РЕСПУБЛИКА КАЗАХСТАН TOO «SAKEN 23»

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

к рабочему проекту:

«Строительство здания печи по уничтожению (сжиганию) медицинских отходов (сжечь) по адресу:Мангистауская область, Мунайлинский район, Баяндинский с.с., с. Баянды, промышленная зона 1, участок 113/3.

(без сметной документации и наружных инженерных сетей).»

ИП Кушенова С.М.

АННОТАЦИЯ

Настоящий Отчет о возможных воздействиях на окружающую среду выполнен по материалам рабочего проекта «Строительство здания печи по уничтожению (сжиганию) медицинских отходов (сжечь) по адресу:Мангистауская область, Мунайлинский район, Баяндинский с.с., с. Баянды, промышленная зона 1, участок 113/3. (без сметной документации и наружных инженерных сетей)» в соответствии с требованиями Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280 «Об утверждении Инструкции по организации и проведению экологической оценки»(с изменениями и дополнениями от 26.10.2021 г.).

Заказчик — Товарищество с ограниченной ответственностью «Saken 23». Мангистауская область, г. Актау, 16 микрорайон, дом 49, офис 88; БИН 240 340 024 036. телефоны: +7(701) 138 8204, электронный адрес: shamshi94@mail.ru.

Разработчик рабочего проекта — Товарищество с ограниченной ответственностью «Best project engineering» (Государственная лицензия №24036643 от 30 декабря 2024г на занятие проектной деятельностью II категории (в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»), выдана государственным учреждением "Управление государственного архитектурно-строительного контроля Атырауской области".

Рабочий проект объекта выполнен с соблюдением действующих нормативных стандартов, позволяющий правильное функционирование всего комплекса строительства.

Основанием для проектирования является задание на проектирование и договор на выполнение проектно сметной документации, заключенный между ТОО «Saken 23» и ТОО «Best project engineering». Задание на проектирование утверждено руководителем ТОО «Saken 23» Тилеубаевой Б.Б.

Разработчик Отчета о возможных воздействиях на окружающую — ИП «Кушенова С.М. (Государственную лицензия на осуществление деятельности по природоохранному проектированию и нормированию № 01796Р, выданного Министерством охраны окружающей среды 31 марта 2008 года).

Оценка воздействия проектируемых работ на окружающую среду предназначена для выявления, анализа и оценки потенциальных предварительных воздействий на окружающую среду при строительстве и эксплуатации проектируемого объекта.

Отчет о возможных воздействиях на окружающую среду производится в целях определения экологических и иных последствий вариантов принимаемых управленческих и хозяйственных решений, разработки рекомендаций по оздоровлению окружающей среды, предотвращению уничтожения, деградации, повреждения и истощения естественных экологических систем и природных ресурсов.

Для организации процесса выявления возможных существенных воздействий намечаемой деятельности на окружающую среду, в ходе оценки воздействия на окружающую среду, как инициатор намечаемой деятельности ТОО «Saken 23» было подано Заявление о намечаемой деятельности №КZ74RYS01308733 от 18.08.2025г в Комитет экологического регулирования и контроля министерства экологии и природных ресурсов РК.

По результатам Заявления о намечаемой деятельности будет получено Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности № KZ03VWF00429329 от 25.09.2025г.

Согласно данного Заключения необходимо проведение обязательной оценки воздействия на окружающую среду согласно ст.72 Экологического Кодекса Республики Казахстан и Приложением 2 к Инструкции по организации и проведению экологической оценки, утвержденной приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280.

СОДЕРЖАНИЕ

АННОТАЦИЯ	2
1 ВВЕДЕНИЕ	6
2 ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕ ДЕЯТЕЛЬНОСТИ	
2.1 Климатические условия	
2.2 Характеристика состояния почв	16
2.3 Современное состояние растительности	
2.4 Современное состояние животного мира	
2.5 Социально-экономическая сфера и экономика региона	
3 ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ	ДЛЯ
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ. ОСНОВНЫЕ ПРОЕКТ	ТНЫЕ
РЕШЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
3.1 Генеральный план	
3.2 Технологическая часть	
3.2.1 Медицинские отходы	28
3.2.2 Инсинератор Веста плюс	
3.2.3 Система очистки продуктов сгорания	30
3.3 Электроснабжение	33
4. ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ	
1211191191111	34
5 ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕН	
СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ СТРОИТЕЛЬНЕ	
PAGOT	
6 ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕО	CIBE
ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ НЕГАТИВНЫХ АНТРОПОГЕН ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВО	
ЭКСПЛУАТАЦИЕЙ ОБЪЕКТОВ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕ	
ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗ	
ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГНИТ	ДУЛ, ИЫЕ
ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ	
6.1 Атмосферный воздух	
6.1.1 Характеристика объекта как источника загрязнения атмосферы	
6.1.2 Расчет выбросов загрязняющих веществ в атмосферу.	
6.1.3 Анализ уровня загрязнения атмосферного воздуха	
6.1.4 Размер санитарно-защитной зоны	
6.1.5 План – график контроля за соблюдением нормативов ПДВ на источнике выбросов	
6.2 Поверхностные и подземные воды	
6.2.1 Краткая характеристика источников водоснабжения, поверхностных и подземны	
района строительства	
6.2.2 Характеристика источников воздействия на поверхностные и подземные воды	63
6.2.3 Оценка воздействия на поверхностные и подземные воды	64
6.2.4 Мероприятия по охране и рациональному использованию водных ресурсов	66
6.3 Воздействие на земельные ресурсы и почвенный покров	66
6.3.1 Состоянии и условия землепользования	
6.3.2 Инженерно-геологические изыскания	
6.3.3 Мероприятия по уменьшению воздействия на почвенный покров.	
6.4 Физические воздействия	
6.4.1 Шум	
6.4.2 Вибрация	73

6.4.3 Электромагнитные	
6.4.4 Радиационная обстановка.	76
7 ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛІ	ИЧЕСТВЕ
ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬО	
ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
ЧИСЛЕ ОТХОДОВ, ОБРАЗУЕМЫХ В РЕЗУЛЬТАТЕ ОСУЩЕСТ	
ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУ	
ОБОРУДОВАНИЯ.	
7.1 Управление отходами	
7.2 Классификатор отходов	79
7.3 Объем образования отходов при строительных работах	
7.4 Объем образования отходов при эксплуатации проектируемого объекта	
7.6 Производственный контроль при обращении с отходами	
7.7 Мероприятия по минимизации объёмов и снижению токсичности отходов произ	
потребления	
8 ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБ	
КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙ	
НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
8.1 Методика оценки воздействия на природную окружающую среду в штатной ситуац	
8.2 Оценка воздействия на компоненты окружающей среды	
8.2.1 Оценка воздействия на компоненты атмосферного воздуха	
8.2.2 Воздействия на поверхностные и подземные воды	
8.2.3 Оценка воздействия на почвенный покров	
8.2.4. Оценка воздействия на растительность	
8.2.5 Оценка воздействия на животный мир	
8.2.6 Оценка воздействия на геологическую среду	
8.2.7 Оценка воздействия отходов на окружающую среду	
8.3 Комплексная оценка воздействия на окружающую среду	
8.4 Оценка воздействия на социально экономические условия и здоровье населения	
8.4.1 Методика оценки воздействия на социально-экономическую среду	
Критерии оценки воздействия на социально-экономическую сферу	
8.4.2 Оценка воздействия на социальную среду	
9 ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВ	ВАРИЙ И
ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ	103
10 ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДА ЭКСПЛУАТАЦИИ О	ОБЪЕКТА
МЕР ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ ВЫЯВ	
СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТ	
ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИСЛЕ ПРЕДЛАГАЕМЫХ МЕРОПРИЯ	
УПРАВЛЕНИЮ ОТХОДАМИ, А ТАКЖЕ ПРИ НАЛИЧИИ НЕОПРЕДЕЛЕНЬ	
ОЦЕНКЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ – ПРЕДПОЛАГАЕМ	
ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ	108
ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ11 МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ	112
12 ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУ	Ю СРЕДУ
И ОБОСНОВАНИЕ НЕОБХОДИМОСТИ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛ	ЕКУЩИХ
ТАКИЕ ВОЗДЕЙСТВИЯ, В ТОМ ЧИСЛЕ СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПО	ТЕРЬ ОТ
НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЦ	ите хид
ПОТЕРИ, В ЭКОЛОГИЧЕСКОМ, КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИ	АЛЬНОМ
KOHTEKCTAX	114
13 ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО А	
ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧ	
ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ	115
14 СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА	
ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ОПРЕДЕЛЕННЫЕ НА НАЧ	
СТАДИИ ЕЕ ОСУЩЕСТВЛЕНИЯ	

15 ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМ	ЮЙ
ДЕЯТЕЛЬНОСТИ С УЧЕТОМ ЕЕ ОСОБЕННОСТЕЙ И ВОЗМОЖНОГО ВОЗДЕЙО	
ОКРУЖАЮЩУЮ СРЕДУ, ВКЛЮЧАЯ ВАРИАНТ, ВЫБРАННЫЙ ИНИЦИАТОРО)M
НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ДЛЯ ПРИМЕНЕНИЯ, ОБОСНОВАНИЕ ЕГО В	ЫБОРА,
ОПИСАНИЕ ДРУГИХ ВОЗМОЖНЫХ РАЦИОНАЛЬНЫХ ВАРИАНТОВ, В ТОМ Ч	ЧИСЛЕ
РАЦИОНАЛЬНОГО ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРІ	
ОХРАНЫ ЖИЗНИ И (ИЛИ)ЗДОРОВЬЯ ЛЮДЕЙ, ОКРУЖАЮЩЕЙ СРЕДЫ	
16 ОПИСАНИЕ ТРУДНОСТЕЙ, ВОЗНИКШИХ ПРИ ПРОВЕДЕНИИ ИССЛЕДО	
СВЯЗАННЫХ С ОТСУТСТВИЕМ ТЕХНИЧЕСКИХ ВОЗМОЖНОО	
НЕДОСТАТОЧНЫМ УРОВНЕМ СОВРЕМЕННЫХ НАУЧНЫХ ЗНАНИЙ	
17 ОПИСАНИЕ МЕТОДОЛОГИИ ИССЛЕДОВАНИЯ И СВЕДЕНИЯ ОБ ИСТ	
ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИ	
О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ	120
18. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ	
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЕ 1	
РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	
ПРИЛОЖЕНИЕ 2	
СПРАВКА РГУ «МАНГИСТАУСКАЯ ОБЛАСТНАЯ ТЕРРИТОРИАЛЬНАЯ ИН	
ЛЕСНОГО ХОЗЯЙСТВА И ЖИВОТНОГО МИРА» ОБ ОТСУТСТВИИ ЖИВ	
РАСТЕНИИ ЗАНЕСЕННЫХ В КРАСНУЮ КНИГУ	
ПРИЛОЖЕНИЕ 3	197
ДОКУМЕНТЫ ЗЕМЕЛЬНОГО УЧАСТКА	
ПРИЛОЖЕНИЕ 3	198
ПАСПОРТА ОБОРУДОВАНИЙ	
ПРИЛОЖЕНИЕ 4	
писполис	212

1 ВВЕДЕНИЕ

Отчет о возможных воздействиях намечаемой деятельности на окружающую среду выполнен по материалам рабочего проекта «Строительство здания печи по уничтожению (сжиганию) медицинских отходов (сжечь) по адресу:Мангистауская область, Мунайлинский район, Баяндинский с.с., с. Баянды, промышленная зона 1, участок 113/3. (без сметной документации и наружных инженерных сетей)».

Согласно, статьи 65 Экологического Кодекса Республики Казахстан Оценка воздействия на окружающую среду является обязательной: для видов деятельности и объектов, перечисленных в разделе 1 приложения 1 к настоящему Кодексу с учетом указанных в нем количественных пороговых значений (при их наличии).

Проектные решения, представляемые намечаемую деятельность, согласно Приложения 2 к Экологическому кодексу, пункт 6, подпункты 6.3. «объекты, на которых осуществляются операции по обезвреживанию опасных отходов; и 6.4 «объекты, на которых осуществляются операции по обеззараживанию, обезвреживанию и (или) уничтожению биологических и медицинских отходов» относятся ко ІІ-ой категории.

Срок проведения строительных работ по данного объекта ориентировочно составляет 3,0 месяца с начала и до завершения работ. Начало и окончание строительства -3-4 квартал 2025 года.

При разработке отчета о возможных воздействиях были проработаны и учтены выводы, отраженные в *Заключении* об определении сферы охвата оценки воздействия на окружающую среду:

- 1.Необходимо Проект отчета о воздействии оформить в соответствии со ст.72 Экологического Кодекса Республики Казахстан (далее Кодекс) и Приложением 2 к Инструкции по организации и проведению экологической оценки, утвержденной приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280 (далее Инструкция);
- 2.Представить ситуационную карту-схему расположения объекта, отношение его к водным объектам, жилым застройкам (Приложение 1 к «Правилам оказания государственных услуг в области охраны окружающей среды» от 2 июня 2020 года № 130);
- 3.Необходимо включить информацию относительно расположения проектируемого объекта и источников его воздействия к жилой зоне, розы ветров, СЗЗ для строящегося объекта в соответствии с требованиями по обеспечению безопасности жизни и здоровья населения. Согласно пп.2 п.4 ст. 46 Кодекса о здоровье народа и системе здравоохранения проводится санитарно-эпидемиологическая экспертиза проектов нормативной документации по предельно допустимым выбросам и предельно допустимым сбросам вредных веществ и физических факторов в окружающую среду, зонам санитарной охраны и санитарно-защитным зонам;
- 4. Дать подробное описание технологического процесса с количественными и качественными характеристиками на каждом этапе, включая процедуру обращения с отходами на этапе поступления до сжигания, с целью исключения выбросов (запахов);
- 5.Провести классификацию всех отходов в соответствии с «Классификатором отходов» утвержденным Приказом и.о. Министра экологии, геологии и природных ресурсов РК от 6 августа 2021 года № 314 и определить методы переработки, утилизации всех образуемых отходов;
- 6. Предусмотреть объекты временного накопления отходов в соответствии с требованиями законодательства РК, для безопасного хранения и недопущения смешивания отходов;
- 7.В соответствии с пунктом 1 статьи 321 Кодекса под накоплением отходов в процессе сбора понимается хранение отходов в специально оборудованных в соответствии с требованиями законодательства Республики Казахстан местах, в которых отходы, вывезенные с места их образования, выгружаются в целях их подготовки к дальнейшей транспортировке на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению. В этой связи, привести описание мест накопления отходов в отдельности по каждому классу (A, Б, В) планируемого пункта по утилизации отходов, в том числе учесть требования статьи 320 Кодекса;
- 8. Необходимо описать процесс транспортировки опасных отходов. Предусмотреть альтернативные варианты размещения проектируемого объекта в целях соблюдения п. 1 статьи 345 Кодекса, указать расстояние от места образования отходов до объекта;

- 9.Необходимо предусмотреть установку очистки газов, соответствующую требованиям законодательства Республики Казахстан СТ РК 3498-2019 на планируемой печи, а также дать подробную характеристику данной установке, описать технологическую схему работы установки очистки газа, указать ее вид и эффективность очистки газов, а также обосновать ее эффективность, принять соответствующие коэффициенты очистного оборудования в расчетах;
- 10.При осуществлении намечаемой деятельности необходимо исключить риск негативного воздействия для вод, в том числе подземных, атмосферного воздуха, почв, животного и растительного мира;
- 11. При осуществлении хозяйственной и иной деятельности на земельном участке соблюдать строительные, экологические, санитарно-гигиенические и иные специальные требования (нормы, правила, нормативы);
- 12. При реализации намечаемой деятельности необходимо учесть требования стандартов РК в области управления отходами;
- 13.Предоставить полный перечень отходов, подлежащих утилизации на проектируемом объекте и предполагаемый объем утилизируемых отходов по видам. Необходимо описать процесс сортировки отходов до его утилизации, подробно описать технологический процесс утилизации отходов. Указать место хранения отходов до их утилизации, а также учесть гидроизоляцию мест размещения отходов.
- 14. Согласно приложению 4 к Кодексу и Санитарных правил «Санитарно эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утверждены Приказом и.о. Министра здравоохранения РК от 11 января 2022 года, предусмотреть озеленение санитарно-защитной зоны со стороны жилой застройки;
- 15.В соответствии с п.4 статьи 72 Кодекса, проект отчета о возможных воздействиях должен быть подготовлен с учетом содержания заключения об определении сферы охвата оценки воздействия на окружающую среду.
- 16.Проект отчета о возможных воздействиях необходимо направить согласно статьи 72 Кодекса, в рамках государственной услуги «Выдача заключения по результатам оценки воздействия на окружающую среду» в соответствии с приложением 4 к Правилам оказания государственных услуг в области охраны окружающей среды утвержденной приказом МЭГПР РК от 02.06.2020 г. № 130 (далее Правила).

Вместе с этим были учтены замечания и предложения Департамента экологии по Мангистауской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан:

- 1. Провести анализ текущего состояния компонентов окружающей среды на территории и (или) в акватории, в пределах которых предполагается осуществление намечаемой деятельности, а также результаты фоновых исследований, если таковые имеются у инициатора. Необходимо представить актуальные данные.
 - 2. Отходы производства и потребления.
- 2.1. Провести анализ и инвентаризацию всех образуемых отходов производства и потребления при осуществлении деятельности.
- 2.2. Определить классификацию и методы переработки, утилизации всех образуемых отходов.
- 2.3. Предусмотреть объекты временного накопления отходов в соответствии с требованиями законодательства РК, для безопасного хранения и недопущения смешивания отходов.
- 2.4. Предусмотреть мероприятия по недопущению образования опасных отходов или снижению объемов образования. 3. Провести инвентаризацию выбросов загрязняющих веществ с указанием объема, класса опасности и источника 3В.
 - 3.1. Предусмотреть мероприятия по охране атмосферного воздуха.
- 4. В целях охраны земель собственники земельных участков и землепользователи обязаны проводить мероприятия по: 1) защите земель от водной и ветровой эрозий, селей, оползней, подтопления, затопления, заболачивания, вторичного засоления, иссушения, уплотнения, загрязнения радиоактивными и химическими веществами, захламления, биогенного загрязнения,

а также других негативных воздействий; 2) защите земель от заражения карантинными объектами, чужеродными видами и особо опасными вредными организмами, их распространения, зарастания сорняками, кустарником и мелколесьем, а также от иных видов ухудшения состояния земель; 3) ликвидации последствий загрязнения, в том числе биогенного, и захламления; 4) сохранению достигнутого уровня мелиорации; 5) рекультивации нарушенных земель, восстановлению плодородия почв, своевременному вовлечению земель в оборот.

- 5. Разработать план действии при аварийных ситуациях по недопущению и (или) ликвидации последствии загрязнения окружающей среды (загрязнении земельных ресурсов, атмосферного воздуха и водных ресурсов) по отдельности.
- 6. При реализации намечаемой деятельности необходимо соблюдать требования статьи 377 Экологического кодекса Республики Казахстан, устанавливающей экологические требования в области управления медицинскими отходами.

2 ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ.

В административном отношении проектируемый объект находится в Мангистауской области Республики Казахстан, на территории Мунайлинского района, села Баянды.

Мангистаунская область на западе граничит с Каспийским морем, с северо-восточной части находятся Атырауская и Актюбиснкая области. С южной стороны у области общие границы с Туркменией, с восточной – Узбекистаном.

Область как административная единица была восстановлена в 1990 году. В составе числились только Бейнеуский, Ералиевский, Мангистауский районы. Четвертый, Тупкараганский район, образовали в 1992 году, а в 1993 сменили название Ералиевского района на Каракиянский. Мунайлинский район восстановили только в 2007 году.

Площадь области составляет 165642 квадратных километра, что составляет 6,1 процента от общей площади, занимаемой Казахстаном. Население на 1 июля 2025 года — 812899 человек. Преобладающую часть населения составляют казахи — примерно 85 процентов от общего количества проживающих в области. Второе место занимают русские — 8,5 процентов, затем азербайджанцы — 1 процент. Украинцы, лезгины, татары — примерно 0,5 процента. Армяне, чеченцы, корейцы, узбеки, немцы, белорусы, киргизы и представители других национальностей — от 0,01 до 0,5 процента.

На сегодняшний день в области числятся два города областного значения, Актау как столица и Жанаозен, и пять районов:

- 1. Мунайлинский с центром в селе Мангистау.
- 2. Бейнеуский, центр село Бейнеу.
- 3. Тупкараганский, центр город Форт-Шевченко.
- 4. Мангистауский, центр село Шетле.
- 5. Каракиянский, центр село Курык.

Столица области – город Актау, который одновременно является портом в Каспийское море. В городе находится аэропорт международного значения.

Мунайлинский район — район на западе Мангистауской области, вокруг города Актау. Площадь района составляет 4922 квадратных километра. Численность населения района на 1 июля 2025г составляет 173239 человек.

Созданный в июне 2007 года для решения проблем оралманов район состоит из пяти сельских округов и двух сёл: Кызылтобе, Даулет, Атамекен, Баскудык, Батыр, Баянды и – административный центр – Мангистау.

На территории района находятся памятники природы, истории и археологии. В числе современных достопримечательностей находится памятник батыру Шогы Муналулы, установленный и открытый в 2011 году.

Мангистау — село, административный центр Мунайлинского района. Расположено в 20 км от города Актау. Железнодорожная станция Мангистау на линии Бейнеу — Жанаозен, ограничивающей село с юга.

Численность населения села Мангистау на 1 июля 2025г составляет более 36 тыс. человек. Площадь села Мангистау — 3063 га. В состав территории с. Мангистау входят жилые массивы Ак Еспе, Бозжыра, Айракты, Шеркала, Бесшокы.

Проектируемая объект в административном отношении находится в с. Баянды Мунайлинского района, промышленная зона №1, участок 113/3. Площадь села Баянды — 224 га. В состав территории с. Баянды входят жилые массивы: Баянды-2, Баянды-3; ул.Достык; Емир, Илі,Нурлаев Ж, Сарытобе крестьянское хозяйство, Ынтымак, №16 разъезд, Баянды-куйылыс тас жолы. Главные отрасли промышленности — сельское хозяйство, производство бетона, газоблоков.

Территория используется по целевому назначению, согласно акта на право временного возмездного землепользования, выданный отделом Мунайлинского района по регистрации и земельному кадастру Филиала некоммерческого акционерного общества «Государственная корпорация «Правительство для граждан» по Мангистауской области» от 02 декабря 2024 года № 2024-3230942, кадастровый номер 13-203-087-2897. Площадь земельного участка 0,2га.

На рис. 2.2 представлены обзорная карта района проектируемых работ.

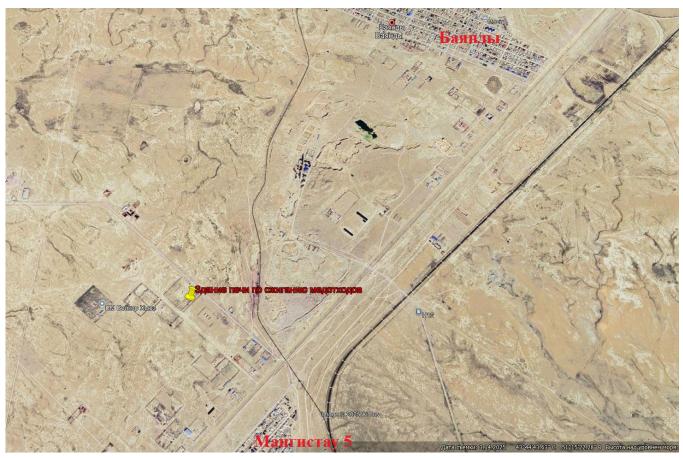


Рис.2.2 Обзорная карта

Местоположение проектируемого участка относительно жилых зон характеризуется следующим образом:

- с севера-восточном направлении жилой массив Баянды на расстоянии 3 километров.
- в юго-восточном направлении на расстоянии около 4 км расположен жилой массив Даулет и далее на расстоянии до 7 км от участка село Бирлик.
- в южном направлении на расстоянии до 2 км располагается жилой массив Мангистау-3, Мангистау -4:
- в юго-западном направлении на расстоянии до 7 км. расположен жилой массив Баскудук, на расстоянии до 9,0 км село Атамекен; на расстоянии более 10 км г. Актау.
 - в северо-западном направлении на расстоянии до 20 км расположено село Акшукур.

На рисунке 2.3 представлено взаимное расположение производственных баз и жилых зон относительно проектируемого участка ТОО «Saken-23».

Рис. 2.3 Обзорная карта с взаимным расположением жилых зон по отношению к проектируемому участку

Географические координаты угловых точек площади представлен в таблице 2.1.

 Угловые точки
 Географические координаты

 Северная широта
 Восточная долгота

 1
 43°44'13.08"C
 51°16'51.83

 2
 43°44'12.63"C
 51°16'52.49"B

 3
 43°44'17.87"C
 51°16'57.65"B

43°44'17.47"C

Таблица 2.1

51°16'58.32"B

2.1 Климатические условия

Климат района расположения объекта формируется под влиянием арктических, иранских и туранских воздушных масс.

Для рассматриваемого района характерными являются условия засушливого климата с резкими колебаниями температуры и большим дефицитом влажности, определяющие особенности формирования подземных вод.

На климат региона влияет несколько типов воздушных масс: холодные арктические, влажные морские атлантические, влажные морские средиземноморские и континентальные из районов Центральной и Западной Сибири.

На сезонные изменения климата в регионе в большой степени сказывается местоположение и интенсивность центров действия атмосферы (ЦДА): постоянных ЦДА - Азорского максимума (антициклона) и Исландского минимума (циклона) и сезонных - Сибирского (Монгольского) антициклона и Среднеазиатской депрессии (Ташкентский минимум).

В холодный период года большое влияние на погоду и климат Прикаспийского региона оказывает отрог Сибирского антициклона. В теплый период года Сибирский антициклон ослабевает, и основными погодообразующими факторами становятся Исландский минимум, Азорский максимум и Среднеазиатская депрессия. В зависимости от интенсивности того или иного ЦДА формируются и погодные условия региона: дождливо и прохладно, при активном Исландском минимуме и Среднеазиатской депрессии, и наоборот, жарко и засушливо при развитом Азорском максимуме. Распределение давления над Средним Каспием связано с изменением циркуляции атмосферы над всем Евроазиатским континентом.

В связи с тем, что объект расположен на границе условно выделенных северо-восточного климатического района и климатического района полуострова Мангышлак, географическое положение, условия атмосферной циркуляции и соотношение площади прилегающей акватории моря являются основными климатообразующими факторами рассматриваемой территории.

Основными характерными чертами данного климата являются преобладание антициклональных условий в течение года, значительные амплитуды температуры воздуха, как в годовом цикле, так и суточном, жесткий ветровой режим и дефицит осадков. Большая амплитуда между средними месячными температурами воздуха самого холодного и самого жаркого месяцев года (МС Форт Шевченко 26,6°С) указывает на степень континентальности климата района. Континентальность климата несколько смягчается на побережной полосе под влиянием Каспийского моря.

Переход среднесуточной температуры воздуха через 0° С в сторону понижения, означающий начало зимы, приходится на середину декабря - начало января. Переход среднесуточной температуры воздуха через 20° С в сторону повышения означающий начало лета, приходится на конец мая (МС Форт Шевченко).

Средние даты появления снежного покрова приходятся в Ф. Шевченко на 22 XII, схода снежного покрова - 6 III. Устойчивый снежный покров бывает не во все зимы, поэтому зимы с неустойчивым снежным покровом составляют - 98%.

Температурный режим. В суточном ходе температуры отмечается один максимум и один минимум. На побережье моря максимум суточной температуры воздуха приходится на 14 - 15 часов зимнего времени, а минимум на угренние часы (5-7 часов). Наибольшие внугри суточные колебания температуры воздуха могут достигать 13°C в летние месяцы. Под влиянием бризовой циркуляции суточные колебания в прибрежных районах могут уменьшаться на 1 - 2°C. Зимой суточные колебания уменьшаются до 7 - 10°C.

В таблице 2.1.1 представлены данные о среднемесячной температуре воздуха по ближайшим пунктам наблюдения.

Таблица 2.1.1- Средняя месячная температура воздуха, °С

Пункт наблюдения	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
о. Кулалы	-1,7	-2,5	2,7	11,7	17,2	23,9	26,2	25,3	18,7	11,3	3,6	-0,5	12,0
Ф. Шевченко	-0,3	-0,5	4,2	11,5	17,5	23,5	26,1	25,0	19,9	13,2	5,9	1,1	12,4

Анализ хода среднемесячной температуры воздуха показывает, что самыми холодными месяцами являются январь - февраль, а самым жарким - июль.

Средний абсолютный максимум наблюдается в июне - августе и составляет 40 - 42° C на МС Ф. Шевченко. На о. Кулалы средний абсолютный максимум в температуре воздуха приходится на эти же месяцы, но он несколько ниже и составляет 36 - 39° C. Средний абсолютный минимум наблюдается в феврале и равен соответственно минус 23 на МС Ф. Шевченко и минус 26° C на о. Кулалы.

Влажность воздуха. Годовой ход влажности отражает континентальные условия климата северо-восточного Каспия. Среднее парциальное давление водяного пара, характеризующее абсолютную влажность зимой над северо-восточным Каспием, составляет 3 - 4гПа, летом - 21+23гПа, поэтому в зимний период абсолютное содержание влаги в воздухе надо льдом очень мало, а в летний период, наоборот, оно достигает максимальных значений. Годовой ход парциального давления соответствует годовому ходу температуры воздуха.

Сезонный ход относительной влажности имеет противоположную тенденцию. Зимой высокая относительная влажность (80-85%), летом довольно низкая (47-63%). Относительная влажность воздуха увеличивается от побережья к открытому морю. Близость пустынь к восточному побережью Каспия приводит к высушиванию воздуха в этих районах. Годовой ход значений относительной влажности по МС Ф. Шевченко приведен в таблице 2.1.2.

Таблица 2.1.2- Влажность воздуха

Месяцы	I	II	Ш	IV	V	VI	VII	VII		X		XI	год
Относит, влажность, %	79	78	75	67	65	65	65	61	60	66	72	77	69

Атмосферные осадки. Для побережья северо-восточного Каспия характерен среднеазиатский (пустынный) тип годового хода осадков. Колебания количества осадков могут быть значительны от года к году и от месяца к месяцу. Во влажные месяцы осадков может выпадать до двух месячных норм, а в засушливые - менее 20% от месячной нормы.

Большая часть осадков (около 65 - 70%) выпадает в виде дождя, около 10 - 15% осадки носят смешанный характер (дождь, снег) и около 15 - 20% осадков выпадает в виде снега (Научноприкладной справочник по климату, вып. 18).

Наибольшая продолжительность осадков в году около 25 - 35 час. наблюдается в осеннезимний период, когда они носят обложной характер. Летом продолжительность осадков значительно уменьшается, дожди бывают чаще кратковременными, продолжительность их уменьшается до 7 - 10 часов, а иногда они выпадают в виде ливней и продолжительность их бывает не более 1 - 3 часов.

Таблица 2.1.3 характеризует годовой ход осадков по месяцам для МС Кулалы и Форт Шевченко. В годовом ходе осадков видны два максимума: апрель - май и сентябрь - ноябрь.

Таблица 2.1.3- Среднемесячное количество осадков по месяцам (мм)

Станция	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
о. Кулалы	10	5	13	18	21	10	13	15	15	6	19	9	154
Форт-Шевченко	6	6	12	16	13	13	12	8	12	9	13	10	130

Минимальное количество осадков отмечается в самые холодные месяцы года, в январе и в феврале. Уменьшение количества осадков в этот период связано с максимальным влиянием Сибирского антициклона на погоду большей части территории Казахстана.

Увеличение количества осадков в апреле - июне и октябре - ноябре объясняется неустойчивостью атмосферных процессов. В этот период года происходит перестройка в термобарическом поле атмосферы от зимы к лету и от лета к зиме. В эти сезоны усиливается влияние Арктики и Исландского минимума.

Менее интенсивные осадки выпадают в декабре - феврале. В этот период года они носят преимущественно обложной характер и выпадают в виде снега (твердые осадки) или в виде дождя и снега (смешанные осадки).

Количество дней с осадками по метеостанциям о. Кулалы $-62,2,\Phi$. Шевченко -67,5.

Осадки в твердом виде наблюдаются с ноября по март.

Ветровой режим. Ветровой режим северо-восточного региона Каспия обуславливается изменением атмосферной циркуляции и местными термическими и барико-циркуляционными процессами. Изменчивость преобладающих направлений ветра от сезона к сезону зависит от интенсивности ЦДА - Сибирского антициклона, Исландского минимума и Азорского максимума.

Данные наблюдений представлены в таблице 2.1.4. В регионе в годовом разрезе преобладают ветры восточных румбов, но довольно высока повторяемость ветров западных направлений.

Таблица 2.1.4- Среднегодовая повторяемость направлений ветра и штилей, (%)

Станция	С	СВ	В	ЮВ	Ю	ЮЗ	3	C3	Штиль
Форт- Шевченко	17	13	15	21	6	5	9	14	11

Среднегодовые и сезонные особенности распределения скорости ветра характеризуются следующими показателями. Наибольшие значения повторяемости ветров восточных румбов отмечаются в зимние месяцы, в период с максимальным развитием Сибирского антициклона, когда создаются условия для возникновения наибольших градиентов давления на его юговосточной периферии.

В летний период возрастает повторяемость ветров западных румбов, что связано в этот период с частым прохождением циклонов с Атлантики через Западный Казахстан и юг Урала.

По МС Ф. Шевченко довольно высока повторяемость ветров северного направления (17%). Это объясняется ослабленным влиянием отрога Сибирского антициклона в этом районе. Вследствие того, что траектории перемещения циклонов лежат значительно севернее, а на погоду этой части оказывает влияние только фронтальные разделы, то с прохождением холодного фронта происходит быстрая смена направления ветра с юго- восточного на северо-западное, а затем северное.

Распределение среднегодовой скорости ветра по станции о. Кулалы составляет 5,0м/с, по МС Форт-Шевченко -5,5м/с. Годовой ход среднемесячных скоростей ветра по МС о. Кулалы и Ф. Шевченко представлен в таблице 2.1.5.

Таблица 2.1.5- Средняя месячная скорость ветра, (м/сек)

Станция	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
о. Кулалы	5,0	5,3	5,7	5,5	5,2	4,7	4,2	4,7	4,9	5,	5,5	4,9
Форт-Шевченко	5,6	6,1	6,2	5,9	5,3	5,3	4,4	4,6	5,3	5,	5,9	5,6

Увеличение средней месячной скорости ветра отмечается в холодный период года, с октября по март. Увеличение среднемесячных значений скорости ветра в этот период объясняется увеличением барических градиентов за счет усиления Сибирского антициклона. Минимальные значения скорости ветра прослеживаются в летние месяцы, с июня по август. В этот период большее влияние на погоду средних широт оказывает отрог Азорского антициклона, в котором градиенты давления не велики. На о. Кулалы и Φ . Шевченко максимальные величины скорости ветра достигают 5,6-6,2 м/с, а минимальные - не отмечаются ниже 4,2 и 4,6 м/с.

Геолого-гидрогеологические условия

Геологическое строение. В геологическом строении, структурных элементов Каспийского бассейна, принимают участие отложения от девонских до голоценовых, включительно. Девонские образования являются самыми древними из палеозойского комплекса пород на полуострове Бузачи. Они вскрыты в интервале 4540-5200 метров. Представлены известняками черными, тонкозернистыми, местами битуминозными. Нижнекаменноугольные отложения, определенные споро-пыльцевым анализом, встречены в интервале 2924-2946 м.

Среднекаменноугольные отложения, возраст которых определен условно, пройдены в скв. 1-П (Северный Каражанбас), в интервале 2755-4128 м. Верхнекаменноугольные отложения (вероятно, касимовский ярус), согласно залегают на подстилающих породах московского яруса.

Пермские отложения имеют несколько ограниченное распространение. Отложения ассельского яруса нижней перми, залегают, с размывом, на касимовском ярусе верхнего карбона. Отложения яруса представлены чередованием темно- серых, тонкокристаллических и биоморфнодетритовых, известняковых гравелитов и брекчий. Эти отложения перекрыты, с угловым несогласием, нерасчлененной толщей, пермо-триасовых образований, которые характеризуются слабой степенью дислоцированности и метаморфизма, и составляют переходную толщу от фундамента к осадочному чехлу.

Триасовые отложения вскрыты многими скважинами на площадях Каражанбас, Северные Бузачи, Каламкас, Каратурун и др. В верхней части, толща представлена аргиллитами, участками карбонатными, с подчиненными пластами и прослоями алевритов различной зернистости. В средней части - толща представлена переслаиванием аргиллитов, с мелкозернистыми, полимиктовыми песчаниками, а в нижней - чередованием песчаников темносерых, полимиктовых и аргиллитов темно-коричневых, почти черных, с подчинёнными прослоями алевритов. Внизу толщи, залегает пачка мелкогалечных конгломератов из обломков известняков, в ангидритовом цементе. Мощность триасовых отложений до 2500 метров.

Юрские отложения на п-ове Бузачи представлены нижним и средним отделами. В верхней части, они сложены неравномерным переслаиванием песчаников, алевролитов и глин, а в нижней части - чередованием глин и алевролитов, с редкими прослоями песчаников. Их мощность составляет 166-230 метров.

Среднеюрская часть продуктивной толщи, сложена терригенными, преимущественно континентальными, аллювиально-озерными образованиями байосского и батского ярусов. Характерной особенностью этих отложений, является неравномерное переслаивание алевритопесчаных пород мощностью от 6 до 47 метров, разделяющихся пачками глин небольшой мощности.

Верхнеюрские отложения, сложенные доломитами и доломитизированными мергелями, с прослоями глин и алевролитов, имеют локальное развитие и отмечаются в наиболее погруженных частях структур. К породам-коллекторам, в составе этих отложений, относятся тонкозернистые, глинистые доломиты. Меловые отложения представлены нижним и верхним отделами.

Нижнемеловые, в основном неокомские, отложения представлены неравномерным, часто тонким, переслаиванием алевролитов и глин, с преобладанием последних. Карбонатные породы, слагающие маломощные пласты и пропластки, отмечаются в валанжин-берриасе. Алевролиты, образуют до 7-8 пачек, толщиной от 3-4 метров до 14 метров.

Отложения аптского яруса, представлены глинами, серыми до черных, с отсутствием известковистости, средней плотности, с подчиненными маломощными прослоями глинистых, пористых алевролитов, иногда плотных, карбонатных. Мощность этих отложений, составляет от 76 до 126 метров.

Породы альбекого яруса, сложены неравномерным переслаиванием глин и алевролитов, с редкими прослоями мелкозернистых песчаников. Мощность яруса достигает 400-450 метров.

Верхнемеловые отложения, в основном карбонатного состава, с незначительными прослоями глин, песчаников и алевролитов. Палеоген-неогеновые отложения представлены терригенно-карбонатной формацией и сложены известняками ракушечными, оолитовыми детритовыми песчаниками и алевролитами, глинами известковистыми. Отложения на полуострове Бузачи развиты спорадически, заполняя мульды и крылья структур.

Четвертичные образования в районе представлены современными новокаспийскими морскими отложениями и верхнечетвертичными хвалынскими морскими отложениями. Они представлены глинами, суглинками, супесями и песками; мощность отложений изменяется от 1,5 до 8,0 м.

Гидрогеологические условия. В гидрогеологическом отношении территория находится в пределах Бузачинского артезианского бассейна второго порядка, который входит в состав Прикаспийского артезианского бассейна. В бассейне, по характеру обводнения и общности литолого-фациального состава водосодержащих пород, выделяются водоносные горизонты и комплексы четвертичных, меловых, юрских и пермо-триасовых отложений.

По данным геолого-гидрогеологических исследований на прилегающей территории по условиям образования и залегания подземных вод выделяются два структурных этажа.

Верхний этаж характеризуется распространением безнапорных (грунтовых) вод со свободной поверхностью и приурочен к современным новокаспийским и верхнечетвертичным хвалынским морским отложениям. Водоносные горизонты новокаспийских (QIV nk) и хвалынских (QIII hv) отложений, образуют единый водоносный комплекс. Водоносные горизонты имеют хорошую гидравлическую связь между собой. Отсутствие выдержанного водоупора и примерно одинаковый литологический состав отложений позволяют объединить эти горизонты в водоносный комплекс четвертичных отложений. Комплекс характеризуется низкими водопроводящими свойствами, градиентом напора и высокой минерализацией подземных вод. Подземные воды этих отложений залегают вблизи дневной поверхности, на территории месторождения абсолютные отметки уровня подземных вод составляют от минус 29,73 м до минус 24,75м.

Нижний этаж характеризуется распространением напорных подземных вод. Питание здесь осуществляется за пределами рассматриваемой территории, на участках выхода пород на дневную поверхность. Этот этаж включает в себя водоносные комплексы, приуроченные к терригенным

отложениям нижнего мела, а также к продуктивным толщам неокома и юры. Пьезометрические уровни меловых отложений устанавливаются на абсолютных отметках от минус 20 до 0 м.

Между подземными водами двух структурных этажей залегают глины верхнечетвертичных хвалынских морских отложений. Отложения вскрыты на глубинах от 2,4 до 7,3 м. Выдержанный слой плотных глин, разделяющий структурные этажи, можно рассматривать как относительный водоупор, в региональном плане эти отложения залегают спорадически. Вертикальная фильтрация из четвертичных горизонтов в меловые отсутствует в силу наличия водоупорных отложений и напорного характера подземных вод меловых отложений.

Характерной особенностью рассматриваемой территории является гидравлическая связь подземных вод основных водоносных комплексов с водами Каспийского моря и низкий напорный градиент (0,0001-0,001) относительно уровня моря.

2.2 Характеристика состояния почв

Согласно природно-сельскохозяйственному районированию земельного фонда Республики Казахстан территория объекта расположена в пределах пустынной зоны Арало-Каспийской провинции на бурых почвах.

Почвенный покров рассматриваемой территории формируется на засоленных слоистых озерно-морских отложениях. Здесь широко распространены солончаки (типичные, соровые, приморские) и луговые засоленные приморские почвы, менее распространены зональные бурые засоленные почвы и пески мелкобугристые. Распространение почв представлено на почвенной карте Мангистауской области (Рисунок 2.2.1).

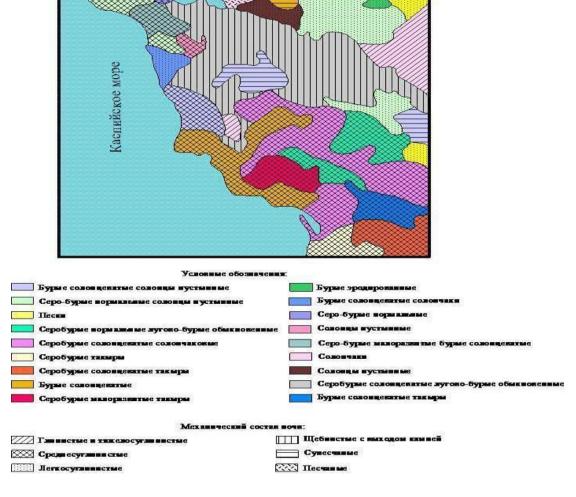


Рисунок 2.2.1 – Почвенная карта Мангистауской области

Все почвы характеризуются малой гумусностью, небольшой мощностью гумусового горизонта (A+B1), низким содержанием элементов питания, малой емкостью поглощения. Эти

особенности почв являются следствием сложившихся биоклиматических условий почвообразования: малого количества осадков, высоких летних температур, определивших преобладание в растительном покрове ксерофитных полукустарников и солянок при незначительном участии злаков и разнотравья. Другой характерной особенностью почв является карбонатность и засоленность профиля. Основным источником засоления служат почвообразующие породы, представленные морскими засоленными отложениями, а также соли, поступающие от минерализованных грунтовых вод.

В пределах территории были выделены следующие почвы:

- **у** бурые засоленные супесчаные и песчаные;
- > бурые солонцевато-солончаковые супесчаные и песчаные;
- **урые** антропогенизированные (техногенно-нарушенные);
- > солончаки типичные (корково-пухлые);
- солончаки луговые приморские;
- солончаки маршевые;
- > солончаки примитивные приморские;
- > солончаки соровые;
- солончаки типичные антропогенизированные (техногенно-нарушенные);
- солончаки соровые антропогенизированные (техногенно-нарушенные);
- > пески эоловые мелкобугристые слабозакрепленные.

Бурые почвы. Бурые почвы на описываемой территории встречаются преимущественно в комплексах с солончаками типичными и соровыми. сформировались на бэровских буграх в условиях, исключающих влияние грунтовых вод и дополнительного поверхностного увлажнения на процессы почвообразования.

Увлажнение почв происходит за счет атмосферных осадков. Водный режим непромывной. Почвообразующими породами служат засоленные аллювиально-морские отложения различного (чаще легкого) механического состава. Небольшое количество осадков и высокая температура обуславливают кратковременность процессов образования и разложения гумусовых веществ, интенсивных лишь в весенний период. Малая продуктивность растительности определяет основные генетические свойства бурых почв: низкое содержание гумуса и небольшую мощность гумусового горизонта, карбонатность почв, щелочную реакцию почвенного раствора.

