, ч/год	5832
8.Производительность котла, Q, Гкал/ч	
номинал.или от вида сжигаемого топлива	11
9.Количество котлов : зимой, n1, шт	3
летом,п2,шт	0
$10.$ Объем отходящих газов , V , M^3/c	31,5
11.КПД котлоагрегата, kk, дол.ед.	·
номинал.или от вида сжигаемого топлива	0,75
12.Процентное содержание (на рабочую массу) в топливе, %	,
- влаги, W ^r	4,5
- золы, A ^r	36,3
- серы, S ^r	0,65
13.Доля золы в уносе, аун, %	0
14.Содержание горючих в уносе, Гун, %	0
15.Расчетное X=аун/(100-Гун)	0
16.Введенное X	0,0035
17.КПД золоуловителя, kz, дол.ед.	0,8214
18.Доля оксидов серы, связывыемых летучей золой, H' _{SO2}	0,02
эк.угли-0.02,кар.угли-0.1,проч0.1	
19. Доля оксидов серы улавливаемых в золоуловителе, Н» _{SO2}	0
20.Потери тепла от химической неполноты	
сгорания топлива, q ₃ , %	1
21.Коэф., учит. долю потери тепла от хим. неполноты	
сгорания, обусл.наличием в продуктах сгорания CO, R	1
22. Низшая теплота сгорания натурального	
топлива, Q^n і, ккал/кг	4388
Q^{r}_{i} , МДж/кг	18,38572
23.Выход оксида углерода при сжигании	,
топлива, $C_{co} = q_3 * R * Q^r_{i}$, кг/т	18,38572
24.Потери тепла от механической неполноты	<u> </u>
сгорания топлива, q4, %	10
25.Параметр, характеризующий кол-во окси-	
дов азота,образ-ся на 1 Гдж тепла, K_{NO2}	0,25

Окончание приложения 1

1	2
26.Коэф., зависящий от степени снижения	
выбросов NO2 в рез-те применения техн.решений, b	0
27. Коэффициент неравномерности, К, дол. ед.	0,50
28.Загрузка котлоагрегета:	
зимой,k1, дол.ед.	1
летом,k2, дол.ед.	0
Результаты расчета	
1.Максимальный расход топлива,	
зимой $B1max = Q*10^6*n1*k1/(Q_i^**kk), кг/ч$	7000
летом B2max=Q*10 ⁶ *n2*k2/(Q ⁿ _i *kk), кг/ч	0
2.Средний расход топлива:	6200
зимой ,B1c=B1max*(1-q4/100), кг/ч	6300
летом ,В2с=В2тах*(1-q4/100), кг/ч	0
3. Расход топлива, Bt=t1*(B1c*T1+B2c*(T2-T1))*K/1000, т/год	17500,0000
Bg=B1max*1000/3600, г/с	1944
4. Количество веществ, выбрасываемых в атмосферу:	1744
 а) пыль неорганическая 20% < SiO₂ < 70% (зола углей) 	
Мтв=Bt*A ^r *X*(1-kz), т/год	397,09478
Птв=Bg*A ^r *X*(1-kz) ,г/с	44,11156
б) серы диоксид	11,11100
M_{SO2} =0.02*Bt*S ^r *(1-H' _{SO2})*(1-H» _{SO2}), т/год	222,95000
$\Pi_{SO2}=0.02*Bg*S^{r}*(1-H'_{SO2})*(1-H)_{SO2}, \Gamma/c$	24,76656
в) углерода оксид	
$M_{\rm CO}$ =0.001*Bt*C $_{\rm co}$ *(1-q $_4$ /100), т/год	289,57509
$\Pi_{\text{CO}} = 0.001 * \text{Bg} * \text{C}_{\text{co}} * (1 - \text{q}_4/100), \ \text{r/c}$	32,16766
г) азота диоксид	
M_{NOx} =0.001* $Bt*Q_i^r*K_{NO2}*(1-b)$, т/год	80,43753
$\Pi_{NOx}=0.001*Bg*Q_i^r*K_{NO2}*(1-b), \Gamma/c$	8,93546
в пересчете на NO ₂	
$M_{ m NO2} = 0.8*~{ m M}(_{ m NOx})$, т/год	64,35002
$\Pi_{\text{NO2}} = 0.8 * \Pi_{(\text{NOx})}, \Gamma/c$	7,14837
в пересчете на NO	10.17.00
$M_{NO} = 0.13* M_{(NOx)}, \text{ т/год}$	10,45688
$\Pi_{\text{NO}} = 0.13 * \Pi_{(\text{NOx})}, \ \text{r/c}$	1,16161
5.Концентрация выбросов,мг/м ³	
а) пыль неорганическая $20\% < \mathrm{SiO}_2 < 70\%$ (зола углей) KWтв=Птв* $1000/V$, мг/м ³	1400
	1400
б) серы диоксид $KW_{SO2} = \Pi_{SO2} * 1000/V_{,M\Gamma/M}^3$	786
В) углерода оксид	/ 00
$KW_{CO} = \Pi_{CO} * 1000/V, Mг/м^3$	1021
г) азота диоксид	1021
$KW_{NO2} = \Pi_{NO2} * 1000/V, M\Gamma/M^3$	227
д) азота оксид	221
$KW_{NO} = \Pi_{NO} * 1000/V_{,M\Gamma}/M^3$	37
	57

Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная. Расчет выбросов вредных веществ в атмосферу от аспирационной системы АУ-1 галерея топливоподачи в котельной на 2025-2027 гг. Организованный источник №0006

Наименование показателей	Параметры	
Исходные данные		
1. Концентрация твердых частиц в отходящем воздухе, С, г/н.м3	1,552	
2.Объем отходящих газов(производительность	6293,00	
аспир.установки), V, н.м3/ч		
3. Годовое количество рабочих часов аспирационной установки, Т,	1000	
ч/год		
4.Степень улавливания твердых частиц в пылеулавливающей	0,802	
установке, Н, дол. ед.		
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	7,2	
6.Высота источника над уровнем земли, м	16,5	
Результаты расчета		
7. Количество отходящих твердых частиц		
Mo= C*V*T*10-6 ,т/год	9,76674	
$\Pi_0 = C*V/3600$, Γ/c	2,71298	
8. Количество уловленных твердых частиц		
Му= Мо*Н ,т/год	7,83293	
$\Pi y = \Pi o^* H$, Γ/c	2,17581	
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му ,т/год	1,93381	
$\Pi_{B} = \Pi_{O} - \Pi_{Y}$, Γ/C	0,53717	
$C_B = \Pi_B * 1000 * 3600 / V_{,M\Gamma} / M3$	307	
10.Расчетный диаметр, Dp, м	0,56	
11.Принятый диаметр, Dп, м	1,6	
12. Фактическая скорость, wф, м/с	0,9	

Приложение 3

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №18. Расчет выбросов твердых частиц от аспирационной установки В-1 в период с 2025 по 2027 гг. Организованный источник № 0015

Наименование показателей	Параметры	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	10,100	
2.Объем отходящих газов(производительность		
аспир.установки),V,н.м ³ /ч	7753,0	
3. Годовое количество рабочих часов аспирационной установки, Т,		
ч/год	2500	
4.Степень улавливания твердых частиц в пылеулавливающей		
установке, Н, дол. ед.	0,9664	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	10,3	
6.Высота источника над уровнем земли, м	33	
Результаты расчетов		
7. Количество отходящих твердых частиц		
Мо= C*V*T*10-6, т/год	195,76325	
$\Pi_0 = C*V/3600, \Gamma/c$	21,75147	
8. Количество уловленных твердых частиц		
Му= Мо*Н, т/год	189,18560	
$\Pi y = \Pi o * H, r/c$	21,02062	
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му, т/год	6,57765	
Пв= По-Пу, г/с	0,73085	
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	339	
10. Расчетный диаметр, Dp, м	0,516	
11. Принятый диаметр, Dп, м	0,8	
12. Фактическая скорость, wф, м/с	9,47	

Приложение 4

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №19. Расчет выбросов твердых частиц от аспирационной установки В-2 в период с 2025 по 2027 гг. Организованный источник № 0016

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,700
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	20097
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2500
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол. ед.	0,9464
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	12,0
6.Высота источника над уровнем земли, м	38
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	85,41225
$\Pi_0 = C*V/3600$, г/с	9,49025
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	80,83415
$\Pi y = \Pi o * H, \Gamma c$	8,98157
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	4,57810
Пв= По-Пу, г/с	0,50868
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	91
10. Расчетный диаметр, Dp, м	0,6
11. Принятый диаметр, Dп, м	0,8
12. Фактическая скорость, wф, м/с	11,1

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №16, ППУ №2. Расчет выбросов твердых частиц от аспирационной системы В-1 в период с 2025 по 2027 гг. Организованный источник №0017

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	3,9500
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	12931,00
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2500
4.Степень улавливания твердых частиц в пылеулавливающей установке, Н, дол. ед.	0,9464
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	14,7
6.Высота источника над уровнем земли, м	33
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	127,69363
$\Pi_0 = C*V/3600$, г/с	14,18818
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	120,84925
$\Pi y = \Pi o * H, \Gamma c$	13,42769
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	6,84438
Пв= По-Пу, г/с	0,76049
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	212
10. Расчетный диаметр, Dp, м	0,6
11. Принятый диаметр, Оп, м	0,8
12. Фактическая скорость, wф, м/с	1,4

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №17. Расчет выбросов твердых частиц от аспирационной установки В-2 в период с 2025 по 2027 гг. Организованный источник № 0018

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	5,7900
2.Объем отходящих газов(производительность	16830,00
аспир.установки),V,н.м ³ /ч	
3. Годовое количество рабочих часов аспирационной установки, Т,	2500
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9709
установке, Н, дол. ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	11,9
6.Высота источника над уровнем земли, м	32
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	243,61425
$\Pi_0 = C*V/3600, \ r/c$	27,06825
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	236,52508
$\Pi y = \Pi o * H, \Gamma c$	26,28056
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	7,08917
Пв= По-Пу, г/с	0,78769
$C_B = \Pi_B * 1000 * 3600 / V, Mr/M^3$	168
10. Расчетный диаметр, Dp, м	0,8
11. Принятый диаметр, Оп, м	0,8
12. Фактическая скорость, wф, м/с	9,3

Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная. Расчет выбросов вредных веществ в атмосферу от аспирационной системы АУ-1 здания сортировки на 2025-2027 гг. Организованный источник №0019

Наименование показателей	Параметры	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м3	2,772	
2.Объем отходящих газов(производительность		
аспир.установки), V, н.м3/ч	5700	
3. Годовое количество рабочих часов аспирационной установки, Т,		
ч/год	1000	
4.Степень улавливания твердых частиц в пылеулавливающей		
установке, Н, дол. ед.	0,801	
5. Скорость выхода газовоздушной смеси из устья источника, w,		
M/C	6,8	
6.Высота источника над уровнем земли,м	16,5	
Результаты расчета		
7. Количество отходящих твердых частиц		
Mo= C*V*T*10-6 ,т/год	15,80040	
$\Pi_0 = C*V/3600$,г/с	4,38900	
8.Количество уловленных твердых частиц		
Му= Мо*Н ,т/год	12,65612	
$\Pi y = \Pi o * H$,r/c	3,51559	
9.Количество выбрасываемых твердых частиц		
Мв= Мо-Му ,т/год	3,14428	
Пв= По-Пу ,г/с	0,87341	
$C_B = \Pi_B * 1000 * 3600 / V_{,M\Gamma} / M3$	552	
10.Расчетный диаметр, Dp, м	0,54	
11.Принятый диаметр, Dп, м	0,6	
12.Фактическая скорость, wф, м/с	5,6	

Разрез «Восточный» АО «ЕЭК». Котельная на ст. Восточная. Расчет выбросов вредных веществ в атмосферу от аспирационной системы АУ-2 здания сортировки на 2025-2027 гг. Организованный источник №0020

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м3	16,900
2.Объем отходящих газов(производительность	
аспир.установки), V, н.м3/ч	5382
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	1000
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол. ед.	0,9635
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	5,7
6.Высота источника над уровнем земли,м	16,5
Результаты расчета	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6 ,т/год	90,95580
$\Pi_0 = C*V/3600$,г/с	25,26550
8.Количество уловленных твердых частиц	
Му= Мо*Н ,т/год	87,63591
Пу= По*Н ,г/с	24,34331
9.Количество выбрасываемых твердых частиц	
Мв= Мо-Му ,т/год	3,31989
Пв= По-Пу ,г/с	0,92219
$C_B = \Pi_B * 1000 * 3600 / V_{,M\Gamma} / M3$	617
10.Расчетный диаметр, Dp, м	0,50
11.Принятый диаметр, Dп, м	0,6
12. Фактическая скорость, wф, м/с	5,3

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункты перегрузки ПП1-ПП6 . Подземный тоннель. Уборка просыпей. Расчет выбросов твердых частиц от аспирационной установки В-3 в период с 2025 по 2027 гг. Организованный источник №0024

Наименование показателей	Параметры	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	19,854	
2.Объем отходящих газов(производительность		
аспир.установки),V,н.м ³ /ч	6774	
3. Годовое количество рабочих часов аспирационной установки, Т,		
ч/год	1000	
4.Степень улавливания твердых частиц в пылеулавливающей		
установке, Н, дол. ед.	0,9342	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	9,2	
6.Высота источника над уровнем земли, м	2,5	
Результаты расчетов		
7. Количество отходящих твердых частиц		
Mo= C*V*T*10-6, т/год	134,49100	
$\Pi_0 = C*V/3600, \ r/c$	37,35861	
8. Количество уловленных твердых частиц		
Му= Мо*Н, т/год	125,64149	
$\Pi y = \Pi o * H, r/c$	34,90041	
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му, т/год	8,84951	
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \Gamma/C$	2,45820	
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	1306	
10. Расчетный диаметр, Dp, м	0,5	
11. Принятый диаметр, Dп, м	0,56	
12. Фактическая скорость, wф, м/с	7,6	

Примечание. Расчет произведен для одной установки

Разрез "Восточный". Станция Фестивальная. ЖДЦ. Участок вспомогательной железнодорожной техники (УВЖТ). Расчет выбросов вредных веществ при проведении сварочных работ и резке металла. Организованный источник №0029 на 2025-2027 гг.

Наименование показателей	Параметры
1	2
Исходные данные	
Сварочные работы электродами марки УОНИ 13/45	
1.Годовой расход электродов типа УОНИ 13/45, Вгод.1, кг	70
2. Максимальный часовой расход электродов типа УОНИ 13/45, В1, кг	0,5
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	140
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его оксиды	0,51
К2-кремния диоксид	1,4
К3-фториды	1,4
К4-фтористые газообр.соед.	1
Сварочные работы электродами марки УОНИ 13/55	
6.Годовой расход электродов типа УОНИ 13/55, Вгод.2, кг	30
7. Максимальный часовой расход электродов типа УОНИ 13/55, В2, кг	0,5
8.Количество постов, t2, ч	1
9.Количество часов работы в год всех постов, Т2, ч	60
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его оксиды	1,09
К6- кремния диоксид	1
К7-фториды	1
К8-фтористые газообр.соед.	1,26
К9-азота оксид	2,7
К10-углерод оксид	13,3
Сварочные работы электродами марки УОНИ 13/65	
11.Годовой расход электродов типа УОНИ 13/65, Вгод.3, кг	185
12. Максимальный часовой расход электродов типа УОНИ 13/65, ВЗ, кг	0,5
13.Количество постов, t3, ч	1
14. Количество часов работы в год всех постов, Т3, ч	370
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	1,41
К12-кремния диоксид	0,8
К13-фториды	0,8
К14-фтористые газообр.соед.	1,17
Сварочные работы электродами марки Т-590	,
16.Годовой расход электродов типа Т-590, Вгод.4, кг	85
17. Максимальный часовой расход электродов типа УОНИ 13/65, В4, кг	0,5
18.Количество постов, t4, ч	1
19. Количество часов работы в год всех постов, Т4, ч	170
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К15-оксиды хрома	3,7
К16-никель и его оксиды	6,05

Продолжение приложения 10

1	2
Сварочные работы электродами марки НИИ-48Г (ВСН-6)	<u> </u>
21.Годовой расход электродов типа НИИ-48Г, Вгод.5, кг	30
22. Максимальный часовой расход электродов типа НИИ-48Г, В5, кг	0,5
23.Количество постов, t5, ч	1
24.Количество часов работы в год всех постов, Т5, ч	60
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К17- марганец и его соединения	0,53
К18-оксиды хрома	1,54
К19-никель и его оксиды	1,02
К20-фтористыей водород	0,8
Результаты	
26.Валовый выброс за год, т/год	
М1=(Вгод.1*К1+Вгод.2*К5+Вгод.3*К11+Вгод.5*К17)/1000000-	
марганец и его соединен.	0,00035
М2=(Вгод.1*К4+Вгод.2*К8+Вгод.3*К14+Вгод.5*К20)/1000000 -	0.00025
фтористые газообр.соед.	0,00035
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00028
M4= (Вгод.1*K3+Вгод.2*K7+Вгод.3*K13)/1000000-фториды	0,00028
М5=(Вгод.2*К9)/1000000 -азота оксид	0,00008
M6=Вгод.2*К10/1000000 -углерода оксид	0,0004
M7=(Вгод.4*К16+Вгод.5*К19)/1000000 -никель оксид М8=(Вгод.4*К15+Вгод.5*К18)/1000000 -оксиды хрома	0,00054 0,00036
26.Максимальный разовый выброс, г/с	0,00030
П1=К11*В3/3600-марганец и его соед.	0,0002
П2=К8*В2/3600-фтористые газообр.соед.	0,0002
П3=(К2*В1/3600)-кремния диоксид	0,00019
П4=(К3*В1/3600)-фториды	0,00019
П5=К9*В2/3600-азота оксид	0,00038
П6=К10*В2/3600-углерода оксид	0,00185
П6=К16*В4/3600-никель оксид	0,14285
П8=К15*В4/3600оксиды хрома	0,08736
Исходные данные по газовой резке	,
27.Количество часов работы в год,Т1,ч	504
28.Удельное выделение загрязняющих веществ при газовой резке	
стали углеродистой толщиной 20 мм, г/с	
К21-марганец и его соединения	0,017
К22-углерода оксид	0,018
К23-диоксид азота	0,015
Результаты	
29.Валовый выброс за год,т/год	0.00001
M1=T1*3600*K1/1000000 -марганец и его соединения	0,03084
M3=T1*3600*K3/1000000 -углерода оксид	0,03266
М4=(Т1*3600*К4/1000000 -азота диоксид	0,02722
30.Максимальный разовый выброс,г/с	0.017
П1=К1 -марганец и его соединения	0,017
П3=К3 -углерода оксид	0,018

Окончание приложения 10

1	2
П4=К4 -азота диоксид	0,015
Итого	
31.Валовый выброс за год,т/год	
М1=(Вгод.1*К1+Вгод.2*К5+Вгод.3*К11+Вгод.5*К17+Т1*3600*К1)/10	
00000-марганец и его соединен.	0,03119
М2=(Вгод.1*К4+Вгод.2*К8+Вгод.3*К14+Вгод.5*К20)/1000000 -	
фтористые газообр.соед.	0,00035
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00028
М4= (Вгод. 1*К3+Вгод. 2*К7+Вгод. 3*К13)/1000000-фториды	0,00028
М5=Вгод.2*К9/1000000 -азота оксид	0,00008
М6=Вгод.2*К10/1000000+Т1*3600*К3/1000000 -углерода оксид	0,03306
М7=(Вгод.4*К16+Вгод.5*К19)/1000000 -никель оксид	0,00054
М8=(Вгод.4*К15+Вгод.5*К18)/1000000 -оксиды хрома	0,00036
М9=(Т1*3600*К4/1000000 -азота диоксид	0,02722
31.Максимальный разовый выброс,г/с	
П1=К1-марганец и его соед.	0,0172
П2=К8*В2/3600-фтористые газообр.соед.	0,00018
П3=(К2*В1/3600)-кремния диоксид	0,00019
П4=(К3*В1/3600)-фториды	0,00019
П5=К9*В2/3600-азота оксид	0,00038
П6=К10*В2/3600-углерода оксид	0,01985
П6=К16*В4/3600-никель оксид	0,14285
П8=К15*В4/3600оксиды хрома	0,08736
П8=К17*В4/3600азота диоксид	0,015

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Приложение 11

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонтно-механический участок (РМУ). Расчет эмиссий загрязняющих веществ в атмосферу от кузнечного горна. Организованный источник 0033 на 2025-2027 гг.

Наименование показателей	Параметры
Исходные данные	
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	5
- золы, Ar	36,1
- серы, Sr	0,65
2. Безразмерный коэффициент, f, (табл 4.2)	0,0023
3. Эффективность золоуловителя, n, %	0
4.Доля ангидрида сернистого, n'so2	0,1
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2	0
6.Потери тепла от химической неполноты сгорания топлива,q2,%	2
7. Коэффициент, учитывающий долю потери тепла от химической неполноты	
сгорания топлива, обусловленную наличием в продуктах сгорания CO, R	1
8.Низшая теплота сгорания натурального топлива, Qri, МДж / кг	18,27
9.Выход оксида углерода при сжигании топлива	,
Cco=q2 * R * Qri, кг / т	36,54
10.Потери тепла от механической неполноты сгорания топлива, q1, %	7
11.Количество азота оксидов, выделяющего при сжигании топлива, q3,кг/т	2,2
12.Количество часов работы в год, t, ч	4032
13. Расход топлива в год ,В, т/год	24
Bg=Bt*10 -6/ (3600 *T), Γ/c	1,65
Результаты	· ·
14.Количество веществ, выбрасываемых в атмосферу:	
а)пыль неорг. 20% <sio2<70%< td=""><td></td></sio2<70%<>	
Мгод=В*Ar*f*(1-n/100), т/год	1,99272
Mcek = Mroд*106/t*3600, r/c	0,13729
б) сера диоксид	
KK=(1-n'so2) * (1-n''so2)	0,9
Мгод=0,02*B*Sr*KK, т/год	0,2808
Мсек=Мгод*106/t*3600 г/с	0,01935
в) углерод оксид	
Мгод=Cco*B*(1-q1/100)*10-3, т/год	0,81557
Мсек=Мгод*106/t*3600 г/с	0,05619
г) азота оксид	
Мгод =0,13*q3*B*10-3, т/год	0,00686
Мсек=Мгод*106/t*3600 г/с	0,00047
д)азота диоксид	,
Мгод =0,8*q3*B*10-3, т/год	0,04224
Мсек=Мгод*106/t*3600 г/с	0,00233

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Разрез «Восточный». Станция «Фестивальная». РСУ. Расчет эмиссий загрязняющих веществ в атмосферу от деревообрабатывающих станков. Организованные источники №№ 0054 и 0200 на 2025-2027 гг.

Наименование показателей	Параметры
1	2
Исходные данные (источник 0054)	
Станок фуговальный	
1.Количество часов работы в год одного станка, Т1, ч	1100
2.Количество станков, n1, шт	1
3.Удельное выделение пыли древесной, q1, г/с	1
Рейсмусовый станок Д-400	
4. Количество часов работы в год одного станка, Т2, ч	300
5.Количество станков,n2, шт	1
6. Удельное выделение пыли древесной, q2, г/с	0,81
Станок фрезерный Ф-6	
7. Количество часов работы в год одного станка, Т3, ч	300
8.Количество станков, п3, шт	1
9.Удельное выделение пыли древесной, q3, г/с	0
Станок торцовый ЦКБ-40	
10.Количество часов работы в год одного станка, Т4, ч	80
11.Количество станков, п4, шт	1
12. Удельное выделение пыли древесной, q4, г/с	1,39
Рейсмусовый станок Д-300	
13.Количество часов работы в год одного станка, Т5, ч	40
14.Количество станков, п5, шт	1
15.Удельное выделение пыли древесной, q5, г/с	0,81
Результаты	
16.Валовый выброс количество пыли древесной размером менее 200 мкм за	
год без учета мероприятий, т/год	
M1=k*A*(q1*n1*T1+q2*n2*T2+q3*n3*T3+q4*n4*T4+q5*n5*T5)*3600/100000	0,10704
0	
17.Валовый выброс пыли древесной размером менее 200 мкм за год с учетом	
мероприятий, т/год	
$M1 = A * K \Rightarrow \varphi. * ((q1*n1*T1 + q2*n2*T2 + q3*n3*T3 + q4*n4*T4 + q5*n5*T5)*3600])/1$	0,03521
000000*(1-f)	
18.Максимальный разовый выброс пыли древесной без учета мероприятий, г/с	
$\Pi 1=k*A*(q1+q4)$	0,04780
19.Максимальный разовый выброс пыли древесной с учетом мероприятий, г/с	
$\Pi 1 = A * K \Rightarrow \phi. * (q1 + q4) * (1 - f)$	0,01573
20.Коэффициент эффективности местных отсосов ,Кэф.	1
21. Степень очистки (в долях единицы, f	0,9342
22.Коэффициент гравитационного оседания, к	0,2
23. Коэффициент, учитывающий влажность древесины, А	0,1
Исходные данные (источник 0200)	
Станок Универсальный КП-32	

Окончание приложения 12

1	2	
1. Количество часов работы в год одного станка, Т1, ч	350	
2.Количество станков, n1, шт	1	
3.Удельное выделение пыли древесной, q1, г/с	0,39	
4.Коэффициент гравитационного оседания, к	0,2	
5. Коэффициент, учитывающий влажность древесины, А	0,1	
Результаты		
6.Валовый выброс количество пыли древесной размером менее 200 мкм за год		
без учета мероприятий, т/год		
M1=k*A*(q1*n1*T1)*3600/1000000	0,00983	
7. Максимальный разовый выброс пыли древесной без учета мероприятий, г/с		
$\Pi 1=k*A*q1$	0,00780	

Расчет выполнен на основании следующих документов:

- 1. «Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности», РНД 211.2.02.08-2004;
- 2. «Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферу» (СПб., 2012г.)

Разрез «Восточный» АО «ЕЭК». ЦПВК-1. ДПП ДУ №2 (южный блок). Расчет выбросов твердых частиц от аспирационной системы А-2 в период с 2025 по 2027 гг. Организованный источник №0089

Наименование показателей	Показатели	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С,		
г/н.м ³	2,1900	2,1900
2.Объем отходящих газов(производительность		
аспир.установки), V, н.м ³ /ч	32232	32232
3.Годовое количество рабочих часов аспирационной		
установки, Т, ч/год	7920	7920
4.Степень улавливания твердых частиц в		
пылеулавливающей установке, Н, дол. ед.	0,9755	0,9755
5.Скорость выхода газовоздушной смеси из устья		
источника, w, м/с	5,1	5,1
6.Высота источника над уровнем земли, м	12	12
Результаты расчетов		
7. Количество отходящих твердых частиц		
Мо= С*V*Т*10-6, т/год	559,05759	559,05759
$\Pi_0 = C*V/3600, \ r/c$	19,60780	19,60780
8. Количество уловленных твердых частиц		
Му= Мо*Н, т/год	545,36068	545,36068
$\Pi y = \Pi o * H, r/c$	19,12741	19,12741
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му, т/год	13,69691	13,69691
Пв= По-Пу, г/с	0,48039	0,48039
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	53,7	53,7
10. Расчетный диаметр, Dp, м	1,66	1,66
11. Принятый диаметр, Dп, м	1,66	1,66
12. Фактическая скорость, wф, м/с	4,1	4,1

Приложение 14

Разрез Восточный АО «ЕЭК». ДСК на щебкарьере «Балластный». ДСУ-1. Расчет выбросов твердых частиц от аспирационной системы АУ-1 в период с 2025 по 2027 гг. Организованный источник №0096

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	5,000
2.Объем отходящих газов(производительность аспир.установки), V,	8128,4
$H.M^3/\Psi$	
3.Годовое количество рабочих часов аспирационной установки, Т, ч/год	4200
4.Степень улавливания твердых частиц в пылеулавливающей установке,	0,8310
Н, дол.ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	21
6.Высота источника над уровнем земли, м	8,7
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	170,69600
$\Pi_0 = C*V/3600$, г/с	11,28900
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	141,84838
$\Pi y = \Pi o * H, \Gamma c$	9,38116
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	28,84762
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	1,90784
$C_B = \Pi_B * 1000 * 3600 / V, M_F / M^3$	845
10. Расчетный диаметр, Dp, м	0,37000
11. Принятый диаметр, Dп, м	0,40
12. Фактическая скорость, wф, м/с	18,0

Разрез Восточный АО «ЕЭК». ДСК на щебкарьере «Балластный». ДСУ-2. Расчет выбросов твердых частиц от аспирационной системы АУ-2 в период с 2025 по 2027 гг. Организованный источник №0097

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	2,999
2.Объем отходящих газов(производительность аспир.установки), V, н.м ³ /ч	6052,0
3.Годовое количество рабочих часов аспирационной установки, Т, ч/год	4200,0
4.Степень улавливания твердых частиц в пылеулавливающей установке, Н,	0,8285
дол.ед.	
5. Скорость выхода газовоздушной смеси из устья источника, w, м/с	16,9
6.Высота источника над уровнем земли, м	9,1
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	76,22978
$\Pi_0 = C*V/3600, \ r/c$	5,04165
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	63,15637
$\Pi y = \Pi o * H, r/c$	4,17701
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	13,07341
$\Pi_B = \Pi_O - \Pi_{y, \Gamma}/c$	0,86464
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MF/M}^3$	514
10. Расчетный диаметр, Dp, м	0,400
11. Принятый диаметр, Оп, м	0,4
12. Фактическая скорость, wф, м/с	13,4

Разрез "Восточный". Станция Восточная. ЖДЦ. УСЦБ. Расчет эмиссий загрязняющих веществ в атмосферу при зарядке аккумуляторных батарей на 2025-2027 гг. Организованный источник №0114

Наименование показателей	Параметры	
Исходные данные		
1. Количество зарядок в год кислотных аккумуляторов АБН-72,а1,шт.	39	
2.Номинальная емкость заряжаемого аккумулятора, А * ч		
Q1-кислотного	72	
3. Цикл проведения зарядки в день, t, ч	10	
4.Удельное выделение паров серной кислоты при зарядке		
аккумуляторных батарей, q1 мг/А*ч	1	
5. Максимальное количество одновременно заряжаемых батарей, шт.		
n1-кислотных	3	
Результаты		
6.Валовый выброс за год паров серной кислоты, т / год		
M1=(0,9*q1*Q1*a1)/1000000000	0,000003	
7.Валовый выброс за день паров серной кислоты, т / день		
M1cyr=(0,9*q1*Q1*n1)/1000000000	0,0000002	
8.Максимальный разовый выброс паров серной кислоты, г / с		
$\Pi 1 = (M1 \text{ cy} 1000000) / (3600 $	0,00001	

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г. № 100-п)

Разрез "Восточный". Станция Восточная. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и резки металла на 2025-2027 гг. Организованный источник №0116

Наименование показателей	Параметры
1	2
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1,кг	70
2. Максимальный часовой расход электродов типа МР-3, В1, кг	0,5
3.Количество постов, t1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	140
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его соединения	1,8
Сварочные работы электродами марки УНОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	450
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	1
8.Количество постов, t2, шт.	1
9. Количество часов работы в год всех постов, Т2, ч	450
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения)	1,09
К3-кремния диоксид	1
К4-фториды	1
К5-фтористые газообр.соед.	1,26
К6-оксид азота	2,7
К7-оксид углерода	13,3
Сварочные работы электродами марки УОНИ-13/65	
11.Годовой расход электродов типа УОНИ 13/65, Вгод.3, кг	90
12. Максимальный часовой расход электродов типа УОНИ 13/65, В3, кг	0,5
13. Количество постов, t3, ч	1
14. Количество часов работы в год всех постов, Т3, ч	180
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К8-марганец и его соединения	1,41
К9-кремния диоксид	0,8
К10-фториды	0,8
К11-фтористыей водород	1,17
Результаты	
16.Валовый выброс за год, т/год	
М1=(Вгод.1*К1+Вгод.2*К2+Вгод.3*К8)/1000000-марганец и его соединен.	0,00074
М2=(Вгод.2*К5+Вгод3*К11)/1000000 -фтористые газообр. соед.	0,00067
М3=(Вгод2*К3+Вгод3*К9/1000000 -кремния диоксид	0,00052
М4=(Вгод.2*К4+Вгод.3*К10)/1000000 -фториды	0,00052
М6=(Вгод.2*К6)/1000000 -оксид азота	0,00122
М7=Вгод.2*К7/1000000 -оксид углерода	0,00599
17. Максимальный разовый выброс, г/с	
П1=К1*В1/3600-марганец и его соед.	0,00025
П2=К5*В2/3600-фтористые газообр. Соединен.	0,00035

Окончание приложения 17

1	2
П3=К3*В2/3600-кремния диоксид	0,00028
П4=К4*В2/3600-фториды	0,00028
П6=К6*В2/3600-оксид азота	0,00075
П7=К7*В2/3600-оксид углерода	0,00369
Исходные данные по газовой резке	
18. Количество часов работы в год, Т1, ч	60
19. Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К21-марганец и его соединения	0,017
К22-оксид углерода	0,018
К23-диоксид азота	0,015
Результаты	
20.Валовый выброс за год,т/год	
М8=Т1*3600*К1/1000000 -марганец и его соединения	0,00367
М9=Т1*3600*К3/1000000 -оксид углерода	0,00389
М10=(Т1*3600*К4/1000000 -диоксид азота	0,00324
21.Максимальный разовый выброс,г/с	
П8=К21 -марганец и его соединения	0,017
П9=К22 -оксид углерода	0,018
П10=К23 -диоксид азота	0,015
Итого	_
22.Валовый выброс за год,т/год	
М=М1+М8-марганец и его соединен.	0,00441
М=М2-фтористый водород	0,00067
М=М3-кремния диоксид	0,00052
М= М4-фториды	0,00052
М=М6 -азот оксид	0,00122
М=М7+М9 -углерод оксид	0,00988
М=М10 -диоксид азота	0,00324
23.Максимальный разовый выброс,г/с	
П1=К1-марганец и его соед.	0,017
П2=К5*В2/3600-фтористый водород	0,00035
П3=(К3*В2/3600)-кремния диоксид	0,00025
П4=(К3*В2/3600)-фториды	0,00028
П5=К6*В2/3600-азот оксид	0,00075
П6=К7*В2/3600-углерод оксид	0,00369
П=К4 -диоксид азота	0,015

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г

Разрез "Восточный". Станция Восточная. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от металлообрабатывающих станков на 2025-2027 гг. Организованный источник № 0116

Наименование показателей	Параметры
Исходные данные	
Механическая обработка без охлаждения	
Угловая шлифовальная машина "болгарка" УШМ-230/2300М Ф круга	
1.Количество станков,п, шт	1
2. Количество часов работы в год одного станка, Т, ч	100
3.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,043
q1-взвешенные вещества	0,043
Результаты	
4.Валовый выброс за год взвешенных веществ, т/год	
M =3600*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,01548
5. Максимальный разовый выброс взвешенных веществ, г/с	
П=q1*n -без пылеотсасывающих агрегатов	0,043
6.Валовый выброс за год абразивной пыли, т/год	
M =3600*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,01548
7.Максимальный разовый выброс абразивной пыли, г/с	
П=q*n -без пылеотсасывающих агрегатов	0,043

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № $221-\theta$)

Приложение 19

Разрез "Восточный". Станция Восточная. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-30 на 2025-2027 гг. Организованный источник №0117

Наименование показателей	Параметры
Исходные данные	
1.Количество паек в год, п, шт	250
2. Чистое в ремя работы паяльником в год ,t,ч	250
3.Удельное выделение загрязняющих веществ, q, г/с м2	
q1-свинец и его соединения	0,000008
q2- олова оксид	0,0000033
Результаты	
4.Максимальный разовый выброс, г/с	
Mc=q1 - свинец и его соединения	0,000008
Мс=q2 * - олова оксид	0,0000033
5.Валовый выброс за год, т/год	
Мгод=(q1*t*n*3600)/1000000- свинец и его соединения	0,0018
Мгод=(q2*t*n*3600)/1000000- олова оксид	0,000743

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Приложение 20

Разрез "Восточный". Станция Восточная. ЦРГО.Ремонт электрических машин (УРЭМ). Расчет эмиссий загрязняющих веществ в атмосферу при обжиге обмоток статора на 2025-2027 гг. Организованный источник №0120

Наименование показателей	Параметры
Исходные данные	
1.Годовой фонд рабочего времени печи, Т, ч/год	2190
2.Объем максимальной раовой загрузки электропечи, V,кг	50
3.Время деструкции изоляции обмоток, t, ч	43,8
4. Масса выжигаемых статоров ремонтируемых электродвигателей,	
В,кг/год	2500
5. Удельное выделение загрязняющего вещества на 1кг массы статора, д	, г/с*кг:
g1-азота диоксид	0,0000275
g2-углерод (сажа)	0,0000005
g3-угрерода оксид	0,00038
6. Максимальный разовый выброс, г/с	
П1=V*g1 -азота диоксид	0,001375
П2=V*g2 -углерод	0,000025
П3=V*g3 -угрерода оксид	0,019
7.Валовый выброс за год, т/год	
M1= П1*T*3600/1000000-азота диоксид	0,01084
М2= П2*Т*3600/1000000-углерод	0,0002
M3= П3*Т*3600/1000000-угрерода оксид	0,1498

Расчет выполнен по " Удельные показатели выбросов загрязняющих веществ в атмосферу для ремонтно-обслуживающих предприятий и машиностроительных заводов агропромышленного ком-плекса. – Ростов-на-Дону: ЗАО «Институт Проектпромвентиляция», 2007.

Приложение 21

Разрез "Восточный". Станция Восточная. ТБУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ на 2025-2027 гг. Организованный источник №0122

Наименование показателей	Параметры
Исходные данные	
Сварочные работы электродами марки Т-590	T
1.Годовой расход электродов типа Т-590, Вгод.1,кг	400
2. Максимальный часовой расход электродов типа Т-590, В1, кг	1
3.Количество постов, t1, шт	1
4.Количество часов работы в год всех постов, Т1, ч	400
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-оксиды хрома	3,7
К3-никель и его оксиды	60,5
Сварочные работы электродами марки УНОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	1000
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	1
8.Количество постов, t2, шт.	1
9.Количество часов работы в год всех постов, Т2, ч	1000
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	1,09
К6-кремния диоксид	1
К7-фториды	1
К8-фтористые газообр.соед.	1,26
К9-азота оксид	2,7
К10-оксид углерода	13,3
Результаты	,
11.Валовый выброс за год, т/год	
М2=(Вгод.2*К5)/1000000-марганец и его соединен.	0,00109
M3=(Вгод2*K8)/1000000 -фтористые газообр. Соед.	0,00126
М4=(Вгод2*К6)/1000000 -кремния диоксид	0,001
М5=Вгод.2*К7/1000000 -фториды	0,001
М6=(Вгод.2*К9)/1000000 -азота оксид	0,0027
М7=Вгод.2*К10/1000000 -оксид углерода	0,0133
М8=Вгод.1*К2/1000000-оксиды хрома	0,00148
М9=Вгод.1*К3/1000000- никель и его оксиды	0,0242
12.Максимальный разовый выброс, г/с	,
П2=К5*В2/3600-марганец и его соед.	0,0003
П3=К8*В2/3600-фтористые газообр. Соединен.	0,00035
П4=К6*В2/3600-кремния диоксид	0,00028
П5=К7*В2/3600-фториды	0,00028
П6=К9*В2/3600-азота оксид	0,00075
П7=К10*В2/3600-оксид углерода	0,00369
П7=К2*В1/3600оксиды хрома	0,00103
П8=К3*В1/3600-никель и его оксиды	0,01681

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө".

Приложение 22

Разрез "Восточный". Станция Фестивальная.ДПС "Восточное". Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла на 2025-2027 гг. Организованный источник №0124

Наименование показателей	Показатели
Исходные данные	
1.Количество часов работы в год,Т1,ч	345
2.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
3.Количество часов работы в год, Т2, ч	410
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 50мм, г/с	
К5-марганец и его соединения	0,061
К7-оксид углерода	0,012
К8-диоксид азота	0,006
5.Количество часов работы в год, Т3, ч	70
6.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 100мм, г/с	
К9-марганец и его соединения	0,071
К11-оксид углерода	0,006
К12-диоксид азота	0,003
Результаты	
7.Валовый выброс за год,т/год	
М1=(Т1*К1+Т2*К5+Т3*К9)*3600/1000000 -марганец и его соединения	0,10917
М3=(Т1*К3+Т2*К7+Т3*К11)*3600/1000000 -оксид углерода	0,04406
М4=(Т1*К4+Т2*К8+Т3*В12*3600)/1000000 -диоксид азота	0,03197
8.Максимальный разовый выброс,г/с	
П1=К9 -марганец и его соединения	0,071
П3=К3 -оксид углерода	0,02
П4=К4 -диоксид азота	0,018

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г

Приложение 23

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. ДПС "Восточное". Расчет эмиссий загрязняющих веществ в атмосферу при наплавочных работах на 2025-2027 гг. Организованный источник №0125

Наименование показателей	Параметры
Исходные данные	•
Наплавочные работы под флюсом АН-348А порошковой проволокой П	П-АН-1
1.Годовой расход АН-348А, Вгод.1, кг	170
2. Максимальный часовой расход АН 348А, В1, кг	1,6
3. Количество часов работы в год, Т1, ч	106,25
4.Годовой расход ПП-АН-1, Вгод.2, кг	120
5.Количество часов работы в год, Т2, ч	150
6. Максимальный часовой расход ПП-АН-1, В2, кг	0,8
7.Удельное выделение загрязняющих веществ при АН-348А, г/кг	
К1-марганец и его соединения	0,024
К2-пыль неорганическая	0,05
К3-фтористыегазообразные соединения	0,086
К4- азот оксид	0,001
К5-углерод оксид	0,71
8.Удельное выделение загрязняющих веществ при ПП-АН-1, г/кг	
К6-марганец и его соединения	0,77
Результаты	
9.Валовый выброс за год, т/год	
М1=(Вгод.1*К1+Вгод.2*К6)/1000000-марганец и его соединен.	0,000004
М2=(Вгод.1*К2)/1000000пыль неорганическая	0,00001
М3=Вгод.1*К3/1000000 -фтористые газообр. соед.	0,00001
М4=Вгод.1*К4/1000000 -азот диоксид	0,0000002
М5=Вгод.1*К5/1000000 -оксид углерод	0,000121
10.Максимальный разовый выброс, г/с	
П1=(К1*В1+К6*В2)/3600-марганец и его соед.	0,00001
П2=К2*В1/3600-пыль неорганическая	0,00002
П3=К3*В1/3600-фтористые газообр. соединен.	0,00004
П4=К4*В1/3600-азот диоксид	0,0000004
П5=К5*В1/3600-углерод оксид	0,0003156

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө".