Бурые засоленные супесчаные и песчаные почвы. Сформированы по повышениям приморской равнины. На характеризуемой территории получили ограниченное распространение. Морфологическое строение, из-за легкого механического состава, несколько отличается от классического строения суглинистых почв: профиль их более однородный, хотя довольно ясно выделяются горизонты А и В. Горизонт В сменяется переходным иллювиально-карбонатным горизонтом ВС с редкими расплывчатыми пятнами карбонатов, но чаще горизонт В переходит в материнскую породу (горизонт С), представленную слоистыми отложениями. С поверхности или на глубине 30-80 см почвы содержат в заметном количестве водно-растворимые соли. Засоление сульфатно-хлоридное и сульфатное, степень засоления меняется от слабой до сильной. Величина плотного остатка достигает 0,70-0,90%, причем максимум скопления солей отмечен в нижней части почвенного профиля, горизонте ВС (С). Содержание гумуса в горизонте А в супесчаных разновидностях 0,5-0,6%, в песчаных его количество ещё ниже, не превышает 0,3-0,4%. С глубиной количество гумуса уменьшается постепенно. Обеспеченность почв валовыми и подвижными формами фосфора низкая, подвижным калием – низкая и средняя. Содержание СО2 карбонатов в верхнем гумусовом слое составляет 1,5 -2,5% с постепенным увеличением вглубь профиля до 2,5-3,0%. Реакция почвенного раствора щелочная по всему профилю. По гранулометрическому составу почвы преимущественно супесчаные и песчаные, в составе механических фракций преобладают частицы мелкого песка, илистых частиц мало.

Бурые солонцевато-солончаковые супесчаные и песчаные почвы. Как и вышеописанные, эти почвы не получили значительного распространения. Сформировались на повышенных участках равнины и встречаются преимущественно в комплексе с солончаками типичными. По своим морфологическим признакам и по содержанию питательных веществ эти почвы сходны с

описанными выше, но отличаются от них наличием солонцеватости, морфологически проявляющейся в уплотнении горизонта и в его крупно комковатой структуре. Причиной солонцеватости является повышенное содержание (более 3%) в почвенно-поглотительном комплексе обменного натрия, оказывающего диспергирующее действие на почвенные коллоиды. Засоление отмечается в поверхностном горизонте, степень засоления изменяется от слабой до очень сильной (величина плотного остатка, при хлоридном и сульфатно-хлоридном типе изменяется от 0,113 до 1,001%, при хлоридно-сульфатном от 0,266 до 1,107%). Вниз по профилю засоление увеличивается. Содержание гумуса в верхнем горизонте 0,5-0,9% в супесчаных и 0,5% в песчаных разновидностях. Реакция почвенного раствора преимущественно щелочная, реже слабощелочная. Механический состав почв супесчаный и песчаный с преобладанием в составе гранулометрических фракций мелкопесчаных частиц.

Бурые антропогенизированные (техногенно-нарушенные) почвы. Распространены большей частью в районе ведения добычи, первичной переработки и транспортировки нефти, а также отдельными участками на прилегающих территориях. Формирование и свойства этих почв обусловлены техногенным воздействием при ведении добычи нефти, прежде всего механическими нарушениями и химическим загрязнением почв. Механические нарушения выражаются в уничтожении растительности, плодородных верхних горизонтов почв, разрушении их структурного состояния и переуплотнении, изменении микрорельефа местности (траншеи, отвалы, выбросы, спланированные участки, колеи дорог).

Солончаки. На территории солончаки имеют чрезвычайно широкое распространение. Приурочены они к самым низким и наименее дренированным поверхностям, которые служат очагами местного солесбора. Солончаки — почвы выпотного водного режима, с преобладанием восходящих токов, приводящих к засолению почвенной толщи и ее поверхностных горизонтов. Объединяющими признаками солончаков являются: высокое содержание в почво-грунтах легкорастворимых солей, максимум которых находится в верхних горизонтах; слабая дифференциация профиля на генетические горизонты.

На описываемой территории выделены следующие подтипы солончаков: типичные, луговые приморские, маршевые и примитивные приморские, соровые. На месторождении значительная часть солончаков подвержена техногенному воздействию.

Солончаки типичные (корково-пухлые). Солончаки типичные встречаются главным образом в комплексах с бурыми почвами. Формирование их происходит на засоленных породах с относительно низким залеганием сильноминерализованных грунтовых вод (2-6 м), уровень которых меняется в зависимости от сезонов года. Растительный покров представлен солевыносливыми видами: сарсазаном и однолетними солянками. Дифференциация почвенного профиля на генетические горизонты слабая, что связано с высокой концентрацией солей в почве и неблагоприятными условиями накопления и разложения органических веществ. Поверхность трещиноватая, покрыта солевой корочкой, мощностью до 1-2 см, под которой идет рыхлый, наполненный кристаллами солей горизонт, мощностью 17-20 см буровато-серого цвета. Ниже этого горизонта, в зависимости от глубины залегания почвообразующей породы, могут выделяться еще несколько слоев различного механического состава, цвета, сложения, в толще которых ясно прослеживаются соли в виде легких прожилок, крапинок, гнезд. По содержанию гумуса солончаки типичные относятся к низко обеспеченным почвам. В верхнем гумусовом горизонте его количество составляет 0,2-0,9%. Количество валовых форм азота и фосфора также незначительно и составляет соответственно 0,011-0,080% и 0,06-0,15%.

Описываемые почвы карбонатные, вскипание от 10% соляной кислоты с поверхности и по всему профилю очень бурное.

Солончаки типичные характеризуются очень сильной степенью засоления по всей почвенной толще. Максимум скопления солей отмечается в солевой корочке 0-2 см и составляет 1,698-8,480% при хлоридном типе и 3,31-10,18% при сульфатно-хлоридном. В нижележащем горизонте содержание солей составляет соответственно 1,58-4,56% и 2,42- 3,94%. Механический состав характеризуемых солончаков разнообразен: от песчаного до тяжелосуглинистого.

Солончаки луговые приморские. Солончаки приморские выделяются узкой полосой вблизи побережья Каспийского моря, занимая нижнюю приморскую террасу (шифр 3 на почвенной карте).

Почвы формируются на слоистых морских отложениях с преобладанием ракушечниковых песков и супесей при близком 0,2-2,0 м залегании сильноминерализованных (более 150 г/л) грунтовых вод сульфатно-хлоридного магниево- натриевого состава. Растительный покров сильно изрежен и представлен солеросом, сарсазаном и однолетними солянками. Приморские солончаки относительно молодые почвы. Профиль их слабо сформирован, поэтому дифференциация на генетические горизонты проявляется очень слабо. Сверху выделяется солевая корочка, мощностью до 4 см и под ней – слабогумусированный слой мощностью 25-31 см, слабоуплотненный, бесструктурный, с точками и прожилками воднорастворимых солей, который подразделяется на верхний – светло-серой окраски и нижний – с еле заметным серым оттенком. Ниже этих горизонтов могут выделяться несколько суглинистых слоев буровато- сизого или красно-бурого цвета с ржавыми пятнами, с максимальным скоплением воднорастворимых солей, часто гипса, с включением битого ракушечника, щебня. Для этих почв характерна высокая увлажненность всего профиля. С глубиной увеличивается количество ржавых пятен, серый цвет уступает ржаво-сизому. Содержание гумуса в верхнем горизонте колеблется в широких пределах - от 0,1 до 1,7%. Описываемые почвы карбонатны по всему профилю. Максимальное содержание СО2 наблюдается в верхнем горизонте (2,2-13,5%). С глубиной количество карбонатов обычно уменьшается. Реакция почвенного раствора щелочная и сильнощелочная (pH - 7,8-9,3). Результаты анализа водной вытяжки показывают высокое содержание водно-растворимых солей уже в верхнем горизонте, где величина плотного остатка составляет 0,840-4,023%. Максимальное засоление отмечается в солевой корочке (0-2 см) – 1,652-22,420%. Тип засоления по анионам в основном сульфатно-хлоридный с участием соды, реже хлоридно-сульфатный или хлоридный; по катионам – натриевый и кальциево-натриевый. Верхние горизонты сравнительно легкие (супесчаные и песчаные), ниже по профилю чаще отмечаются слои различных суглинков.

Солончаки маршевые. Солончаки приморские маршевые — самые молодые почвы. Они занимают переходную зону между примитивными приморскими солончаками и песчано-илистыми донными отложениями Каспийского моря. Профиль почв еще слабо сформирован, оглеен и засолен, морские наносы слоистые с ракушечником. Периодически почвы при нагонных явлениях подвергаются затоплению. В молодых маршевых почвах гумуса содержится до 0,5%. Возможно, он является остаточным от морской фауны и флоры. Супесчаные горизонты, перемешанные с ракушей, более гумусированы, чем песчаные. Профиль маршевых почв засолен, засоление обусловлено сильной минерализацией морской воды.

Солончаки примитивные приморские. Занимают переходную зону между луговыми приморскими и маршевыми солончаками. Почвообразующими породами служат засоленные слоистые морские отложения различного мехсостава с включениями и прослоями ракушечника. Благодаря избыточному увлажнению, морские наносы сильно оглеены и окислены, отличаются пестрой окраской – от ржаво-бурых тонов до сизовато- зеленых.

Гумусированность солончаков очень низкая, около 0,3-0,5%. Почвы карбонатные, содержание СО2 составляет от 6 до 10%. Тип засоления верхнего горизонта хлоридносульфатный, иногда с участием соды, сульфатно-хлоридный и хлоридный. Величина плотного остатка изменяется от 1,129 до 2,575%, степень засоления очень сильная. С глубиной засоление увеличивается. По гранулометрическому составу описываемые почвы супесчаные и песчаные. В профиле наблюдается слоистость с большим включением ракушек. Солончаки примитивные по своим свойствам являются непригодными к использованию в сельскохозяйственном производстве.

Солончаки соровые. Солончаки соровые получили широкое распространение и встречаются повсеместно как однородными контурами, так и в комплексе с другими почвами. Формируются по днищам периодически пересыхающих озер, обширным сиффузионным понижениям, котловинам и депрессиям. Поверхность почв практически лишена высшей растительности, изредка встречаются единичные куртинки сарсазана. Близкое залегание минерализованных грунтовых вод обеспечивает постоянную капиллярную связь с поверхностными горизонтами солончаков и высокое засоление профиля. Интенсивное летнее испарение при отсутствии растительности приводит к кристаллизации солей на поверхности в виде белоснежной солевой корки мощностью в несколько сантиметров, под которой залегает бесструктурная влажная вязкая масса, насыщенная солями. Нижние горизонты солончаков соровых имеют следы оглеения в виде сизоватых, иссиня-черных и зеленоватых тонов – результат

периодической смены окислительных процессов восстановительными. Данные солончаки почти не затронуты процессами почвообразования. Наличие гумуса (0,2-0,6%) и других питательных веществ объясняется здесь привносом гумусовых частиц с окружающей территории путем намыва, навевания. Описываемые солончаки засолены в очень сильной степени. Величина плотного остатка в верхнем горизонте варьирует от 2,384 до 19,931%, с глубиной несколько уменьшается. Тип засоления хлоридный и сульфатно-хлоридный с участием соды по анионам, натриевый, калиево-натриевый — по катионам. По механическому составу выделены соровые солончаки суглинистые и супесчаные.

Солончаки типичные и соровые антропогенизированные (техногенно-нарушенные). Образование этих почв вызвано сильными механическими нарушениями и химическим загрязнением при ведении добычи нефти. Механические нарушения связаны главным образом с бурением скважин, строительством технологических объектов, автодорог, ЛЭП, других объектов инфраструктуры. Техногенные нарушения отчасти обусловлены спецификой природных условий региона, вызывающих необходимость строительства насыпных автодорог и прокладки трубопроводов над земной поверхностью.

Пески эоловые мелкобугристые слабозакрепленные. Сформировались на мелкобугристой эоловой равнине узкой полосой вдоль современной береговой линии Каспийского моря. Для этого типа песков характерно чередование бугров с котловинными и выровненными пространствами. Растительный покров образован изреженными еркеково-полынными, еркековоразнотравными с эфемерами сообществами. Профиль песков слабодифференцирован, однороден по окраске и механическому составу, сложение всего профиля рыхлое. С поверхности выделяется слабоокрашенный гумусовый горизонт А, содержание гумуса в пределах 0,2-0,4%. Вскипание от 10% соляной кислоты отмечается с поверхности и по всему профилю. Реакция почвенного раствора в основном щелочная по всему профилю.

Характеристика ожидаемого воздействия на почвенный покров.

Почвы являются достаточно консервативной средой, собирающей в себя многочисленные загрязнители и теряющей от этого свои свойства. Почва - самая малоподвижная среда, миграция загрязняющих веществ в которой происходит относительно медленно.

Загрязнение почвенного покрова происходит в основном за счет выбросов в атмосферу загрязняющих веществ и последующего их осаждения под влиянием силы тяжести, влажности или атмосферных осадков. При оценке ожидаемого воздействия на почвенный покров прогнозируется, что при реализации проектных решений загрязнение почв загрязняющими веществами не вызовет существенных изменений физико-химических свойств почв и направленности почвообразовательных процессов; почва сохраняет свои основные природные свойства. При реализации намечаемой деятельности не прогнозируется сколько-либо значительное изменение существующего уровня загрязнения почвенного покрова района. Общее воздействие намечаемой деятельности на почвенный покров и земельные ресурсы оценивается как допустимое

2.3 Современное состояние растительности

Растительный покров сформирован в жестких природных условиях северных пустынь — засушливого климата с резкими колебаниями температуры, большого дефицита влажности, высокого уровня засоленности почв и характеризуется однородной пространственной структурой, бедностью флоры, низким уровнем биологического разнообразия. Современный растительный покров территории отражает все сложные процессы взаимосвязи растительности с другими компонентами ландшафтов (рельефом, почвами, грунтовыми водами). Для этих условий характерна ксерогалофитная растительность из сочных многолетних (сарсазан, поташник) и однолетних (сведы высокая, заостренная, климакоптера мясистая, солянки натронная, Паульсена, олиственная, солерос европейский, галимокнемисы твердоплодный, Карелина, лебеда татарская) солянок. Практически повсеместно преобладает сарсазановая растительность, за исключением соровых понижений, поверхность которых оголена и наблюдаются только редкие поселения сарсазана.

По составу жизненных форм преобладают полукустарнички, травянистые многолетники и однолетники – как весениие эфемеры, так и 36огруж-осенние однолетние солянки. В центральной части территории месторождения среди сарсазанников распространены сообщества полыни однопестичной – полынно-солянковое, полынно- эфемеровое, полынно-солянково- эфемеровое, приуроченные к повышенным элементам рельефа с серо-бурыми засоленными супесчаными почвами. Местами в травостое отмечается полынь белоземельная (*Artemisia terrae-albae*), а на разбитых участках полынь метельчатая (*Artemisia scoparia*). Полынь белоземельная обладает широкой экологической амплитудой, произрастает на почвах различного механического состава, солонцеватых и засоленных.

По микрозападинам с небольшим дополнительным увлажнением полынь однопестичная образует полынно-злаковое сообщество с ажреком и пыреем ломким ($Agropyron\ fragile$). Здесь же единично встречается жантак.

К северу и югу от центральной части территории месторождения на легких серо- бурых почвах повышенных равнин преобладают сообщества полыни белоземельной – белоземельнополынно – эфемеровое, белоземельнополынно – еркековое, белоземельнополынно – еркековое, белоземельнополынно – еркеково – изеневое. Флористический состав насчитывает 12-15 видов растений, в том числе отмечена ядовитая для скота сочная солянка – ежовник безлистый или итсигек (Anabasis aphylla), а в южной части – тоже ядовитый сорняк – гармала обыкновенная или адраспан (Peganum harmala).

На небольшом песчаном массиве распространены сбитые полынно-еркековоадраспановое и полынно-эфемерово-солянковое сообщества с преобладанием в травостое полыней песчаной (*Artemisia arenaria*) и метельчатой. Обе полыни являются показателями сбоя.

На приморской части в зоне сгонно-нагонных явлений в условиях близкого залегания грунтовых вод и периодического затопления видовой состав сообществ сарсазана несколько отличается: заметно участие мезогалофильных злаков – ажрека или прибрежницы солончаковой (Aeluropus litoralis) и бескильницы расставленной (Puccinella distans), преобладают другие виды кермеков – кермек Гмелина и кермек каспийский (Limonium Gmelinii, L.caspium), много однолетней солянки солероса европейского (Salicornia europea), который является пионером зарастания свежих обнажений дна моря и формирует разреженные, неустойчивые, кратковременно существующие (1-5 лет) группировки с единичным участием сведы заостренной, солянки натронной, лебеды татарской. На более поздних стадиях зарастания это солеросовое, солеросовокермековое, бескильницево-кермеково-солеросовое сообщества с невысоким проективным покрытием (20-40%) и низкой, неустойчивой по годам урожайностью 0,5-2,5 ц/га сухой массы.

Чуть дальше от берега распространены сарсазановые, местами с солянками, бескильницей и ажреком, сарсазаново-солеросовое и кермеково-сарсазановое сообщества. Среди них встречаются мелкие пятна солероса и ажрека, а по повышениям на почвах легкого мехсостава — верблюжьей колючки обыкновенной или жантака (Alhagi pseudoalhagi). Изредка отмечаются невысокие кусты тамариска — гребенщика многоветвистого (Tamarix ramosissima). Проективное покрытие почвы растительностью в этих сообществах составляет 40-60%,

средняя высота растений 10-25 см, ярус кермека Гмелина — 50-70 см. Прибрежноводная растительность сгонно-нагонной полосы представляет собой сочетание полупогруженных и наземных зарослей тростника с нижним ярусом погружено- водной травянистой растительности в воде (взморник малый — Zostera minor, рдест гребенчатый — Potamogeton pectinatus, уруть колосовая — Myriophyllum spicatum, роголистник погруженный — Ceratophyllum demersum и др.), солероса на суше и наносами взморника в прибойной полосе.

Карта-схема растительности рассматриваемого района представлена на рисунке 2.3.1

- 66 Пустынные с участием дерновинных злаков (северные) пустыни с полынью белоземельной.
- 7а Солянковые, полынные (средние) пустыни с биюргуном, с полынью белоземельной.
- 9 Кустарниковые (жузгуновые, песчано-акациевые), песчаные пустыни.
- 19 Солянковая, галафитно-полукустарничковая и галофитно-злаковая растительность солончаков и солонцов в степной и пустынной зонах.

Рисунок 2.3.1 – Карта-схема растительности

Состояние растительного покрова в зоне воздействия объекта.

На территории производственной базы природно естественный растительный покров отсутствует. К основным источникам химического загрязнения почвенно-растительного покрова относятся выбросы от транспортных средств (выхлопные газы, утечки топлива) и выбросы вредных веществ в процессе осуществления основной деятельности.

Воздействие на растительный покров может быть связано с рядом прямых и косвенных факторов, включая: механические повреждения; пожары в результате аварийных ситуаций, загрязнение и засорение; изменение физических свойств почв;

2.4 Современное состояние животного мира

Животный мир рассматриваемой территории принадлежит к зоогеографическому участку Северные Арало-Каспийские пустыни и носит ярко выраженный пустынный характер.

Наземные позвоночные представлены 30 видами млекопитающих, 223 видами птиц,15 видами пресмыкающихся и одним видом земноводных. В прибрежных стациях гнездится 40 видов пернатых водно-болотного комплекса.

Фоновыми видами млекопитающих являются грызуны, зайцеобразные, мелкие хищники – лисица, корсак. Степные виды практически отсутствуют, за исключением степного хорька. Видовое разнообразие территории определяется прибрежным мелководьем с обширными тростниковыми стациями, являющимися местом гнездования, кормления для многих видов пернатых, а также местами убежищ для хищных млекопитающих.

На территории можно выделить 5 ландшафтно- экологических участков. различающихся по характеру фауны, степени и типу антропогенного воздействия. Наиболее ценным в фаунистическом отношении является прибрежный участок, где сосредоточены места гнездования пернатых, кормные стации и территория, используемая пернатыми в период сезонных миграций. Через эту территорию проходит миграция большинства редких и ценных видов пернатых. Здесь обитает и большинство видов хищников, свойственных региону. Особенно многочисленны пресмыкающиеся – представители семейства Ужи.

Достаточно многообразен по составу фауны юг, юго-восток, юго-запад территории. Здесь с большой плотностью популяции обитают грызуны, являющиеся основой трофических связей в пустынной зоне. Встречаются хищники, пресмыкающиеся и пернатые.

Северная часть территории значительно менее населена грызунами, что объясняется недостаточностью кормовой базы и характером субстрата. Встречаются пресмыкающиеся, в основном это черепахи, круглоголовки и агамы. В небольшом количестве здесь обитают мелкие

пернатые, представители воробьиных. Часть территории, занятая жилыми и административными сооружениями, заселена синантропными представителями пернатых и грызунами, в основном большой песчанкой.

Класс млекопитающие. Млекопитающие, обитающие на территории района представлены не менее чем 30 видами, объединёнными в 12 семейств. Наибольшее количество видов млекопитающих относятся к насекомоядным, грызунам и мелким хищникам. Основным фоновым видом является большая песчанка.

Насекомоядные, семейство ежовые, представлено видом ушастый ёж (Erinaceus auritus). Представители этого вида встречается по северо-восточной, южной, юго-западной части территории за исключением солончаков и соровых понижений. Другой представитель насекомоядных — малая белозубка (Crocidura suaveolens) — распространён на территории, окружающей нефтепромысел.

Рукокрылые, семейство гладконосые рукокрылые, представлено видами: усатая ночница – (Myotis mystacinus) и серый ушан (Plekotus austriacus). Единичные особи вида двухцветный кожан (Vespertilio murinus) обитает по побережью в районе водозабора.

Отряд хищные, семейство псовые, представлено 3 видами. По побережью, в тростниковых зарослях, а также с севера и юго-востока территории встречается волк – (Canis lupus). Волк – вид, предпочитающий селиться в пойменно-тугайных биотопах, в мелкосопочнике или в массивах бугристых песков. Также здесь встречаются Корсак – (Vulpes corsac). Лисица (ulpes vulpes) – обитает на полупустынных участках. Лисица и корсак переносят ряд заболеваний: бешенство, чуму плотоядных, сибирскую язву.

Семейство куньи представлено следующими видами, преимущественно населяющими околоводные стации. Ласка (Mustela nivalis) и степной хорёк (Mustela *eversmanni*)—хищные зверьки,питающиеся грызунами, мелкими пернатыми и пресмыкающимися. Сосредоточены в основном со стороны побережья.

Семейство тюленьих представлено Каспийским тюленем (Phoca caspica).

Отряд парнокопытные, семейство полорогие представлено *сайгой* (*Saiga tatarica*). Следы сайги, небольших групп по 2-3 особи, встречаются на большом солончаке к юго- востоку

Отряд грызуны. Семейство ложнотушканчиковые представлено 3-мя видами. Численность представителей невысока и колеблется от 3 до 10 особей на 10 км маршрута при ночных наблюдениях. Обитают они в основном на севере, западе, и северо-западе территории. Один из фоновых видов малый тушканчик — (Allactaga elater) в основном сосредоточен по северной, периферической части территории. Большой тушканчик (Allactaga major) и тушканчик прыгун (Allactaga sibirica) обитают на участках полупустынного характера. Емуранчик (Stylodipus telum) селится в мелкобугристом рельефе. Мохноногий тушканчик (Dipus sagitta) обитает на территории с задернованными почвами на северной и северо-западной, малоосвоенной части территории.

Хомяковые представлены следующими видами: *серый хомячок* (*Cricetulus migratorius*) в небольшом количестве распространён по периферической малоосвоенной части территории с юга. *Обыкновенная полёвка* (*Microtus arvalis*) обитает в биотопах расположенных со стороны побережья Каспия.

Семейство песчанковые. *Большая песчанка* (*Rhombomys opimus*) — широко распространённый грызун, живущий колониями. Этот вид является основным фоновым видом млекопитающих на территории. Грызуны активны в дневной период в течении всего года. Поселения грызунов имеют сплошной характер, среднее количество достигает 30-40 особей на 1000 м маршруга и более 100 особей на гектар. Незаселёнными остаются только участки солончаков. *Гребенщиковая песчанка* (*Meriones tamariscinus*) селится по пескам, берегам временных водоёмов, тяготеет к кустарникам гребенщика. *Краснохвостая песчанка* (*Meriones libycus*) обитает в эфемероидных всхолмлённых пустынях с плотными почвами и по закреплённым пескам.

Семейство мышиные представлено видами домовая мышь (Mus musculus) и серая крыса (Rattus norvegicus) которые встречаются в районе жилых городков, в бытовых строениях, на территории складов, хозпостройках и на прилегающих окультуренных участках. Эти грызуны могут завозиться в жилища и административные здания при транспортировке продуктов и иных грузов.

Класс пернатые. Орнитофауна обследуемой территории может насчитывать до 230 видов в период пролёта, что составляет около половины видов орнитофауны Казахстана. Птиц обследуемой территории можно разделить на 4 категории по характеру пребывания: пролетные, гнездящиеся, оседлые, и зимующие.

Фауна оседлых и гнездящихся пернатых обеднена в видовом отношении. Из наземных пернатых гнездится 17 видов: 2 вида хищных, 2 вида куликов, 1 вид сов и 12 видов воробьиных. В антропогенных ландшафтах, среди жилых и хозяйственных построек обитает 6 синантропных видов: сизый голубь, домовой сыч, удод, полевой и домовой воробей, деревенская ласточка. Численность представителей этих видов колеблется от 1-2 до 10-12 особей на 1 км маршрута. Плотность населения птиц в южной части месторождения, в ландшафтах умеренной антропогенной трансформации в среднем составляет 7 птиц на 1 км маршрута. Наиболее многочисленны здесь жаворонки, каменки и зелёные щурки. Зелёные щурки здесь гнездятся в норах на насыпях, или по бортам глубокой автоколеи и встречаются в количестве 2-4 на километр маршрута.

По прибрежной части территории гнездится не менее 40 видов птиц. В том числе: большая поганка, большой баклан, из утиных — серая утка, чирок-трескунок, широконоска и красноносый нырок. Хищные представлены коршуном, пустельгой и камышовым лунём. Встречаются лысухи, многочисленны серебристые чайки. На отмелях обычно встречается до 5 видов крачек. Тростники, вдоль береговой линии, населяют камышевка широкохвостка, индийская, тростниковая, болотная и дроздовидная камышевки. На мелководье, вдоль береговой линии — обычный морской и каспийский зуйки, ходулочник, шилоклювка, травник, чибис, куликсорока. Из редких птиц обитает черноголовый хохотун. На зимовке встречается 8 видов, это сизый голубь, филин, домовой сыч, хохлатый, черный и рогатый жаворонки, полевой и домовой воробьи. В мягкие зимы состав зимующих птиц расширяется за счет водоплавающих, вороновых, некоторых вьюрковых и овсянок.

Состояние животного мира в зоне воздействия объекта.

Одним из основных факторов воздействия на животный мир является фактор вытеснения животных за пределы их мест обитания. Прежде всего пострадали животные с малым радиусом индивидуальной активности (беспозвоночные, пресмыкающиеся, мелкие млекопитающие). Птицы вытеснены вследствие фактора беспокойства. Часть животных, обитающих в настоящее время в районе участка, приспособилась к измененным условиям. Хорошо адаптировались грызуны, мыши, полевки.

Животные, занесенные в Красную Книгу, в районе промышленной площадки не встречаются, ареалы их обитания отсутствуют. На рассматриваемой территории не зафиксировано наличие возможных путей миграции миграционных видов животных.

2.5 Социально-экономическая сфера и экономика региона

Мунайлинский район — район на западе Мангистауской области, вокруг города Актау. Площадь района составляет 4922 квадратных километра. Численность населения района на 1 июля 2025г составляет 173239 человек.

Созданный в июне 2007 года для решения проблем оралманов район состоит из пяти сельских округов и двух сёл: Кызылтобе, Даулет, Атамекен, Баскудык, Батыр, Баянды и – административный центр – Мангистау.

На территории района находятся памятники природы, истории и археологии. В числе современных достопримечательностей находится памятник батыру Шогы Муналулы, установленный и открытый в 2011 году.

Мангистау — село, административный центр Мунайлинского района. Расположено в 20 км от города Актау. Железнодорожная станция Мангистау на линии Бейнеу — Жанаозен, ограничивающей село с юга.

Численность населения села Мангистау на 1 июля 2025г составляет более 36 тыс. человек. Площадь села Мангистау — 3063 га. В состав территории с. Мангистау входят жилые массивы Ак

Еспе, Бозжыра, Айракты, Шеркала, Бесшокы. Главные отрасли промышленности – сельское хозяйство, производство бетона, газоблоков.

Проектируемая объект в административном отношении находится в с. Баянды Мунайлинского района, промышленная зона №1, участок 113/3. Площадь села Баянды — 224 га. В состав территории с. Баянды входят жилые массивы: Баянды-2, Баянды-3; ул.Достык; Емир, Илі,Нурлаев Ж, Сарытобе крестьянское хозяйство, Ынтымак, №16 разъезд, Баянды-куйылыс тас жолы. Главные отрасли промышленности — сельское хозяйство, производство бетона, газоблоков.

Малый и средний баланс

В районе функционирует 10 818 предприятий малого и среднего бизнеса (МСБ). В течение трех лет их число выросло до 43,1%. За последний год было создано 2 365 новых рабочих мест.

В Мунайлинском районе функционирует цех по производству игровых и спортивных площадок. Ежегодно здесь изготавливают более двухсот детских площадок. Продукция предприятия охватывает районы и город Актау, также ее охотно заказывают из других регионов страны. В селе Атамекен действует предприятии «Адиль Фасад» по производству пенополистирола в. Компания в рамках программы «Нур Капитал» получила 22 млн. тенге, а также 20 млн. тенге через фонд «Даму». Предприятие в месяц производит 30 тонн пеноблоков, 30 тыс. кв. м термопанелей, 50 тыс. кв. м пеноблоков и 6 тыс. кв. м теплобетонной продукции. В дальнейшем планируется увеличение производственной мощности предприятия.

В селе Мангистау работает единственный в области цех по производству ортопедических матрасов. В свое время индивидуальный предприниматель открыл его благодаря госпрограмме. Для жителей и гостей работают гостиницы, места общественного питания, рестораны, кафе, продуктовые магазины, рынки, парикмахерские, салоны красоты, швейные мастерские, ремонт и обслуживание автомобилей, кондитерские продукты, пекарни, производственные и строительные товары, мини типографии, фотосалоны, служба такси, частные детские сады, учебные центры и бизнес предприятия по сборке мебели и по сборке и установке пластиковых окон и др.

Местные предприниматели предпочитают развивать лёгкую промышленность, животновод-ство, торговлю, туризм и сферу услуг.

Овощеводство

Крестьянские хозяйства занимаются выращиванием бахчевых культур дыней, арбузов, овощей. Выращенные бахчевые культуры, получившие в народе название «фортовские» удовлетворяют потребительский спрос городских рынков. Для выращивания бахчевых культур крестьянские хозяйства сдают свои земли в аренду. Из-за отсутствия мест хранения овощей и цехов для их переработки выращиваются только летние сорта овощных культур. Крестьянские хозяйства имеют проблемы с нехваткой воды. С проведением системой водоснабжения во дворы жилых дворов, для городских жителей созданы условия для занятий овощеводством, но отсутствие опыта, знаний, консультации специалистов сдерживает развитие данной отрасли.

Рыбное хозяйство

Рыбная ловля ремесло, которое передается из поколения в поколение. Каждый сезон 10 человек получают разрешение на лов рыбы. Рыба в свежем и замороженном виде доставляется на городские рынки города Актау.

В Каспийском море насчитывается более 100 видов рыб, где собрано большое количество запасов осетровых пород рыб, и таких рыб как плотва, сазан, судак. Обитают также в морской среде лещ, щука, кефаль, окунь, сельдь, лососевые рыбы. Для рыбной ловли, рыбаки используют моторную лодку с плохим снаряжением поэтому объем, выловленной рыбы маленький, и быстро распродается на месте. Для переработки рыбной продукции необходимо ее бесперебойное поступление. Фермерское хозяйство "БАЙУЛЫ" в Мунайлы уже пять лет занимается разведением различных видов рыб.

Птицеводство

Птицеводство самое эффективная и быстро развивающая отрасль. Если создать условия для развития птицеводства, то в кратчайшие сроки при малых затратах труда и финансов можно

получать в течение года высококачественную продукцию мясо птицы и яиц в большом количестве. Птицефабрика «Туман-Шах» в селе Баянды Мунайлинского района производит до 150 тонн мяса птицы в год. В Мунайлы разведение страусов — относительно новое направление птицеводства в регионе с резко-континентальным климатом - жарким летом и холодной зимой. При соблюдении условий содержания и сбалансированного режима кормления такое птицеводство становится хорошим безотходным сельскохозяйственным бизнесом.

3 ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ. ОСНОВНЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

3.1 Генеральный план.

Генеральный план решен с учетом местоположения участка и с учетом создания оптимальных условий для организации трудовой деятельности сотрудников предприятия. Территория базы ограждена существующим каменным забором.

На генеральном плане расположение здания, а также транспортных путей принято согласно требуемым разрывам по нормам пожаро- и взрывобезопасности и с учетом розы ветров и санитарным требованиям; обеспечивающее благоприятное и безопасное условие труда и отдыха, а также обеспечение рациональных производственных, транспортных и инженерных связей на площадке.

Техні	ико эконо	мические	показатели	по Г	енплану
-------	-----------	----------	------------	------	---------

№ n/n	Наименование	Ед. измер	Количество
1	Площадь территории	га	0.2
2	Площадь застройки	м2	86.0
3	Коэффициент застройки	%	0,04

Основные проектные решения

При строительстве данного объекта проектом предусматривается сооружение следующих объектов:

- > производственного здания под установку печи для сжигания медотходов;
- вспомогательного здания;
- > установки емкости для сбора воды;
- > септика;
- мусорсборника;
- > ограждения.

Проектные решения зданий и сооружений определялись в соответствии со строительными нормами и технологическими процессами. Производственное здание в плане имеет размеры 4,8м*5,8м. Вспомогательное здание- 10.8м х 4,6 м. Здания одноэтажные.

Здания бескаркасные, с несущими продольными стенами и самонесущими поперечными стенами. Пространственная жесткость и устойчивость здания обеспечивается за счет несущих стен жестко связанных с балками и диском перекрытий.

№	Наименование	Единица измерения	Количество
1	Площадь застройки		
	Производственное	м2	30,0
	здание		
	Вспомогательное	м2	56,0
	здание		
2	Строительный объем	м3	258,0
3	Общая площадь	м2	86,0

3.2 Технологическая часть

Технологическая часть рабочего проекта разработана на основании задания на проектирование, выданного заказчиком, а также действующих норм и правил РК. Главной задачей ТОО «Saken 23» является сбор и сжигание медицинских отходов.

На проектируемом объекте условно предусмотрено здание где будет вмонтировано:

▶ Печь—инсинератор «Веста плюс» с комплексной системой газоочистки

В производственном здании устанавливается Печь-инсинератор «ВЕСТА ПЛЮС», с комплексной системой газоочистки «ВЕСТА ПЛЮС», где производится утилизация медицинских отходов.

Во вспомогательном здании предусмотрены помещения для персонала:

- комната для временного хранения медицинских отходов площадью 14м2.
- комната уборочного инвентаря, площадью 4м2, где хранятся моющие и дезинфицирующие средства.
- холодильная камера, с оборудованием для хранения биологических отходов с поддержанием температуры от 2°C до 4°C и раздельными стеллажами.
- В каждом помещении созданы условия для мытья, хранения и обеззараживания емкостей. Пол, стены, потолок помещений для временного хранения МО гладкие, без щелей, выполнены из материалов, устойчивых к моющим и дезинфицирующим средствам.
- В целях обеспечения санитарно-эпидемиологического благополучия и охраны окружающей среды помещение вышеперечисленных оборудовании оснащены:
 - приточно-вытяжной вентиляцией, обеспечивающий кратность обмена воздуха в помещений.
 - > электронными сертифицированными весами,
 - раковиной с подведением проточной холодной воды и оборудованным стоком в канализацию для соблюдения персоналом правил личной гигиены, оснащенной средствами для мытья рук.
 - > бактерицидными лампами.

3.2.1 Медицинские отходы

В Казахстане в настоящее время сбор, использование, обезвреживание, транспортировка, хранение и захоронение отходов, образующихся в процессе деятельности медицинских организаций, осуществлялется в соответствии с требованиями Экологического кодекса статьи 351,377, а также с требованиями по сбору, обезвреживанию, хранению медицинских отходов на объектах здравоохранения регламентируются приказом Министра здравоохранения Республики Казахстан от 11 августа 2020 года № ҚР ДСМ — 96/2020 «Об утверждении санитарных правил "Санитарно-эпидемиологические требования к объектам здравоохранения».

Медицинских отходы подразделяются на пять классов:

- класс А неопасные, подобные твердым бытовым отходам;
- класс Б эпидемиологически опасные отходы;
- класс В чрезвычайно эпидемиологически опасные отходы;
- класс Г токсикологически опасные отходы;
- класс Д радиоактивные отходы

И имеют следующие цветовые окраски для сортировки:

- отходы класса «А» черную;
- отходы класса «Б» желтую;
- отходы класса «В» красную;
- отходы класса «Г» белую.

Утилизация опасных медицинских отходов включает в себя следующие этапы:

- **с**бор внутри организаций, осуществляющих медицинскую и/или фармацевтическую деятельность;
- > перемещение из подразделений и временное хранение на территории организации;
- дезинфекция обеззараживание/обезвреживание медицинских отходов;
 транспортирование с территории организации;
- > захоронение или уничтожение медицинских отходов.

На практике для утилизации медицинских отходов известно использование следующих способов:

- сжигание в специальных устройствах (инсинераторы, муфельные печи);
- стерилизация (автоклавы), химическая дезинфекция;

- физическая дезинфекция (воздействие радиационным, электромагнитным излучениями, микроволнами и др.).

Среди рассмотренных способов широкое применение находит метод сжигания.

В Казахстане много фирм, занимающихся утилизацией медицинских отходов в основном путем сжигания. Для утилизации применяют обычные крематоры. Крематоры предназначены только для сжигания биологических материалов, туши животных. Для сжигания всех видов медицинских отходов класса «А», «Б», «В» целесообразно использование инсинератора. Инсинератор отличается от крематоров или от печи тем, что мусор в нём вращается и сжигается дотла. Перед утилизацией для полного и ускоренного сжигания отходы должны проходить дробление. Современный инсинератор практически безопасен для окружающей среды, так как имеет мощный встроенный фильтр, очищающий дым от вредных химических элементов.

ТОО «Saken 23» приобрел печь инситератор серии Веста плюс Пир 1,0К,предназначеных для высокотемпературного термического обезвреживания медицинских отходов классов А, Б и В. Инсинераторы серии Веста плюс — оборудование, предназначенное для высокотемпературного термического уничтожения и обезвреживания твердых бытовых и промышленных отходов. Инсинераторы серий Веста плюс применяются для для утилизации твердых бытовых, медицинских, биоорганических и других видов отходов методом высокотемпературного сжигания. Процесс сжигания происходит при температурах свыше 1000 °С, при этом выбросы вредных веществ в воздух не превышают установленных санитарных норм. На инсинераторах применена специальная огнеупорная футеровка, которая обеспечивает надежную эксплуатацию их на срок не меньше 10000 часов.

3.2.2 Инсинератор Веста плюс

Печь представляет собой L-образную конструкцию, выполненную из трех камер (камеры сгорания и двух камер дожига) выложенных из огнеупорного кирпича. В камере сгорания происходит непосредственно сам процесс сжигания отходов. Дымовые газы из инсинератора поступают в камеру дожигания, в которой для подержания требуемой температуры смонтирована дополнительная горелка. Из камеры дожигания газы входят в очистную систему, а после него, в дымовую трубу.

Инсинератор Веста плюс представлен на рисунке 3.2.1.1

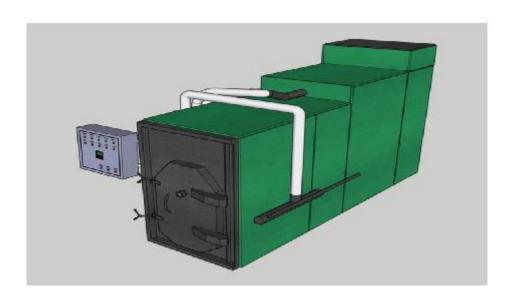


Рис 3.2.1.1 - Инсинератор Веста плюс Пир 1,0К

На выходе камеры дожигания, перед поступлением в очистную систему, дымовые газы проходят через систему из трёх параллельных сит, размером 50*50 см2, вставленных перпендикулярно к оси трубы.

Ячейка сит 1*1см2, диаметр проволоки от 6 до 10мм (в разных модификациях). Минуя систему сит, газы, поступая из первичной во вторичную камеру дожигания, проходят слои керамических трубок 50*60*200 мм. Где происходит каталитический процесс (газификация сажи и восстановление азота) в том числе, слои керамических трубок исполняют функцию удержания дымовых газов в камере дожигания на 1-2 секунды необходимых для стабильного прохождения процесса дожигания.

Система стальных сит и слои керамических трубок действуют как катализатор, ускоряющий процесс, превращения сажи и угольной пыли в оксиды углерода, с кислородом избыточного воздуха, поступающего в камеру дожигания. Процесс газификации сажи и угольной пыли продолжается на раскалённых поверхностях керамических трубок. После чего поступают на очистную систему.

Температура на выходе камеры дожигания, в ЗАВИСИМОСТИ от количества вторичного воздуха и состава сжигаемого сырья меняется в интервале 700 – 1200 °С. Основной механизм каталитических превращении на метало-оксидных катализаторах заключается в адсорбировании молекул газа в порах катализатора и их временном закреплении на активных центрах катализатора, в роли которых выступают атомы металлов.

Второй составной частью процесса дожига несгоревших частиц является воздушный канал. Воздушный канал служит для подачи воздуха в дожигатель. В то время, когда в дожигателе, несгоревшие частицы ускоряются за счет завихрителя, воздушный канал обеспечивает приток воздуха, следствием чего значительно повышается температура и происходит дожигание несгоревших частиц, а также благодаря установленным компонентам увеличивается период нахождения газов в камере дожига, что способствует значительному снижению выбросов в атмосферу, и делает возможным поставку установки близ жилых районов.

Паспортные характеристики: печь Веста плюс предназначен для высокотемпературного и термического уничтожения и обезвреживания биоорганических отходов, медицинских отходов класса A, Б, В, частично Г. За счет высокой температуры сгорания внутри инсинератора происходит практическое полное уничтожение отходов и после завершения рабочего цикла остается стерильный пепел.

Основные параметры инсинератора «Веста плюс» представлены в таблице 3.2.1.1

№	Наименование	Ед. измерения	Норма
1	Загрузка	КГ	до 1100
2	Мощность сжигания	кг/ч	100-260
3	Объем камеры сжигания	м3	3,1
4	Расход дизельного топлива	л/ч	12
5	Потребляемая мощность	кВт	1,4

3.2.3 Система очистки продуктов сгорания.

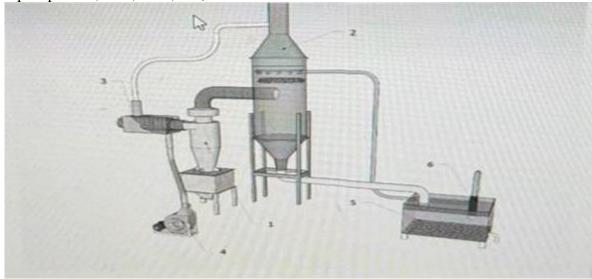
Принцип работы.

Температура на выходе из камеры дожигания, в зависимости от количества вторичного воздуха и состава сжижаемого сырья меняется в интервале 900-1500 °C. Из камеры дожигания дымовые газы поступают в рекуператор (теплообменную камеру), в которую с помощью дымососа подается объем воздуха и охлаждает отходящие газа до температуры 500-550 градусов в Цельсию. В последующем газы попадают в фильтр сухой очитски из нержавеющей стали, в которой оседают тяжелые частицы. При помощи дымососа газы ускоряются в газопромыватель (фильтр мокрой очистки), где проходя через фарфоровый фильтр смешивается с водяным паром. Добавление водяного пара способствует полному превращению сажи и угольной пыли в в оксиды углерода и образованию кислых газов из сернистых и галоген содержащих компонентов.

Теплообменник (рекуператор) изготовлен из нержавеющей стали. Он присоединяется к камере дожига и предназначен для охлаждения отходящих газов до 550 градусов по Цельсию. Охлаждение происходит как при помощидвух труб диаметр первой трубы не менее 325мм,

обшитой спиралью, и внешней трубой диаметром не менее 500мм. Воздух подается с помощью дымососа/вентилятора в входной патрубок рекуператора, проходя через спираль приток воздуха охлаждает трубу с отходящими газами до 550 градусов по Цельсию и горячий воздух с помощью выходного отверстия и трубопроводов газоочистки.В последующем газы уходят в фильтр грубой очистки (Циклон).

Циклон изготовлен из нержавеющей стали толщиной не менее 2мм. Принцип работы циклона заключается в спиралевидном закручивании потока запыленного воздуха в цилиндрической части циклона, где под действием центробежной силы частицы пыли прижимаются к стенкам циклона и под влиянием силы тяжести опускаются в буферное устройство, из которого пыль периодичесм удаляется через пылевой затвор (лючки для ревизии и чистки). В последующем газы попадают в газопровытель.


Газопромыватель представляет собой вертикальную трубу, изготовленную из нержавеющей стали. Газопровыатель состоит из форсунок распыления жидкости, фильтра, капельника, газоотводной трубы со штуцером(лючок для отбора проб), лючков для ревтзии и чисткифорсунок и фильтра, конусообразного канала для сливаводы с примесями, который соединен с емкостью отстойника.

В испарительной камере раствор нейтральной среды нагнетается через форсунки распылители. Смешиванием водяного пара, вторичного воздуха и дымовых газов происходит газификация сажи и дожигание горючих газов, по известным реакциям:

C+H2O=CO+ H2 C+O2= CO2 2CO+ O2=2 CO2 H2+O= H2O

Суммарно реакции газификации эндотермичны, из-за чего, на выходе реакционной зоны температура выходящих газов падает до $400\,^{\circ}$ С. Из зоны газификации отходящие газы поступают в распылительном скруббере, в котором охлаждаются циркулирующим 10%-ым раствором каустической соды, до температуры $30\div50\,^{\circ}$ С.

В циркулирующем растворе растворяются и хемосорбируются кислые газы, образующиеся в инсинераторе SO2, SO3, NO2, Cl2, CO2 и т.п.

Очистка и охлаждение циркулирующего раствора происходит в очистном сооружении, а образующиеся нейтральные соли утилизируются известными способами. Эффективность отчистки газов от 75 до 90 %.

Наименование	Производительность, м ³ /час	D,мм	Н,мм	Н1,мм	Н2,мм	Масса,т
Теплообменная камера (рекуператор)	-	500				0,5
Фильтр сухой очистки (циклон)	500-2500	500	1500	До 7000	До 9000	1,8

Газопромыватель (фильтр мокрой очитски)	500-2500	1000	3500	До 6000	До 9000	До 2,4	
---	----------	------	------	------------	------------	--------	--

Прием и подготовка отходов

Входной контроль осуществляется для определения свойств исходного материала, подаваемого для обезвреживания в установку. Для этого на отходы, поступающие на обезвреживание, предоставляются:

- паспорт опасного отхода (подтверждающий отнесение отходов к опасным классам отходов), а в случае его отсутствия протоколы анализов аккредитованной лаборатории, подтверждающие класс опасности, радиологическую безопасность и физико-химические свойства исходного отхода;
 - прочую документацию, подтверждающую состав исходного отхода.

Перечень отходов, предполагаемых к сжиганию на инсинераторе Веста плюс

•		
Код отходов	Наименование отходов	Количество, т/год
18 01 01	Использованные шприцы, иглы и капельницы и т.д.	40
18 01 02	Биологические отходы	40
18 01 03*	Отходы с особо инфицированных отделений	30
18 01 04	Перевязочные материалы, гипс, белье, одноразовая	30
	одежда, подгузники, перчатки, маски	30
18 01 06*	Химические вещества, состоящие из опасных веществ	10
	или содержащие опасные вещества	10
18 01 07	Химические вещества, содержащие неопасные вещества	10
18 01 08*	Цитотоксические и цитостатические препараты	10
18 01 09	Просроченные медицинские препараты	5
18 01 10	Отходы стоматологических клиник	5
	Всего	180

Производительность Веста плюс составляет до 260 кг/ч. Эксплуатироваться печь будет по мере необходимости, ориентировочно — до 8 ч/сутки, 2880 ч/год. Объем сжигания медицинских отходов составит 180,0 тонн в год.

Выгрузка зольного остатка

После обезвреживания отходов образовавшийся зольный остаток выгружается из установки с помощью скребка в контейнеры для зольного остатка. После очистки винсинераторе необходимо оставлять слой золы высотой примерно 50 мм. Это помогает удерживать вытапливаемые жилкости.

Объем зольного остатка после сжигания: не более 5 - от веса загружаемых отходов; 20 и более при утилизации отходов или топлив с высокой степенью зольности.

Контроль на выходе служит для определения физико-химических свойств и класса опасности обезвреженного материала. Допускается накопление зольного остатка в укрываемом бункере объемом 7 м³. Представительная проба зольного остатка берется со всей массы отходав бункере методом конверта. Анализ пробы проводится с привлечением аккредитованной лаборатории.

Система управления

Система управления (СУ) инсинератором обеспечивает контроль всех процессов, происходящих в инсинераторе.

Пульт управления выполнен таким образом, чтобы максимально упростить порядок работы с ним. Всеми процессами, происходящими во время сжигания отходов, управляет автоматика. После запуска инсинератора постоянный контроль пульта управления не обязателен. Ответственный за работу инсинератора должен находиться в смене на случай аварийной ситуации в соответствии с общими правилами промышленной безопасности для осуществления общего контроля.

Транспортировка медотходов

Сбор, транспортировка и хранение медицинских отходов (МО) осуществляется согласно степени их опасности.

Рабочие, занятые сбором, обезвреживанием, транспортировкой, хранением и захоронением медицинских отходов проходят предварительные (при поступлении на работу) и периодические медицинские осмотры в соответствии с Перечнем вредных производственных факторов, профессий, при которых проводятся обязательные медицинские осмотры, утвержденным приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 175 (зарегистрирован в Реестре государственной регистрации нормативных правовых актов № 10987) (далее — Перечень) и Правил проведения обязательных медицинских осмотров, утвержденных приказом исполняющего обязанности Министра национальной экономики Республики Казахстан от 24 февраля 2015 года № 128 (зарегистрирован в Реестре государственной регистрации нормативных правовых актов № 10634) (далее — Правила медосмотра).

На объектах здравоохранения, помещения для временного хранения МО предусматриваются в соответствии с документами нормирования.

Сбор, прием и транспортировка MO осуществляются в одноразовых пакетах, емкостях, коробках безопасной утилизации (далее – КБУ), контейнерах.

Контейнеры для каждого класса МО, емкости и пакеты для сбора отходов маркируются различной окраской. Конструкция контейнеров влагонепроницаемая, не допускающая возможности контакта посторонних лиц с содержимым.

Лицам, осуществляющим транспортировку MO с момента погрузки на транспортное средство и до приемки их в установленном месте, необходимо соблюдать меры безопасного обращения с ними.

Не допускается утрамбовывать MO руками. Не допускается осуществлять сбор, разбор MO без средств индивидуальной защиты.

Отходы класса Б и В транспортируются с медицинских учреждении в емкостях-контейнерах с плотно закрывающими крышками или в одноразовой твердой герметичной емкости.

Согласно санитарно-эпидемиологических требований к сбору, использованию, обезвреживанию, транспортировке, хранению и захоронению отходов медицинских организаций» отходы в медицинских учреждениях подвергаются предварительной дезинфекции перед сбором, за исключением отходов, поступающие на специальные установки по их обезвреживанию. Медицинский инструментарий одноразового пользования собирается без разбора в одноразовую твердую упаковку и без предварительной дезинфекции подвергается сжиганию на спецустановках.

Контейнеры с медучреждений транспортируются специальным автотранспортом и сразу поступают на базу утилизации.

Предусмотрены правила техники безопасности для обслуживающего персонала при эксплуатации объекта и обращения с отходами.

Обязательное требование - к работе допускается персонал, обученный и подготовленный к процессу работы, ознакомленный с руководством по эксплуатации печи и автотехники.

Использованные люминесцентные лампы, ртутьсодержащие приборы и оборудование транспортируются и хранятся в плотно закрывающихся емкостях, предотвращающие бой во время транспортировки и хранения.

3.3 Электроснабжение

Данный раздел проекта выполнен на основании задания на проектирование, а также чертежей смежных разделов проекта.

В данном проекте разработано подключение оборудование системы газоочистки «Веста-Плюс» . По надежности электроснабжения объект относится к III категории.

Электроснабжение выполнено кабельной линией 0,4кВ кабелем АВвббшв проложенной в земле, в глубине 0,7 м.

Кабель в траншее проложить с учетом рекомендаций типовой серии А5-92.

Все электромонтажные работы выполнить согласно ПУЭ РК, ПТЭ и ПТБ.

4. ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ

Согласно ст. 113 ЭК РК под наилучшими доступными техниками понимается наиболее эффективная и передовая стадия развития видов деятельности и методов их осуществления, которая свидетельствует об их практической пригодности для того, чтобы служить основой установления технологических нормативов и иных экологических условий, направленных на предотвращение или, если это практически неосуществимо, минимизацию негативного антропогенного воздействия на окружающую среду. При этом:

под техниками понимаются как используемые технологии, так и способы, методы, процессы, практики, подходы и решения, применяемые к проектированию, строительству, обслуживанию, эксплуатации, управлению и выводу из эксплуатации объекта;

техники считаются доступными, если уровень их развития позволяет внедрить такие техники в соответствующем секторе производства на экономически и технически возможных условиях, принимая во внимание затраты и выгоды, вне зависимости от того, применяются ли или производятся ли такие техники в Республике Казахстан, и лишь в той мере, в какой они обоснованно доступны для оператора объекта;

под наилучшими понимаются те доступные техники, которые наиболее действенны в достижении высокого общего уровня охраны окружающей среды как единого целого.

Применение наилучших доступных техник направлено на комплексное предотвращение загрязнения окружающей среды, минимизацию и контроль негативного антропогенного воздействия на окружающую среду.

Наилучшие доступные техники определяются на основании сочетания следующих критериев:

- 1) использование малоотходной технологии;
- 2) использование менее опасных веществ;
- 3) способствование восстановлению и рециклингу веществ, образующихся и используемых в технологическом процессе, а также отходов, насколько это применимо;
- 4) сопоставимость процессов, устройств и операционных методов, успешно испытанных на промышленном уровне;
 - 5) технологические прорывы и изменения в научных знаниях;
 - 6) природа, влияние и объемы соответствующих эмиссий в окружающую среду;
 - 7) даты ввода в эксплуатацию для новых и действующих объектов;
- 8) продолжительность сроков, необходимых для внедрения наилучшей доступной техники;
- 9) уровень потребления и свойства сырья и ресурсов (включая воду), используемых в процессах, и энергоэффективность;
- 10) необходимость предотвращения или сокращения до минимума общего уровня негативного воздействия эмиссий на окружающую среду и рисков для окружающей среды;
- 11) необходимость предотвращения аварий и сведения до минимума негативных последствий для окружающей среды;
 - 12) информация, опубликованная международными организациями;
- 13) промышленное внедрение на двух и более объектах в Республике Казахстан или за ее пределами.

В качестве наилучшей доступной техники не могут быть определены технологические процессы, технические, управленческие и организационные способы, методы, подходы и практики, при применении которых предотвращение или сокращение негативного воздействия на один или несколько компонентов природной среды достигается за счет увеличения негативного воздействия на другие компоненты природной среды.

В настоящее время в Республике Казахстан нет разработанных справочников по наилучшим доступным техникам. В соответствии с правилами разработки, применения, мониторинга и пересмотра справочников по наилучшим доступным техникам (Постановление Правительства Республики Казахстан от 28.10.2021 г. №775) проводится работа по разработке отраслевых технических справочников по наилучшим доступным технологиям «Химическая

промышленность» и «Горнодобывающая и металлургическая промышленность» (Приказ Председателя Технического комитета №110 «Наилучшие доступные технологии» от 15 апреля 23 2020 года №1 и №4 «О создании технической рабочей группы по разработке отраслевого технического справочника по наилучшим доступным т

5 ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ СТРОИТЕЛЬНЫХ РАБОТ.

Постутилизация объекта - комплекс работ по демонтажу и сносу капитального строения (здания, сооружения, комплекса) после прекращения его эксплуатации.

По завершению строительства объекта демонтажу подлежат все временные сооружения, возведенные на период осуществления строительных работ.

Производится уборка всех загрязнений территории, оставшихся при демонтаже временных сооружений, планировка территорий, засыпка эрозионных форм и термокарстовых просадок грунтом с аналогичными физико-химическими свойствами, восстановление системы естественного или организованного водоотвода, восстановление плодородного слоя почвы, срезка грунтов на участках, поврежденных горюче-смазочными материалами.

Ликвидация предприятия в настоящее время не рассматривается, при необходимости ликвидации предприятия будет выполнен План и проект ликвидации в соответствии с требованиями Экологического Законодательства.

6 ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ НЕГАТИВНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВОМ И ЭКСПЛУАТАЦИЕЙ ОБЪЕКТОВ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ

6.1 Атмосферный воздух

6.1.1 Характеристика объекта как источника загрязнения атмосферы

Основной предпосылкой для защиты атмосферного воздуха от загрязнения является инвентаризация источников выбросов, то есть получение и систематизация сведений о составе и количестве выбросов, распределении источников выбросов на территории объекта и учета мероприятий по снижению возможных выбросов вредных веществ в атмосферу.

При проведении строительных работ основными источниками выбросов загрязняющих веществ в атмосферу являются выбросы при проведении сварочных, покрасочных, работе автотранспорта.

Всего источников выбросов ЗВ при строительстве— 12 единицы, 3 (три) источника организованного и 9 источников неорганизованного характера.

К организованным источникам относятся:

- котел битумный источник 0001;
- компрессор дизельный источник 0002;
- сварочный дизельный генератор источник 0003.

К неорганизованным источникам относятся:

- разработка грунта экскваторами источник 6001;
- разработка грунта бульдозерами источник 6002;
- уплотнение грунта трамбовками источник 6003;
- уплотнение грунта катками источник 6004;
- пересыпка инертных материалов источник 6005;
- **выбросы** пыли при транспортных работах источник 6006;
- сварочные работы источник 6007;
- покрасочные работы источник 6008;
- машины шлифовальные источник 6009.

Объемы расхода строительных материалов, принятых для расчета выбросов, представлены в таблице 6.1.1.

$N_{\underline{0}}$	Наименование	Ед. изм.	Значения	Место прибытия
1	Щебень	м3	1328,0	п. Шетпе
2	Песок	м3	7,82	п. Шетпе
3	Грунтовка 021	T	0,033	г. Актау
4	Эмаль ПФ-115	T	0,056	г. Актау
5	Растворитель Р-4	Т	0,022	г. Актау
6	Электроды	T	0,138	г. Актау
7	Битум	Т	0,9	г. Актау

Основными веществами, выбрасываемых в атмосферу являются железа оксид, марганец и его оксиды, фтористые газообразные соединения, фториды неорганические плохо растворимые, диметилбензол, метилбензол, бутилацетат, пропан-2-он, уайт-спирит, взвешенные вещества,

углерод оксид, азота диоксид, азота оксид, углерод черный, сера диоксид, углеводороды предельные С12-С19, формальдегид, бензапирен, пыль неорганическая, пыль металлическая.

Общее количество 3В, выбрасываемых в атмосферу при строительстве составляет 2,266141291 г/с или 1,9570401 m/год, в том числе:

твердые 0,283631291 г/с или 1,403663832 m/год; газообразные и жидкие 1,982510001 г/с или 0,55337625 m/год

При проведении строительных работ задействован автотранспорт. Перечень спецтехники, количество часов работы, представлены в таблице 6.1.2.

Таблица 6.1.2 – Виды спецтехники, задействованных при строительстве объекта

No॒	Виды спецтехники	Количество часов
		работы, маш-ч
1	Экскаваторы одноковшовые дизельные	192,85
2	Бульдозеры	179,03
3	Трамбовки	253,40
4	Машины поливомоечные 6000 л	75,26
5	Катки дорожные прицепные на пневмоколесном ходу массой 25 т	16,66
6	Краны на автомобильном ходу максимальной грузоподъёмностью 10 т	115,25
7	Автопогрузчики, грузоподъёмность 5 т	51,47

При работе спецтехники в атмосферу от двигателей выделяются углерода оксид, азота диоксид, сера диоксид, углерод черный(сажа), бензапирен, углеводороды предельные. Расход дизельного топлива составит 1,33 тонны.

Общее количество 3B, выбрасываемых в атмосферу, при работе автотранспорта составит: $0.0858 \, \text{г/c}$ или $0.2731 \, \text{т/год}$.

При эксплуатации объекта источники загрязнения атмосферы являются дымовая труба печи инсинератора, емкость для дизтоплива.

Всего источников выбросов ЗВ при эксплуатации— 2 единицы, 1 (один) источник организованного и 1 источник неорганизованного характера.

К организованным источникам относятся:

печь инсинератор Веста плюс – источник 0001

К неорганизованным источникам относится:

емкость для дизельного топлива - источник 6001.

Основными веществами, выбрасываемых в атмосферу являются азота диоксид, азота оксид, гидрохлорид, фуран, углерод оксид, сера диоксид, углерод черный(сажа), смесь углеводородов C12-C19, сероводород, взвешенные вещества, диоксины.

Общее количество 3B, выбрасываемых в атмосферу при эксплуатации, составляет 0,1087914 г/с или 0,9427685 т/год, в том числе:

твердые 0,0018202 г/с или 0,018749 m/год; газообразные и жидкие 0,1069712 г/с или 0,9240195 m/год.

6.1.2 Расчет выбросов загрязняющих веществ в атмосферу.

Для количественной и качественной оценки выбросов загрязняющих веществ проведена инвентаризация всех источников загрязняющих веществ и произведены расчеты выбросов по каждому источнику.

Расчет выбросов проведён в соответствии со следующими утвержденными нормативными и нормативно-методическими документами по охране атмосферного воздуха, действующими в Республике Казахстан:

▶ методики определения нормативов эмиссий в окружающую среду. Приложение к приказу Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.

- ▶ методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 –п.
 - ▶ методики расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории п.6. Расчет выбросов загрязняющих веществ в атмосферу от химических лабораторий приложения № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Все загрязняющие вещества, выделяемые при строительстве и эксплуатации объекта, отражены в таблицах 6.1.2.1-6.1.2.2 «Перечень загрязняющих веществ, выбрасываемых в атмосферу». Источники выбросов загрязняющих веществ отражены в таблицах 6.1.2.3-6.1.2.4 «Параметры выбросов загрязняющих веществ в атмосферу». Нормативы выбросов 3В, выделяемые при строительстве и эксплуатации объекта отражены в таблицах 6.1.2.5-6.1.2.6.

Таблица 6.1.2.1

	Перечень загрязняющих веш	(еств, вы(расываем	іых в атмо	осферу на	период ст	роительства		
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности 3В	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,00874	0,001322	0,03305
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,000922	0,000129	0,129
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,348373333	0,19415	4,85375
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,056609667	0,03154925	0,52582083
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,022728889	0,012107	0,24214
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,081173333	0,030525	0,6105
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	0,343602223	0,158577	0,052859
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,000417	0,0000375	0,0075
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)		0,2	0,03		2	0,001833	0,000165	0,0055
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,25	0,02745	0,13725
0621	Метилбензол (349)		0,6			3	0,34444444444	0,01364	0,02273333
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000000513	3,32E-07	0,332
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)		0,1			4	0,06666666667	0,00264	0,0264
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,005133333	0,0030235	0,30235
1401	Пропан-2-он (Ацетон) (470)		0,35			4	0,14444444444	0,00572	0,01634286
2752	Уайт-спирит (1294*)				1		0,125	0,0126	0,0126
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)		1			4	0,216645556	0,073464	0,073464
2902	Взвешенные частицы (116)		0,5	0,15		3	0,01363888889	0,00369	0,0246

2908	Пыль неорганическая, содержащая двуокись кремния в %:	0,3	0,1		3	0,231768	1,3843105	13,843105
	70-20 (шамот, цемент, пыль цементного производства -							
	глина, глинистый сланец, доменный шлак, песок, клинкер,							
	зола, кремнезем, зола углей казахстанских							
	месторождений) (494)							
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0,04		0,004	0,00194	0,0485
	ВСЕГО:					2,266141291	1,9570401	21,299465

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Перечень загрязняющих веществ, выбрасываемых в атмосферу на период эксплуатации

	перечень запризниющи		Beropue			py 1100 110 p 1	Выброс	Выброс	Значение
							вещества с	вещества с	М/ЭНК
						Класс	учетом	учетом	WISTIN
Код	Наименование загрязняющего вещества	ЭНК,	ПДКм.р,	ПДКс.с.,	ОБУВ,	опасности	очистки, г/с	очистки,	
3B	тынменование загрязняющего вещества	мг/м3	мг/м3	мг/м3	мг/м3	3B	o moran, 170	т/год, (М)	
						J.D		1/10д, (1/1)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,0298336	0,3050246	7,625615
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,004848	0,0495665	0,82610833
0316	Гидрохлорид (Соляная кислота, Водород хлорид)		0,2	0,1		2	0,00178	0,01846	0,1846
	(163)								
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,0001606	0,001156	0,00578
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,		0,5	0,05		3	0,0240116	0,2010552	4,021104
	Сера (IV) оксид) (516)								
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,00000525	0,0000013664	0,0001708
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	0,044623	0,3494252	0,11647507
2424	Фуран (Фурфуран) (1355*)				0,01		1,800000E-	1,2800000E-	1,2800000E-
							11	10	08
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды		1			4	0,00186975	0,0004866336	0,00048663
	предельные С12-С19 (в пересчете на С);								
	Растворитель РПК-265П) (10)								
2902	Взвешенные частицы (116)		0,5	0,15		3	0,00178	0,01846	0,12306667
3620	Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-			5,00E-10		1	1,800000E-	1,2800000E-	0,256
	1,4-диоксин/ (239)						11	10	
	ВСЕГО:						0,1089118	0,9436355	13,15940651

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 6.1.2.3

Параметры выбросов загрязняющих веществ в атмосферу на период строительства

.ыдинкьо.	Строи	тельство здания для печ	ли по сж	иганию м	едотходов	1		1																+-
Троиз-	Цех	Источник выделе загрязняющих веш		Число часов работы	Наименование источника	Номер источника выбросов	Высота	Диаметр устья		газовоздушн оде из трубы но разовой н	ой смеси при	очечного /1-го лине источнии	аты источника конца йного ка /центра адного чника	2-го г линеі источнив ширина п	онца іного а/длина,	Наименование газоочистных установок,	Вещество, по которому	Коэффи- циент обеспечен	Среднеэксплуа- тационная степень очистки/	Код вещес Наименование вещества	Выбросы за	агрязняюще	го вещества	Го;
одство		Наименование	Количе ство, шт.	вгоду	выброса вредных веществ	на карте- схеме	выбросов, м	трубы, м	Скорость, м/с (Т = 293.15 К, Р= 101.3 кПа)	Объемный расход, м3/c (T = 293.15 K, P= 101.3 кПа)	Темпе- ратура	X1	Y1	X2	Y2	тип и мероприятия по сокращению выбросов	производится газоочистка		максимальная степень очистки, %	тва	r/c	мг/нм3	т/год	жен НД
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26
001	01	Котел битумный	1	2.7	Котел битумный	0001	2	0,09	31,44	0,2	90	-56	Площадк	al						0301 Азота (IV) диоксид (Азота	0,01317	87,559	0,00013	3 202
								,												диоксид) (4)	·	·	-	
																				0304 Азот (II) оксид (Азота оксид) 0328 Углерод (Сажа, Углерод черный) (583)	0,00214 0,00134	14,227 8,909	0,000021 0,000013	3 202
																				0330 Сера диоксид (Ангидрид сернистый,	0,02984	198,387	0,00029	202
																				0337 Углерод оксид (Окись углерода, Угарный газ) (584)		471,966	0,00069	
																				2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19	0,09259	615,571	0,0009	20:
001		Компрессор	1	184	Компрессор дизельный	0002	2	0,1	99,89	0,7845131	500	4	-99							0301 Азота (IV) диоксид (Азота	0,16	577,48	0,18112	202
		дизельный																		диоксид) (4) 0304 Азот (II) оксид (Азота оксид)	0,026	93,84	0,029432	2 202
																				0328 Углерод (Сажа, Углерод черный) (583)	0,0104167	37,596	0,01132	2 202
																				0330 Сера диоксид (Ангидрид сернистый,	0,025	90,231	0,0283	3 202
																				0337 Углерод оксид (Окись утлерода, Угарный газ) (584)	0,1291667	466,194	0,14716	202
																				0703 Бенз/а/пирен (3,4-Бензпирен) (54)	2,5E-07	0,0009	3,11E-07	7 20
																				1325 Формальдегид (Метаналь) (609)	0,0025	9,023	0,00283	3 202
																				2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19	0,0604167	218,059	0,06792	2 2025
001		Сварочный дизельный	1		Сварочный дизельный	0003	2	0,1	14,29	0,1122268	500	-49	10							0301 Азота (IV) диоксид (Азота	0,1685333	4252,126	0,012384	4 202
		генератор			генератор															диоксид) (4) 0304 Азот (II) оксид (Азота оксид)	0,0273867	690,97	0,0020124	4 202
																				0328 Углерод (Сажа, Углерод черный) (583)	0,0109722	276,831	0,000774	4 202
																				0330 Сера диоксид (Ангидрид сернистый,	0,0263333	664,395	0,001935	5 20:
																				0337 Углерод оксид (Окись утлерода, Угарный газ) (584)	0,1360556	3432,706	0,010062	2 20:
																				0703 Бенз/а/пирен (3,4-Бензпирен) (54)	2,63E-07	0,007	2,10E-08	8 20
																				1325 Формальдегид (Метаналь) (609)	0,0026333	66,439	0,0001935	5 20
																				2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19	0,0636389	1605,62	0,004644	4 20

001		Разработка грунта	1	192.85	Разработка грунта экскаватором	6001	2		25	-5	4 -3	1	5 11		2908 Пыль неорганическая,	0,0538	0,448	8 200
		экскаватором													содержащая двуокись кремния в %: 70-20			
001		Разработка грунта бульдозером	1	179.03	Разработка грунта бульдозером	6002	2		25	-5	1 -25	1	5 10		2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0309	0,239	9 20
01 (Уплотнение грунта трамбовками	1	253.4	Уплотнение грунта трамбовками	6003	2		25	-4	9 -56	1	23		2908 Пыпь неорганическая, содержащая двуокись кремния в %: 70-20	0,0299	0,329	2
01 (Уплотнение грунта катками	1	16.66	Уплотнение грунта катками	6004	2		25	-4	5 -72	1	25		2908 Пыпь неорганическая, содержащая двуокись кремния в %: 70-20	0,0976	0,0702	1 2
01 (Пересыпка инернтных материалов	1		Пересыпка инернтных материалов	6005	2		25	-3	8 -95	1	10		2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,00996	0,01952	2
01 (Выбросы пьии при транспортных работах	1		Выбросы пыли при транспортных работах	6006	2		25	-1	7 -91	1	19		2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,00883	0,2785	2
01 (01	Сварочные работы	1	104	Сварочные работы	6007	2		25	-3	4 7	1	1 7		0123 Железо (II, III) оксиды (в пересчете на железо)	0,00874	0,001322	
															0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000922	0,000129	1 2
															0301 Азота (IV) диоксид (Азота диоксид) (4)	0,00667	0,000516	
															0304 Азот (II) оксид (Азота оксид) 0337 Углерод оксид (Окись углерода	0,001083 , 0,00739	0,00008385 0,000665	
															Угарный газ) (584) 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,000417	0,0000375	5
															0344 Фториды неорганические плох растворимые - (алюминия фторид, кальция фторид, натри гексафторалюминат)		0,000165	
															2908 Пьиъ неорганическая, содержащая двуокись кремния в %: 70-20	0,000778	0,0000905	i
1 (01	Покрасочные работы	1	212	Покрасочные работы	6008	2		25	-2	6 -10	1	7		0616 Диметилбензол (смесь о-, м-, п изомеров) (203)		0,02745	
															0621 Метилбензол (349) 1210 Бутилацетат (Уксусной кислоть бутиловый эфир)	0,3444444 1 0,0666667	0,01364 0,00264	4
															1401 Пропан-2-он (Ацетон) (470) 2752 Уайт-спирит (1294*)	0,1444444 0,125	0,00572 0,0126	6
			-	125		C000			-	_	2 22			-	2902 Взвещенные частицы (116)	0,0076389	0,00077	
01 (01	Шлифовальные машины	1	135	Шлифовальные машины	6009	2		25	-2	3 -22	'	6		2902 Взвешенные частицы (116) 2930 Пыль абразивная (Корунд бельій, Монокорунд) (1027*)	0,006 0,004	0,00292 0,00194	

ЭРА v2.0 Таблица 6.1.2.4

Параметры выбросов загрязняющих веществ в атмосферу на период эксплуатации ечного источник 2-го конца Параметры газовоздушной смеси линейного на выходе из трубы при линейного источника / длина, Выбросы загрязняющего веществ загрязняющих веществ Коэффимаксимально разовой нагрузке Номер источника /центра ширина площалного Год Высота Наименование Вешество, по плошапного источника источника Диаметр степень Произ-Наименование источника источника азоочистных установок, которому достиисточника Цех Наименование вещества выбросов устья очистки/ веннес водство выброса вредных веществ выбросов, тип и мероприятия по производится ности газо трубы, м на карте аксимальная сокращению выбросов Количе в году газоочистка очисткой, степень Объемный CTEO, расход, м/c (T = ратура м3/c (T = X1 Y1 X2 Y2 т/год Наименование r/c мг/нм3 293.15 K. P= смеси. 293.15 K, P= 101.3 к∏а) oC 101.3 кПа) 4 5 8 9 10 12 14 15 16 18 19 20 22 23 24 25 26 1 2 11 13 17 Площадка 1 Дымовая труба печи Дымовая труба печи Веста плюс 0328 75,00/75,00 0301 Азота (IV) диоксид (Азота 0,0298336 0,3050246 2026 диоксид) (4) 0304 Азот (II) оксид (Азота оксид) (6) 2026 0.004848 4,906 0,0495665 0316 Гидрохлорид (Соляная кислота, 2026 0,00178 1,801 0,01846 Водород хлорид) (163) 0328 Углерод (Сажа, Углерод 0,0000402 0,000289 0,041 черный) (583) 0330 Сера диоксид (Ангидрид 0.0240116 24 298 0 2010552 2026 сернистый, Сернистый газ, Сера (IV) оксид) (516) 0337 Углерод оксид (Окись углерода, 0,3494252 2026 Угарный газ) (584) 2424 Фуран (Фурфуран) (1355*) 1.80E-11 0.00000002 1.28E-10 2026 0,00178 1,801 0,01846 2026 3620 Диоксины /в пересчете на 1,80E-11 1,28E-10 2,3,7,8-тетрахлордибензо-1,4диоксин/ (239) 5,25E-06 1,3664E-06 2026 Емкость для хранения 1 Емкость для хранения -195 0333 Сероводород (Дигидросульфид) (518) цизтоплива дизтоплива 2754 Алканы С12-19 /в пересчете на 0,0018698 0,00048663 2026 С/ (Углеводороды предельные

С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)

Таблица 6.1.2.5

Нормативы выбросов загрязняющих веществ в атмосферу на период строительства

Нормативы выбр	COB 34			вы выбросов заг		па период с	ронтельсті	год
Производство	Но-			веществ		1		дос-
цех, участок	мер источ	суп	ц. пол.	на 20:	25 год	НД	ĮВ	тиже ния НДВ
Код и наименование загрязняющего вещества	ника	г/с	т/год	г/с	т/год	г/с	т/год	
1	2	3	4	5	6	7	8	9
0123, Железо (II, III) оксиды (в				(диЖелезо тр	иоксид, Желез	а оксид) (274)		
Неорганизованные и		ики		, ,		1	,	
CMP	6007	-	-	0,00874	0,001322	0,00874	0,001322	2025
Итого:		-	_	0,00874	0,001322	0,00874	0,001322	
Всего по загрязняющему веществу:		-	-	0,00874	0,001322	0,00874	0,001322	2025
0143, Марганец и его соединен	ия (в пер	есчет	ге на ма	рганца (IV) ок	ссид) (327)			
Неорганизованные и		ики		T				
CMP	6007	-	-	0,000922	0,000129	0,000922	0,000129	2025
Итого:		-	-	0,000922	0,000129	0,000922	0,000129	
Всего по загрязняющему веществу:		-	-	0,000922	0,000129	0,000922	0,000129	2025
0301, Азота (IV) диоксид (Азот	а диокси,	д) (4)						
Организованные ист	очник	И		·				
CMP	0001	-	-	0,01317	0,00013	0,01317	0,00013	2025
	0002	-	-	0,16	0,18112	0,16	0,18112	2025
	0003	-	-	0,168533333	0,012384	0,168533333	0,012384	2025
Итого:		-	-	0,341703333	0,193634	0,341703333	0,193634	
Неорганизованные и	сточн	ики						
CMP	6007	-	-	0,00667	0,000516	0,00667	0,000516	2025
Итого:		-	-	0,00667	0,000516	0,00667	0,000516	
Всего по загрязняющему веществу:		-	-	0,348373333	0,19415	0,348373333	0,19415	2025
0304, Азот (II) оксид (Азота ок	сид) (6)		1					
Организованные ист		И						
CMP	0001	-	-	0,00214	0,000021	0,00214	0,000021	2025
	0002	-	-	0,026	0,029432	0,026	0,029432	2025
	0003	-	-	0,027386667	0,0020124	0,027386667	0,0020124	2025
Итого:		-	-	0,055526667	0,0314654	0,055526667	0,0314654	
Неорганизованные и СМР	сточн 6007	ики	_	0,001083	0,00008385	0,001083	0,00008385	2025
Итого:	0007	-	-	0,001083	0,00008385	0,001083	0,00008385	2023
Всего по загрязняющему		 -	_	0,001083	0,00008383	0,001083	0,00008385	2025
веществу:		_	_	0,030003007	0,03134743	0,030003007	0,03134923	2023
0328, Углерод (Сажа, Углерод	черный)	(583)	1	<u>. </u>		<u>. </u>		<u> </u>
Организованные ист		` /						
CMP	0001	-	-	0,00134	0,000013	0,00134	0,000013	2025
	0002	-	-	0,010416667	0,01132	0,010416667	0,01132	2025
	0003	-	-	0,010972222	0,000774	0,010972222	0,000774	2025
Итого:		-	-	0,022728889	0,012107	0,022728889	0,012107	
Всего по загрязняющему веществу:		-	-	0,022728889	0,012107	0,022728889	0,012107	2025
0330, Сера диоксид (Ангидрид	сернист	ый, С	ернисті	ый газ, Сера (Г	V) оксид) (516)	<u>. </u>		
Организованные ист	очник	и		- `				
CMP	0001		-	0,02984	0,00029	0,02984	0,00029	2025
	0002			0,025	0,0283	0,025	0,0283	2025

	0003	Ι_	<u> </u>	0,026333333	0,001935	0,026333333	0,001935	2025
Итого:	0003	<u> </u>	_	0,020333333	0,030525	0,020333333	0,030525	2023
Всего по загрязняющему		_	_	0,081173333	0,030525	0,081173333	0,030525	2025
веществу:				0,001173333	0,030323	0,001173333	0,030323	2023
0337, Углерод оксид (Окись угл	герода, У	⁷ гарн	ый газ)	(584)				
Организованные ист	очник	И						
CMP	0001	-	-	0,07099	0,00069	0,07099	0,00069	2025
	0002	-	-	0,129166667	0,14716	0,129166667	0,14716	2025
	0003	-	-	0,136055556	0,010062	0,136055556	0,010062	2025
Итого:		-	-	0,336212223	0,157912	0,336212223	0,157912	
Неорганизованные и		ики	1			T		
CMP	6007	-	-	0,00739	0,000665	0,00739	0,000665	2025
Итого:		-	-	0,00739	0,000665	0,00739	0,000665	
Всего по загрязняющему		-	-	0,343602223	0,158577	0,343602223	0,158577	2025
веществу:								
0342, Фтористые газообразные			-	чете на фтор/ (617)			
Неорганизованные и		ики	I	0.000445	0.000027	0.000445	0.0000375	2027
CMP	6007	-	-	0,000417	0,0000375	0,000417	0,0000375	2025
Итого:		-	-	0,000417	0,0000375	0,000417	0,0000375	2025
Всего по загрязняющему веществу:		-	-	0,000417	0,0000375	0,000417	0,0000375	2025
0344, Фториды неорганические	плохо п	ACTR() Пимые	- (алюминия (⊥ ия фтопил. нат	<u> </u>	
Неорганизованные и			римые	(asilominin)	рторид, калыц	ия фторид, на	рии	
CMP	6007	-	_	0,001833	0,000165	0,001833	0,000165	2025
Итого:		-	_	0,001833	0,000165	0,001833	0,000165	
Всего по загрязняющему		-	_	0,001833	0,000165	0,001833	0,000165	2025
веществу:				0,00000	3,000-00	,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0616, Диметилбензол (смесь о-,	м-, п- из	омер	ов) (203	5)				
Неорганизованные и		_						
CMP	6008	-	-	0,25	0,02745	0,25	0,02745	2025
Итого:		-	-	0,25	0,02745	0,25	0,02745	
Всего по загрязняющему		-	-	0,25	0,02745	0,25	0,02745	2025
веществу:								
0621, Метилбензол (349)								
Неорганизованные и		ики						
CMP	6008	-	-	0,34444444	0,01364	0,34444444	0,01364	2025
Итого:		-	-	0,34444444	0,01364	0,34444444	0,01364	
Всего по загрязняющему		-	-	0,344444444	0,01364	0,34444444	0,01364	2025
веществу:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
0703, Бенз/а/пирен (3,4-Бензпир								
Организованные ист		И		0.00000025	0.000000211	0.00000025	0.000000211	2025
CMP	0002	-	-	0,00000025	0,000000311	0,00000025	0,000000311 2,10E-08	2025
Итого	0003	-	-	0,000000263	2,10E-08	0,000000263	· ·	2025
Итого: Всего по загрязняющему		-	-	0,000000513	0,000000332 0,000000332	0,000000513	0,000000332 0,000000332	2025
веществу:		-	_	0,000000313	0,000000332	0,000000313	0,000000332	2023
1210, Бутилацетат (Уксусной к	ислоты (бутил	овый э	фир) (110)				
Неорганизованные и				/ \ /				
CMP	6008	-	-	0,066666667	0,00264	0,066666667	0,00264	2025
Итого:		-	-	0,066666667	0,00264	0,066666667	0,00264	
Всего по загрязняющему		-	-	0,066666667	0,00264	0,066666667	0,00264	2025
веществу:) (600)	1		<u> </u>			<u> </u>	
1325, Формальдегид (Метаналь								
Организованные ист СМР	очник 0002	: И _	_	0,0025	0,00283	0,0025	0,00283	2025
CIVIF	0002	-	-	0,0025	0,00283	0,0025	0,00283	2025
	0003		_	0,002033333	0,0001933	0,00203333	0,0001933	2023

Итого:		_	_	0,005133333	0,0030235	0,005133333	0,0030235	
Всего по загрязняющему		_	_	0,005133333	0,0030235	0,005133333	0,0030235	2025
веществу:				,	,	,	,	
1401, Пропан-2-он (Ацетон) (47	0)		I					
Неорганизованные и		ики						
CMP	6008	-	-	0,144444444	0,00572	0,144444444	0,00572	2025
Итого:		-	-	0,144444444	0,00572	0,144444444	0,00572	
Всего по загрязняющему		-	-	0,144444444	0,00572	0,144444444	0,00572	2025
веществу:								
2752, Уайт-спирит (1294*)								
Неорганизованные и	сточн	ики						
CMP	6008	-	-	0,125	0,0126	0,125	0,0126	2025
Итого:		-	-	0,125	0,0126	0,125	0,0126	
Всего по загрязняющему		-	-	0,125	0,0126	0,125	0,0126	2025
веществу:								
2754, Алканы С12-19 /в пересче		`	еводор	оды предельнь	ie C12-C19 (в г	ересчете на С);	
Организованные ист		И	ı	1 00	0.555		0.555-1	207 =
CMP	0001	-	-	0,09259	0,0009	0,09259	0,0009	2025
	0002	-	-	0,060416667	0,06792	0,060416667	0,06792	2025
Mara	0003	-	-	0,063638889	0,004644	0,063638889	0,004644	2025
Итого:		-	-	0,216645556	0,073464	0,216645556	0,073464	2025
Всего по загрязняющему веществу:		_	-	0,216645556	0,073464	0,216645556	0,073464	2025
	6)							
2902, Взвешенные частицы (11								
Неорганизованные и		ики	•					2025
	6008	ики -	-	0,007638889	0,00077	0,007638889	0,00077	2025
Неорганизованные и СМР		ики - -	-	0,006	0,00292	0,006	0,00292	2025
Неорганизованные и СМР Итого:	6008	ики - - -	-	0,006 0,013638889	0,00292 0,00369	0,006 0,013638889	0,00292 0,00369	2025
Неорганизованные и СМР	6008	ики - - -		0,006	0,00292	0,006	0,00292	
Неорганизованные и СМР Итого: Всего по загрязняющему	6008		-	0,006 0,013638889 0,013638889	0,00292 0,00369 0,00369	0,006 0,013638889 0,013638889	0,00292 0,00369 0,00369	2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глиниств	6008 6009 держаща ый слано	- - - - ая дву	- - - уокись	0,006 0,013638889 0,013638889 кремния в %:	0,00292 0,00369 0,00369 70-20 (шамот,	0,006 0,013638889 0,013638889 цемент, пыль 1	0,00292 0,00369 0,00369 цементного	2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений)	6008 6009 держащый слано (494)	- - - - - ая дву	- - - уокись менныі	0,006 0,013638889 0,013638889 кремния в %:	0,00292 0,00369 0,00369 70-20 (шамот,	0,006 0,013638889 0,013638889 цемент, пыль 1	0,00292 0,00369 0,00369 цементного	2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и	6008 6009 держаща ый слано (494) сточн	- - - - - ая дву	- - - уокись менныі	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок,	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола,	0,006 0,013638889 0,013638889 цемент, пыль 1 кремнезем, 30	0,00292 0,00369 0,00369 цементного ла углей	2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений)	6008 6009 держаща ый слано (494) с т о ч н	- - - - - ая дву	- - - уокись менныі	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок,	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола,	0,006 0,013638889 0,013638889 цемент, пыль и кремнезем, зо	0,00292 0,00369 0,00369 цементного ла углей	2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и	6008 6009 держаща ый слано (494) с т о ч н 6001 6002	- - - - - ая дву	- - - уокись менныі	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239	0,006 0,013638889 0,013638889 цемент, пыль кремнезем, зо 0,0538 0,0309	0,00292 0,00369 0,00369 цементного ла углей 0,448 0,239	2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003	- - - - ая дву ец, дог и к и	- - - уокись менныі - - -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329	0,006 0,013638889 0,013638889 иемент, пыль кремнезем, зо 0,0538 0,0309 0,0299	0,00292 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329	2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004	- - - - - ая дву	- - - уокись менныі	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702	0,006 0,013638889 0,013638889 пемент, пыль и кремнезем, зо 0,0538 0,0309 0,0299 0,0976	0,00292 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702	2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005	- - - ая дву ец, дог и к и - - -	- - - уокись менныі - - -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952	0,006 0,013638889 0,013638889 пемент, пыль кремнезем, зо 0,0538 0,0309 0,0299 0,0976 0,00996	0,00292 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004 6005 6006	- - - ая дву ец, дог и к и - - -	- - - уокись менныі - - -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и сМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинист казахстанских месторождений) Неорганизованные и сСМР	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005	- - - ая дву ец, дог и к и - - -	- - - уокись менныі - - -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905	0,006 0,013638889 0,013638889 0,013638889 пемент, пыль и кремнезем, зо 0,0309 0,0299 0,0976 0,00996 0,009883 0,000778	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисть казахстанских месторождений) Неорганизованные и СМР	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004 6005 6006	- - - ая дву ец, дог и к и - - -	- - - уокись менныі - - -	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768	0,00292 0,00369 0,00369 0,00369 пементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и сМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинист казахстанских месторождений) Неорганизованные и сСМР	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004 6005 6006	- - - ая дву ец, дог и к и - - -	- - - уокись менныі - - -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905	0,006 0,013638889 0,013638889 0,013638889 пемент, пыль и кремнезем, зо 0,0309 0,0299 0,0976 0,00996 0,009883 0,000778	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисти казахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу:	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- 	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768	0,00292 0,00369 0,00369 0,00369 пементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинистказахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корун,	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768	0,00292 0,00369 0,00369 0,00369 пементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисти казахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу:	6008 6009 держаща ый слано (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768	0,00292 0,00369 0,00369 0,00369 пементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинистказахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корунд Неорганизованные и месторожнеми)	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00983 0,000778 0,231768 0,231768 д) (1027*)	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00986 0,00883 0,000778 0,231768	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, сопроизводства - глина, глинистказахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корун, Неорганизованные и СМР	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 кремния в %:й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768 0,231768 д) (1027*)	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинисти казахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корун, Неорганизованные и СМР) СМР	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768 д) (1027*)	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинистк казахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корун, Неорганизованные и СМР Итого: Всего по загрязняющему	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768 д) (1027*)	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00996 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, сопроизводства - глина, глинисти казахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корун, Неорганизованные и СМР) Итого: Всего по загрязняющему веществу:	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768 0,231768 0,231768 д) (1027*)	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025
Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2908, Пыль неорганическая, со производства - глина, глинистказахстанских месторождений) Неорганизованные и СМР Итого: Всего по загрязняющему веществу: 2930, Пыль абразивная (Корун, Неорганизованные и СМР Итого: Всего по загрязняющему веществу: Всего по загрязняющему веществу:	6008 6009 держаща ый слана (494) с т о ч н 6001 6002 6003 6004 6005 6006 6007		- -	0,006 0,013638889 0,013638889 кремния в %: й шлак, песок, 0,0538 0,0309 0,0299 0,0976 0,00996 0,00883 0,000778 0,231768 0,231768 0,231768 д) (1027*)	0,00292 0,00369 0,00369 70-20 (шамот, клинкер, зола, 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105 1,3843105	0,006 0,013638889 0,013638889 0,013638889 0,013638889 0,0538 0,0309 0,0299 0,0976 0,00983 0,000778 0,231768 0,231768	0,00292 0,00369 0,00369 0,00369 цементного ла углей 0,448 0,239 0,329 0,0702 0,01952 0,2785 0,0000905 1,3843105 1,3843105 1,3843105	2025 2025 2025 2025 2025 2025 2025 2025