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Отделение сварочное. Пост №2. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Организованный источник №0134

Наименование показателей	Параметры
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	90
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3. Количество постов, t1, шт.	1
4.Количество часов работы в год всех постов, Т1, ч	180
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его соединения	1,8
РЕЗУЛЬТАТЫ	
6.Валовый выброс марганец и его соед. За год, т/год	
М1=Вгод.1*К1/1000000	0,00016
7. Максимальный разовый выброс марганец и его соед., г/с	
П1=К1*Вчас1/3600	0,00025

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө"

Разрез «Восточный» АО «ЕЭК». ЦПВК-2. Пергрузка вскрыши с ВКС1 (С1) на ВКС 2(С2). Расчет выбросов твердых частиц от аспирационной системы А5 в период с 2025 по 2027 г.г. Организованный источник № 0153

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, C , $\Gamma/H.M^3$	19,030
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	2149
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	4250
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол. ед.	0,8439
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	11,5
6.Высота источника над уровнем земли, м Результаты расчет	14,7
7. Количество отходящих твердых частиц	, D
Мо= C*V*Т*10-6, т/год	173,80575
По= С*V/3600, г/с	11,35985
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	146,67467
Пу= По*Н, г/с	9,58658
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	27,13108
$\Pi_B = \Pi_O - \Pi_{y, \Gamma}/c$	1,77327
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	2971
10. Расчетный диаметр, Dp, м	0,26
11. Принятый диаметр, Оп, м	0,9
12. Фактическая скорость, wф, м/с	0,2

Разрез «Восточный» АО «ЕЭК». ЦПВК-2. Перегрузка вскрыши с ВКС2(С2) на ВКП1-ЦПВК1 в 2023 гг. Пергрузка вскрыши с ВКС2(С2) на ВКП 2-1(С3) на 2024 г. Расчет выбросов твердых частиц от аспирационной системы А6 в период с 2025 по 2027 г.г. Организованный источник №0154

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	13,510
2.Объем отходящих газов(производительность аспир.установки), V,	
H.M ³ /q	2570
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	4250
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол.ед.	0,8747
5. Скорость выхода газовоздушной смеси из устья источника, w, м/с	22
6.Высота источника над уровнем земли, м	14,7
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	147,56298
$\Pi_0 = C*V/3600, \Gamma/c$	9,64464
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	129,07334
$\Pi y = \Pi o * H, \Gamma / c$	8,43617
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	18,48964
Пв= По-Пу, г/с	1,20847
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MIT/M}^3$	1693
10. Расчетный диаметр, Dp, м	0,20
11. Принятый диаметр, Оп, м	0,9
12. Фактическая скорость, wф, м/с	1,1

Разрез "Восточный". Станция Фестивальная. УППР. Расчет эмиссий загрязняющих веществ в атмосферу от отопительной печи на 2025-2027 гг. Организованные источники №№ 0163, №0164, №0165

Исходные данные 1.Процентное содержание (на рабочую массу) в топливе, % 5 - влаги 5 - золы, Ar 36,1 - серы, Sr 0,65 2.Безразмерный коэффициент, f, (табл 4.2) 0,0023 3.Эффективность золоуловителя, n, % 0 4.Доля ангидрида сернистого, n'so2 0,1 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2 0 6.Потери тепла от химической неполноты сгорания топлива,q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 в продуктах сгорания CO, R 1 8.Низшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27 9.Выход оксида углерода при сжигании топлива 1	Ж
В топливе, % - влаги - золы, Ar - серы, Sr 2.Безразмерный коэффициент, f, (табл 4.2) 3.Эффективность золоуловителя, n, % 4.Доля ангидрида сернистого, n'so2 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2 6.Потери тепла от химической неполноты сгорания топлива,q2,% 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием в продуктах сгорания СО, R 8.Низшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27	
- влаги 5 - золы, Ar 36,1 - серы, Sr 0,65 2.Безразмерный коэффициент, f, (табл 4.2) 0,0023 3.Эффективность золоуловителя, n, % 0 4.Доля ангидрида сернистого, n'so2 0,1 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2 0 6.Потери тепла от химической неполноты сгорания топлива,q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 в продуктах сгорания CO, R 1 8.Низшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27	
- золы, Ar36,1- серы, Sr0,652.Безразмерный коэффициент, f, (табл 4.2)0,00233.Эффективность золоуловителя, n, %04.Доля ангидрида сернистого,n'so20,15.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so206.Потери тепла от химической неполноты сгорания топлива,q2,%27.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием1в продуктах сгорания СО, R18.Низшая теплота сгорания натурального топлива,Qri, МДж / кг18,27	
- серы, Sr 0,65 2.Безразмерный коэффициент, f, (табл 4.2) 0,0023 3.Эффективность золоуловителя, n, % 0 4.Доля ангидрида сернистого, n'so2 0,1 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, n"so2 0 6.Потери тепла от химической неполноты сгорания топлива,q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 8 Пизшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27	
2.Безразмерный коэффициент, f, (табл 4.2) 0,0023 3.Эффективность золоуловителя, n, % 0 4.Доля ангидрида сернистого,n'so2 0,1 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2 0 6.Потери тепла от химической неполноты сгорания топлива,q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием в продуктах сгорания CO, R 1 8.Низшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27	
3.Эффективность золоуловителя, n, % 0 4.Доля ангидрида сернистого, n'so2 0,1 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2 0 6.Потери тепла от химической неполноты сгорания топлива,q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 в продуктах сгорания CO, R 1 8.Низшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27	
4.Доля ангидрида сернистого, n'so2 0,1 5.Доля ангидрида сернистого, улавливаемого в золоуловителе, n"so2 0 6.Потери тепла от химической неполноты сгорания топлива,q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 в продуктах сгорания СО, R 1 8.Низшая теплота сгорания натурального топлива,Qri, МДж / кг 18,27	
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, "n"so2 0 6.Потери тепла от химической неполноты сгорания топлива, q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 в продуктах сгорания CO, R 1 8.Низшая теплота сгорания натурального топлива, Qri, МДж / кг 18,27	
6.Потери тепла от химической неполноты сгорания топлива, q2,% 2 7.Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием 1 в продуктах сгорания СО, R 1 8.Низшая теплота сгорания натурального топлива, Qri, МДж / кг 18,27	
7. Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием в продуктах сгорания СО, R 1 8. Низшая теплота сгорания натурального топлива, Qri, МДж / кг 18,27	
7. Коэффициент, учитывающий долю потери тепла от химической неполноты сгорания топлива, обусловленную наличием в продуктах сгорания СО, R 1 8. Низшая теплота сгорания натурального топлива, Qri, МДж / кг 18,27	
в продуктах сгорания СО, R 1 8.Низшая теплота сгорания натурального топлива, Qri, МДж / кг 18,27	
в продуктах сгорания СО, R 1 8.Низшая теплота сгорания натурального топлива, Qri, МДж / кг 18,27	
Cco=q2 * R * Qri, кг/т 36,54	
10.Потери тепла от механической неполноты сгорания топлива, q1, %	
11.Количество азота оксидов, выделяющего при сжигании	
топлива, q3,кг/т 2,2	
12.Количество часов работы в год, t, ч 4920	
13. Расход топлива в год ,В, т/год 10,25	
Bg=Bt*10 -6/ (3600 *T), г/с 0,58	
Результаты	
14.Количество веществ, выбрасываемых в атмосферу:	
a)Пыль неорг. 20% <sio2<70%< td=""><td></td></sio2<70%<>	
Мгод=В*Ar*f*(1-n/100), т/год 0,85100	,
Mcek = Mroд*106/t*3600, r/c 0,04803	,
б) сера диоксид	
KK = (1-n'so2) * (1-n''so2) 0,9	
Мгод=0,02*B*Sr*KK, т/год 0,11993	,
Мсек=Мгод*106/t*3600 г/с 0,00677	,
в) углерод оксид	
Мгод=Cco*B*(1-q1/100)*10-3, т/год 0,34832	
Мсек=Мгод*106/t*3600 г/с 0,01967	,
г) азота оксид	
Мгод =q3*B*10-3, т/год 0,02255	
Мсек=Мгод*106/t*3600 г/с 0,00127	í

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу МООС РК от 18.04.08г. № 100-п)

Разрез "Восточный". Станция Восточная.ЦРГО.Участок ремонта конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от разогрева при горячей вулканизации на 2025-2027 гг. Организованный источник №0166

Наименование показателей	Параметры
1	2
Исходные данные	
1.Годовой расход смеси, R, кг	1320
2.Количество часов работы в год ,Т,ч	4400
3.Удельное выделение загрязняющих веществ, мг/кг	
q1-дивинил	5
q2-изопрен	4,52
q3-нитрил акриловой кислоты	7,44
q4-стирол	2,84
q5-α-метилстирол	2,84
q6-хлоропрен	4,1 2,1
q7-этилена пропилена оксид	2,1
q8-этилен	1,63
q9-изобутилен	4,36
q10-водород хлористый	5,08
q11-дибутилфталат	4,43
q12-серы (IV) оксид	0,9
q13-углерода оксид	2,7
q14-алифатические предельные углеводороды С12-С19	5,4
4. Количество нагревателей, п, шт	1
Результаты	
5.Валовый выброс за год,т/год	
M1=R*q1/1000000000 -дивинил	0,00001
M2=R*q2/1000000000 -изопрен	0,00001
M3=R*q3/100000000 -нитрил акриловой кислоты	0,00001
M4=R*q4/1000000000 -стирол	0,000004
М5=R*q5/100000000 -α-метилстирол	0,000012
М6=R*q6/1000000000 -хлоропрен	0,00001
M7=R*q7/1000000000- этилена пропилена оксид	0,000003
M8=R*q8/1000000000 -этилен	0,000002
M9=R*q9/1000000000 -изобутилен	0,00001
M10=R*q10/1000000000 -водород хлористый	0,00001
M11=R*q11/1000000000 -дибутилфталат	0,00001
M12=R*q12/1000000000 -серы (IV) оксид	0,000001
M13=R*q13/1000000000 -углерода оксид	0,000004
M14=R*q14/1000000000-алифатические предельные	0,00001
углеводороды С12-С19	
6.Максимальный разовый выброс,г/с	
$\Pi1=M1*1000000/(T*3600)$ -дивинил	0,000001
П2=M2*1000000/(Т*3600)-изопрен	0,000001
П3=М3*1000000/(Т*3600)-нитрил акриловой кислоты	0,000001
П4=М4*1000000/(Т*3600)-стирол	0,0000003

Окончание приложения 28

1	2
1	
$\Pi 5 = M5*1000000/(T*3600)$ - α - метилстирол	0,0000002
П6=М6*1000000/(Т*3600)-хлоропрен	0,0000001
П7=М7*1000000/(Т*3600) -этилена пропилена оксид	0,000001
П8=М8*1000000/(Т*3600) -этилен	0,000001
П9=М9*1000000/(Т*3600) -изобутилен	0,000001
П10=М10*1000000/(Т*3600) -водород хлористый	0,0000001
П11=М11*1000000/(Т*3600)-дибутилфталат	0,0000003
П12=M12*1000000/(Т*3600)-серы (IV) оксид	0,0000001
П13=М13*1000000/(Т*3600)-углерода оксид	0,0000003
П14=М14*1000000/(Т*3600) -алифатические предельные	
углеводороды С12-С19	0,000001

Расчет выполнен по "Сборнику методик по расчету выбросов вредных веществ в атмосферу различными производствами", Алматы, 1996г.

Приложение 29

Разрез "Восточный". Станция Восточная .AXO. Расчет эмиссий загрязняющих веществ в атмосферу от стиральных машин на 2025-2027 гг. Организованный источник №0176

Наименование показателей	Параметры	
Исходные данные	·	
Стиральная машина 25кг/ч		
1.Количество машин, n1, шт.	1	
2.Количество часов работы в год всех машин, Т1, ч	4088	
3.Удельное выделение загрязняющих веществ при стирке, г/с		
g1-динатрий карбонат	0,00002026	
g2-синтетическое моющее средство	0,0000471	
РЕЗУЛЬТАТЫ		
4.Валовый выброс За год, т/год		
G1=g1*n1*T1*3600/1000000-динатрий карбонат	0,0003	
G2=g2*n1*T1*3600/1000000 -синтетическое моющее средство	0,00069	
5.Максимальный разовый выброс, г/с		
M1=g1*n1	0,00002	
M2=g2*n1	0,00005	
Стиральная машина 50кг/ч		
1.Количество машин, n2, шт.	1	
2.Количество часов работы в год всех машин, Т2, ч	4088	
3.Удельное выделение загрязняющих веществ при стирке, г/с		
g3-динатрий карбонат	0,00004052	
g4-синтетическое моющее средство	0,00009401	
РЕЗУЛЬТАТЫ		
4.Валовый выброс За год, т/год		
G3=g3*n2*T2*3600/1000000-динатрий карбонат	0,0006	
G4=g4*n2*T2*3600/1000000 -синтетическое моющее средство	0,00138	
5.Максимальный разовый выброс, г/с		
M3=g3*n2	0,000041	
M4=g4*n2	0,000094	
Итого		
6Валовый выброс За год, т/год		
G=G1+G3-динатрий карбонат	0,0009	
G=G2+G4 -синтетическое моющее средство	0,00207	
7. Максимальный разовый выброс, г/с		
M=g4*n2	0,000094	

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории" (Приложению 7 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө").

Разрез "Восточный". Станция Восточная. Участок колонны технологического транспорта (УКТТ). Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Организованный источник №0178

Наименование показателей	Параметры	
Исходные данные		
Механическая обработка без охлаждения		
Заточной станок Фкр.180мм		
1.Количество станков,п, шт	1	
2.Количество часов работы в год одного станка, Т, ч	400	
3.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2	
4.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,02	
q1-взвешенные вещества	0,02	
Угловая шлифовальная машина "болгарка" Bosch		
5.Количество станков, n2, шт	1	
6.Количество часов работы в год одного станка, Т2, ч	400	
7.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2	
8.Удельный выброс на единицу оборудования, г/с		
q4 -абразивная пыль	0,043	
q5-взвешенные вещества	0,043	
Результаты		
9.Валовый выброс за год взвешенных веществ, т/год		
M =3600*k*(q1*T*n +q5*T2*n2 /1000000 -без пылеотсасывающих		
агрегатов	0,01814	
10.Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q5*n2 -без пылеотсасывающих агрегатов	0,0086	
11.Валовый выброс за год абразивной пыли, т/год		
M = 3600*k*(q*T*n + q4*T2*n2)/1000000 -без пылеотсасывающих		
агрегатов	0,01814	
12.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q4*n2 -без пылеотсасывающих агрегатов	0,0086	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Приложение 31

Разрез «Восточный» АО «ЕЭК». ЦПВК-2. ДПП ДУ №3 (северный блок). Расчет выбросов твердых частиц от аспирационной системы А3 в период с 2025 по 2027 г.г. Организованный источник №0179

Наименование показателей	Показатели
Исходные данные	
1. Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	0,0997
2.Объем отходящих газов(производительность	
аспир.установки),V,н.м ³ /ч	94166
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	4250
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол. ед.	0,9807
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	14,4
6.Высота источника над уровнем земли, м	12
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	39,90049
$\Pi_0 = C*V/3600$, г/с	2,60788
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	39,13041
$\Pi y = \Pi o * H, r/c$	2,55755
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,77008
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	2,60788
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	100
10. Расчетный диаметр, Dp, м	1,5
11. Принятый диаметр, Dп, м	1,7
12. Фактическая скорость, wф, м/с	11,5

Приложение 32

Разрез «Восточный» АО «ЕЭК». Центральная конвейерная линия №2. Перегрузка с конвейера КЛП2-3 на конвейер КЛП2-2. Расчет выбросов твердых частиц от аспирационной установки А2 (уголь) на 2025-2027 г.г. Организованный источник №0181

Наименование показателей	Параметры	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	10,514	
2.Объем отходящих газов(производительность аспир.установки), $V_{,H.M}^{3}/q$	4903	
3. Годовое количество рабочих часов аспирационной установки, T, ч/год	2332	
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол.ед.	0,9392	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	7,7	
6.Высота источника над уровнем земли, м	6	
Результаты расчетов		
7. Количество отходящих твердых частиц		
Mo= C*V*T*10-6, т/год	120,21493	
$\Pi_0 = C*V/3600, \Gamma/c$	14,31948	
8. Количество уловленных твердых частиц		
Му= Мо*Н, т/год	112,90586	
$\Pi y = \Pi o * H, \Gamma c$	13,44886	
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му, т/год	7,30907	
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \Gamma/C$	0,87062	
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MG/M}^3$	639	
10. Расчетный диаметр, Dp, м	0,5	
11. Принятый диаметр, Dп, м	0,6	
12. Фактическая скорость, wф, м/с	0,7	

Разрез «Восточный» АО «ЕЭК». Центральная конвейерная линия №2. Перегрузка с конвейера КЛП2-3 на конвейер КЛП2-2. Расчет выбросов твердых частиц от аспирационной установки А2 (вскрыша внутренняя) на 2025-2027 г.г. Организованный источник №0181

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	10,514
2.Объем отходящих газов (производительность аспир.установки), $V_{,H.M}^{3}/_{4}$	4903
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2332
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол.ед.	0,9392
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	7,7
6.Высота источника над уровнем земли, м	6
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	120,21493
$\Pi_0 = C*V/3600$, г/с	14,31948
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	112,90586
$\Pi y = \Pi o * H, \Gamma / c$	13,44886
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	7,30907
$\Pi_B = \Pi_O - \Pi_Y, \ \Gamma/C$	0,87062
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MF/M}^3$	639
10. Расчетный диаметр, Dp, м	0,5
11. Принятый диаметр, Оп, м	0,6
12. Фактическая скорость, wф, м/с	4,8

Разрез «Восточный» АО «ЕЭК». Южная конвейерная линия №2. Перегрузка с конвейера КЛПЗ-3 на конвейер КЛПЗ-2. Расчет выбросов твердых частиц от аспирационной установки А4 (уголь) на 2025-2027 г.г. Организованный источник № 0182

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	27,900
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	6744
3.Годовое количество рабочих часов аспирационной установки, Т, ч/год	2332
4.Степень улавливания твердых частиц в пылеулавливающей	0,9676
установке, Н, дол. ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	9,2
6.Высота источника над уровнем земли, м	6
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	438,78352
$\Pi_0 = C*V/3600, \ \Gamma/c$	52,26600
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	424,56693
$\Pi y = \Pi o * H, \Gamma c$	50,57258
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	14,21659
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	1,69342
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MG/M}^3$	904
10. Расчетный диаметр, Dp, м	0,5
11. Принятый диаметр, Оп, м	0,6
12. Фактическая скорость, wф, м/с	6,6

Разрез «Восточный» АО «ЕЭК». Техкомплекс на ст.Восточная. Южная конвейерная линия №2. Перегрузка с конвейера КЛПЗ-3 на конвейер КЛПЗ-2. Расчет выбросов твердых частиц от аспирационной установки А4 (вскрыша внутренняя) на 2025-2027 г.г. Организованный источник № 0182

Наименование показателей	Параметры	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	27,900	
2.Объем отходящих газов(производительность	6744	
аспир.установки),V,н.м ³ /ч		
3. Годовое количество рабочих часов аспирационной установки, Т,	2332	
ч/год		
4.Степень улавливания твердых частиц в пылеулавливающей	0,9676	
установке, Н, дол. ед.		
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	9,2	
6.Высота источника над уровнем земли, м	6	
Результаты расчетов		
7. Количество отходящих твердых частиц		
Mo= C*V*T*10-6, т/год	438,78352	
$\Pi_0 = C*V/3600, \ r/c$	52,26600	
8. Количество уловленных твердых частиц		
Му= Мо*Н, т/год	424,56693	
$\Pi y = \Pi o * H, \Gamma c$	50,57258	
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му, т/год	14,21659	
Пв= По-Пу, г/с	1,69342	
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	904	
10. Расчетный диаметр, Dp, м	0,5	
11. Принятый диаметр, Оп, м	0,6	
12. Фактическая скорость, wф, м/с	6,6	

Приложение 36

Разрез «Восточный» АО «ЕЭК». Северная конвейерная линия. Перегрузка с конвейера КЛП4-3 на конвейер КЛП4-2. Расчет выбросов твердых частиц от аспирационной установки АЗ (уголь) на 2025-2027 г.г. Организованный источник №0183

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	10,500
2.Объем отходящих газов(производительность аспир.установки), V,н.м ³ /ч	5784
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2332
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол. ед.	0,9188
5. Скорость выхода газовоздушной смеси из устья источника, w, м/с	5,9
6.Высота источника над уровнем земли, м	6
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	141,62702
По= $C*V/3600$, г/с	16,87000
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	130,12691
$\Pi y = \Pi o * H, r/c$	15,50016
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	11,50011
Пв= По-Пу, г/с	1,36984
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	853
10. Расчетный диаметр, Dp, м	0,6
11. Принятый диаметр, Оп, м	1,5
12. Фактическая скорость, wф, м/с	0,9

Приложение 37

Разрез «Восточный» АО «ЕЭК». Северная конвейерная линия. Перегрузка с конвейера КЛП4-3 на конвейер КЛП4-2. Расчет выбросов твердых частиц от аспирационной установки АЗ (вскрыша внутренняя) на 2025-2027 г.г. Организованный источник № 0183

Наименование показателей	Параметры	
Исходные данные		
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	10,500	
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	5784	
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2332	
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол. ед.	0,9188	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	5,9	
6.Высота источника над уровнем земли, м	6	
Результаты расчетов		
7. Количество отходящих твердых частиц		
Mo= C*V*T*10-6, т/год	141,62702	
$\Pi_0 = C*V/3600, \ r/c$	16,87000	
8. Количество уловленных твердых частиц		
Му= Мо*Н, т/год	130,12691	
$\Pi y = \Pi o * H, \Gamma / c$	15,50016	
9. Количество выбрасываемых твердых частиц		
Мв= Мо-Му, т/год	11,50011	
Пв= По-Пу, г/с	1,36984	
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MF/M}^3$	853	
10. Расчетный диаметр, Dp, м	0,6	
11. Принятый диаметр, Dп, м	0,5	
12. Фактическая скорость, wф, м/с	8,2	

Разрез "Восточный". Энергоцех. Химическая лаборатория. Расчет эмиссий загрязняющих веществ в атмосферу от шкафа химического на 2025-2027 гг. Организованный источник №0189

Наименование показателей	Параметры	
Исходные данные		
1.Время работы шкафа в год ,t,ч	800	
2.Удельное выделение загрязняющих веществ, q, г/с		
q1-аммиак	0,0000492	
Результаты		
3.Максимальный разовый выброс, г/с		
Mc=q1 - Аммиак	0,00005	
4.Валовый выброс за год, т/год		
Мгод=Mc*t*3600*0,000001- аммиак	0,00014	

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории" (Приложению 7 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө").

Разрез "Восточный". Железнодорожный цех (ЖДЦ). Участок сигнализации, централизации и блокировки (УСЦБ). Расчет эмиссий загрязняющих веществ в атмосферу от шлифовального станка на 2025-2027 гг. Организованный источник N 0191

Наименование показателей	Параметры	
Исходные данные		
Механическая обработка без охлаждения		
Точильно-шлифовальный станок 3Б633 с диаметром круга 350мм		
1.Количество станков,п, шт	1	
2.Количество часов работы в год одного станка, Т, ч	36	
3. Коэффициент эффективности пылеотсасывающего агрегата, k1	0	
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных	0,2	
веществ	*,-	
5.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,047	
q1-взвешенные вещества	0,047	
Результаты		
6.Валовый выброс за год взвешенных веществ, т/год		
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00122	
7. Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q1*n -без пылеотсасывающих агрегатов	0,0094	
8.Валовый выброс за год абразивной пыли, т/год		
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00122	
9.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q*n -без пылеотсасывающих агрегатов	0,0094	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Железнодорожный цех (ЖДЦ). Участок сигнализации, централизации и блокировки (УСЦБ). Расчет эмиссий загрязняющих веществ в атмосферу от металлообрабатывающих станков на 2025-2027 гг. Организованный источник №0192

Наименование показателей	Параметры
Исходные данные	
Механическая обработка без охлаждения	
Сверлильный станок	
5.Количество станков, n1, шт	2
6.Количество часов работы в год одного станка, Т1, ч	80
7.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
8.Удельный выброс на единицу оборудования, г/с	
q2 -абразивная пыль	0
q3-взвешенные вещества	0
Угловая шлифовальная машина " болгарка" УШМ-230и ИЭ-2115	
9.Количество станков, n2, шт	2
10.Количество часов работы в год одного станка, Т2, ч	100
11.k-коэф.гравитац.оседания для абразивной пыли и взвешенных	0,2
веществ	0,2
12.Удельный выброс на единицу оборудования, г/с	
q4 -абразивная пыль	0,043
q5-взвешенные вещества	0,043
Результаты	
13.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*(q5*T2*n) /1000000 -без пылеотсасывающих агрегатов	0,00619
14. Максимальный разовый выброс взвешенных веществ, г/с	
П=k*q5*n2 -без пылеотсасывающих агрегатов	0,0172
15.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*(q4*T2*n2)/1000000 -без пылеотсасывающих агрегатов	0,00619
16.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q4*n2 -без пылеотсасывающих агрегатов	0,0172

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № $221-\theta$) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Фестивальная. Железнодорожный цех (ЖДЦ). ДПС "Фестивальная". Пескосушильная установка. Расчет эмиссий загрязняющих веществ в атмосферу от сушил песка на 2025-2027 гг. Организованный источник №0194

Наименование показателей	Показатели
Исходные данные	
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	0
- золы, Ar	0,025
- серы, Sr	0,3
2.Доля золы в уносе, аун, %	0
3.Содержание горючих в уносе, Гун, %	0
4. Расчетное X=аун / (100 - Гун)	0
5. Безразмерный коэффициент, f	0,01
6.КПД золоуловителя, п, дол.ед.	0
7.Доля серы диоксид, связываемых летучей золой, η'so2	0,02
8.Доля серы диоксид, улавливаемых в золоуловителе, n"so2	0
9.Потери тепла от химической неполноты сгорания топлива, q2,%	0,5
10.Коэффициент, учитывающий долю потери тепла от химической неполноты	
сгорания топлива, обусловленную наличием в продуктах сгорания CO, R	0,65
11. Низшая теплота сгорания натурального топлива, Qri, МДж / кг	42,75
12.Выход углерода оксид при сжигании топлива	
Cco=q2 * R * Qri, кг / т	13,89
13.Потери тепла от механической неполноты сгорания топлива, q1, %	0
14.Параметр, характеризующий количество азота диоксид,	
образующихся при сжигании топлива, кг/т	2,57
15.Коэффициент, зависящий от степени снижения выбросов NO2	
в результате применения технических решений, b	0
16.Количество часов работы в год, Т, ч	37,2
Годовой расход топлива,Вt-т/год.	3
Bg=Bt*10 -6/ (3600 *T), r/c	22
Результаты	
18. Количество веществ, выбрасываемых в атмосферу:	
а)сажа (328)	
Мгод=Bt*Ar*f*(1-n/100), т/год	0,00075
Мсек=Мгод*106/Т *3600, г/с	0,0056
б) сера диоксид (0330)	
Мгод=0,02*Bt*Sr*(1-η'so2)*(1-η"so2) , т/год	0,01764
Мсек=Мгод*106/Т*3600, г/с	0,13172
в) углерода оксид (337)	
Мгод=0,001*Cco*Bt*(1-q1/100), т/год	0,04167
Мсек=Мгод*106/Т*3600, г/с	0,31116
г) азота диоксид (301)	
Мгод=0,001*Bt*q3, т/год	0,00771
Мсек=Мгод*106/Т*3600, г/с	0,71389

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г. № 100-п)

Приложение 42

Разрез "Восточный". Станция Фестивальная. ЖДЦ. ДПС "Фестивальная". Расчет эмиссий загрязняющих веществ в атмосферу от пескораздаточных бункеров на 2025-2027 гг. Организованные источники №№ 0195, 0196, 0197

Наименование показателей	Параметры	
Исходные данные		
1.Годовой расход песка, Gгод, т	375	
2.Средняя концентрацияпыли в потоке загрязненного газа, С, г/м ³		
(табл.4.5.1)	0,5	
3.Средний объем выхода загрязненного газа, V,м³/с (табл.4.5.1)	1,25	
4.Степень очистки пыли в установке, η, долей	0,696	
5. Годовое время работы, Т,ч	125	
6.Производительность Q,т/ч	3	
Результаты		
7. Максимальный разовый выброс, г/с		
Мсек=СхV-без очистки	0,625	
Мсек=СхVх(1-η) -с очисткой	0,19	
8. Валовый выброс пыли песка за год,т/год		
Мгод=Мсек x Тx3600 x 0,000001-без очистки	0,28125	
Мгод=Мсек x Тx3600 x 0,000001-с очисткой	0,0855	

Примечание: Загрузка в 1 бункер.

Расчет выполнен по Методика расчета выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта ,приложению 4№21к приказу Министра окружающей среды РК от 18 апреля 2008г №100-п

Разрез "Восточный". Станция Фестивальная. ЦРЖДО.ДПС Восточное. Расчет эмиссий загрязняющих веществ от горна кузнечного на 2025-2027 гг. Организованный источник №0199

Наименование показателей	Параметры
Исходные данные	
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	5
- золы, Ar	36,1
- серы, Sr	0,65
2. Безразмерный коэффициент, f, (табл 4.2)	0,0023
3. Эффективность золоуловителя, n, %	0
4.Доля ангидрида сернистого, n'so2	0,1
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2	0
6.Потери тепла от химической неполноты сгорания топлива, q2,%	2
7. Коэффициент, учитывающий долю потери тепла от химической	<u> </u>
неполноты сгорания топлива, обусловленную наличием	
в продуктах сгорания CO, R	1
8. Низшая теплота сгорания натурального топлива, Qri, МДж / кг	18,27
9.Выход оксида углерода при сжигании топлива	
Cco=q2 * R * Qri, кг / т	36,5
10.Потери тепла от механической неполноты сгорания топлива,	,
q1, %	7
11.Количество азота оксидов, выделяющего при сжигании	
топлива, q3,кг/т	2,2
12.Количество часов работы в год, t, ч	2016
13. Расход топлива в год ,В, т/год	12
Bg=Bt*10 -6/ (3600 *T), г/с	1,65
Результаты	· · · · · · · · · · · · · · · · · · ·
14.Количество веществ, выбрасываемых в атмосферу:	
a)Пыль неорг. 20% <sio2<70%< td=""><td></td></sio2<70%<>	
Мгод=В*Ar*f*(1-n/100), т/год	0,99636
Mcek = Mroд*106/t*3600, r/c	0,13729
б) сера диоксид	
KK=(1-n'so2) * (1-n''so2)	0,9
Мгод=0,02*B*Sr*KK, т/год	0,1404
Мсек=Мгод*106/t*3600 г/с	0,01935
в) углерод оксид	Ź
Мгод=Cco*B*(1-q1/100)*10-3, т/год	0,40734
Мсек=Мгод*106/t*3600 г/с	0,05613
г) азота оксид	, -
Мгод =q3*B*10-3, т/год	0,0264
Мсек=Мгод*106/t*3600 г/с	0,00364

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу МООС РК от 18.04.08г. № 100-п)

Приложение 44
Разрез Восточный АО ЕЭК. ЦПВК-1. ДПП ДУ №1. Расчет выбросов твердых частиц от аспирационной системы А-1 в период с 2025по 2027 г.г., ист. 0088

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность	
аспир.установки),V,н.м ³ /ч	111760
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	1041
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол. ед.	0,9745
5. Скорость выхода газовоздушной смеси из устья источника, w,	
M/C	20
6.Высота источника над уровнем земли, м	12
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	116,34216
$\Pi_0 = C*V/3600, \ r/c$	31,04444
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	113,37543
$\Pi y = \Pi o * H, \Gamma / c$	30,25281
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	2,96673
Пв= По-Пу, г/с	0,79163
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	25
10. Расчетный диаметр, Dp, м	1,41
11. Принятый диаметр, Dп, м	1,2
12. Фактическая скорость, wф, м/с	27,4

Примечание. Расчет произведен для одной установки.

Разрез "Восточный". Станция Фестивальная. РСУ. Расчет эмиссий загрязняющих веществ в атмосферу от пилорамы на 2025-2027 гг. Организованный источник №0201

Наименование показателей	Параметры	
Исходные данные		
Пилорама ПР-75		
1. Количество часов работы в год одного станка, Т1, ч	70	
2.Количество станков, n1, шт	1	
3.Удельное выделение пыли древесной, q1, г/с	5,11	
Результаты		
4.Валовый количество пыли древесной размером менее 200 мкм за год	без учета	
мероприятий, т/год		
M1=k*A*q1*n1*T1*3600/1000000	0,02575	
5.Валовый выброс пыли древесной размером менее 200 мкм за год с учетом мероприятий,		
т/год		
M1=A*Kэф.*q1*n1*T1*3600*(1-f)/1000000	0,00991	
6.Максимальный разовый выброс пыли древесной без учета мероприятий,г/с		
$\Pi 1=k*A*q1$	0,9198	
7. Максимальный разовый выброс пыли древесной с учетом мероприятий, г/с		
$\Pi 1 = A * K \ni \phi. * q 1 * (1 - f)$	0,03932	
8.Коэффициент эффективности местных отсосов ,Кэф.	0,9	
9. Степень очистки (в долях единицы, f	0,9145	
10.Коэффициент гравитационного оседания,к	0,2	
11. Коэффициент, учитывающий влажность древесины, А	0,1	

Расчет выполнен на основании следующих документов:

- 1. "Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности", РНД 211.2.02.08-2004;
- 2. "Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферу" (СПб., 2012г.)

Разрез "Восточный". СКСиМ. Лаборатория по топливу. Расчет эмиссий загрязняющих веществ в атмосферу от муфельной печи на 2025-2027 гг. Организованный источник №0202

Наименование показателей	Параметры
Исходные данные	
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	5
- золы, Ar	36,1
- серы, Sr	0,65
2. Безразмерный коэффициент, f, (табл 4.2)	0,0023
3. Эффективность золоуловителя, n, %	0
4.Доля ангидрида сернистого, n'so2	0,1
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2	0
6.Потери тепла от химической неполноты сгорания топлива, q2,%	2
7. Коэффициент, учитывающий долю потери тепла от химической	
неполноты сгорания топлива, обусловленную наличием	
в продуктах сгорания CO, R	1
8. Низшая теплота сгорания натурального топлива, Qri, МДж / кг	18,27
9.Выход оксида углерода при сжигании топлива	
Cco=q2 * R * Qri, кг / т	36,5
10.Потери тепла от механической неполноты сгорания топлива,	
q1, %	7
11.Количество азота оксидов, выделяющего при сжигании	
топлива, q3,кг/т	2,2
12.Количество часов работы в год, t, ч	1500
13. Расход топлива в год ,В, т/год	0,03
Bg=Bt*10 -6/ (3600 *T), г/с	0,01
Результаты	
14. Количество веществ, выбрасываемых в атмосферу:	
а)Пыль неорг. 20% <sio2<70%< td=""><td></td></sio2<70%<>	
Мгод=В*Ar*f*(1-n/100), т/год	0,00249
Mcek = Mroд*106/t*3600, r/c	0,00046
б) сера диоксид	,
KK=(1-n'so2) * (1-n"so2)	0,9
Мгод=0,02*B*Sr*KK, т/год	0,00035
Мсек=Мгод*106/t*3600 г/с	0,00006
в) углерод оксид	
Мгод=Cco*B*(1-q1/100)*10-3, т/год	0,00102
Мсек=Мгод*106/t*3600 г/с	0,00019
г) азота оксид	,
Мгод =q3*В*10-3, т/год	0,00007
Мсек=Мгод*106/t*3600 г/с	0,00001

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу МООС РК от 18.04.08г. № 100-п)

Разрез "Восточный". СКСиМ.Химическая лаборатория в здании пожарного депо. Расчет эмиссий загрязняющих веществ в атмосферу от шкафа химического на 2025-2027 гг. Организованный источник №0203

Наименование показателей	Параметры
Исходные данные	
1.Время работы шкафа в год ,t,ч	3250
2.Удельное выделение загрязняющих веществ, q, г/с	
q1-уксусная кислота (1555)	0,000192
Результаты	
3.Максимальный разовый выброс, г/с	
Mc=q1 - уксусная кислота	0,000192
4.Валовый выброс за год, т/год	
Мгод=Mc*t*3600*0,000001- уксусная кислота	0,002246

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории" (Приложению 7 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө").

Разрез "Восточный". Станция Восточная.ЦРГО. Ремонтно-механический участок (РМУ). Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резки на 2025-2027 гг. Организованный источник №0210

Наименование показателей	2023-2027 гг.
1	2
Исходные данные	
Сварочные работы электродами марки Т-590	
1.Годовой расход электродов типа Т-590, Вгод.1,кг	135
2. Максимальный часовой расход электродов типа Т-590, В1, кг	1
3. Количество постов, n1, шт	2
4. Количество часов работы в год всех постов, Т1, ч	135
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-оксиды хрома	3,7
К3-никель и его оксиды	60,5
Сварочные работы электродами марки УНОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	5000
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	1
8.Количество постов, n2, шт.	2
9. Количество часов работы в год всех постов, Т2, ч	5000
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	1,09
К6-кремния диоксид	1
К7-фториды)	1
К8-фтористые газообр.соед.	1,26
К9-диоксид азота	2,7
К10-оксид углерода	13,3
Сварочные работы электродами марки НЖ-13	
11.Годовой расход электродов типа НЖ-13, Вгод.3,кг	500
12. Максимальный часовой расход электродов типа НЖ-13, В3, кг	1
13.Количество постов, n3, шт	2
14. Количество часов работы в год всех постов, Т3, ч	500
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	0,53
К12-хрома (VI) оксид	0,24
Результаты	
16.Валовый выброс за год, т/год	
М1=(Вгод.2*К5+Вгод.3*К11)/1000000-марганец и его соединен.	0,00572
М2=(Вгод2*К8)/1000000 -фтористые газообр. Соед.	0,0063
М3=(Вгод2*К6)/1000000 -кремния диоксид	0,005
М4=Вгод.2*К7/1000000 -фториды	0,005
М5=(Вгод.2*К9)/1000000 -диоксид азота	0,0135
М6=Вгод.2*К10/1000000 -оксид углерода	0,0665
М7=Вгод.1*К2+Вгод3*К12/1000000-оксиды хрома	0,0005
М8=Вгод.1*К3/1000000- никель и его оксиды	0,00817
12.Максимальный разовый выброс, г/с	
П1=К5*В2/3600-марганец и его соед.	0,0003

Окончание приложения 48

1	2
П2=К8*В2/3600-фтористые газообр. Соединен.	0,00035
П3=К6*В2/3600-кремния диоксид	0,00028
П4=К7*В2/3600-фториды	0,00028
П5=К9*В2/3600-диоксид азота	0,00075
П6=К10*В2/3600-оксид углерода	0,00369
П7=К2*В1/3600оксиды хрома	0,00103
П8=К3*В1/3600-никель и его оксиды	0,01681
Исходные данные по газовой резке	,
27. Количество часов работы в год, Т1, ч	200
28. Удельное выделение загрязняющих веществ при газовой резке стали у	углеродистой
толщиной 20мм, г/с	1
К21-марганец и его соединения	0,017
К22-оксид углерода -оксид углерода	0,018
К23-диоксид азота	0,015
Результаты	
29.Валовый выброс за год,т/год	
М9=Т1*3600*К1/1000000 -марганец и его соединения	0,01224
М10=Т1*3600*К3/1000000 -оксид углерода	0,01296
М11=(Т1*3600*К4/1000000 -диоксид азота	0,0108
30.Максимальный разовый выброс,г/с	
П9=К1 -марганец и его соединения	0,017
П10=К3 -оксид углерода	0,018
П11=К4 -диоксид азота	0,015
Итого	
31.Валовый выброс за год,т/год	
М=М1+М9-марганец и его соединения	0,01796
М=М2-фтористые газообр. Соед.	0,0063
М=М3-кремния диоксид	0,005
М=М4 -фториды	0,005
М=М11 -диоксид азота	0,0243
М=М6+М10 -оксид углерода	0,07946
М=М7-оксиды хрома	0,0005
М=М8- никель и его оксиды	0,00817
32.Максимальный разовый выброс,г/с	
П=П2-фтористые газообр. Соединен.	0,00035
П=П3-кремния диоксид	0,00028
П=П4-фториды	0,00028
П=П11-диоксид азота	0,015
П=П10-оксид углерода	0,018
П=П7-оксиды хрома	0,00103
П=П8-никель и его оксиды	0,01681

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. Вагоно-ремонтное депо (ВРД). Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ на 2025-2027 гг. Организованный источник №0212

Наименование показателей	Параметры	
Исходные данные		
1.Количество часов работы в год,Т1,ч	3645	
2.Удельное выделение загрязняющих веществ		
при газовой резке стали углеродистой толщиной до 20мм, г/с		
К1-марганец и его соединения	0,017	
К3-оксид углерода	0,018	
К4-диоксид азота	0,015	
РЕЗУЛЬТАТЫ		
3.Валовый выброс за год,т/год		
М1=Т1*К1*3600/1000000 -марганец и его соединения	0,22307	
М3=Т1*К3*3600/1000000 -оксид углерода	0,2362	
М4=(Т1*К4*3600/1000000 -диоксид азота	0,19683	
4.Максимальный разовый выброс,г/с		
П1=К1 -марганец и его соединения	0,017	
П3=К3 -оксид углерода	0,018	
П4=К4 -диоксид азота	0,015	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г

Разрез "Восточный". Станция Фестивальная. ЦРЖДО.ДПС Восточное.Цех по ремонту вспомогательных машин №2 (ЦРВМ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Организованный источник №0211

Наименование показателей	Параметры
Исходные данные	
Сварочные работы электродами марки УНОНИ-13/55	
1.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	90
2. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	0,5
3. Количество постов, t2, шт.	1
4. Количество часов работы в год всех постов, Т2, ч	180
5. Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	1,09
К6-пыль неоргSiO2	1
К7-фториды	1
К8-фтористые газообр.соед.	1,26
К9-диоксид азота	2,7
К10-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	•
6.Годовой расход электродов типа Комсомолец-100, Вгод.3, кг	10
7. Максимальный часовой расход электродов типа Комсомолец-100, В3, кг	0,5
8. Количество постов, t3, шт.	1
9.Количество часов работы в год всех постов, Т3, ч	20
10. Удельное выделение загрязняющих веществ при сварке, г/кг	
К12-марганец и его соединения	0,27
К14-медь (II) оксид	9,8
К15-фтористые газообр.соед.	1,11
К16-диоксид азота	0,76
Результаты	•
11.Валовый выброс за год, т/год	
М2=(Вгод.2*К5+В3год.*К12)/1000000-марганец и его соединен.	0,0001
М3=(Вгод2*К8+В3год.*К15)/1000000 -фтористые газообр. соед.	0,00012
М4=(Вгод2*К6)/1000000 -кремния диоксид	0,00009
М5=Вгод.2*К7/1000000 -фториды	0,00009
М6=(Вгод.2*К9+Вгод.3*К16)/1000000 -диоксид азота	0,00025
М7=Вгод.2*К10/1000000 -оксид углерода	0,0012
М8=Вгод.3*К14/1000000 -медь (II) оксид	0,0001
12.Максимальный разовый выброс, г/с	
П2=К5*В2/3600-марганец и его соед.	0,00015
П3=К8*В2/3600-фтористые газообр. Соединен.	0,00018
П4=К6*В2/3600-кремния диоксид	0,00014
П5=К7*В2/3600-фториды	0,00014
П6=К9*В2/3600-диоксид азота	0,00038
П7=К10*В2/3600-оксид углерода	0,00185
П8=К14*В3/3600-медь (II) оксид	0,00136

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө".