Нормативы выбросов загрязняющих веществ в атмосферу на период эксплуатации

Производство неж. участок Номер источника Руп., пол. на 2026 год НДВ	год дос-
агрязняющего вещества 1 2 3 4 5 6 7 8 301, Азота (IV) диоксид (Азота диоксид) (4) Организованные источники Здание печи для сжиг. МО 0001 0,0298336 0,3050246 0,0298336 0,3050246 Итого: 0,0298336 0,3050246 0,0298336 0,3050246 Итого: 0,0298336 0,3050246 0,0298336 0,3050246 Весто по загрязняющему 0,004848 0,0495665 0,004848 0,0495665 Витого: - 0,004848 0,0495665 0,004848 0,0495665 Всето по загрязняющему 0,004848 0,0495665 0,004848 0,0495665 Весто по загрязняющему 0,004848 0,0495665 0,004848 0,0495665 Весто по загрязняющему 0,004848 0,0495665 0,004848 0,0495665 Весто по загрязняющему 0,00178 0,01846 0,00178 0,01846 Итого: - 0,00178 0,01846 0,00178 0,01846 Весто по загрязняющему 0,00178 0,01846 0,00178 0,01846 Весто по загрязняющему 0,000178 0,01846 0,00178 0,01846 Весто по загрязняющему 0,000178 0,01846 0,00178 0,01846 Весто по загрязняющему 0,000402 0,000289 0,000402 0,000289 Итого: - 0,000402 0,000289 0,000402 0,000289 Весто по загрязняющему 0,000402 0,000289 0,000402 0,000289 Весто по загрязняющему 0,0004016 0,2010552 0,0240116 0,2010552 Витого: 0,0240116 0,2010552 0,0240116 0,2010552 Весто по загрязняющему 0,0240116 0,2010552 0,0240116 0,2010552 Весто по загрязняющему 0,0004010 0,0000525 1,3664Е-06 0,00000525 1,3664Е-06 0,000000525 1,3664Е-06 0,00000525 1,3664Е-06 0,00000525 1,3664Е-06 0,0	тиже ния НДВ
0301, Азота (IV) диоксид (Азота диоксид) (4) О р г я и и з о в я и и ы е и с т о ч и и к и 3дание печи для сжиг. МО 0001 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0298336 0,3050246 0,0028336 0,3050246 0,0028836 0,3050246 0,0028836 0,3050246 0,004848 0,0495665 0,0495	
Организованные источники Здание печи для сжиг. МО 0001 - 0,0298336 0,3050246 0,0298336 0,3050246 Игого: - - 0,0298336 0,3050246 0,0298336 0,3050246 Всего по загрязняющему веществу: - - 0,0298336 0,3050246 0,0298336 0,3050246 Организованые источник - 0,0298336 0,3050246 0,0298336 0,3050246 Весто по загрязняющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 Итого: - - 0,004848 0,0495665 0,004848 0,0495665 Весто по загрязняющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 Организованные источники 3дание печи для сжиг. МО 0001 - - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Весто по загрязняющему веществу: - - 0,0	9
Здание печи для сжиг. МО 0001 - - 0,0298336 0,3050246 0,0298336 0,3050246 Итого: - - 0,0298336 0,3050246 0,0298336 0,3050246 Всего по загрязняющему веществу: - - 0,0298336 0,3050246 0,0298336 0,3050246 Всего по загрязняющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 Организованные источники - - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязняющему - - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязняющему - - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязняющему - - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему - - 0,000402 0,000289 0,000402 0,000289 Итого: - - 0,000402 0,000289 0,0000402 0,000289 Итого: - - 0,000402 0,000289 0,0000402 0,000289 Всего по загрязняющему - - 0,000402 0,000289 0,0000402 0,000289 Всего по загрязняющему - - 0,000402 0,000289 0,0000402 0,000289 Всего по загрязняющему - - 0,000402 0,000289 0,0000402 0,000289 Всего по загрязняющему - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 0,00000525 1,3664E-06 0,00000525 1,3664E-06 0,00000525 1,3664E-06 0,00	
Итого: - - 0,0298336 0,3050246 0,0298336 0,3050246 Всего по загрязияющему веществу: - - 0,0298336 0,3050246 0,0298336 0,3050246 Ор га и и з о в а и ны е и сто ч и и к и - 0,004848 0,0495655 0,004848 0,0495665 0,0	
Всего по загрязняющему веществу: 0304, Азот (II) оксид (Азота оксид) (6) Организованные источники Здание печи для сжиг. МО 0001 - 0,004848 0,0495665 0,004848 0,0495665 Итого: - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязняющему веществу: 0316, Гидрохлорид (Соляная кислота, Водород хлорид) (163) Организованные источники Здание печи для сжиг. МО 0001 - 0,000178 0,01846 0,00178 0,01846 Итого: - 0,000178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: 0328, Углерод (Сажа, Углерод черный) (583) Организованные источники Здание печи для сжиг. МО 0001 - 0,0000402 0,000289 0,0000402 0,000289 Итого: - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: 0330, Сера дноксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Организованные источники Здание печи для сжиг. МО 0001 - 0,00240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему - 0,00240116 0,2010552 0,0240116 0,2010552 веществу: 0333, Сероводород (Дигидросульфид) (518) Не организованные источники Здание печи для сжиг. МО 6001 - 0,00000525 1,3664E-06 0	2026
Веществу: 304, Азот (II) оксид (Азота оксид) (6) Организованные источники	
Организованные источники Здание печи для сжиг. МО 0001 - - 0,004848 0,0495665 0,004848 0,0495665 Итого: - - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязняющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 Организованные источники Здание печи для сжиг. МО 0001 - - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 Организованные источники Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116<	2026
Здание печи для сжиг. МО 0001 - - 0,004848 0,0495665 0,004848 0,0495665 Итого: - - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязняющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 Одинати од ва и на вечи для сжиг. МО 0001 - - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,000178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - 0,00400525 1,3664E-06 0,00000525 1,3664E-0	
Итого: - - 0,004848 0,0495665 0,004848 0,0495665 Всего по загрязияющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 Организованные источники - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязияющему веществу: - - 0,00178 0,01846 0,00178 0,01846 Организованные источники - - 0,000178 0,01846 0,00178 0,01846 Всего по загрязияющему веществу: - - 0,000178 0,01846 0,00178 0,01846 Итого: - - 0,000178 0,01846 0,00178 0,01846 Всего по загрязияющему веществу: - - 0,0000402 0,000289 0,0000402 0,000289 Организованные источники - - 0,0000402 0,000289 0,0000402 0,000289 Организованные источники - </td <td></td>	
Всего по загрязняющему веществу: - - 0,004848 0,0495665 0,004848 0,0495665 ОЗ16, Гидрохлорид (Соляная кислота, Водород хлорид) (163) Организованные источники 3дание печи для сжиг. МО 0001 - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 Организованные источники Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,000402 0,000289 0,0000402 0,000289 Итого: - - 0,000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552	2026
веществу: (ОЗ16, Гидрохлорид (Соляная кислота, Водород хлорид) (163) Организованные источники Здание печи для сжиг. МО 0001 - - 0,00178 0,01846 0,00178 0,01846 Игого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 Организованные источники Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,0000402 0,000289 0,0000402 0,000289 Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - -	
Организованные источники Здание печи для сжиг. МО 0001 - - 0,00178 0,01846 0,00178 0,01846 Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 Организованные источники Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,0000402 0,000289 0,0000402 0,000289 Организованные источники - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему ве	2026
Здание печи для сжиг. МО 0001 - - 0,00178 0,01846 0,00178 0,01846 Итого:	
Итого: - - 0,00178 0,01846 0,00178 0,01846 Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 О р г а н и з о в а и н ы е и с т о ч и и к и Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: 0330, Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) О р г а н и з о в а н н ы е и с т о ч н и к и Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,	
Всего по загрязняющему веществу: - - 0,00178 0,01846 0,00178 0,01846 ОЗ28, Углерод (Сажа, Углерод черный) (583) Организованные источники Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: - - 0,0000402 0,000289 0,0000402 0,000289 Организованные источники Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552	2026
Веществу:	
Организованные источники Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,0000289 Итого: - - 0,0000402 0,000289 0,0000402 0,0000289 Всего по загрязняющему веществу: - - 0,0000402 0,000289 0,0000402 0,0000289 Организованные источники Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,00240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,00000525 1,366	2026
Здание печи для сжиг. МО 0001 - - 0,0000402 0,000289 0,0000402 0,000289 Итого: - - 0,0000402 0,000289 0,0000402 0,000289 Всего по загрязняющему веществу: 0330, Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Организованные источники Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	•
Итого: - - 0,0000402 0,000289 0,0000402 0,0000289 Всего по загрязняющему веществу: - - 0,0000402 0,0000289 0,0000402 0,0000289 ОЗЗО, Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Организованные источник и Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источник и Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	
Всего по загрязняющему веществу: - - 0,0000402 0,0000289 0,0000402 0,0000289 0330, Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Организованные источники Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 0333, Сероводород (Дигидросульфид) (518) - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	2026
веществу: Веществу: 0330, Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Организованные источники Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	
Организованные источники Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 О 333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	2026
Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	
Здание печи для сжиг. МО 0001 - - 0,0240116 0,2010552 0,0240116 0,2010552 Итого: - - 0,0240116 0,2010552 0,0240116 0,2010552 Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	
Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	2026
Всего по загрязняющему веществу: - - 0,0240116 0,2010552 0,0240116 0,2010552 0333, Сероводород (Дигидросульфид) (518) Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	
Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	2026
Неорганизованные источники Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	1
Здание печи для сжиг. МО 6001 - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06 Итого: - - 0,00000525 1,3664E-06 0,00000525 1,3664E-06	
	2026
Всего по загрязняющему 0,00000525 1,3664Е-06 0,00000525 1,3664Е-06	
	2026
веществу:	
0337, Углерод оксид (Окись углерода, Угарный газ) (584)	
Организованные источники	
Здание печи для сжиг. МО 0001 - - 0,044623 0,3494252 0,044623 0,3494252	2026
Итого: - 0,044623 0,3494252 0,044623 0,3494252	
Всего по загрязняющему веществу: - - 0,044623 0,3494252 0,044623 0,3494252	2026
2424, Фуран (Фурфуран) (1355*)	1
Организованные источники	

отчет о возможных воздействиях

Цех 1, Участок 01	0001	-	-	1,80E-11	1,28E-10	1,80E-11	1,28E-10	2026
Итого:		-	-	1,80E-11	1,28E-10	1,80E-11	1,28E-10	
Всего по загрязняющему		-	-	1,80E-11	1,28E-10	1,80E-11	1,28E-10	2026
веществу:								
2754, Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)								
Неорганизованны	е источн	ики						
Здание печи для сжиг. МО	6001	-	-	0,00186975	0,000486634	0,00186975	0,000486634	2026
Итого:		-	-	0,00186975	0,000486634	0,00186975	0,000486634	
Всего по загрязняющему		-	-	0,00186975	0,000486634	0,00186975	0,000486634	2026
веществу:								
2902, Взвешенные частицы	(116)							
Организованные и	сточниі	си						
Здание печи для сжиг. МО	0001	-	-	0,00178	0,01846	0,00178	0,01846	2026
Итого:		-	-	0,00178	0,01846	0,00178	0,01846	
Всего по загрязняющему веществу:		-	-	0,00178	0,01846	0,00178	0,01846	2026
3620, Диоксины /в пересчет	ге на 2,3,7,8-	тетрах	лордиб	ензо-1,4-диок	син/ (239)	1		
Организованные и								
Здание печи для сжиг. МО	0001	-	-	1,80E-11	1,28E-10	1,80E-11	1,28E-10	2026
Итого:		-	-	1,80E-11	1,28E-10	1,80E-11	1,28E-10	
Всего по загрязняющему веществу:		-	-	1,80E-11	1,28E-10	1,80E-11	1,28E-10	2026
Всего по объекту:		-	-	0,1087914	0,9427685	0,1087914	0,9427685	
Из них:		-	-					
Итого по организованным			-	0,10691640	0,94228050	0,1069164	0,94228050	
источникам: Итого по неорганизованны	M	-	-	0,001875	0,000488	0,001875	0,000488	
источникам:								

Таблица 6.1.2.7– Выбросы загрязняющих веществ от передвижных источников

Код в-ва	Наименование вещества	Выброс вещества, г/с	Выброс вещества, т/год				
	При стр	оительстве					
Организованные источники							
-	-	-	-				
Итого по о	орг. источникам	-	-				
	Неорганизов	занный источник					
301	Азот (IV) оксид (Азота диоксид)	0,0167	0,0530				
328	Углерод черный (Сажа)	0,0067	0,0212				
330	Сера диоксид	0,0083	0,0265				
337	Углерода оксид	0,0417	0,1326				
703 Бенз/а/пирен (3,4-Бензпирен)		0,0000013	0,0000				
2754	Углеводороды С12-С19	0,0125	0,0398				
Итого по н	еорганизованным источникам	0,0858	0,2731				
Всего по п	ередвижным источникам:	0,0858	0,2731				

6.1.3 Анализ уровня загрязнения атмосферного воздуха

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере района расположения предприятия.

N	Наименование	Значение
п/п		
1	Климатический район	IV - Γ
2	Коэффициент, зависящий от стратификации атмосферы, А	200
3	Коэффициент рельефа местности	1.0
4	Среднегодовая температура воздуха	10
	- наиболее жаркого месяца	+27,9 C
	- наиболее холодного месяца	-7,2 C
5	Относительная среднемесячная влажность воздуха, %	
	- холодного месяца	80
	- жаркого месяца	30
6	Среднегодовая роза ветров, %	
	С	6
	СВ	5
	В	19
	ЮВ	24
	Ю	11
	Ю3	6
	3	15
	C3	14
7	Скорость ветра (И) (по средним многолетним данным), повторяемость применения которой составляет 5%, м/сек	10

В соответствии с нормами проектирования в Казахстане, для оценки влияния выбросов загрязняющих веществ на качество атмосферного воздуха используется математическое моделирование. Расчет содержания вредных веществ в атмосферном воздухе должен проводиться в соответствии с требованиями «Методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий» Приложение № 18 к Приказу МООС № 100-П от 18.04.2008 г.

Расчет рассеивания загрязняющих веществ в приземном слое атмосферы проводился на программном комплексе «Эра», разработчик фирма «Логос-Плюс» г. Новосибирск.

Расчет приземных концентраций в атмосферном воздухе вредных химических веществ, проведен в полном соответствии с методикой расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий, ОНД-86. Расчеты рассеивания выполнялись с учетом приведенных в таблице метеорологических характеристик и коэффициентов, влияющих на рассеивание выбросов в атмосфере и создание приземных концентраций.

Нормирование выбросов вредных веществ в атмосферу основано на необходимости соблюдения экологических нормативов качества или целевых показателей качества окружающей среды. При этом требуется выполнение соотношения:

 $C/A \le 1$, (3)

где: С - расчетная концентрация вредного вещества в приземном слое воздуха;

ЭНК - экологический норматив качества.

До утверждения экологических нормативов качества применяются гигиенические нормативы, утвержденные государственным органом в сфере санитарно-эпидемиологического благополучия населения в соответствии с законодательством Республики Казахстан в области здравоохранения.

В качестве гигиенических нормативов для атмосферного воздуха населенных мест в целях нормирования выбросов в атмосферу принимаются значения предельно допустимых максимальноразовых концентраций потенциально-опасных химических веществ (ПДКм.р.), в случае отсутствия ПДКм.р. принимаются значения ориентировочно безопасных уровней воздействия потенциальноопасных химических веществ (ОБУВ).

Если для вещества имеется только предельно допустимая среднесуточная концентрация (ПДКс.с.), то для него требуется выполнение соотношения:

$$0.1 \text{ C} \leq \Pi \coprod \text{Kc.c.}_{(4)}$$

При совместном присутствии в атмосферном воздухе нескольких (n) вредных веществ, обладающих суммацией действия, сумма их концентраций не превышает единицы при расчете по формуле:

 $C_1/3HK_1 + C_2/3HK_2 + C_{\Pi}/3HK_{\Pi} \le 1$, (5)

где: С1, С2,..... Сп - фактические концентрации веществ в атмосферном воздухе;

ЭНК1, ЭНК2,..... ЭНКп - концентрации экологических нормативов качества тех же веществ.

Проведение расчетов, результаты уровня загрязнения атмосферы

Определяющую роль в процессе рассеивания играют следующие параметры: высота источника, разность температур источника и наружного воздуха, скорость газовоздушной смеси при выходе из источника и скорость ветра

При расчете рассеивания в атмосфере вредных веществ использовались:

- перечень загрязняющих веществ;
- параметры выбросов загрязняющих веществ в атмосферу;
- ситуационная карта-схема района размещения предприятия;
- фоновые концентрации загрязняющих веществ в атмосферном воздухе;
- метеорологические характеристики и коэффициенты, определяющие условия рассе-ивания загрязняющих веществ в атмосфере в районе расположения предприятия

Расчет рассеивания загрязняющих веществ в атмосферу при проведении строительных работ не проводился, так как работа носит временный характер, а выбросы не включают в себя залповые и аварийные выбросы.

Расчет рассеивания был проведен на период эксплуатации.

Для проведения расчета рассеивания вредных веществ в приземном слое атмосферы взята одна расчетная прямоугольная площадка. Параметры расчетной площадки: Длина по X:2000м, ширина по Y 2400 м, шаг сетки 200 м.

В расчетах не учтены фоновые концентрации загрязняющих веществ ватмосферном воздухе района расположения предприятия из-за отсутствия стационарных постов замера. Письмо Казгидромета прилагается в Приложении к данному проекту. Карты рассеивания были составлены на основе ситуационного плана.

В расчеты рассеивания включены все организованные и неорганизованные источники с учетом воздействия их на жилые зоны, а также фиксированные мониторинговые точки контроля.

При эксплуатации число рассматриваемых загрязняющих веществ принято равным 11. Исходные данные (г/с,) принятые для расчета рассеивания, определены расчетным путем. Районный коэффициент, определяющий стратификацию атмосферы, принят равным 200.

Ниже представлена Сводная таблица результатов расчетов на границе расчетного прямоугольника, СЗЗ, контрольных точек, жилой зоны.

ПК ЭF	ная таблица Результатов Расчетов РА v4.0. Модель: МРК-2014 ород :024 с.Баянды. бъект :0001 Строительство здания ар.расч. :1 существующее положен			медотходов.		(сформирована	08.09.2025	11:11
Код ЗВ	Наименование загрязняющих веществ и состав групп суммаций	Cm	РΠ	C33	жз	ΦТ	Территория предприяти я		Класс опасн
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.116030	0.097296	0.028159	0.013850	0.044850	0.116001	0.2000000	2
0304	дисксид) (4) Азот (II) оксид (Азота оксид) (6)	0.009427	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	0.4000000	3
0316	Гидрохлорид (Соляная кислота, 0.006923 Ст<0.05 Ст<0.05 Ст<0.05 Ст<0.05 Ст<0.05 Ст<0.05 Ст<0.05 0.2000000					2			
0328	Углерод (Сажа, Углерод черный) (583)	0.002498	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	0.1500000	3
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.037355	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05 	0.5000000	3
0333	Сероводород (Дигидросульфид) (518)	0.023439	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	0.0080000	2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.006942	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	5.0000000	4
2424 2754		İ		Cm<0.05 0.000990	Cm<0.05 0.000456	Cm<0.05 0.001693	Cm<0.05 0.062289 	0.0100000 1.0000000	- 4
2902 3620		0.008307 0.003111		Cm<0.05 Cm<0.05	Cm<0.05 Cm<0.05	Cm<0.05 Cm<0.05	Cm<0.05 Cm<0.05	0.5000000 5E-9*	3 1
07 44	0301 + 0330 0330 + 0333			0.037224 0.009405			0.153346 0.039349		İ

Анализ проведенных расчетов загрязнения атмосферы от источников показал, что приземные концентрации по всем веществам не превышают ПДК на расстоянии от источников выбросов и концентрации 3В не превышают уровень 1 ПДК. Так например для вещества азота диоксид установлены максимальные концентрации 0,0972958 ПДК (см. карты рассеивания).

Результаты расчетов с картами-схемами изолиний расчетных площадок, максимальные приземные концентрации, приведены в приложении к данному проекту.

6.1.4 Размер санитарно-защитной зоны

В соответствии с Санитарными правилами «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов» утвержденные постановлением Правительства Республики Казахстан 11 января 2022г № ҚР ДСМ-2, предприятия, имеющиеся источники выделения вредных веществ в окружающую среду, отделяются от жилой застройки санитарно-защитными зонами.

На период строительства проектируемый объект не подлежит санитарной классификации.

Расчет рассеивания загрязняющих веществ в атмосферу при проведении строительных работ не проводился, так как работа носит временный характер, а выбросы не включают в себя залповые и аварийные выбросы.

На период эксплуатации, в соответствии с СанПин № ҚР ДСМ-2 11 января 2022г величина СЗЗ установлена 500 метров.

Расчет рассеивания загрязняющих веществ в атмосферу был проведен при размере C33 500 метров. Проведенный расчет рассеивания веществ показал, что концентрация загрязняющих веществ не превышает 1 ПДК, вследствие чего размер C33 для объекта принят 500м.

6.1.5 План – график контроля за соблюдением нормативов ПДВ на источнике выбросов

Промышленные предприятия должны обеспечивать контроль за соблюдение нормативов предельно-допустимых выбросов. Контроль за нормой выброса включает в себя:

- определение фактических выбросов в атмосферу;
- сопоставление их с нормативными данными.

Контроль нормативов предельно-допустимых выбросов осуществляется на основе ежеквартальных расчетов выбросов загрязняющих веществ по утвержденным методикам.

План график контроля на источниках выбросов ЗВ

N источ-	Производство,	Контролируемое	Периоди чность		иатив ов ПДВ	Кем осуществляет	Методика проведения
ника	цех, участок	вещество	контроля	г/с	мг/м3	ся контроль	контроля
1	2	3	4	5	6	7	8
0001	Здание печи по сжиганию МО	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,0298336	118,818812	Сторонняя организация на договорной основе	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,004848	19,3082162	Сторонняя организация на договорной основе	0002
		Гидрохлорид (Соляная кислота, Водород хлорид) (163)	1 раз/ кварт	0,00178	7,08923779	Сторонняя организация на договорной основе	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,0001606	0,63962449	Сторонняя организация на договорной основе	0002
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,0240116	95,6314282	Сторонняя организация на договорной основе	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,044623	177,720819	Сторонняя организация на договорной основе	0002
		Фуран (Фурфуран) (1355*)	1 раз/ кварт	1,8000000E- 11	7,1688900E- 08	Сторонняя организация на договорной основе	0001
		Взвешенные частицы (116)	1 раз/ кварт	0,00178	7,08923779	Сторонняя организация на договорной основе	0001
		Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239)	1 раз/ кварт	1,8000000E- 11	7,1688900E- 08	Сторонняя организация на договорной основе	0001

6001	Здание печи	Сероводород	1 pa ₃ /	0,00000525	Сторонняя	0001
	по сжиганию	(Дигидросульфид)	кварт		организация	
	MO	(518)			на	
					договорной	
					основе	
		Алканы С12-19 /в	1 pa ₃ /	0,00186975	Сторонняя	0001
		пересчете на С/	кварт		организация	
		(Углеводороды			на	
		предельные С12-			договорной	
		С19 (в пересчете			основе	
		на С);				
		Растворитель				
		РПК-265П) (10)				

ПРИМЕЧАНИЕ:

Методики проведения контроля:

0001 - Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

0002 - Инструментальным методом, согласно Перечню методик, действующему на момент проведения мероприятий по контролю.

6.1.6 Мероприятия по снижению воздействия на атмосферный воздух

Снижения воздействия на окружающую среду в районе проектируемого объекта можно обеспечить за счет мероприятии:

- → контроль работы улавливающего оборудования;
- → учет выбросов в атмосферу;
- → нормирование предельно допустимых показателей;
- → внедрение малоотходных технологий;
- → проведение мероприятий по предотвращению аварийных выбросов;
- → оперативная утилизация отходов, выделяющих токсины;
- → обеспечение режима санитарных зон, оказывающих вредное воздействие на окружающую среду;
- → профилактический контроль двигателей внутреннего сгорания автотранспорта, с целью уменьшения выбросов в атмосферу.

Организационно-технические мероприятия и комплекс профилактических мер, направлены на снижение антропогенного воздействия на атмосферный воздух, в том числе снижение уровня неприятных запахов от временного хранения отходов и септика. Среди основных мероприятий препятствующих распространению неприятных запахов является поддержание достаточного уровня герметизации септиков и увеличению количества раз вывоза мусора в теплое время года, тем самым препятствуя скоплению вони и разложения отходов и интенсивного испарения хозяйственно бытовых сточных вод.

6.2 Поверхностные и подземные воды

Поверхностные и подземные воды являются одним из важнейших компонентов окружающей среды и их состояние, зачастую, оказывает решающее влияние на экологическую ситуацию.

Охрана и рациональное использование водных ресурсов, эффективные меры по предотвращению загрязнения, экономичному расходованию свежей воды стали актуальной проблемой для всего человечества.

Важнейшая и наиболее сложная проблема – защита поверхностных вод от загрязнения. С этой целью предусматриваются следующие экозащитные мероприятия:

- → развитие безоотходных и безводных технологий; внедрение систем оборотного водоснабжения;
- → очистка сточных вод;

→ очистка и обеззараживание поверхностных вод, используемых для водоснабжения и других целей.

Основные мероприятия по защите подземных вод заключаются в предотвращении истощения запасов подземных вод, и защите их от загрязнения. Как и для поверхностных вод, это большая и сложная проблема может быть успешно решена лишь в неразрывной связи с охраной всей окружающей природной среды.

6.2.1 Краткая характеристика источников водоснабжения, поверхностных и подземных вод района строительства.

Гидрогеологическое районирование и оценка геоэкологических условий Мангистау-Устюртской системы артезианских бассейнов пластовых вод.

Система занимает юго-западную часть обширной Туранской плиты. В его пределах четко выделяютсячетыре структурно-геоморфологических типа рельефа: Северно-Мангистауская низменность (полуостров Бузачи), Горный (Центральный) Мангистау, Южно-Мангистауское плато и плато Устюрт

Северно-Мангистауская низменность охватывает территорию полуострова Бузачи. Северная (большая часть) ее представляет собой морскую аккумулятивную равнину. Горный Мангистау занимает центральную часть полуострова Мангистау. В его состав входят низкогорныехребты (с запада на восток): Каратауский, Западный и Восточный Каратау, куэстовые гряды Северного и Южного Актау, Каскыржол. К югу и юго-западу рельеф Южного Актау постепенносливается с Южно-Мангистауским плато. К востоку от Мангистауской низменности, отделяясь отних обрывистым уступом — чинком высотой 100-200м, простирается плато Устюрт. Его плоская, бронированная известняками-ракушняками неогеновая поверхность, осложнена редкимизамкнутыми впадинами, карстовыми формами, на севере — песчаными массивами (Сам иМатайкум), а в центральной — приподнятым субширотным валом.

Существующие источники водоснабжения Мангистауской области

Вопросы обеспечения пресной водой жителей области актуальна. Ограниченность региона водными ресурсами связана с его географическим расположением.

В настоящее время питьевое водоснабжение Мангистауской области обеспечивается:

- ▶ опреснительными установками РГП "МАЭК", производящими питьевую воду путем опреснения морской воды из Каспийского моря;
- > водоводом "Астрахань-Мангышлак", доставляющим в регион волжскую воду;
- > за счет эксплуатации подземных источников.

Волжская вода

Природная вода из поверхностных источников протока Кигач в дельте реки Волга подается в регион по водоводу "Астрахань Мангышлак".

Объем волжской воды, поставляемый по водоводу составляет 12,5% от общего количества потребляемой населением области питьевой воды.

Водовод "Астрахань-Мангышлак" проходит по территории Бейнеуского, Мангистауского и Каракиянского районов, имея общую протяженность 1100 км.

Волжской водой обеспечивается в среднем 52,3% населения вышеуказанных районов, составляя по районам: Бейнеуский 87% (села Бейнеу, Боранкул, Жангельдино, Сынгырлау, Есет, Толеп), Каракиянский 53% (села Жетыбай, Мунайши, ж/д ст. Жетыбай) и Мангистауский 17% (села Отес, Акшимрау, Кызан), а также 100% населения г. Жанаозен, с КызылСай. Очистка волжской воды в г. Жанаозен до соответствующего качества, отвечающего требованиям ГОСТа и СанПиНа "Вода питьевая", производится на установке "Дегремон" (Франция).

Поставляемый по водоводу объем воды на технологические и хозяйственно-питьевые нужды области составляет 80-100 тыс. м3/сутки.

Подземные воды

Количество воды, получаемое населением из подземных артезианских источников и источников грунтовых вод и используемое на хозяйственно-бытовые нужды, животноводство и поливное земледелие, составляет 35,1% от общего объема потребляемой пресной и слабоминерализованной воды.

В настоящее время на территории Мангистауской области разведано 19 месторождений подземных вод хозяйственно-питьевого, технического, бальнеологического назначения и используемые для орошения земель. Эксплуатационные запасы месторождений утверждены в Государственных территориальных комиссиях по запасам полезных ископаемых.

Почти на всех разведанных месторождениях подземных вод истек расчетный срок эксплуатации и требуется провести переоценку их эксплуатационных запасов на новый расчетный срок. Кроме того, на 24 участках выполнены поисково-разведочные работы, подсчитаны эксплуатационные запасы и прогнозные ресурсы по категории.

Морская вода

Основным производителем питьевой воды в Мангистауской области является ТОО "МАЭК".

Рис. 6.2.1

Подача морской воды на опреснительные установки осуществляется насосной станцией по водопроводам.

Рис 6.2.2 Новые горизонтальные опреснительные установки израильского производства.

Процесс опреснения производится методом термической многоступенчатой дистилляции при низких температурах кипения до 75 градусов. Устройство, в котором происходит дистилляция называется испаритель, который состоит из нескольких ступеней. В каждой ступени происходит постепенное понижение точки равновесия "жидкость-пар", температура ступеней уменьшается от

первой горячей до последней холодной ступени. В каждой ступени пар частично конденсируется, а частично используется в качестве теплоносителя. Упаренная морская вода (рассол) затем выводится в Каспийское море.

Рис. 6.2.3 Испаритель

Питьевая вода готовится в дальнейшем смешиванием дистиллят с минерализированной водой, проходит механическую очистку, обогащение гидрокарбонатом кальция, сорбционную очистку берёзовым активированным углём, кондиционирование фторидом натрия, обеззараживание хлором, стабилизацию содой и затем подаётся в городскую сеть.

6.2.2 Характеристика источников воздействия на поверхностные и подземные воды

Проектируемые оборудования «размещаются исключительно на территории площадок, которые в свою очередь не расположены в границах водоохранных зон водных объектов, прибрежных защитных полос, зон первого-третьего пояса зоны санитарной охраны источников водоснабжения, на заболачиваемых и подтопляемых территориях, в границах особо охраняемых природных территорий, в пределах мест расположения редких и охраняемых видов растений и животных, на пути миграции животных, в котлованах, на территориях объектов с нормируемыми показателями качества среды: территории жилой застройки, ландшафтно-рекреационные зоны, зоны отдыха, территории курортов, санаториев, домов отдыха, стационарные лечебно-профилактические учреждения, территории садоводческих товариществ и коттеджной застройки, коллективных или индивидуальных дачных и садово-огородных участков. Таким образом. прямое воздействие установки на поверхностные и подземные воды исключено.

Расстояние до ближайшего водного объекта (Каспийское море) составляет чуть более 14 км.

Рис 6.2.1 Расстояние до ближайшей водной поверхности

6.2.3 Оценка воздействия на поверхностные и подземные воды

Для обезвреживания отходов на установке Веста плюс не требуется использование воды. Таким образом при эксплуатации установок не образуются производственные сточные воды.

В период строительных работ источником питьевого водоснабжения будет привозная вода. Общий расход воды на питьевые нужды составит 27,0 м³ за весь период строительства, из расчета 25л/сут. Расход воды на душевые и умывальники составит 49,95м. В процессе проведения строительных работ, при уплотнении грунта проводится пылеподавление. Согласно расчетов на пылеподавление составит 5,16 м3 воды. Общее количество воды на период строительства составит 82,0 м3. На период эксплуатации источником водоснабжения является привозная вода. Также для питьевых нужд поставляется бутилированная вода, установлен кулер. На территории имеется накопительная емкость объемом 3м³.

Расчет воды на хоз-питьевые нужды на период строительства

Согласно СНиП РК 4.01-41-2006 «Внутренний водопровод и канализация зданий» СН РК4.01.02-2011 «Внутренний водопровод и канализация зданий и сооружений»

Норма расхода воды на человека – 25л/сут

Количество людей – 12 человек;

Продолжительность строительства— 3 месяца.

G = 25*12*30*3 = 27,0 M3.

Расчет воды на душевые и умывальники

Расход воды на одну душевую следует принимать 500л/ч при температуре 37°C, продолжительность пользования душем 45 мин.

V=H*t*n-T/1000=500*0,75*1*90/1000=33,75 M3

Н - часовой расход воды одним душем принимается 500л/ч;

t- продолжительность действия душа в смену (0,75ч);

n - количество душевых сеток,

Т – количество дней, 90 суток

Расчет расхода воды на умывальники производится по формуле:

V=H*t*n-T/1000=180*1*1*90/1000=16,2 M3

где: Н- часовой расход воды одним умывальником принимается 180л/ч;

t – продолжительность пользования умывальника в смену (1ч);

n – количество умывальников, 1

Т – количество дней, 90 суток

Всего расход воды составил 33,75+16,2=49,95 м3

Расчет воды на пылеподавление

Норму расхода воды на пылеподавление принимаем согласно СП РК 4.01-101-2012 из расчета 2,0 л/м2. Пылеподавление производится - 30 дней. Расчет воды

на технологические нужды рассчитываем по формуле: Vсут.=s*q., Vпериод=s*q*k s – площадь полива, м2, q - расход воды на один полив, м3/м2, k – количество рабочих дней в году. Таким образом, водопотребление на пылеподавление составит:

Vсут.= 86м2*0,002=0,172 м3/сут., Vгод.=0,172*30=5,16 м3/период.

Водоотведение

Сброс сточных вод на рельеф местности не производиться.

В целом, сточные воды собираются во временном септике (емкости), установленном на территории строительства объемом 1 м3 для сбора стоков с душевых и умывальников. И по мере накопления вода будет вывозиться по договору со специализированной организацией на КОС с. Мангистау. Объем сточных вод за весь период строительства составит ориентировочно 50,0 м3.

Баланс водопотребления и водоотведения на период строительства

					Общее	водопотре	бление	Общ	ее водоотве	едение
№ π/π	Санитарно- техническое оборудование	Ед. изм.	Кол- во	Норма расхода, л/ч (л/м2)	Суточн. расход, м3/сут	Месячн. расход, м3/мес	За весь период расход, м3	Суточн. расход, м3/сут	Месячн. расход, м3/мес	За весь период расход, м3
1	2	3	4	5	7	8	9	10	11	12
1	Душ	шт.	1	375	0,375	11,25	33,75	0,375	11,25	33,75
2	Умывальники	шт.	1	180	0,18	5,4	16,20	0,18	5,4	16,20
3	Пылеподавление	м2	86	2	0,17	5	5,16	ı	-	1
4	Хоз-питьевые нужды	чел	12	1,041	0,025	9,0	27,0	-	-	-
	Итого:				0,8	31	82	0,6	17	50

Водопотребление и водоотведение на период эксплуатации

Источником водоснабжения является привозная вода. На территории производственной базы имеется накопительная емкость объемом 3м 3 .

Для питьевых нужд поставляется бутилированная вода, установлен кулер.

Расчет воды на хоз-питьевые нужды на период эксплуатации

Согласно СНиП РК 4.01-41-2006 «Внутренний водопровод и канализация зданий» СН РК4.01.02-2011 «Внутренний водопровод и канализация зданий и сооружений»

Норма расхода воды на человека $-25\pi/\text{сут}$ Количество людей: -5 человек; G = 25*5*30*12 = 45,0 м3.

Расчет воды на душевые и умывальники

Расход воды на одну душевую следует принимать 500л/ч при температуре 37°C, продолжительность пользования душем 45 мин.

V=H*t*n-T/1000=500*0,75*1*180/1000=67,5 M3

Н - часовой расход воды одним душем принимается 500л/ч;

t- продолжительность действия душа в смену (0,75ч);

n - количество душевых сеток,

Т – количество дней, 180 суток

Расчет расхода воды на умывальники производится по формуле:

V=H*t*n-T/1000=180*1*1*360/1000=64,8 m3

где: Н- часовой расход воды одним умывальником принимается 180л/ч;

t – продолжительность пользования умывальника в смену (1ч);

n – количество умывальников, 1

Т – количество дней, 360 суток

Всего расход воды составил 67,5+64,8=132,3 м3

Водоотведение осуществляется в существующий септик объемом 1м3. Для предотвращения неприятных запахов в септике собираемых вместе хоз-бытовых и производственных стоков, своевременно организуют вывоз стоков на КОС с. Мангистау.

6.2.4 Мероприятия по охране и рациональному использованию водных ресурсов

Проектные решения обеспечивают ряд мероприятий на период строительства по охране водных ресурсов:

- ✓ рациональное использование водных ресурсов.
- ✓ предотвращения аварийного сброса неочищенных сточных вод на рельеф местности или в открытый водоём;
- ✓ своевременный вывоз и утилизация стоков с территории производственной базы.

6.3 Воздействие на земельные ресурсы и почвенный покров

В соответствии со статьей №238 ЭК РК физические и юридические лица при использовании земель не должны допускать загрязнение земель, захламление земной поверхности, деградацию и истощение почв, а также обязаны обеспечить снятие и сохранение плодородного слоя почвы, когда это необходимо для предотвращения его безвозвратной утери.

Необходимо содержать занимаемые земельные участки в состоянии, пригодном для дальнейшего использования их по назначению.

На состояние почвенного покрова влияют как природные, естественные факторы, так и разносторонняя деятельность человека. В природе всегда существовали процессы разрушения и сноса почвенного слоя водой, ветрами, селевыми потоками и т.д. Однако серьезные, глобальные нарушения состояния почв связаны главным образом с разрушительными действиями человека.

В результате проектных решений монтаж оборудования осуществляется на заранее подготовленной ровной горизонтальной твердой площадке. Размещение всех установок предусмотрено на территории базы, претерпевшего антропогенное изменение. Поэтому не требуется подготовки земельного участка под размещение применяемого в рамках рассматриваемой технологии оборудования: снятие плодородного слоя, очистка от растительности, земляные и планировочные работы. При соблюдении правил транспортировки и хранения отходов производства и потребления, минимизируется негативное воздействие на почвенный покров.

Основными источниками воздействия на земельные ресурсы и почвенный покров на этапе эксплуатации установок являются:

- автотранспорт, доставляющий отходы на обезвреживание;
- отходы, образующиеся в ходе эксплуатации установки;

- возможное запечатывание почв различными видами покрытий с выведением почв из биологического круговорота (при размещении установки в местах проведения работ по ликвидации разливов нефтепродуктов).

Почвенный покров испытывает механическое воздействие под влиянием передвижных транспортных средств, доставляющих отходы к площадке размещения установки, при этом происходит ухудшение физико-механических и биологических свойств почв. Оно заключается в нарушении естественного сложения почв при операциях засыпки, срезания, перемешивания; а также в запечатывании почв под различными сооружениями. Захламление почвенного покрова мусором физически отчуждает поверхность почвы из биологического круговорота, сокращая ее полезную площадь, снижает биопродуктивность и уровень плодородия почв. Однако при соблюдении основных норм и правил по обращению с образующимися и поступающими на переработку отходами будет минимальным.

6.3.1 Состоянии и условия землепользования

Современное землеустройство включает в себя мероприятия по изучению состояния земель, планированию и организации рационального использования земель и охраны, образованию новых и упорядочению существующих объектов землеустройства и установление их границ на местности.

Для размещения строящихся объектов отводятся земли в собственность, бессрочное пользование, долгосрочную аренду для осуществления их основной деятельности в течении неограниченного срока. Кроме того, на период строительства предоставляются дополнительные земельные площади для осуществления строительно-монтажных работ, размещения механизмов, оборудования и материалов во временное пользование (аренду или иное срочное пользование). Для линейных сооружений площадь отвода рассчитывается на основании рекомендуемых норм отвода земель.

Определение ценности изымаемых земель основывается на относительной их пригодности по естественному плодородию для возделывания сельскохозяйственных культур. Относительная оценка плодородия производится в баллах бонитета для каждой почвенной разновидности. Поэтому для выполнения такой работы необходимо на почвенной карте землеустраиваемого объекта определить площадь каждой почвенной разновидности в границах отвода. По бонитировочной шкале устанавливается балл бонитете каждой почвенной разновидности.

На распределение земель по категории необходимы данные по отводу земель на пастбища, пашни (если присутствуют), приусадебные дома и хозяйства жителей села, водные объекты и т.д.. В связи с отсутствием таких данных нет возможности составить экспликацию земель.

В процессе строительных работ не производится снятие плодородного слоя, в связи его отсутствием.

6.3.2 Инженерно-геологические изыскания

Геолого-литологическое строение и гидрогеологические условия

В пределах исследуемого участка развиты отложения сарматского яруса неогена, выраженные мергелем глинистым, с поверхности перекрытые известняком-ракушечником и песком разнозернистым.

- 1. Песок мелкий с прослоями песка крупного и супеси. Мощность слоя 0.5-3.7м.
- 2. Известняк-ракушечник низкой прочности. Мощность 3.3-4.0 м.
- 3. Мергель глинистый (в основном), от светло-серого до зеленовато-бурого, твердой консистенции с прослоями мергеля полускального, а также известняка низкой прочности. Вскрытая мощность 3.8-4.7м. Грунтовые воды на участке в период изысканий не вскрыты.

В соответствии с ГОСТ 25100-2011 в разрезе выделены 3 инженерно-геологических элемента: ИГЭ-1 Песок мелкий с прослоями песка крупного, супеси, маловлажный.

Нормативные значения грунта:

Плотность грунта $\rho_H = 1.61 \Gamma/cm^3$,

Удельное сцепление $C_H = 3 \text{ к}\Pi a$, угол внутреннего трения $\phi_H = 23.6^{\circ}$.

Модуль деформации: Ен = 13.8 МПа (в водонасыщенном состоянии)

ИГЭ-2 Известняк-ракушечник низкой прочности, слоистый.

Нормативные значения грунта:

Плотность грунта $\rho_{\rm H} = 1.70 \ {\rm г/cm^3}$

Rсжн = 1.7 МПа (в замоченном состоянии)

Расчетные значения предела прочности

 $Rcж_1 = 1.4 M\Pi a$ (в замоченном состоянии)

ИГЭ-3 Мергель глинистый, зеленовато-бурый, твердой консистенции с прослоями мергеля полускального и суглинистого.

Нормативные значения грунта:

Плотность грунта $\rho_H = 1.69 \text{ г/см}^3$

Удельное сцепление $C_{\rm H} = 36.6 \ {\rm к}\Pi{\rm a}, {\rm yron} {\rm внутреннего} {\rm трения} \ {\rm \phi H} = 19^{0}.$

Модуль деформации: $E_{H} = 6.7 \ M\Pi a$ (в водонасыщенном состоянии)

Категория сложности инженерно-геологических условий – I (Таблица А.1 СП РК 1.02-105-2014). Сейсмичность района, согласно СП РК 2.03-30-2017г., составляет 6_2 балла.

Прогноз изменений природных и техногенных условий и оценка риска от природных и техноприродных процессов. Природные условия не изменяются. Техноприродные условия могут измениться в результате потенциального подтопления. Грунтовые воды не вскрыты. Появление грунтовых вод будет снижать прочностные характеристики грунтов, т.к. при длительном замачивании в известняках происходит разрушение и ослабление структурных связей, что приводит к ухудшению прочностных свойств известняков.

Качественный прогноз потенциальной подтопляемости: территория не подтопляемая. Нормативная глубина сезонного промерзания грунтов: по метеостанции Актау: для супеси - 0,67м, для глины - 0,56м, для крупнообломочных - 0,83м. Максимальная глубина проникновения 0^{0} С в почву составляет – 1,00м

6.3.3 Мероприятия по уменьшению воздействия на почвенный покров.

Для уменьшения воздействия на почвенный покров, связанного с возможностью химического загрязнения почвенного покрова и повреждения растительности, предусматривается:

- исключение проливов и утечек, сброса неочищенных сточных вод на почвенный покров;
- складирование материалов и оборудования, временного размещения отходов осуществляется на территориях с насыпными грунтами или твердыми покрытиями;
- раздельный сбор и складирование отходов в специальные контейнеры или ёмкости с последующим вывозом их на оборудованные полигоны или на переработку;
 - техническое обслуживание автотранспорта в специально отведенных местах.

6.4 Физические воздействия

6.4.1 Шум

Шум (звук) — упругие колебания в частотном диапазоне слышимости человека, распространяющиеся в виде волны в газообразных средах.