Разрез "Восточный". Служба качества, сертификации и метрологии (СКСиМ). Химическая лаборатория. Расчет эмиссий загрязняющих веществ в атмосферу от проборазделочной машины по топливу на 2025-2027 гг. Организованные источники N = 0.0214 и 0215

Наименование показателей	Параметры
Исходные данные	
1.Количество размолов в год, n, шт	14600
2.Количество часов работы в год, t, ч	2920
3.Удельное выделение загрязняющих веществ при дроблении, q, кг	·/T
q-пыль угольная (2909)	7
4.Вес одной пробы В,кг	0,5
Результаты	
5.Валовый выброс за год, т/год	
Мгод=q*В*n*0,000001	0,0511
6.Максимальный разовый выброс, г/с	
Mc=M*1000000/(T*3600)	0,00486

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Восточная. Участок складского хозяйства (УСХ). Склад строительных материалов. Расчет эмиссий загрязняющих веществ в атмосферу от бытовой печки на складе №3 на 2025-2027 гг. Организованный источник № 0213

Наименование показателей	Параметры
1	2
Исходные данные по углю	
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	5
- 30лы, Ar	36,1
- серы, Sr	0,65
2. Безразмерный коэффициент, f, (табл 4.2)	0,0023
3. Эффективность золоуловителя, n, %	0
4. Доля ангидрида сернистого, n'so2	0,02
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2	0
6.Потери тепла от химической неполноты сгорания топлива,q2,%	2
7. Коэффициент, учитывающий долю потери тепла от химической	
неполноты сгорания топлива, обусловленную наличием	
в продуктах сгорания CO, R	1
8. Низшая теплота сгорания натурального топлива, Qri, МДж / кг	18,27
9.Выход оксида углерода при сжигании топлива	
Cco=q2 * R * Qri, кг / т	36,54
10.Потери тепла от механической неполноты сгорания топлива,	
q1, %	7
11.Количество азота оксидов, выделяющего при сжигании	
топлива, q3,кг/т	2,2
12.Количество часов работы в год, t, ч	4920
13. Расход топлива в год ,В, т/год	2
Bg=Bt*10 -6/ (3600 *T), г/с	0,11
Результаты	
14. Количество веществ, выбрасываемых в атмосферу:	
а)пыль неорг. 20% <sio2<70%< td=""><td></td></sio2<70%<>	
Мгод1=B*Ar*f*(1-n/100), т/год	0,16606
Mcek1 = Mroд*106/t*3600, r/c	0,00938
б) сера диоксид	
KK=(1-n'so2) * (1-n''so2)	0,98
Мгод2=0,02*B*Sr*KK, т/год	0,02548
Мсек2=Мгод*106/t*3600 г/с	0,00144
в) углерод оксид	
Мгод3=Cco*B*(1-q1/100)*10-3, т/год	0,06796
Мсек3=Мгод*106/t*3600 г/с	0,00384
г) азота оксид	
Мгод4 =0,13*q3*B*10-3, т/год	0,00057
Мсек4=Мгод*106/t*3600 г/с	0,00003
д)азота диоксид	-

Продолжение приложения 52

1	2
Мгод5 =0,8*q3*B*10-3, т/год	0,00352
Мгод3 = 0,8 цз В 10-3, 1/10д Мсек5=Мгод*106/t*3600 г/с	0,00332
Исходные данные по дровам	0,00010
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	
	0,6
- золы, Ar - серы, Sr	0,0
2.Безразмерный коэффициент, f	0,005
	0,003
3.Эффективность золоуловителя, п, %	
4.Доля ангидрида сернистого,n'so2	0,15
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2	0
6.Потери тепла от химической неполноты сгорания топлива, q2,%	0,78
7. Коэффициент, учитывающий долю потери тепла от химической	
неполноты сгорания топлива, обусловленную наличием	
в продуктах сгорания CO, R	1
8. Низшая теплота сгорания натурального топлива, Qri, МДж / кг	10,24
9.Выход оксида углерода при сжигании топлива	
Cco=q2 * R * Qri, кг / т	10,24
10.Потери тепла от механической неполноты сгорания топлива,	
q1, %	4
11. Количество азота оксидов, выделяющего при сжигании	
топлива, q3,кг/т	1
12.Количество часов работы в год, t, ч	5000
13. Расход топлива в год ,В, т/год	0,25
Bg=Bt*10 -6/ (3600 *T), г/с	0,01
Результаты	
14. Количество веществ, выбрасываемых в атмосферу:	
а)взвешенные частицы РМ-10	
Мгод6=В*Ar*f*(1-n/100), т/год	0,00075
Mcek6 = Mroд*106/t*3600, r/c	0,00004
б) углерод оксид	
Мгод7=Cco*B*(1-q1/100)*10-3, т/год	0,00246
Мсек7=Мгод*106/t*3600 г/с	0,00014
г) азота оксид	
Мгод8 =0,13*q3*B*10-3, т/год	0,00003
Мсек8=Мгод*106/t*3600 г/с	0,000002
д)азота диоксид	,
Мгод9 =0,8*q3*В*10-3, т/год	0,0002
Мсек9=Мгод*106/t*3600 г/с	0,00001
Итого	-,
15. Количество веществ, выбрасываемых в атмосферу:	
Мгод.=Мгод6-взвешенные частицы РМ-10	0,00075
	0,16606
Мгод.=Мгод1-пыль неорг. 20% <sio2<70%< td=""><td>(J. LODUD</td></sio2<70%<>	(J. LODUD

1	2
Мгод.=Мгод.3+Мгод.7- углерод оксид	0,07042
Мгод.=Мгод.4+Мгод.8 - азота оксид	0,0006
Мгод.=Мгод.5+Мгод.9- азота диоксид	0,00372
Мсек.=Мсек6-взвешенные частицы РМ-10	0,00004
Мсек.=Мсек1-пыль неорг. 20% <sio2<70%< td=""><td>0,00938</td></sio2<70%<>	0,00938
Мсек.=Мсек.2-сера диоксид	0,00144
Мсек.=Мсек.3- углерод оксид	0,00384
Мсек.=Мсек.4 - азота оксид	0,00003
Мсек.=Мсек.5- азота диоксид	0,00016

Расчет выполнен по 1) "Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п);

^{2)&}quot; Методика по нормированию выбросов вредных веществ с уходящими газами котлоагрегатов малой и средней мощности", Алматы, 2010г

Приложение 53

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1 , путь №18, ПУУ №1. Расчет выбросов твердых частиц от аспирационной системы ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0216

Наименование показателей	Параметры
Исходные данные	L
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	12893,0
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2500
4.Степень улавливания твердых частиц в пылеулавливающей установке, Н, дол. ед.	0,9681
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	15,9
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	32,23250
$\Pi_0 = C*V/3600$, г/с	3,58139
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	31,20428
$\Pi y = \Pi o * H, r/c$	3,46714
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	1,02822
Пв= По-Пу, г/с	0,11425
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	32
10. Расчетный диаметр, Dp, м	0,5
11. Принятый диаметр, Dп, м	0,45
12. Фактическая скорость, wф, м/с	22,5

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №19, ПУУ №1. Расчет выбросов твердых частиц от аспирационной установки ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0217

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,0000
2.Объем отходящих газов(производительность	8294,0
аспир.установки), V , H . M^3/Ψ	
3.Годовое количество рабочих часов аспирационной установки, Т,	2500
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9988
установке, Н, дол. ед.	
5. Скорость выхода газовоздушной смеси из устья источника, w,	16,6
M/C	
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	20,73500
$\Pi_0 = C*V/3600, \ r/c$	2,30389
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	20,71012
$\Pi y = \Pi o * H, \ r/c$	2,30113
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,02488
$\Pi_B = \Pi_O - \Pi_Y, \ \Gamma/C$	0,00276
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	1
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Dп, м	0,42
12. Фактическая скорость, wф, м/с	16,6

Приложение 55

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №16, ПУУ №1. Расчет выбросов твердых частиц от аспирационной системы ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0218

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность аспир.установки), V, н. м ³ /ч	7854,00
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2500
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол. ед.	0,9784
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	21,4
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	19,63500
$\Pi_0 = C*V/3600, \Gamma/c$	2,18167
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	19,21088
$\Pi y = \Pi o * H, \Gamma c$	2,13455
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,42412
Пв= По-Пу, г/с	0,04712
$C_B = \Pi_B * 1000 * 3600 / V, M\Gamma/M^3$	22
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Dп, м	0,36
12. Фактическая скорость, wф, м/с	21,4

Приложение 56

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №17, ПУУ №1. Расчет выбросов твердых частиц от аспирационной системы ПУУ №1 в период с 2025 по 2027 г.г. Организованный источник №0219

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность аспир.установки), V,н.м ³ /ч	6243
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2500
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол. ед.	0,9981
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	17
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	15,60750
$\Pi_0 = C*V/3600, \ r/c$	1,73417
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	15,57785
Пу= По*Н, г/с	1,73088
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,02965
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	0,00329
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MG/M}^3$	2
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Оп, м	0,36
12. Фактическая скорость, wф, м/с	17,0

Приложение 57

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №18, ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0220

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность	12893,0
аспир.установки),V,н.м ³ /ч	
3. Годовое количество рабочих часов аспирационной установки, Т,	2500
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9982
установке, Н, дол. ед.	
5. Скорость выхода газовоздушной смеси из устья источника, w,	24,5
M/C	
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Мо= C*V*T*10-6, т/год	32,23250
$\Pi_0 = C*V/3600, \ r/c$	3,58139
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	32,17448
$\Pi y = \Pi o * H, \Gamma c$	3,57494
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,05802
Пв= По-Пу, г/с	0,00645
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	2
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Dп, м	0,42
12. Фактическая скорость, wф, м/с	25,9

Приложение 58

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-1, путь №19, ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0221

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность	8464
аспир.установки), V, н.м ³ /ч	
3. Годовое количество рабочих часов аспирационной установки, Т,	2500
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9978
установке, Н, дол. ед.	
5. Скорость выхода газовоздушной смеси из устья источника, w,	23,1
M/C	
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	21,16000
$\Pi_0 = C*V/3600, \ \Gamma/c$	2,35111
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	21,11345
Пу= По*Н, г/с	2,34594
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,04655
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	0,00517
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	2
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Dп, м	0,36
12. Фактическая скорость, wф, м/с	23,1

Приложение 59

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №16. ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0222

Наименование показателей	Параметры
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,0000
2.Объем отходящих газов(производительность	7854,00
аспир.установки),V,н.м ³ /ч	
3.Годовое количество рабочих часов аспирационной установки, Т,	2500
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9838
установке, Н, дол. ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	17,4
6.Высота источника над уровнем земли, м	30
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	19,63500
$\Pi_0 = C*V/3600, \ \Gamma/c$	2,18167
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	19,31691
$\Pi y = \Pi o * H, r/c$	2,14633
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	0,31809
Пв= По-Пу, г/с	0,03534
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MG/M}^3$	16
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Оп, м	0,4
12. Фактическая скорость, wф, м/с	17,4

Разрез «Восточный» АО «ЕЭК». УТКР на ст.Восточная. Пункт погрузки П4В-2, путь №17, ПУУ №2. Расчет выбросов твердых частиц от аспирационной системы ПУУ №2 в период с 2025 по 2027 г.г. Организованный источник №0223

Наименование показателей	Параметры							
Исходные данные								
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,0000							
2.Объем отходящих газов(производительность аспир.установки), V,н.м ³ /ч	12989							
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	2500							
4.Степень улавливания твердых частиц в пылеулавливающей установке, Н, дол. ед.	0,9986							
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	26,1							
6.Высота источника над уровнем земли, м	30							
Результаты расчетов								
7. Количество отходящих твердых частиц								
Mo= C*V*T*10-6, т/год	32,47250							
$\Pi_0 = C*V/3600, \ r/c$	3,60806							
8. Количество уловленных твердых частиц								
Му= Мо*Н, т/год	32,42704							
$\Pi y = \Pi o * H, r/c$	3,60301							
9. Количество выбрасываемых твердых частиц								
Мв= Мо-Му, т/год	0,04546							
Пв= По-Пу, г/с	0,00505							
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_C / \text{M}^3$	1,40							
10. Расчетный диаметр, Dp, м	0,4							
11. Принятый диаметр, Dп, м	0,42							
12. Фактическая скорость, wф, м/с	26,1							

Приложение 61

Разрез "Восточный" АО "ЕЭК". Добычные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на добычных уступах в период с 2025 по 2027 гг. Неорганизованный источник №6001

						Показате	ли					
Наименование показателей		2025	Γ.			2026	Г.			2027	7 г.	
паименование показателеи	Экскавато- ры	Перегружа- тели	Конвейеры	ИТОГО	Экскавато- ры	Перегружа- тели	Конвейеры	ИТОГО	Экскавато- ры	Перегру- жатели	Конвейе- ры	ИТОГО
Исходные данные												
Количество перемещаемого материала за один год, Gг, м3/год	12200000	12200000	12200000	-	12200000	12200000	12200000	-	12200000	12200000	12200000	-
максимальное за один час, Gч, м3/час	2709,67	2709,67	2709,67	-	2709,67	2709,67	2709,67	-	2709,67	2709,67	2709,67	-
Удельное выделение пыли при перемещении материала, q, г/т	11	11	11	-	11	11	11	-	11	11	11	-
Коэффициент, учитывающий влажность, К5	0,6	0,6	0,6	-	0,6	0,6	0,6	-	0,6	0,6	0,6	-
Коэффициент, учитывающий скорость ветра, КЗ	1,2	1,2	1,2	-	1,2	1,2	1,2	-	1,2	1,2	1,2	_
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	0,16	0,16	0,16	-	0,16	0,16	0,16	-	0,16	0,16	0,16	-
Эффективность мероприятий по пылеподавлению, fn, дол.ед.	0	0	0	-	0	0	0	-	0	0	0	-
Результаты расчета												
Валовый выброс пыли за год:												
без учета мероприятий, т/год $\Pi o = K5*K3*Kr*q*Gr/10^6$	15,45984	15,45984	15,45984	46,37952	15,45984	15,45984	15,45984	46,37952	15,45984	15,45984	15,45984	46,37952
- с учетом мероприятий, т/год $\Pi = \Pi o * (1-fn)$	15,45984	15,45984	15,45984	46,37952	15,45984	15,45984	15,45984	46,37952	15,45984	15,45984	15,45984	46,37952
			Максимальн	ая интенси	вность пылеві	ыделения:						
- без учета мероприятий, г/с Mo = K5*K3*Kr*q*Gч/3600	0,9538	0,9538	0,9538	2,8614	0,9538	0,9538	0,9538	2,8614	0,9538	0,9538	0,9538	2,8614
- с учетом мероприятий, M, г/с M = Mo * (1-fn)	0,9538	0,9538	0,9538	2,8614	0,9538	0,9538	0,9538	2,8614	0,9538	0,9538	0,9538	2,8614

Настоящий расчет выполнен на основании "Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п).

Приложение 62

Разрез "Восточный" АО "ЕЭК". Добычные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на добычных уступах от работы бульдозеров в период с 2025 по 2027 гг. Неорганизованный источник №6001

Наименование показателей	2025	2026	2027
Исходные данные			
Количество перемещаемого материала за один год, Π г, т/год	6346800	6346800	6346800
максимальное за один час, Пч, т/час	1320	1320	1320
Удельное выделение пыли при перемещении материала, q, г/т	1,15	1,15	1,15
Коэффициент, учитывающий местные метеоусловия, КЗ	1,2	1,2	1,2
Коэффициент, учитывающий влажность, К5	0,6	0,6	0,6
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	0,16	0,16	0,16
Эффективность мероприятий по пылеподавлению, fn, дол.ед.	0	0	0
Результаты расчета			
Валовый выброс пыли за год:			
без учета мероприятий, т/год Mo = K5*K3*Kr*q*Пr*10-6	0,84082	0,84082	0,84082
- с учетом мероприятий, т/год M = Mo * (1-fn)	0,84082	0,84082	0,84082
Максимальная интенсивность			
пылевыделения:			
- без учета мероприятий, г/с Мо = K5*K3*Kr*q*Пг/3600	0,04858	0,04858	0,04858
- с учетом мероприятий, M, г/с M =Mo * (1-fn)	0,04858	0,04858	0,04858

Настоящий расчет выполнен на основании "Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п).

Приложение 63

Разрез "Восточный" АО "ЕЭК". Добычные работы. Расчет количества пыли, выделяющейся при работе бурового оборудования на добычных уступах разреза в период с 2025 по 2027 гг. Неорганизованный источник №6001

			Показатели по годам эксплуатации				
Наименование показателей	Усл.	Ед.	2025	2026	2027		
Transienobaline nokasaresten	обозн.	ИЗМ.	DML	DML	DML		
			LP	LP	LP		
Исх	одные дан	ные		I			
1. Объем бурения							
- за один год	VΓ	тыс. п.м	291967	291967	291967		
- скорость бурения	Vб	п.м/ч	120	120	120		
2. Годовое количество рабочих часов	Т	ч/год	3114	3114	3114		
по бурению	1	9/10Д	3114	3114	3114		
3. Диаметр буримых скважин	D	M	0,175	0,175	0,175		
3. Объемный вес материала	y	т/м3	1,66	1,66	1,66		
4. Содержание пыли в буровой мелочи	В	дол. ед.	0,1	0,1	0,1		
5. Доля пыли, переходящей в аэрозоль	K	дол. ед.	0,02	0,02	0,02		
6. Эффективность мероприятий по	h	дол. ед.	0,8	0,8	0,8		
пылеулавливанию	11	дол. сд.	0,0	0,0	0,0		
7. Коэффициент, учитывающий							
гравитационное оседание	Кг	дол. ед.	0,16	0,16	0,16		
загрязняющих веществ, Кг							
V	ьтаты рас	четов	Т	T	T		
1. Валовый выброс пыли за год:							
- без учета мероприятий	т/год	По	4,77204	4,77204	4,77204		
$\Pi_0 = 0.785 * D2 * V6 * y * T * B * K * K \Gamma$	1/104	110	.,,,,20.	1,77201	.,,,,		
- с учетом мероприятий	т/год	П	0,95441	0,95441	0,95441		
$\Pi = \Pi o * (1-h)$,	0,50	0,50		
Максимальная инт	генсивнос	ть пылевы	іделения	1			
- без учета мероприятий	,	3.6	0.40.70.7	0.40.70.7	0.40.50.5		
Mo =(г/с	Mo	0,42596	0,42596	0,42596		
0,785*D2*V6*y*B*Kr*K*10^3)/3,6							
- с учетом мероприятий	г/с	M	0,08519	0,08519	0,08519		
M = Mo * (1-h)			-,	- ,	-,		

Настоящий расчет выполнен на основании "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", Алматы, 1996 г.

Приложение 64

Разрез "Восточный" АО "ЕЭК". Расчет параметров выбросов пыли и ядовитых газов при ведении взрывных работ на добычных уступах в период с 2025 по 2027 гг. Неорганизованные источники №6001, №6002

			Показ	ватели по го	одам эксплуа	тации	
Наименование показателей	Ед.	20)25	20	026	20)27
паименование показателеи	Изм.	3a	за	3a	за	3a	за
		взрыв	год	взрыв	год	взрыв	год
1	2	3	4	5	6	7	8
	Исходные	данные					
1. Количество взорванного ВВ, А	T	19,2	5433	19,2	5433	19,2	5433
			1286200				
2. Объем взрываемой горной массы, Vгм	м3	50000	0	50000	12862000	50000	12862000
3.Эффективность мероприятий по снижению выбросов, h							
- по пыли	дол.ед.	0,6	0,6	0,6	0,6	0,6	0,6
- по газам	дол.ед.	0,5	0,5	0,5	0,5	0,5	0,5
4. Удельное пылевыделение, qп	кг/м3	0,03	0,03	0,03	0,03	0,03	0,03
5. Удельное содержание газообразных веществ в пылегазо	вом облак	е при взрь	ыве 1 тоннь	і ВВ:			
- окиси углерода (q'co)	$_{\mathrm{T}/\mathrm{T}}$	0,009	0,009	0,009	0,009	0,009	0,009
- окислов азота (q'NOx)	$_{\mathrm{T}/\mathrm{T}}$	0,0025	0,0025	0,0025	0,0025	0,0025	0,0025
6. Удельное содержание газообразных веществ во взорвани	ной горної	й породе:					
- окиси углерода (q"CO)	$_{\mathrm{T}}/_{\mathrm{T}}$	0,002	0,002	0,002	0,002	0,002	0,002
- окислов азота (q"NOx)	T/T	0,0006	0,0006	0,0006	0,0006	0,0006	0,0006
Результаты расчета							
1. Валовый выброс загрязняющих веществ:							
пыли		0,096	24,69504	0,096	24,69504	0,096	24,69504
Mгодп = $(0,16*qп*Vгм*(1-h))/1000$		0,090	24,03304	0,070	24,07304	0,090	24,07304
окиси углерода	T	0,1248	35,3145	0,1248	35,3145	0,1248	35,3145
Мгодсо = М1годСО +М2годСО	1	0,1240	33,3143	0,1240	33,3143	0,1240	33,3143
двуокиси азота		0,03552	10,05105	0,03552	10,05105	0,03552	10,05105
Mгод $NOx = M1$ год $NOx + M2$ год NOx		0,03332	10,05105	0,03332	10,05105	0,03332	10,05105

1	2	3	4	5	6	7	8
1.1. Валовый выброс газообразных веществ из пылегазового облака, М1год:							
окиси углерода M1годCO = q'CO*A*(1-h)	Т	0,0864	24,4485	0,0864	24,4485	0,0864	24,4485
окислов азота $M1$ год $NOx = q'NOx*A*(1-h)$	1	0,024	6,79125	0,024	6,79125	0,024	6,79125
1.2. Валовый выброс газообразных веществ из взорванной горной породы, М2год:							
окиси углерода $M2$ год $CO = q$ " $CO*A$	Т	0,0384	10,866	0,0384	10,866	0,0384	10,866
окислов азота $M2$ год $NOx = q"NOx*A$	1	0,01152	3,2598	0,01152	3,2598	0,01152	3,2598
2. Максимально-разовый выброс загрязняющих веществ:							
пыли $M = (0.16*q\pi*Vrm*(1-h)*10^3)/1200$		80	-	80	-	80	-
окиси углерода Мсексо = (q'CO*A*(1-h)*10^6)/1200	г/с	72	-	72	-	72	-
двуокиси азота $McekNOx = (q'NOx*A*(1-h)*10^6)/1200$		20	-	20	-	20	-

Приложение 65

Разрез "Восточный" АО "ЕЭК". Вскрышные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на вскрышных уступах в период с 2025 по 2027 гг. Неорганизованный источник №6002

	Показател	и по годам эк	сплуатации	
	2025	2026	2027	
Наименование показателей	погрузка	погрузка в	погрузка в	
	в авто-	авто-	авто-	
	транспорт	транспорт	транспорт	
Исходные данн	ые			
Количество перемещаемого материала за один год, Gг, м3/год	33500000	33500000	33500000	
максимальное за один час, Gч, м3/час	7172,83	7172,83	7172,83	
Удельное выделение пыли при перемещении материала, q, г/м3	5,6	5,6	5,6	
Коэффициент, учитывающий влажность, К5	0,6	0,6	0,6	
Коэффициент, учитывающий скорость ветра, К3	1,2	1,2	1,2	
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	0,16	0,16	0,16	
Эффективность мероприятий по пылеподавлению, fn, дол.ед.	0	0	0	
Результаты расч	<u> </u>			
Валовый выброс пыли за год:				
без учета мероприятий, т/год По = K5*K3*Kr*q*Gr/10^6	21,61152	21,61152	21,61152	
- с учетом мероприятий, т/год П = По * (1-fn)	21,61152	21,61152	21,61152	
Максимальная интенсивность	пылевыдел	ения:		
- без учета мероприятий, г/с Mo = K5*K3*Кг*q*Gч/3600	1,28537	1,28537	1,28537	
- с учетом мероприятий, M, г/с M =Mo * (1-fn)	1,28537	1,28537	1,28537	

Настоящий расчет выполнен на основании "Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п).

Приложение 66

Разрез "Восточный" АО "ЕЭК". Расчет количества пыли, выделяющейся при сдувании с верхнего вскрышного уступа в период с 2025 по 2027 гг. Неорганизованный источник №6002

No	Наименование показателей	Усл.	Ед.		азатели по в	
п/п	Transferrobarnie nokasaresten	обозн	ИЗМ.	2025	2026	2027
	Исх	кодные д	анные			
	Вид поверхности: разрез - 1;			1	1	1
1.	отвал -2; склад -3.			1	1	1
2.	Площадь пылящей поверхности:					
	- действующей (рабочая часть борта)	So	м2	485360	495720	506080
	- после прекращения работ более 3-х лет стационарная часть борта)	S2	м2	168120	168120	168120
3	Коэффициент, учитывающий влажность	Ko		0,6	0,6	0,6
4	Коэффициент, учитывающий скорость ветра	K1		1,2	1,2	1,2
5	Коэффициент, учитывающий эффективность сдувания с поверхно	ости:	шт.	4	4	4
	- действующей	К2	-	1	1	1
	- после прекращения работ от 1-го до 3-х лет	K'2	-	0,2	0,2	0,2
	- после прекращения работ более 3-х лет	K"2	-	0,1	0,1	0,1
6	Количество дней с устойчивым снежным покровом	Т	сут.	209	209	209
7	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0
	Резу.	льтаты	расчета	•		
1.	Валовый выброс пыли за год:					
	без учета мероприятий По = 86,4*Ko*K1*Kr*(K2*So+ K'2*S1+K"2*S2)*(365-Tc)*10^-8	По	т/год	48,73302	49,7384	50,74378
	с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	48,73302	49,7384	50,74378
2.	Максимальная интенсивность пылевыделения					
	без учета мероприятий Mo = Ko*K1*Kr*(K2*So+K'2*S1+ K"2*S2)*10^-5	Mo	г/с	3,61564	3,69023	3,76482
	- с учетом мероприятий М =Mo*(1-h)	M	г/с	3,61564	3,69023	3,76482

Настоящий расчет выполнен на основании "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", Алматы, 1996 г.

Приложение 67

Разрез "Восточный" АО "ЕЭК". Вскрышные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на вскрышных уступах от работы бульдозеров в период с 2025 по 2027 гг. Неорганизованный источник №6002

Have rayon avera mayon mayo		Показатели	I
Наименование показателей	2025	2026	2027
Исходные данные			
Количество перемещаемого материала за один год, Gг, т/год	7370000	7370000	7370000
максимальное за один час, Gч, т/час	6100	6260	7520
Весовая доля пылевой фракции в материале, К1	0,03	0,03	0,03
Доля пыли, переходящая в аэрозоль, К2	0,02	0,02	0,02
Коэффициент, учитывающий местные метеоусловия, КЗ	1,2	1,2	1,2
Число открытых сторон места, шт.	2	2	2
Коэффициент, учитывающий местные условия, К4	0,2	0,2	0,2
Коэффициент, учитывающий влажность, К5	0,6	0,6	0,6
Коэффициент, учитывающий крупность материала, К7	0,5	0,5	0,5
Поправочный коэффициентпри мощном залповом сбросе материала при разгрузке автосамосвала, К9	1	1	1
Высота пересыпки материала, h, м	0,5	0,5	0,5
Коэффициент, учитывающий высоту пересыпки, В	0,4	0,4	0,4
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	0,16	0,16	0,16
Эффективность мероприятий по пылеподавлению, fn, дол.ед.	0	0	0
Результаты расчета			
Валовый выброс пыли за год:			
без учета мероприятий, т/год По = K1*K2*K3*K4*K5*K7*K8*K9*B*Kr*Gr	10,18829	10,18829	10,18829
- с учетом мероприятий, т/год $\Pi = \Pi o * (1-fn)$	10,18829	10,18829	10,18829
Максимальная интенсивность пылевыделения:			
- без учета мероприятий, г/с Мо = K1*K2*K3*K4*K5*K7*K9*B*KGч*10^6/3600	2,3424	2,40384	2,88768
- с учетом мероприятий, M, г/с M =Mo * (1-fn)	2,3424	2,40384	2,88768

Настоящий расчет выполнен на основании "Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п).

Приложение 68

Разрез "Восточный" АО "ЕЭК". Вскрышные работы. Расчет количества пыли, выделяющейся при работе бурового оборудования на вскрышных уступах разреза в период с 2025 по 2027 гг. Неорганизованный источник №6002

	Voz	Е-	Показатели по годам				
Наименование показателей	Усл. обозн	Ед.	2025	ксплуатаци 2026	2027		
	ОООЗН	изм.	DML LP	DML LP	DML LP		
Ису	 :одные д	QUULIA	DIVIL LI	DIVIL LI	DIVIL LI		
1. Объем бурения		анныс					
- за один год	VΓ	тыс. п.м	804589	804589	804589		
- скорость бурения	Vб	п.м/ч	120	120	120		
2. Годовое количество рабочих часов по бурению	Т	ч/год	4175	4175	4175		
3. Диаметр буримых скважин	D	M	0,216	0,216	0,216		
3. Объемный вес материала	у	т/м3	2,2	2,2	2,2		
4. Содержание пыли в буровой мелочи	В	дол. ед.	0,1	0,1	0,1		
5. Доля пыли, переходящей в аэрозоль	K	дол. ед.	0,02	0,02	0,02		
6. Эффективность мероприятий по пылеулавливанию	h	дол. ед.	0,8	0,8	0,8		
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	Кг	дол. ед.	0,16	0,16	0,16		
1	ьтаты р	асчетов			<u> </u>		
1. Валовый выброс пыли за год:							
- без учета мероприятий По = 0,785*D2*V6*y*T*B*K*Кг	т/год	По	12,9178	12,9178	12,9178		
- с учетом мероприятий $\Pi = \Pi o * (1-h)$	т/год	П	2,58355	2,58355	2,58355		
Максимальная интенсивность пылевыдо	еления						
- без учета мероприятий Mo =(0,785*D2*Vб*y*B* Kr*K*10^3)/3,6	г/с	Мо	0,86004	0,86004	0,86004		
- с учетом мероприятий M = Mo * (1-h)	г/с	M	0,17201	0,17201	0,17201		

Настоящий расчет выполнен на основании "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", Алматы, 1996 г.

Приложение 69
Расчет количества пыли, выделяющейся при транспортировке породы автосамосвалами в период с 2025 по 2027 гг. Неорганизованный источник №6002

			Показате	ли по годам	и эксплуа-
		-		тации	J
Наименование показателей	Усл.	Ед.	2025	2026	2027
	обозн	изм.	БелАЗ-	БелАЗ-	БелАЗ-
			75131	75131	75131
Исход	ные да	нные			
Коэффициент, учитывающий среднюю					
грузоподъемность единицы автотранс-	C1	-	3	3	3
порта					
Коэффициент, учитывающий среднюю	C2		3,5	3,5	3,5
скорость движения автотранспорта	C2	-	3,3	3,3	3,3
Коэффициент, учитывающий состояние	C3		0,5	0,5	0,5
дорог	C3	-	0,5	0,3	0,5
Коэффициент, учитывающий профиль	C4		1,45	1,45	1,45
поверхности материала на платформе	C4	-	1,43	1,43	1,43
Коэффициент, учитывающий скорость	C5		1,5	1,5	1,5
обдува материала	C3	-	1,5	1,5	1,5
Коэффициент, учитывающий влажность	К5		0,6	0,6	0,6
поверхностного слоя материала	KJ	_	0,0	0,0	0,0
Коэффициент, учитывающий долю пыли,	C7		0,01	0,01	0,01
уносимой в атмосферу	C1	_	0,01	0,01	0,01
Число ходок (туда и обратно) автотранс-	N	шт.	4	4	4
порта в час		шт.			
Средняя протяженность одной ходки	L	KM	12	12	12
Пылевыделение в атмосферу на 1 км	q1	г/км	1450	1450	1450
пробега	41	1 / KWI	1730	1430	1430
Эффективность мероприятий по пылепо-	h	_	0,35	0,35	0,35
давлению на дорогах	11	_	0,33	0,55	0,33
Пылевыделение с единицы фактической	q/	г/м2с	0,002	0,002	0,002
поверхности материала на платформе			·	, , , , , , , , , , , , , , , , , , ,	
Средняя площадь платформы	S	м2	49	49	49
Число автомашин, работающих в карьере	n	ШТ.	27	28	28
Количество часов работы автотранспорта	T	час	7755	7478	7478
Результ	гаты ра	асчета			
Максимальная интенсивность пылевыде-	M	г/с	3,8489	3,9768	3,9768
ления		1/0	,		
Валовый выброс пыли	П	т/год	107,4536	107,0586	107,0586

Разрез "Восточный" АО "ЕЭК". Участок отвальных работ. Расчет количества пыли, выделяющейся при формировании отвалов в период с 2025 по 2027 гг. Неорганизованный источник №6318

Наименование показателей	Усл.	Усл. Ед. обозн изм.		Показатели по годам эксплуатации						
	0003Н	изм.	2025	2026	2027					
Исходные данные										
Количество перемещаемого										
материала:										
- за один год	Пг	т/год	75240000	75240000	75240000					
- максимальное за один час	Пч	т/час	16110	16110	16110					
Удельное выделение пыли при перемещении материала	q	г/м3	10	10	10					
Коэффициент, учитывающий влажность материала	K5		0,6	0,6	0,6					
Коэффициент, учитывающий степень защищенности узла от внешних воздействий	K4		1	1	1					
Коэффициент, учитывающий скорость ветра	К3		1,2	1,2	1,2					
Коэффициент, учитывающий высоту пересыпки материала	В		0,5	0,5	0,5					
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	Кг	дол. ед.	0,4	0,4	0,4					
Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0					
Pe3	ультать	і расчета								
Валовый выброс пыли за год:										
без учета мероприятий, т/год Мо =В* K3*K4*K5*Kr*q*Пr*10-6	Mo	т/год	108,3456	108,3456	108,3456					
- с учетом мероприятий $\Pi = \Pi r^*(1-h)$	M	т/год	108,3456	108,3456	108,3456					
Максимальная интенсивность пылевы	деления	за час:								
- без учета мероприятий Мо = (Пг*q*K3*K4*K5*B*Kг)/3600	Mo	г/с	6,444	6,444	6,444					
- с учетом мероприятий $M = \Pi r^*(1-h)$	M	г/с	6,444	6,444	6,444					

Приложение 71

Разрез "Восточный" АО "ЕЭК". Вскрышные работы. Расчет параметров выбросов пыли и ядовитых газов при ведении взрывных работ на вскрышных уступах разреза и в период с 2025 по 2027 гг. Неорганизованный источник №6002

		Показатели по годам эксплуатации						
Наименование показателей	Ед.	2	025	2	026	20)27	
паименование показателеи	Изм.	3a	3a	3a	3a	3a	3a	
		взрыв	год	взрыв	год	взрыв	год	
1	2	3	4	5	6	7	8	
	Исходнь	іе данные						
1. Количество взорванного ВВ, А	T	28	17925	28	17925	17,95	17925	
2. Объем взрываемой горной массы, Vгм	м3	50000	29100000	50000	29100000	50000	29100000	
3. Эффективность мероприятий по снижению выбросов, h								
- ПО ПЫЛИ	дол.ед.	0,6	0,6	0,6	0,6	0,6	0,6	
- по газам	дол.ед.	0,5	0,5	0,5	0,5	0,5	0,5	
4. Удельное пылевыделение, qп	кг/м3	0,02	0,02	0,02	0,02	0,02	0,02	
5. Удельное содержание газообразных веществ в пылегаз	вовом обла	ке при взр	ыве 1 тоннь	ı BB:				
- окиси углерода (q'co)	T/T	0,009	0,009	0,009	0,009	0,009	0,009	
- окислов азота (q'NOx)	$_{\mathrm{T}}/_{\mathrm{T}}$	0,0025	0,0025	0,0025	0,0025	0,0025	0,0025	
6. Удельное содержание газообразных веществ во взорван	нной горно	ой породе:						
- окиси углерода (q"CO)	T/T	0,002	0,002	0,002	0,002	0,002	0,002	
- окислов азота (q"NOx)	T/T	0,0006	0,0006	0,0006	0,0006	0,0006	0,0006	
Результаты расчета								
1. Валовый выброс загрязняющих веществ:								
пыли: Мгодп = $(0,16*qп*Vгм*(1-h))/1000$	T	0,064	37,248	0,064	37,248	0,064	37,248	
окиси углерода: Мгодсо = М1годСО +М2годСО	T	0,182	116,5125	0,182	116,5125	0,11668	116,5125	
двуокиси азота: MгодNOx = M1годNOx +M2годNOx		0,0518	33,16125	0,0518	33,16125	0,03321	33,16125	
1.1. Валовый выброс газообразных веществ из пылега-	Т							
зового облака, М1год:	T							

1	2	3	4	5	6	7	8
окиси углерода: $M1$ год $CO = q'CO*A*(1-h)$		0,126	80,6625	0,126	80,6625	0,08078	80,6625
окислов азота: $M1$ год $NOx = q'NOx*A*(1-h)$		0,035	22,40625	0,035	22,40625	0,02244	22,40625
1.2. Валовый выброс газообразных веществ из взорванной горной породы, М2год:	_						
окиси углерода: М2годСО = q"СО*А	T	0,056	35,85	0,056	35,85	0,0359	35,85
окислов азота: M2годNOx = q"NOx*A		0,0168	10,755	0,0168	10,755	0,01077	10,755
2. Максимально-разовый выброс загрязняющих ве-							
ществ:							
пыли: Мсекп = $(0.16*qп*Vгм*(1-h)*10^3)/1200$	г/с	53,3333	-	53,3333	-	53,3333	-
окиси углерода: Мсексо = (q'CO*A*(1-h)*10^6)/1200		105	-	105	-	67,3125	-
двуокиси азота: $McekNOx = (q'NOx*A*(1-h)*10^6)/1200$		29,1667	-	29,1667	-	18,6979	-

Настоящий расчет выполнен на основании "Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных матералов", утвержденной приказом МООС РК от 18.04.2008г. №100-п.