Звук представляет собой волновое движение упругой среды (например, воздуха, воды и др.), которое воспринимается слуховым аппаратом человека.

Основные характеристики шума

- **у** колебательная скорость *v*, м/с;
- \triangleright скорость распространения звука (скорость звука) c, м/с;
- \triangleright звуковое давление p, Π а;
- интенсивность звука I, Вт/м2;
- > уровень звукового давления, дБ;
- уровень интенсивности звука, дБ.

Производственный шум — совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работников неприятные ощущения.

Классификация шума

- по частоте:
 - ультразвук.
 - звук (низкочастотный (менее 350 Гц), среднечастотный (от 350 до 800 Гц), высокочастотный (свыше 800 Гц).
 - инфразвук.
- по спектру:
 - широкополосный.
 - тональный.
- > по временным характеристикам:
 - постоянный.
 - непостоянный (колеблющийся, прерывистый, импульсный).

Постоянный шум — шум, уровень звука которого за 8-часовой рабочий день или рабочую смену изменяется во времени не более чем на 5 дБА.

 $\it Henocmonthый\ \it uym-$ шум, уровень звука которого за 8-часовой рабочий день или рабочую смену изменяется во времени более чем на 5 дБА Колеблющийся шум — шум, уровень звука которого непрерывно изменяется во времени.

Прерывистый шум — шум, уровень звука которого изменяется во времени ступенчато (на 5 дБА и более).

Импульсный шум – шум, состоящий из одного или нескольких звуковых сигналов.

- > по природе возникновения:
 - механический.
 - аэродинамический.
 - гидравлический.
 - электромагнитный.

Механические шумы возникают по причинам наличия в механизмах инерционных возмущающих сил, соударения деталей, трения и др.

Аэродинамические шумы возникают в результате движения газа, обтекания газовыми (воздушными) потоками различных тел. Аэродинамический шум возникает при работе вентиляторов, воздуходувок, компрессоров, газовых турбин, выпусков пара и газа в атмосферу и т.д.

Гидравлические шумы возникают вследствие стационарных и нестационарных процессов в жидкостях.

Электромагнитные шумы возникают в электрических машинах и оборудовании, использующих электромагнитную энергию.

Предельно допустимый уровень шума — уровень, который при ежедневной (кроме выходных дней) работе, но не более 40 ч в неделю в течение всего рабочего стажа не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.

Уровень громкости (единица измерения – фон) – разность уровней громкости двух звуков данной частоты, для которых равные по громкости звуки с частотой 1000 Гц отличаются по интенсивности (или уровню звукового давления) на 1 дБ.

Измерения уровней шума в производственных условиях производят приборами шумомерами.

При нормировании допустимого звукового давления на рабочих местах частотный спектр шума разбивают *на девять частотных полос*.

Нормируемыми параметрами постоянного шума являются:

- уровень звукового давления L, дБ, в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Γ ц;
 - уровень звука *La*, дБА.

Нормируемыми параметрами непостоянного шума являются:

- эквивалентный (по энергии) уровень звука *Lаэкв*, дБА;
- максимальный уровень звука *La*мaкс, дБА.

Предельно допустимые уровни шума нормируются по двум категориям норм шума:

- ПДУ шума на рабочих местах
- ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки.

Предельно допустимый уровень звука на рабочих местах 80 дБА.

Максимальный уровень звука для колеблющегося и прерывистого шума не должен превышать 110 дБА.

Запрещается даже кратковременное пребывание в зонах с уровнем звука или уровнем звукового давления в любой октавной полосе свыше 135 дБА.

Действие шума на организм человека

Степень воздействия шума на слуховой аппарат человека зависит не только от интенсивности и звукового давления, но также и от частоты и характера изменения звука во времени.

Шум с уровнем звукового давления до 30-45 дБ привычен для человека и не беспокоит его. Повышение уровня звука до 40-70 дБ создает дополнительную нагрузку на нервную систему, вызывает ухудшение самочувствия и при длительном воздействии может стать причиной неврозов.

Длительное воздействие шума с уровнем свыше 80 дБ может привести к ухудшению слуха – профессиональной тугоухости.

При действии шума свыше 130 дБ возможен разрыв барабанных перепонок, контузия, а при уровнях звука свыше 160 дБ вероятен смертельный исход.

Помимо снижения слуха рабочие, подвергающиеся постоянному воздействию шума, жалуются на головные боли, головокружение, боли в области сердца, желудка, желчного пузыря, повышенное артериальное давление.

Шум снижает иммунитет человека и его устойчивость к внешним воздействиям.

Борьба с шумом на производстве осуществляется комплексно и включает меры следующего характера:

- > технологического;
- > санитарно-технического;
- лечебно-профилактического

Технические нормативные правовые акты предусматривают защиту от шума следующими **строительно-акустическими мероприятиями:**

- эвукоизоляцией ограждающих конструкций, уплотнением притворов окон, дверей, ворот и т.п.,
- устройством звукоизолированных кабин для персонала;
- укрытием источников шума в кожухи;
- установкой в помещениях на пути распространения шума звукопоглощающих конструкций и экранов;
- применением глушителей аэродинамического шума в двигателях внутреннего сгорания и компрессорах;
- применением звукопоглощающих облицовок в воздушных трактах вентиляционных систем:
- > созданием шумозащитных зон в различных местах нахождения людей,
- > использованием экранов и зеленых насаждений.

Ослабление шума достигается путем использования под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой оборудования на амортизаторы или специально изолированные фундаменты.

Широко применяются средства звукопоглощения — минеральная вата, войлочные плиты, перфорированный картон, древесноволокнистые плиты, стекловолокно.

Снизить неблагоприятное воздействие шума на рабочих возможно, сократив время их нахождения в шумных цехах, рационально распределив время труда и отдыха и т.д

Применение средств индивидуальной защиты от шума целесообразно в тех случаях, когда средства коллективной защиты и другие средства не обеспечивают снижение шума до допустимых уровней.

Новым методом снижения шума является метод «антизвука» (равного по величине и противоположного по фазе звука). В результате интерференции основного звука и «антизвука» в некоторых местах шумного помещения можно создать зоны тишины. В месте, где необходимо уменьшить шум, устанавливается микрофон, сигнал от которого усиливается и излучается определенным образом расположенными динамиками. Уже разработан комплекс электроакустических приборов для интерференционного подавления шума.

Ультразвук

Ультразвук – упругие колебания с частотами выше диапазона слышимости человека (20 кГц), распространяющиеся в виде волны в газах, жидкостях и твердых телах или образующие в ограниченных областях этих сред стоячие волны.

Источниками ультразвука являются все виды ультразвукового технологического оборудования, ультразвуковые приборы и аппаратура промышленного и медицинского назначения. На применении ультразвука основаны современные высокоточные методы дефектоскопии металлов и других однородных материалов.

Ультразвук характеризуется:

- ультразвуковым давлением, дБ;
- интенсивностью, Вт/см²;
- частотой колебаний, Гц.

Ультразвук подразделяется на:

- низкочастотный $(1,12\cdot10^4$ до $1,0\cdot10^5$ Γ ц), распространяющийся воздушным и контактным путем;
- высокочастотный $(1,0\cdot10^5$ до $1,0\cdot10^9$ Γ ц), распространяющийся только контактным путем. Низкочастотный ультразвук довольно хорошо распространяется в воздухе, а высокочастотный практически не распространяется.

Поглощение ультразвука сопровождается нагреванием среды.

Специфической особенностью ультразвука, обусловленной большой частотой и малой длиной волны, является возможность распространения ультразвуковых колебаний направленными пучками, получившими название ультрафиолетовых лучей. Они создают на относительно небольшой площади очень большое ультразвуковое давление.

Применение ультразвука в различных областях

Специфическое свойство ультразвука обусловило его широкое применение для очистки деталей, механической обработки твердых материалов, сварки, пайки, ускорения химических реакций, дефектоскопии, проверки размеров выпускаемых изделий, структурного анализа веществ.

Ультразвук используется в установках по очистке воздуха от высокодисперсной пыли.

Применение ультразвука в медицине для лечения заболеваний позвоночника, суставов, периферической нервной системы и т.п.

Воздействие ультразвука на организм человека

Воздействие малых доз ультразвука на человека дает стимулирующий эффект (микромассаж, ускорение обменных процессов), а больших доз – поражающий эффект.

Наиболее опасным является контактное воздействие ультразвука, которое возникает при удержании ультразвукового инструмента во время пайки, лужения и т.п. Воздействие от работы мощных установок может привести к поражению периферической нервной и сосудистой систем человека в местах контакта.

При длительной работе с низкочастотными ультразвуковыми установками могут произойти функциональные изменения центральной и периферической нервной системы, слухового и вестибулярного аппарата, сердечно-сосудистой системы (утомление, головные боли, бессонница ночью и сонливость днем, снижение остроты слуха и т.п.).

По сравнению с высокочастотным шумом ультразвук значительно слабее влияет на слуховую функцию, но вызывает более выраженные отклонения вестибулярной функции, болевой чувствительности, терморегуляции

Методы защиты от ультразвука

Большинство традиционных методов защиты работающих от шума малоэффективны в отношении к ультразвуку.

Поэтому для защиты от его воздействия следует использовать все способы снижения интенсивности генерации таких колебаний непосредственно в источнике.

Требования по ограничению неблагоприятного влияния контактного ультразвука:

- при разработке нового и модернизации существующего оборудования, должны предусматриваться меры по ограничению ультразвука, как в источнике возникновения, так и на пути его распространения;
- эапрещается непосредственный контакт человека с рабочей поверхностью источника ультразвука и с контактной средой во время возбуждения в ней ультразвука;
- ультразвуковые искатели и датчики должны иметь форму, обеспечивающую минимальное напряжение мышц, исключается передача ультразвука другим частям тела кроме рук;
- применять дистанционное управление, блокировки;
- для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых и жидких средах, а также от контактных смазок необходимо применять нарукавники, рукавицы или перчатки (наружные резиновые и внутренние хлопчатобумажные);
- **»** в качестве СИЗ применяют противошумы:
- к работе с источником ультразвука допускаются лица не моложе 18 лет, имеющие соответствующую квалификацию, прошедшие обучение и инструктаж по технике безопасности.

Средства защиты от ультразвука

- ▶ звукоизолирующие кожухи: из дюралюминия или стали толщиной 1 мм, оклеенные резиной или покрытые противошумной мастикой; прозрачные кожухи из органического стекла должны иметь толщину не менее 5 мм; эластичные кожухи из трех слоев резины общей толщиной 3 5 мм. Кожухи позволяют снизить уровни звукового давления на 20 30 дБ в слышимом диапазоне частот и на 60 80 дБ в неслышимом.
- эагрузку, выгрузку и другие работы следует проводить при выключенном источнике или пользоваться при этом специальными инструментами с ручками, покрытыми эластичным слоем из пористой резины, поролона и т.п.
- эоны помещений с уровнями ультразвука, превышающими предельно допустимые, должны быть обозначены предупреждающим знаком «Осторожно! Прочие опасности».
- соблюдать режим труда и отдыха.

Инфразвук

Инфразвук представляет собой механические колебания упругой среды, имеющие одинаковую с шумом физическую природу, но распространяющиеся с частотами менее 20 Гц.

В воздухе инфразвук мало поглощается и поэтому способен распространяться на большие расстояния.

Характеристики инфразвука

- инфразвуковое давление(Па),
- интенсивность (Вт/м2),
- частота колебания (Гц).

Уровни интенсивности инфразвука и инфразвукового давления выражаются в децибелах (дБ).

Источники инфразвука

явления природы (землетрясения, извержения вулканов, морские бури) сопровождаются излучением инфразвуковых колебаний.

- » в производственных условиях инфразвук образуется, главным образом, при работе тихоходных крупногабаритных машин и механизмов (компрессоров, дизельных двигателей, электровозов, вентиляторов, турбин, реактивных двигателей и др.), совершающих вращательное или возвратно-поступательное движение с повторением цикла менее чем 20 раз в секунду (инфразвук механического происхождения).
- инфразвук аэродинамического происхождения возникает при турбулентных процессах в потоках газов или жидкостей.

Воздействие инфразвука на организм человека

Инфразвук оказывает неблагоприятное воздействие на весь организм человека, в том числе и на орган слуха, понижая слуховую чувствительность на всех частотах.

Инфразвуковые колебания воспринимаются как физическая нагрузка: возникают утомление, головная боль, головокружения, вестибюлярные нарушения, снижается острота зрения и слуха, нарушается периферическое кровообращение, появляется чувство страха и т.п.

Низкочастотные колебания с уровнем инфразвукового давления свыше 150 дБ совершенно не переносятся человеком.

Методы защиты от инфразвука

Эффективных методов защиты от инфразвука в настоящее время не существует, поэтому борьба с неблагоприятным воздействием инфразвука ведется в тех же направлениях, что и борьба с шумом.

Наиболее целесообразно уменьшать интенсивность инфразвуковых колебаний на стадии проектирования машин или агрегатов.

6.4.2 Вибрация

Вибрация – сложный колебательный процесс, возникающий при периодическом смещении центра тяжести какого-либо тела от положения равновесия, а также при периодическом изменении формы тела, которую оно имело в статическом состоянии.

Вибрация возникает под действием внутренних или внешних динамических сил, вызванных:

- > плохой балансировкой вращающихся и движущихся частей машин,
- неточностью взаимодействия отдельных деталей узлов,
- ударными процессами технологического характера,
- неравномерной рабочей нагрузкой машин,
- > движением техники по неровности дороги и т.д.

Вибрации от источника передаются на другие узлы и агрегаты машин и на объекты защиты, т.е. на сиденья, рабочие площадки, органы управления, а вблизи стационарной техники — и на пол (основание). При контакте с колеблющимися объектами вибрации передаются на тело человека.

Виды вибрации

Общая - передается через опорные поверхности на тело стоящего или сидящего человека.

Покальная - передается через руки человека или другие части его тела, контактирующие с вибрирующими поверхностями.

Фоновая - вибрация, регистрируемая в точке измерения и не связанная с исследуемым источником.

Характеристики вибрации

- ▶ частота колебаний f, Гц количество циклов колебаний в единицу времени;
- \succ амплитуда смещения A, м наибольшее отклонение колеблющейся точки от положения равновесия;
- *виброскорость v*, м/с − максимальное из значений скорости колеблющейся точки;
- *виброускорение а*, м/с2 − максимальное из значений ускорений колеблющейся точки.

Предельно допустимый уровень вибрации — уровень параметра вибрации, при котором ежедневная (кроме выходных дней) работа, но не более 40 ч в неделю в течение всего рабочего стажа

не должна вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.

Действие вибрации на организм человека

Степень и характер действия вибрации на организм человека зависит от вида вибрации, ее параметров и направления воздействия. Общая вибрация воздействует на весь организм человека, локальная – на отдельные части тела. Однако такое разделение вибрации является условным, так как и локальная вибрация в итоге влияет на весь организм.

Благоприятное действие вибрации на организм человека

Местная вибрация малой интенсивности может оказать благоприятное воздействие на организм человека: восстановить трофические изменения, улучшить функциональное состояние центральной нервной системы, ускорить заживление ран и т.п. Полезное свойство вибрации используют для интенсификации определенных производственных процессов (например, виброуплотнения бетона, грунта, сыпучих материалов из емкостей)

Неблагоприятное действие вибрации на организм человека

Увеличение интенсивности колебаний и длительности их воздействия вызывает изменения в организме работающего. Эти изменения) могут привести к развитию *профессионального заболевания* – вибрационной болезни.

Наиболее распространены заболевания, вызываемые локальной вибрацией. В производственных условиях ручные машины с максимальным уровнем виброскорости в полосах низких частот (от 35 Гц) вызывают *вибрационную патологию* с преимущественным поражением нервно-мышечного, опорно-двигательного аппаратов.

Локальная вибрация, имеющая частотный спектр, часто с наличием ударов (клепка, рубка, бурение), вызывает *различную степень сосудистых, нервно-мышечных, костно-суставных и других нарушений*.

Общая вибрация оказывает неблагоприятное воздействие на нервную систему, приводящее к изменениям в сердечно-сосудистой системе, вестибулярном аппарате, к нарушению обмена веществ.

Совместное воздействие общей и локальной вибраций, которые наблюдаются в формовочных цехах, приводит к поражению нервной системы, а также к вегетативно-сосудистым, вестибулярным и другим расстройствам.

Вибрация приводит к разрушению зданий, сооружений, коммуникаций, поломке оборудования.

Средства и способы защиты от действия вибрации

Мероприятия по защите от вибраций подразделяют на:

- технические (устранение вибраций в источнике и на пути их распространения);
- > организационные (рациональное чередование режимов труда и отдыха);
- » лечебно-профилактические (производственная гимнастика, ультрафиолетовое облучение, воздушный обогрев, массаж, теплые ванночки для рук и ног, прием витаминных препаратов(C, B) и т.д..)

Для виброзащиты применяются СИЗ для рук, ног и тела оператора

Технические мероприятия от действия вибраций

Для уменьшения вибрации в источнике:

- на стадии проектирования и изготовления машин предусматривают благоприятные вибрационные условия труда,
- замена ударных процессов на безударные,
- применение деталей из пластмасс,

- применение ременных передач вместо цепных,
- выбор оптимальных рабочих режимов,
- балансировка,
- повышение точности и качества обработки.

Для уменьшения вибраций на пути распространения применяют:

- вибродемпфирование;
- виброгашение;
- виброизоляцию.

Вибродемифирование — уменьшение амплитуды колебаний деталей машин (кожухов, сидений, площадок для ног) вследствие нанесения на них слоя упруго-вязких материалов (резины, пластиков и т.п.).

Толщина демпфирующего слоя обычно в 2 – 3 раза превышает толщину элемента

конструкции, на которую он наносится. Вибродемпфирование можно осуществлять, используя двухслойные материалы: сталь – алюминий, сталь – медь и др.

Виброгашение достигается при увеличении массы вибрирующего агрегата за счет установки его на жесткие массивные фундаменты или на плиты, а также при увеличении жесткости конструкции путем введения в нее дополнительных ребер жесткости.

вибраций способов подавления является установка динамических виброгасителей, которые вибрирующем крепятся на агрегате. Недостаток динамического виброгасителя – его способность подавлять колебания только определенной (соответствующей его собственной).

Виброизоляция ослабляет передачу колебаний от источника на основание, пол, рабочую площадку, сиденье, ручки механизированного ручного инструмента за счет устранения между ними жестких связей и установки упругих элементов – виброизоляторов.

В качестве виброизоляторов применяют стальные пружины или рессоры, прокладки из резины, войлока, а также резинометаллические, пружинно- пластмассовые и пневморезиновые конструкции, основанные на сжатии воздуха.

6.4.3 Электромагнитные

Неконтролируемый постоянный рост числа источников электромагнитных излучений (ЭМИ), увеличение их мощности приводят к тому, что возникает электромагнитное загрязнение окружающей среды. Высоковольтные линии электропередачи, трансформаторные станции, электрические двигатели, персональные компьютеры (ПК) широко используемые в производстве – все это источники излучений. Беспокойство за здоровье, предупреждение жалоб должно стимулировать поведение мероприятий по электромагнитной безопасности. В этой связи определяются наиболее важные задачи по профилактике:

- заболевание глаз, в том числе хронических;
- зрительного дискомфорта;
- изменение в опорно-двигательном аппарате;
- кожно-резорбтивных проявлений;
- стрессовых состояний;
- изменение мотиваций поведения;
- эндокринных нарушений.

Вследствие влияния электромагнитных полей, как основного и главного фактора, провоцирующего заболевания, особенно у лиц с неустойчивым нервно-психологическим или гормональным статусом, все мероприятия должны проводиться комплексно, в том числе:

- возможные системы защиты, а т.ч. временем и расстоянием;
- противопоказания для работы у конкретных лиц;
- соблюдение основ нормативной базы электромагнитной безопасности.

6.4.4 Радиационная обстановка.

Санитарно- эпидемиологические требования к обеспечению радиационной безопасности устанавливают санитарно-эпидемиологические требования к обеспечению радиационной безопасности при выборе земельного участка, при проектировании, вводе в эксплуатацию и содержании радиационных объектов, выводе из эксплуатации радиационных объектов, обращении с источниками ионизирующего излучения (закрытыми и открытыми радионуклидными источниками, радиоактивными веществами, радиоизотопными приборами, устройствами, генерирующими ионизирующее излучение), обращении с радиоактивными отходами, применении материалов и изделий, загрязненных или содержащих радионуклиды, осуществлении произво

дственного радиационного контроля на объектах

Радиационная безопасность персонала, населения и окружающей природной среды обеспечивается при соблюдении основных принципов радиационной безопасности: обоснование, оптимизация, в соответствии с документами санитарно-эпидемиологического нормирования, утверждаемыми уполномоченным органом в сфере санитарно-эпидемиологического благополучия населения. В качестве допустимого и контролируемого уровня естественного фона устанавливается мощность экспозиционной дозы внешнего гамма-излучения (МЭД).

Все используемые при строительстве стройматериалы должны пройти радиационный контроль. В зависимости от уровня удельной эффективной активности все стройматериалы делятся на 4 класса. В таблице представлены значения удельной эффективной активности.

		•
Класс	Удельная эффек-	
строительного	тивная активность,	Виды использования стройматериалов
материала	(Аэфф) Бк/кг	
I	До 370	Без ограничения
		Разрешено использовать в промышленном и дорожном
		строительстве, для наружной отделки жилых зданий. Запрещено - для
	От 370 до 740	строительства и внутренней отделки жилых, общественных зданий,
II		детских, подростковых, лечебных т профилактических учреждений
III		Разрешено только в дорожном строительстве за пределами
	От 740 до 2800	населенных мест
		Вопрос об использовании материала решается по согласо-ванию с
IV	Свыше 2800	органами Госсанэпиднадзора и Минэкобиоресурсов.

Радиационное качество материалов подтверждается заключением органов госконтроля на основании лабораторных исследований, выполненных аттестованными лабораториями. На основании заключения органов госконтроля центрами по сертификации Госстандарта Республики Казахстан выдаются сертификаты соответствия. Копии сертификатов соответствия прилагаются к каждой партии поставляемых потребителю стройматериалов. При отводе земельных участков под застройку населенных пунктов, жилищно-бытовых объектов, промышленных предприятий, зон отдыха и рекреации, садоводческих товариществ в объем обязательных изыскательных работ должны быть включены измерения мощности — экспозиционной дозы внешнего гамма-излучения на территории отводимого участка. Результаты оформляются протоколом, предъявляемым комиссии по выбору участка под строительство.

Результаты измерений на объектах строительства, сдаваемых в эксплуатацию, оформляются в виде актов радиационного обследования, экземпляр которого прилагается к акту государственной приёмочной комиссии по поводу объекта в эксплуатацию. Ответственность за проведение измерений возлагается на предприятие (учреждение) независимо от формы собственности, осуществляющее строительство и предъявляющее объект к сдаче в эксплуатацию.

7 ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ СТРОИТЕЛЬСТВА ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, В ТОМ ОТХОДОВ, ОБРАЗУЕМЫХ **РЕЗУЛЬТАТЕ ОСУЩЕСТВЛЕНИЯ** ЧИСЛЕ СУЩЕСТВУЮЩИХ **ПОСТУТИЛИЗАЦИИ** ЗДАНИЙ, СТРОЕНИЙ. сооружений, ОБОРУДОВАНИЯ.

7.1 Управление отходами.

Работа предприятия неизбежно влечет за собой образование отходов производства и потребления (ОПП) и создает проблему их размещения, утилизации или захоронения.

Первым законодательным документом в области управления отходами является Директива европейского Союза 75/442/ЕЭС от 15 июля 1975 года, в которой впервые были сформулированы и законодательно закреплены принципы обращения с отходами так называемая Иерархия управления отходами. Безопасное обращение с отходами с учетом международною опыта основывается на следующих основных принципах (ст.329 Экологического кодекса РК):

- предотвращение образования отходов (уменьшая их количество и вредность, используя замкнутый цикл производства);
- утилизация отходов до полного извлечения полезных свойств веществ (повторное использование сырья);
- безопасное размещение отходов;
- приоритет утилизации нал их размещением;
- исключение из хозяйственного оборота не утилизируемых отходов (опасных, токсичных, радиоактивных);
- размещение отходов без причинения вреда здоровью населения и нанесения ущерба окружающей среде.

Рис. 1.1 – Иерархия с обращениями отходами.

При применении принципа иерархии должны быть приняты во внимание принцип предосторожности и принцип устойчивого развития, технические возможности и экономическая целесообразность, а также общий уровень воздействия на окружающую среду, здоровье людей и социально-экономическое развитие страны.

Система управления предусматривает девять этапов технологического цикла отходов:

1 этап - появление отходов, происходящее в технологических и эксплуатационных процессах, а также от объектов в период их ликвидации;

2 этап - сбор и (или) накопление отходов, которые должны проводиться в установленных местах на территории владельца или другой санкционированной территории;

3 этап - идентификация отходов, которая может быть визуальной

4 этап - сортировка, разделение и (или) смешение отходов согласно определенным критериям на качественно различающиеся составляющие;

5 этап - паспортизация. Паспорт опасных отходов составляется и утверждается физическими и юридическими лицами, в процессе хозяйственной деятельности которых образуются опасные отходы;

6 этап - упаковка отходов, которая состоит в обеспечении установленными методами и средствами (с помощью укладки в тару или другие емкости, пакетированием, брикетированием с

нанесением соответствующей маркировки) целостности и сохранности отходов в период их сортировки, погрузки, транспортирования, складирования, хранения в установленных местах;

7 этап - складирование и транспортирование отходов. Складирование должно осуществляться в установленных (санкционированных) местах, где отходы собираются в специальные контейнеры. Транспортировку отходов следует производить в специально оборудованном транспорте, исключающем возможность потерь по пути следования и загрязнения окружающей среды, а также обеспечивающем удобства при перегрузке;

8 этап - хранение отходов. В зависимости от вида отходов хранение может быть

открытым способом, под навесом, в контейнерах, шахтах или других санкционированных местах;

9 этап - утилизация отходов. На первом под этапе утилизации может быть произведена переработка бракованных или вышедших из употребления изделий, их составных частей и отходов от них путем разработки (разукрупнения), переплавки, использования других технологий с обеспечением рециркуляции (восстановления) органической и неорганической составляющих, металлов и метало соединений для повторного применения в народном хозяйстве, а также с ликвидацией вновь образующихся отходов. Вторым под этапом технологического цикла ликвидации опасных и других отходов является их безопасное размещение на соответствующих полигонах или уничтожение.

В период строительства и эксплуатации объекта сложится определенная система сбора, накопления, хранения и вывоза отходов. Принципиально это система обеспечивает охрану окружающей среды. Отходы, образующиеся при строительстве и нормальном режиме эксплуатации из-за их незначительного и постепенного накопления, сразу не вывозятся в места их утилизации, а собираются в контейнеры и хранятся на отведенных для этих целей площадок. Образующиеся отходы на предприятии временно хранятся на площадках с последующей передачей специализированным организациям. Обращение с отходами осуществляется согласно разработанным внутренним инструкциям по обращению с отходами. Договора на вывоз и дальнейшую утилизацию всех образующихся отходов производства и потребления заключаются ежегодно.

В систему управления отходами на предприятии также входит:

- расчет объемов образования отходов и корректировка объемов в соответствии с появлением новых технологий утилизации отходов и совершенствования технологических процессов на предприятии
- сбор и хранение отходов в специальные контейнеры или емкости для временного хранения отходов
- вывоз отходов в места захоронения по разработанным и согласованным графикам.
- оформление документации на вывоз отходов с указанием объемов вывозимых отходов
- регистрация информации о вывозе отходов в журналы учета и базу данных на предприятии.
- составление отчетов, предоставление отчетных данных в госорганы
- заключение договоров на вывоз с территории предприятия образующихся отходов.

Накопление отходов

Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 *статьи 320 Экологического кодекса РК*, осуществляемое в процессе образования отходов до момента их окончательного восстановления или удаления.

Места накопления отходов предназначены для:

- » временного складирования отходов на месте образования *на срок не более шести месяцев до даты их сбора* (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- » временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не

более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;

» временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, *на срок не более шести месяцев* до направления их на восстановление или удаление.

Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Запрещается накопление отходов с превышением сроков, указанных в пункте 2 *статьи 320 ЭК РК* или объемов накопления отходов, указанных в декларации о воздействии на окружающую среду

Сбор отходов

До момента передачи отходов лица, осуществляющие операции по сбору отходов, обязаны обеспечить раздельный сбор отходов в соответствии с требованиями настоящего Кодекса.

Под раздельным сбором от опимается сбор отходов раздельно по видам или группам в целях упрощения дальнейшего специализированного управления ими.

Требования к раздельному сбору отходов, в том числе к видам или группам отходов, подлежащих обязательному раздельному сбору в соответствии с требованиями Экологического кодекса PK и с учетом технической, экономической и экологической целесообразности.

При строительстве проектируемого объекта образуются незначительное количество производственных отходов – абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами., отходы от красок и лаков, содержащие органические растворители или другие опасные вещества, отходы сварки, смешанные коммунальные отходы (ТБО).

При эксплуатации проектируемого объекта образуются смешанные коммунальные отходы (ТБО), зола, а также отходы, получаемые от третьих лиц на переработку: медицинские.

Сбор и временное хранение отходов производства проводится на специальных площадках (местах), контейнерах (промаркированных), соответствующих типу опасности отходов (по степени токсичности),

Сбор, временное хранение, транспортировка и прочие процессы, связанные с обращением с отходами производства и потребления будет осуществляться согласно Приказу Министра национальной экономики Республики Казахстан от 25 декабря 2020 года № 331 «Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления»

Транспортировка отходов

Транспортировка отходов связанна с перемещением отходов с помощью специализированных транспортных средств между местами их образования, накопления в процессе сбора, сортировки, обработки, восстановления и удаления. Транспортировка отходов осуществляется с соблюдением требований $\mathbf{\mathit{ЭKPK}}$.

Принимаемые медицинские отходы от других предприятий будут утилизироваться на инсинераторе Веста плюс.

Отходы, образованные в процессе строительства, будут вывозиться и утилизироваться на основании договора с организациями, имеющими лицензию на этот вид деятельности ст.336 ЭК РК.

7.2 Классификатор отходов

Виды образующихся отходов определяются на основании классификатора отходов, утвержденного Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Классификатор отходов разрабатывается с учетом происхождения и состава каждого вида отходов и в необходимых случаях определяет лимитирующие показатели концентрации опасных веществ в целях их отнесения к опасным или неопасным. Каждый вид отходов в классификаторе отходов идентифицируется путем присвоения шестизначного кода.

Виды отходов относятся к опасным или неопасным в соответствии с классификатором отходов с учетом требований экологического кодекса РК.

В таблице 7.2.1 представлен классификатор каждого вида отходов на период строительства и эксплуатации путем присвоения шестизнчного кода

Таблица 7.2.1 Классификатор отходов

Nº	Наименование отходов	Код отходов	Место накопления/ методь утилизации
	Опасны	ie	,
1	Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами.	15 02 02*	Спецемкости / вывоз спецорганизацией по договору
2	Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества	08 01 11*	На спецплощадке / вывоз спецорганизацией по договору
3	Использованные шприцы, иглы и капельницы и т.д.	18 01 01	В специальных контейнерах сжигание в инсинераторах
4	Биологические отходы	18 01 02	В специальных контейнерах сжигание в инсинераторах
5	Отходы с особо инфицированных отделений	18 01 03*	В специальных контейнерах сжигание в инсинераторах
6	Перевязочные материалы, гипс, белье, одноразовая одежда, подгузники, перчатки, маски	18 01 04	В специальных контейнераз сжигание в инсинераторах
7	Химические вещества, состоящие из опасных веществ или содержащие опасные вещества	18 01 06*	В специальных контейнерах сжигание в инсинераторах
8	Химические вещества, содержащие неопасные вещества	18 01 07	В специальных контейнерах сжигание в инсинераторах
9	Цитотоксические и цитостатические препараты	18 01 08*	В специальных контейнерах сжигание в инсинераторах
10	Просроченные медицинские препараты	18 01 09	В специальных контейнерах сжигание в инсинераторах
11	Отходы стоматологических клиник	18 01 10	В специальных контейнерах сжигание в инсинераторах
	Неопасн		
1	Смешанные коммунальные отходы (ТБО)	20 02 01	Специальные контейнеры / вывоз спецорганизацией по договору
2	Отходы сварки	12 01 13	Специальные контейнеры / вывоз спецорганизацией по договору
3	Зола	10 01 17	Специальные контейнеры / вывоз спецорганизацией по договору

7.3 Объем образования отходов при строительных работах

Расчёт объемов образования твердо-бытовых отходов

Количество отходов, образующихся в результате жизнедеятельности работников при строительстве объектов, определяется по формуле:

$$Q = M *P * p$$

Где: М – количество работающих при строительстве объектов, 12человек;

P – норма накопления отходов, 0,3 м 3 /год

p - удельный вес 0,25 т/м³

Q = 12*0,3*0,25*3/12=0.23 тонны/год

Расчет образования абсорбентов, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами.

Нормативное количество отхода определяется исходя из поступающего количества ветоши (${\rm M}_{\rm O}$, т/год), норматива содержания в ветоши масел (${\rm M}$) и влаги (${\rm W}$):

$$N = M_0 + M + W, T/\Gamma O A,$$

где
$$M = 0.12 \cdot M_0$$
, $W = 0.15 \cdot M_0$.

N=0,02+0,12*0,02+0,15*0,02=0,025 тонны/период строительства

Расчёт объемов образования отходов от красок и лаков

Норма образования отхода определяется по формуле:

$$N = \sum M_i \cdot n + \sum M_{\kappa i} \cdot \alpha_i, T/\Gamma O J,$$

где M_i - масса i -го вида тары, т/год; n- число видов тары;

 $\mathbf{M}_{\kappa i}$ - масса краски в i -ой таре, т/год;

 α_i - содержание остатков краски в i -той таре в долях от $M_{\kappa i}$ (0.01-0.05).

 $N_1 = ((0,0015*4) + (0,0015*6) + (0,0015*1) + (0,033+0,056+0,022)*0,01) = 0,018$ тонны/период строительства.

Расчёт объемов образования отходов сварки

Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г. № 100-п. Методика разработки проектов нормативов предельного размещения отходов производства и потребления.

Норма образования отхода определяется по формуле: $\mathbf{N} = \mathbf{M}_{\mathbf{0}\mathbf{c}\mathbf{T}}^*\mathbf{n}$

 $M_{\text{ост}}$ - проектный расход электродов, составляет 0,138 т.;

n - остаток электрода 0.015.

N = 0.138*0.015 = 0.002 T

7.4 Объем образования отходов при эксплуатации проектируемого объекта

Расчёт объемов образования твердо-бытовых отходов

Количество бытовых отходов, образующихся в результате жизнедеятельности производственного персонала:

М – количество -5 человек

P – норма накопления отходов, 0,3 м 3 /год

p - удельный вес 0,25 т/м³

$$Q_{\text{ком}} = 0.3 * 5 * 0.25 = 0.4 т/год$$

Расчет обоснование объема образования золы

<u>Зола</u> – образуется в результате сжигания медотходов в инсинираторах. После утилизации остатки отходов представлены золой. Согласно химического состава в отходах содержится 75 % органических материалов (выход золы от сжигания отходов составляет 5,84 %). Таким образом, после утилизации объем образования золы составит: Мотх = Мф х С, т/год

Где Мф – объем сжигаемых отходов, 180,0 т/год;

С - содержание негорючих компонентов, 0,0584

Motx = 180*0,0584 = 10,512 т/год.

7.5 Характеристика всех видов отходов, получаемых от третьих лиц

Медицинские отходы — образуется в результате работы медучреждений и ЛПУ. Планируемое количество медицинских отходов подлежащих сжиганию в инсинераторах — 180 т/год.

Код отходов	Наименование отходов	Количество, т/год
18 01 01	Использованные шприцы, иглы и капельницы и т.д.	40
18 01 02	Биологические отходы	40
18 01 03*	Отходы с особо инфицированных отделений	30
18 01 04	Перевязочные материалы, гипс, белье, одноразовая	30
	одежда, подгузники, перчатки, маски	30
18 01 06*	Химические вещества, состоящие из опасных веществ	10
	или содержащие опасные вещества	10
18 01 07	Химические вещества, содержащие неопасные вещества	10
18 01 08*	Цитотоксические и цитостатические препараты	10
18 01 09	Просроченные медицинские препараты	5
18 01 10	Отходы стоматологических клиник	5
	Всего	180

Лимиты накопления отходов, образуемых в процессе строительства и эксплуатации, представлены в таблице 7.5.1

Таблица 7.5.1- Лимиты накопления отходов, образуемых в процессе строительства

Габлица 7.5.1- Лимиты накопления отходов, образуемых в процессе строительства								
	Наименование	Место накопления	Лимит накопления					
-	отходов/Код		отходов, т/год					
Всего из них по								
площадкам								
Площадка 1 Строительс	тво							
В том числе по видам			0,193					
		ные						
	Абсорбенты,	Строительная площадка	0,025					
	фильтровальные							
	материалы (включая							
	масляные фильтры иначе							
	не определенные), ткани							
	для вытирания, защитная							
	одежда, загрязненные							
	опасными материалами.							
	(Промасленная ветошь)							
	15 02 02*							
	Отходы от красок и лаков,	Строительная площадка	0,018					
	содержащие органические							
	растворители или другие							
	опасные вещества							
	(Отходы из ЛКМ)							
	08 01 11*							
	асные							
	Смешанные коммунальные	Строительная площадка	0,23					
	отходы (ТБО)/							
	20 03 01							
	Отходы сварки	Строительная площадка	0,002					
	12 01 13	1	,					
Площадка 2 Эксплуатаци		·						
В том числе по видам			0,193					
опасные			,					
	Использованные шприцы,	Специальное						
	иглы и капельницы и т.д.	помещение для мед	40					
	/18/ 01 01		40					
		отходов	40					
	Биологические отходы		40					
	Отходы с особо		20					
	инфицированных		30					
	отделений / 18 01 03*							
	Перевязочные материалы,							
	гипс, белье, одноразовая		30					
	одежда, подгузники,							
	перчатки, маски/ 18 01 04]						

Vinalitia della pallia como		
Химические вещества,		
состоящие из опасных		10
веществ или содержащие		10
опасные вещества / 18 01		
06*		
Химические вещества,		
содержащие неопасные		10
вещества/ 18 01 07		
Цитотоксические и		
цитостатические		10
препараты/ 18 01 08*		
Просроченные		
медицинские препараты/		5
18 01 09		
Отходы		
стоматологических клиник		5
/ 18 01 10		
неопа	сные	
Смешанные коммунальные	Площадка для	0,4
отходы (ТБО)/	контейнеров ТБО	
20 03 01		
Зола	Площадка для	10,512
10 01 17	контейнеров ТБО	

7.6 Производственный контроль при обращении с отходами

Производственный контроль при обращении с отходами предусматривает ведение учета объема, состава, режима их образования, хранения и отгрузки с периодичностью, достаточной для заполнения форм внутрипроизводственной и государственной статистической отчетности, которые регулярно направляются в территориальные природоохранные органы.

Параметры образования отходов производства и потребления, их циркуляция и удаление будут контролироваться, и регулироваться в ходе основных технологических процессов.

По степени воздействия на здоровье человека и окружающую среду отходы распределяются на следующие классы опасности:

Наименование отходов	Класс опасности
Абсорбенты, фильтровальные материалы (включая	3 класс
масляные фильтры иначе не определенные), ткани для	
вытирания, защитная одежда, загрязненные опасными	
материалами. (Промасленная ветошь)	
Отходы от красок и лаков, содержащие органические	3 класс
растворители или другие опасные вещества (Отходы из	
ЛКМ)	
Ртутье содержащие отходы	1 класс
Медицинские отходы	1 класс
Зола	4 класс
Отходы сварки	4 класс
Смешанные коммунальные отходы (ТБО)/	5 класс

Обращение со всеми видами отходов, их захоронение будет осуществляться в соответствии с документом, регламентирующим процедуры по обращению с отходами. Выполнение положений данного документа по организации сбора и удаления отходов обеспечит:

- ▶ соответствие природоохранному законодательству и нормативным документам по обращению с отходами в РК;
- ▶ соответствие политике по контролю рисков для здоровья, техники безопасности и окружающей среды;
- > предотвращения загрязнения окружающей среды.

Для каждого типа отхода, образующегося на предприятии, согласно Экологического Кодекса, будет составляться, и утверждаться паспорт опасных отходов в процессе хозяйственной деятельности предприятия. Копии паспортов опасных отходов в обязательном порядке будут предоставляться

предприятию, транспортирующему данный вид отхода, а также каждому грузополучателю данной партии отходов.

7.7 Мероприятия по минимизации объёмов и снижению токсичности отходов производства и потребления

В целях более полного обеспечения защиты окружающей среды от отрицательного воздействия отходов настоящим разделом разработаны организационно-технических мероприятий по снижению негативного воздействия и предотвращению загрязнения компонентов окружающей природной среды отходами производства и потребления.

Предлагаемые организационно-технические мероприятия по предотвращению загрязнения окружающей среды отходами производства и потребления:

- содержание производственной территории в должном санитарном состоянии.
- для предотвращения загрязнения почв и далее подземных вод отходами производства и потребления, их транспортировка и хранение производятся в закрытой таре;
- установка всего оборудования на бетонированных площадках;
- > обустройство мест локального сбора и хранения отходов
- В соответствии с гл.3, п.58 санитарных правил «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» от 25.12.2020 года №331, установить сроки хранения твердо-бытовых отходов в контейнерах при температуре 0 оС и ниже не более трех суток, при плюсовой температуре не более суток.
- совершенствование технологических процессов с целью минимизации образования отходов производства, достижения уровня безотходного производства.
- разработка технологий, снижающих объёмы образования и токсичность отходов, способствующих целям достижения нормативного объёма размещения отходов в накопители.
- организация, в целях обеспечения экологически безопасного удаления отходов, обращения с отходами в следующей иерархической последовательности.

0

Принятие мер по снижению объемов отходов, которые предполагают применение безотходных технологий либо уменьшение, по мере возможности, количества или относительной токсичности отходов путем применения альтернативных материалов, технологий, процессов, приемов.

Снижение токсичности отходов, которое достигается заменой токсичных реагентов и материалов, используемых в производственном процессе, менее токсичными. Использование отходов категории вторичных ресурсов наравне с исходным материалом в других технологических процессах, либо передача предприятиям других отраслей.

8 ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

При строительстве и эксплуатации объекта основными видами воздействия на окружающую среду являются:

- эагрязнение отработавшими газами двигателей природной среды двигающимся по автодороге транспортом;
- эагрязнение природной среды дорожно-строительными машинами и механизмами, используемыми на строительных работах;
- загрязнение пылью и продуктами износа дорожного покрытия и автомобильных шин при движении автотранспорта, а также при транспортировке дорожно-строительных материалов;
- загрязнение поверхностными стоками с проезжей части дороги почвенного покрова, поверхностных водных источников, прилегающих к дороге различных видов растительности;
- » влияние на растительность посредством изменения непосредственно природной среды, связанное со строительством и эксплуатации автодороги;
- уничтожение естественной растительности при строительстве новых участков автодороги;
- нарушение путей миграции диких животных и земноводных, изменение биотопических условий (мест размножения и нагула) мест гнездования птиц;
- > загрязнение придорожной полосы производственным и бытовым мусором.

8.1 Методика оценки воздействия на природную окружающую среду в штатной ситуации

В основе оценки воздействия на окружающую среду используются «Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-п от 29.10.2010 г., г. Астана.

По данной методологии анализируются уровни воздействия, планируемые меры по их снижению, с определением степени остаточного воздействия. При характеристике воздействия на окружающую среду основное внимание уделяется негативным последствиям, для оценки которых разработан ряд количественных характеристик, отражающих эти изменения. Наиболее приемлемым для решения задач оценки воздействия на природную среду представляется использование трех основных показателей: пространственного и временного масштабов воздействия и его величины (интенсивности).

Методика основывается на балльной системе оценок. Принятая система градации в баллах позволяет унифицировать оценки, получаемые для различных компонентов природной среды и обеспечить их сравнимость между собой. Шкала масштабов воздействия и градация экологических последствий приведена в таблице 8.1.1. Приведенное в таблице разделение пространственных масштабов воздействий проводится на основе анализа технических решений, математического моделирования, или на основании экспертных оценок возможных последствий от воздействия.

Таблица 8.1.1 Шкала масштабов воздействия и градация экологических последствий

Масштаб воздействия (рейтинг относительного воздействия и нарушения)	Показатели воздействия и ранжирование потенциальных нарушений
Локальный (1балл)	площадь воздействия до 1 км ² , воздействие на удалении до 100 м
Ограниченный (2 балла)	площадь воздействия до 10 км ² , воздействие на удалении до 1 км
Местный (3 балла)	площадь воздействия от 10 до 100 км 2 , воздействие на удалении от 1 до 10 км

Региональный (4 балла)	площадь воздействия более 100 км², воздействие на удалении более 10 км					
	Временной масштаб воздействия					
Кратковременный (1балл)	длительность воздействия не превышает 6 месяцев					
Воздействие средней продолжительности (2 балла)						
Продолжительное воздействие (3 балла)						
Многолетнее (постоянное) воздействие (4 балла)	продолжительность воздействия более 3 лет.					
Интене	сивность воздействия (обратимость изменения)					
Незначительная (1балл)	Изменения в природной среде не превышают существующие пределы природной изменчивости					
Слабая (2 балла)	Изменения в природной среде превышают пределы природной изменчивости, Природная среда полностью самовосстанавливается.					
Умеренная (3 балла)	Изменения в природной среде, превышающие пределы природной изменчивости, приводят к нарушению отдельных компонентов природной среды. Природная среда сохраняет способность к самовосстановлению					
Сильная (4 балла)	Изменения в природной среде приводят к значительным нарушениям компонентов природной среды и/или экосистемы. Отдельные компоненты природной среды теряют способность к самовосстановлению (это утверждение не относится к атмосферному воздуху)					

Для определения значимости (интегральной оценки) воздействия деятельности предприятия на отдельный элемент окружающей среды выполняется комплексирование полученных для данного компонента окружающей среды показателей воздействия. Комплексный балл

воздействия определяется путем перемножения баллов показателей воздействия по площади, по времени и интенсивности. Для представления результатов оценки воздействия приняты три категории значимости воздействия, их ранжирование приведено в таблице 7.1.2.

Результаты комплексной оценки воздействия на окружающую среду в штатном режиме работ представляются в табличной форме в порядке их планирования. Для каждого вида работ определяются основные технологические процессы. Для каждого процесса определяются источники и факторы воздействия. С учетом природоохранных мер по уменьшению воздействия определяются последствия на ту или иную природную среду и этим воздействиям дается интегральная оценка.

В результате получается матрица, в которой в горизонтальных графах дается перечень природных сред, а по вертикали - перечень операций и соответствующие им источники и факторы воздействия. На пересечении этих граф выставляется показатель интегральной оценки (т.е. высокий, средний, низкий). Клетки закрашиваются разными цветами в зависимости от уровня комплексной оценки воздействия, что дает наглядное представление о воздействиях на компоненты окружающей среды.

Таблица 8.1.2 Ранжирование критериев по экологической значимости

Катего		Категории значимости		
Простра нственный масштаб			баллы	Значимость
Локальное 1	тальное Кратковременное Незначитель 1 1 1		1-8	Воздействие низкой
Ограниченное	Средней продолжительности	Слабое	1- 0	значимости
2	2 2		9 - 27	Воздействие средней
Местное	Продолжительное	Умеренное	9 - 21	значимости
3	3	3	28 - 64	Воздействие высокой значимости

Катего	Категории значимости			
Простра Временной масштаб		Интенсивность воздействия	баллы	Значимость
Региональное 4				

8.2 Оценка воздействия на компоненты окружающей среды

8.2.1 Оценка воздействия на компоненты атмосферного воздуха

Согласно методике оценки воздействия на окружающую среду в штатной ситуации, для оценки воздействия на атмосферный воздух приняты три параметра: интенсивность воздействия, временной и пространственный масштаб.

Воздействие на атмосферный воздух при строительстве оценивается следующим образом:

- пространственный масштаб воздействия локальный (1 балл)
- **у** временной масштаб *кратковременный* (1 балл)
- интенсивность воздействия (обратимость воздействия) слабая (2 балла)

Интегральная оценка выражается 2-мя баллами – воздействие низкой значимости

Воздействие на атмосферный воздух при эксплуатации оценивается следующим образом:

- пространственный масштаб воздействия локальный (1 балл)
- **в** временной масштаб многолетний (4 балла);
- интенсивность воздействия (обратимость воздействия) слабая (2 балла)

Интегральная оценка выражается 8-ью баллами – воздействие низкой значимости

8.2.2 Воздействия на поверхностные и подземные воды

В целом, воздействие на поверхностные и подземные воды от намечаемой хозяйственной деятельности при строительстве оценивается следующим образом:

- пространственный масштаб воздействия локальный (1 балл)
- **в** временной масштаб *кратковременный* (1 балл)
- интенсивность воздействия (обратимость воздействия) незначительный (1 балл)

Интегральная оценка выражается 1 балл – воздействие низкой значимости

В целом, воздействие на поверхностные и подземные воды от намечаемой хозяйственной деятельности при эксплуатации оценивается следующим образом:

- ранственный масштаб воздействия локальный (1 балл)
- **в** временной масштаб многолетний (4 балла);
- интенсивность воздействия (обратимость воздействия) незначительный (1 балл)

Интегральная оценка выражается 4-мя баллами — воздействие низкой значимости.

8.2.3 Оценка воздействия на почвенный покров

В понятие рационального использования земель входит как минимизация воздействия на окружающую среду посредством технологических решений и природосберегающих технологий и оборудования, так и проведение мониторинговых наблюдений.

Воздействие на почвенный покров при строительстве оценивается следующим образом:

- пространственный масштаб воздействия локальный (1 балл)
- **у** временной масштаб *кратковременный* (1 балл)
- интенсивность воздействия (обратимость воздействия) слабая (2 балла)

Интегральная оценка выражается 2-мя баллами – воздействие низкой значимости

Воздействие на почвенный покров при эксплуатации оценивается следующим образом:

- р пространственный масштаб воздействия локальный (1 балл)
- **в** временной масштаб многолетний (4 балла);
- ▶ интенсивность воздействия (обратимость воздействия) слабая (2 балла)

Интегральная оценка выражается 8-ью баллами – воздействие низкой значимости.

8.2.4. Оценка воздействия на растительность

Растительность как биотический компонент природной экологической системы играет решающую роль в структурно-функциональной организации экологической системы и определении ее границ. Растительность не только чувствительна к изменениям параметров окружающей среды, но и наглядно отражает изменения экологической обстановки территории в результате антропогенных воздействий.

Качественные показатели учитывают негативные изменения как в структуре растительного покрова, так и на уровне растительных сообществ и отдельных видов (популяций): изменение видового состава, ухудшение ассоциированности и возрастного спектра биоценотических доминирующих видов.

Тяжелые металлы являются протоплазматическими ядами с очень узким оптимальным и безвредным интервалом концентрации - в этом их опасность. Повышение концентрации тяжелых металлов в почве не всегда приводит к отрицательному воздействию на растения, так как некоторые из них в виде микроэлементов участвуют в физиологических процессах и необходимы растениям. Токсичное действие тяжелых металлов проявляется при увеличении их концентрации выше оптимальной. Токсичность тяжелых металлов возрастает по мере увеличения атомной массы и может проявляться по-разному.

Ртуть, свинец, медь, бериллий, кадмий, серебро подавляют щелочную фосфатазу, каталазу, оксидазу, рибонуклеазу. Алюминий, железо, барий образуют преципитаты и хелатированные комплексы с метаболитами, препятствуя их дальнейшему участию в обмене веществ, способствуют деградации важнейших метаболитов. Кадмий, медь, железо могут вызывать разрыв клеточных мембран и т.д. Повреждение ферментов относится к главным факторам токсического действия тяжелых металлов.

Воздействие на растительность при строительстве оценивается следующим образом:

- **р** пространственный масштаб воздействия *локальный* (1 балл)
- **»** временной масштаб *кратковременный* (1 балл)
- интенсивность воздействия (обратимость воздействия) слабая (2 балла)

Интегральная оценка выражается 2-мя баллами — *воздействие низкой значимости* Воздействие на растительность при эксплуатации оценивается следующим образом:

- ространственный масштаб воздействия *локальный* (1 балл)
- **в** временной масштаб многолетний (4 балла);
- интенсивность воздействия (обратимость воздействия) слабая (2 балла)

Интегральная оценка выражается 8-ью баллами — воздействие низкой значимости.

8.2.5 Оценка воздействия на животный мир

Изменение качества среды обитания животных, а следовательно, их численности проявляется в виде :

- → изменения структуры растительности, почвы, освещения, водного баланса или шумового загрязнения придорожной зоны;
- → разделения сред обитания (местообитаний) и действия транспортного сооружения в качестве барьера для распространения;
- → уменьшения и изоляции среды обитания локальных популяций (для островковых остаточных сред обитания видов животных, подвергающихся опасности);
- → лишения возможности миграции животных на больших территориях.

Шум, визуальное воздействие транспорта являются основными факторами влияния на численность птиц и животных на придорожных территориях. На открытых участках влияние шума и визуальных факторов распространяется на большие расстояния, загрязнение воздуха - на небольшие.

Животный мир на большей части территория отсутствует, однако определенное воздействие испытали все виды наземных позвоночных. Основным видом воздействия — это механическое нарушение почвенного растительного покрова на промплощадках и трассах коммуникаций, приведшее к уничтожению естественных местообитаний.

При низкой численности и плотности населения животных на большей части территории Мангышлакского полуострова интенсивность воздействия на животный мир производственной деятельности оценивается как слабая

В целом, воздействие на животный мир от намечаемой хозяйственной деятельности при строительстве оценивается следующим образом:

- пространственный масштаб воздействия локальный (1 балл)
- **р** временной масштаб *кратковременный* (1 балл)
- **у** интенсивность воздействия (обратимость воздействия) незначительный (1 балл)

Интегральная оценка выражается 1 балл – воздействие низкой значимости

Воздействие на животный мир при эксплуатации оценивается следующим образом:

- пространственный масштаб воздействия локальный (1 балл)
- **в** временной масштаб многолетний (4 балла);
- **у** интенсивность воздействия (обратимость воздействия) незначительный (1 балл)

Интегральная оценка выражается 4-мя баллами – воздействие низкой значимости.

8.2.6 Оценка воздействия на геологическую среду

Оценка воздействия на геологическую среду является обязательной частью экологич

еских проектов, так как геологическая среда по сравнению с другими составляющими окружающей среды, обладает некоторыми особенностями, определяющими специфику всякого рода геоэкологических прогнозов.

При правильном ведении строительных работ негативное воздействие на геологическую среду носит локальный характер. Продуктивные горизонты, в том числе водоносные не затрагиваются. Основными требованиями к обеспечению экологической устойчивости геологической среды при строительстве проектируемого объекта являются разработка и выполнение профилактических и организационных мероприятий, направленных на охрану земель и недр.

В целом, воздействие на геологическую среду от намечаемой хозяйственной деятельности оценивается как воздействие низкой значимости.

8.2.7 Оценка воздействия отходов на окружающую среду

Все виды отходов, образующихся в процессе строительства и эксплуатации проектируемого объекта по мере их накопления подлежат вывозу и складированию согласно заключенных договоров со специализированными организациями. Временное хранение этих отходов на территории площадки не приводит к какому-либо проникновению загрязняющих веществ в окружающую среду, а потому загрязнение окружающей среды в результате временного

хранения отходов не предвидится.

Оценивая ущерб окружающей среде, при образовании отходов производства и потребления и их хранении, можно констатировать, что негативное воздействие от их образования минимальное и кратковременное, так как предусмотрены все меры по их предотвращению.

По принятой методике оценки воздействия обращение с отходами производства и потребления на компоненты окружающей среды можно оценить следующим образом:

- р пространственный масштаб воздействия локальный (1 балл)
- **»** временной масштаб многолетний (4 балла);
- ▶ интенсивность воздействия (обратимость воздействия) незначительный (1 балл)
 Общая интегральная оценка 4 балла.

Интегральная оценка воздействия – воздействие низкой значимости

8.3 Комплексная оценка воздействия на окружающую среду

В разделе 8.1 приведена методика оценки воздействия на окружающую среду в штатном режиме. В соответствии с приведенной методикой, выполнена оценка воздействия на каждый

компонент окружающей среды, затрагиваемый при проведении работ по строительству и эксплуатации проектируемого объекта.

Оценка воздействия проведена по трем показателям: пространственный, временной масштабы воздействия и величина воздействия (интенсивность). Для оценки значимости воздействия определен комплексный балл, т.е. интегральная оценка воздействия на следующие компоненты: атмосферный воздух, поверхностные и подземные воды, почвенный покров, растительный и животный мир, геологическую среду, радиоэкологическую ситуацию. Также проведена оценка воздействия на компоненты окружающей среды при обращении с отходами производства и потребления.

Основные производственные операции строительству и эксплуатации проектируемого объекта и перечень компонентов окружающей среды, на которые они воздействуют, приведены в таблине 8.3.1.

Таблица 8.3.1 - Основные производственные операции при разработке и эксплуатации объекта и их на окружающую среду

воздействия

	на окружают	цую среду Г	1	· ·				
	Производственные операции/ факторы воздействия	Атмо- сфера	Поверх- ностные воды	Компоненты Подзем- ные воды	Почвы	Расти- тель- ность	Фауна	Геоло- гическая среда
1	Строительно монтажные работы	✓			✓	✓	✓	√
2	Твердые бытовые и промышленные отходы	√		✓	✓	✓	✓	
3	Движение транспортных средств	√	√		√	√	√	
4	Физические факторы воздействия (шум, свет, вибрация)	√					√	

На основе покомпонентной оценки воздействия на окружающую среду путем комплексирования ранее полученных уровней воздействия, в соответствии с изложенными методиками, выполнена интегральная оценка деятельности предприятия.

В таблицу 8.3.2 сведены вес основные операции, связанные с деятельностью предприятия и факторы воздействия, приведена оценка комплексного воздействия на перечисленные в таблице 7.3.1 компоненты окружающей среды, подвергающиеся воздействию.

В целом, положительных интегральных воздействий на компоненты природной среды в настоящее время от намечаемой деятельности не отмечается, а отрицательное воздействие не выходит за пределы среднего уровня.

Анализ покомпонентного и интегрального воздействия на окружающую среду позволяет сделать вывод о том, что намечаемая деятельность при условии соблюдения технических решений (штатная ситуация) не оказывает значимого негативного воздействия на окружающую среду.

аблица 8.3.2		П	оказатели воздейств	иа	
Компонент окружающей среды	Действия	Пространственны й масштаб	Временной масштаб	Интенсив- ность	Интегральная оценка воздействия
		Строительст	160		
Атмосферный воздух	Выбросы загрязняющих веществ от неорганизованных ис-точников (строитель-номонтажные работы,автотранспорт)	Локальный (1)	Кратковременны й (1)	Слабая (2)	Низкая (2)
Поверхностные и п одземные воды	Движение авто- транспорта. Загрязнение отходами потребления и сточными водами	Локальный (1)	Кратковременны й (1)	Незначитель ный (1)	Низкая (1)
Почвы	Использование земель под строительство. Механические нарушения почв площадки строительства, загрязнение почвенного субстрата и физичес-кое присутствие. Вторичное загрязнение почв. Изменение гидрологического режима почв.	Локальный (1)	Кратковременны й (I)	Слабая (2)	Низкая (2)
Растительность	Механические нару- шения растительного покрова в пределах и на прилегающих территориях. Вторичное загрязнение растительности	Локальный (1)	Кратковременны й (I)	Слабая (2)	Низкая (2)
Животный мир	Потеря и нарушение мест обитаний, фак-тор беспокойства, шумовые и световые воздействия	Локальный (1)	Кратковременны й (I)	Незначитель ный (1)	Низкая (1)
Недра (геологическая среда)	Механические нарушения поверхностного слоя	Локальный (1)	Кратковременны й (1)	Незначитель ный (1)	Низкая (1)
		Эксплуатаці	ІЯ		
Атмосферный воздух	Выбросы загрязня- ющих веществ от передвижных источников	Локальный (1)	Многолетний (4)	Слабая (2)	Низкая (8)
Поверхностные и подземные воды	Загрязнение отхода- ми потребления и сточными водами	Локальный (1)	Многолетний (4)	Незначитель ная (1)	Низкая (4)

Почвы	Загрязнение почвен- ного субстрата и физическое присут- ствие	Локальный (1)	Многолетний (4)	Слабая (2)	Низкая (8)
Растительность	Нарушение расти- тельного покрова в пределах и на при- легающих террито- риях.	Локальный (1)	Многолетний (4)	Слабая (2)	Низкая (8)
Животный мир	Физическое присут- ствие, фактор бес- покойства. Физические факто-ры воздействия (шум и свет)	Локальный (1)	Многолетний (4)	Незначитель ная (1)	Низкая (4)
Физическое воздействие	Шум, вибрация, свет	Локальный (1)	Многолетний (4)	Незначитель ная (1)	Низкая (4)

Для определения комплексной оценки воздействия на компоненты окружающей среды находим среднее значение от покомпонентного балла категории значимости.

Интегральная оценка воздействия при реализации проектных решений составляет:

• *при строительстве и эксплуатации* – *воздействие низкой значимости*. (Изменения в природной среде превышают пределы природной изменчивости. Природная среда полностью самовосстанавливается.)

8.4 Оценка воздействия на социально экономические условия и здоровье населения

8.4.1 Методика оценки воздействия на социально-экономическую среду

При оценке воздействия на социальную сферу используются несколько другие критерии, чем при оценке воздействия на природную среду. Очевидно, что деятельность любого предприятия, не влекущего положительных воздействий в социальной сфере, бессмысленна, в связи с чем, необходима детальная оценка как отрицательных, так и положительных аспектов изменений. Разность между выгодами, получаемыми обществом в период деятельности предприятия, и степенью негативного воздействия на природную среду, является мерой экологической целесообразности.

Любая хозяйственная деятельность может иметь последствиями изменение социальных условий региона как в сторону увеличения благ и выгод местного населения в сферах экономики, просвещения, здравоохранения, так и в сторону ухудшения социальной и экологической ситуации в результате непредвиденных неблагоприятных последствий.

Основной мерой воздействия на социальную сферу в настоящее время является изменение уровня жизни, который оценивается по множеству параметров, основными из которых являются здоровье населения, демографическая ситуация, уровень образования, трудовая занятость, уровень науки и культуры, степень развития экономики, доходы населения и т.д. Строго говоря, критерии оценки изменений в социально-экономической сфере корректно отражают только пространственные масштабы воздействия, которые достаточно уверенно прогнозируются на основании имеющегося опыта. Оценка изменений во временном масштабе затруднена в связи с тем, что сроки реализации социальных деклараций в значительной мере зависят от управленческих решений и других факторов, не относящихся к деятельности предприятия, и более-менее уверенно анализировать их представляется сложным.

Критерии оценки воздействия на социально-экономическую сферу

Оценка возможных воздействий, независимо от их направленности (положительные или отрицательные) проводится по пространственным и временным параметрам, а также по их интенсивности.

Для каждого компонента социально - экономической среды уровни значимых площадных, временных воздействий и воздействий интенсивности дифференцируются по градациям.

Для оценки всей совокупности последствий намечаемой деятельности на социальные и экономические условия, принимается 5-ти уровневая градация (с 1 до 5 баллов, с отрицательным и положительным знаком, ранжирующая как отрицательные, так и положительные факторы

воздействия. Балл «0» проявляется в том случае, когда отрицательные воздействия компенсируются тем же уровнем положительных воздействий).

Каждую градацию воздействия проекта на компоненты социально - экономической среды определяют соответствующие критерии (таблицы 8.4.1.1, 8.4.1.2 и 8.4.1.3).

Характеристика критериев учитывает специфику социально-экономических условий республики и базируется на данных анализа многочисленных проектов, реализуемых на территории Республики Казахстан.

Таблица 8.4.1.1 Градации пространственных масштабов воздействия на социально - экономическую сферу

Градация пространственных воздействий	Критерий	Балл
Нулевое	воздействие отсутствует	0
Точечное	воздействие проявляется на территории размещения объектов проекта	1
Локальное	воздействие проявляется на территории близлежащих населенных пунктов	2
Местное	воздействие проявляется на территории одного или нескольких административных районов	3
Региональное	воздействие проявляется на территории области	4
Национальное	воздействие проявляется на территории нескольких смежных областей или республики в целом	5

Таблица 8.4.1.2 Градации временных масштабов воздействия на социально - экономическую сферу

Градация временных воздействий	Критерий	
Нулевое	воздействие отсутствует	0
Кратковременное	воздействие проявляется на протяжении менее 3-х месяцев	1
Средней продолжительности	воздействие проявляется на протяжении от одного сезона (больше 3 –х месяцев) до 1 года	2
Долговременное	воздействие проявляется в течение продолжительного периода (больше 1 года, но меньше 3-х лет). Обычно охватывает временные рамки строительства объектов проекта	3
Продолжительное	продолжительность воздействия от 3-х до 5 лет. Обычно соответствует выводу объекта на проектную мощность	4
Постоянное	продолжительность воздействия более 5 лет	5

Таблица 8.4.1.3 Градации масштабов интенсивности воздействия на социально - экономическую сферу

Градация интенсивности воздействий	Критерий	
Нулевое	воздействие отсутствует	0
Незначительное	положительные и отрицательные отклонения в социально- экономической сфере соответствуют существовавшим до начала реализации проекта колебаниям изменчивости этого показателя	1
Слабое	положительные и отрицательные отклонения в социально - экономической сфере превышают существующие тенденции в изменении условий проживания в населенных пунктах	2
Умеренное	положительные и отрицательные отклонения в социально- экономической сфере превышают существующие условия среднерайонного уровня	3
Значительное	положительные и отрицательные отклонения в социально- экономической сфере превышают существующие условия среднеобластного уровня	4
Сильное	положительные и отрицательные отклонения в социально - экономической сфере превышают существующие условия среднереспубликанского уровня	5

Интегральная оценка представляет собой 2-х этапный процесс.

На первом этапе, в соответствии с градациями масштабов воздействия, представленными в таблицах 8.4.1.1, 8.4.1.2. и 8.4.1.3, суммируются баллы отдельно отрицательных и отдельно положительных пространственных, временных воздействий и интенсивности воздействий для получения комплексного балла

по каждому выявленному виду воздействия для каждого рассматриваемого компонента. Получается итоговый балл отрицательных или положительных воздействий.

На втором этапе для каждого рассматриваемого компонента определяется интегрированный балл посредством суммирования итоговых отрицательных или положительных воздействий (таблица 8.4.1.4).

Таблица 8.4.1.4 Определение интегрированного воздействия на социально-экономическую сферу

Итоговый балл	Итоговое воздействие		
от +1 до +5	Низкое положительное воздействие		
от +6 до +10	Среднее положительное воздействие		
от +11 до +15	Высокое положительное воздействие		
0	Воздействие отсутствует		
от −1 до -5	Низкое отрицательное воздействие		
от -6 до -10	Среднее отрицательное воздействие		
от -11 до -15	Высокое отрицательное воздействие		

Необходимо отметить, что использование баллов не нацелено на представление конкретной величины, связанной с воздействием. Система балльной оценки разработана с целью обеспечения инструментария для облегчения дифференциации воздействий по их ожидаемым последствиям. Впоследствии анализ воздействий может быть переведен с использованием вышеприведенного подхода на качественный уровень, позволяющий осуществлять сравнение широкого диапазона разнородных типов воздействия для разных проектов и производств и/или для оценки альтернативных вариантов размещения объектов.

8.4.2 Оценка воздействия на социальную среду

Воздействие реализации проектный решений на отдельные компоненты социальноэкономической сферы сведены в таблицу 8.4.2.1.

Таблица 8.4.2.1 Основные воздействия на социально-экономическую сферу при реализации проекта

таблица бг.2.1 беновные возденетвия на социально экономи тескую	эферу при решинзации проекта		
Тип воздействия при реализации проекта	Компонент социально-экономической среды		
Стимуляция экономической активности, развитие конкуренции,	Экономика		
создание новых видов производств			
Сохранение старых и создание новых рабочих мест	Трудовая занятость		
Улучшение медицинского обслуживания, повышение уровня жизни	Здоровье населения		
Стимуляция научно-прикладных разработок и исследований, рост потребности в квалифицированных кадрах	Образование и научная сфера		
Улучшение демографической ситуации в связи с ростом уровня жизни	Демографическая ситуация		
Повышение доходов населения в связи со стабильной высокооплачиваемой работой	Доходы населения		
Материальная поддержка культурных мероприятий, сохранение исторических памятников	Культурная среда		
Повышение уровня инфляции за счет удорожания земли,	Инфляция		
жилья, услуг			

Интегральная оценка воздействия на социально-экономические аспекты реализации проекта приведена в таблице 8.4.2.2. Негативное воздействие реализации проекта может быть оказано при изменении условий землепользования на территории и создания дополнительной антропогенной нагрузки.

Положительное воздействие на социально-экономические условия на территории будет заключаться в следующем:

- увеличение экономического и промышленного потенциала региона;
- увеличение налоговых поступлений в местный бюджет;
- создание новых рабочих мест. Это является особенно значимым в связи с тем, что из-за отсутствия работы происходит отток молодежи с территории; в случае же обеспечения работой, молодые люди будут возвращаться, что положительно повлияет на развитие ближ
- айших населенных пунктов;

- использование казахстанских материалов и оборудования;
- увеличение доходов населения;
- увеличение покупательской способности населения;
- увеличение уровня и качества жизни населения в рассматриваемых районах, развитие инфраструктуры и социальной сферы;
- улучшение инвестиционной привлекательности территории.

С точки зрения воздействия на социально-экономические условия района можно констатировать, что нежелательная дополнительная нагрузка на социально-бытовую инфраструктуру населенных пунктов района будет отсутствовать.

С точки зрения увеличения опасности техногенного воздействия на условия проживания местного населения, проведенный анализ прямого и опосредованного техногенного воздействия, позволяют говорить о том, что реализация проектных решений не приведет к значимому для здоровья населения загрязнению природной среды. Влияние проектируемых работ на социально-экономическую среду оценивается как продолжительное положительное воздействие, согласно интегральной оценки равной 51, и будет оказываться как на территории размещения объекта, так и на территории области.

Трудовая занятость населения

Наиболее явным положительным воздействием при реализации проекта является добавление еще некоторого количества рабочих мест в данном районе. Для проведения работ будут привлечены дополнительные люди из числа местного населения. Увеличение количества рабочих мест и сопутствующее этому повышение личных доходов персонала, занятого в деятельности предприятия, будут неизбежно сопровождаться мероприятиями по улучшению социально-бытовых условий проживания, активизацией сферы обслуживания Факторы положительного воздействия на занятость населения сильнее, чем отрицательного. Ожидается, что в сфере трудовой занятости с учетом реализации разработанных мероприятий (таблица 8.4.2.2.) уровень воздействия будет иметь среднее положительное воздействие.

Таблица 8.4.2.2 Определение интегрального уровня воздействия покомпонентное на период реализации проектных решений на социальную сферу

		понент социально-экономич	еской среды. прусовал		
	Положительное воздействие	-	11-	Отрицательное воздейс	
	Рост занятости		Неоправданные надежды на получение работы		
—	Баллы	14		Баллы	14
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постоянное (+5)	Незначительное (+1)	Точечное(-1)	Кратковременное(-1)	Незначительное(-1)
	Сумма = $(+2)+(+5)+(+1)=+8$			Сумма = (-1)+(-1)+(-	1)= - 3
			ka: (+8) + (-3) = (+5)		
		,	пельное воздействие		
		ент социально-экономической с	реды: Доходы и уровень		
	Положительное воздействие	-		Отрицательное возде	
	Рост благосостояния		He	еоправданные надежды на п	олучение дохода
	Баллы			Баллы	
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постояннное (+5)	Незначительное (+1)	Точечное(-1)	Кратковременное(-1)	Незначительное(-1)
	Сумма = $(+2)+(+5)+(+1)=+8$				
			ка: (+8) + (-3) = (+5)		
			пельное воздействие		
		Компонент социально-экономи	ческой среды: Здоровье н	аселения	
	Положительное воздействие -			Отрицательное воздейс	
Повы	ишение качества жизни персс	нала		Рост заболеваемос	cmu
	Баллы			Баллы	
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постояннное (+5)	Незначительное (+1)	Точечное(-1)	Кратковременное(-1)	Незначительное(-1)
	Сумма = $(+2)+(+5)+(+1)=+8$	1			
		Итоговая оцен	ka: (+8) + (-3) = (+5)		
		Среднее положит	пельное воздействие		
	Ком	понент социально-экономичес	кой среды: Демографичес	кая ситуация	
	Положительное воздействие	_		Отрицательное воздейс	ствие –
	Повышение рождаемости			Повышение смертн	ости
	Баллы			Баллы	
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постояннное (+5)	Незначительное (+1)	Местное(-3)	Кратковременное(-1)	Незначительное(-1)
, ,	Сумма = $(+2)+(+5)+(+1)=+8$	` '	, ,	, , ,	` '
			ка: (+8) + (-3) = (+5)		
			пельное воздействие		
	Компонент со	, циально-экономической среды		техническая сфера	
	Положительное воздействие -		1	Отрицательное воздейс	ствие –
	пие образования, науки и техн		Неоправданные надежды на развитие науки		
Баллы			Баллы		
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постояннное (+5)	Незначительное (+1)	Нулевое(0)	Нулевое(0)	Нулевое (0)
\ /	`		1 1-1	2 \-1	1
	Сумма = $(+2)+(+5)+(+1)=+8$	i			
		Итоговая оцен	ка: (+8) + (0) = (+9)		
			пельное воздействие		
	Компонент сол	иально-экономической среды:		роектной деятельности	
		• • •	утренней миграции		

Положительное воздействие – Приток работоспособного населения			Отрицательное воздействие — Отток работоспособного населения		
Баллы			Баллы		
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постояннное (+5)	Незначительное (+1)	Точечное(-1)	Кратковременное(-1)	Незначительное(-1)
	Сумма = $(+2)+(+5)+(+1)=+$	8			
		Итоговая оцен	ка: (+8) + (-3) = (+5)		
			тельное воздействие		
	К	омпонент социально-экономиче	еской среды: Рекреационн	ые ресурсы	
	Положительное воздействи	e –		Отрицательное воздейс	твие –
Удовлетв	орения потребностей насел	ения в отдыхе		Неоправданные надежды	на отдых
	Баллы		Баллы		
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Локальное(+2)	Постояннное (+5)	Незначительное (+1)	Точечное(-1)	Кратковременное(-1)	Незначительное(-1)
	Сумма = $(+2)+(+5)+(+1)=+$	8			
		Итоговая оцен	ка: (+8) + (-3) = (+5)		
		Среднее положиі	тельное воздействие		
	Комі	тонент социально-экономическо	ой среды: Памятники истор	оии и культуры	
	Положительное воздействи	e –	Отрицательное воздействие –		
	Рост занятости		Неоправданные надежды на получение работы		
	Баллы		Баллы		
Пространственный	Временной	Интенсивность	Пространственный	Временной	Интенсивность
Нулевое(0)	Нулевое(0)	Нулевое (0)	Нулевое(0)	Нулевое(0)	Нулевое (0)
	Сумма = $(0)+(0)+(0)=0$		Cумма = $(0)+(0)+(0)=0$		
		Итоговая оце	енка: (0) + (0) = (0)		
		Воздействи	е отсутствует		

Доходы и уровень жизни населения

Уровень жизни населения складывается из целого ряда показателей. Это уровень доходов населения, величина прожиточного минимума, покупательная способность заработной платы. Сохраняющаяся значительная дифференциация в заработной плате работников различных отраслей экономики продолжает оказывать большое влияние на уровень жизни населения разных групп.

С учетом мероприятий по снижению отрицательных и усилению положительных воздействий (таблица 8.4.2.2.) общее воздействие предприятия на доходы и уровень жизни населения будет иметь среднее положительное воздействие.

Оценка воздействия на здоровье населения

Современное состояние здоровья населения в регионе определяют следующие факторы: демографическая ситуация, состояние здравоохранения, уровень заболеваемости населения, санитарно-эпидемиологическая и эпидемиологическая обстановка в областях.

Предполагается прямое и косвенное положительное воздействие на здоровье населения. К прямому положительному воздействию следует отнести повышение качества жизни персонала, занятого как при проектировании, так и непосредственно при строительстве проектируемых объектов. Создание новых рабочих мест и увеличение личных доходов персонала будут сопровождаться повышением благосостояния и улучшения условий проживания данной группы граждан в Прикаспийском регионе.

Рост доходов позволит повысить их возможности по самостоятельному улучшению условий жизни. За счет роста доходов повысится и покупательная способность, соответственно улучшится состояние здоровья людей, непосредственно занятых в деятельности предприятия.

Косвенным положительным воздействием является возможность покупать дорогие эффективные лекарства, получать необходимую платную медицинскую помощь, как на местном, так и на региональном и республиканском уровнях.

Предполагается, что на здоровье персонала, непосредственно занятого при проведении работ по данному проекту и членов их семей будет оказано Среднее положительное воздействие.

Потенциальными локальными, кратковременными, источниками отрицательного воздействия на социальную сферу на этапе строительства могут быть:

- **»** выбросы вредных веществ в атмосферу от работающей техники;
- роявления физических факторов (электромагнитное излучение, шум, вибрация);
- **р** образование, транспортировка, утилизация/захоронение отходов производства и потребления.

Демографическая ситуация

вие.

Демографическая ситуация - это лакмусовая бумажка, практически моментально реагирующая на состояние государства - общественно-политическое, социальное, духовно-нравственное.

Повышение уровня жизни за счет увеличения доходов населения скажется на улучшении демографической ситуации, стабильности жизни, что поможет снизить отток местного населения из региона.

Предполагается, что на семьи персонала, непосредственно занятого на строительстве проектируемых объектов, будет оказано среднее положительное Воздейст

Образование и научно-техническая сфера

Наличие спроса в квалифицированном персонале будет стимулировать развитие образования, науки и технологий в этой сфере, применение научно-прикладных разработок и научных исследований в региональных и областных научных центрах.

В связи с потребностями в специалистах требуется усовершенствовать:

- ускоренную профессиональную подготовку;
- начальное профессиональное образование;
- > среднее профессиональное образование;
- **высшее** и послевузовское профессиональное образование.

В целом будет оказываться высокое положительное воздействие на развитие образования и научно-технической сферы в регионе.

Отношение населения к проектной деятельности и процессы внутренней миграции

Реализация проектных решений повлечет за собой немало положительных аспектов для населения. Это и создание новых рабочих мест, повышение доходов, реализация социальных проектов. В рамках планирования работы по привлечению местного населения к основным видам деятельности намечается максимизация занятости, подбор местных поставщиков.

Повышение уровня жизни поможет снизить отток местного населения из региона. Общее воздействие от проектной деятельности будет иметь среднее положительное воздействие.

Рекреационные ресурсы

В природно-ландшафтном плане территория представляет собой однообразную слегка волнистую равнину с типичной пустынной растительностью. Особого интереса для посещения людьми, не связанными с производственной деятельностью, она не представляет. На ней также отсутствуют памятники истории и культуры, культовые сооружения, которые могут традиционно посещаться местным населением.

Рост доходов позволит повысить возможность по самостоятельному улучшению условий жизни. За счет роста доходов повысится и покупательная способность, соответственно появится возможность для восстановления израсходованных в процессе жизнедеятельности физических и духовных сил человека, повышение его здоровья и работоспособности, за счет туризма. Что в целом окажет средне положительное воздействие.

Памятники истории и культуры

Территория данного региона в силу определенных физико-географических и исторических условий является местом сохранения значительного количества весьма интересных архитектурных и археологических памятников. Памятники истории и культуры охранятюся государством. Ответственность за их содержание возлагается на местные организации, учрездения и хозяйства, в ведении или на территории, которых они находятся.

Мангистауский государственный историко-культурный заповедник был создан в 1980 году с целью сохранения уникальных исторических, архитектурных памятников и природных ландшафтов Мангистауской области, расположенной в западном Казахстане на берегу Каспийского моря.

На сегодняшний день заповедником исследованы свыше 14 000 объектов культурного и исторического значения. Научная работа ведется постоянно, поэтому ежегодно выявляются и принимаются на учет вновь обнаруженные и изученные памятники. Реестры памятников истории, археологии и архитектуры каждый год пополняются новыми объектами.

Экономическое развитие территории

Строительство проектируемых объектов будет напрямую положительно влиять на экономическое развитие Мангистауской области, а косвенно на развитие региональной и республ иканской экономики.

К наиболее значимым положительным воздействиям в развитии экономики относится:

- развитие наземной транспортной системы;
- решение вопросов безработицы в регионе через создание новых рабочих мест;
- рямой и непрямой рост доходов;
- развитие социальной инфраструктуры,
- **р**ост инвестиций в экономику региона и развитие международной активности, которые будут проявляться на всех стадиях реализации проекта;

Строительство проектируемых объектов будет оказывать положительное влияние на следующие позиции развития экономической деятельности:

- развитие производственной инфраструктуры;
- развитие транспортной инфраструктуры;
- развитие социальной инфраструктуры.

Выполнение этапов операций будет благотворно влиять на развитие сектора консалтинговых, производственных и транспортных услуг. Возросшая деловая активность в производственной отрасли и в секторах обслуживания приведёт к увеличению доходов и налогов, выплачиваемых в госбюджет. Дополнительные доходы будут использоваться для развития социальной и транспортной инфраструктуры области, что приведет к экономическому развитию региона.

Максимально будут использоваться местные товары и услуги, найму на работу местных подрядчиков, привлекаются надежные и конкурентоспособные обслуживающие компании на базе казахстанских предприятий, что будет способствовать развитию экономики региона и республиканской экономики.

Отрицательную роль может сыграть инфляция. Рабочие места, повышение доходов части населения, приток приезжих, занятых в рамках деятельности, на территории работ являются прямым воздействием на уровень роста инфляции в регионе за счет увеличения цен на промышленные, продовольственные товары народного потребления. Последствия инфляции могут проявиться в виде социального расслоения и имущественного неравенства.

Транспорт

Осуществление проектных решений предполагает активное использование автомобильного транспорта. Поэтому оказывается косвенное положительное воздействие на развитие транспортной инфраструктуры. Значительный объем грузоперевозок осуществляется автомобильным транспортом.

В связи с этим принятые проектные решения, включающиеся в себя строительство новых автодорог, впоследствии приведет к увеличению количества перевозимых грузов, сокращению времени перевозок, увеличению парка автотранспорта.

К возможным потенциальным отрицательным воздействиям можно отнести увеличение потока транспорта и соответственно количества дорожно-транспортных происшествий (ДТП). Работы с увеличением транспортных перевозок проводятся вне зон проживания местного населения, что исключает возникновение ДТП.

С учетом реализации мероприятий по снижению отрицательного и усилению положительного воздействия в целом, работы по данному проекту на автомобильную транспортную сеть имеют низкое положительное воздействие.

Землепользование

Ландшафтно-климатические условия и месторасположение территории исключают ее рентабельное использование, для каких- либо хозяйственных целей, кроме добычи сырья, то есть реализации прямых целей производства. Реализация проектных решений позволяет в какой-то мере улучшить содержание окрестностей территории без свалок и накопления мусора и отходов..

Работы будут оказывать среднее положительное воздействие на территории административных районов Мунайлинского района.

Сельское хозяйство

В природно-ландшафтном плане территория представляет собой однообразную слегка волнистую равнину с типичной пустынной растительностью. Растениеводство, как отрасль, в Мангистауской области практически отсутствует. Традиционным и основным в настоящее время занятием населения Мангистауского района является отгонное животноводство, в развитии которого наблюдается определенный рост.

Однако, приуроченность территории строительства к пустынной зоне с малопродуктивными растительными сообществами, значительную роль среди которых играют полынно-солянковые ассоциации, резко снижает качество пастбищ.

В районе участка работ естественных источников водоснабжения нет. Обеспечение производственных объектов водой осуществляется за счет привозной воды. Отсутствие источников питьевой воды также сдерживает развитие животноводства.

Постоянных объектов животноводства на территории участков или в ближайших окрестностях нет. В поселке сосредоточено почти все население ближайших окрестностей, занятое преимущественно в социально-бытовой сфере.

Интересы жителей мало связаны с производственной деятельностью, В целом, территория участка, является легкодоступной, ее посещение людьми, связанными непосредственно с работой, не ограничено природными условиями.

Производственная деятельность никак не отражается на интересах людей, проживающих в окрестностях в области их права на хозяйственную деятельность или отдых. Реализация проектных решений предположительно окажет среднее положительнон воздействие на развитие сельского хозяйства. За счет того, что земли малопригодны для использования в сельском хозяйстве более рентабельное их использование для реализации проектный решенийб. Территория строительства расположена в пустынной зоне с малопродуктивными растительными сообществами, что резко снижает качество пастбищ.

Внешнеэкономическая деятельность

Увеличение объемов производственных ресурсов и темпов экономического роста, связанных с проведением работ, будет определяться объемом вложенных инвестиций. Приток инвестиций и налоговых поступлений будет способствовать развитию как социальной, так и экономической сфер в регионе.

В целом, будет положительное влияние на степень развития региона, его привлекательность для инвестиций. Это способствует увеличению поступлений денежных средств в областные бюджеты, развитию системы пенсионного, социального обеспечения, образования, здравоохранения.

Мероприятий для снижения отрицательного воздействия и усиления положительного воздействия на экономическую среду приводятся в таблице 8.4.2.3.

Таблица 8.4.2.3

		Мероприятия по смягчению воздействий	Остаточное воздействие (характеристика)	Уровень остаточного воздействия	
Воздействие	Характеристика			Отрицательно е	Высокое
йст					Среднее
де	воздействия				Низкое
303		возденетвии	(характеристика)	Положительно	Высокое
					Среднее
				e	Низкое
Экономиче ское ра звитие территори и	Обеспечение занятости населения, повышение доходов, развитие транспортной инфраструктуры, рост инвестиций участие в социальных, культурных программах развития региона	Разработка и реализация государственной антиинфляционной программы	Последствия инфляции могут проявиться в виде социального расслоения и имущественного неравенства	положительно е воздействие	Низкое
Промышле нное рыболовст во	-	-	Воздействие отсутствует	-	-
Коммерчес кое судоходств о	-	-	Воздействие отсутствует	-	-

	I				
Назем ный транспорт	Увеличение грузооборота будет способствовать реконструкции существующей и строительству новой автотранспортной сети.	Предусматривается разработка плана управления транспортными средствами, обеспечивающими безопасность движения и предотвращения ДТП.	С учетом соблюдений правил дорожного движения, приведет к улучшению автотранспортно й сети на территории месторождения.	положительно е воздействие	Среднее
Землеполь зование	Использование отведенной территории для создания производства. Земли малопригодны для использования в сельскохозяйственном обороте.	Нормальная работа в пределах предельно- допустимых норм, в соответствии с нормативными документами	Рентабельное использование земель	положительно е воздействие	Среднее
Сельское хозяйство	-	Сокращение предполагаемых площадей для выпаса скота. Постоянных объектов животноводства на территории участков или в ближайших окрестностях нет	Использование пустынных земель для добычи сырья	отрицательное воздействие	Среднее
Внешнеэко номическа я деятельнос ть	Капиталовложения в отрасли связанные с деятельностью предприятия и в социальную сферу	-	Развитие экономики, улучшение соцобеспечения	положительно е воздействие	Высокое

Работы, связанные с реализацие проектных решении приводят к набору как положительных, так и отрицательных воздействий на социально-экономическую среду, что является неизбежным при реализации любого проекта.

Резюмируя, можно утверждать, что при производстве работ факторы положительного воздействия на социально-экономическую сферу превышают отрицательные. С учетом реализации мероприятий по снижению отрицательных и усилению положительных воздействий общее возможное воздействие на социально-экономическую сферу будет положительным воздействием умеренного уровня.

9 ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ.

Главная задача в соблюдении безопасности работ заключается в проведении операции таким образом, чтобы заранее предупредить риск с определением критических ошибок, снижением вероятности ошибок при проектировании работ.

Оценка вероятности возникновения аварийных ситуаций используется для определения или оценки следующих явлений:

- потенциальные события или опасности, которые могут привести к аварийной ситуации, а также к вероятным катастрофическим воздействиям на окружающую среду при осуществлении конкретного проекта;
 - вероятность и возможность наступления такого события;
- потенциальная величина или масштаб экологических последствий, которые могут быть причинены в случае наступления такого события.

При строительстве могут возникнуть различные осложнения и аварии. Борьба с ними требует больших затрат материальных и трудовых ресурсов, ведет к потере времени, что снижает производительность, повышает затраты на строительство, вызывает увеличение продолжительности простоев и ремонтных работ. Поэтому знание причин аварий, своевременная разработка мероприятий по их предупреждению, быстрая ликвидация возникших осложнений приобретают большое практическое значение.

Потенциальные опасности, связанные с риском проведения оценочных работ, могут возникнуть в результате воздействия, как природных факторов, так и антропогенных.

Природные факторы воздействия

Под природными факторами понимаются разрушительные явления, вызванные природноклиматическими причинами, которые не контролируются человеком. Иными словами, при возникновении природной чрезвычайной ситуации возникает опасность саморазрушения окружающей среды. К ним относятся:

- землетрясения;
- ураганные ветры;
- повышенные атмосферные осадки.

Сейсмическая активность. Согласно данным сейсмического микрорайонирования террит ория планируемых работ входит в сейсмически малоактивную зону.

Характер воздействия: одномоментный. Вероятность возникновения землетрясения с силой 7-9 баллов, которое может привести к значительным разрушениям, крайне низкая.

Неблагоприятные метеоусловия. В результате неблагоприятных метеоусловий, таких как сильные ураганные ветры, повышенные атмосферные осадки, могут произойти частичные повреждения оборудования, кабельных линий силовых приводов и дизельных генераторов на территории промплощадки.

Анализ природно-климатических данных показал, что для летнего периода работ характерна вероятность возникновения пожароопасных ситуаций, в связи с засушливым климатом.

Как показывает анализ подобных ситуаций, причиной возникновения пожаров является не только природные факторы, но и неосторожное обращение персонала с огнем и нарушение правил техники безопасности.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Антропогенные факторы

Под антропогенными факторами понимаются быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации.

К антропогенным факторам относятся факторы производственной среды и трудового процесса.

Возможные техногенные аварии при проведении работ можно разделить на следующие категории:

- аварийные ситуации с автотранспортной техникой;
- аварии и пожары на хранилищах горюче-смазочных материалов (ГСМ).