Приложение 72

Разрез "Восточный" АО "ЕЭК". Отвальное хозяйство. Внешний породный отвал Фестивальный. Расчет количества пыли, выделяющейся при сдувании с поверхности отвала в период с 2025 по 2027 гг. Неорганизованный источник №6004

№	II	Усл.	Ед.	Показатели	и по годам экс	плуатации
Π/Π	Наименование показателей	обозн.	изм.	2025	2026	2027
1	2	3	4	5	6	7
	Исходные данны	ые				
1.	Вид поверхности: разрез - 1; отвал -2; склад -3.			2	2	2
	Площадь пылящей поверхности, всего,					
2.	в том числе:	S		7507998	7507998	7507998
	- действующей	So		166751	0	0
	- после прекращения работ от 1-го до 3-х лет	S1		628899	698639	631939
	- после прекращения работ более 3-х лет	S2	м2	6712348	6809359	6876059
3.	Коэффициент, учитывающий влажность	K5		0,6	0,6	0,6
4.	Коэффициент, учитывающий скорость ветра	K2		1,2	1,2	1,2
5.	Коэффициент, учитывающий эффективность сдувания с поверхности:		ШТ	4	4	4
6.	- действующей	К1		1	1	1
7.	- после прекращения работ от 1-го до 3-х лет	K'1		0,2	0,2	0,2
	- после прекращения работ более 3-х лет	K"1		0,1	0,1	0,1
	Удельная сдуваемость твердых частиц с пылящей поверхности отвала	q0	кг/(м2с)	0,0000001	0,0000001	0,0000001
	Коэффициент измельчения горной массы	p		0,1	0,1	0,1
8.	Количество дней с устойчивым снежным покровом	T	сут.	209	209	209
9.	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0
	Результаты расч	ета				
1.	Валовый выброс пыли за год:					
	без учета мероприятий					
	$\Pi_0 = 86,4*q_0*p*K_2*K_5*(K_1*S_1+K_1*S_2+K"_1*S_3)*(365-T_c)$	По	т/год	93,52813	79,64088	78,9936
	с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	93,52813	79,64088	78,9936

	1	2	3	4	5	6	7
	2.	Максимальная интенсивность пылевыделения					
F		без учета мероприятий					
		$Mo = q0*p* K2*K5*(K1*S1+K1*S2+K"1*S3)*10^-3$	Mo	г/с	6,93911	5,90878	5,86075
Ī		- с учетом мероприятий M =Mo*(1-h)	M	г/с	6,93911	5,90878	5,86075

Приложение 73

Разрез "Восточный" АО "ЕЭК". Отвальное хозяйство. Внешний породный отвал Прибортовой. Расчет количества пыли, выделяющейся при сдувании с поверхности отвала в период с 2025 по 2027гг. Неорганизованный источник №6003

N_0N_0	П	Усл.	Ед.	Показатели по годам эксплуат		плуатации
Π/Π	Наименование показателей	обозн.	изм.	2025	2026	2027
1	2	3	4	5	6	7
	Исходные д	анные				
1.	Вид поверхности: разрез - 1; отвал -2; склад -3.			2	2	2
	Площадь пылящей поверхности, всего,	S		3398500	3398500	3398500
2.	в том числе:	3		3398300	3398300	3396300
	- действующей	So	м2	223453	324598	223180
	- после прекращения работ от 1-го до 3-х лет	S1		191233	373575	657062
	- после прекращения работ более 3-х лет	S2		2983814	2700327	2518258
3.	Влажность материала	W	%	0,6	0,6	0,6
4.	Коэффициент, учитывающий влажность	Ko		1,2	1,2	1,2
5.	Скорость ветра	V	м/с	4	4	4
6.	Коэффициент, учитывающий скорость ветра	K1		1	1	1
7.	Коэффициент, учитывающий эффективность сдувания с поверхи	ности:	шт.	0,2	0,2	0,2
	- действующей	К2		0,1	0,1	0,1
	- после прекращения работ от 1-го до 3-х лет	К'2		0,0000001	0,0000001	0,0000001
	- после прекращения работ более 3-х лет	K"2		0,1	0,1	0,1
8.	Количество дней с устойчивым снежным покровом	T	сут.	209	209	209
9.	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0
	Результаты ј	расчета				
1.	Валовый выброс пыли за год:					
	без учета мероприятий По = 86,4*q0*p*K2*K5*(K1*S1+K1*S2+K"1*S3)*(365-Tc)	По	т/год	54,35277	64,95631	58,84954
	с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	54,35277	64,95631	58,84954

1	2	3	4	5	6	7
2.	Максимальная интенсивность пылевыделения					
	без учета мероприятий Mo =q0*p* K2*K5*(K1*S1+K1*S2+K"1*S3)*10^-3	Mo	г/с	4,03258	4,81929	4,36621
	- с учетом мероприятий M =Mo*(1-h)	M	г/с	4,03258	4,81929	4,36621

Приложение 74

Разрез "Восточный". Отвальное хозяйство. Временный перегрузочный склад №2. Расчет количества пыли, выделяющейся при сдувании с поверхности временного перегрузочного склада в период с 2025 по 2027гг. Неорганизованный источник 6317

№		Усл.	Ед.	Показатели	и по годам экс	сплуатании						
п/п	Наименование показателей	обозн.	изм.	2024	2025	2026						
			е данные									
	Вид поверхности: разрез - 1; от-			2	2	2						
1	вал -2; склад -3.			2	2	2						
	Площадь пылящей поверхности,	S		471765	547094	698260						
2	всего, в том числе:											
	- действующей	S1		279939	198990	191300						
	- после прекращения работ от 1-	S2	м2	191826	348104	506960						
	го до 3-х лет		-									
	- после прекращения работ более	S3		0	0	0						
	3-х лет Коэффициент, учитывающий											
3	влажность	K5		0,6	0,6	0,6						
3	Коэффициент, учитывающий											
4	скорость ветра	K2		1,2	1,2	1,2						
	Коэффициент, учитывающий эффе	ктив-		4		4						
5	ность сдувания с поверхности:		ШТ	4	4	4						
	- действующей	К1		1	1	1						
	- после прекращения работ от 1-	К'1		0,2	0,2	0,2						
	го до 3-х лет	K I		0,2	0,2	0,2						
	- после прекращения работ более	K"1		0,1	0,1	0,1						
	3-х лет	IX I		0,1	0,1	0,1						
	Удельная сдуваемость твердых											
_	частиц с пылящей поверхности	q0	q0	q0	q0	q0	q0	q0	кг/(м2с)	0,0000001	0,0000001	0,0000001
5	отвала											
6	Коэффициент измельчения горной массы	p		0,1	0,1	0,1						
U	Количество дней с устойчивым											
7	снежным покровом	T	сут.	209	209	209						
,	Эффективность мероприятий по											
8	пылеподавлению	h	дол.ед.	0	0	0						
		Результат	ы расчета									
1	Валовый выброс пыли за год:											
	без учета мероприятий											
	$\Pi_0 = 86,4*q_0*p*K2*K5*$	По	т/год	30,88967	26,0672	28,40414						
	(K1*S1+K1*S2+K"1*S3)*(365-Tc)											
	с учетом мероприятий П =	П	т/год	30,88967	26,0672	28,40414						
	Πο*(1-h)	11	1/10д	20,00707	20,0072	20,1011						
2	Максимальная интенсивность											
2	пылевыделения											
	без учета мероприятий	Ma	7/0	2 20170	1.024	2 10729						
	Mo =q0*p* K2*K5*(K1*S1+K1* S2+K"1*S3)*10^-3	Mo	г/с	2,29179	1,934	2,10738						
	- с учетом мероприятий M											
	=Mo*(1-h)	M	г/с	2,29179	1,934	2,10738						
	=MO*(1-n)			•								

Приложение 75

Разрез "Восточный" АО "ЕЭК". Отвальное хозяйство. Временный перегрузочный склад №1. Расчет количества пыли, выделяющейся при сдувании с поверхности временного перегрузочного склада в период с 2025 по 2027гг. Неорганизованный источник №6291

№	Наименование показателей	Усл.	Ед.	Показат	ели по годам ции	эксплуата-
п/п		обозн.	ИЗМ.	2025	2026	2027
		сходные	данные			
1	Вид поверхности: разрез - 1; отвал -2; склад -3.			2	2	2
2	Площадь пылящей поверхности, всего, в том числе:	S		820778	1098107	1225427
	- действующей	S1		542012	277329	127320
	- после прекращения работ от 1-го до 3-х лет	S2	м2	278766	820778	930087
	 после прекращения работ более 3-х лет 	S3		0	0	168020
3	Коэффициент, учитывающий влажность	K5		0,6	0,6	0,6
4	Коэффициент, учитывающий скорость ветра	K2		1,2	1,2	1,2
5	Коэффициент, учитывающий эффектость сдувания с поверхности:	тив-	ШТ	4	4	4
	- действующей	К1		1	1	1
	- после прекращения работ от 1-го до 3-х лет	К'1		0,2	0,2	0,2
	- после прекращения работ более3-х лет	K"1		0,1	0,1	0,1
5	Удельная сдуваемость твердых частиц с пылящей поверхности отвала	q0	кг/(м2с)	1E-07	0,0000001	0,0000001
6	Коэффициент измельчения горной массы	p		0,1	0,1	0,1
7	Количество дней с устойчивым снежным покровом	Т	сут.	209	209	209
8	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0
	Pe	ультаты	расчета			
1	Валовый выброс пыли за год:					
	без учета мероприятий По = 86,4*q0*p*K2*K5* (K1*S1+K1*S2+K"1*S3)*(365-Тс)	По	т/год	58,00981	42,84364	32,03821
	с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	58,00981	42,84364	32,03821
2	Максимальная интенсивность пылев	выделени	Я			
	без учета мероприятий Mo =q0*p* K2*K5*(K1*S1+K1* S2+K"1*S3)*10^-3	Мо	г/с	4,30391	3,17869	2,377
	- с учетом мероприятий М =Mo*(1-h)	M	г/с	4,30391	3,17869	2,377

Приложение 76

Разрез "Восточный" АО "ЕЭК". Отвальное хозяйство. Склад ПСП. Расчет количества пыли, выделяющейся при разгрузке автотранспорта и формировании склада ПСП в период с 2025 по 2027 гг. Неорганизованный источник №6292

			Показ	затели
Наименование показателей	Усл. обозн	Ед. изм.	Разгрузка ав- тосамосвалов	Формирова- ние отвала бульдозера- ми
Исхо	дные да	нные		
Количество перемещаемого материала:				
- за один год	Qг	млн.м3	0,006	0,002
- максимальное за один час	Qч	м3/час	0,899	0,3
Удельное выделение пыли при перемещении материала	q	г/м3	10	5,6
Коэффициент, учитывающий влажность материала	Ko		1	1
Коэффициент, учитывающий скорость ветра	K1		1,2	1,2
Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0
Резуль	ьтаты ра	асчета		
Валовый выброс пыли за год:				
- без учета мероприятий По = Qr*q*Ko*K1*Кг	По	т/год	0,072	0,01344
- с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	0,072	0,01344
Максимальная интенс	ивность	пылевыде	ления за час:	
- без учета мероприятий Mo = (Qr*q*Ko*K1*Kr)/3600	Mo	г/с	0,003	0,00056
- с учетом мероприятий $M = Mo*(1-h)$	M	г/с	0,003	0,00056

Приложение 77 азрез «Восточная. Расчёт эмиссий пыли в атмосферу на пло

Разрез «Восточный». УТКР на ст. Восточная. Расчёт эмиссий пыли в атмосферу на площадке склада угля №4 от штабеля для котельной на 2025-2027 г.г. Неорганизованный источник выбросов №6010

	Сдувы со	Подача угля	Подача угля
	штабеля	со склада	на склад
Наименование показателей	TTT 6	, ,	Штабелеук-
	Штабель	Бульдозер	ладчик,
	угля		поз. 52
1	2	3	4
1. Влажность угля, W,%	5	5	5
2. Коэффициент, учитывающий влажность, K_0	1	1	1
3. Скорость ветра, V , м/с	3,4	3,4	3,4
4. Коэффициент, учитывающий скорость вет-	1,2	1,2	1,2
pa, K_1			
5. Уд. выделение твердых частиц с тонны угля,	3	3	3
$\mathbf{g}_{ extsf{y}, extsf{L}}$, Γ/Γ			
6.1 Эффективность применяемых средств пы-	0		
леподавления, η_{1} , дол. ед.			
6.2 Эффективность применяемых средств пы-		0	0,799
леподавления, η_2 , дол. ед.			
7. Склады,хранилища	1		
1.Откр. с 4 сторон			
2.Откр. с 3 сторон		2	
3.Откр. с 2 сторон полн.			
4.Откр. с 2 сторон част.			
5.Откр. с 1 стороны			
6.Загруз. рукав			6
7.Закр. с 4 сторон			
8. Коэффициент, учитывающий местные ус-	1	0,8	0,1
ловия, степень защищенности узла от внешних			
воздействий K_4			
9. Высота пересыпки, h , м	0	0,5	1,5
10. Коэффициент, учитывающий высоту пере-	0	0,4	0,6
сыпки, К 5			
11. Количество перегружаемого угля, Пг. т/год	0	22 330	22 330
(с учетом класса +40мм)			
12. Максимальное количество перегружаемого	0	100	1000
угля, Пч , т/ч			
13. Годовое количество часов работы обору-	5100	223	22
дования, Т, ч			
16. Количество оборудования, N, шт	0	1	1
17. Коэффициент, учитывающий профиль по-	1,3	0	0
верхности складируемого угля, K_6			
18. Площадь основания штабеля угля, $S_{\mathbf{m}}$, M^2	630	0	0
Результаты			

1	2	3	4
19. Количество твердых частиц, сдуваемых с	1,77390		0
поверхности открытых складов, без учета ме-			
роприятий			
$\mathbf{M}_{\mathbf{пыль}} = 31,5 * K_0 * K_1 * K_4 * K_6 * S_{\mathbf{m}} * 10^{-4}, \text{ т/год}$			
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_6 * S_{\text{III}} * 10^{-4}, \Gamma/c$	0,09828	0	0
С учетом мероприятий	1,77390	0	0
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{т/год}$			
$\Pi'_{\mathbf{пыль}} = \Pi_{\mathbf{пыль}} * (1-\eta_1)$, Γ/c	0,09828	0	0
20. Количество твердых частиц, выделяющих-	0	0,02572	0,00500
ся при перегрузках, без учета мероприятий			
$\mathbf{M}_{\mathbf{пыль}} = \mathbf{K}_{0*} \mathbf{K}_{1*} \mathbf{K}_{4*} \mathbf{K}_{5*} \mathbf{g}_{\mathbf{y}_{1}} \mathbf{\Pi}_{\Gamma} * 10^{-6} \mathbf{N}, \text{ т/год}$			
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * g_{yx} * \Pi_{q} * N/3600, г/c$	0	0,03200	0,06000
С учетом мероприятий	0	0,02572	0,00100
$\mathbf{M'}_{\text{пыль}} = \mathbf{M}_{\text{пыль}} * (1 - \eta_2), \text{ т/год}$			
$\Pi'_{\mathbf{пыль}} = \Pi_{\mathbf{пыль}} * (1 - \eta_2), \Gamma/c$	0	0,03200	0,01200

Разрез "Восточный". Станция Восточная. УДР-2. Расчет эмиссий загрязняющих веществ в атмосферу при окраске металлоконструкций экскаваторов на 2025-2027 гг. Неорганизованный источник выбросов №6007

Наименование показателей	Параметры
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115,краска Тиккурила (эмаль)	0,2
тф1-растворитель 646	0,3
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	2
тм1-растворитель 646	2
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4)/106*(1-n)-спирт н-бутиловый	0,0126
M2окр.=(mф1*fp1*rp2*q6)/106*(1-n)-бутилацетат	0,0084
М3окр.=(mф1*fp1*rp2*q3)/106*(1-n)-ацетон	0,00588
М4окр.=(mф1*fp1*rp2*q8)/106*(1-n)-толуол	0,042
М5окр.=(mф1*fp1*rp2*q7)/106*(1-n)-этилцеллозольв	0,00672
М6окр.=(mф1*fp1*rp2*q5)/106*(1-n)-спирт этиловый	0,0084
M7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,0126
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,0126
6. Максимальный разовый выброс летучих веществ при окраске, г / с	
Π 1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,3024
$\Pi 2 = (m\phi 1 * fp 1 * rp 2 * q6)/106 * 3,6 * (1-n)$ -бутилацетат	0,2016
$\Pi 3 = (m_M 1 * fp 1 * rp 2 * q3) / 106 * 3,6 * (1-n)$ -ацетон	0,14112
$\Pi 4 = (m_M 1 * fp 1 * rp 2 * q8) / 106 * 3,6 * (1-n)$ -толуол	1,008
$\Pi 5 = (m_M 1 * fp 1 * rp 2 * q7)/106 * 3,6 * (1-n) - этилцеллозольв$	0,16128

Окончание приложения 78

1	2
П6=(mм1*fp1*rp2*q5)/106*3,6*(1-n)-спирт этиловый	0,2016
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,4536
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,4536
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4)/106*(1-n)-спирт н-бутиловый	0,0324
M2c=(mф1*fp1*rp3*q6)/106*(1-n)-бутилацетат	0,0216
М3с=(mф1*fp1*rp3*q3)/106*(1-n)-ацетон	0,01512
М4с=(mф1*fp1*rp3*q8)/106*(1-n)-толуол	0,108
M5c=(mф1*fp1*rp3*q7)/106*(1-n)-этилцеллозольв	0,01728
М6c=(mф1*fp1*rp3*q5)/106*(1-n)-спирт этиловый	0,0216
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,0324
М8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,0324
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
$\Pi 1 = (m M 1/24 * fp 1 * rp 3 * q 4)/106 * 3,6 * (1-n)$ -спирт н-бутиловый	0,0324
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/106 * 3,6 * (1-n) - бутилацетат$	0,0216
$\Pi 3 = (m M 1/24 * fp1 * rp3 * q3)/106 * 3,6 * (1-n)$ -ацетон	0,01512
$\Pi 4=(m M 1/24*fp1*rp3*q8)/106*3,6*(1-n)$ -толуол	0,108
$\Pi 5 = (m M 1/24 * fp1 * rp3 * q7)/106 * 3,6 * (1-n) - этилцеллозольв$	0,01728
$\Pi6=(mM1/24*fp1*rp3*q5)/106*3,6*(1-n)$ -спирт этиловый	0,0216
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0486
$\Pi 8 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)-уайт-спирит$	0,0486
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с	0,045
М2=М2окр.+М2с	0,03
М3=М3окр.+М3с	0,021
М4=М4окр.+М4с	0,15
М5=М5окр.+М5с	0,024
М6=М6окр.+М6с	0,03
М7=М7окр.+М7с	0,045
М8=М8окр.+М8с	0,045

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)",РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. Топливозаправочный пункт. Расчет эмиссий загрязняющих веществ в атмосферу от наливного стояка на 2025-2027 гг. Неорганизованный источник №6030

Наименование показателей	Параметры	
Исходные данные		
1.Количество стояков, Np, шт.	1	
2.Плотность жидкости, р,т/м3	0,86	
3.Объем жидкости, выд. через наливной стояк со склада диз.		
топлива,т/год	378	
4.Объем жидкости, выд. Через наливной стояк со склада диз.		
топлива,м3/год	400	
5.Производительность стояка, Vч, м3/ч	32	
6.Годовые выбросы Стрк=Сб.а.+Спр.а	0,01186	
Gб.a=(СбозхВоз+СбвлхВвл)х10-6,т/год	0,00086	
Сбоз-конц.паровозд.смеси при заполн. бака осензимн. период,г/м3	1,6	
(прил.15)		
Сбвл-конц.паровозд. смеси при заполн.бака весенлетн.период,г/м3	2,2	
(прил.15)		
Ввл-кол.жидкости закач. в весенлетн. период,м3	265	
Воз-кол.жидкости закач. в осензимн. период,м3	175	
Gпр.a=0,5xJx(Bоз+Ввл)х10-6,т/год	0,011	
Ј-уд.выбросы при проливах,г/м3	50	
7.Максимальн. разовый выброс M=(VслхСб.a/ммах)/3600,г/с	0,02181	
Vсл-фактический расход топлива через стояк,м3/ч	25	
Сб.а/ммах-максимальный разовый выброс при заполнении бака,г/с	3,14	
(прил.12)		

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004

Разрез "Восточный". Станция Фестивальная. Топливозаправочный пункт. Заправка путевых машин дизельным топливом на 2025-2027 гг. Идентификация состава выбросов от наливного стояка дизельного топлива. Неорганизованный источник №6030

Наименование показателей	Ед. изм.	Усл. обозн.	Параметры
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,01186
2. Максимально-разовые выбросы:	г/с	Мдиз	0,02181
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (С12-С19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,011809002
- максимально-разовый выброс	г/с	Mi	0,021716217
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,000033208
- максимально-разовый выброс	г/с	Mi	0,000061068

Приложение 81

Разрез "Восточный". Станция Фестивальная. Склад ГСМ-2. Идентификация состава выбросов от резервуаров дизельного топлива на 2025-2027 гг. Неорганизованный источник №6030

Наименование показателей	Ед. изм.	2025-2027 гг.	
Исходные данные			
1. Валовые выбросы углеводородов:	т/год	0,88458	
2. Максимально-разовые выбросы:	г/с	0,08722	
Идентификация состава выбросов			
	Дизельное		
Углеводороды:	топливо		
1. Предельные (С12-С19), всего: - концентрация	%	99,57	
- валовый выброс	т/год	0,880776306	
- максимально-разовый выброс	г/с	0,086844954	
2. Сероводород - концентрация	%	0,28	
- валовый выброс	т/год	0,002476824	
- максимально-разовый выброс	г/с	0,000244216	

Разрез "Восточный". Станция Фестивальная. Склад ГСМ-2 . Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров для хранения топлива. Неорганизованный источник №6030 на 2025-2027 гг.

Наименование показателей	2025-2027 гг.
1.Общая емкость резервуаров, Vp, м3	1600
2.Количество резервуаров, Np,шт.	4
3.Плотность жидкости, р,т/м3	0,86
4.Объем жидкости налив. в резервуары в течение года,В,т/год	26225
- выдача через стояк	26225
I).Закачивание и хранение	
1.Производительность насоса,Vч, м3/ч	320
2.Годовые выбросы,т/год	
G.=(УозхВоз+УвлхВвл)хКр махх10-6,т/год	0,06169
Уоз-средний удельный выброс в осензимн. период, г/т	1,9
(прил.12)	
Увл-средний удельный выброс в весенлетн. период, г/т	2,6
(прил.12)	
Ввл-кол.жидкости закач. в весенлетн. период,т	19669
Воз-кол.жидкости закач. в осензимн. период,т	6556
Кр мах-опытный коэф. (прил.8)	0,97
3.Максимальн. разовый выброс M=(C1xKp маxxVч)/3600,г/с	0,27074
С1-концентр. паров нефтепродукта в резервуаре (прил.12),г/м3	3,14
II).Выдача топлива через стояк	
1.Производительность стояка, Vсл, м3/ч	100
2.Годовые выбросы Gp=Gзак.+Gпр.р,т/год	0,82289
Gзак.=(СрозхQоз+СрвлхQвл)х10-6,т/год	0,06236
Сроз-концентр. Паровоздуш. смеси в осензимн.период.,г/м3	1,6
(прил.15)	
Срвл-концентр. Паровоздуш. смеси в весенлетнпериод.,г/м3	2,2
(прил.15)	
Овл-кол.жидкости закач. в весенлетн. период,м3	22816
Ооз-кол.жидкости закач. в осензимн. период,м3	7605
Gпр.p=0,5xJx(Oоз+Овл)х10-6,т/год	0,76053
3.Максимальн. разовый выброс M=(C1xVсл)/3600,г/с	0,08722
С1-концентрация паров нефтепродукта в резервуаре (прил.12),г/м3	3,14
Ј-уд.выбросы при проливах,г/м3	50
IV)Общие годовые выбросы Gгод=G+Gp, т/год	0,88458

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004.

Разрез "Восточный". Станция Фестивальная. Склад ГСМ-2 . Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров для хранения топлива на 2025-2027 гг. Неорганизованный источник №6030

Наименование показателей	2025-2027 гг.
1.Общая емкость резервуаров, Vp, м3	1600
2. Количество резервуаров, Np,шт.	4
3.Плотность жидкости, р,т/м3	0,86
4.Объем жидкости налив. в резервуары в течение года,В,т/год	26225
- выдача через стояк	26225
I).Закачивание и хранение	
1.Производительность насоса, Vч, м3/ч	320
2.Годовые выбросы,т/год	
G.=(УозхВоз+УвлхВвл)хКр махх10-6,т/год	0,06169
Уоз-средний удельный выброс в осензимн. период, г/т	1,9
(прил.12)	
Увл-средний удельный выброс в весенлетн. период, г/т	2,6
(прил.12)	
Ввл-кол.жидкости закач. в весенлетн. период,т	19669
Воз-кол.жидкости закач. в осензимн. период,т	6556
Кр мах-опытный коэф. (прил.8)	0,97
3.Максимальн. разовый выброс М=(С1хКр маххVч)/3600,г/с	0,27074
С1-концентр. паров нефтепродукта в резервуаре (прил.12),г/м3	3,14
II).Выдача топлива через стояк	
1.Производительность стояка, Vсл, м3/ч	100
2.Годовые выбросы Gp=Gзак.+Gпр.р,т/год	0,82289
Сзак.=(СрозхQоз+СрвлхQвл)х10-6,т/год	0,06236
Сроз-концентр. Паровоздуш. смеси в осензимн.период.,г/м3	1,6
(прил.15)	
Срвл-концентр. Паровоздуш. смеси в весенлетнпериод.,г/м3	2,2
(прил.15)	
Овл-кол.жидкости закач. в весенлетн. период,м3	22816
Ооз-кол.жидкости закач. в осензимн. период,м3	7605
Gпр.p=0,5хJх(Ооз+Овл)х10-6,т/год	0,76053
3.Максимальн. разовый выброс M=(C1xVсл)/3600,г/с	0,08722
С1-концентрация паров нефтепродукта в резервуаре (прил. 12), г/м3	3,14
Ј-уд.выбросы при проливах,г/м3	50
IV)Общие годовые выбросы Gгод=G+Gp, т/год	0,88458

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004

Разрез "Восточный". Станция Фестивальная. Склад ГСМ-2. Идентификация состава выбросов от резервуаров дизельного топлива Неорганизованный источник №6030 на 2025-2027 гг.

Наименование показателей	Ед. изм.	2025-2027 гг.	
Исходные данные			
1. Валовые выбросы углеводородов:	т/год	0,88458	
2. Максимально-разовые выбросы:	г/с	0,08722	
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (С12-С19), всего: - концентрация	%	99,57	
- валовый выброс	т/год	0,88078	
- максимально-разовый выброс	г/с	0,08684	
2. Сероводород - концентрация	%	0,28	
- валовый выброс	т/год	0,00248	
- максимально-разовый выброс	г/с	0,00024	

Разрез "Восточный". Станция Восточная. ТЦ.ТБУ. Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-30 на 2025-2027 гг. Неорганизованный источник №6034

Наименование показателей	Параметры	
Исходные данные		
1. Чистое в ремя работы паяльником в год ,t,ч	880	
2.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000075	
q2- олова оксид	0,0000033	
Результаты		
3.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000008	
Мс=q2 * - олова оксид	0,000003	
4.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,00002	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,00001	

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонтно-механический участок (РМУ). Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей в дизельном топливе на 2025-2027 гг. Неорганизованный источник №6032

Наименование показателей	Параметры		
Исходные данные			
1.Количество ванн для мойки, п, шт	1		
2.Время работы установки в год ,t,ч	180		
3.Удельное выброс дизельного топлива, q, г/с м2	0,138		
4.Площадь зеркала ванны, S,м2	1		
Результаты			
5.Максимальный разовый выброс, г/с			
$\Pi=q *S$	0,138		
6.Валовый выброс за год, т/год			
M _B =q*S*t*n*3600/1000000	0,08942		

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Приложение 87

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонтно-механический участок (РМУ). Идентификация состава выбросов от ванны моечной в дизельном топливе на 2025-2027 гг. Неорганизованный источник №6032

Наименование показателей	Ед. изм.	Усл. обозн.	Параметры
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,08942
2. Максимально-разовые выбросы:	г/с	Мдиз	0,138
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (C12-C19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,089035494
- максимально-разовый выброс	г/с	Mi	0,1374066
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,000250376
- максимально-разовый выброс	г/с	Mi	0,0003864

Разрез "Восточный". Станция Восточная. ТБУ. Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу при зарядке аккумуляторных батарей на 2025-2027 гг. Неорганизованный источник №6034

Наименование показателей	Параметры
Исходные данные	
1. Количество зарядок в год кислотных аккумуляторов, а1, шт.	700
2.Количество зарядок в год щелочных аккумуляторов,а2,шт.	0
3.Номинальная емкость заряжаемого аккумулятора, А * ч	
Q1-кислотного	190
Q2-щелочного	0
4. Цикл проведения зарядки в день, t, ч	6
5.Удельное выделение паров серной кислоты при зарядке	
аккумуляторных батарей, q1 мг/А*ч	1
6.Удельное выделение паров щелочи при зарядке аккумуляторных	
батарей,q2 мг/А*ч	0,8
7. Максимальное количество одновременно заряжаемых батарей,шт.	
n1-кислотных	6
n2-щелочных	0
Результаты	
8.Валовый выброс за год паров серной кислоты, т / год	
M1=(0,9*q1*Q1*a1)/1000000000	0,00012
9.Валовый выброс за день паров серной кислоты, т / день	
M1cyt=(0,9*q1*Q1*n1)/1000000000	0,000001
10.Максимальный разовый выброс паров серной кислоты, г / с	
$\Pi1=(M1\text{cyr}*1000000)/(3600*t)$	0,00005
12.Валовый выброс за год паров щелочи, т / год	
M2=(0,9*q2*Q2*a2)/1000000000	0
13.Валовый выброс за день паров щелочи, т / день	
M2cyt=(0,9*q2*Q2*n2)/1000000000	0
14. Максимальный разовый выброс паров щелочи, г / с	
Π2=(M2cyr*1000000)/(3600*t)	0

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Разрез "Восточный". Станция Восточная. Склад ГСМ-1. Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров с бензином в период с 2025 по 2027 гг. Неорганизованный источник №6037

Показатели	Параметры
Исходные данные	
1.Общая емкость резервуаров, Vp, м3	225
2.Количество резервуаров, Np,шт.	3
3.Плотность жидкости, р,т/м3	0,74
4.Объем жидкости налив. в резервуары в течение года,В,т/год	170
- выдача через колонку	170
I) Закачивание и хранение	
1.Производительность насоса, Vч, м3/ч	120
2.Годовые выбросы,т/год	
G.=(УозхВоз+УвлхВвл)хКр махх10-6+ Gхр.*Nрез.*Кнп, т/год	1,083
Уоз-средний удельный выброс в осензимн. период, г/т	780
(прил.12)	
Увл-средний удельный выброс в весенлетн. период, г/т	1100
(прил.12)	
Ввл-кол.жидкости закач. в весенлетн. период,т	225
Воз-кол.жидкости закач. в осензимн. период,т	225
Кр мах-опытный коэф. (прил.8)	1
3.Максимальн. разовый выброс М=(С1хКр маххVч)/3600,г/с	32,4
4. Схр выбросов паров нефтепродуктов (прил. 13)	0,22
5.Кнп - опытный коэффициент (прил.12)	1
С1-концентрация паров нефтепродукта в резервуаре (прил.12),г/м3	972
II)Заправка автомобилей через колонку	
1.Годовые выбросы Стрк=Сб.а.+Спр.а	0,32436
Gб.a=(СбозхQоз+СбвлхQвл)х10-6,т/год	0,28611
(прил.15)	420
Сбвл-конц.паровозд. смеси при заполн.бака весенлетн.период	515
(прил.15)	
Qвл-кол.жидкости закач. в весенлетн. Период, м ³	306
Qоз-кол.жидкости закач. в осензимн. Период, м ³	306
Gпр.a=0,5xJx(Воз+Ввл)х10-6,т/год	0,03825
J-уд.выбросы при проливах,г/м3	125
2.Максимальн. разовый выброс M=(Vcл x Cб.a/ммаx)/3600,г/с	0,81
Vсл-фактический расход топлива через колонку,м3/ч	3
Сб.а/ммах-максимальный разовый выброс при заполнении бака,г/с	972
(прил.12)	
III) Общие годовые выбросы Gгод.=G+Gтрк, т/год	1,40736

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004 Примечание.2019-2020гг выполняется реконструкция склада; склад не работает

Приложение 90

Разрез "Восточный". Станция Восточная. Склад ГСМ-1. Идентификация состава выбросов от резервуаров с бензином в период с 2025 по 2027 гг. Неорганизованный источник №6037

Наименование показателей	Ед. изм.	Усл. обозн.	Параметры
Исходные д	анные		
1. Валовые выбросы углеводородов	т/год С б		1,40736
в том числе: - от низкооктанового бензина	Т/ГОД	Gнбенз	1,40736
2. Максимально-разовые выбросы	г/с	M	32,4
в том числе: - от низкооктанового бензина	170	Мнбенз	32,4
Идентификация состава выбросов			
Углеводороды:	Б	ензин низкоок	тановый
1. Предельные, всего: - концентрация	%	Ci	93,85
- валовый выброс	т/год	Gi	1,32080736
- максимально-разовый выброс	г/с	Mi	30,4074
в том числе: С1-С5 - концентрация	%	Ci	75,47
- валовый выброс	т/год	Gi	1,062134592
- максимально-разовый выброс	г/с	Mi	24,45228
С6-С10 - концентрация	%	Ci	18,38
- валовый выброс	т/год	Gi	0,258672768
- максимально-разовый выброс	г/с	Mi	5,95512
2. Непредельные (по амиленам): -	%	Ci	2,5
концентрация	70	Ci	2,3
- валовый выброс	т/год	Gi	0,035184
- максимально-разовый выброс	г/с	Mi	0,81
3. Ароматические, всего: - концентрация	%	Ci	3,65
- валовый выброс	т/год	Gi	0,05136864
- максимально-разовый выброс	г/с	Mi	1,1826
в том числе: бензол - концентрация	%	Ci	2
- валовый выброс	т/год	Gi	0,0281472
- максимально-разовый выброс	г/с	Mi	0,648
толуол - концентрация	%	Ci	1,45
- валовый выброс	т/год	Gi	0,02040672
- максимально-разовый выброс	г/с	Mi	0,4698
ксилол - концентрация	%	Ci	0,15
- валовый выброс	т/год	Gi	0,00211104
- максимально-разовый выброс	г/с	Mi	0,0486
этилбензол - концентрация	%	Ci	0,05
- валовый выброс	т/год	Gi	0,00070368
- максимально-разовый выброс	г/с	Mi	0,0162

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004.

Приложение 91

Разрез "Восточный". Станция Восточная. Склад ГСМ-1. Идентификация состава выбросов от резервуаров с керосином в период с 2025 по 2027 гг.

Наименование показателей	Ед. изм.	Усл. обозн.	Параметры		
Исходные данные					
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,00224		
2. Максимально-разовые выбросы:	г/с	Мдиз	0,136		
Идентификация состава выбросов					
Углеводороды:	Керосин				
1. Предельные (С12-С19), всего: - концентрация	% Ci 99,8				
- валовый выброс	т/год	Gi	0,00223642		
- максимально-разовый выброс	г/с	Mi	0,1357824		
2. Сероводород - концентрация	%	Ci	0,06		
- валовый выброс	т/год	Gi	1,344E-06		
- максимально-разовый выброс	г/с	Mi	0,0000816		

Разрез "Восточный". Станция Восточная. Склад ГСМ-1. Расчет эмиссий загрязняющих веществ в атмосферу от резервуара с керосином в период с 2025по 2027 гг. Неорганизованный источник №6037

Показатели	Параметры	
Исходные данные		
1.Общая емкость резервуаров, Vp, м3	25	
2. Количество резервуаров, Np,шт.	1	
3.Плотность жидкости, р,т/м3	0,8	
4.Объем жидкости налив. в резервуар в течение года,В,т/год	5	
- выдача через насос	5,1	
I) Закачивание и хранение		
1.Производительность насоса, Vч, м3/ч	40	
2.Годовые выбросы,т/год		
G.=(УозхВоз+УвлхВвл)хКр махх10-6+ Gхр.*Nрез.*Кнп, т/год	0,00224	
Уоз-средний удельный выброс в осензимн. период, г/т	5,9	
(прил.12)		
Увл-средний удельный выброс в весенлетн. период, г/т	11	
(прил.12)		
Ввл-кол.жидкости закач. в весенлетн. период,т	2,5	
Воз-кол.жидкости закач. в осензимн. период,т	2,5	
Кр мах-опытный коэф. (прил.8)	1	
3.Максимальн. разовый выброс М=(С1хКр маххVч)/3600,г/с	0,136	
4. Схр выбросов паров нефтепродуктов (прил. 13)	0,22	
5.Кнп - опытный коэффициент (прил.12)	0,01	
С1-концентрация паров нефтепродукта в резервуаре (прил.12),г/м3	12,24	

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004

Разрез "Восточный". Станция Восточная. УДР-2. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на подъемном конвейере 3-1 на 2025-2027 гг. Неорганизованный источник №6043

Наименование показателей	Параметры
Исходные данные	
Механическая обработка без охлаждения	
Заточной станок Фкр.200мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т, ч	25
3.к-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
4.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,02
q1-взвешенные вещества	0,02
Сверлильный станок	
5.Количество станков, n1, шт	1
6.Количество часов работы в год одного станка,Т1,ч	25
7.к-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
8.Удельный выброс на единицу оборудования, г/с	
q2 -абразивная пыль	0
q3-взвешенные вещества	0
Угловая шлифовальная машина " болгарка" Bosch	
9.Количество станков, n2, шт	1
10.Количество часов работы в год одного станка, Т2, ч	20
11.k-коэф.гравитац.оседания для абразивной пыли и взвешенных	
веществ	0,2
12.Удельный выброс на единицу оборудования, г/с	
q4 -абразивная пыль	0,043
q5-взвешенные вещества	0,043
Результаты	
13.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*(q1*T*n +q5*T2*n2 /1000000 -без пылеотсасывающих	
агрегатов	0,00098
14. Максимальный разовый выброс взвешенных веществ, г/с	
П=k*q5*n2 -без пылеотсасывающих агрегатов	0,0086
15.Валовый выброс за год абразивной пыли, т/год	
M = 3600*k*(q*T*n + q4*T2*n2)/1000000 -без пылеотсасывающих	
агрегатов	0,00098
16.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q4*n2 -без пылеотсасывающих агрегатов	0,0086

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № $221-\theta$) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная. УДР-1. Ремонт и обслуживание горных машин. Расчет выбросов вредных веществ при проведении сварочных работ и резке металла на 2025-2027 гг. Неорганизованный источник выбросов №6042

Наименование показателей	Параметры
1	2
Исходные данные по сварочным работам	
Сварочные работы электродами марки УОНИ 13/45	
1.Годовой расход электродов типа УОНИ 13/45, Вгод.1, кг	900
2. Максимальный часовой расход электродов типа УОНИ 13/45, В1, кг	1,5
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	600
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его оксиды	0,51
К2-кремния диоксид	1,4
К3-фториды	1,4
К4-фтористый водород	1
Сварочные работы электродами марки УОНИ 13/55	
6.Годовой расход электродов типа УОНИ 13/55, Вгод.2, кг	1050
7. Максимальный часовой расход электродов типа УОНИ 13/55, В2, кг	1,5
8.Количество постов, t2, ч	1
9.Количество часов работы в год всех постов, Т2, ч	700
10. Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его оксиды	1,09
К6-кремния диоксид	1
К7-фториды	1
К8-фтористый водород	1,26
К9-оксиды азота	2,7
К10-оксид углерода	13,3
Сварочные работы электродами марки УОНИ 13/65	
11.Годовой расход электродов типа УОНИ 13/65, Вгод.3, кг	650
12. Максимальный часовой расход электродов типа УОНИ 13/65, ВЗ, кг	1,5
13.Количество постов, t3, ч	1
14. Количество часов работы в год всех постов, Т3, ч	433
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	1,41
К12-кремния диоксид	0,8
К13-фториды	0,8
К14-фтористый водород	1,17
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.4, кг	1300
17. Максимальный часовой расход электродов типа УОНИ 13/65, В4, кг	1,5
18.Количество постов, t4, ч	1
19. Количество часов работы в год всех постов, Т4, ч	867
20. Удельное выделение загрязняющих веществ при сварке, г/кг	
К15-оксиды хрома	3,7
К16-никель и его оксиды	6,05

Продолжение приложения 94

1	2
Сварочные работы электродами марки НИИ-48Г (ВСН-6)	
21.Годовой расход электродов типа НИИ-48Г, Вгод.5, кг	1200
22. Максимальный часовой расход электродов типа НИИ-48Г, В5, кг	1,5
23.Количество постов, t5, ч	1
24.Количество часов работы в год всех постов, Т5, ч	800
20.Удельное выделение загрязняющих веществ при сварке, г/кг	.
К17- марганец и его соединения	0,53
К18-оксиды хрома	1,54
К19-никель и его оксиды	1,02
К20-фтористый водород	0,8
Результаты	
25.Валовый выброс за год, т/год	
М1=(Вгод.1*К1+Вгод.2*К5+Вгод.3*К11+Вгод.5*К17)/1000000-марганец и	
его соединен.	0,00316
М2=(Вгод.1*К4+Вгод.2*К8+Вгод.3*К14+Вгод.5*К20)/1000000 -фтористый	
водород	0,00394
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00283
М4= (Вгод.1*К3+Вгод.2*К7+Вгод.3*К13)/1000000-фториды	0,00283
М5=(Вгод.2*К9)/1000000 -азот оксид	0,00284
М6=Вгод.2*К10/1000000 -углерод оксид	0,01397
М7=(Вгод.4*К16+Вгод.5*К19)/1000000 -никель оксид	0,00909
M8=(Вгод.4*K15+Вгод.5*K18)/1000000 -оксиды хрома	0,00666
26.Максимальный разовый выброс, г/с	
П1=К11*В3/3600-марганец и его соед.	0,00059
П2=К8*В2/3600-фтористый водород	0,00053
П3=(К2*В1/3600)-кремния диоксид	0,00058
П4=(К3*В1/3600)-фториды	0,00058
П5=К9*В2/3600-азот оксид	0,00113
П6=К10*В2/3600-углерод оксид	0,00554
П6=К16*В4/3600-никель оксид	2,18472
П8=К15*В4/3600оксиды хрома	1,33611
Исходные данные по газовой резке	
1. Количество часов работы в год, Т1, ч	2190
2. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
3. Количество часов работы в год, Т2, ч	2190
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 20мм, г/с	
К5-марганец и его соединения	0,017
К7-оксид углерода	0,018
К8-диоксид азота	0,015

Окончание приложения 94

1	2
Результаты	
5.Валовый выброс за год,т/год	
М1=(Т1*3600*К1+Т2*3600*К5)/1000000 -марганец и его соединения	0,14191
М3=(Т1*3600*К3+Т2*3600*К7)/1000000 -оксид углерода	0,29959
М4=(Т1*3600*К4+Т2*3600*К8)/1000000 -диоксид азота	0,26017
6.Максимальный разовый выброс,г/с	
П1=К5 -марганец и его соединения	0,017
П3=К3-оксид углерода	0,02
П4=К4 -диоксид азота	0,018
Итого	
1.Валовый выброс за год,т/год	
М1=(Вгод.1*К1+Вгод.2*К5+Вгод.3*К11+Вгод.5*К17+Т1*3600*К1)/1000	
000-марганец и его соединен.	0,14507
М2=(Вгод.1*К4+Вгод.2*К8+Вгод.3*К14+Вгод.5*К20)/1000000 -	
фтористый водород	0,00394
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00283
М4= (Вгод.1*К3+Вгод.2*К7+Вгод.3*К13)/1000000-фториды	0,00283
М5=Вгод.2*К9/1000000 -азот оксид	0,00284
М6=Вгод.2*К10/1000000+Т1*3600*К3/1000000 -углерод оксид	0,02554
М7=(Вгод.4*К16+Вгод.5*К19)/1000000 -никель оксид	2,18472
М8=(Вгод.4*К15+Вгод.5*К18)/1000000 -оксиды хрома	0,00666
М9=(Т1*3600*К4/1000000 -диоксид азота	0,26017
2.Максимальный разовый выброс,г/с	
П1=К1-марганец и его соед.	0,017
П2=К8*В2/3600-фтористый водород	0,00053
П3=(К2*В1/3600)-кремния диоксид	0,00058
П4=(К3*В1/3600)-фториды	0,00058
П5=К9*В2/3600-азот оксид	0,00113
П6=К10*В2/3600-углерод оксид	0,017
П6=К16*В4/3600-никель оксид	2,18472
П8=K15*B4/3600оксиды хрома	1,33611
П9=К4 -диоксид азота	0,018

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө".