Аварийные ситуации с автотранспортной техникой

Выезд транспорта в неисправном виде, или опрокидывание транспорта может привести к возникновению аварий и как следствие к утечке топлива. Утечка топлива может привести к загрязнению почвенно-растительного покрова, поверхностных и подземных вод горюче смазочными материалами. Площадь такого загрязнения небольшая.

Расчет ареола возможного загрязнения почвенно-растительного покрова. Рассмотрим модель возникновения следующей ситуации: в результате аварии произошла утечка топлива из бака автомобиля. Ориентировочно заправка автотранспорта составляет 50 литров. Ориентировочная площадь загрязнения составит 4 м². В этом случае ориентировочная концентрация нефтеорганики, попавшая в окружающую среду, составит 0.04 т на 4 м² или 0.01 T/м².

Анализ данной ситуации показывает, что при небольших разливах ГСМ произойдет только стимуляция жизнедеятельности микроорганизмов почвы, необратимого процесса нарушения морфологической структуры почвенного покрова не происходит.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Загрязнения подземных и поверхностных вод. При аварийных ситуациях - утечке топлива - возможно попадание горюче-смазочных материалов через почвогрунты в подземные воды. Охрана подземных вод - важное звено в комплексе мероприятий, имеющих целью предотвращение загрязнений, ликвидацию последствий. Нефтепродукты в водоносном горизонте обладают значительной подвижностью, в связи с этим площадь загрязнения водоносного горизонта больше, чем площадь почвенного загрязнения. Ориентировочные расчеты просачивания нефтепродуктов показали, что загрязнения с поверхности попадут в водоносный горизонт, расчетная глубина просачивания нефти период реализации проекта составит около 0,68 м.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Возникновение пожара. В результате пролитого топлива возможно возникновение пожара. Вероятность возникновения этой ситуации пренебрежимо мала в силу принятых проектных решений по организации производства и технике безопасности.

Аварии и пожары на временных хранилищах ГСМ

Для обеспечения работ по строительству объекта на промплощадке оборудуются временные хранилища горюче-смазочных материалов (ГСМ). В результате нарушения условий хранения и перекачки топлива возможно возникновение пожаров в емкости хранения топлива, разливов топлива.

Аварии на временных хранилищах ГСМ являются следствием как природных, так и антропогенных факторов. По характеру аварийные ситуации на временных хранилищах ГСМ близки к аварийным ситуациям с автотранспортной техникой, однако масштабы последствий больше.

Наибольшую опасность для людей и сооружений представляет механическое действие детонационной и воздушной ударной волны. Однако при образовании огненного шара серьезную опасность для людей представляет интенсивное тепловое воздействие. Определение радиуса

огненного облака основано на аппроксимации данных обработки параметров прошлых аварий с учетом закона подобия при взрывах. Расчет приведен на максимальный объем топлива.

Радиус распространения огненного облака определяются по формуле:

 $R = A * 3\sqrt{Q}$, $\epsilon \partial e$

A=30 м/т - константа;

Q - масса топлива, хранящегося на складе ГСМ;

Q = 150 T;

$$R = A * 3\sqrt{Q} = 30 \text{m/T} * 3\sqrt{150} = 30 * 5,3 = 159 \text{ m} \sim 160 \text{ m}$$

Радиус распространения огненного облака составит 160 м.

Исходя из анализа ситуации целесообразно размещать склад ГСМ на расстоянии не ближе 200 м от операторской и вагончиков для отдыха персонала.

Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная. В случае возникновения такой ситуации в проекте предусмотрены экстренные меры по выявлению и устранению пожаров на территории строительства.

Планы ликвидации аварий (ПЛА)

План ликвидации аварий (ПЛА) разрабатываются в соответствии с Инструкцией по разработке плана ликвидации аварий и проведению учебных тревог и противоаварийных тренировок на опасных производственных объектах разработана в соответствии с подпунктом 130) пункта 16 Положения о Министерстве по чрезвычайным ситуациям Республики Казахстан, утвержденного постановлением Правительства Республики Казахстан от 23 октября 2020 года № 701 и детализирует разработку плана ликвидации аварий и проведение учебных тревог и противоаварийных тренировок на опасных производственных объектах.

Планы по локализации и ликвидации последствий аварий на опасных производственных объектах разрабатываются в целях обеспечения готовности организаций, эксплуатирующих опасные производственные объекты, к действиям по локализации и ликвидации последствий аварий на таких объектах.

ПЛА разрабатывается с целью:

- планирования действий персонала ОПО и специализированных служб на различных уровнях развития ситуаций;
- определения готовности организации к локализации и ликвидации аварий на ОПО;
- **>** выявления достаточности принятых мер по предупреждению аварий на объекте;
- разработки мероприятий по локализации и ликвидации последствий аварий на ОПО.

При разработке ПЛА выполняется анализ опасности аварий для данного опасного производственного объекта.

План ликвидации аварий представляет собой мероприятия, представляющие собой план действия и необходимые меры для спасения людей и ликвидации аварий в начальной стадии их возникновения. План ликвидации аварии действует с момента извещения о происшедшей аварии до полн

ого вывода всех людей в безопасные места и началаорганизации работ по ликвидации последствий аварии. Все необходимые материальные и технически средства для осуществления мероприятий по спасению людей и ликвидации аварий должны быть в наличии, в исправном состоянии и в необходимом количестве.

ПЛА составляется под руководством технического руководителя производственного объекта, согласовывается с руководителем аварийной спасательной службы, обслуживающей данный опасный производственный объект, и утверждается руководителем организации.

ПЛА включает в себя оперативную часть, распределение обязанностей между персоналом, участвующим в ликвидации аварий, и порядок его действия, а также список должностных лиц и учреждений, которые немедленно извещаются об авариях.

В целях обеспечения готовности к действиям по локализации и ликвидации последствий

аварий организации, имеющие опасные производственные объекты, обязаны:

- 1) планировать и осуществлять мероприятия по локализации и ликвидации последствий аварий на опасных производственных объектах;
- 2) привлекать к профилактическим работам по предупреждению аварий на опасных производственных объектах, локализации и ликвидации их последствий военизированные аварийно-спасательные службы и формирования;
- 3) иметь резервы материальных и финансовых ресурсов для локализации и ликвидации последствий аварий;
- 4) обучать работников методам защиты и действиям в случае аварии на опасных производственных объектах;
- 5) создавать системы наблюдения, оповещения, связи и поддержки действий в случае аварии

на опасных производственных объектах и обеспечивать их устойчивое функционирование.

Приостановление работ в случае возникновения непосредственной угрозы жизни работников, выведение людей в безопасное место и осуществлениемероприятий, необходимых для выявления опасности При всех возможных авариях по причинам, указанным ниже, обслуживающий персонал немедленно извещает диспетчера, принимает меры по тушению пожара, локализации аварии или чрезвычайной ситуации.

Диспетчер оповещает руководителей предприятия. Затем оповещает командиров добровольных спасательных и противопожарных команд, по согласованию с руководителем по ликвидации последствий аварии оповещает ППЧ.

Для тушения пожара используется резервуар с водой, мотопомпа. Перечень разработанных мер по уменьшению риска аварий, инцидентов- обучение и проверка знаний персонала безопасных приемов работы;

- ежегодное изучение персоналом, действий по предупреждению и ликвидации возможных аварий;
- периодическое проведение, в соответствии с утвержденным графиком предприятия, проверок состояния безопасности объектов лицами технического надзора;
- периодическое обучение и инструктаж рабочих и ИТР правилам пользования первичными средствами пожаротушения, и средствами индивидуальной защиты;
 - соблюдение правил промышленной безопасности:
 - соблюдение проектных решений;
 - проведение учебных тревог и противоаварийных тренировок;
 - планово-предупредительные, капитальные ремонты оборудования;
 - ежемесячный контроль исправности средств пожаротушения;
 - обеспечение СИЗ;
 - постоянный контроль за проектным ведением работ.

Планы ликвидации последствий инцидентов, аварий, природных стихийных бедствий, предотвращения и минимизации дальнейших негативных последствий для окружающей среды, жизни, здоровья и деятельности человека разрабатываются отдельным документом и согласуются в государственных органах.

Анализ возможных аварийных ситуаций

Под аварией понимают существенные отклонения от нормативно-проектных или допустимых эксплуатационных условий производственно-хозяйственной деятельности по причинам, связанным с действиями человека или техническими средствами, а также в результате любых природных явлений (наводнение, землетрясение, оползни, ураганы и другие стихийные бедствия).

Возникающие на производстве аварии и риск их возникновения могут быть определены разными методами. Один из самых распространенных — построение дерева ошибок, т.е. логической структуры, описывающей причинно-следственную связь при взаимодействии

основного технологического оборудования, человека и условий окружающей среды — всех элементов, способных вызвать и вызывающие отказы на производстве.

Причины отказов могут происходить по причине:

- риродно-климатических условий, температуры окружающей среды;
- низкой квалификации обслуживающего персонала;
- нарушения трудовой и производственной дисциплины.

Степень риска производства зависит как от природных, так и техногенных факторов. Естественные факторы, представляющие угрозу проектируемым работам, характеризуются очень низкими вероятностями. При возникновении данных факторов строительные работы прекращаются.

Наибольшее число аварий возникает по субъективным причинам, т,е, по вине исполнителя трудового процесса. Поэтому при разработке мер профилактики и борьбы с авариями следует особо обращать внимание на строгое соблюдение требований и положений, излагаемых в производственных инструкциях.

Таким образом, при строгом соблюдении проектных решений и правил техники

безопасности, применении современных технологий и трудовой дисциплины, при строительно-монтажных работах, позволяет судить о низкой степени возникновения аварийных ситуаций.

Оценки вероятного возникновения аварийной ситуации позволяют прогнозировать негативное воздействие аварий на компоненты окружающей среды. Такое воздействие может быть оказано на атмосферный воздух, почвенно-растительные ресурсы.

Мероприятия по предотвращению аварийных ситуаций

С целью снижения риска аварийных ситуаций в период строительных работ, на основании действующего в РК законодательства руководство предприятия должно:

- разработать план действий при возникновении аварийных ситуаций;
- осуществлять обучение персонала действиям при возникновении аварийных ситуаций, обеспечить пострадавших экстренной медицинской помощью;
- разрабатывать рекомендации по комплексу мероприятий, направленных на предупреждение возникновения аварийных ситуаций адекватно изменениям, происходящим во времени, и внедрять рекомендуемый комплекс мероприятий;
- роводить после ликвидации аварийных ситуаций мероприятия по восстановлению окружающей среды.
- разрания персонал, обслуживающий объект, должен:
- > соблюдать меры безопасности в повседневной трудовой деятельности;
- не допускать нарушений трудовой и технологической дисциплины;
- энать сигналы оповещения; знать установленные правила поведения и порядок действий при угрозе возникновения аварийных ситуаций;.

10 ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДА ЭКСПЛУАТАЦИИ ОБЪЕКТА MEP ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ выявленных СУЩЕСТВЕННЫХ воздействий НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИСЛЕ ПРЕДЛАГАЕМЫХ МЕРОПРИЯТИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ, А ТАКЖЕ ПРИ НАЛИЧИИ **НЕОПРЕДЕЛЕННОСТИ** ОЦЕНКЕ возможных СУЩЕСТВЕННЫХ В ВОЗДЕЙСТВИЙ – ПРЕДПОЛАГАЕМЫХ МЕР ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ

В Отчете предумотрены мероприятия по смягчению воздействий направленных на снижение потенциальных отрицательных воздействий или усиления положительных воздействий в интересах как затрагиваемого проектом населения, так и региона в целом.

Во всех случаях, когда выявлены значительные неблагоприятные воздействия, основная цель заключается в поиске мер по их снижению. Для тех случаев, когда подобрать подходящие мероприятия не представляется возможным, предлагаются варианты мероприятий, направленных на компенсации негативных последствий.

Кроме того, в рамках получения ЭРВ на период эксплуатации будут разрабатываться мероприятия в соответствии с Приложением 4 к Кодексу РК

По атмосферному воздуху:

- проведение технического осмотра и профилактических работ технологического оборудования, механизмов и автотранспорта;
- ввод в эксплуатацию, ремонт и реконструкция пылегазоочистных установок, предназначенных для улавливания, обезвреживания (утилизации) вредных веществ, выделяющихся в атмосферу от технологического оборудования;
- повышение эффективности работы существующих пылегазоулавливающих установок (включая их модернизацию, реконструкцию) и их оснащение контрольно-измерительными приборами с внедрением систем автоматического управления;
- соблюдение нормативов допустимых выбросов.
- выполнение мероприятий по предотвращению и снижению выбросов загрязняющих веществ от стационарных и передвижных источников.

По охране водных объектов, по поверхностным и подземным водам:

- организация системы сбора и хранения отходов производства;
- контроль герметичности емкостей, во избежание утечек сточных вод.
- не допускать сброс в водные объекты

По охране земель:

- должны приниматься меры, исключающие загрязнение плодородного слоя почвы, строительным мусором, нефтепродуктами и другими веществами, ухудшающими плодородие почв:

По охране животного и растительного мира:

- уменьшение или предотвращение механического нарушения почвенно-растительного покрова, путем обязательного соблюдения границ при проведении строительно-монтажных работ и организацией контроля за использованием земельных ресурсов;
- исключение проливов ΓCM , своевременная их ликвидация; санитарная очистка территории строительства.

Обращение с отходами:

- реконструкция, модернизация оборудования и технологических процессов, направленных на минимизацию объемов образования и размещения отходов;
- своевременная организация системы сбора, транспортировки и утилизации отходов

Радиационная, биологическая и химическая безопасность:

- проведение радиоэкологических обследований территорий производственной базы; *По физическим воздействиям.*

- содержание оборудования в надлежащем порядке, своевременное проведение технического осмотра и ремонта;
- строгое выполнение персоналом существующих на предприятии инструкций;
- обязательное соблюдение правил техники безопасности.

Внедрение систем управления и наилучших безопасных технологий.

- проведение экологических исследований для определения фонового состояния окружающей среды, выявление возможного негативного воздействия промышленной деятельности на экосистемы и разработка программ и планов мероприятий по снижению загрязнения окружающей среды

Программа работ по организации мониторинга за состоянием природной среды

В соответствии со статьями 182, 186 Экологического Кодекса РК, природопользователи обязаны осуществлять производственный экологический контроль.

Производственный мониторинг за состоянием природной среды будет осуществляеться согласно утвержденной программы производственного экологического контроля, разработанной для TOO «Saken 23».

В рамках осуществления производственного мониторинга выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

Операционный мониторинг

Операционный мониторинг (мониторинг производственного процесса) включает в себя наблюдение за параметрами технологического процесса.

Непрерывный визуальный контроль за работой оборудования осуществляется обслуживающим персоналом.

Мониторинг эмиссий

Мониторинг эмиссий включает в себя мониторинг эмиссий выбросов загрязняющих веществ, сбросов загрязняющих веществ и мониторинг отходов производства и потребления.

Мониторинг эмиссий выбросов загрязняющих веществ

На источниках контроль за соблюдением нормативов НДВ и их влиянием на окружающую среду будет осуществляться согласно утвержденной программы производственного экологического контроля.

Контроль на источниках выбросов может проводиться двумя методами:

Расчетным методом (с использованием действующих в РК методик по расчету выбросов);

Прямыми замерами концентраций загрязняющих веществ в атмосферном воздухе на источниках выбросов и на границе санитарно-защитной зоны.

План-график контроля на предприятии за соблюдением нормативов НДВ на источниках выбросов составляется экологическими службами предприятия.

План-график контроля на предприятии за соблюдением нормативов НДВ на источниках выбросов при эксплуатации представлен в таблице раздела 6.1.5 План – график контроля за соблюдением нормативов ПДВ на источнике выбросов

Мониторинг эмиссий сбросов загрязняющих веществ

При технологическом процессе переработки отходов сброс сточных вод отсутствует.

Мониторинг отходов производства и потребления

Отходы, образованные в процессе ведения строительно-монтажных работ будут направлены на временное накопление в контейнерах или площадках, расположенных в специально отведенных местах с последующей передачей специализированной организации.

Мониторинг существующих отходов производства и потребления будет осуществляться

согласно утвержденной программы производственного экологического контроля, разработанной TOO «Saken 23».

Мониторинг воздействий

Проведение мониторинга воздействия включается в программу производственного экологического контроля в тех случаях, когда это необходимо для отслеживания соблюдения требований экологического законодательства Республики Казахстан и нормативов качества окружающей среды либо определено в комплексном экологическом разрешении.

Мониторинг атмосферного воздуха на границе СЗЗ

Мониторинг за состоянием атмосферного воздуха на границе СЗЗ будет осуществляться согласно утвержденной программы производственного экологического контроля, разработанной ТОО «Saken 23».

Мониторинг поверхностных и подземных вод

Производственный мониторинг состояния систем водопотребления и водоотведения предусматривает осуществление наблюдений за источниками воздействия на водные ресурсы рассматриваемого района, а также их рационального использования. Результаты мониторинга позволят своевременно выявить и провести оценку происходящих изменений окружающей среды при осуществлении производственной деятельности.

На территории площадки TOO «Saken 23» планируется только операционный мониторинг, а именно учет потребляемой воды.

Мониторинг почвенного покрова на границе СЗЗ

Мониторинг воздействия за состоянием почв и растительность выделяется в общей системе производственного экологического мониторинга окружающей среды на уровне подсистемы и включает в себя в соответствии с порядком ведения мониторинга:

ведение периодического мониторинга, обеспечивающего организацией стационарных экологических площадок (СЭП), с установленной периодичностью, слежение за изменением состояния почв и растительности;

ведение оперативного мониторинга аварийных, других нештатных ситуаций, вызывающих негативные изменения почвенно-растительного покрова. А также на рекультивированных участках – по мере выявления таких участков.

Операционный мониторинг. Проведение операционного мониторинга диктуется необходимостью постоянного визуального контроля за состоянием нарушенности и загрязненности почвенно-растительного покрова с целью выявления аварийных участков разливов ГСМ, механических нарушений в местах проведения строительных. Выявление таких мест обеспечивается специалистами по охране окружающей среды на основании анализа планов проведения работ, журналов регистрации отказов на предприятии путем визуальных наблюдений.

На выявленных участках, где обнаружены загрязнение и механические нарушения необходимо проведение мероприятий по их очистке и рекультивации. После ликвидации нарушений в границах зоны их влияние разрабатывается схема последующего мониторинга, выбираются репрезентативные площадки для проведения наблюдений за состоянием загрязнения и нарушенности почв. Такие площадки переходят в разряд постоянно действующей сети мониторинга в качестве дополнительных точек наблюдений. В дальнейшем наблюдения на них проводятся по схеме производственного мониторинга на СЭП, в которую могут быть включены дополнительные параметры, определенные спецификой нарушений и загрязнения. Данные наблюдения проводятся на протяжении всего цикла реабилитации территории.

Проведение мониторинговых наблюдений за состоянием почвенного покрова планируется проводить 2 раза в год и будет подробно описано в программе ПЭК, разработанной для предприятия.

Мониторинг флоры и фауны.

Мониторинг растительного покрова и мониторинг почв, как два взаимосвязанных комплекса природной среды проводятся одновременно на стационарных экологических площадках.

Мониторинг растительности должен производиться в комплексе с изучением почвенного покрова. Это даст возможность более детально определить направление процессов природной и антропогенной динамики растительности и выявить негативные тенденции.

Для снижения хоть и незначительного, но негативного влияния на флору и фауну в районе объекта представляется целесообразным разработать и выполнять ряд мероприятий, позволяющих уменьшить негативные воздействия, сопутствующие запланированным работам:

- максимальное уменьшение площадей нарушенного почвенно-растительного слоя;
- ограничение доступа животных к местам сбора производственных и бытовых отходов;
- поддержание в чистоте территорий промплощадок объектов и прилегающих площадей;
- сведение к минимуму передвижения транспортных средств ночью;
- передвижение транспортных средств только по дорогам;
- максимально возможное снижения загрязнения почв химическими веществами;
- исключение случаев браконьерства;
- проведение просветительской работы экологического содержания.

С целью сохранения биоресурсов и своевременного выявления неблагоприятных последствий воздействия на экосистемы рекомендуется проведение периодического мониторинга растительности и животного мира на территории участка.

11 МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ

Меры по сохранению биоразнобразия принимаются, когда выявляются неблагоприятные воздействия и основная цель заключается в поиске мер по снижению этих воздействий..

Стимулирующие мероприятия не следует рассматривать в качестве альтернативы смягчающим или компенсирующим мероприятиям — это мероприятия, выделенные в связи с их способностью обеспечить проекту определенные дополнительные преимущества после того, как реализованы все смягчающие и компенсирующие мероприятия.

По растительному миру.

- перемещение спецтехники и транспорта ограничить специально отведенными дорогами;
- тщательная регламентация проведения работ, связанных с загрязнением рельефа при производстве земляных работ; технической рекультивации;
- установка информационных табличек в местах произрастания редких и исчезающих растений на территории объекта;
- производить информационную кампанию для персонала объекта и населения с целью сохранения редких и исчезающих видов растений.

По животному миру.

- контроль за недопущением разрушения и повреждения гнезд, сбор яиц без разрешения уполномоченного органа;
 - установка информационных табличек в местах гнездования птиц;
- воспитание (информационная кампания) для персонала и населения в духе гуманного и бережного отношения к животным;
- строгое запрещение кормления диких животных персоналом, а также надлежащее хранение отходов, являющихся приманкой для диких животных;
 - соблюдение норм шумового воздействия;
- изоляция источников шума: насыпями, экранизирующими устройствами и заглублениями;
- наличие схем оповещения государственных органов при гибели перелетных птиц, животных и млекопитающих;
- проектные решения по строительству принять с учетом требований РК в области охраны окружающей среды, включая проведение работ по технической рекультивации после окончания работ.
- создание ограждений для предотвращения попадания перелетных птиц на производственные объекты;
 - установка вторичных глушителей выхлопа на спецтехнику и авто транспорт;
- регулярное техническое обслуживание производственного оборудования и его эксплуатация в соответствии со стандартами изготовителей;
 - осуществление жесткого контроля нерегламентированной добычи животных;
 - защита окружающей воздушной среды;
 - защиту поверхностных, подземных вод от техногенного воздействия;
- граждение всех технологических площадок, исключающее случайное попадание на них животных;
 - ограничение перемещения техники специально отведенными дорогами;

Движение автотраспорта осуществлять только по дорогам с небольшой скоростью, с ограничением подачи звукового сигнала.

Санитарно-противоэпидемиологические – обеспечение противоэпидемиологической защиты персонала от особо опасных инфекций.

Основными требованиями по сохранению объектов флоры и фауны является:

- сохранение фрагментов естественных экосистем;
- предотвращение случайной гибели животных и растений;
- создание условий производственной дисциплины, исключающих нарушения законодательства по охране животного и растительного мира со сторны производственного

персонала.

В целях предупреждения нарушения почвенно-растительного покрова и для охраны животного мира при строительстве нижеследующие мероприятия:

- ограничение техногенной деятельности вблизи участков с большим биологическим разнообразием;
- утилизацию промышленных и хозяйственно-бытовых отходов в период строительных работ производить только на договорной основе со спец. организацией;
 - поддержание в чистоте территории площадки и прелегающих площадей;
 - сключение проливов ГСМ, своевременная их ликвидация;
 - проведение на заключительном этапе строительства технической рекультивации;
 - организация проведения мониторинговых работ.

При соблюдении этих мероприятий, потери и компенсации биоразнообразия не предусматривается.

12 ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ И ОБОСНОВАНИЕ НЕОБХОДИМОСТИ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛЕКУЩИХ ТАКИЕ ВОЗДЕЙСТВИЯ, В ТОМ ЧИСЛЕ СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОТЕРЬ ОТ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЩИХ ЭТИ ПОТЕРИ, В ЭКОЛОГИЧЕСКОМ, КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИАЛЬНОМ КОНТЕКСТАХ

Возможных необратимых воздействий на окружающую среду принятые проектные решения рабочего проекта не предусматривают.

Обоснование необходимости выполнения операций, влекущих такие воздействия не требуется.

Сравнительный анализ потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в экологическом, культурном, экономическом и социальном контекстах не приводится.

13 ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ

В соответствии со статьей 67 «Стадии оценки воздниствия на окружающую среду» Экологического кодекса РК, оценка воздействия на окружающую среду включает в себя следующие стадии:

- 1) рассмотрение заявления о намечаемой деятельности в целях определения его соответствия требованиям настоящего Кодекса, а также в случаях, предусмотренных настоящим Кодексом, проведения скрининга воздействий намечаемой деятельности;
 - 2) определение сферы охвата оценки воздействия на окружающую среду;
 - 3) подготовку отчета о возможных воздействиях;
 - 4) оценку качества отчета о возможных воздействиях;
- 5) вынесение заключения по результатам оценки воздействия на окружающую среду и его учет;
- 6) послепроектный анализ фактических воздействий при реализации намечаемой деятельности, если необходимость его проведения определена в соответствии с Экологическим Кодексом. РК

В соответствии со Статьей 78 ЭК РК послепроектный анализ фактических воздействий при реализации намечаемой деятельности (далее – послепроектный анализ) будет проведен составителем отчета о возможных воздействиях.

Цель проведения послепроектного анализа - подтверждение соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Сроки проведения послепроектного анализа - послепроектный анализ будет начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Не позднее срока, указанного выше, составитель отчета о возможных воздействиях подготавливает и подписывает заключение по результатам послепроектного анализа, в котором делается вывод о соответствии или несоответствии реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам оценки воздействия на окружающую среду. В случае выявления несоответствий в заключении по результатам послепроектного анализа приводится подробное описание таких несоответствий.

Составитель направляет подписанное заключение по результатам послепроектного анализа оператору соответствующего объекта и в уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты подписания заключения по результатам послепроектного анализа.

Уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты получения заключения по результатам послепроектного анализа размещает его на официальном интернет-ресурсе.

Порядок проведения послепроектного анализа и форма заключения по результатам послепроектного анализа определяются и утверждаются уполномоченным органом в области охраны окружающей среды.

Получение уполномоченным органом в области охраны окружающей среды заключения по результатам послепроектного анализа является основанием для проведения профилактического контроля без посещения субъекта (объекта) контроля.

14 СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА СЛУЧАИ ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ОПРЕДЕЛЕННЫЕ НА НАЧАЛЬНОЙ СТАДИИ ЕЕ ОСУЩЕСТВЛЕНИЯ

В соответствии с пп. 11, п. 4 ст. 72 ЭК РК необходимо указать способы и меры восстановления окружающей среды на случай прекращения намечаемой деятельности, определенные на начальной стадии ее осуществления.

В случае принятия решения о прекращении намечаемой деятельности на начальной стадии ее осуществления, оператором будет разработан план ликвидации последствий производственной деятельности на основании «Инструкции по составлению плана ликвидации», утвержденной приказом №386 от 24.05.2018 г. При планировании ликвидационных мероприятий выделены следующие критерии:

- приведение нарушенного участка в состояние, безопасное для населения и животного мира;
- приведение земель в состояние, пригодное для восстановления почвенно-растительного покрова;
 - улучшение микроклимата на восстановленной территории;
- нейтрализация отрицательного воздействия нарушенной территории на окружающую среду и здоровье человека.

Далее, после ликвидации будет разработан проект рекультивации нарушенных земель согласно «Инструкция по разработке проектов рекультивации нарушенных земель», утвержденной приказом Министра национальной экономики РК №346 от 17.04.2015 г.

Рекультивация земель — это комплекс работ, направленный на восстановление продуктивности и народнохозяйственной ценности нарушенных земель, а также на улучшение условий окружающей среды. Целью разработки проекта рекультивации земель является определение основных решений, обеспечивающих наиболее эффективное проведение мероприятий с минимумом затрат: установление объемов, технологии и очередности производства работ, определение сметной стоимости рекультивации.

Направление рекультивации земель зависит от следующих факторов:

- природных условий района (климат, почвы, геологические, гидрогеологические и гидрологические условия, растительность, рельеф, определяющие геосистемы или ландшафтные комплексы);
- агрохимических и агрофизических свойств пород и их смесей в отвалах, гидроотвалах, хвостохранилищах;
- хозяйственных, социально-экономических и санитарно-гигиенических условий в районе размещения нарушенных земель;
- срока существования рекультивационных земель и возможности их повторных нарушений;
 - технологии производства комплекса горных и рекультивационных работ;
 - требований по охране окружающей среды;
 - состояния ранее нарушенных земель, т.е. состояния техногенных ландшафтов.

Согласно ГОСТ 17.5.1.01-83, возможны следующие направления рекультивации:

- сельскохозяйственное с целью создания на нарушенных землях сельскохозяйственных угодий;
 - лесохозяйственное с целью создания лесных насаждений различного типа;
- рыбохозяйственное с целью создания в понижениях техногенного рельефа рыбоводческих водоемов;
- водохозяйственное с целью создания в понижениях техногенного рельефа водоемов различного назначения;
 - рекреационное с целью создания на нарушенных землях объектов отдыха;
- санитарно-гигиеническое с целью биологической или технической консервации нарушенных земель, оказывающих отрицательное воздействие на окружающую среду, рекультивация которых для использования в народном хозяйстве экономически неэффективна

или нецелесообразна в связи с относительной кратковременностью существования и последующей утилизацией этих объектов;

- строительное — с целью приведения нарушенных земель в состояние, пригодное для промышленного и гражданского строительства.

На случаи прекращения намечаемой деятельности предусматривается проведение мероприятий по восстановлению нарушенных земель в два этапа:

- I технический этап рекультивации земель,
- II биологический этап рекультивации земель.

Технический этап рекультивации представляет собой грубую планировку (уборка строительного мусора, засыпка ям и неровностей, планировка территории, выполаживание откосов породных отвалов) и чистовую планировку (нанесение ПРС).

Завершающим этапом восстановления нарушенных земель является проведение биологического этапа рекультивации. Работы по биологическому восстановлению земель ведутся для создания растительных сообществ декоративного и озеленительного назначения.

До начала проведения работ по рекультивации нарушенных земель должен быть разработан проект на производство этих работ согласно инструкции по разработке проектов рекультивации нарушенных земель, утвержденной приказом и.о. Министра национальной экономики РК №346 от 17.04.2015 г.

Рекультивацию нарушенных земель природопользователь выполнит отдельным проектом.

15 ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ деятельности с учетом ее ОСОБЕННОСТЕЙ и возможного воздействия HA ОКРУЖАЮЩУЮ СРЕДУ, ВКЛЮЧАЯ ВАРИАНТ, ИНИЦИАТОРОМ ВЫБРАННЫЙ НАМЕЧАЕМОЙ **ДЕЯТЕЛЬНОСТИ** применения, ОБОСНОВАНИЕ ΕΓΟ ОПИСАНИЕ выбора, **ДРУГИХ** возможных РАЦИОНАЛЬНЫХ ВАРИАНТОВ, TOM ЧИСЛЕ B РАЦИОНАЛЬНОГО ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ)ЗДОРОВЬЯ ЛЮДЕЙ, ОКРУЖАЮЩЕЙ СРЕЛЫ

Рассматриваемый в Отчете вариант осуществления намечаемой деятельности является наиболее рациональным. Осуществление деятельности производится на существующей ранее спланированной территории производственной базы.

Обеспечивается удаленность селитебной зоны в соответствии с санитарными эпидемиологическими требованиями. Размер санитано-защитной зоны проектируемого объекта составляет 500 метров. Ближайшая селитебная зона расположена с юго-восточной стороны на расстоянии до 2000 метров. Проведенные расчеты рассеивания загрязняющих веществ в атмосфере не дало превышения ПДК веществ на границе СЗЗ проектируемого объекта.

Намечаемая деятельность наиболее благоприятна с точки зрения охраны жизни и здоровья людей, так как расположение объекта вне жилой зоны, за пределами города в прмышленной зоне обеспечивает чистоту в среде обитания людей. И сам вид деятельности переработки отходов защищает окружающую среду от захламления, образования свалок из отходов. получения вторичного сырья для получения новой продукции.

16 ОПИСАНИЕ ТРУДНОСТЕЙ, ВОЗНИКШИХ ПРИ ПРОВЕДЕНИИ ИССЛЕДОВАНИЙ И СВЯЗАННЫХ С ОТСУТСТВИЕМ ТЕХНИЧЕСКИХ ВОЗМОЖНОСТЕЙ И НЕДОСТАТОЧНЫМ УРОВНЕМ СОВРЕМЕННЫХ НАУЧНЫХ ЗНАНИЙ

При формировании настоящего отчета о возможных воздействиях к намечаемой деятельности трудностей не возникло. Была проделана работа по сбору материалов аналогичных проектов по части технологии проектных решений, их реализации в жизнь, оценка результатов эксплуатации подобных объектов с целью недопущения каких-либо ошибок и принятия правильных решений.

17 ОПИСАНИЕ МЕТОДОЛОГИИ ИССЛЕДОВАНИЯ И СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИЙ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

Намечаемая деятельность осуществляется на территории Республики Казахстан, поэтому его экологическая оценка выполнена в соответствии с требованиями Экологического законодательства Республики Казахстан и других законов, имеющих отношение к проекту.

Экологическое законодательство РК основывается на Конституции Республики Казахстан и состоит из Экологического Кодекса, 2021г. (далее ЭК РК) и иных нормативных правовых актов Республики Казахстан.

Оценка воздействия на окружающую среду (OBOC), согласно ЭК РК — обязательная процедура для намечаемой деятельности, в рамках которой оцениваются возможные последствия хозяйственной и иной деятельности для окружающей среды и здоровья человека, разрабатываются меры по предотвращению неблагоприятных последствий, оздоровлению окружающей среды с учетом требований экологического законодательства Республики Казахстан.

Законодательство РК в области технического регулирования основывается на Конституции Республики Казахстан и состоит из Закона РК «О техническом регулировании» от 9 ноября 2004 года № 603-II и иных нормативных правовых актов.

Техническое регулирование основывается на принципах равенства требований к отечественной и импортируемой продукции, услуге и процедурам подтверждения их соответствия требованиям, установленным в технических регламентах и стандартах.

Технические удельные нормативы эмиссий устанавливаются на основе внедрения наилучших доступных технологий.

Земельное законодательство РК основывается на Конституции Республики Казахстан и состоит из «Земельного кодекса РК» №442-II от 20 июня 2003 и иных нормативных правовых актов.

Задачами земельного законодательства РК является регулирование земельных отношений в целях обеспечения рационального использования и охраны земель.

При размещении, проектировании и вводе в эксплуатацию объектов, отрицательно влияющих на состояние земель, должны предусматриваться и осуществляться мероприятия по охране земель.

Водное законодательство РК основывается на Конституции Республики Казахстан и состоит из «Водного кодекса РК» №481-II ЗРК от 9 июля 2003 года и иных нормативных правовых актов.

Целями водного законодательства РК являются достижение и поддержание экологически безопасного и экономически оптимального уровня водопользования и охраны водного фонда, водоснабжения и водоотведения для сохранения и улучшения жизненных условий населения и окружающей среды.

Санитарно-эпидемиологическое законодательство РК основывается на Конституции Республики Казахстан и состоит из Кодекса РК от 7 июля 2020 года №360-VI «О здоровье народа и системе здравоохранения» и иных нормативных правовых актов.

Кодекс регулирует общественные отношения в области здравоохранения в целях реализации конституционного права граждан на охрану здоровья.

Методическая основа проведения ОВОС

Общие положения проведения ОВОС при подготовке и принятии решений о ведении намечаемой хозяйственной деятельности и иной деятельности на всех стадиях ее организации в соответствии со стадией разработки предпроектной или проектной документации определяет «Инструкции по организации и проведению экологической оценки», утвержденная Приказом Министра экологии, геологии и природных ресурсов РК от 30 июля 2021 года №280.

Методической основой проведения ОВОС являются:

- «Методические указания по проведению оценки воздействия хозяйственной

деятельности на окружающую среду», утвержденные Приказом Министерства охраны окружающей среды РК от 29 октября 2010 года №270-п. которые разработаны с использованием документов Всемирного Банка и Европейской комиссии по проведению экологической оценки (Environmental Assessment) и Оценке Воздействия на Окружающую среду (Environmental Impact Assessment.);

- «Оценка риска воздействия на здоровье населения химических факторов окружающей среды» (Методические рекомендации) утверждены Минздравом РК от 19 марта 2004 года;
- «Методические рекомендации по проведению оценки риска здоровью населения от воздействия химических факторов», МНЭ РК от 13.12.2016 г. №№193-ОД.

Контроль за соблюдением требований экологического законодательства Республики Казахстан при выполнении процедуры оценки воздействия на окружающую среду осуществляет уполномоченный орган в области охраны окружающей среды — Комитет экологического регулирования и контроля в составе Министерства экологии, геологии и природных ресурсов РК.

18. КРАТКОЕ НЕТЕХНИЧЕСКОЕ РЕЗЮМЕ

Товарищество с ограниченной ответственностью ТОО «Best project engineering» на основании заключенного договора с ТОО «Saken 23» разработало рабочий проект «Строительство здания печи по уничтожению (сжиганию) медицинскийх отходов (сжечь) по адресу: Мангистауская область, Мунайлинский район, Баяндинский с.с., с. Баянды, промышленная зона 1, участок 113/3. (без сметной документации и наружных инженерных сетей)».

В административном отношении проектируемый объект находится в Мангистауской области Республики Казахстан, на территории Мунайлинского района, села Баянды.

Мангистауская область на западе граничит с Каспийским морем, с северо-восточной части находятся <u>Атырауская</u> и <u>Актюбиснкая</u> области. С южной стороны у области общие границы с Туркменией, с восточной – Узбекистаном.

Проектируемая объект в административном отношении находится в с. Баянды Мунайлинского района, промышленная зона №1, участок 113/3. Площадь села Баянды — 224 га. В состав территории с. Баянды входят жилые массивы: Баянды-2, Баянды-3; ул.Достык; Емир, Илі,Нурлаев Ж, Сарытобе крестьянское хозяйство, Ынтымак, №16 разъезд, Баянды-куйылыс тас жолы. Главные отрасли промышленности — сельское хозяйство, производство бетона, газоблоков.

Территория используется по целевому назначению, согласно акта на право временного возмездного землепользования, выданный отделом Мунайлинского района по регистрации и земельному кадастру Филиала некоммерческого акционерного общества «Государственная корпорация «Правительство для граждан» по Мангистауской области» от 02 декабря 2024 года № 2024-3230942, кадастровый номер 13-203-087-2897. Площадь земельного участка 0,2га.

На рисунке представлена обзорная карта района проектируемых работ.

Местоположение проектируемого участка относительно жилых зон характеризуется следующим образом:

- с севера-восточном направлении жилой массив Баянды на расстоянии 3 километров.
- в юго-восточном направлении на расстоянии около 4 км расположен жилой массив Даулет и далее на расстоянии до7 км от участка село Бирлик.
- в южном направлении на расстоянии до 2 км располагается жилой массив Мангистау-3, Мангистау -4;
- в юго-западном направлении на расстоянии до 7 км. расположен жилой массив Баскудук, на расстоянии до 9,0 км село Атамекен; на расстоянии более 10 км г. Актау.
 - в северо-западном направлении на расстоянии до 20 км расположено село Акшукур.

Географические координаты угловых точек площади представлены в таблицеэ

Угловые точки	Географические координаты				
	Северная широта	Восточная долгота			
1	43°44'13.08"C	51°16'51.83			
2	43°44'12.63"C	51°16'52.49"B			
3	43°44'17.87"C	51°16'57.65"B			
4	43°44'17.47"C	51°16'58.32"B			

TOO «Saken 23» на основе договора купли продажи приобрел земельный участок для строительства здания под установку печи для сжигания медицинских отходов..

Технологическая часть рабочего проекта разработана на основании задания на проектирование, выданного заказчиком, а также действующих норм и правил РК. Главной задачей ТОО «Saken 23» является сбор и сжигание медицинских отходов.

На проектируемом объекте условно предусмотрено здание гдн будет вмонтировано:

• Печь-инсинератор «Веста плюс» с комплексной системой газоочистки

В производственном здании устанавливается Печь-инсинератор «ВЕСТА ПЛЮС», с комплексной системой газоочистки «ВЕСТА ПЛЮС», где производится сжигание медицинских отходов.

Во вспомогательном здании предусмотрены помещения для персонала:

- комната для временного хранения медицинских отходов площадью 14м2.
- комната уборочного инвентаря, площадью 4м2, где хранятся моющие и дезинфицирующие средства.
- холодильная камера, с оборудованием для хранения биологических отходов с поддержанием температуры от 2°C до 4°C и раздельными стеллажами.

В каждом помещении созданы условия для мытья, хранения и обеззараживания емкостей. Пол, стены, потолок помещений для временного хранения МО гладкие, без щелей, выполнены из материалов, устойчивых к моющим и дезинфицирующим средствам.

В целях обеспечения санитарно-эпидемиологического благополучия и охраны окружающей среды помещение вышеперечисленных оборудовании оснащены:

- риточно-вытяжной вентиляцией, обеспечивающий кратность обмена воздуха в помещении (см. раздел OB).
- > электронными сертифицированными весами,
- раковиной с подведением проточной холодной воды и оборудованным стоком в канализацию для соблюдения персоналом правил личной гигиены, оснащенной средствами для мытья рук,
- бактерицидными лампами,

При строительстве объекта основными веществами, выбрасываемых в атмосферу являются железа оксид, марганец и его оксиды, фтористые газообразные соединения, фториды неорганические плохо растворимые, диметилбензол, метилбензол, бутилацетат, пропан-2-он, уайт-спирит, взвешенные вещества, углерод оксид, азота диоксид, азота оксид, углерод черный, сера диоксид, углеводороды предельные C12-C19, формальдегид, бензапирен, пыль неорганическая, пыль металлическая.

При эксплуатации объекта основными веществами, выбрасываемых в атмосферу являются азота диоксид, азота оксид, гидрохлорид, фуран, углерод оксид, сера диоксид, углерод черный(сажа), смесь углеводородов С12-С19, сероводород, взвешенные вещества, диоксины.

Общее количество 3В, выбрасываемых в атмосферу при строительстве составляет 2,266141291 г/с или 1,9570401 т/год, в том числе: твердые 0,283631291 г/с или 1,403663832 т/год; газообразные и жидкие 1,982510001 г/с или 0,55337625 т/год

Общее количество 3В, выбрасываемых в атмосферу при эксплуатации, составляет 0,1087914 г/с или 0,9427685 т/год, в том числе: твердые 0,0018202 г/с или 0,018749 т/год; газообразные и жидкие 0,1069712 г/с или 0,9240195 т/год.

В период строительных работ источником питьевого водоснабжения будет привозная

вода. Общий расход воды на питьевые нужды составит 27,0 м³ за весь период строительства, из расчета 25л/сут. Расход воды на душевые и умывальники составит 49,95м. В процессе проведения строительных работ, при уплотнении грунта проводится пылеподавление. Согласно расчетов на пылеподавление составит 5,16 м3 воды. Общее количество воды на период строительства составит 82,0 м3. На период эксплуатации источником водоснабжения является привозная вода. Также для питьевых нужд поставляется бутилированная вода, установлен кулер. На территории имеется накопительная емкость объемом 4м³.

При строительстве проектируемого объекта образуются незначительное количество производственных отходов — абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами., отходы от красок и лаков, содержащие органические растворители или другие опасные вещества, отходы сварки, смешанные коммунальные отходы (ТБО).

При эксплуатации проектируемого объекта образуются смешанные коммунальные отходы (ТБО), зола, а также отходы, получаемые от третьих лиц на переработку: медицинские, ртутьесодержащие, пластиковые отходы.

Сбор и временное хранение отходов производства проводится на специальных площадках (местах), контейнерах (промаркированных), соответствующих типу опасности отходов (по степени токсичности). Все отходы будут вывозиться и утилизироваться на основании договора с организациями, имеющими лицензию на этот вид деятельности ст. 336 ЭК РК.

Анализ покомпонентного и интегрального воздействия на на окружающую среду позволяет сделать вывод о том, что намечаемая деятельность при условии соблюдения технических решений (штатная ситуация) не оказывает значимого негативного воздействия на окружающую среду. Трансграничное воздействие не ожидается.

Меры по предупреждению, исключению и снижению возможных форм неблагоприятного воздействия на окружающую среду- это регулировка и контроль за топливными системами дизельного двигателя, техническое обслуживание и ремонт оборудования, проведение производственного экологического контроля окружающей среды; разработать маршруты доступа к строительным площадкам до использования тяжелых транспортных средств, прокладывать участки, склонные к образованию пыли с помощью щебеночной породы, запрещать выезд за их пределы и контролировать соблюдение маршрутов; необходимо по мере возможности уменьшить шумовое воздействие в период размножения животных и птиц, передача отходов специализированным организациям на утилизацию.

Постоянное увеличение объема производства и потребления товаров приводит к образованию огромных масс отходов. Многие передовые компании по всему миру сегодня внедряют систему управления отходами - это оптимизированный процесс, который включает меры по сокращению объемов производимых отходов, переработке и повторному его использованию. Затраты производства в этом случае снижаются за счет переработки стекла, пластика, бумаги, металла и их вторичного применения в цикле производства.