Разрез "Восточный". Станция Восточная. УДР-1. Ремонт и обслуживание горных машин. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6042

Наименование показателей	Параметры	
Исходные данные		
Механическая обработка без охлаждения		
Точильно-шлифовальный станок с диаметром круга 400мм		
1.Количество станков,п, шт	2	
2.Количество часов работы в год одного станка, Т, ч	150	
3.к-коэф.гравитац.оседания для абразивной пыли и взвешенных		
веществ	0,2	
4.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,019	
q1-взвешенные вещества	0,019	
Результаты		
5.Валовый выброс за год взвешенных веществ, т/год		
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,0041	
6.Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q1*n -без пылеотсасывающих агрегатов	0,0076	
7.Валовый выброс за год абразивной пыли, т/год		
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,0041	
8.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q*n -без пылеотсасывающих агрегатов	0,0076	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная.УДР-2.Ремонт и обслуживание конвейеров подъема угля. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резки на 2025-2027 гг. Неорганизованный источник №6043

Наименование показателей	Параметры
1	2
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1,кг	870
2. Максимальный часовой расход электродов типа МР-3, В1, кг	1,5
3.Количество постов, n1, шт	4
4. Количество часов работы в год всех постов, Т1, ч	580
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Сварочные работы электродами марки УОНИ-13/45	
6.Годовой расход электродов типа УОНИ-13/45, Вгод.2, кг	155
7. Максимальный часовой расход электродов типа УОНИ-13/45, В2,	
КΓ	1,5
8. Количество постов, n2, шт.	4
9.Количество часов работы в год всех постов, Т2, ч	103
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	0,51
К6-кремния диоксид	1,4
К7-фториды)	1,4
К8-фтористые газообр.соед.	1
Сварочные работы электродами марки НЖ-13	
11.Годовой расход электродов типа НЖ-13, Вгод.3,кг	12
12. Максимальный часовой расход электродов типа НЖ-13, В3, кг	1,5
13.Количество постов, n3, шт	4
14. Количество часов работы в год всех постов, Т3, ч	8
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	0,53
К12-хрома (VI) оксид	0,24
Результаты	
16.Валовый выброс за год, т/год	
М1=(Вгод1*К2+Вгод.2*К5+Вгод.3*К11)/1000000-марганец и его	
соединен.	0,00165
М2=(Вгод2*К8)/1000000 -фтористые газообр. Соед.	0,00016
М3=(Вгод2*К6)/1000000 -кремния диоксид	0,00022
М4=Вгод.2*К7/1000000 -фториды	0,00022
М7=Вгод3*К12/1000000-оксиды хрома	0,000003
17. Максимальный разовый выброс, г/с	
П1=K2*B1*n1/3600-марганец и его соед.	0,003
П2=К8*В2*п2/3600-фтористые газообр. Соединен.	0,00167
П3=K6*B2*n2/3600-кремния диоксид	0,00233
П4=K7*B2*n2/3600-фториды	0,00233
П7=К12*В3*n3/3600оксиды хрома	0,0004

Окончание приложения 96

1	2
Исходные данные по газовой резке	
1.Количество часов работы в год,Т1,ч	510
2. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
3.Количество часов работы в год, Т2, ч	400
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 20мм, г/с	
К5-марганец и его соединения	0,017
К7-оксид углерода	0,018
К8-диоксид азота	0,015
Результаты	
5.Валовый выброс за год,т/год	
М8=(Т1*3600*К1+Т2*3600*К5)/1000000 -марганец и его соединения	0,02632
М9=(Т1*3600*К3+Т2*3600*К7)/1000000 -оксид углерода	0,06264
М10=(Т1*3600*К4+Т2*3600*К8)/1000000 -диоксид азота	0,05465
6.Максимальный разовый выброс,г/с	
П8=К5 -марганец и его соединения	0,017
П9=К3-оксид углерода	0,02
П10=К4 -диоксид азота	0,018
Итого	
1.Валовый выброс за год,т/год	
М=М1+М8-марганец и его соединения	0,02797
М=М2-фтористые газообр. Соед.	0,00016
М=M3-пыль неоргSiO2	0,00022
М=М4 -фториды	0,00022
М=М10 -диоксид азота	0,05465
М=М9 -оксид углерода	0,06264
М=М7-оксиды хрома	0,000003
2.Максимальный разовый выброс,г/с	
П=П8-марганец и его соед.	0,017
П=П2-фтористые газообр. Соединен.	0,00167
П=П3-пыль неоргSiO2	0,00233
П=П4-фториды	0,00233
П=П10-диоксид азота	0,018
П=П9-оксид углерода	0,02
П=П7-оксиды хрома	0,0004

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221- Θ ".

Приложение 97

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Расчет параметров выбросов пыли и ядовитых газов при ведении взрывных работ на горных уступах в период с 2025 по 2027 г.г.

Наименование показателей	Ед.	Показатели	
		3a	3a
	Изм.	взрыв	год
1	2	3	4
Исходные данные			
1. Количество взорванного ВВ, А	Т	8,46	122
2. Объем взрываемой горной массы, V_{rm}	м ³	10000	131150
3.Эффективность мероприятий по снижению выбросов, h			
- по пыли	дол.ед.	0,5	0,5
- по газам	дол.ед.	0	0
4. Удельное пылевыделение, q _п	$\kappa \Gamma / M^3$	0,065	0,065
5. Удельное содержание газообразных веществ в			
пылегазовом облаке при взрыве 1 тонны ВВ:			
- окиси углерода (q'co)	T/T	0,009	0,009
- окислов азота (q' _{NOx})	T/T	0,0025	0,0025
6. Удельное содержание газообразных веществ во			
взорванной горной породе:			
- окиси углерода (q» _{CO})	T/T	0,002	0,002
- окислов азота (q» _{NOx})	T/T	0,0006	0,0006
Результаты расчета			
1. Валовый выброс загрязняющих веществ:			
пыли		0.05200	0.60100
M год $_{\Pi} = (0.16*q_{\Pi}*V_{\Gamma M}*(1-h))/1000$		0,05200	0,68198
окиси углерода	T	0,09306	1,34200
M год $_{co} = M1$ год $_{CO} + M2$ год $_{CO}$	1	0,09300	1,34200
двуокиси азота		0,02623	0,37820
$M_{\Gamma O Д_{NOx}} = M_{1\Gamma O Д_{NOx}} + M_{2\Gamma O Д_{NOx}}$		0,02023	0,37620
1.1. Валовый выброс газообразных веществ из			
пылегазового облака, М1год:			
окиси углерода		0,07614	1,09800
$M1$ год $_{CO} = q'_{CO} * A * (1-h)$	T	0,07014	1,07000
окислов азота	1	0,02115	0,30500
$M1$ год $_{NOx} = q'_{NOx}*A*(1-h)$		0,02113	0,50500
1.2. Валовый выброс газообразных веществ из взорванной			
горной породы, М2год:			
окиси углерода	Т	0,01692	0,24400
$M2$ год $_{CO} = q_{CO} A$		0,01072	o, <u></u> 1100
окислов азота	•	0,00508	0,07320
$M2$ год $_{NOx} = q \rangle_{NOx} *A$		0,00000	5,07520
2. Максимально-разовый выброс загрязняющих веществ:			
пыли	г/с	43,33333	_
$Mce\kappa_{\Pi} = (0.16*q_{\Pi}*V_{\Gamma M}*(1-h)*10^{\Lambda^3})/1200$.5,5555	

Окончание приложения 97

1	2	3	4
окиси углерода $Mce\kappa_{co} = (q'_{CO}*A*(1-h)*10^{^6})/1200$		63,45000	1
двуокиси азота $Mcek_{NOx} = (q'_{NOx}*A*(1-h)*10^{^6})/1200$		17,62500	-

Настоящий расчет выполнен на основании «Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов», утвержденной приказом МООС РК от 18.04.2008г. №100-п.

Приложение 98

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Расчет количества пыли, выделяющейся при сдувании с верхнего вскрышного уступа в период с 2025 по 2027 г.г. Неорганизованный источник №6044

N_0N_0	Наименование показателей	Условн.	Ед.	Показател	пи по годам эксп	луатации
Π/Π		обозн	изм.	2025	2026	2027
	Исхо	дные данн	ые			
1	Вид поверхности: разрез - 1; отвал -2; склад -3.			1	1	1
2	Площадь пылящей поверхности:					
	- действующей (рабочая часть борта)	So	м ²	13500	15700	15375
	- после прекращения работ более 3-х лет стационар- ная часть борта)	S_2	M^2	27100	24940	25460
3	Коэффициент, учитывающий влажность	Ko		1,0	1,0	1,0
4	Коэффициент, учитывающий скорость ветра	K_1		1,2	1,2	1,2
5	Коэффициент, учитывающий эффективность сдувания с поверхности:		ШТ.	4	4	4
	- действующей	К2	-	1	1	1
	- после прекращения работ от 1-го до 3-х лет	K' ₂	-	0,2	0,2	0,2
	- после прекращения работ более 3-х лет	K»₂	-	0,1	0,1	0,1
6	Количество дней с устойчивым снежным покровом	T	сут.	155	155	155
7	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0
		ьтаты расч	чета			
1	Валовый выброс пыли за год:					
	без учета мероприятий $\Pi o = 86,4*K_o*K_1*K_r*(K_2*S_o+K'_2*S_1+K)_2*S_2)*(365-T_c)*10^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{}}}}}}$	Π_{o}	т/год	3,52937	3,96134	3,90190
	с учетом мероприятий $\Pi = \Pi_o^*(1-h)$	П	т/год	3,52937	3,96134	3,90190
2	Максимальная интенсивность пылевыделения					
	без учета мероприятий $Mo = K_0 * K_1 * K_1 * K_2 * S_0 + K'_2 * S_1 + K_{2} * S_2) * 10^{-5}$	M _o	г/с	0,19452	0,21833	0,21505
	- с учетом мероприятий М =Mo*(1-h)	M	г/с	0,19452	0,21833	0,21505

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Приложение 99

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Горные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на горных уступах в период с 2025 по 2027 г.г. Ист. №6044

Наименование показателей	Показатели
паименование показателеи	Экскаваторы
Исходные данные	
Количество перемещаемого материала за один год, Gг, м ³ /год	134 000
максимальное за один час, Gч, м ³ /час	29,76
Удельное выделение пыли при перемещении материала, q, г/т	11,0
Влажность угля, W, %	5,0
Коэффициент, учитывающий влажность, К5	0,6
Скорость ветра, V, м/с	3,4
Коэффициент, учитывающий скорость ветра, К3	1,2
Коэффициент, учитывающий гравитационное оседание загрязняющих	0,40
веществ, Кг	0,40
Эффективность мероприятий по	0
пылеподавлению, fn, дол.ед.	U
Результаты расчета	
Валовый выброс пыли за год:	
без учета мероприятий, т/год	0,42451
$\Pi_0 = K5*K3*Kr*q*Gr/10^6$	0,42431
- с учетом мероприятий, т/год	0,42451
$\Pi = \Pi o * (1-fn)$	0,42431
Максимальная интенсивность	
пылевыделения:	
- без учета мероприятий, г/с	0,02619
Mo = K5*K3*Kr*q*Gu/3600	0,02017
- с учетом мероприятий, М, г/с	0,02619
M = Mo * (1-fn)	0,02017

Настоящий расчет выполнен на основании «Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов» (Приложение №11 к Приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п).

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Горные работы. Расчет количества пыли, выделяющейся при выемочно-погрузочных работах на горных уступах от работы бульдозеров в период с 2025 по 2027 г.г.

Наименование показателей	Показатели
Исходные данные	
Количество перемещаемого материала за один год, Gг, т/год	40 200
максимальное за один час, Gч, т/час	13,97
Весовая доля пылевой фракции в материале, К1	0,03
Доля пыли, переходящая в аэрозоль, К2	0,02
Скорость ветра, V, м/с	3,4
Коэффициент, учитывающий местные метеоусловия, К3	1,2
Число открытых сторон места, шт.	2
Коэффициент, учитывающий местные условия, К ₄	0,2
Влажность угля, W, %	5,0
Коэффициент, учитывающий влажность, К5	0,6
Коэффициент, учитывающий крупность материала, К7	0,5
Поправочный коэффициентпри мощном залповом сбросе материала при разгрузке автосамосвала, К ₉	1,0
Высота пересыпки материала, h, м	0,5
Коэффициент, учитывающий высоту пересыпки, В	0,4
Коэффициент, учитывающий гравитационное оседание загрязняющих веществ, Кг	0,40
Эффективность мероприятий по пылеподавлению, fn, дол.ед.	0
Результаты расчета	
Валовый выброс пыли за год:	
без учета мероприятий, т/год По = K1*K2*K3*K4*K5*K7*K8*K9*B*Kr*Gr	0,13893
- с учетом мероприятий, т/год	0.12902
$\Pi = \Pi o * (1-fn)$	0,13893
Максимальная интенсивность пылевыделения:	
- без учета мероприятий, г/с Mo = K1*K2*K3*K4*K5*K7*K9*B*KGч*10^6/3600	0,01341
- с учетом мероприятий, M, г/с M =Mo * (1-fn)	0,01341

Настоящий расчет выполнен на основании «Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов» (Приложение №11 к Приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п).

Приложение 101
 Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Расчет количества пыли, выделяющейся при транспортировке породы автосамосвалами в период с 2025 по 2027 г.г.

Наименование показателей	Услов-	Ед.	Показатели
	ное	измер.	HOWO
	обозна-		ZZ5707
	чение		
Исходные данные			
Коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта	C1	-	3,0
Коэффициент, учитывающий среднюю скорость движения	C2	-	2,75
автотранспорта			
Коэффициент, учитывающий состояние дорог	C3	-	1,0
Коэффициент, учитывающий профиль поверхности материала на платформе	C4	-	1,10
Коэффициент, учитывающий скорость обдува материала	C5	-	1,26
Коэффициент, учитывающий влажность поверхностного	К5	-	1,0
слоя материала			
Коэффициент, учитывающий долю пыли, уносимой в	C7	1	0,01
атмосферу	N.T.		2
Число ходок (туда и обратно) автотранспорта в час	N	ШТ.	3
Средняя протяженность одной ходки	L	КМ	2,7
Пылевыделение в атмосферу на 1 км пробега	q_1	г/км	1450,0
Эффективность мероприятий по пылеподавлению на	h	-	0
дорогах Пылевыделение с единицы фактической поверхности	g/	г/м ² с	0,002
материала на платформе	q'	17M C	0,002
Средняя площадь платформы	S	м ²	16,1
Число автомашин, работающих в карьере	n	ШТ.	3
Количество часов работы автотранспорта	Т	час	6762
Результаты расчета			
Максимальная интенсивность пылевыделения	M	г/с	0,4030
Валовый выброс пыли	П	т/год	9,8103

Приложение 102

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Горные работы. Расчет количества пыли, выделяющейся при работе бурового оборудования на уступах разреза в период с $2025\ \text{по}\ 2027\ \Gamma.\Gamma.$

Наименование показателей	Условн. обозн.	Единица изм.	Показатели
Исходные данн	ые		
1. Объем бурения			
- за один год	$V_{\scriptscriptstyle \Gamma}$	тыс. п.м	13482
- скорость бурения	V _б	п.м/ч	120
2. Годовое количество рабочих часов по бурению	T	ч/год	1551
3. Диаметр буримых скважин	D	M	0,165
3. Объемный вес материала	У	T/M^3	2,79
4. Содержание пыли в буровой мелочи	В	дол. ед.	0,1
5. Доля пыли, переходящей в аэрозоль	K	дол. ед.	0,020
6. Эффективность мероприятий по	h	дол. ед.	0,8
пылеулавливанию		дол. сд.	0,0
7. Коэффициент, учитывающий гравитационное	Кг	дол. ед.	0,40
оседание загрязняющих веществ, Кг		дол. ед.	0,10
Результаты расч	етов	1	
1. Валовый выброс пыли за год:			
- без учета мероприятий	т/год	Π_{o}	8,87820
$\Pi_{o} = 0.785*D^{2*}V_{6}*y*T*B*K*K_{\Gamma}$	1/10Д	110	0,07020
- с учетом мероприятий	т/год	П	1,77564
$\Pi = \Pi_0 * (1-h)$	1,10Д		1,77501
Максимальная интенсивность пылевыделения			
- без учета мероприятий	г/с	M_{o}	1,59110
$M_0 = (0.785 * D^2 * V_6 * y * B * K \Gamma * K * 10^{3})/3,6$	1,0	1110	1,00110
- с учетом мероприятий	г/с	M	0,31822
$M = M_o * (1-h)$	1,0	111	0,51022

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Приложение 103

Разрез Восточный. ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при сдувании с поверхности конвейеров в период с 2025 по 2027 г.г. Неорганизованный источник №6045

Наименование процесса, харак-	Транспортирование ленточными конвейерами					
теристика		ДСУ №1			ДСУ №2	
	В=650м	В=800м	В=1000м	В=650м	В=800м	В=1000м
	M	M	M	M	M	M
1. Влажность мтериала, W,%	1	1	1	1	1	1
2. Коэффициент, учитывающий	1,4	1,4	1,4	1,4	1,4	1,4
влажность, \mathbf{K}_{0}						
3. Скорость ветра, V , м/с	3,4	3,4	3,4	3,4	3,4	3,4 1,2
4. Коэффициент, учитывающий	1,2	1,2	3,4 1,2	1,2	1,2	1,2
скорость ветра, K_1						
13. Коэффициент, учитывающий	0,4	0,4	0,4	0,4	0,4	0,4
гравитационное осаждение твер-						
дых частиц, Кг						
8. Эффективность применяемых	0,55	0,55	0,55	0,55	0,55	0,55
средств пылеподавления (укры-						
тие рабочей ветви ленты конвей-						
ера), η, дол. ед.						
5. Длина конвейера, L,м	90	45	20,5	110	15	50
6. Ширина ленты конвейера, В,м	0,65	0,8	1	0,65	0,8	1
7. Годовое количество часов ра-	4200	4200	4200	4200	4200	4200
боты оборудования, Т, ч						
		ЗУЛЬТАТІ		1	1	
9. Количество твердых частиц,	0,11794	0,07258	0,04133	0,14414	0,02419	0,1008
сдуваемых с поверхности кон-						
вейера без учета мероприятий:						
$\Pi_{\text{пыль}} = 3*K_0*K_1*$						
Kr*L*B*N*10 ⁻³ , r/c						
Мпыль=	4,07823	2,50968	1,42912	4,9845	0,83656	3,48566
$10.8*K_0*K_1*K_1*L*B*T*N*10^{-6}$						
т/год	0.05207	0.02266	0.01060	0.06406	0.01000	0.04526
10. Количество твердых частиц,	0,05307	0,03266	0,01860	0,06486	0,01089	0,04536
сдуваемых с поверхности кон-						
вейера с учётом мероприятий:						
$\Pi_{\text{пыль}} = 3 * K_0 * K_1 * K_{\Gamma} * L * B * N * (1 - N) * 10^{-3} \text{ m/s}$						
η)*10 ⁻³ , Γ /c	0.90244	0.40201	0.20120	0.00076	0.16460	0.60504
$M_{\text{пыль}}=$ $10.8*K_0*K_1*K_1*K_1*B*T*N*(1-$	0,80244	0,49381	0,28120	0,98076	0,16460	0,68584
10,8*K ₀ *K ₁ *KГ*L*B*1*N*(1- η)*10 ⁻⁶ , т/год						
тр. то , тлод						

Расчет выполнен на основании сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами (гл.9, расчет выбросов вредных веществ в атмосферу предприятиями по добыче угля), Алматы, 1998

Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное». Участок заливки моторно-осевых подшипников (МОП). Расчет эмиссий загрязняющих веществ в атмосферу при лужении припоем ПОС-40 на 2025-2027 г.г. Неорганизованный источник №6052

Наименование показателей	Показатели
Исходные данные	
1. Чистое время лужения в год ,t,ч	750
2.Площадь зеркала установки для лужения, S,м2	0,7
3.Удельное выделение загрязняющих веществ, q, г/с м2	
q1-свинец и его соединения	0,000110
q2- олова оксид	0,000050
Результаты	
4.Максимальный разовый выброс, г/с	
Mc=q1*S - свинец и его соединения	0,00008
Mc=q2 *S - олова оксид	0,00004
5.Валовый выброс за год, т/год	
Мгод=(q1*t*S*3600)/1000000- свинец и его соединения	0,00021
Мгод=(q2*t*S*3600)/1000000- олова оксид	0,00009

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий», (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Приложение 105

Разрез «Восточный». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Расчёт эмиссии пыли в атмосферу от погрузочно-разгрузочных работ в период с 2025 по 2027 г.г. Неорганизованный источник №6050

Наименование показателей	Разгрузка на склад рядового угля	Перевалка угля (подача в приемный бункер)		Разгрузка продуктов рассева на первичный конус		Загрузка в ж д. транспорт	
	штабеле-	штабеле-	бульдозер		вейер		огрузчик
	укладчик	укладчик		кл. 0-10 мм	кл. 10-100 мм	кл. 0-10 мм	кл. 10-100 мм
1	2	3	4	5	6	7	8
		ИСХОДНЫ	Е ДАННЫЕ				
1. Влажность угля, W, %	5	5	5	5	5	5	5
2. Коэффициент, учитывающий	1,0	1,0	1,0	1,0	1,0	1,0	1,0
влажность, $\mathbf{K_0}$							
3. Скорость ветра, V , м/с	3,4	3,4	3,4	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий	1,2	1,2	1,2	1,2	1,2	1,2	1,2
скорость ветра, K_1							
5. Уд. выделение твердых частиц с	3	3	3	3	3	3	3
тонны угля, $\mathbf{g}_{\mathbf{y}\mathbf{J},\Gamma}$ /т							
6.1 Эффективность применяемых	0,799	0	0	0,799	0,799	0	0
средств пылеподавления, η , дол. ед.							
7. Склады,хранилища							
1.Откр. с 4 сторон	1			1	1		
2.Откр. с 3 сторон			2				
3.Откр. с 2 сторон полн.							
4.Откр. с 2 сторон част.							
5.Откр. с 1 стороны		5				5	5
6.Загруз. рукав							
7.3акр. с 4 сторон							
8. Коэффициент, учитывающий	1	0,1	0,8	1	1	0,1	0,1
местные условия, степень							
защищенности узла от внешних							
воздействий $\mathbf{K_4}$							

Окончание приложения 105

1	2	3	4	5	6	7	8
9. Высота разгрузки, h , м	1,5	0,5	0,5	3,5	4	2	2
10. Коэффициент, учитывающий высоту пересыпки, \mathbf{K}_5	0,6	0,4	0,4	0,7	1,0	0,7	0,7
11. Количество перегружаемого угля, Π_{Γ} . т/год	326000	81500	244500	126000	200000	126000	200000
12. Максимальное количество перегружаемого угля, П _ч , т/ч	4400	4400	120	34	54	250	250
13. Годовое количество часов работы оборудования, T , ч	74	19	2038	3706	3704	504	800
14. Количество оборудования, N, шт	1	1	1	1	1	1	1
		РЕЗУ Л	ЬТАТЫ				
15. Количество твердых частиц, выделяющихся при перегрузках, без учета мероприятий $\mathbf{M}_{\mathbf{пыль}} = K_0 * K_1 * K_4 * K_5 * g_{yд} * \Pi_{\Gamma} * 10^{-6} * N,$ т/год	0,70416	0,01174	0,28166	0,31752	0,72000	0,03175	0,05040
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * g_{yx} * \Pi_{yx} * N/3600,$ г/с	2,64000	0,17600	0,03840	0,02380	0,05400	0,0175	0,01750
С учетом мероприятий $\mathbf{M'}_{\mathbf{пыль}} = \mathbf{M}_{\mathbf{пыль}} * (1-\eta), \mathbf{T}/\mathbf{Г}$ од	0,14154	0,01174	0,28166	0,06382	0,14472	0,03175	0,05040
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta)$, Γ/c	0,53064	0,17600	0,03840	0,00478	0,01085	0,01750	0,01750

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г.Алматы, 1996г.

Разрез «Восточный». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Расчёт эмиссий в атмосферу от сдувания пыли с поверхности ленточных конвейеров при транспортировании рядового угля и продуктов рассева в период с 2025 по 2027 г.г. Неорганизованный источник №6050

Наименование показателей	Конвейер стрелы	Конвейер подачи ря- дового угля		р подачи ов рассева
	штабелеук- ладчика	кл. 0-100 мм	кл. 0-10 мм	кл. 10- 100 мм
1. Влажность угля, W,%	5	5	5	5
2. Коэффициент, учитывающий влажность, \mathbf{K}_5	1,0	1,0	1,0	1,0
3. Удельная сдуваемость твердых частиц с 1m^2 , q , $\Gamma/\text{m}^2*\text{c}$	0,003	0,003	0,003	0,003
4. Коэффициент, учитывающий скорость обдува материала, C ₅	1,12	1,12	1,12	1,12
5. Склады,хранилища				
1.Откр. С 4 сторон				
2.Откр. с 3 сторон				
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны				
6.Загруз. рукав				
7.Закр. с 4 сторон	7	7	7	7
6. Коэффициент, учитывающий местные	0,005	0,005	0,005	0,005
условия, степень защищенности узла от				
внешних воздействий \mathbf{K}_4				
7. Коэффициент, учитывающий гравитаци-	0,4	0,4	0,4	0,4
онное осаждение твердых частиц, \mathbf{K}_{Γ}				
8. Годовое количество часов работы обору-	74	3705	3706	3704
дования, Т, ч				
9. Суммарная длина конвейеров, L, м	16	62,3	25	30
10. Ширина ленты конвейера, В, м	1,8	0,8	0,8	0,8
РЕЗУЛЬТАТЬ	ol .			
11. Количество твердых частиц, сдуваемых				
при транспортировании открытым ленточ-				
ным конвейером без учёта мероприятий:				
$\mathbf{M}_{\mathbf{пыль}} = 3.6*q*B*L*T*K_5*C_5*K_{\Gamma}*10^{-3}, \text{ т/год}$	0,01031	0,89345	0,35862	0,43011
$\Pi_{\text{пыль}} = q^* B^* L^* K_0 * C_5 * K_{\Gamma}, \Gamma/c$	0,03871	0,06698	0,02688	0,03226
С учетом мероприятий				
$M'_{\text{пыль}} = M_{\text{пыль}} * K_4, \text{ т/год}$	0,00005	0,00447	0,00179	0,00215
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * K_4, \Gamma/c$	0,00019	0,00033	0,00013	0,00016

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п

Приложение 107

Разрез «Восточный». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Расчет эмиссий пыли в атмосферу при сдувании со складов рядового угля и продуктов рассева в период с 2025 по 2027 г.г. Неорганизованный источник №6050

	Склад рядо- вого угля	Склады прод	уктов рассева
Наименование показателей	штабель	конус раз- грузочный	конус раз- грузочный
	кл. 0-100 мм	кл. 0-10 мм	кл. 10-100 мм
 Влажность угля, W,% 	5	5	5
2. Коэффициент, учитывающий влажность, K_0	1,0	1,0	1,0
3. Скорость ветра, V, м/с	3,4	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К ₁	1,2	1,2	1,2
5. Уд. выделение твердых частиц с тонны угля,	3	3	3
$\mathbf{g}_{ extsf{y} extsf{i},\Gamma}$			
6. Эффективность применяемых средств пылепо-	0	0	0
давления, η , дол. ед.			
7. Склады,хранилища	1	1	1
1.Откр. с 4 сторон			
2.Откр. с 3 сторон			
3.Откр. с 2 сторон полн.			
4.Откр. с 2 сторон част.			
5.Откр. с 1 стороны			
6.Загруз. рукав			
7.Закр. с 4 сторон			
8. Коэффициент, учитывающий местные условия,	1,0	1,0	1,0
степень защищенности узла от внешних воздейст-			
вий К ₄			
9. Коэффициент, учитывающий профиль поверх-	1,3	1,3	1,3
ности складируемого угля, K_6			
10. Площадь основания штабеля угля, $S_{\mathbf{m}}$, м ²	700	570	450
11. Количество часов работы, Т ч	8 760	8 760	8 760
РЕЗУЛЬТАТЬ	Ι		
11. Количество твердых частиц, сдуваемых с по-			
верхности открытых складов, без учета мероприя-	3,43980	2,80098	2,21130
тий:	3,43960	2,80098	2,21130
$\mathbf{M}_{\mathbf{пыль}} = 31,5 * K_0 * K_1 * K_4 * K_6 * S_{\mathbf{m}} * 10^{-4}, \text{ т/год}$			
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_6 * S_{\text{ш}} * 10^{-4} , \text{г/c}$	0,10920	0,08892	0,07020
С учетом мероприятий	3,43980	2,80098	2,21130
$\mathbf{M'}_{\mathbf{пыль}} = \mathbf{M}_{\mathbf{пыль}} * (1-\eta), \mathbf{T}/\mathbf{год}$	3,43700	2,00090	2,21130
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta)$, Γ/c	0,10920	0,08892	0,07020

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г.Алматы, 1996г.

Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчет эмиссий пыли в атмосферу при разгрузке камня из автосамосвалов в период с 2025 по 2027 г.г. Неорганизованный источник №6050

Наименование показателей	Показатели
1. Весовая доля пылевой фракции в материале, К ₁ ,%	0,02
2. Доля пыли, переходящая в аэрозоль, К2	0,01
3. Скорость ветра, V, м/с	3,4
4. Коэффициент, учитывающий скорость ветра, К ₃	1,2
5. Местные условия, склады, хранилища (число от 1 до 7) 1. Откр. с 4	
сторон	
2.Откр. с 3 сторон	2
3.Откр. с 2 сторон полн.	
4.Откр. с 2 сторон част.	
5.Откр. с 1 стороны	
6.Загруз. рукав	
7.Закр. с 4 сторон	
6. Коэффициент, учитывающий местные условия, степень защищенности	0.5
узла от внешних воздействий, К ₄	0,5
7. Влажность материала, W,%	1,0
8. Коэффициент, учитывающий влажность материала, К5	0,9
9. Коэффициент, учитывающий крупность материала, К7	0,4
10. Высота пересыпки, h, м, (средняя)	1,5
11.Коэффициент учитывающий высоту пересыпки, В'	0,6
12.Коэффициент учитывающий залповый выброс при разгрузке	0.1
автосамосвала, К9	0,1
13. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4
14. Эффективность применяемых средств пылеподавления, η , дол.ед. (орошение в забое в летнее время)	0,25
15. Количество перегружаемого щебня, Пг,т/год	280800
16. Максимальное количество перегружаемого щебня, Пч, т/ч	30
17. Годовое количество часов работы оборудования, Т, ч	250
18. Количество узлов пересыпки, N, шт	2
РЕЗУЛЬТАТЫ	1
Количество твердых частиц, выделяющихся при перегрузках без учета	
мероприятий, (в зимнее время):	0,01728
$Mcek = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * K_9 * B' * K_r * \Pi_u * N * 10^6 / 3600 *, r/c$	
Мгод= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*Kг*Пг*N*,т/год$	0,58227
Количество твердых частиц, выделяющихся при перегрузках с учетом	
пылеподавления (в летнее время):	0,01296
Mceκ= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_Γ*\Pi_η*N*10^6/3600*(1-η), Γ/c$	
Мгод= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*П_2*N*(1- \eta/2),\tau/год$	0,50948

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от "18" 04 2008года №100-п

Разрез "Восточный". Станция Восточная. РМУ. Отделение токарное. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6059

Наименование показателей	Показатели
1	2
Исходные данные	l
1. Механическая обработка без охлаждения	
Точильно-шлифовальный станок 3Б634 с диаметром круга до 400 мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т,ч	300
3. Коэффициент эффективности пылеотсасывающего агрегата, п	0,95
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
5.Удельный выброс на единицу оборудования, г/с	
Q -абразивная пыль	0,05
Q1-взвешенные вещества	0,05
Результаты	·
6.Валовый выброс за год взвещенных веществ, т/год	
M =3600*k*Q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,0108
$M1 = 3600*0,9*Q1*T*n*(1-\eta)/1000000$ -с пылеотсас. агрегатами	0,00243
7. Максимальный разовый выброс взвещенных веществ, г/с	,
П=k*Q1*n -без пылеотсасывающих агрегатов	0,01
П1=0,9*Q1*n*(1-η) -с учетом пылеотсасывающих агрегатов	0,00225
8.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*Q*T*n /1000000 -без пылеотсасывающих агрегатов	0,0108
$M1 = 3600*k*Q*T*n*(1-\eta)/1000000$ -с пылеотсас. агрегатами	0,00243
9.Максимальный разовый выброс абразивной пыли, г/с	
П=k*Q*n -без пылеотсасывающих агрегатов	0,01
П1=0,9*Q*n*(1-η) -с учетом пылеотсасывающих агрегатов	0,00225
2. Универсально-заточные станки с диаметром круга 125 мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т,ч	500
3.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
4.Удельный выброс на единицу оборудования, г/с	
Q -абразивная пыль	0,1
Q1-взвешенные вещества	0,1
РЕЗУЛЬТАТЫ	
5.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*Q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,036
6.Максимальный разовый выброс взвешенных веществ, г/с	
П=k*Q1 -без пылеотсасывающих агрегатов	0,02
7.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*Q*T*n /1000000 -без пылеотсасывающих агрегатов	0,036
8. Максимальный разовый выброс абразивной пыли, г/с	
П=k*Q -без пылеотсасывающих агрегатов	0,02
3. Механическая обработка без охлаждения	

1	2
Точильно-шлифовальный станок 787 с диаметром круга до 600 мм	
1.Количество станков,п, шт	1
2. Количество часов работы в год одного станка, Т, ч	500
4.к-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
5.Удельный выброс на единицу оборудования, г/с	
Q - абразивная пыль	0,067
Q1-взвешенные вещества	0,067
Результаты	
6.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*Q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,02412
7. Максимальный разовый выброс взвешенных веществ, г/с	
П=k*Q1*n -без пылеотсасывающих агрегатов	0,0134
8.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*Q*T*n /1000000 -без пылеотсасывающих агрегатов	0,02412
9.Максимальный разовый выброс абразивной пыли, г/с	
П=k*Q*n -без пылеотсасывающих агрегатов	0,0134
4.Отрезной станок 8725	
1.Количество станков,п, шт	1
2. Количество часов работы в год одного станка, Т, ч	1450
3.к-коэф.гравитац.оседания для взвешенных веществ	0,2
4.Удельный выброс на единицу оборудования, г/с	
Q1-взвешенных веществ	0,14
РЕЗУЛЬТАТЫ	
5.Валовый выброс за год взвешенных веществ, т/год	<u> </u>
M =3600*k*Q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,14616
6.Максимальный разовый выброс взвешенных веществ, г/с	
П=k*Q1 -без пылеотсасывающих агрегатов	0,028
5. Механическая обработка с охлаждением СОЖ	
1.Количество станков,п, шт	7
2. Количество часов работы в год одного станка, Т, ч	3750
3.Q-удельный выброс эмульсола на1кВт мощн. станка, г/с	0,000002
4. N- мощность станка, кВт	12,5
РЕЗУЛЬТАТЫ	
5.Валовый выброс эмульсола за год, т/год	
M = 3600 * Q*N*T*n / 1000000	0,00236
6.Максимальный разовый выброс эмульсола, г/с	
$\Pi=Q*N*n$	0,00018

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № $221-\theta$) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Фестивальная. ЖДЦ. УПР . Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6055

Наименование показателей	Показатели
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	75
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	150
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. За год, т/год	
М2=Вгод.1*К2/1000000	0,00014
7. Максимальный разовый выброс марганец и его соед., г/с	
M2=K2*Buac1/3600	0,00025

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө"

Разрез "Восточный". Станция Фестивальная. ЖДЦ.УЗР . Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки металла на 2025-2027 гг. Неорганизованный источник №6056

Наименование показателей	Показатели
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	30
2. Максимальный часовой расход электродов типа MP-3, Вчас1, кг	0,5
3.Количество постов, t1, ч	1
4.Количество часов работы в год всех постов, Т1, ч	60
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. За год, т/год	
М1=Вгод.1*К2/1000000	0,00005
8.Максимальный разовый выброс марганец и его соед., г/с	
П1=К2*Вчас1/3600	0,00025
Исходные данные по газовой резке	
1.Количество часов работы в год,Т1,ч	9
2. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
3.Количество часов работы в год, Т2, ч	7
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 20мм, г/с	
К5-марганец и его соединения	0,017
К7-оксид углерода	0,018
К8-диоксид азота	0,015
Результаты	
5.Валовый выброс за год,т/год	
М2=(Т1*3600*К1+Т2*3600*К5)/1000000 -марганец и его соединения	0,00046
M3=(T1*3600*K3+T2*3600*K7)/1000000 -оксид углерода	0,0011
М4=(Т1*3600*К4+Т2*3600*К8)/1000000 -диоксид азота	0,00096
6.Максимальный разовый выброс,г/с	
П2=К5 -марганец и его соединения	0,017
П3=К3-оксид углерода	0,02
П4=К4 -диоксид азота	0,018
Итого	
1.Валовый выброс за год,т/год	
М=М1+М2-марганец и его соединен.	0,00051
М=М4-азот диоксид	0,00096
М=М3 -углерод оксид	0,0011
2.Максимальный разовый выброс,г/с	
П=П2-марганец и его соед.	0,017
П=П4-азот диоксид	0,018
П=П3-углерод оксид	0,02

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө".

Приложение 112

Разрез "Восточный". Станция Фестивальная. УКС. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6057

Наименование показателей	2023-2027 гг.
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	30
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	60
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. За год, т/год	
М2=Вгод.1*К2/1000000	0,00005
7. Максимальный разовый выброс марганец и его соед., г/с	
M2=K2*Вчас1/3600	0,00025

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221- Θ ".

Разрез "Восточный". Станция Фестивальная. ЖДЦ. УСЦБ . Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6058

Наименование показателей	Показатели
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	60
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3.Количество постов, t1, ч	1
4.Количество часов работы в год всех постов, Т1, ч	120
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. за год, т/год	
М2=Вгод.1*К2/1000000	0,00011
7. Максимальный разовый выброс марганец и его соед., г/с	
M2=K2*Buac1/3600	0,00025

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Восточная. Цех буровзрывных работ. УВР. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6061

Наименование показателей	Показатели
Исходные данные	
Механическая обработка без охлаждения	
Болгарка с диаметром круга 230мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т, ч	60
3. Коэффициент эффективности пылеотсасывающего агрегата, к1	0
5.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,043
q1-взвешенные вещества	0,043
Результаты	
6.Валовый выброс за год взвешенных веществ, т/год	
M = 3600*q1*T*n /1000000 - без пылеотсасывающих агрегатов	0,00929
7. Максимальный разовый выброс взвешенных веществ, г/с	
П=q1*n -без пылеотсасывающих агрегатов	0,043
8.Валовый выброс за год абразивной пыли, т/год	
M = 3600*q*T*n /1000000 - без пылеотсасывающих агрегатов	0,00929
9.Максимальный разовый выброс абразивной пыли, г/с	
П=q*n -без пылеотсасывающих агрегатов	0,043

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ)

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ (пост №1) на 2025-2027 гг. Неорганизованный источник №6060

Наименование показателей	2023-2027 гг.
Исходные данные	
Сварочные работы электродами марки МР-4	
1.Годовой расход электродов типа МР-4, Вгод.1, кг	70
2. Максимальный часовой расход электродов типа МР-4, Вчас1, кг	0,5
3.Количество постов, t1, ч	1
4.Количество часов работы в год всех постов, Т1, ч	140
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,1
К3-фтористые газообразные соединения	0,4
Результаты	
7.Валовый выброс марганец и его соед. за год, т/год	
М2=Вгод.1*К2/1000000	0,00008
8.Валовый выброс фтористые газообр. соединен. за год, т/год	
М3=Вгод.1*К3/1000000	0,00003
10.Максимальный разовый выброс марганец и его соед., г/с	
M2=K2*Buac1/3600	0,00015
11. Максимальный разовый выброс фтористые газообр. соединен. , г/с	
П3=К3*Вчас1/3600	0,00006

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6060

Наименование показателей	Показатели
1	2
Исходные данные	•
Механическая обработка без охлаждения	
Заточной станкок с диаметром круга 400мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т, ч	800
3. Коэффициент эффективности пылеотсасывающего агрегата, k1	0,95
5.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,0475
q1-взвешенные вещества	0,0475
Результаты	
6.Валовый выброс за год взвешенных веществ, т/год	
M1 =3600*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,1368
M2 =3600*q1*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00684
7. Максимальный разовый выброс взвешенных веществ, г/с	
П1=q1*n -без пылеотсасывающих агрегатов	0,0475
П2=q1*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,00238
8.Валовый выброс за год абразивной пыли, т/год	
M3 =3600*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,1368
M4 = 3600*q*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00684
9.Максимальный разовый выброс абразивной пыли, г/с	
П3=q*n -без пылеотсасывающих агрегатов	0,0475
П4=q*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,00238
Ручная шлифовальная машина " болгарка"	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т, ч	60
3.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,043
q1-взвешенные вещества	0,043
Результаты	
4.Валовый выброс за год взвешенных веществ, т/год	
M5 = 3600*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00929
5.Максимальный разовый выброс взвешенных веществ, г/с	
П5=q1*n -без пылеотсасывающих агрегатов	0,043
6.Валовый выброс за год абразивной пыли, т/год	
M6 = 3600*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00929
7.Максимальный разовый выброс абразивной пыли, г/с	
П6=q*n -без пылеотсасывающих агрегатов	0,043
Итого	
8.Валовый выброс за год взвешенных веществ, т/год	
М=М1+М5-без пылеотсасывающих агрегатов	0,14609
М=М2- с пылеотсасывающим агрегатом	0,00684

1	2
9.Максимальный разовый выброс взвешенных веществ, г/с	
П=П1+П5-без пылеотсасывающих агрегатов	0,0905
П=П2-с пылеотсасывающим агрегатом	0,00238
10.Валовый выброс за год абразивной пыли, т/год	
М=М3+М6-без пылеотсасывающих агрегатов	1,00929
М=М4- с пылеотсасывающим агрегатом	0,00684
11 .Максимальный разовый выброс абразивной пыли, г/с	
П=П3+П6-без пылеотсасывающих агрегатов	0,0905
П=П4-с пылеотсасывающим агрегатом	0,00238

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № $221-\theta$)

Разрез "Восточный". Станция Восточная. Цех буровзрывных работ. УВР. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки металла на 2025-2027 гг. Неорганизованный источник №6061

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1,кг	50
2. Максимальный часовой расход электродов типа МР-3, В1, кг	1,2
3.Количество постов, n1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	42
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Сварочные работы электродами марки НЖ-13	
6.Годовой расход электродов типа НЖ-13, Вгод.2,кг	15
7. Максимальный часовой расход электродов типа НЖ-13, В2, кг	1
8. Количество постов, n2, шт	1
9.Количество часов работы в год всех постов, Т2, ч	15
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К3-марганец и его соединения	0,53
К4-хрома (VI) оксид	0,24
Результаты	
11.Валовый выброс за год, т/год	
М1=(Вгод1*К2+Вгод.2*К3)/1000000-марганец и его соединен.	0,0001
М2=Вгод2*К4/1000000-оксиды хрома	0,000004
12.Максимальный разовый выброс, г/с	
П1=K2*B1*n1/3600-марганец и его соед.	0,0006
П7=К4*В2*п2/3600оксиды хрома	0,00007
Исходные данные по газовой резке	
1.Количество часов работы в год,Т1,ч	40
2. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
Результаты	
5.Валовый выброс за год,т/год	
M8=(T1*3600*K1)/1000000 -марганец и его соединения	0,00014
М9=(Т1*3600*К3)/1000000 -оксид углерода	0,00288
М10=(Т1*3600*К4)/1000000 -диоксид азота	0,00259
6.Максимальный разовый выброс,г/с	
П8=К1 -марганец и его соединения	0,001
П9=К3-оксид углерода	0,02
П10=К4 -диоксид азота	0,018
Итого	
1.Валовый выброс за год,т/год	

М=М1+М8-марганец и его соединения	0,00024
М=М10 -диоксид азота	0,00259
М=М9 -оксид углерода	0,00288
М=М2-оксиды хрома	0,000004
2.Максимальный разовый выброс,г/с	
П=П1+П8-марганец и его соед.	0,0016
П=П10-диоксид азота	0,018
П=П9-оксид углерода	0,02
П=П7-оксиды хрома	0,00007

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Расчет эмиссий загрязняющих веществ в атмосферу при работе металлообрабатывающих станков на 2025-2027 гг. Неорганизованный источник №6068

Наименование показателей	Показатели
Исходные данные	
Механическая обработка без охлаждения	
Заточной станок с диаметром круга 100мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т, ч	70
3.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
4.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,0097
q1-взвешенные вещества	0,0097
Результаты	
5.Валовый выброс за год взвешенных веществ, т/год	
M = 3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00049
6.Максимальный разовый выброс взвешенных веществ, г/с	
П=k*q1*n -без пылеотсасывающих агрегатов	0,00194
7.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00049
8.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q*n -без пылеотсасывающих агрегатов	0,00194

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная. Цех буровзрывных работ.УВР. Расчет эмиссий загрязняющих веществ в атмосферу от накокрасочных работ на 2025-2027 гг. Неорганизованный источник №6061

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль НЦ-132	0,06
тф1-растворитель 646	0,03
2. Максимальный часовой расход, кг	
тм-эмаль НЦ-132	0,5
тм1-растворитель 646	0,25
3.Состав эмали НЦ-132, %	
q1-ацетон	8
q2-спирт н-бутиловый	15
q3-спирт этиловый	20
q4-бутилацетат	8
q5-этилцеллозольв	8
q6-толуол	41
fp-доля летучей части	80
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q7-ацетон	7
q8-спирт н-бутиловый	15
q9-спирт этиловый	10
q10-бутилацетат	10
q11-этилцеллозольв	8
q12-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q2+ mф1*fp1*rp2*q8)/106*(1-n) -спирт н-	
бутиловый	0,00328
M2окр.=(mф*fp*rp*q4+mф1*fp1*rp2*q10)/106*(1-n)-бутилацетат	0,00192
М3окр.=(mф*fp*rp*q1+mф1*fp1*rp2*q7)/106*(1-n)-ацетон	0,00166
М4окр.=(mф*fp*rp*q6+mф1*fp1*rp2*q12) /106*(1-n)-толуол	0,00971
М5окр.=(mф*fp*rp*q5+mф1*fp1*rp2*q11) /106*(1-n)-этилцеллозольв	0,00175
М6окр.=(mф*fp*rp*q3+mф1*fp1*rp2*q9) /106*(1-n)-спирт этиловый	0,00353
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,06048
П2=(mм1*fp1*rp2*q10)/106*3,6*(1-n)-бутилацетат	0,0252

$\Pi 3 = (m M * fp * rp * q1)/106 * 3,6 * (1-n)$ -ацетон	0,03226
П4=(mм1*fp1*rp2*q12)/106*3,6*(1-n)-толуол	0,126
П5=(mм*fp*rp*q5)/106*3,6*(1-n)-этилцеллозольв	0,03226
$\Pi 6 = (m_{\text{M}} * fp * rp * q2)/106 * 3,6 * (1-n)$ -спирт этиловый	0,06048
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q2 +mф1*fp1*rp3*q8)/106*(1-n)-спирт н-бутиловый	0,00842
M2c=(mф*fp*rp1*q4+mф1*fp1*rp3*q10)/106*(1-n)-бутилацетат	0,00492
$M3c = (m\phi * fp * rp1 * q1 + m\phi1 * fp1 * rp3 * q7)/106 * (1-n)$ -ацетон	0,00428
M4c=(mф*fp*rp1*q6+mф1*fp1*rp3*q12) /106*(1-n)-толуол	0,02497
M5c=(mф*fp*rp1*q5+mф1*fp1*rp3*q11)/106*(1-n)-этилцеллозольв	0,00449
М6c=(mф*fp*rp1*q3+mф1*fp1*rp3*q9)/106*(1-n)-спирт этиловый	0,00907
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
$\Pi 1 = (m \text{м}/24 \text{ fp*rp1*q2})/106 \text{*}3,6 \text{*}(1-\text{n})$ -спирт н-бутиловый	0,00648
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q610/106 * 3,6 * (1-n) - бутилацетат$	0,0027
$\Pi 3 = (m M/24 * fp * rp1 * q1)/106 * 3,6 * (1-n)$ -ацетон	0,00346
$\Pi 4 = (m M 1/24 * fp1 * rp3 * q12)/106 * 3,6 * (1-n)$ -толуол	0,0135
$\Pi 5 = (m M/24 * fp * rp 1 * q5)/106 * 3,6 * (1-n) - этилцеллозольв$	0,00346
$\Pi 6 = (m M 1/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n)$ -спирт этиловый	0,00648
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,0117
М2=М2окр.+М2с-бутилацетат	0,00684
М3=М3окр.+М3с-ацетон	0,00594
М4=М4окр.+М4с)-толуол	0,03468
М5=М5окр.+М5с-этилцеллозольв	0,00624
М6=М6окр.+М6с-спирт этиловый	0,0126

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция Восточная.Цех буровзрывных работ. УБР. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резки на 2025-2027 гг. Неорганизованный источник №6063

Наименование показателей	Показатели
1	2
Исходные данные	•
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1,кг	170
2. Максимальный часовой расход электродов типа МР-3, В1, кг	1
3.Количество постов, n1, шт	4
4.Количество часов работы в год всех постов, Т1, ч	170
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Сварочные работы электродами марки УОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	330
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	1
8.Количество постов, n2, шт.	4
9.Количество часов работы в год всех постов, Т2, ч	330
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	1,09
К6-кремния диоксид	1
К7-фториды)	1
К8-фтористые газообр.соед.	1,26
К9-оксиды азота	2,7
К10-оксид углерода	13,3
Сварочные работы электродами марки НЖ-13	•
11.Годовой расход электродов типа НЖ-13, Вгод.3,кг	12
12. Максимальный часовой расход электродов типа НЖ-13, В3, кг	1
13.Количество постов, n3, шт	4
14.Количество часов работы в год всех постов, Т3, ч	12
15. Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	0,53
К12-хрома (VI) оксид	0,24
Результаты	
16.Валовый выброс за год, т/год	
М1=(Вгод1*К2+Вгод.2*К5+Вгод.3*К11)/1000000-марганец и его соединен.	0,00067
М2=(Вгод2*К8)/1000000 -фтористые газообр. Соед.	0,00042
М3=(Вгод2*К6)/1000000 -кремния диоксид	0,00033
М4=Вгод.2*К7/1000000 -фториды	0,00033
М5=Вгод.2*К9/1000000-оксиды азота	0,00089
М6=Вгод.2*К10/1000000-оксид углерода	0,00439
М7=Вгод3*К12/1000000-оксиды хрома	0,000003
17.Максимальный разовый выброс, г/с	
П1=K2*B1*n1/3600-марганец и его соед.	0,002
П2=К8*В2*n2/3600-фтористые газообр. Соединен.	0,0014
П3=K6*B2*n2/3600-кремния диоксид	0,00111
П4=K7*B2*n2/3600-фториды	0,00111
П5=K10*B2*n2/3600- оксид углерода	0,01478

1	2
П6=К9*В2*n2/3600оксиды азота	0,003
П7=К12*В3*n3/3600оксиды хрома	0,00027
Исходные данные по газовой резке	
1.Количество часов работы в год, Т1, ч	510
2. Количество постов, п, шт.	8
3. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
4.Количество часов работы в год, Т2, ч	400
5.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 20мм, г/с	
2. Количество постов,п,шт.	8
К5-марганец и его соединения	0,017
К7-оксид углерода	0,018
К8-диоксид азота	0,015
Результаты	
5.Валовый выброс за год,т/год	
М8=(Т1*3600*К1+Т2*3600*К5)/1000000 -марганец и его соединения	0,02632
М9=(Т1*3600*К3+Т2*3600*К7)/1000000 -оксид углерода	0,06264
М10=(Т1*3600*К4+Т2*3600*К8)/1000000 -диоксид азота	0,05465
6.Максимальный разовый выброс,г/с	
П8=К5*n -марганец и его соединения	0,136
П9=K3*n-оксид углерода	0,16
П10=K4*n -диоксид азота	0,144
Итого	
1.Валовый выброс за год,т/год	
М=М1+М8-марганец и его соединения	0,02699
М=М2-фтористые газообр. Соед.	0,00042
М=М3-кремния диоксид	0,00033
М=М4 -фториды	0,00033
М=М10 -диоксид азота	0,05465
М=М9 -оксид углерода	0,06264
М=М7-оксиды хрома	0,000003
2.Максимальный разовый выброс,г/с	
П=П8-марганец и его соед.	0,136
П=П2-фтористые газообр. Соединен.	0,0014
П=П3-кремния диоксид	0,00111
П=П4-фториды	0,00111
П=П10-диоксид азота	0,144
П=П9-оксид углерода	0,16
П=П7-оксиды хрома	0,00027

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221- Θ ".

Разрез "Восточный". Ст. Восточная. Добычной цех. УВиПЭП (участок водоотлива и профилактики эндогенных пожаров). Передвижные сварочные посты. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6064

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	
1.Годовой расход электродов типа НИИ48Г, Вгод.1,кг	130
2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	0,5
3. Количество постов, n1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	260
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	,
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	320
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	0,5
8. Количество постов, n2, шт.	1
9.Количество часов работы в год всех постов, Т2, ч	640
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К6-марганец и его соединения	1,09
К7-кремния диоксид	1
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	
11.Годовой расход электродов Комсомолец-100, Вгод.3, кг	5
12. Максимальный часовой расход электродов Комсомолец-100, В3, кг	0,5
13.Количество постов, n3, шт.	1
14.Количество часов работы в год всех постов, Т3, ч	10
15.Удельное выделение загрязняющих веществ при сварке, г/кг	0.27
К13-марганец и его соединения	0,27
К15-медь (II) оксид	9,8
К16-фтористые газообр.соед.	1,11
К17-диоксид азота Сварочные работы электродами марки Т-590	0,76
16.Годовой расход электродов типа Т-590, Вгод.4, кг	30
17. Максимальный часовой расход электродов типа Т- 590, В10д.4, кг	0,5
17. Максимальный часовой расход электродов гипа 1- 390, В4, кг 18.Количество постов, п4, шт.	1
19.Количество часов работы в год всех постов, Т4, ч	60
20. Удельное выделение загрязняющих веществ при сварке, г/кг	00
20.3 дольное выделение загрязняющих вещеетв при сварке, 1/кг	I

Продолжение приложения 121

1	2
К18-никель оксиды	6,05
К19-хрома (VI) оксид	3,7
Сварочные работы электродами марки УОНИ-13/65	
21.Годовой расход электродов типа УОНИ-13/65, Вгод.5, кг	10
22. Максимальный часовой расход электродов типа УОНИ-13/65, В5, кг	0,5
23.Количество постов, n5, шт.	1
24. Количество часов работы в год всех постов, Т5, ч	20
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К21-марганец и его соединения	1,41
К22-кремния диоксид	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	,
26.Годовой расход электродов типа НЖ-13, Вгод.6,кг	50
27. Максимальный часовой расход электродов типа НЖ-13, В6, кг	0,5
28. Количество постов, п6, шт	1
29. Количество часов работы в год всех постов, Т6, ч	100
30. Удельное выделение загрязняющих веществ при сварке, г/кг	100
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Сварочные работы электродами марки МНЧ-2	,
31.Годовой расход электродов МНЧ-2, Вгод.7, кг	5
32. Максимальный часовой расход электродов МЧН-2, В7, кг	0,5
33. Количество постов, n7, шт.	1
34. Количество часов работы в год всех постов, Т7, ч	10
35.Удельное выделение загрязняющих веществ при сварке, г/кг	
К30-марганец и его соединения	0,92
К33-фтористые газообр.соед.	1,34
К35-никель оксид	2,73
Сварочные работы электродами марки МР-4	
36.Годовой расход электродов типа МР-4, Вгод.8, кг	8
37. Максимальный часовой расход электродов типа МР-4, Вчас8, кг	0,5
38.Количество постов, t8, ч	1
39. Количество часов работы в год всех постов, Т8, ч	16
40. Удельное выделение загрязняющих веществ при сварке, г/кг	
К37-марганец и его соединения	1,1
К38-фтористые газообразные соединения	0,4
Сварочные работы электродами марки ЭА-395/9	·
41.Годовой расход электродов типа ЭА-395/9, Вгод.9, кг	5
42. Максимальный часовой расход электродов типа ЭА-395/9, Вчас9, кг	0,5
43.Количество постов, t9, ч	2
44. Количество часов работы в год всех постов, Т9, ч	10
45.Удельное выделение загрязняющих веществ при сварке, г/кг	

Продолжение приложения 121

1	2
К40-марганец и его соединения	1,1
К41хрома (VI) оксид	0,43
Сварочные работы электродами марки УОНИ-13/45	0,15
46. Годовой расход электродов типа УОНИ-13/45, Вгод. 10, кг	5
47. Максимальный часовой расход электродов типа УОНИ-13/45,	
Вчас10, кг	0,5
48.Количество постов, n10, шт.	1
49. Количество часов работы в год всех постов, Т10, ч	10
50.Удельное выделение загрязняющих веществ при сварке, г/кг	
К45-марганец и его соединения	0,51
К46-кремния диоксид	1,4
К47-фториды	1,4
К48-фтористые газообр.соед.	1
Результаты	
51.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К13+Вгод.5*К21+Вгод.6*К26+Вгод.	
7*К30+Вгод.8*К37+Вгод.9*К40+Вгод.10*К45)/1000000-марганец и его	
соединен.	0,0006
М3=(Вгод.1*К4+Вгод2*К9+Вгод.3*К16+Вгод.5*К24+Вгод6*К28+Вгод.7	
*К33+Вгод.8*К38+Вгод.10*К48)/1000000 -фтористые газообр. соед.	0,00045
М4=(Вгод2*К7+Вгод5*К22+Вгод.10*К46)/1000000 -кремния диоксид	0,00034
М5=(Вгод.2*К8+Вгод.5*К23+Вгод.10*К47)/1000000 -фториды	0,00034
М6=(Вгод.2*К10+Вгод.3*К17)/1000000 -диоксид азота	0,00087
М7=(Вгод.2*К11)/1000000 -оксид углерода	0,00426
M8=(Вгод.3*К15)/1000000 -медь (II) оксид	0,00005
M9=(Вгод.1*К17+Вгод.4*К19+Вгод.6*К27+Вгод.9*К41)/1000000 - хрома	0.00010
(VI) оксид	0,00018
М10=(Вгод.7*К35+К18*вгод4)/1000000 -никель оксид	0,0002
52. Максимально-разовый выброс, г/с	
П2=К2*В1/3600-марганец и его соед.	0,0002
П3=К33*В7/3600-фтористые газообр. Соединен.	0,00019
П4=К46*В10/3600-кремния диоксид	0,00019
П5=К47*В10/3600-фториды	0,00194
П6=К210*В2/3600-диоксид азота	0,00038
П7=К11*В2/3600-оксид углерода	0,00185
П8=К15*В3/3600-медь (II) оксид	0,00136
П9=К19*В4/3600- хрома (VI) оксид	0,00051
П10=К46*В10/3600-никель оксид	0,00019
Исходные данные по газовой резке	
1.Количество часов работы в год,Т1,ч	4000
2.Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К21-марганец и его соединения	0,017

1	2
К22-оксид углерода	0,018
К23-диоксид азота	0,015
Результаты	
3.Валовый выброс за год,т/год	
М1=Т1*3600*К1/1000000 -марганец и его соединения	0,2448
M3=T1*3600*K3/1000000 -оксид углерода	0,2592
М4=(Т1*3600*К4/1000000 -диоксид азота	0,216
4.Максимальный разовый выброс,г/с	
П1=К1 -марганец и его соединения	0,017
П11=К3 -оксид углерода	0,018
П12=К4 -диоксид азота	0,015
Итого	
1.Валовый выброс за год, т/год	
M=M2+M1-марганец и его соединен.	0,2454
М=М3 -фтористые газообр. соед.	0,00045
M=M4 -пыль неоргSiO2	0,00034
М=М5 -фториды	0,00034
М=М6+М4 -диоксид азота	0,21687
М=М7+М3 -оксид углерода	0,26346
М=М8 -медь (II) оксид	0,00005
M= M9- хрома (VI) оксид	0,00018
М=М10 -никель оксид	0,0002
52. Максимально-разовый выброс, г/с	
П=П2+П1-марганец и его соед.	0,0172
П=П3-фтористые газообр. Соединен.	0,00019
П=П4-пыль неоргSiO2	0,00019
П=П5-фториды	0,00194
П=П6+П12-диоксид азота	0,01538
П=П7+П11-оксид углерода	0,01985
П=П8-медь (II) оксид	0,00136
П=П9- хрома (VI) оксид	0,00051
П=П10-никель оксид	0,00019

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Ст. Восточная. Добычной цех. УВПЭП (участок водоотлива и профилактики эндогенных пожаров). Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 гг. Неорганизованный источник №6064

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,15
тф1-лак БТ-577	0,0075
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	0,5
тм1-лак БТ-577	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
п-степень очистки воздуха	0
4.Состав лака БТ-577, %	
q3-ксилол	57,4
q4-уайт-спирит	42,6
fp1-доля летучей части	63
гр1-доля растворителя в ЛКМпри окраске	28
	0
Результаты	
5. Валовый выброс летучих веществ при окраске, т/год	
М1окр.=(mф*fp*rp*q1+mф1*fp1*rp1*q3)/106*(1-n)-ксилол	0,01021
M2окр.=(mф*fp*rp*q2+mф1*fp1*rp1*q4)/106*(1-n)-уайт-спирит	0,01001
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
$\Pi1=(m_{1}+m_{1}$	0,29566
Π 2=(mм*fp*rp*q2+mм1*fp1*rp1*q4)/106*3,6*(1-n)-уайт-спирит	0,24866

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)",РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. Вскрышной цех. Участок отвальных работ (УОР). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ при текущем обслуживании экскаваторов на 2025-2027 гг. Неорганизованный источник N = 6065

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	
1.Годовой расход электродов типа НИИ48Г, Вгод.1,кг	700
2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	1
3.Количество постов, n1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	700
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	2150
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	1
8. Количество постов, n2, шт.	1
9.Количество часов работы в год всех постов, Т2, ч	2150
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К6-марганец и его соединения	1,09
К7-кремния диоксид	1
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	
11.Годовой расход электродов Комсомолец-100, Вгод.3, кг	3
12. Максимальный часовой расход электродов Комсомолец-100, В3, кг	1
13.Количество постов, n3, шт.	1
14. Количество часов работы в год всех постов, Т3, ч	3
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К13-марганец и его соединения	0,27
К15-медь (II) оксид	9,8
К16-фтористые газообр.соед.	1,11
К17-диоксид азота	0,76
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.4, кг	35
17. Максимальный часовой расход электродов типа Т- 590, В4, кг	1
18.Количество постов, п4, шт.	1
19.Количество часов работы в год всех постов, Т4, ч	35
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К18-никель оксиды	6,05
К19-хрома (VI) оксид	3,7

Продолжение приложения 123

1	2
1	2
Сварочные работы электродами марки УОНИ-13/65	
21.Годовой расход электродов типа УОНИ-13/65, Вгод.5, кг	2
22. Максимальный часовой расход электродов типа УОНИ-13/65, В5, кг	1
23.Количество постов, n5, шт.	1
24. Количество часов работы в год всех постов, Т5, ч	2
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К21-марганец и его соединения	1,41
К22-кремния диоксид	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	
26.Годовой расход электродов типа НЖ-13, Вгод.6,кг	500
27. Максимальный часовой расход электродов типа НЖ-13, В6, кг	1
28.Количество постов, n6, шт	1
29. Количество часов работы в год всех постов, Т6, ч	500
30.Удельное выделение загрязняющих веществ при сварке, г/кг	
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Сварочные работы электродами марки ЦУ-5	,
31.Годовой расход электродов ЦУ-5, Вгод.7, кг	15
32. Максимальный часовой расход электродов ЦУ-5, В7, кг	1
33.Количество постов, n7, шт.	1
34. Количество часов работы в год всех постов, Т7, ч	15
35.Удельное выделение загрязняющих веществ при сварке, г/кг	
К30-марганец и его соединения	0,92
К33-фтористые газообр.соед.	1,34
К35-никель оксид	2,73
Сварочные работы электродами марки МР-3	
36.Годовой расход электродов типа МР-3, Вгод.8, кг	240
37. Максимальный часовой расход электродов типа МР-3, Вчас8, кг	1
38.Количество постов, t8, ч	1
39.Количество часов работы в год всех постов, Т8, ч	240
40.Удельное выделение загрязняющих веществ при сварке, г/кг	210
К37-марганец и его соединения	1,8
К38-фтористые газообразные соединения	0
Сварочные работы электродами марки ЭА-395/9 (ЦУ-5)	0
41.Годовой расход электродами марки ЭА-395/9, Вгод.9, кг	5
42. Максимальный часовой расход электродов типа ЭА-395/9, Вгод. 9, кг	1
42. Максимальный часовой расход электродов типа ЭА-393/9, вчас9, кг 43.Количество постов, t9, ч	<u>1</u> 1
44.Количество постов, 19, ч	5
	J
45.Удельное выделение загрязняющих веществ при сварке, г/кг	1 1
К40-марганец и его соединения	1,1
К41хрома (VI) оксид	0,43
Сварочные работы электродами марки УОНИ-13/45	~
46.Годовой расход электродов типа УОНИ-13/45, Вгод.10, кг	5

Продолжение приложения 123

1	2
47. Максимальный часовой расход электродов типа УОНИ-13/45,	<u> </u>
Вчас10, кг	1
48.Количество постов, n10, шт.	1 1
49.Количество часов работы в год всех постов, Т10, ч	5
50.Удельное выделение загрязняющих веществ при сварке, г/кг	
К45-марганец и его соединения	0,51
К46-кремния диоксид	1,4
К47-фториды	1,4
К48-фтористые газообр.соед.	1
Результаты	
51.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К13+Вгод.5*К21+Вгод.6*К26+Вгод.	
7*К30+Вгод.8*К37+Вгод.9*К40+Вгод.10*К45)/1000000-марганец и его	
соединен.	0,00405
М3=(Вгод.1*К4+Вгод2*К9+Вгод.3*К16+Вгод.5*К24+Вгод6*К28+Вгод.7	
*К33+Вгод.8*К38+Вгод.10*К48)/1000000 -фтористые газообр. соед.	0,00281
М4=(Вгод2*К7+Вгод5*К22+Вгод.10*К46)/1000000 -кремния диоксид	0,00216
М5=(Вгод.2*К8+Вгод.5*К23+Вгод.10*К47)/1000000 -фториды	0,00216
М6=(Вгод.2*К10+Вгод.3*К17)/1000000 -диоксид азота	0,00581
М7=(Вгод.2*К11)/1000000 -оксид углерода	0,0286
М8=(Вгод.3*К15)/1000000 -медь (II) оксид	0,00003
M9=(Вгод.1*К17+Вгод.4*К19+Вгод.6*К27+Вгод.9*К41)/1000000 - хрома	0.00057
(VI) оксид	0,00057
M10=(Вгод.7*К35+К18*вгод4)/1000000 -никель оксид	0,00025
52. Максимально-разовый выброс, г/с	0.00020
П2=K2*B1/3600-марганец и его соед.	0,00039
П3=К33*В7/3600-фтористые газообр. Соединен. П4=К46*В10/3600-кремния диоксид	0,00037
П5=К47*В10/3600-фториды	0,00039
П6=К210*В2/3600-диоксид азота	0,00134
П7=К11*В2/3600-оксид углерода	0,00369
П8=К15*В3/3600-медь (II) оксид	0,00272
П9=К19*В4/3600- хрома (VI) оксид	0,00103
П10=К46*В10/3600-никель оксид	0,00039
Исходные данные по газовой резке	
1.Количество часов работы в год, Т1, ч	900
2. Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К21-марганец и его соединения	0,017
К22-оксид углерода	0,018
К23-диоксид азота	0,015
Результаты	
3.Валовый выброс за год,т/год	
М1=Т1*3600*К1/1000000 -марганец и его соединения	0,05508
М3=Т1*3600*К3/1000000 -оксид углерода	0,05832
М4=(Т1*3600*К4/1000000 -диоксид азота	0,0486

1	2
4.Максимальный разовый выброс,г/с	
П1=К1 -марганец и его соединения	0,017
П11=К3 -оксид углерода	0,018
П12=К4 -диоксид азота	0,015
Итого	
1.Валовый выброс за год, т/год	
М=М2+М1-марганец и его соединен.	0,05913
М=М3 -фтористые газообр. соед.	0,00281
М=М4 -кремния диоксид	0,00216
М=М5 -фториды	0,00216
М=М6+М4 -диоксид азота	0,05441
М=М7+М3 -оксид углерода	0,08692
М=М8 -медь (II) оксид	0,00003
М= М9- хрома (VI) оксид	0,00057
М=М10 -никель оксид	0,00025
52. Максимально-разовый выброс, г/с	
П=П2+П1-марганец и его соед.	0,01739
П=П3-фтористые газообр. Соединен.	0,00037
П=П4-кремния диоксид	0,00039
П=П5-фториды	0,00194
П=П6+П12-диоксид азота	0,01575
П=П7+П11-оксид углерода	0,02169
П=П8-медь (II) оксид	0,00272
П=П9- хрома (VI) оксид	0,00103
П=П10-никель оксид	0,00039

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө".

Разрез "Восточный". Станция Фестивальная. УЭС. Ремонт и обслуживание систем электроснабжения. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки на 2025-2027 гг. Неорганизованный источник №6079

Наименование показателей	Показатели
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	130
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	260
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. за год, т/год	
М1=Вгод.1*К1/1000000	0,00023
7. Максимальный разовый выброс марганец и его соед., г/с	
П1=К1*Вчас1/3600	0,00025
Исходные данные по газовой резке	
8.Количество часов работы в год,Т2,ч	125
9.Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К2-марганец и его соединения	0,017
К3-оксид углерода	0,018
К4-диоксид азота	0,015
Результаты	
10.Валовый выброс за год,т/год	
М2=Т2*3600*К2/1000000 -марганец и его соединения	0,00765
М3=Т2*3600*К3/1000000 -оксид углерода	0,0081
М4=(Т2*3600*К4/1000000 -диоксид азота	0,00675
11.Максимальный разовый выброс,г/с	
П2=К2 -марганец и его соединения	0,017
П3=К3 -оксид углерода	0,018
П4=К4 -диоксид азота	0,015
Итого	
12.Валовый выброс за год,т/год	
М=М1+М2-марганец и его соединен.	0,00788
М=М3 -углерод оксид	0,0081
М=М4 -диоксид азота	0,00675
13.Максимальный разовый выброс,г/с	
П=П2-марганец и его соед.	0,017
П=П4-азот диоксид	0,015
П=П3-углерод оксид	0,018

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6071

Наименование показателей	Показатели	
1	2	
Исходные данные		
1.Годовой расход электродов типа МР-3, Вгод.1, кг	65	
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	1	
3.Количество постов, t1, ч	2	
4. Количество часов работы в год всех постов, Т1, ч	65	
5.Удельное выделение загрязняющих веществ при сварке, г/кг		
К2-марганец и его соединения	1,8	
Сварочные работы электродами марки УОНИ 13/55		
6.Годовой расход электродов типа УОНИ 13/55, Вгод.2, кг	125	
7. Максимальный часовой расход электродов типа УОНИ 13/55, В2, кг	1	
8.Количество постов, t2, ч	2	
9.Количество часов работы в год всех постов, Т2, ч	125	
10. Удельное выделение загрязняющих веществ при сварке, г/кг		
К5-марганец и его соединения	1,09	
К6-кремния диоксид	1	
К7-фториды	1,4	
К8-фтористыегазообразные соединения	1,26	
К9-азот диоксид	2,7	
К10-углерод оксид	13,3	
Результаты		
11.Валовый выброс за год, т/год		
М2=(Вгод.1*К2+Вгод.2*К5)/1000000-марганец и его соединен.	0,00025	
М3=(Вгод.2*К8)/1000000 -фтористые газообр. Соед.	0,00016	
М4=(Вгод.2*К6)/1000000 -кремния диоксид	0,00013	
М5=(Вгод.2*К7)/1000000 -фториды	0,00018	
М6=Вгод.2*К9/1000000 -азот диоксид	0,00034	
М7=Вгод.2*К10/1000000 -углерод оксид	0,00166	
12.Максимальный разовый выброс, г/с		
П2=(К2*В1+К5*В2)/3600-марганец и его соед.	0,00135	
П3=(К8*В2)/3600-фтористые газообр. соединен.	0,00035	
П4=(К6*В2)/3600)-кремния диоксид	0,00028	
П5=(К7*В2)/3600)-фториды	0,00039	
П6=К9*В2/3600-азот диоксид	0,00075	
П7=К10*В2/3600-углерод оксид	0,00369	
Исходные данные по газовой резке		
13.Количество часов работы в год,Т1,ч	60	
10.Удельное выделение загрязняющих веществ при газовой резке стали		
углеродистой толщиной 20мм, г/с		
К1-марганец и его соединения	0,017	
К2-оксид углерода	0,018	
К3-диоксид азота	0,015	

1	2	
Результаты		
14.Валовый выброс за год,т/год		
М8=Т1*3600*К1/1000000 -марганец и его соединения	0,00367	
М9=Т1*3600*К3/1000000 -оксид углерода	0,00389	
М10=(Т1*3600*К4/1000000 -диоксид азота	0,00324	
15.Максимальный разовый выброс,г/с		
П8=К1 -марганец и его соединения	0,017	
П9=К3 -оксид углерода	0,018	
П10=К4 -диоксид азота	0,015	
Итого	·	
13.Валовый выброс за год,т/год		
М=М2+М8-марганец и его соединен.	0,00392	
М=М3 -фтористый газообр. Соед.	0,00016	
М=М6+М10 -азот диоксид	0,00358	
М=М7+М9 -углерод оксид	0,00555	
М=M4 -пыль неоргSiO2	0,00013	
М=М5 -фториды	0,00018	
14.Максимальный разовый выброс,г/с		
П=П2+П8-марганец и его соед.	0,01835	
П=П3-фтористые газообр. Соедин.	0,00035	
П=П6+П10-азот диоксид	0,01575	
П=П7+П9-углерод оксид	0,02169	
П=П4-пыль неоргSiO2	0,00028	
П=П5-фториды	0,00039	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө".

Разрез «Восточный». Весодозировочный комплекс на ст. Восточная. Расчёт выбросов пыли в атмосферу на весодозировочном пункте №1 от дозирования угля в период 2025-2027 г.г. Неорганизованный источник №6072

Наименование показателей	Перегрузка	Сдувы со штабеля
	кран жд. , грейф.ЕДК- 80	штабель угля
1	2	3
1. Влажность угля, W,%	5	5
2. Коэффициент, учитывающий влажность, Ко	1	1
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, K ₁	1,2	1,2
5. Уд. выделение твердых частиц с тонны угля, $g_{vд}$ г/т	3	3
6.1 Эффективность применяемых средств пылеподавления,	0	0
η _{1,} дол. ед.		
7. Склады,хранилища	1	1
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		
6.Загруз. рукав		
7.3акр. с 4 сторон		
8. Коэффициент, учитывающий местные условия, степень	1	1
защищенности узла от внешних воздействий К ₄		
9. Высота пересыпки, h, м	1	0
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,5	0
11. Количество перегружаемого угля, Пг. т/год	70000	0
12. Максимальное количество перегружаемого угля, Пч, т/ч	40	0
13. Годовое количество часов работы оборудования, Т, ч	1750	8760
16. Количество оборудования, N, шт	1	0
17. Коэффициент, учитывающий профиль поверхности	0	1,3
складируемого угля, К ₆		Í
18. Площадь основания штабеля угля, S_{m} , M^{2}	0	850
19. Коэффициент, учитывающий гравитационное осаждение	0,4	0,4
твердых частиц, Кг		
РЕЗУЛЬТАТЫ	•	
20. Количество твердых частиц, сдуваемых с поверхности		1,67076
открытых складов, без учета мероприятий		
$M_{\text{пыль}} = 31.5 \text{*} \text{K}_0 \text{*} \text{K}_1 \text{*} \text{K}_4 \text{*} \text{K}_6 \text{*} \text{K}_{\Gamma} \text{*} \text{S}_{\text{II}} \text{*} 10^{-4}, \text{т/год}$	-	
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_6 * K_{\Gamma} * S_{\text{III}} * 10^{-4}, \Gamma/c$		0,05304
С учетом мероприятий		1,67076
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta_1), \text{т/год}$		
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1), \Gamma/c$		0,05304

1	2	3
21. Количество твердых частиц, выделяющихся при	0,05040	
перегрузках, без учета мероприятий		
$M_{\text{пыль}} = K_{0*}K_{1}*K_{4}*K_{5}*g_{y,\pi}*K_{\Gamma}*\Pi_{\Gamma}*10^{-6}*N, \text{ т/год}$		-
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{\text{уд}} * \Pi_{\text{ч}} * N/3600, \Gamma/c$	0,00800	-

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Приложение 127

Разрез «Восточный». Весодозировочный комплекс на ст. Восточная. Расчёт объёмов эмиссий пыли в атмосферу на весодозировочном пункте №1 от дозирования щебня в период 2025-2027 г.г. Неорганизованный источник №6072

	Перегрузка	Сдувы со
Наименование показателей		штабеля
	кран жд. , грейф.ЕДК-80	штабель угля
1. Весовая доля пылевой фракции в материале, К ₁ ,%	0,03	0,03
2. Доля пыли, переходящая в аэрозоль, K ₂	0,015	0,015
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, K ₃		1,2
5. Местные условия, склады, хранилища (число от 1 до 7)	1,2	1,2
1.Откр. с 4 сторон	1	
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		5
6.Загруз. рукав		
7.Закр. с 4 сторон		
6. Коэффициент, учитывающий местные условия, степень	1,0	0,1
защищенности узла от внешних воздействий К ₄	1,0	0,1
7. Влажность материала, W,%	1,0	1,0
8. Коэффициент, учитывающий влажность материала, К ₅	0,9	0,9
9. Коэффициент, учитывающий профиль поверхности	0	1,3
складируемого материала, K_6		_,_
10. Коэффициент, учитывающий крупность материала, К7	0,5	0,5
11. Высота пересыпки, h, м	1,0	0
12.Коэффициент учитывающий высоту пересыпки,К ₈	0,5	0
13. Количество перегружаемого щебня, Пг. т/год	5060	0
14. Максимальное количество перегружаемого щебня, Пч, т/ч	47	0
15. Годовое количество часов работы оборудования, Т, ч	110	8760
16. Количество оборудования (штабелей), N, шт	1	3
17.Унос пыли с 1м ² фактической поверхности, q',г/м ² *c	0	0,002
18. Площадь основания штабеля, S _ш , м ²	0	41,8
19. Коэффициент, учитывающий гравитационное осаждение	0,4	0,4
твердых частиц, Кг		,
РЕЗУЛЬТАТЫ		
20. Количество твердых частиц, сдуваемых с поверхности		
открытых складов,		
$\Pi_{\text{пыль}} = K_3 * K_4 * K_5 * K_6 * K_7 * K_r * q^{\prime} * S_{\text{III}} * N , \Gamma/c$	-	0,00704
$M_{\text{пыль}} = \Pi_{\text{пыль}} *T * 3600/10^6$, т/год	-	0,22201
21. Количество твердых частиц, выделяющихся при перегрузках,		
$\Pi_{\text{пыль}} = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * K_8 * K_{\Gamma} * \Pi_{\Pi} * N * 10^6 / 3600, \ \Gamma/c$	0,63450	-
$M_{\text{пыль}} = \Pi_{\text{пыль}} *T * 3600/10^6$, т/год	0,25126	-

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008года №100-п

Приложение 128

Разрез «Восточный». Весодозировочный комплекс на ст. Восточная. Расчёт объёмов эмиссий пыли в атмосферу на весодозировочном пункте №2 от дозирования угля в период 2025-2027 г.г. Неорганизованный источник №6073