Для населенных пунктов Мунайлинского района, в целом для региона строительство проектируемого объекта по утилизации медицинских отходов даст возможность не создавать свалки отходов, беречь природу и сохранять окружающую среду.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан № 400-VI 3PK от 02.01.2021 г.).
- 2. Рабочий проект "Модернизация производственной базы по переработке и утилизации медицинских отходов, ртутьсодержащих люминесцентных ламп, пластиковых, резиновых изделий, макулатуры, офисной оргтехники, аккумуляторов.».
- 3. «Инструкция по организации и проведению экологической оценки», утверждена Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
- 4. Методика определения нормативов эмиссий в окружающую среду. Приложение к приказу Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.
- 5. Санитарные правила «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов». Утверждены приказом Министра национальной экономики Республики Казахстан от 11 января 2022 года № ҚР № ДСМ-2.
- 6. Об утверждении Санитарных правил "Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления". Приказ Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № 331.
- 7. «Санитарно эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно питьевых целей, хозяйственно питьевому водоснабжению и местам культурно бытового водопользования и безопасности водных объектов» утвержденные приказом Министра национальной экономики от 16.03.2015 г № 209.
- 8. Классификатора отходов. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314. Зарегистрирован в Министерстве юстиции Республики Казахстан 9 августа 2021 года № 23903.
- 9. «Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов», (приложение №11 к приказу министра ООС РК от 18.04.2008г.);
- 10. РНД 211.2.02.05-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)», Астана, 2004;
- 11. РНД 211.2.02.03-2004 «Методика расчета выбросов 3В в атмосферу при сварочных работах (по величинам удельных выбросов), Астана 2004 г.
- 12. РНД 211.2.02.06-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)», Астана 2005.
- 13. Санитарные правила "Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения", утвержденные приказом» Министра здравоохранения Республики Казахстан от 3 августа 2021 года № КР ДСМ-72.

ПРИЛОЖЕНИЕ 1

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ.

Расчеты выбросов зв в атмосферу на период строительства Источник 0001

Котёл битумный

Время работы оборудования, ч/год , T	2,70
Сернистость топлива, % (Прил. 2.1) , <i>SR</i>	0,3
Содержание сероводорода в топливе, % (Прил. 2.1) , <i>H2S</i>	0
Низшая теплота сгорания, МДж/кг(Прил. 2.1), QR	42,75
Расход топлива, т/год , BT	0,050
Доля диоксида серы, связываемого летучей золой топлива, N1SO2	0,02
Потери теплоты вследствие химической неполноты сгорания топлива, $\%$, $Q3$	0,5
Потери теплоты вследствие механической неполноты сгорания топлива, $\%$, $Q4$	0
Коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, R	0,65
Кол-во окислов азота, кг/1 Гдж тепла (табл. 3.5), коо2	0,075
Коэфф. снижения выбросов азота в результате технических решений, B	0
Коэффициент трансформации для диоксида азота, NO2	0,8
Коэффициент трансформации для оксида азота , NO	0,13
Об'ем производства битума, т/год , М У	0,90
Зольность топлива, % gT	0,025
Безрамзмерный коффициент, х	0,01
Эффективность золоуловителей по паспортным данным установки, ηТ	0

Макс.раз.выброс, г/с		
Сера диоксид		0,02984
Углерод оксид		0,07099
Оксиды азота		0,01646
	NO	0,00214
	NO2	0,01317
Углеводороды предельные С12-С19		0,09259
Углерод		0,00134
Валовый выброс, т/год		
Сера диоксид		0,00029
Углерод оксид		0,00069
Оксиды азота		0,00016
	NO	0,000021
	NO2	0,00013
Углеводороды предельные С12-С19		0,00090
Углеро <i>д</i>		0,000013

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию МО. Источник загрязнения N 0002, Компрессор дизельный Источник выделения N 001, Компрессор дизельный

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{200}$, т, 5.66 Эксплуатационная мощность стационарной дизельной установки $\mathbf{\textit{P}}_{3}$, кВт, 75 Удельный расход топлива на экспл./номин. режиме работы двигателя $\mathbf{\textit{b}}_{3}$, г/кВт*ч, 410.133

Температура отработавших газов T_{oe} , К, 773 Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов Расход отработавших газов G_{oe} , кг/с:

$$G_{0e} = 8.72 * 10^{-6} * b_{9} * P_{9} = 8.72 * 10^{-6} * 410.133 * 75 = 0.268226982$$
 (A.3)

Удельный вес отработавших газов γ_{oz} , кг/м³:

$$\gamma_{oz} = 1.31/(1 + T_{oz}/273) = 1.31/(1 + 773/273) = 0.341902486$$
 (A.5) где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oe} = G_{oe} / \gamma_{oe} = 0.268226982 / 0.341902486 = 0.784513109$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	S02	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

	T						
Группа	СО	NOx	СН	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_{9} / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{iod} / 1000 \tag{2}$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_9 / 3600 = 6.2 * 75 / 3600 = 0.129166667$

 $W_i = q_{Mi} * B_{zod} = 26 * 5.66 / 1000 = 0.14716$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.8 = (9.6 * 75 / 3600) * 0.8 = 0.16$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (40 * 5.66 / 1000) * 0.8 = 0.18112$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

 $M_i = e_{Mi} * P_9 / 3600 = 2.9 * 75 / 3600 = 0.060416667$

 $W_i = q_{Mi} * B_{zod} / 1000 = 12 * 5.66 / 1000 = 0.06792$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_9 / 3600 = 0.5 * 75 / 3600 = 0.010416667$

 $W_i = q_{Mi} * B_{200} / 1000 = 2 * 5.66 / 1000 = 0.01132$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_9 / 3600 = 1.2 * 75 / 3600 = 0.025$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 5.66 / 1000 = 0.0283$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_3 / 3600 = 0.12 * 75 / 3600 = 0.0025$

 $W_i = q_{Mi} * B_{zod} = 0.5 * 5.66 / 1000 = 0.00283$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_{\text{P}} / 3600 = 0.000012 * 75 / 3600 = 0.00000025$

 $W_i = q_{Mi} * B_{200} = 0.000055 * 5.66 / 1000 = 0.00000311$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.13 = (9.6 * 75 / 3600) * 0.13 = 0.026$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (40 * 5.66 / 1000) * 0.13 = 0.029432$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	С	С
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.16	0.18112	0	0.16	0.18112
0304	Азот (II) оксид (Азота оксид) (6)	0.026	0.029432	0	0.026	0.029432
0328	Углерод (Сажа, Углерод черный) (583)	0.010416667	0.01132	0	0.010416667	0.01132
0330	Сера диоксид (Ангидрид сернистый,	0.025	0.0283	0	0.025	0.0283

	Сернистый газ, Сера (IV) оксид) (516)					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.129166667	0.14716	0	0.129166667	0.14716
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.00000025	0.000000311	0	0.00000025	0.000000311
1325	Формальдегид (Метаналь) (609)	0.0025	0.00283	0	0.0025	0.00283
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.060416667	0.06792	0	0.060416667	0.06792

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию МО.

Источник загрязнения N 0003, Сварочный дизельный генератор

Источник выделения N 001, Сварочный дизельный генератор

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{200}$, т, 0.387 Эксплуатационная мощность стационарной дизельной установки $\mathbf{\textit{P}}_{3}$, кВт, 79 Удельный расход топлива на экспл./номин. режиме работы двигателя $\mathbf{\textit{b}}_{3}$, г/кВт*ч, 55.7

Температура отработавших газов T_{oc} , К, 773 Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов Расход отработавших газов G_{oz} , кг/с:

$$G_{0z} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 55.7 * 79 = 0.038370616$$
 (A.3)

Удельный вес отработавших газов γ_{oz} , кг/м 3 :

 $\gamma_{oe} = 1.31/(1 + T_{oe}/273) = 1.31/(1 + 773/273) = 0.341902486$ (A.5) где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов \mathbf{Q}_{oe} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.038370616 / 0.341902486 = 0.112226783$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов \boldsymbol{e}_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	S02	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

	I						
Группа	CO	NOx	СН	С	S02	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{9} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{\ni i} * B_{oo} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 – для NO_2 и 0.13 – для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_9 / 3600 = 6.2 * 79 / 3600 = 0.136055556$

 $W_i = q_{mi} * B_{eod} = 26 * 0.387 / 1000 = 0.010062$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.8 = (9.6 * 79 / 3600) * 0.8 = 0.168533333$

 $W_i = (q_{Mi} * B_{zod} / 1000) * 0.8 = (40 * 0.387 / 1000) * 0.8 = 0.012384$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

 $M_i = e_{Mi} * P_9 / 3600 = 2.9 * 79 / 3600 = 0.063638889$

 $W_i = q_{Mi} * B_{eod} / 1000 = 12 * 0.387 / 1000 = 0.004644$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_{3} / 3600 = 0.5 * 79 / 3600 = 0.010972222$

 $W_i = q_{Mi} * B_{zod} / 1000 = 2 * 0.387 / 1000 = 0.000774$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_9 / 3600 = 1.2 * 79 / 3600 = 0.026333333$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 0.387 / 1000 = 0.001935$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_9 / 3600 = 0.12 * 79 / 3600 = 0.002633333$

 $W_i = q_{Mi} * B_{20\partial} = 0.5 * 0.387 / 1000 = 0.0001935$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_9 / 3600 = 0.000012 * 79 / 3600 = 0.000000263$

 $W_i = q_{Mi} * B_{200} = 0.000055 * 0.387 / 1000 = 0.000000021$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_9 / 3600) * 0.13 = (9.6 * 79 / 3600) * 0.13 = 0.027386667$

$W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (40 * 0.387 / 1000) * 0.13 = 0.0020124$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	с	C
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.168533333	0.012384	0	0.168533333	0.012384
0304	Азот (II) оксид (Азота оксид) (6)	0.027386667	0.0020124	0	0.027386667	0.0020124
0328	Углерод (Сажа, Углерод черный) (583)	0.010972222	0.000774	0	0.010972222	0.000774
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.026333333	0.001935	0	0.026333333	0.001935
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.136055556	0.010062	0	0.136055556	0.010062
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000263	0.000000021	0	0.00000263	0.000000021
1325	Формальдегид (Метаналь) (609)	0.002633333	0.0001935	0	0.002633333	0.0001935
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.063638889	0.004644	0	0.063638889	0.004644

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию МО.

Источник загрязнения: 6001, Разработка грунта экскаватором Источник выделения: 6001 01, Разработка грунта экскаватором Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песок природный и из отсевов дробления Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.1

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.05

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4=1

Скорость ветра (среднегодовая), M/c, G3SR = 4.3

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 2.5

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, $\tau/$ час, **GMAX = 54**

Суммарное количество перерабатываемого материала, $\tau/$ год, **GGOD = 10427**

Эффективность средств пылеподавления, в долях единицы, NJ=0.96

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 54 \cdot 10^6 / 3600 \cdot (1-0.96) = 2.69$

Продолжительность выброса составляет менее 20 мин согласно $\pi.2.1$ применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), π =1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 2.69 \cdot 1 \cdot 60 / 1200 = 0.1345$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 10427 \cdot (1-0.96) = 1.12$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.1345 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 1.12 = 1.12

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 1.12 = 0.448$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.1345 = 0.0538$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0538	0.448
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию MO.

Источник загрязнения: 6002, Разработка грунта бульдозером Источник выделения: 6002 01, Разработка грунта бульдозером Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песок природный и из отсевов дробления Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.1 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.05

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4=1

Скорость ветра (среднегодовая), M/c, G3SR = 4.3

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, **G3 = 11**

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3=2

Влажность материала, %, VL = 2.5

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7=2

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 124

Суммарное количество перерабатываемого материала, $\tau/$ год, **GGOD = 22207**

Эффективность средств пылеподавления, в долях единицы, NJ = 0.99

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 124 \cdot 10^6 / 3600 \cdot (1-0.99) = 1.543$

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), $\pi = 1$ Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 1.543 \cdot 1 \cdot 60 / 1200 = 0.0772$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 22207 \cdot (1-0.99) = 0.597$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0772 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.597 = 0.597

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.597 = 0.239$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0772 = 0.0309$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0309	0.239
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию МО.

Источник загрязнения: 6003, Уплотнение грунта трамбовками Источник выделения: 6003 01, Уплотнение грунта трамбовками Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песок природный и из отсевов дробления Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.1 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.05

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4=1

Скорость ветра (среднегодовая), M/c, G3SR = 4.3

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 2.5

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, $\tau/$ час, *GMAX* = 12

Суммарное количество перерабатываемого материала, $\tau/$ год, **GGOD = 3062**

Эффективность средств пылеподавления, в долях единицы, NJ=0.9

Вид работ: Пересыпка

$B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 12 \cdot 10^6 / 3600 \cdot (1-0.9) = 1.493$

Продолжительность выброса составляет менее 20 мин согласно $\pi.2.1$ применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), $\pi=1$

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 1.493 \cdot 1 \cdot 60 / 1200 = 0.0747$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 3062 \cdot (1-0.9) = 0.823$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0747 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.823 = 0.823

С учетом коэффициента гравитационного осаждения

Валовый выброс, $\tau/\text{год}$, $M = KOC \cdot M = 0.4 \cdot 0.823 = 0.329$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0747 = 0.0299$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0299	0.329
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию MO.

Источник загрязнения: 6004, Уплотнение грунта катками Источник выделения: 6004 01, Уплотнение грунта катками

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песок природный и из отсевов дробления Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.1 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.05

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4=1 Скорость ветра (среднегодовая), м/с, G3SR=4.3

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 11

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 2.5

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B=0.7

Суммарное количество перерабатываемого материала, $\tau/$ час, **GMAX = 392**

Суммарное количество перерабатываемого материала, $\tau/$ год, **GGOD = 6530**

Эффективность средств пылеподавления, в долях единицы, NJ=0.99

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 392 \cdot 10^6 / 3600 \cdot (1-0.99) = 4.88$

Продолжительность выброса составляет менее 20 мин согласно $\pi.2.1$ применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), $\pi=1$

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 4.88 \cdot 1 \cdot 60 / 1200 = 0.244$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 6530 \cdot (1-0.99) = 0.1755$

Максимальный разовый выброс, r/c (3.2.1), G = MAX(G,GC) = 0.244

Сумма выбросов, τ /год (3.2.4), M = M + MC = 0 + 0.1755 = 0.1755

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.1755 = 0.0702$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.244 = 0.0976$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0976	0.0702
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию MO.

Источник загрязнения: 6005, Пересыпка инернтных материалов Источник выделения: 6005 01, Пересыпка инернтных материалов Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Щебень из изверж. пород крупн. от 20мм и более Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.02 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.01

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4=1 Скорость ветра (среднегодовая), м/с, G3SR=4.3

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 11

 $^-$ Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), **КЗ=2**

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.3.1.4), K5=0.1

```
Размер куска материала, мм, G7=10
Коэффициент, учитывающий крупность материала (табл.3.1.5), K7=0.5
Высота падения материала, м, GB=2
Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B=0.7
Суммарное количество перерабатываемого материала, \tau/час, GMAX=0.4
```

Суммарное количество перерабатываемого материала, т/год, GGOD = 1794 Эффективность средств пылеподавления, в долях единицы, NJ = 0 Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.02 \cdot 0.01 \cdot 2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.4 \cdot 10^6 / 3600 \cdot (1-0) = 0.001556$

Продолжительность выброса составляет менее 20 мин согласно $\pi.2.1$ применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), $\pi = 1$ Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 0.001556 \cdot 1 \cdot 60 / 1200 = 0.0000778$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.02 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 1794 \cdot (1-0) = 0.01507$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0000778 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.01507 = 0.01507

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песок природный и из отсевов дробления Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.1 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.05

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4=1 Скорость ветра (среднегодовая), м/с, G3SR = 4.3Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2Скорость ветра (максимальная), M/c, **G3 = 11** Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3=2Влажность материала, %, VL = 2.5 Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.8Размер куска материала, мм, G7 = 2Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8Высота падения материала, м, GB = 2Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B=0.7Суммарное количество перерабатываемого материала, $\tau/$ час, $\mathit{GMAX}=0.4$ Суммарное количество перерабатываемого материала, $\tau/$ год, **GGOD = 11.34** Эффективность средств пылеподавления, в долях единицы, NJ=0Вид работ: Пересыпка

```
ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

Максимальный разовый выброс, г/с (3.1.1), GC = K1 · K2 · K3 · K4 · K5 · K7 · K8 · K9 · KE · B · GMAX · 10<sup>6</sup> / 3600 · (1-NJ) = 0.1 · 0.05 · 2 · 1 · 0.8 · 0.8 · 1 · 1 · 1 · 0.7 · 0.4 · 10<sup>6</sup> / 3600 · (1-0) = 0.498

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), TT = 1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, GC = GC · TT · 60 / 1200 = 0.498 · 1 · 60 / 1200 = 0.0249

Валовый выброс, т/год (3.1.2), MC = K1 · K2 · K3SR · K4 · K5 · K7 · K8 · K9 · KE · B · GGOD · (1-NJ) = 0.1 · 0.05 · 1.2 · 1 · 0.8 · 0.8 · 1 · 1 · 1 · 0.7 · 11.34 · (1-0) = 0.0305
```

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0249 Сумма выбросов, т/год (3.2.4), M = M + MC = 0.01507 + 0.0305 = 0.0456

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Песчано-гравийная смесь (ПГС) Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.03 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

```
Материал негранулирован. Коэффициент Ке принимается равным 1
Степень открытости: с 4-х сторон
Загрузочный рукав не применяется
Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4=1
Скорость ветра (среднегодовая), M/c, G3SR = 4.3
Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2
Скорость ветра (максимальная), M/c, G3 = 11
Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3=2
Влажность материала, %, VL = 10
Коэфф., учитывающий влажность материала (табл.3.1.4), K5=0.1
Размер куска материала, мм, G7 = 5
Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.6
Высота падения материала, м, GB = 2
Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.7
Суммарное количество перерабатываемого материала, \tau/час, GMAX = 0.4
Суммарное количество перерабатываемого материала, \tau/год, GGOD = 52.19
Эффективность средств пылеподавления, в долях единицы, N = 0
Вид работ: Пересыпка
Максимальный разовый выброс, г/с (3.1.1), \textit{GC} = \textit{K1} \cdot \textit{K2} \cdot \textit{K3} \cdot \textit{K4} \cdot \textit{K5} \cdot \textit{K7} \cdot \textit{K8} \cdot \textit{K9} \cdot \textit{KE} \cdot
B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.4 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.03 \cdot 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-0) = 0.04 \cdot 10^6 / 3600 \cdot (1-
0.0112
Продолжительность выброса составляет менее 20 мин согласно п.2.1
применяется 20-ти минутное осреднение.
Продолжительность пересыпки в минутах (не более 20), \pi = 1
Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, GC =
```

 $GC \cdot TT \cdot 60 / 1200 = 0.0112 \cdot 1 \cdot 60 / 1200 = 0.00056$

Валовый выброс, т/год (3.1.2), *MC = K1 · K2 · K3SR · K4 · K5 · K7 · K8 · K9 · KE · B · GGOD* · (1-NJ) = 0.03 · 0.04 · 1.2 · 1 · 0.1 · 0.6 · 1 · 1 · 1 · 0.7 · 52.19 · (1-0) = 0.003156

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0249 Сумма выбросов, т/год (3.2.4), M = M + MC = 0.0456 + 0.003156 = 0.0488

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.0488 = 0.01952$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0249 = 0.00996$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.00996	0.01952
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 024, Баянды

Объект N 0001, Вариант 2 Строительство здания для печи по сжиганию MO.

Источник загрязнения: 6006, Выбросы пыли при транспортных работах Источник выделения: 6006 01, Выбросы пыли при транспортных работах Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Расчет выбросов пыли при транспортных работах Средняя грузоподъемность единицы автотранспорта: >5 - < = 10 тонн Коэфф., учитывающий грузоподъемность (табл.3.3.1), C1=1Средняя скорость передвижения автотранспорта: < = 5 км/час Коэфф., учитывающий скорость передвижения (табл.3.3.2), C2 = 0.6Состояние дороги: Дорога без покрытия (грунтовая) Коэфф., учитывающий состояние дороги (табл.3.3.3), C3=1Число автомашин, одновременно работающих в карьере, шт., *N1=*1 Средняя продолжительность одной ходки в пределах промплощадки, км, L=1Число ходок (туда + обратно) всего транспорта в час, N=1Коэфф., учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01Пылевыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450Влажность поверхностного слоя дороги, %, VL = 15Коэфф., учитывающий увлажненность дороги (табл.3.1.4), K5 = 0.01Коэфф., учитывающий профиль поверхности материала на платформе, C4=1.45Наиболее характерная для данного района скорость ветра, м/с, V1 = 4.3Средняя скорость движения транспортного средства, км/час, V2=5Скорость обдува, м/с, $VOB = (V1 \cdot V2 / 3.6)^{0.5} = (4.3 \cdot 5 / 3.6)^{0.5} = 2.444$

Коэфф., учитывающий скорость обдува материала в кузове (табл.3.3.4), C5 = 1.13

Площадь открытой поверхности материала в кузове, м2, S=6 Перевозимый материал: Песок природный и из отсевов дробления Унос материала с 1 м2 фактической поверхности, г/м2*c (табл.3.1.1), Q=0.002

Влажность перевозимого материала, %, VL = 0

Уточненная влажность материала, не более, % (табл.3.1.4), VL=0.5 Коэфф., учитывающий влажность перевозимого материала (табл.3.1.4), K5M=1 Количество дней с устойчивым снежным покровом, TSP=0

Продолжительность осадков в виде дождя, часов/год, TO = 0

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 0 / 24 = 0$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

С учетом коэффициента гравитационного осаждения Максимальный разовый выброс, г/с (3.3.1), $G = KOC \cdot (C1 \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot Q1 / 3600 + C4 \cdot C5 \cdot K5M \cdot Q \cdot S \cdot N1) = 0.4 \cdot (1 \cdot 0.6 \cdot 1 \cdot 1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 1450 / 3600 + 1.45 \cdot 1.13 \cdot 1 \cdot 0.002 \cdot 6 \cdot 1) = 0.00883$

Валовый выброс, τ /год (3.3.2), $M = 0.0864 \cdot G \cdot (365 - (TSP + TD)) = 0.0864 \cdot 0.00883 \cdot (365 - (0 + 0)) = 0.2785$

Итоговая таблица выбросов

Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.00883	0.2785
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город: 024, с. Баянды

Объект: 0001, Вариант 2 Строительство здания для печи по сжиганию

медотходов

Источник загрязнения: 6007, Сварочные работы Источник выделения: 6007 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13 Степень очистки, доли ед., $\eta = 0$

РАСЧЕТ выбросов ЗВ от сварки металлов Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45
Расход сварочных материалов, кг/год, $B \Gamma O A = 50$ Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, B V A C = 2Удельное выделение сварочного аэрозоля, $\Gamma / K \Gamma$ расходуемого материала (табл. 1, 3), $K_M^X = 16.31$ в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа</u> оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 10.69$ Степень очистки, доли ед., $\eta = 0$ Валовый выброс, т/год (5.1), $M \Gamma O \mathcal{A} = K_M^X \cdot B \Gamma O \mathcal{A} / 10^6 \cdot (1-\eta) = 10.69 \cdot 50 / 10^6 \cdot (1-0) = 0.000535$

Максимальный из разовых выброс, г/с (5.2), MCEK = $K_M^X \cdot B4AC/3600 \cdot (1-\eta) = 10.69 \cdot 2$ /3600 · (1-0) = 0.00594

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 0.92$ Степень очистки, доли ед., $\eta = 0$ Валовый выброс, т/год (5.1), $M \Gamma O \mathcal{A} = K_M^X \cdot B \Gamma O \mathcal{A} / 10^6 \cdot (1-\eta) = 0.92 \cdot 50 / 10^6 \cdot (1-0) = 0.000046$

Максимальный из разовых выброс, г/с (5.2), MCEK = $K_M^X \cdot BVAC/3600 \cdot (1-\eta) = 0.92 \cdot 2$ /3600 · (1-0) = 0.000511

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X=1.4$ Степень очистки, доли ед., $\eta=0$ Валовый выброс, т/год (5.1), $M \Gamma O \mathcal{A} = K_M^X \cdot B \Gamma O \mathcal{A} / 10^6 \cdot (1-\eta) = 1.4 \cdot 50 / 10^6 \cdot (1-0) = 0.00007$ Максимальный из разовых выброс, г/с (5.2), $M C E K = K_M^X \cdot B V A C / 3600 \cdot (1-\eta) = 1.4 \cdot 2 / 3600 \cdot (1-0) = 0.000778$

<u>Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 3.3$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), **МГОД = K_M^X \cdot BГОД / 10^6 \cdot (1-\eta) = 3.3 \cdot 50 / 10^6 \cdot (1-0) =**

0.000165

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot BVAC / 3600 \cdot (1-\eta) = 3.3 \cdot 2 / 1000 \cdot (1-\eta) = 3.3 \cdot 2 /$

$3600 \cdot (1-0) = 0.001833$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), **МГОД = K_M^X \cdot BГОД / 10^6 \cdot (1-\eta) = 0.75 \cdot 50 / 10^6 \cdot (1-0) = 0.75**

0.0000375

Максимальный из разовых выброс, г/с (5.2), MCEK = $K_M^X \cdot B \text{ "AC} / 3600 \cdot (1-\eta) = 0.75 \cdot 2$ / $3600 \cdot (1-0) = 0.000417$

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 1.5$

С учетом трансформации оксидов азота получаем: Степень очистки, доли ед., $\eta = 0$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), **МГОД = KNO2** · K $_M^X$ · ВГОД / 10^6 · $(1-\eta)$ = $0.8 \cdot 1.5 \cdot 50$ / 10^6 · (1-0) = 0.00006

Максимальный из разовых выброс, г/с (5.2), MCEK = KNO2 · K $_M^X$ · B4AC / 3600 · (1- η) = 0.8 · 1.5 · 2 / 3600 · (1-0) = 0.000667

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), **МГОД = KNO** · K_M^X · **ВГОД / 10^6 · (1-\eta) = 0.13 · 1.5 · 50 / 10^6 · (1-0) = 0.00000975**

Максимальный из разовых выброс, г/с (5.2), MCEK = KNO·K $\frac{X}{M}$ ·ВЧАС/3600·(1- η) = 0.13·1.5·2/3600·(1-0) = 0.0001083

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

```
Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), K_M^X = 13.3
```

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), **МГОД = K_M^X \cdot BГОД / 10^6 \cdot (1-\eta) = 13.3 \cdot 50 / 10^6 \cdot (1-0) = 100**

0.000665

Максимальный из разовых выброс, г/с (5.2), **МСЕК = K_{M}^{X} \cdot B \lor AC / 3600 \cdot (1 - \eta) = 13.3 \cdot 2**

$/3600 \cdot (1-0) = 0.00739$

Вид сварки: Ручная дуговая сварка сталей штучными электродами Электрод (сварочный материал): AHO-4

Расход сварочных материалов, $\kappa \Gamma / \text{год}$, **ВГОД** = **50**

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BYAC = 2

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 17.8$ в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)</u>

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), **МГОД = K_M^X \cdot BГОД / 10^6 \cdot (1-\eta) = 15.73 \cdot 50 / 10^6 \cdot (1-0) = 100**

0.000787

Максимальный из разовых выброс, г/с (5.2), MCEK = $K_M^X \cdot B4AC/3600 \cdot (1-\eta) = 15.73 \cdot 2$ /3600 · (1-0) = 0.00874

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 1.66$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), **МГОД = K_M^X \cdot BГОД / 10^6 \cdot (1-\eta) = 1.66 \cdot 50 / 10^6 \cdot (1-0) = 1.66 \cdot 10^6 \cdot (1-0) = 1.66 \cdot 10^6 \cdot (1-0) = 1.66 \cdot 10^6 \cdot (1-0) = 1.66 \cdot 10^6 \cdot (1-0) = 1.66 \cdot 10^6 \cdot (1-0) = 1.6**

0.000083

Максимальный из разовых выброс, г/с (5.2), MCEK = $K_M^X \cdot B4AC/3600 \cdot (1-\eta) = 1.66 \cdot 2$ /3600 · (1-0) = 0.000922

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 0.41$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), **МГОД = K_M^X \cdot BГОД / 10^6 \cdot (1-\eta) = 0.41 \cdot 50 / 10^6 \cdot (1-0) = 0.41**

0.0000205

Максимальный из разовых выброс, г/с (5.2), **МСЕК = K_M^X \cdot BVAC / 3600 \cdot (1-\eta) = 0.41 \cdot 2**

$/3600 \cdot (1-0) = 0.000228$

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси Расход сварочных материалов, кг/год, BIOJ = 38

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BYAC = 2

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $r/\kappa r$ расходуемого материала (табл. 1, 3), $K_{ss}^{X} = 15$

С учетом трансформации оксидов азота получаем: Степень очистки, доли ед., $\eta = \mathbf{0}$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), **МГОД = KNO2 · K** $\frac{X}{M}$ · **ВГОД / 10^6 · (1-\eta) = 0.8 \cdot 15 \cdot 38 / 10^6 · (1-0) = 0.000456**

Максимальный из разовых выброс, г/с (5.2), MCEK = KNO2 · K $_M^X$ · BЧAC / 3600 · (1- η) = 0.8 · 15 · 2 / 3600 · (1-0) = 0.00667

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), **МГОД = KNO** · K_M^X · **ВГОД / 10^6 · (1-\eta) = 0.13 · 15 · 38 / 10^6 · (1-0) = 0.0000741**

Максимальный из разовых выброс, г/с (5.2), MCEK = KNO·K $_M^X$ ·ВЧАС/3600·(1- η) = 0.13·15·2/3600·(1-0) = 0.001083

итого:

11010.			
Код	Наименование 3В	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо)	0.00874	0.001322
	(диЖелезо триоксид, Железа оксид) (274)		
0143	Марганец и его соединения (в пересчете на	0.000922	0.000129
	марганца (IV) оксид) (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00667	0.000516
0304	Азот (II) оксид (Азота оксид) (6)	0.001083	0.00008385
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00739	0.000665
0342	Фтористые газообразные соединения /в пересчете	0.000417	0.0000375
	на фтор/ (617)		
0344	Фториды неорганические плохо растворимые -	0.001833	0.000165
	(алюминия фторид, кальция фторид, натрия		

	гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		_
2908	Пыль неорганическая, содержащая двуокись	0.000778	0.0000905
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город: 024, с.Баянды

Объект: 0001, Вариант 2 Строительство здания для печи по сжиганию

медотходов

Источник загрязнения: 6008, Покрасочные работы Источник выделения: 6008 01, Покрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.033

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, $\kappa \Gamma$, MS1=2

Марка ЛКМ: Грунтовка ГФ-021

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, **DP = 100**

Валовый выброс ЗВ (3-4), т/год, $\text{_M} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.033 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.01485$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 2 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.25$

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.056

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, $\kappa \Gamma$, MS1=2

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Безвоздушный

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50 Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс ЗВ (3-4), т/год, $\text{_M_=MS} \cdot \text{F2} \cdot \text{FPI} \cdot DP \cdot 10^{-6} = 0.056 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0126$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 2 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.125$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=50
Доля растворителя, при окраске и сушке
для данного способа окраски (табл. 3), %, DP=100
Валовый выброс ЗВ (3-4), т/год, _M_=MS·F2·FPI·DP·10-6=0.056·45·50·100·10-6=
0.0126

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 2 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.125$

Расчет выбросов окрасочного аэрозоля:

<u>Примесь: 2902 Взвешенны</u>е частицы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 2.5 Валовый выброс 3В (1), т/год, $_M_=KOC \cdot MS \cdot (100-F2) \cdot DK \cdot 10^{-4} = 1 \cdot 0.056 \cdot (100-45) \cdot 2.5 \cdot 10^{-4} = 0.00077$

Максимальный из разовых выброс 3В (2), г/с, $_G_=KOC \cdot MS1 \cdot (100-F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 2 \cdot (100-45) \cdot 2.5 / (3.6 \cdot 10^4) = 0.00763888889$

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка Фактический годовой расход ЛКМ, тонн, MS = 0.022 Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Растворитель Р-4

Способ окраски: Окунание (пропитка)

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $\text{_M_=} MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.022 \cdot 100 \cdot 26 \cdot 100 \cdot 10^{-6} = 0.00572$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, **DP = 100**

Валовый выброс 3В (3-4), т/год, $\text{_M_=MS} \cdot \text{F2} \cdot \text{FPI} \cdot \text{DP} \cdot 10^{-6} = 0.022 \cdot 100 \cdot 12 \cdot 100 \cdot 10^{-6} = 0.00264$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 2 \cdot 100 \cdot 12 \cdot 100 / (3.6 \cdot 10^6) = 0.06666666667$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $\text{_M_=MS} \cdot \text{F2} \cdot \text{FPI} \cdot \text{DP} \cdot 10^{-6} = 0.022 \cdot 100 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.01364$

Итоговая таблица выбросов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.25	0.02745
0621	Метилбензол (349)	0.3444444444	0.01364
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.06666666667	0.00264
1401	Пропан-2-он (Ацетон) (470)	0.1444444444	0.00572
2752	Уайт-спирит (1294*)	0.125	0.0126
2902	Взвешенные частицы (116)	0.00763888889	0.00077

Источник 6009. Выбросы от шлифовальной машины

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов Местный отсос пыли не проводится Тип расчета: без охлаждения

Вид оборудования: Плоскошлифовальные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , $_{T_}$ =135,0

Число станков данного типа, шт., $_{\it KOLIV}$ = 1

Число станков данного типа, работающих одновременно, шт. , NSI = 1

```
Примесь: 2930 Пыль абразивная (Корунд белый; Монокорунд)
```

Удельный выброс, г/с (табл. 1) , GV = 0.02
Коэффициент гравитационного оседания (п. 5.3.2) , KN = KNAB = 0.2
Валовый выброс, т/год (1) , _M_ = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 0.2 *0.02 * 135,0 * 1 / 10 ^ 6 = 0.00194

Максимальный из разовых выброс, г/с (2) , _G_ = KN * GV * NS1 = 0.2 * 0.02 * 1 = 0.004

Примесь: 2902 Взвешенные вещества

Удельный выброс, г/с (табл. 1) , GV = 0.03 Коэффициент гравитационного оседания (п. 5.3.2) , KN = KNAB = 0.2 Валовый выброс, т/год (1) , $\underline{M} = 3600 * KN * GV * \underline{T} * \underline{KOLIV} / 10 ^ 6 = 3600 * 0.2 *0.03 * 135,0 * 1 / 10 ^ 6 = 0.00292$ Максимальный из разовых выброс, г/с (2) , $\underline{G} = KN * GV * NS1 = 0.2 * 0.03 * 1 = 0.006$

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2930	Пыль абразивная (Корунд белый; Монокорунд)	0.004	0,00194
2902	Взвешенные вещества	0.006	0,00292

Расчет выбросов 3В от передвижного автотранспорта

Выхлопные газы от спецтехники

Расчетные формулы g=M*K (т/год)

 $M=g/T/3600*10^6$ (r/c)

Nº	Виды спецтехники	Количество
		часов
		работы,
		маш-ч
1	Экскаваторы одноковшовые дизельные	192,85
2	Бульдозеры	179,03
3	Трамбовки	253,40
4	Машины поливомоечные 6000 л	75,26
5	Катки дорожные прицепные на пневмоколесном ходу массой 25 т	16,66
6	Краны на автомобильном ходу максимальной грузоподъёмностью 10 т	115,25
7	Автопогрузчики, грузоподъёмность 5 т	51,47

					Максимально-
Расход			Уд.	Валовый	разовый
топлива	Код		выброс	выброс, д,	выброс, М,
т/год	3B	Наименование ЗВ	3В, т/т	т/год	г/с
		Экскаватор	_		
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,0116	0,0167
	328	Углерод черный (Сажа)	0,016	0,0046	0,0067
0,29	330	Сера диоксид	0,02	0,0058	0,0083
	337	Углерода оксид	0,1	0,0289	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,00000009	0,0000001
	2754	Углеводороды С12-С19	0,03	0,0087	0,0125
		Бульдозеры		•	
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,0107	0,0167
	328	Углерод черный (Сажа)	0,016	0,0043	0,0067
0,27	330	Сера диоксид	0,02	0,0054	0,0083
	337	Углерода оксид	0,1	0,0269	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,00000009	0,0000001
	2754	Углеводороды С12-С19	0,03	0,0081	0,0125
	1	Трамбовки			
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,0152	0,0167
	328	Углерод черный (Сажа)	0,016	0,0061	0,0067
0,380	330	Сера диоксид	0,02	0,0076	0,0083
	337	Углерода оксид	0,1	0,0380	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,00000012	0,00000013
	2754	Углеводороды С12-С19	0,03	0,0114	0,0125
	1	Машины поливомоечн			T
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,004516	0,0167
	328	Углерод черный (Сажа)	0,016	0,001806	0,0067
0,113	330	Сера диоксид	0,02	0,002258	0,0083
	337	Углерода оксид	0,1	0,011289	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,00000004	0,0000001
	2754	Углеводороды С12-С19	0,03	0,003387	0,0125
		Катки дорожные прицепные на пневмо			T
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,0010	0,0167
	328	Углерод черный (Сажа)	0,016	0,0004	0,0067
0,025	330	Сера диоксид	0,02	0,0005	0,0083
	337	Углерода оксид	0,1	0,0025	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,000000008	0,0000001
	2754	Углеводороды С12-С19	0,03	0,0007	0,0125
		раны на автомобильном ходу максималь			0.0167
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,00692	0,0167
	328	Углерод черный (Сажа)	0,016	0,00277	0,0067

1			1		1
0,173	330	Сера диоксид	0,02	0,00346	0,0083
	337	Углерода оксид	0,1	0,0173	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,00000006	0,0000001
	2754	Углеводороды С12-С19	0,03	0,00519	0,0125
		Автопогрузчики, грузопод	ьёмность 5 т		
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,0031	0,0167
	328	Углерод черный (Сажа)	0,016	0,00124	0,0067
0,077	330	Сера диоксид	0,02	0,0015	0,0083
	337	Углерода оксид	0,1	0,0077	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,00000002	0,0000001
	2754	Углеводороды С12-С19	0,03	0,0023	0,0125
		Суммарные выбро	осы		
	301	Азот (IV) оксид (Азота диоксид)	0,04	0,0530	0,0167
	328	Углерод черный (Сажа)	0,016	0,0212	0,0067
1,33	330	Сера диоксид	0,02	0,0265	0,0083
	337	Углерода оксид	0,1	0,1326	0,0417
	703	Бенз/а/пирен (3,4-Бензпирен)	0,00000032	0,0000	0,0000001
	2754	Углеводороды С12-С19	0,03	0,0398	0,0125

Расчеты выбросов зв в атмосферу на период период эксплуатации: Источник 0001 Дымовая труба печи -инсинезатора Веста плюс

Исходные данные:

Годовой расход сжигаемых медотходов составляет 180,0т/год Максимальный разовый выброс загрязняющих веществ рассчитывается по формуле

 $G=C_{max} * V*10^{-3}$. г/сек;

Где

 C_{max} — максимальная концентрация загрязняющего вещества на выходе из дымовой трубы, мг/м3;

V — фактический объем газовоздушной смеси на выходе из трубы при t=200 C, м3/сек (0.712м 3 /сек)

Валовый выброс рассчитывается по формуле:

 $M = C_{max} * V * T * 3600 * 10^{-9}$

Где Т – время работы оборудования, 2880час /год

	Загрязняющие вещества	С мг/нм ³	V, м3/с	Т, ч	η	Выбросы	
						Γ/c	т/год
2902	Взвешенные частицы	10	0,712	2880	0,75	0,00178	0,01846
337	Оксид углерода (угарный	50					
	газ, окись углерода, монооксид углерода, СО)		0,712	2880	0,75	0,0089	0,09228
316	Хлорид водорода (HCl)	10	0,712	2880	0,75	0,00178	0,01846
330	Диоксид серы (SO ₂)	50	0,712	2880	0,75	0,0089	0,09228
301	Азота диоксид	200	0,712	2880	0,75	0,02848	0,29528
304	Азота оксид	200	0,712	2880	0,75	0,004628	0,04798
3620	Диоксины	0,0000001	0,712	2880	0,75	0,00000000002	0,0000000018
2424	Фуран	0,0000001	0,712	2880	0,75	0,000000000002	0,0000000018

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город: 024, с.Баянды

Объект: 0001, Вариант 1 Строительство здания для печи по сжиганию

медотходов.

Источник загрязнения: 0001, Дымовая труба печи Веста плюс Источник выделения: 0001 01, Дымовая труба печи Веста плюс Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, $\tau/\text{год}$, BT = 18.5

Расход топлива, r/c, BG = 2.57

Марка топлива, **М = Дизельное топливо**

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, % (прил. 2.1), AR = 0.025Предельная зольность топлива, % не более (прил. 2.1), A1R = 0.025Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.3Предельное содержание серы в топливе, % не более (прил. 2.1), S1R = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 1.4 Фактическая мощность котлоагрегата, кВт, QF = 1.4 Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0154 Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0 Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0154 \cdot (1.4/1.4)^{0.25} = 0.0154$ Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 18.5 \cdot 42.75 \cdot 0.0154 \cdot (1-0) = 0.01218$ Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.57 \cdot 42.75 \cdot 0.0154 \cdot (1-0) = 0.001692$ Выброс азота диоксида (0301), $T/TODA \cdot M = 0.8 \cdot MNOT = 0.8 \cdot 0.01218 = 0.009744$ Выброс азота диоксида (0301), $T/TODA \cdot M = 0.8 \cdot MNOG = 0.8 \cdot 0.001692 = 0.0013536$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс авота оксида (0304), т/год, $_M_=0.13 \cdot \text{MNOT}=0.13 \cdot 0.01218=0.0015834$ Выброс авота оксида (0304), г/с, $_G_=0.13 \cdot \text{MNOG}=0.13 \cdot 0.001692=0.00021996$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.02 Содержание сероводорода в топливе, % (прил. 2.1), H2S = 0 Выбросы окислов серы, т/год (Φ -ла 2.2), $M_0 = 0.02 \cdot \text{BT} \cdot \text{SR} \cdot (1-\text{NSO2}) + 0.0188 \cdot \text{H2S} \cdot \text{BT} = 0.02 \cdot 18.5 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 18.5 = 0.10878$ Выбросы окислов серы, г/с (Φ -ла 2.2), $G_0 = 0.02 \cdot \text{BG} \cdot \text{SIR} \cdot (1-\text{NSO2}) + 0.0188 \cdot \text{H2S} \cdot \text{BG} = 0.02 \cdot 2.57 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 2.57 = 0.0151116$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4=0 Тип топки: Камерная топка Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3=0.5 Коэффициент, учитывающий долю потери тепла, R=0.65 Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO=Q3\cdot R\cdot QR=0.5\cdot 0.65\cdot 42.75=13.9$ Выбросы окиси углерода, т/год (ф-ла 2.4), $_{-}M_{-}=0.001\cdot BT\cdot CCO\cdot (1-Q4/100)=0.001\cdot 18.5\cdot 13.9\cdot (1-0/100)=0.25715$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_{-}G_{-}=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100)=0.001 \cdot 2.57 \cdot 13.9 \cdot (1-0/100)=0.035723$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент (табл. 2.1), F = 0.01

Тип топки: Камерная топка Наименование ПГОУ: 75

Фактическое КПД очистки, %, _KPD_ = 75

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 18.5 \cdot 0.025 \cdot 0.01 = 0.004625$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot A1R \cdot F = 2.57 \cdot 0.025 \cdot 0.01 = 0.0006425$

Валовый выброс с учетом очистки, т/год, $M = M_{\cdot}(1-KPD_{\cdot}/100) = 0.004625 \cdot (1-75/100) = 0.001156$

Максимальный разовый выброс с учетом очистки, г/с, $G = G \cdot (1-KPD_1/100) = 0.0006425 \cdot (1-75/100) = 0.0001606$

MTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0013536	0.009744
0304	Азот (II) оксид (Азота оксид) (6)	0.00021996	0.0015834
0328	Углерод (Сажа, Углерод черный) (583)	0.0006425	0.004625
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0151116	0.10878
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.035723	0.25715

Итого (с учетом очистки):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0013536	0.009744
0304	Азот (II) оксид (Азота оксид) (6)	0.00021996	0.0015834
0328	Углерод (Сажа, Углерод черный) (583)	0.0001606	0.001156
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0151116	0.10878
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.035723	0.25715

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город: 024, с.Баянды

Объект: 0001, Вариант 1 Строительство здания для печи по сжиганию

медотходов.

Источник загрязнения: 6001, Емкость для дизтоплива Источник выделения: 6001 01, Емкость для дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, r/м3 (Прил. 15), **СМАХ = 2.25**

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, M3, QOZ = 9.25

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3 (Прил. 15), *coz* = **1.19**

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 9.25

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, r/м3 (Прил. 15), **CVL = 1.6**

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL=3

Максимальный из разовых выброс, r/c (9.2.1), $GR = (CMAX \cdot VSL)/3600 = (2.25 \cdot 3)/$

3600 = 0.001875

Выбросы при закачке в резервуары, т/год (9.2.4), $\textit{MZAK} = (\textit{COZ} \cdot \textit{QOZ} + \textit{CVL} \cdot \textit{QVL}) \cdot 10^{-6} = (1.19 \cdot 9.25 + 1.6 \cdot 9.25) \cdot 10^{-6} = 0.0000258$

Удельный выброс при проливах, r/m3, J=50

Выбросы паров нефтепродукта при проливах, τ /год (9.2.5), MPRR = 0.5 · J · (QOZ + QVL) · 10⁻⁶ = 0.5 · 50 · (9.25 + 9.25) · 10⁻⁶ = 0.0004625

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000258 + 0.0004625 = 0.000488

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 99.72 \cdot 0.000488 / 100 = 99.72 \cdot 0.00048 / 100 = 99.72 \