Наименование показателей	Перегрузка. Экскаватор	Сдувы со штабеля угля
	ЕТ-25	штаоеля угля
1. Влажность угля, W,%	5	5
2. Коэффициент, учитывающий влажность, Ко	1	1
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, K ₁	1,2	1,2
5. Уд. выделение твердых частиц с тонны угля, $g_{vд.} \Gamma/T$	3	3
6.1 Эффективность применяемых средств пылеподавления,	0	0
η ₁ , дол. ед.		
7. Склады,хранилища	1	1
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		
6.Загруз. рукав		
7.Закр. с 4 сторон		
8. Коэффициент, учитывающий местные условия, степень	1	1
защищенности узла от внешних воздействий К ₄		
9. Высота пересыпки, h, м	1	0
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,5	0
11. Количество перегружаемого угля, Пг. т/год	70 000	0
12. Максимальное количество перегружаемого угля, Пч, т/ч	60	0
13. Годовое количество часов работы оборудования, Т, ч	1167	8760
16. Количество оборудования, N, шт	1	0
17. Коэффициент, учитывающий профиль поверхности	0	1,3
складируемого угля, К ₆		,
18. Площадь основания штабеля угля, S _ш , м ²	0	250
19. Коэффициент, учитывающий гравитационное осаждение	0,4	0,4
твердых частиц, Кг	,	
РЕЗУЛЬТАТЫ	-1	•
20. Количество твердых частиц, сдуваемых с поверхности		
открытых складов, без учета мероприятий		
$M_{\text{пыль}} = 31,5*K_0*K_1*K_4*K_6*K_r*S_{\text{ш}}*10^{-4}, \text{т/год}$	-	0,49140
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_6 * K_r * S_{\text{III}} * 10^{-4}, \Gamma/c$	-	0,01560
С учетом мероприятий		0,49140
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{т/год}$		
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1), \Gamma/c$		0,01560
21. Количество твердых частиц, выделяющихся при перегрузках,	0,05040	
без учета мероприятий		
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{VZ} * \Pi_{\Gamma} * 10^{-6} * N, \text{ т/год}$		_
$\Pi_{\Pi \text{BLI} \text{Ib}} = K_0 * K_1 * K_4 * K_5 * K_\Gamma * \Pi_\Gamma * g_{\text{VA}} * \Pi_{\text{H}} * \text{N}/3600, \Gamma/c$	0,01200	-

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Разрез "Восточный". Станция Восточная. Добычной цех. Участок технологического комплекса разреза (УТКР). Расчет выбросов вредных веществ при проведении сварочных работ и резке металла на 2025-2027 гг. Неорганизованный источник №6076

Наименование показателей	Показатели
1	2
Исходные данные по сварочным работам	
Сварочные работы электродами марки УОНИ 13/45	
1.Годовой расход электродов типа УОНИ 13/45, Вгод.1, кг	100
2. Максимальный часовой расход электродов типа УОНИ 13/45, В1, кг	1
3.Количество постов, t1, ч	8
4. Количество часов работы в год всех постов, Т1, ч	100
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его оксиды	0,51
К2- кремния диоксид	1,4
К3-фториды	1,4
К4-фтористыей водород	1
Сварочные работы электродами марки УОНИ 13/55	•
6.Годовой расход электродов типа УОНИ 13/55, Вгод.2, кг	2500
7. Максимальный часовой расход электродов типа УОНИ 13/55, В2, кг	1
8. Количество постов, t2, ч	8
9. Количество часов работы в год всех постов, Т2, ч	2500
10. Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его оксиды	1,09
К6- кремния диоксид	1
К7-фториды	1
К8-фтористыей водород	1,26
К9-оксиды азота	2,7
К10-оксид углерода	13,3
Сварочные работы электродами марки МР-3	
11.Годовой расход электродов типа УОНИ МР-3, Вгод.3, кг	820
12. Максимальный часовой расход электродов типа Мр-3, В3, кг	1
13.Количество постов, t3, ч	8
14. Количество часов работы в год всех постов, Т3, ч	820
15. Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	1,8
К12-кремния диоксид	0
К13-фториды	0
К14-фтористыей водород	0
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.4, кг	780
17. Максимальный часовой расход электродов типа УОНИ 13/65, В4, кг	1
18.Количество постов, t4, ч	1
19.Количество часов работы в год всех постов, Т4, ч	780
20. Удельное выделение загрязняющих веществ при сварке, г/кг	
К15-оксиды хрома	3,7
К16-никель и его оксиды	6,05

Продолжение приложения 129

1	2
Сварочные работы электродами марки НИИ-48Г (ВСН-6)	
21.Годовой расход электродов типа НИИ-48Г, Вгод.5, кг	70
22. Максимальный часовой расход электродов типа НИИ-48Г, В5, кг	1
23.Количество постов, t5, ч	8
24. Количество часов работы в год всех постов, Т5, ч	70
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К17- марганец и его соединения	0,53
К18-оксиды хрома	1,54
К19-никель и его оксиды	1,02
К20-фтористыей водород	0,8
Результаты	
25.Валовый выброс за год, т/год	
M1=(Вгод.1*К1+Вгод.2*К5+Вгод.3*К11+Вгод.5*К17)/1000000-марганец и его соединен.	0,00429
M2=(Вгод.1*K4+Вгод.2*K8+Вгод.3*K14+Вгод.5*K20)/1000000 -фтористый водород	0,00331
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00365
М4= (Вгод.1*К3+Вгод.2*К7+Вгод.3*К13)/1000000-фториды	0,00264
М5=(Вгод.2*К9)/1000000 -азот оксид	0,00675
М6=Вгод.2*К10/1000000 -углерод оксид	0,03325
М7=(Вгод.4*К16+Вгод.5*К19)/1000000 -никель оксид	0,00479
M8=(Вгод.4*K15+Вгод.5*K18)/1000000 -оксиды хрома	0,00299
26.Максимальный разовый выброс, г/с	
П1=K1*B1/3600+K5*B2/3600+K11*B3/3600+K17*B5/3600-марганец и его соед.	0,00109
П2=К4*В1/3600+К8*В2/3600+К20*В5/3600-фтористый водород	0,00085
П3=К2*В1/3600+К6*В2/3600+К12*В3/3600 -кремния диоксид	0,00042
П4=К3*В1/3600+К7*В2/3600-фториды	0,00067
П5=К9*В2/3600-азот оксид	0,00075
П6=К10*В2/3600-углерод оксид	0,00369
П6=К16*В4/3600+В5*К19/3600-никель оксид	0,00196
П8=K15*B4/3600+K18*B5/3600 -оксиды хрома	0,00146
Исходные данные по газовой резке	
27. Количество часов работы в год, Т1, ч	3500
28.Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К1-марганец и его соединения	0,017
К3-оксид углерода	0,018
К4-диоксид азота	0,015
Результаты	
29.Валовый выброс за год,т/год	0.21/2
M1=T1*3600*K1/1000000 -марганец и его соединения	0,2142
M3=T1*3600*K3/1000000 -оксид углерода	0,2268
М4=(Т1*3600*К2/1000000 -диоксид азота	0,189
30.Максимальный разовый выброс,г/с	0.017
П1=К1 -марганец и его соединения	0,017

1	2
П3=К3 -оксид углерода	0,018
П4=К4 -диоксид азота	0,015
Итого	
31.Валовый выброс за год,т/год	
М1=(Вгод.1*К1+Вгод.2*К5+Вгод.3*К11+Вгод.5*К17+Т1*3600*К1)/100000	0,21849
0-марганец и его соединен.	,
М2=(Вгод.1*К4+Вгод.2*К8+Вгод.3*К14+Вгод.5*К20)/1000000 -фтористый	0.00221
водород	0,00331
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00365
М4= (Вгод.1*К3+Вгод.2*К7+Вгод.3*К13)/1000000-фториды	0,00264
М5=Вгод.2*К9/1000000 -азот оксид	0,00675
М6=Вгод.2*К10/1000000+Т1*3600*К3/1000000 -углерод оксид	0,23049
М7=(Вгод.4*К16+Вгод.5*К19)/1000000 -никель оксид	0,00196
М8=(Вгод.4*К15+Вгод.5*К18)/1000000 -оксиды хрома	0,00299
М9=(Т1*3600*К4/1000000 -диоксид азота	0,189
31.Максимальный разовый выброс,г/с	
П1=К1-марганец и его соед.	0,017
П2=К8*В2/3600-фтористый водород	0,00085
П3=(К2*В1/3600)-кремния диоксид	0,00042
П4=(К3*В1/3600)-фториды	0,00067
П5=К9*В2/3600-азот оксид	0,00075
П6=К10*В2/3600-углерод оксид	0,018
П6=К16*В4/3600-никель оксид	0,00196
П8=K15*B4/3600оксиды хрома	0,00146
П9=К4-диаксид азота	0,015

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Балластная. Дробильно-сортировочный комплекс (ДСК). Мастерская. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6080.03

Наименование показателей	Показатели				
Исходные данные					
Механическая обработка без охлаждения					
Заточные станки с диаметром круга 500мм					
1.Количество станков,п, шт	1				
2.Количество часов работы в год одного станка, Т, ч	250				
3. Коэффициент эффективности пылеотсасывающего агрегата, к1	0,95				
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных					
веществ	0,2				
5.Удельный выброс на единицу оборудования, г/с					
q -абразивная пыль	0,06				
q1-взвешенные вещества	0,06				
Результаты					
6.Валовый выброс за год взвешенных веществ, т/год					
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,0108				
M1 =3600*0,9*q1*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00049				
7. Максимальный разовый выброс взвешенных веществ, г/с					
П=k*q1*n -без пылеотсасывающих агрегатов	0,012				
П1=0,9*q1*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,0027				
8.Валовый выброс за год абразивной пыли, т/год					
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,0108				
M1 = 3600*k*q*T*n*(1-k1)/1000000 -с пылеотсас. агрегатами	0,00049				
9.Максимальный разовый выброс абразивной пыли, г/с					
П=k*q*n -без пылеотсасывающих агрегатов	0,012				
П1=0,9*q*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,0027				

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-0) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Балластная. Дробильно-сортировочный комплекс (ДСК). Мастерская. Расчет эмиссий загрязняющих веществ в атмосферу при производстве сварочных работ и газовой резке на 2025-2027 гг. Неорганизованный источник №6080.01

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки ОЗН-6 (аналог Т-590)	
1.Годовой расход электродов типа ОЗН-6, Вгод.1,кг	40
2. Максимальный часовой расход электродов типа ОЗН-6, В1, кг	1
3.Количество постов, n1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	40
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-оксиды хрома	3,7
К3-никель и его оксиды	60,5
Сварочные работы электродами марки УНОНИ-13/65	
6.Годовой расход электродов типа УОНИ-13/65, Вгод.2, кг	600
7. Максимальный часовой расход электродов типа УОНИ-13/65, В2, кг	1
8.Количество постов, n2, шт.	1
9.Количество часов работы в год всех постов, Т2, ч	600
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	1,41
К6-кремния диоксид	0,8
К7-фториды	0,8
К8-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	
11.Годовой расход электродов типа НЖ-13, Вгод.3,кг	70
12. Максимальный часовой расход электродов типа НЖ-13, В3, кг	1
13.Количество постов, n3, шт	1
14. Количество часов работы в год всех постов, Т3, ч	70
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К11-марганец и его соединения	0,53
К12-хрома (VI) оксид	0,24
Сварочные работы электродами марки МР-3	
16.Годовой расход электродов типа МР-3, Вгод.4,кг	320
17. Максимальный часовой расход электродов типа МР-3, В4, кг	1
18.Количество постов, t4, шт	1
19. Количество часов работы в год всех постов, Т4, ч	320
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К13-марганец и его соединения	1,8
Результаты	
17.Валовый выброс за год, т/год	
М1=(Вгод.2*К5+Вгод.3*К11+Вгод.4*К13)/1000000-марганец и его	
соединен.	0,01224
М2=(Вгод2*К8)/1000000 -фтористые газообр. Соед.	0,0007
М3=Вгод2*К6)/1000000 -кремния диоксид	0,00048
М4=Вгод.2*К7/1000000 -фториды	0,00048

Окончание приложения 131

1	
M5-Prog 1*V2+Prog2*V12/1000000 avayary years	0.00016
M5=Вгод.1*К2+Вгод3*К12/1000000-оксиды хрома	0,00016
M6=Вгод. 1*К3/1000000- никель и его оксиды	0,00242
12. Максимальный разовый выброс, г/с	0.00104
П1=(K5*B2+K11*B3+K13*B4)/3600-марганец и его соед.	0,00104
П2=K8*B2/3600-фтористые газообр. Соединен.	0,00033
П3=К6*В2/3600-кремния диоксид	0,00022
П4=К7*В2/3600-фториды	0,00022
П5=(К2*В1+К12*В3)/3600оксиды хрома	0,00109
П6=К3*В1/3600-никель и его оксиды	0,01681
Исходные данные по газовой резке	200
18. Количество часов работы в год, Т2, ч	200
19.Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	0.017
К2-марганец и его соединения	0,017
К3-оксид углерода	0,018
К4-диоксид азота	0,015
Результаты	
20.Валовый выброс за год,т/год	
М7=Т2*3600*К2/1000000 -марганец и его соединения	0,01224
М8=Т2*3600*К3/1000000 -оксид углерода	0,01296
М9=(Т2*3600*К4/1000000 -диоксид азота	0,0108
21.Максимальный разовый выброс,г/с	
П7=К2 -марганец и его соединения	0,017
П8=К3 -оксид углерода	0,018
П9=К4 -диоксид азота	0,015
Итого	
22.Валовый выброс за год,т/год	
М=М1+М7-марганец и его соединен.	0,02448
М=М8 -углерод оксид	0,01296
М=М9 -диоксид азота	0,0108
М=М2-фтористые газообр. Соед.	0,0007
М=М3-кремния диоксид	0,00048
М=М4 -фториды	0,00048
М=М5-оксиды хрома	0,00016
М=М6- никель и его оксиды	0,00242
23.Максимальный разовый выброс,г/с	
П=П1+П7-марганец и его соед.	0,01804
П=П9-азот диоксид	0,015
П=П8-углерод оксид	0,018
П=П2-фтористые газообр. Соединен.	0,00033
П=П3-кремния диоксид	0,00022
П=П4-фториды	0,00022
П=П5-оксиды хрома	0,00109

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Балластная. ДСК. Мехмастерская. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40, ПОС-60 на 2025-2027 гг. Неорганизованный источник №6080.02

Наименование показателей	Показатели
Исходные данные	
1.Количество паек в год, п, шт	85
2. Чистое в ремя работы паяльником в год ,t,ч	85
3.Удельное выделение загрязняющих веществ, q, г/с м2	
q1-свинец и его соединения	0,000005
q2- олова оксид	0,0000033
Результаты	
4.Максимальный разовый выброс, г/с	
Mc=q1 - свинец и его соединения	0,000005
Мс=q2 * - олова оксид	0,0000033
5.Валовый выброс за год, т/год	
Мгод=(q1*t*n*3600)/1000000- свинец и его соединения	0,00013
Мгод=(q2*t*n*3600)/1000000- олова оксид	0,000086

Приложение 133

Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Склад ПСП. Расчет количества пыли, выделяющейся при сдувании с поверхности склада ПСП в период с 2025 по 2027 г.г. Неорганизованный источник №6292

N_0N_0	11	Усл.	Ед.	Показатели	и по годам э	ксплуатации		
Π/Π	Наименование показателей	обозн.	изм.	2025	2026	2027		
	Исходные данные							
1	Вид поверхности: разрез - 1; отвал -2; склад -3.			2	2	2		
2	Площадь пылящей поверхности, всего,	S	м ²	64063	64453	64843		
	в том числе:	S	M	04003	04433	04043		
	- действующей	So		609,0	609,0	609,0		
	- после прекращения работ от 1-го до 3-х лет	S1		1927,5	1927,5	1927,5		
	- после прекращения работ более 3-х лет	S2		61526,5	61916,5	62306,5		
3.	Коэффициент, учитывающий влажность	Ko		1,0	1,0	1,2		
4.	Коэффициент, учитывающий скорость ветра	K1		1,2	1,2	1,2		
5.	Коэффициент, учитывающий эффективность сдувания с поверхности:		ШТ	4	4	4		
	- действующей	К2		1	1	1		
	- после прекращения работ от 1-го до 3-х лет	К'2		0,2	0,2	0,2		
	- после прекращения работ более 3-х лет	К»2		0,1	0,1	0,1		
6.	Количество дней с устойчивым снежным покровом	T	сут	209	209	209		
7.	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0		
	Результаты расчета							
1	Валовый выброс пыли за год:							
	без учета мероприятий	По	т/год	1,15599	1,16229	1,402322		
	$\Pi_0 = 86,4 \text{Ko} \text{K}1 \text{Kr} \text{(K2*So+K'2*S1+K)} \text{2*S2)} \text{(365-Tc)} \text{10}^-8$	110	1/10Д	1,13399	1,10229	1,402322		
	с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	1,15599	1,16229	1,402322		
2	Максимальная интенсивность пылевыделения							
	без учета мероприятий	Mo	г/с	0,08577	0,08623	0,104042		
	$Mo = Ko*K1*Kr*(K2*So+K'2*S1+K)*2*S2)*10^-5$	IVIO	1/0	0,00377	0,08023	0,104042		
	- с учетом мероприятий M =Mo*(1-h)	M	г/с	0,08577	0,08623	0,104042		

Приложение 134

Разрез «Восточный» АО «ЕЭК». Отвальное хозяйство. Внешний породный отвал Конвейерный 1. Расчет количества пыли, выделяющейся при сдувании с поверхности отвала в период с 2025 по 2027 г.г. Неорганизованный источник №6090

N_0N_0	II	Усл.	Ед.	Показате	ли по годам эксп	луатации
Π/Π	Наименование показателей	обозн.	изм.	2025	2026	2027
	Исходи	ные данные				
1.	Вид поверхности: разрез - 1; отвал -2; склад -3.			2	2	2
2.	Площадь пылящей поверхности, всего, в том числе:	S		2993357,0	3121759,0	3291805,0
	- действующей	S _o	\mathbf{M}^2	762496	736204	553630
	- после прекращения работ от 1-го до 3-х лет	S_1]	458825	1068381	1651644
	- после прекращения работ более 3-х лет	S_2		1772036	1317174	1086531
3.	Влажность материала	W	%	0,6	0,6	0,6
4.	Коэффициент, учитывающий влажность	K _o		1,2	1,2	1,2
5.	Скорость ветра	V	м/с	4	4	4
6.	Коэффициент, учитывающий скорость ветра	K_1		1,0	1,0	1,0
7.	Коэффициент, учитывающий эффективность сдувания с поверхности:		шт.	0,2	0,2	0,2
	- действующей	K_2		0,1	0,1	0,1
	- после прекращения работ от 1-го до 3-х лет	K' ₂		0,0000001	0,0000001	0,0000001
	- после прекращения работ более 3-х лет	K»₂		0,1	0,1	0,1
8.	Количество дней с устойчивым снежным покровом	T	сут.	209	209	209
9.	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0
	Результ	аты расчета				
1.	Валовый выброс пыли за год:					
	без учета мероприятий $\Pi_0 = 86,4*q_0*p*K_2*K_5*(K_1*S_1+K1*S_2+K)_1*S_3)*(365-T_c)$	Π_{o}	т/год	100,09795	104,96308	96,32751
	с учетом мероприятий $\Pi = \Pi_o^*(1-h)$	П	т/год	100,09795	104,96308	96,32751
2.	Максимальная интенсивность пылевыделения					
	без учета мероприятий $Mo = q_0 * p * K_2 * K_5 * (K_1 * S_1 + K1 * S_2 + K)_1 * S_3) * 10^{^{-3}}$	M _o	г/с	7,42655	7,78750	7,14681
	- с учетом мероприятий M =Mo*(1-h)	M	г/с	7,42655	7,78750	7,14681

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное". Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу от ванны для приготовления электролита на 2025-2027 гг. Неорганизованный источник №6120

Наименование показателей	Показатели			
Исходные данные				
1. Количество установок для приготовления электролита, п, шт	1			
2.Время работы установки в год ,t,ч	24			
3.Удельной выброс натрия гидроксид, q,г/с м2	0,0016			
4.Площадь зеркала установки для мойки, S,м2	0,28			
Результаты				
5.Максимальный разовый выброс, г/с				
$\Pi=q *S$	0,00045			
6.Валовый выброс за год, т/год				
M _B =q*S*t*n*3600/1000000	0,00004			

Приложение 136

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Отвальное хозяйство. Отвал Балластный. Расчет количества пыли, выделяющейся при сдувании с поверхности внешнего отвала в период с 2025 по 2027 г.г. Неорганизованный источник №6095

No∫	Наименование показателеи	Усл. обозн.	Ед.	Показатели по годам эксплуатации				
п/і			изм.	2025	2026	2027		
	Исходные данные							
1	Вид поверхности: разрез - 1; отвал -2; склад -3.			2	2	2		
2	Площадь пылящей поверхности, всего, в том числе:	S	M ²	81435	83789	86336		
	- действующей	So		1487	1487	1487		
	- после прекращения работ от 1-го до 3-х лет	S 1		5033	5227	5227		
	- после прекращения работ более 3-х лет	S2		74915	77075	79622		
3	Коэффициент, учитывающий влажность	Ko		0,7	0,7	0,7		
4	Коэффициент, учитывающий скорость ветра	K1		1,2	1,2	1,2		
5	Коэффициент, учитывающий эффективность сдувания с поверхности:		ШТ	4	4	4		
	- действующей	К2		1	1	1		
	- после прекращения работ от 1-го до 3-х лет	K'2		0,2	0,2	0,2		
	- после прекращения работ более 3-х лет	K»2		0,1	0,1	0,1		
6	Количество дней с устойчивым снежным покровом	T	сут	155	155	155		
7	Эффективность мероприятий по пылеподавлению	h	дол.ед	0	0	0		
		гаты рас	чета					
1	Валовый выброс пыли за год:							
	без учета мероприятий По = 86,4*Ko*K1*Kr*(K2*So+K'2*S1+K»2*S2) *(365-Tc)*10^-8	По	т/год	1,52183	1,56066	1,59948		
	с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	1,52183	1,56066	1,59948		
2	Максимальная интенсивность пылевыделения							
	без учета мероприятий Mo = Ko*K1*Kr*(K2*So+K'2*S1+K»2*S2)*10^ -5	Mo	г/с	0,08387	0,08602	0,08815		
	- с учетом мероприятий M =Mo*(1-h)	M	г/с	0,08387	0,08602	0,08815		

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Разрез «Восточный» АО «ЕЭК». Щебеночный карьер. Отвальное хозяйство. Отвал Балластный. Расчет количества пыли, выделяющейся при разгрузке автотранспорта и формировании внешнего отвала в период с 2025 по 2027 г.г.

Неорганизованный источник №6095

			Показа	тели
Наименование показателей	Наименование показателей Усл. обозн служний изм.		Разгрузка авто- самосваловов	Формирова- ние отвала бульдозера- ми
Исходные д	данны	e		
Количество перемещаемого материала:				
- за один год	Q_{Γ}	МЛН.М 3	0,022	0,007
- максимальное за один час	Qч	м ³ /час	3,3	1,0
Удельное выделение пыли при перемещении материала	q	г/м ³	10,00	5,60
Коэффициент, учитывающий влажность материала	Ko		0,7	0,7
Коэффициент, учитывающий скорость ветра	K_1		1,2	1,2
Эффективность мероприятий по пылеподавлению	h	дол.е д.	0	0
Результаты	расчет	га		
Валовый выброс пыли за год:				
- без учета мероприятий По = Qr*q*Ko*K1*Кг	По	т/год	0,18480	0,03293
- с учетом мероприятий $\Pi = \Pi o^*(1-h)$	П	т/год	0,18480	0,03293
Максимальная интенсивность пылевыделения за час:				
- без учета мероприятий Mo = (Qr*q*Ko*K1*Kr)/3600	Mo	г/с	0,00770	0,00131
- с учетом мероприятий M = Mo*(1-h)	M	г/с	0,00770	0,00131

Настоящий расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 г.

Разрез «Восточный». Станция Фестивальная. УСХ . Склад аммиачной селитры. Заправка зарядных машин аммиачной селитрой. Расчет выбросов пыли в атмосферу при пересыпке аммиачной селитры в приемный бункер зарядной машины на 2025-2027 г.г. Неорганизованный источник №6098

Наименование показателей	2025	2026- 2027 г.г.
Исходные данные		
1. Весовая доля пылевой фракции в материале,К1,%	0,03	0,03
2. Доля пыли, переходящая в аэрозоль, К2	0,02	0,02
3. Скорость ветра, V, м/с	<3	<3
4. Коэффициент, учитывающий скорость ветра, К3	1,0	1,0
5. Местные условия, склады, хранилища(число от 1 до 7)		
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		
6.Загруз. рукав	6	6
7.Закр. с 4 сторон		
6. Коэффициент, учитывающий местные условия, степень	0,001	0,001
защищенности узла от внешних воздействий К4		
7. Влажность материала, W,%	0,2	0,2
8. Коэффициент, учитывающий влажность материала, К5	1	1
9. Коэффициент, учитывающий профиль поверхности	0	0
складируемого материала, К6		
10. Коэффициент, учитывающий крупность материала, К7	0,8	0,8
11. Высота пересыпки, h, м	0,5	0,5
12.Коэффициент учитывающий высоту пересыпки,В'	0,4	0,4
13. Количество перегружаемой селитры, Пг. т/год	15000	25000
14. Максимальное количество перегружаемой селитры, Пч, т/ч	30	30
15. Годовое количество часов работы оборудования, Т, ч	500	833
16. Количество оборудования (узлов пересыпки), N,шт	4	4
17. Эффективность применяемых средств пылеподавления, п,	0	0
дол.ед.		
Результаты		
18. Количество твердых частиц, выделяющихся при перегрузках	0,00640	0,00640
, Ппыль= K1*K2*K3*K4*K5*K7*В'*Пч*N*106/3600, г/с		
Мпыль= Ппыль*Т * 3600/106 , т/год	0,01152	0,01919
1 3000/100, 1/10A	5 1 705 / 3 0	1 0,01717

Примечание. Плотность аммиачной селитры в гранулах 1,5-1,725г/см³. Селитра приравнена к углю для определения коэффициентов К1 и К2 (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008года №100-п).

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100-п.

Приложение 139

Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при сдувании с поверхности складов щебня в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105

Наименование процесса, характеристика	Сдувание с поверхности штабеля			
	фракция	фракция	фракция	фракция
	40-70мм	20-40мм	5-20мм	0-5мм
1. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4
2. Коэффициент, учитывающий скорость ветра, К ₃	1,2	1,2	1,2	1,2
3. Местные условия, склады, хранилища (число от	1	1	1	1
1 до 7) 1.Откр. с 4 сторон				
2.Откр. с 3 сторон				
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны				
6.Загруз. рукав				
7.Закр. с 4 сторон				
4. Коэффициент, учитывающий местные условия,	1,0	1,0	1,0	1,0
степень защищенности узла от внешних				
воздействий К ₄				
5. Влажность материала, W,%	1,0	1,0	1,0	1,0
6. Коэффициент, учитывающий влажность	0,9	0,9	0,9	0,9
материала , K_5				
7. Коэффициент, учитывающий профиль	1,3	1,3	1,3	1,3
поверхности, К ₆				
8. Коэффициент, учитывающий крупность	0,45	0,50	0,50	0,80
материала, К7				
9.Коэффициент учитывающий наличие щебня на	0,5	0,5	0,5	0,5
складе, К9				
10. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4	0,4
осаждение твердых частиц, Кг				
11. Эффективность применяемых средств	0	0	0	0
пылеподавления, h, дол.ед.				
12. Число часов работы в год, Т, ч	8760	8760	8760	8760
13. Унос пыли с 1м ² фактической поверхности, q'	0,002	0,002	0,002	0,002
,г/м ² *с				
14. Площадь основания штабелей, S, м ²	1200	700	525	300
15. Количество складов, N,шт	2	2	2	2
РЕЗУЛЬТА		T		T
Количество твердых частиц, выделяющихся при	0,60653	0,39312	0,29484	0,26957
сдувании с поверхности склада:				
Mceκ= $K_3*K_4*K_5*K_6*K_7*K_9*K_r*q'*S*N*(1-η)$, r/c	10.1			0.70
Мгод=0,0864*K ₃ *K ₄ *K ₅ *K ₆ *K ₇ *K ₉ *K _r *q'*S*N*	19,12747	12,39743	9,29807	8,50110
365*(1-η)*,т/год				

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от "18" 04 2008года №100-п

Приложение 140

Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при разгрузке щебня с конвейеров на конус в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105

	Разгрузка щебня с конвейеров на конус				
Наименование процесса, характеристика	фракция	фракция	фракция	фракция	
	40-70мм	20-40мм	5-20мм	0-5мм	
1	2	3	4	5	
1. Весовая доля пылевой фракции в материале, К ₁ ,%	0,02	0,02	0,03	0,03	
2. Доля пыли, переходящая в аэрозоль, К2	0,01	0,01	0,015	0,015	
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	
4. Коэффициент, учитывающий скорость ветра, К ₃	1,2	1,2	1,2	1,2	
5. Местные условия, склады, хранилища (число от 1	1				
до 7) 1.Откр. с 4 сторон	1	1	1	1	
2.Откр. с 3 сторон					
3.Откр. с 2 сторон полн.					
4.Откр. с 2 сторон част.					
5.Откр. с 1 стороны					
6.Загруз. рукав					
7.Закр. с 4 сторон					
6. Коэффициент, учитывающий местные условия,					
степень защищенности узла от внешних	1,0	1,0	1,0	1,0	
воздействий, К4			·		
7. Влажность материала, W,%	1,0	1,0	1,0	1,0	
8. Коэффициент, учитывающий влажность	0,9	0,9	0,9	0,9	
материала, К5	0,9	0,9	0,9	0,9	
9. Коэффициент, учитывающий крупность	0,45	0,50	0,50	0,80	
материала, К7	0,43	0,50	0,50	0,80	
10. Высота пересыпки, h, м, (средняя)	1,0	1,0	1,0	1,0	
11. Коэффициент учитывающий высоту пересыпки,	0,5	0,5	0,5	0,5	
B'	0,5	0,5	0,5	0,5	
12. Коэффициент учитывающий залповый выброс	1,0	1,0	1,0	1,0	
при разгрузке автосамосвала, К9	1,0	1,0	1,0	1,0	
13. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4	0,4	
осаждение твердых частиц, Кг	O, T	0,4	0,-	0,4	
14. Эффективность применяемых средств					
пылеподавления, η , дол.ед. (орошение в забое в	0,60	0,60	0,60	0,60	
летнее время)					
15. Количество перегружаемого щебня, Пг,т/год	137885	67420	52465	23030	
16. Максимальное количество перегружаемого	32,8	16,1	12,5	5,5	
щебня, Пч, т/ч	,-		,-	- ,-	
17. Годовое количество часов работы оборудования,	4200	4200	4200	4200	
Т, ч					
18. Количество узлов пересыпки, N, шт	2	2	2	2	
РЕЗУЛЬТАТЫ					

Окончание приложения 140

1	2	3	4	5
Количество твердых частиц, выделяющихся при перегрузках без учета мероприятий, (в зимнее время): Мсек= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*\Pi_{\mathfrak{q}}*N*$ $10^6/3600*$, г/с	0,35424	0,19320	0,33750	0,23760
Мгод= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*Kr*Пг*N*, т/год$	5,36097	2,91254	5,09960	3,58163
Количество твердых частиц, выделяющихся при перегрузках с учетом пылеподавления (в летнее время: Мсек= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*\Pi_{\mathfrak{q}}*N*10^6/3600*(1-\eta), г/с$	0,14170	0,07728	0,13500	0,09504
Мгод= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*\Pi_2*N*(1-\eta/2), \text{т/год}$	3,75268	2,03878	3,56972	2,50714

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от "18" 04 2008года №100-п

Приложение 141

Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при перевалке щебня бульдозером на складах щебня в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105

Наименование процесса, характеристика	Перевалка щебня бульдозером ТД-25			м ТД-25
	фракция фракция фракция ф		фракция	
	40-70мм	20-40мм	5-20мм	0-5мм
1	2	3	4	5
1. Весовая доля пылевой фракции в материале,	0,02	0,02	0,03	0,03
K ₁ ,%	,	,	,	,
2. Доля пыли, переходящая в аэрозоль, К2	0,01	0,01	0,015	0,015
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К ₃	1,2	1,2	1,2	1,2
5. Местные условия, склады, хранилища (число от 1	,	,	,	,
до 7) 1.Откр. с 4 сторон				
2.Откр. с 3 сторон	2	2	2	2
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны				
6.Загруз. рукав				
7.3акр. с 4 сторон				
6. Коэффициент, учитывающий местные условия,	0,5	0,5	0,5	0,5
степень защищенности узла от внешних	,	,	,	,
воздействий, К4				
7. Влажность материала, W,%	1,0	1,0	1,0	1,0
8. Коэффициент, учитывающий влажность	0,9	0,9	0,9	0,9
материала, К5				
9. Коэффициент, учитывающий крупность	0,45	0,50	0,50	0,80
материала, К7				
10. Высота пересыпки, h, м, (средняя)	1,0	1,0	1,0	1,0
11. Коэффициент учитывающий высоту пересыпки,	0,5	0,5	0,5	0,5
B'				
12. Коэффициент учитывающий залповый выброс	1,0	1,0	1,0	1,0
при разгрузке автосамосвала, К9				
13. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4	0,4
осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4
14. Эффективность применяемых средств	0	0	0	0
пылеподавления, η, дол.ед. (орошение в забое в				
летнее время)				
15. Количество перегружаемого щебня, Пг,т/год	137885	67420	52465	23030
16. Максимальное количество перегружаемого	75,0	60,0	60,0	50,0
щебня, Пч, т/ч				
17. Годовое количество часов работы	1838	1124	874	461
оборудования, Т, ч				
18. Количество узлов пересыпки, N, шт	2	2	2	2

Окончание приложения 141

1	2	3	4	5
РЕЗУЛЬТАТ	ГЫ			
Количество твердых частиц, выделяющихся при	0,40500	0,36000	0,81000	1,08000
перегрузках с учетом пылеподавления (в летнее				
время):				
Мсек=				
$K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*\Pi_u*N*10^6/3600*(1-$				
η), Γ/c				
Мгод= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*П_2*N*(1-$	2,68048	1,45627	2,54980	1,79081
η/2),т/год				

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от "18" 04 2008года №100-п

Приложение 142

Разрез «Восточный». ДСК на щебкарьере «Балластный». Расчёт эмиссий пыли в атмосферу при погрузке щебня экскаватором в период с 2025 по 2027 г.г. Неорганизованные источники №№6102-6105

Наименование процесса, характеристика	погрузка щебня экскаватором			ОМ
	фракция	фракция	фракция	фракция
	40-70мм	20-40мм	5-20мм	0-5мм
1. Весовая доля пылевой фракции в материале, К ₁ ,%	0,02	0,02	0,03	0,03
2. Доля пыли, переходящая в аэрозоль, K_2	0,01	0,01	0,015	0,015
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К ₃	1,2	1,2	1,2	1,2
5. Местные условия, склады, хранилища (число от 1 до 7)				
1.Откр. с 4 сторон				
2.Откр. с 3 сторон				
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны	5	5	5	5
6.Загруз. рукав				
7.Закр. с 4 сторон				
6. Коэффициент, учитывающий местные условия,	0,1	0,1	0,1	0,1
степень защищенности узла от внешних воздействий, \mathbf{K}_4				
7. Влажность материала, W,%	0,1	0,1	0,1	0,1
8. Коэффициент, учитывающий влажность материала, К5	0,9	0,9	0,9	0,9
9. Коэффициент, учитывающий крупность материала, К7	0,45	0,50	0,50	0,80
10. Высота пересыпки, h , м, (средняя)	1,0	1,0	1,0	1,0
11.Коэффициент учитывающий высоту пересыпки, В'	0,5	0,5	0,5	0,5
12.Коэффициент учитывающий залповый выброс при	1,0	1,0	1,0	1,0
разгрузке автосамосвала, К9				
13. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4	0,4
осаждение твердых частиц, Кг				
14. Эффективность применяемых средств	0	0	0	0
пылеподавления, η , дол.ед. (орошение в забое в летнее				
время)				
15. Количество перегружаемого щебня, Пг,т/год	137885	67420	52465	23030
16. Максимальное количество перегружаемого щебня, Пч,	320	320	320	320
т/ч				
17. Годовое количество часов работы оборудования, Т, ч	431	211	164	72
18. Количество узлов пересыпки, N, шт	1	1	1	1
17. Количество складов, N1 ,шт	2	2	2	2
РЕЗУЛЬТАТ				
Количество твердых частиц, выделяющихся при	0,17280	0,19200	0,43200	0,69120
перегрузках с учетом пылеподавления (в летнее время):				
Mceκ= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_Γ*Π_Ψ*N*10^6/3600*(1-η),$				
г/с				
Мгод= $K_1*K_2*K_3*K_4*K_5*K_7*K_9*B'*K_r*П2*N*(1- \eta/2), т/год$	0,53610	0,29125	0,50996	0,35816

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от "18" 04 2008года №100-п

Приложение 143

Разрез «Восточный». Станция Восточная. УТС.Котельная. Склад соли. Расчет эмиссий вагрязняющих в атмосферу от склада соли на 2025-2027 г.г.

Неорганизованный источник №6106

Наименование показателей	Показатели		
Исходные данные			
1. Весовая доля пылевой фракции в материале,К1,	0,03		
2. Доля пыли, переходящая в аэрозоль, К2	0,02		
3. Скорость ветра, V, м/с	0		
4. Коэффициент, учитывающий скорость ветра, К3	1,2		
5. Местные условия, склады, хранилища (число от 1 до 7)			
1.Откр. с 4 сторон			
2.Откр. с 3 сторон			
3.Откр. с 2 сторон полн.			
4.Откр. с 2 сторон част.			
5.Откр. с 1 стороны	5		
6.Загруз. рукав			
7.Закр. с 4 сторон			
6. Коэффициент, учитывающий местные условия, степень	0,1		
защищенности узла от внешних воздействий К4			
7. Влажность материала, W,%	5		
8. Коэффициент, учитывающий влажность материала, К5	0,7		
10. Коэффициент, учитывающий крупность материала, К7	0,6		
11.Коэффициент, учит.способ разгрузки,К8	1		
12.Коэффициент при залповой разгрузке,К9	1		
13. Высота пересыпки, h, м	1		
14.Коэффициент учитывающий высоту пересыпки,В'	0,7		
15. Количество перегружаемой соли , Пг. т/год	54		
16. Количество перегружаемой соли, Пч. т/ч	10		
17. Годовое количество часов работы оборудования, Т, ч	5,4		
18. Количество оборудования (узлов пересыпки), N, шт	1		
19. Эффективность применяемых средств пылеподавления, п, дол.ед.	0		
20. Коэффициент гравитационного осаждения, для твердых	0,4		
компанентов, Кгр	·		
Результаты			
23. Количество твердых частиц, выделяющихся при перегрузках,	0,0235		
Мсек.пыль= K1*K2*K3*K4*K5*K7*K8*K9*В'*Пч*N*Кгр*106/3600,			
r/c			
M1годпыль= K1*K2*K3*K4*K5*K7*K8*K9*B*Кгр*Пгод; т/год	0,0005		

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов». Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008года №100-п

Разрез "Восточный Станция Восточная.Транспортный цех. Автотранспортный участок. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-2027 гг. Неорганизованный источник №6107

Наименование показателей	Показатели	
Исходные данные		
Механическая обработка без охлаждения		
Заточной станок Окр. 150мм		
1.Количество станков,п, шт	1	
2.Количество часов работы в год одного станка, Т, ч	52	
3. Коэффициент эффективности пылеотсасывающего агрегата, k1	0	
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2	
5.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,1	
q1-взвешенные вещества	0,1	
Результаты		
6.Валовый выброс за год взвешенных веществ, т/год		
M = 3600*k*q1*T*n /1000000 - без пылеотсасывающих агрегатов	0,00374	
7. Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q1*n -без пылеотсасывающих агрегатов	0,02	
8.Валовый выброс за год абразивной пыли, т/год		
M = 3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00374	
9.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q*n -без пылеотсасывающих агрегатов	0,02	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная. Транспортный цех. (АТУ). Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу при вулканизации автомобильных камер на 2025-2027 гг. Неорганизованный источник №6107

Наименование показателей	Показатели
1	2
Исходные данные	
1.Годовой расход прослоечной резины на	17
вулканизацию,В,кг	
2.Количество часов вулканизации камер в год, Т,ч	200
3. Количество шин в год, N, шт.	85
4.Годовой расход клея, В1,кг	5,95
5.Удельное выделение загрязняющих веществ в	
процессе вулканизации,г/кг	
q1-гидрохлорид (водород хлористый; соляная кислота)	0,025
q2-сернистый ангидрид	0,0039
q3-углерода оксид	0,0015
q4-дивинил	0,025
q5-изобутилен	0,12
q6-изопрен	0,023
q7-пропилен	0,0015
q8-этилен	0,26
q9-альфаМетилстирол	0,014
q10-стирол	0,014
q11-хлоропрен	0,021
q12-дибутилфталат	0,022
q13-эпоксиэтан (оксиран:этилена оксид)	0,0055
q14-акрилонитрил	0,037
q15-углеводороды предельные	0,29
6.Удельные выделения пыли резиновой в процессе	0,0226
шероховки камер,q16,г/с	
7.Количество часов шероховки шин в год,Т1,ч	85
8.Время на нанесение и сушку клея в день, Т2, ч	1,5
9.Удельные выделения бензина в в процессе приготовления,	
нанесения клея с	900
последующей сушкой (расход клея на одну камеру 70г), q17, г/кг	
10. Расход бензина в день, В2,кг	0,15
Результаты	
11.Валовый выброс за год,т/год	
М1=В*q1/1000000 -гидрохлорид	0,0000004
M2=B*q2/1000000 -сернистый ангидрид	0,0000001
M3=B*q3/1000000 -углерода оксид	0,00000003
M4=B*q4/1000000 -дивинил	0,0000004
M5=B*q5/1000000 -изобутилен	0,000002
M6=B*q6/1000000 -изопрен	0,0000004
М7=В*q7/1000000 -пропилен	0,00000003
М8=В*q8/1000000 -этилен	0,000004

Окончание приложения 145

1	2
M9=B*q9/1000000 -альфаМетилстирол	0,0000002
М10=В*q10/1000000 -стирол	0,0000002
М11=В*q11/1000000 -хлоропрен	0,0000004
M12=B*q12/1000000 -дибутилфталат	0,0000004
М13=В*q13/1000000 -эпоксиэтан (оксиран:этилена оксид)	0,0000001
М14=В*q14/1000000 -акрилонитрил	0,000001
M15=B*q15/1000000 -углеводороды предельные	0,000005
M16=q16*T1*3600*10-6-пыль резиновая	0,00692
М17=B1*q17/1000000*(1-η) -бензин	0,00536
12.Максимальный разовый выброс,г/с	
П1=М1*1000000/(Т*3600) -гидрохлорид	0,0000006
П2=М2*1000000/(Т*3600) -сернистый ангидрид	0,00000014
П3=М3*1000000/(Т*3600) -углерода оксид	0,00000004
П4=М4*1000000/(Т*3600) -дивинил	0,0000006
П5=М5*1000000/(Т*3600) -изобутилен	0,0000028
П6=М6*1000000/(Т*3600) -изопрен	0,0000006
П7=М7*1000000/(Т*3600) -пропилен	0,000000042
П8=М8*1000000/(Т*3600) -этилен	0,000006
П9=М9*1000000/(Т*3600) -альфаМетилстирол	0,00000028
П10=М10*1000000/(Т*3600) -стирол	0,00000028
П11=М11*1000000/(Т*3600) -хлоропрен	0,0000006
П12=М12*1000000/(Т*3600) -дибутилфталат б	0,0000006
П13=М13*1000000/(Т*3600) -эпоксиэтан (оксиран:этилена оксид)	0,00000014
П14=M14*1000000/(Т*3600) -акрилонитрил	0,000014
П15=М15*1000000/(Т*3600) -углеводороды предельные	0,000007
П16=М16*1000000/(Т1*3600) -пыль резиновая	0,02261
П17=q17*В2/Т2*3600- бензин	0,025

Разрез "Восточный". Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей на 2025-2027 гг. Неорганизованный источник №6107

Наименование показателей	Показатели			
1	2			
Исходные данные				
Машина моечная				
1.Количество установок для мойки, п, шт	1			
2.Время работы установки в год ,t,ч	48			
3.Удельный выброс каустической соды, q, г/с м2	0,055			
4.Площадь зеркала установки для мойки, S,м2	0,1			
Результаты				
5.Максимальный разовый выброс, г/с				
$\Pi=q *S$	0,0055			
6.Валовый выброс за год, т/год				
M _B =q*S*t*n*3600/1000000	0,00095			
Моечная ванна				
1. Количество установок для мойки, п, шт	1			
2.Время работы установки в год ,t,ч	180			
3.Удельный выброс дизельного топливаq,г/с м2	0,138			
4.Площадь зеркала установки для мойки, S,м2	0,9			
Результаты				
5.Максимальный разовый выброс, г/с				
Π=q *S	0,1242			
6.Валовый выброс за год, т/год				
M _B =q*S*t*n*3600/1000000	0,0805			

Разрез "Восточный". Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Идентификация состава выбросов от моечной ванны в дизельном топливе на 2025-2027 гг. Неорганизованный источник №6107

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
1. Валовые выбросы углеводородов:			
	т/год	Gдиз	0,0805
2. Максимально-разовые выбросы:			
	г/с	Мдиз	0,1242
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (С12-С19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,08015385
- максимально-разовый выброс	г/с	Mi	0,12366594
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,0002254
- максимально-разовый выброс	г/с	Mi	0,00034776

Разрез "Восточный". Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Идентификация состава выбросов от стенда для испытания топливной аппаратуры на 2025-2027 гг. Неорганизованный источник №6107

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,01585
2. Максимально-разовые выбросы:	г/с	Мдиз	0,03082
Идентификация состава выбросов			
Углеводороды:	Дизельное	топливо	
1. Предельные (C12-C19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,015781845
- максимально-разовый выброс	г/с	Mi	0,030687474
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,00004438
- максимально-разовый выброс	г/с	Mi	0,000086296

Разрез "Восточный". Станция Восточная. Транспортный цех (ТЦ). Автотранспортный участок (АТУ). Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от стенда для испытания топливной аппаратуры на 2025-2027 гг. Неорганизованный источник №6107

Наименование показателей	Показатели		
Исходные данные			
1.Количество постов, n, шт	1		
2.Время работы в сутки, Т,ч	1		
3. Количество рабочих дней в году, N, дней	100		
4.Удельное количество углеводородов,			
выделяющихся, q, г/кг	317		
5. Расход дизельного топлива в день, В1, кг	0,35		
6.Расход дизельного топлива в год,В,кг	50		
Результаты			
7. Максимальный разовый выброс, г/с			
$\Pi = (B1*q)/T*3600$	0,03082		
8.Валовый выброс за год, т/год			
M _B =n*B*q/1000000	0,01585		

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное" Цех по ремонту топливной аппаратуры. Идентификация состава выбросов от ванны моечной в дизельном топливе и стенда на 2025-2027 гг. Неорганизованный источник №6118

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,04731
2. Максимально-разовые выбросы:	г/с	Мдиз	0,08975
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (С12-С19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,047106567
- максимально-разовый выброс	г/с	Mi	0,089364075
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,000132468
- максимально-разовый выброс	г/с	Mi	0,0002513

Разрез "Восточный". Станция Фестивальная.ЖДЦ.УВЖТ. Аккумуляторная. Расчет эмиссий загрязняющих веществ в атмосферу при зарядке кислотных аккумуляторных батарей на 2025-2027 гг. Неорганизованный источник №6115

Наименование показателей	Показатели		
Исходные данные			
1. Номинальная емкость заряжаемого аккумулятора, А * ч			
-6CT-190, Q1	190		
-6CT-132AM, Q2	132		
2.Количество зарядок в год 6СТ-190,а1,шт.	120		
3.Количество зарядок в год 6СТ-132АМ,а2,шт.	60		
4. Цикл проведения зарядки в день, t, ч	6		
5.Удельное выделение паров серной кислоты при зарядке			
аккумуляторных батарей, q1 мг/А*ч	1		
6. Максимальное количество одновременно заряжаемых батарей,шт.			
п1-кислотных	1		
Результаты			
7.Валовый выброс за год паров серной кислоты, т / год			
M1=(0,9*q1*(Q1*a1+Q2*a2)/1000000000	0,00002		
8.Валовый выброс за день паров серной кислоты, т / день			
M1cyr=(0,9*q1*Q1*n1)/1000000000	0,00000017		
9.Максимальный разовый выброс паров серной кислоты, г / с			
$\Pi1=(M1\text{cyr}*1000000)/(3600*t)$	0,00001		

Разрез "Восточный". Станция Фестивальная.ЖДЦ.УВЖТ. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-30 на 2025-2027 гг. Неорганизованный источник №6115

Наименование показателей	Показатели		
Исходные данные			
1. Чистое в ремя работы паяльником в год ,t,ч	25		
2.Удельное выделение загрязняющих веществ, q, г/с м2			
q1-свинец и его соединения	0,0000075		
q2- олова оксид	0,0000033		
Результаты			
3.Максимальный разовый выброс, г/с			
Mc=q1 - свинец и его соединения	0,0000075		
Мс=q2 * - олова оксид	0,0000033		
4.Валовый выброс за год, т/год			
Мгод=(q1*t*3600)/1000000- свинец и его соединения	0,000001		
Мгод=(q2*t*3600)/1000000- олова оксид	0,0000003		

Разрез "Восточный". Станция Фестивальная. ЖДЦ. Участок вспомогательной железнодорожной техники (УВЖТ). Расчет эмиссий загрязняющих веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник выбросов №6115

Наименование показателей	Показатели	
1	2	
Исходные данные		
1. Масса расходуемых лакокрасочных материалов в год, т		
тф-эмаль ПФ-115	0,01	
тф1-растворитель 646	0,001	
тф2-эмаль НЦ-132	0,015	
2. Максимальный часовой расход, кг		
тм-эмаль ПФ-115	0,5	
тм1-растворитель 646	0,025	
тм2-эмаль НЦ-132	0,5	
3.Состав эмали ПФ-115, %		
q1-ксилол	50	
q2-уайт-спирит	50	
fp-доля летучей части	45	
гр-доля растворителя в ЛКМпри окраске	28	
гр1-доля растворителя в ЛКМпри сушке	72	
п-степень очистки воздуха	0	
4.Состав растворителя 646, %		
q3-ацетон	7	
q4-спирт н-бутиловый	15	
q5-спирт этиловый	10	
q6-бутилацетат	10	
q7-этилцеллозольв	8	
q8-толуол	50	
fp1-доля летучей части	100	
гр2-доля растворителя в ЛКМпри окраске	28	
гр3-доля растворителя в ЛКМпри сушке	72	
п-степень очистки воздуха	0	
5.Состав эмали НЦ-132, %		
q9-ацетон	8	
q10-спирт н-бутиловый	15	
q11-спирт этиловый	20	
q12-бутилацетат	8	
q13-этилцеллозольв	8	
q14-толуол	41	
fp2-доля летучей части	80	
гр4-доля растворителя в ЛКМпри окраске	28	
гр5-доля растворителя в ЛКМпри сушке	72	
п-степень очистки воздуха	0	
Результаты		
5.Валовый выброс летучих веществ за год при окраске, т / год		

Продолжение приложения 153

МІокр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-бутиловый 0.0003 Моср.=(mф1*fp1*rp2*q6+mф2*fp2*rp4*q12)/106*(1-n)-бутилацетат 0.0003 Моср.=(mф1*fp1*rp2*q3+md2*fp2*rp4*q9)/106*(1-n)-ацетон 0.00001 Моср.=(mф1*fp1*rp2*q3+md2*fp2*rp4*q13)/106*(1-n)-толуол 0.00152 Моср.=(mф1*fp1*rp2*q3+md2*fp2*rp4*q13)/106*(1-n)-толуол 0.00052 Моср.=(mф1*fp1*rp2*q3+md2*fp2*rp4*q13)/106*(1-n)-спирт 0.00029 Моср.=(mф1*fp1*rp2*q5+mdp2*fp2*rp4*q13)/106*(1-n)-спирт 0.0007 Моср.=(mф1*fp1*rp2*q5+mdp2*fp2*rp4*q11)/106*(1-n)-спирт 0.00063 Моср.=(mф1*fp1*rp2*q5+mdp2*fp2*rp4*q11)/106*(1-n)-спирт 0.00063 Моср.=(mф1*fp1*rp2*q5/106*(1-n)-килол 0.00063 Моср.=(mф1*fp1*rp2*q4)/106*3,6*(1-n)-спирт 0.00063 0.00	1	2
М20кр.=(mф1*fp1*rp2*q6+mф2*fp2*rp4*q12)/106*(1-n)-ацетон 0,0003 М3окр.=(mф1*fp1*rp2*q3+mф2*fp2*rp4*q9)/106*(1-n)-ацетон 0,00001 М40кр.=(mф1*fp1*rp2*q8+mф2*fp2*rp4*q14)/106*(1-n)-топуол 0,00152 М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)	М1окр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-	
МЗокр.=(mф1*fp1*rp2*q3+mф2*fp2*rp4*q9)/106*(1-n)-ацетон 0.00001 М4окр.=(mф1*fp1*rp2*q8+mф2*fp2*rp4*q14)/106*(1-n)-голуол 0.00152 Мбокр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n) этилиеллозольв 0.00029 Мбокр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q11)/106*(1-n) этилиеллозольв 0.0007 Мбокр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n) О.0007 Мбокр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n) О.0007 Мбокр.=(mф1*fp1*rp2*q5)/106*(1-n) О.0007 Мбокр.=(mф*fp*rp*q1)/106*(1-n) О.0007 Мбокр.=(mф*fp*rp*q1)/106*(1-n) О.0007 О.0008 О.0008 О.0008 О.0008 О.0009 О.0009 О.0008 О.0009 О.0008 О.0009 О.0008 О.0009 О.0	бутиловый	0,00055
М4окр.=(mф1*fp1*rp2*q8+mф2*fp2*rp4*q14)/106*(1-n)-голуол 0,00152 М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)-голуол 0,00029 М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт 0,00029 М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт 0,00063 М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол 0,00063 М8окр.=(mф*fp*rp*q1)/106*(1-n)-уайт-спирит 0,00063 6.Максимальный разовый выброс летучих веществ при окраске, г / с п1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-оутилацетат 0,00378 112=(mф1*fp1*rp2*q4)/106*3,6*(1-n)-оутилацетат 0,003226 113=(mм2*fp2*p4*q9)/106*3,6*(1-n)-оутилацетат 0,00252 113=(mм1*fp1*rp2*q1)/106*3,6*(1-n)-оутилацетат 0,00226 115=(mм1*fp1*pp2*q1)/106*3,6*(1-n)-спирт лицеллозольв 0,00202 116=(mм2*fp1*pp2*q1)/106*3,6*(1-n)-кили тители т	$M2$ окр.= $(m\phi1*fp1*rp2*q6+m\phi2*fp2*rp4*q12)/106*(1-n)$ -бутилацетат	0,0003
М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)- зтиливляютья 0,00029		0,00001
М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)- зтиливляютья 0,00029		0,00152
ЭТИЛИЕЛЛОЗОЛЬВ 0,00029 МОКОР, =(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт этиловый 0,0007 МТОКР, =(mф*fp*rp*q1)/106*(1-n)-ксилол 0,00063 МВОКР, =(mф*fp*rp*q2)/106*(1-n)-уайт-спирит 0,00063 6.Максимальный разовый выброс легучих веществ при окраске, г / с 0,00073 П1=(mM1*fp1*rp2*q6)/106*3,6*(1-n)-спирт п-бутиловый 0,00378 П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-оутилацетат 0,00252 П3=(mM2*fp2*pr4*q9)/106*3,6*(1-n)-лиетон 0,03226 П4=(mM1*fp1*rp2*q8)/106*3,6*(1-n)-литолол 0,0126 П5=(mM2*fp2*rp4*q9)/106*3,6*(1-n)-литололь 0,00202 П6=(mM2*fp1*rp2*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mM*fp1*rp2*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mM*fp1*rp3*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mM*fp1*rp3*q4-mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00074 М3c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-голуол 0,0039 М5c=(mф1*fp1*rp3*q5)/106*(1-n)-ксилол 0,00162 М6c=(mф1*fp1*rp3*q5)/106*(1-n)-ксилол 0,00162	$M5$ окр.= $(m\phi1*fp1*rp2*q7+m\phi2*fp2*rp4*q13)/106*(1-n)-$	
ЭТИЛОВЫЙ 0,0007 МОКр. = (mф*fp*rp*q1)/106*(1-n)-ксилол 0,00063 М80кр. = (mф*fp*rp*q2)/106*(1-n)-уайт-спирит 0,00063 6.Максимальный разовый выброс летучих веществ при окраске, г / с п. с. (md*fp1*rp2*q6)/106*3,6*(1-n)-спирт н-бутиловый 0,00378 П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат 0,00252 113=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-толуол 0,03226 П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-тилисллозольв 0,00202 115=(mм1*fp1*rp2*q1)/106*3,6*(1-n)-тилисллозольв 0,00202 П5=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1134 0,1134 П7=(mm*fp*rp*q1)/106*3,6*(1-n)-килол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 7-Валовый выброс летучих веществ за год при сушке, т / год 0,1134 7-Валовый выброс летучих веществ за год при сушке, т / год 0,0014 М2=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q10)/106*(1-n)-бутилацетат 0,00076 М3=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q14)/106*(1-n)-голуол 0,0039 М5=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q14)/106*(1-n)-голирт этиловый 0,00074 М4=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q14)/106*(1-n)-голирт этиловый 0,00162	этилцеллозольв	0,00029
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол 0,00063 М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит 0,00063 6.Максимальный разовый выброс летучих веществ при окраске, г / с П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт и-бутиловый 0,00378 П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-спирт и-бутиловый 0,00252 П3=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-спирт п-бутиловый 0,00252 П3=(mм2*fp1*rp2*q8)/106*3,6*(1-n)-толуол 0,0126 0,0126 П5=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол 0,0126 П5=(mм1*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1038 П7=(mм*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-килол 0,1134 П8=(mм*fp1*rp2*q2)/106*3,6*(1-n)-килол 0,1134 П8=(mм1*fp1*rp3*q2)/106*3,6*(1-n)-килол 0,1134 П8=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q10)/106*(1-n)-бутилацетат 0,00076 М3=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q10)/106*(1-n)-бутилицелозольв 0,00074 М4=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q14)/106*(1-n)-тилисилозольв 0,00074 М4=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-спирт этиловый 0,00162 М8=(mф1*fp1*rp3*q3/106*(1-n)-килол 0,00162	$M6$ окр.= $(m\phi1*fp1*rp2*q5+m\phi2*fp2*rp4*q11)/106*(1-n)-спирт$	
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит 0,00063	этиловый	0,0007
6.Максимальный разовый выброс летучих веществ при окраске, г / с П1=(mM1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00378 П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат 0,00252 П3=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-ашетон 0,03226 П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-ашетон 0,0126 П5=(mм1*fp1*rp2*q1)/106*3,6*(1-n)-спирт этиловый 0,00202 П6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый 0,1008 П7=(mм*fp1*rp2*q1)/106*3,6*(1-n)-скило 0,1134 П8=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-силот 0,1134 П8=(mw1*fp1*rp3*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 Лаловый выброс летучих веществ за год при сушке, т / год 0,1134 М1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-спирт н-бутиловый 0,0014 М2=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-ашетон 0,00074 М4c=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q13)/106*(1-n)-толуол 0,0039 М5e=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-тилиеллозольв 0,00016 М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с П1=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-спирт н-бутиловы	М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00063
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00378 П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат 0,00252 П3=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-потуол 0,03226 П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол 0,0126 П5=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол 0,0126 П5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-спирт этиловый 0,1008 П7=(mw2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый 0,1008 П7=(mw*fp*rp*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mw*fp*rp*q1)/106*3,6*(1-n)-хсилол 0,1134 П8=(mw*fp*rp*q1)/106*3,6*(1-n)-хсилол 0,1134 П8=(mw*fp*rp*q1)/106*3,6*(1-n)-хсилол 0,1134 П8=(mw1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q13)/106*(1-n)-толуол 0,0039 М5=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-толуол 0,0006 М6=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-толуол 0,0016 М6=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-спирт этиловый 0,0018 М7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8e=(mф*fp*rp1*q2)/106*(1-n)-килол 0,00162 М8e=(mф*fp*rp1*q3*q4)/106*(1-n)-килол 0,00162 М8e=(mф*fp*rp1*q3*q4)/106*(1-n)-гилирт н-бутиловый 0,00162 М8e=(mф1*fp1*rp3*q4)/106*3,6*(1-n)-пирт н-бутиловый 0,00019 П4=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-тилирт н-бутиловый 0,00019 П4=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-тилирт н-бутиловый 0,00019 П4=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-тилирт этиловый 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,00125 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,00125 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,00125 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,001215 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,001215 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,001215 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,001215 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,00054 М2=M20xp.+M2c-голуол 0,00055 М2=M20xp.+M2	М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00063
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	6.Максимальный разовый выброс летучих веществ при окраске, г / с	
ПЗ=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-ацетон 0,03226 П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол 0,0126 П5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-тилцеллозольв 0,00202 П5=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-тилцеллозольв 0,1008 П7=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1134 П8=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М1=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М2=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q13)/106*(1-n)-тилцеллозольв 0,0006 М6=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-спирт этиловый 0,0018 М7=(mф*fp*rp1*q1)/106*(1-n)-каилол 0,00162 М8=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,00162 М8=(mф1*fp1*rp3*q3/106*(1-n)-каилол 0,00162 М8=(mф1*fp1*rp3*q4)/106*(1-n)-каилол 0,00162 П1=(mм1/24*fp1*rp3*q4)/106*(1-n)-каилол 0,00162 П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт н-бутиловый 0,00019 П4=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00015 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00015 М2=М2окр.+М3с-спирт н-бутиловый 0,00015 М2=М2окр.+М3с-спирт н-бути	П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,00378
ПЗ=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-ацетон 0,03226 П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол 0,0126 П5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-тилцеллозольв 0,00202 П5=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-тилцеллозольв 0,1008 П7=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1134 П8=(mм2*fp1*rp2*q1)/106*3,6*(1-n)-килол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М1=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М2=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q13)/106*(1-n)-тилцеллозольв 0,0006 М6=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-спирт этиловый 0,0018 М7=(mф*fp*rp1*q1)/106*(1-n)-каилол 0,00162 М8=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,00162 М8=(mф1*fp1*rp3*q3/106*(1-n)-каилол 0,00162 М8=(mф1*fp1*rp3*q4)/106*(1-n)-каилол 0,00162 П1=(mм1/24*fp1*rp3*q4)/106*(1-n)-каилол 0,00162 П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт н-бутиловый 0,00019 П4=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00015 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00015 М2=М2окр.+М3с-спирт н-бутиловый 0,00015 М2=М2окр.+М3с-спирт н-бути	П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,00252
П5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-отилцеллозольв 0,00202 П6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый 0,1008 П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2с=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-спирт н-бутиловый 0,0014 М2с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-полуол 0,0039 М5с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q13)/106*(1-n)-отилислозольв 0,0006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 М8с=(mф*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00019 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П3=(mм1/24*fp1*p3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-отирт этиловый 0,00054 П7=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-ксилол 0,01215 П8=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-ксилол 0,01215 П8=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-ксилол 0,01215 П8=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-ксилол 0,01215 П8=(mм/24*fp1*p3*q5)/106*3,6*(1-n)-ксилол 0,00195 М1=M1окр.+M1c)-спирт н-бутиловый 0,00075 М1=M1окр.+M1c)-спирт н-бутиловый 0,00075 М2=M2окр.+M3c-ацетон 0,00075 М4=М4окр.+М4c-голуол 0,0035		0,03226
Пб=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый 0,1008 П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-ксилол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт ном 0,0014 М2с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-спирт ном 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-полуол 0,0039 М5с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-спирт этиловый 0,0016 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0016 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0016 М8с=(mф*fp*rp1*q1)/106*(1-n)-уайт-спирит 0,0016 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,0016 М8с=(mф*fp*rp1*q2)/106*(1-n)-опирт ном 0,0016 М8с=(mm1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт ном 0,00019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-спирт ном 0,0019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм2/24*fp*rp1*q2)/106*3,6*(1-n))-ксилол 0,0015 М2=M20кр.+M1c)-спирт ном 0,00075 M2=M20kp.+M3c)-спирт ном 0,00075 M4=M40kp.+M4c)-олуол 0,00035 M3=M30kp.+M3c)-алистат 0,00035 M3=M30kp.+M3c	П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,0126
Пб=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый 0,1008 П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-ксилол 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 П8=(mм1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт ном 0,0014 М2с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q12)/106*(1-n)-спирт ном 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q12)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-полуол 0,0039 М5с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-спирт этиловый 0,0016 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0016 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0016 М8с=(mф*fp*rp1*q1)/106*(1-n)-уайт-спирит 0,0016 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,0016 М8с=(mф*fp*rp1*q2)/106*(1-n)-опирт ном 0,0016 М8с=(mm1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт ном 0,00019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-спирт ном 0,0019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,0015 П8=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм2/24*fp*rp1*q2)/106*3,6*(1-n))-ксилол 0,0015 М2=M20кр.+M1c)-спирт ном 0,00075 M2=M20kp.+M3c)-спирт ном 0,00075 M4=M40kp.+M4c)-олуол 0,00035 M3=M30kp.+M3c)-алистат 0,00035 M3=M30kp.+M3c	$\Pi 5 = (m M1 * fp1 * rp2 * q7)/106 * 3,6 * (1-n) - этилцеллозольв$	0,00202
П8=(mm*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит 0,1134 7. Валовый выброс летучих веществ за год при сушке, т / год М1с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н- 6утиловый 0,0014 М2с=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q13)/106*(1-n)-тилиделлозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-тилиделлозольв 0,00016 М7с=(mф*fp*rp1*q1)/106*(1-n)-килол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-килол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-кийт-спирит 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-кийт-спирит 0,00162 Максимальный разовый выброс летучих веществ при сушке, г / с П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,0019 П4=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n)-килол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))-килол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))-килол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))-килол 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00075 М1=М1окр.+М2с)-бутилацетат 0,00075 М4=М4окр.+М3с-ацетон 0,00075 М4=М4окр.+М3с-ацетон 0,00035 М5=М5окр.+М3с-ацетон 0,00035		0,1008
7. Валовый выброс летучих веществ за год при сушке, т / год 0,0014 М1с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2с=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00066 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с 11=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00027 0,00027 П3=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ацетон 0,00013 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00135 0,00135 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,00135 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,01215 0,001215 П8=(mм/24*fp1*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 0,01215 П8=(mM)/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,01215 0,01215	П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,1134
М1с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2с=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с п1=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-отилацетат 0,00027 0,00027 П3=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-ацетон 0,000135 0,000135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-толуол 0,00135 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00024 П7=(mм/24*fp1*rp3*q5)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp1*rp3*q5)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм24*fp*rp1*q2)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм24*fp*rp1*q2)/106*3,6*(1-n)-голуол 0,0015 <tr< td=""><td>П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит</td><td>0,1134</td></tr<>	П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,1134
М1с=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый 0,0014 М2с=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с п1=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-отилацетат 0,00027 0,00027 П3=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-ацетон 0,000135 0,000135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-толуол 0,00135 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00024 П7=(mм/24*fp1*rp3*q5)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp1*rp3*q5)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм24*fp*rp1*q2)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм24*fp*rp1*q2)/106*3,6*(1-n)-голуол 0,0015 <tr< td=""><td>7.Валовый выброс летучих веществ за год при сушке, т / год</td><td></td></tr<>	7.Валовый выброс летучих веществ за год при сушке, т / год	
бутиловый 0,0014 М2с=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат 0,00076 М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с П1=(mM1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mM1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат 0,00027 0,00027 П3=(mM1/24*fp1*rp3*q8)/106*3,6*(1-n)-ацетон 0,00019 0,00135 П5=(mM1/24*fp1*rp3*q5)/106*3,6*(1-n)-толуол 0,00135 0,00022 П6=(mM1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00024 0,001215 П8=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))-ксилол 0,01215 0,00195 М2=М2окр.+М1с)-спирт н-бутиловый 0,00195 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00054 </td <td></td> <td></td>		
М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с 11=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-тилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mm/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00075 М4=М4окр.+М4с-толуол 0,000542 М5=М5окр.+М5с-этили	бутиловый	0,0014
М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон 0,00074 М4с=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол 0,0039 М5с=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с 11=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-тилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mm/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00075 М4=М4окр.+М4с-толуол 0,000542 М5=М5окр.+М5с-этили	M2c=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат	0,00076
М5с=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв 0,00006 М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с 11=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-тилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,01215 П8=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035		0,00074
М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый 0,0018 M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с 0,00162 П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-спирт н-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	M4c=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол	0,0039
М7с=(mф*fp*rp1*q1)/106*(1-n)-ксилол 0,00162 М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с п1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-ксилол 0,01215 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	M5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв	0,00006
М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит 0,00162 8.Максимальный разовый выброс летучих веществ при сушке, г / с П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-спирт н-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год м1=M1окр.+M1c)-спирт н-бутиловый 0,00195 М2=М2окр.+М2c)-бутилацетат 0,00106 М3=М3окр.+М3c-ацетон 0,00075 М4=М4окр.+М4c-толуол 0,00035	М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,0018
8.Максимальный разовый выброс летучих веществ при сушке, г / с П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00162
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый 0,00041 П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	M8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00162
П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат 0,00027 П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	8. Максимальный разовый выброс летучих веществ при сушке, г / с	
ПЗ=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон 0,00019 П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,00041
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол 0,00135 П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00075 М3=М3окр.+М3с-ацетон 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат	0,00027
П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв 0,00022 П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон	0,00019
П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый 0,00054 П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,00135
П7=(mm/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mm/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035	П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,00022
П7=(mm/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол 0,01215 П8=(mm/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035		0,00054
П8=(mm/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит 0,01215 9.Итого валовый выброс за год, т/год 0,00195 М1=М1окр.+М1с)-спирт н-бутиловый 0,00195 М2=М2окр.+М2с)-бутилацетат 0,00106 М3=М3окр.+М3с-ацетон 0,00075 М4=М4окр.+М4с-толуол 0,00542 М5=М5окр.+М5с-этилцеллозольв 0,00035		0,01215
9.Итого валовый выброс за год, т/год0,00195M1=M1окр.+M1c)-спирт н-бутиловый0,00195M2=M2окр.+M2c)-бутилацетат0,00106M3=M3окр.+M3c-ацетон0,00075M4=M4окр.+M4c-толуол0,00542M5=M5окр.+M5c-этилцеллозольв0,00035		0,01215
M1=M1окр.+M1c)-спирт н-бутиловый0,00195M2=M2окр.+M2c)-бутилацетат0,00106M3=M3окр.+M3c-ацетон0,00075M4=M4окр.+M4c-толуол0,00542M5=M5окр.+M5c-этилцеллозольв0,00035		
M3=M3окр.+M3с-ацетон0,00075M4=M4окр.+M4с-толуол0,00542M5=M5окр.+M5с-этилцеллозольв0,00035	•	0,00195
M3=M3окр.+M3с-ацетон0,00075M4=M4окр.+M4с-толуол0,00542M5=M5окр.+M5с-этилцеллозольв0,00035	1 / 1 /	0,00106
M4=M4окр.+M4с-толуол0,00542M5=M5окр.+M5с-этилцеллозольв0,00035	1 / 2	0,00075
M5=M5окр.+M5с-этилцеллозольв 0,00035	+	,
-	1 2	,
	1	0,0025

Продолжение приложения 153

1	2
М7=М7окр.+М7с-ксилол	0,00225
М8=М8окр.+М8с-уайт-спирит	0,00225
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с)-спирт н-бутиловый	0,00419
П2=П2окр.+П2с)-бутилацетат	0,00279
П3=П3окр.+П3с-ацетон	0,03245
П4=П4окр.+П4с-толуол	0,01395
П5=П5окр.+П5с-этилцеллозольв	0,00224
П6=П6окр.+П6с-спирт этиловый	0,10134
П7=П7окр.+П7с-ксилол	0,12555
П8=П8окр.+П8с-уайт-спирит	0,12555

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)",РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное" . Цех по ремонту топливной аппаратуры. Расчет эмиссий загрязняющих веществ в атмосферу от стенда для опрессовки дизельных форсунок на 2025-2027 гг. Неорганизованный источник №6119

Наименование показателей	Показатели		
Исходные данные			
1.Количество установок для мойки, п, шт	1		
2.Время работы установки в год ,t,ч	200		
3.Удельной выброс углеводородов предельных, q, г/с м2	0,138		
4.Площадь зеркала установки для мойки, S, м2	1		
Результаты			
5.Максимальный разовый выброс, г/с			
$\Pi=q *S$	0,138		
6.Валовый выброс за год, т/год			
M _B =q*S*t*n*3600/1000000	0,09936		

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное" . Цех по ремонту топливной аппаратуры. Расчет эмиссий загрязняющих веществ в атмосферу от стенда для опрессовки дизельных форсунок на 2025-2027 гг. Неорганизованный источник №6118

Наименование показателей	Показатели	
Исходные данные		
1.Количество стендов, п, шт	1	
2. Количество часов работы в год в году, Т,ч	80	
3.Удельное количество углеводородов,		
выделяющихся, q, г/кг	317	
4.Расход дизельного топлива в год,В,кг	36,4	
Результаты		
5.Максимальный разовый выброс, г/с		
П=(Мгод*1000000)/Т*3600	0,04007	
6.Валовый выброс за год, т/год		
$M_B=B*q/1000000$	0,01154	

Наименование показателей	Показатели	
Исходные данные		
1.Количество установок для мойки, п, шт	1	
2.Время работы установки в год ,t,ч	200	
3.Удельной выброс углеводородов предельных, q, г/с м2	0,138	
4.Площадь зеркала установки для мойки, S,м2	0,36	
Результаты		
5.Максимальный разовый выброс, г/с		
$\Pi=q *S$	0,04968	
6.Валовый выброс за год, т/год		
M _B =q*S*t*n*3600/1000000	0,03577	

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное". Автоматный цех. Цех по ремонту вспомогательных машин №2. Идентификация состава выбросов от ванны моечной в дизельном топливе на 2025-2027 гг. Неорганизованный источник №6119

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,1391
2. Максимально-разовые выбросы:	г/с	Мдиз	0,2484
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (С12-С19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,13850187
- максимально-разовый выброс	г/с	Mi	0,24733188
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,00038948
- максимально-разовый выброс	г/с	Mi	0,00069552

Разрез "Восточный". Станция Фестивальная.ДПС "Восточное". Расчет эмиссий загрязняющих веществ в атмосферу при зарядке аккумуляторных батарей на 2025-2027 гг. Неорганизованный источник №6120

Наименование показателей	Показатели		
Исходные данные			
1. Количество зарядок в год кислотных аккумуляторов, а1, шт.	200		
2.Количество зарядок в год щелочных аккумуляторов,а2,шт.	0		
3. Номинальная емкость заряжаемого аккумулятора, А * ч			
Q1-кислотного	450		
Q2-щелочного	0		
4. Цикл проведения зарядки в день, t, ч	11		
5.Удельное выделение паров серной кислоты при зарядке			
аккумуляторных батарей, q1 мг/А*ч	1		
6.Удельное выделение паров щелочи при зарядке аккумуляторных			
батарей,q2 мг/А*ч	0,8		
7. Максимальное количество одновременно заряжаемых батарей, шт.			
n1-кислотных	2		
п2-щелочных			
Результаты			
8.Валовый выброс за год паров серной кислоты, т / год			
M1=(0,9*q1*Q1*a1)/1000000000	0,00008		
9.Валовый выброс за день паров серной кислоты, т / день			
M1cyr=(0,9*q1*Q1*n1)/1000000000	0,000001		
10.Максимальный разовый выброс паров серной кислоты, г / с			
П1=(M1cyт*1000000)/(3600*t)	0,00003		

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу МООС РК от 18.04.08г. № 100-п)

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное". Автоматный цех. Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей в дизельном топливе на 2025-2027 гг. Неорганизованный источник №6119

Наименование показателей	Показатели		
Исходные данные			
1.Количество установок для мойки, п, шт	1		
2.Время работы установки в год ,t,ч	100		
3.Удельной выброс углеводородов предельных, q, г/с м2	0,138		
4.Площадь зеркала установки для мойки, S,м2	0,8		
Результаты			
5.Максимальный разовый выброс, г/с			
$\Pi=q *S$	0,1104		
6.Валовый выброс за год, т/год			
M _B =q*S*t*n*3600/1000000	0,03974		

Разрез "Восточный". Станция Фестивальная. ДПС "Восточное". Цех по ремонту вспомогательных машин №2. Расчет эмиссий загрязняющих веществ в атмосферу от емкости для мойки деталей в масле осевом на 2025-2027 гг. Неорганизованный источник №6119

Наименование показателей	Показатели	
Исходные данные		
1.Количество установок для мойки, п, шт	1	
2.Время работы установки в год ,t,ч	300	
3.Удельной выброс масла минерального, q, г/с м2	0,036	
4.Площадь зеркала установки для мойки, S,м2	0,5	
Результаты		
5. Максимальный разовый выброс масла минерального, г/с		
$\Pi=q *S$	0,018	
6.Валовый выброс за год масла минерального, т/год		
M _B =q*S*t*n*3600/1000000	0,01944	

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонт электрических машин (УРЭМ). Расчет эмиссий загрязняющих веществ в атмосферу от ванны для пропитки обмоток статоров ЭД на 2025-2027 гг. Неорганизованный источник №6121

Наименование показателей	Показатели	
1	2	
Исходные данные		
1. Масса расходуемых лакокрасочных материалов в год, т		
тф-лак МЛ-92	0,0297	
тф1-растворитель 646	0,013	
2. Максимальный часовой расход, кг		
тм-лак МЛ-92	0,055	
тм1-растворитель 646	0,05	
3.Состав лака МЛ-92, %		
q1-ксилол	40	
q2-уайт-спирит	40	
q9-спирт н-бутиловый	10	
q10-спирт изобутиловый	10	
fp-доля летучей части	47,5	
гр-доля растворителя в ЛКМпри окраске	28	
гр1-доля растворителя в ЛКМпри сушке	72	
п-степень очистки воздуха	0	
4.Состав растворителя 646, %		
q3-ацетон	7	
q4-спирт н-бутиловый	15	
q5-спирт этиловый	10	
q6-бутилацетат	10	
q7-этилцеллозольв	8	
q8-толуол	50	
fp1-доля летучей части	100	
гр2-доля растворителя в ЛКМпри окраске	28	
гр3-доля растворителя в ЛКМпри сушке	72	
п-степень очистки воздуха	0	
РЕЗУЛЬТАТЫ		
5.Валовый выброс летучих веществ за год при окраске, т / год		
М1окр.=(mф1*fp1*rp2*q4+mф*fp*rp1*q9)/106*(1-n)-спирт н-		
бутиловый	0,00065	
M2окр.=(mф1*fp1*rp2*q6)/106*(1-n)-бутилацетат	0,00036	
М3окр.=(mф1*fp1*rp2*q3)/106*(1-n)-ацетон	0,00025	
М4окр.=(mф1*fp1*rp2*q8)/106*(1-n)-толуол	0,00182	
М5окр.=(mф1*fp1*rp2*q7)/106*(1-n)-этилцеллозольв	0,00029	
М6окр.=(mф1*fp1*rp2*q5)/106*(1-n)-спирт этиловый	0,00036	
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00158	
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00158	
М9окр.=(mф*fp*rp*q10)/106*(1-n)-спирт изобутиловый	0,0004	
6.Максимальный разовый выброс летучих веществ при окраске, г / с		
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,00756	

Окончание приложения 161

1	2
$\Pi 2 = (m \phi 1 * fp 1 * rp 2 * q6) / 106 * 3,6 * (1-n) - бутилацетат$	0,00504
$\Pi 3 = (m_M 1 * fp 1 * rp 2 * q 3) / 106 * 3,6 * (1-n) - ацетон$	0,00353
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,0252
Π 5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-этилцеллозольв	0,00403
П6=(mм1*fp1*rp2*q5)/106*3,6*(1-n)-спирт этиловый	0,00504
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,01053
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,01053
П9=(mм*fp*rp*q10)/106*3,6*(1-n)-спирт изобутиловый	0,00677
7.Валовый выброс летучих веществ за год при сушке, т / год	
М1с=(mф1*fp1*rp3*q4+mф*fp*rp*q10)/106*(1-n)-спирт н-	
бутиловый	0,00242
M2c=(mф1*fp1*rp3*q6)/106*(1-n)-бутилацетат	0,00094
М3с=(mф1*fp1*rp3*q3)/106*(1-n)-ацетон	0,00066
М4с=(mф1*fp1*rp3*q8)/106*(1-n)-толуол	0,00468
M5c=(mф1*fp1*rp3*q7)/106*(1-n)-этилцеллозольв	0,00075
М6c=(mф1*fp1*rp3*q5)/106*(1-n)-спирт этиловый	0,00094
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00406
M8c=(mф*fp1*rp1*q2,)/106*(1-n)-уайт-спирит	0,00406
M9c=(mф*fp*rp1*q10,)/106*(1-n)-спирт изобутиловый	0,00268
8.Максимальный разовый выброс летучих веществ при сушке, г/с	0,00188
$\Pi1=(mм1/24*fp1*rp3*q4+mм/24*fp*rp1*q15)/106*3,6*(1-n)-спирт н-$	
бутиловый	0,00109
$\Pi 2 = (mM1/24*fp1*rp3*q6)/106*3,6*(1-n)$ -бутилацетат	0,00054
$\Pi 3 = (mM1/24*fp1*rp3*q3)/106*3,6*(1-n)$ -ацетон	0,00038
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,0027
$\Pi 5 = (m M 1/24 * fp1 * rp3 * q7)/106 * 3,6 * (1-n)$ -этилцеллозольв	0,00043
$\Pi6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)$ -спирт этиловый	0,00054
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,00113
$\Pi 8 = (m M/24 * fp * rp1 * q2)/106 * 3,6 * (1-n) - yaйт-спирит$	0,00113
П9=(mм/24*fp*rp1*q10)/106*3,6*(1-n)-спирт изобутиловый	0,00028
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с	0,00307
М2=М2окр.+М2с	0,0013
М3=М3окр.+М3с	0,00091
М4=М4окр.+М4с	0,0065
М5=М5окр.+М5с	0,00104
М6=М6окр.+М6с	0,0013
М7=М7окр.+М7с	0,00564
М8=М8окр.+М8с	0,00564
М9=М9окр.+М9с	0,00308

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)",РНД 211.2.02.05-2004

Разрез "Восточный". Станция Восточная. Транспортный цех. ТЦ.Тракторнобульдозерный участок (ТБУ). Расчет выбросов вредных веществ при газовой резке металла на 2025-2027 гг. Неорганизованный источник выбросов №6123

Наименование показателей	Показатели	
Исходные данные по газовой резке		
1. Количество часов работы в год, Т1, ч	610	
2.Удельное выделение загрязняющих веществ при газовой резке стали		
углеродистой толщиной 5мм, г/с		
К1-оксиды марганца	0,00064	
К2-оксид углерода	0,014	
К3-диоксид азота	0,0136	
Результаты		
3.Валовый выброс за год,т/год		
М1=Т1*3600*К1/1000000 -оксиды марганца	0,00141	
М3=Т1*3600*К2/1000000 -оксид углерода	0,03074	
М4=(Т1*3600*К3/1000000 - диоксид азота	0,02987	
4.Максимальный разовый выброс,г/с		
П1=К1 -оксиды марганца	0,00064	
П3=К2 -оксид углерода	0,014	
П4=К3 -диоксид азота	0,0136	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө".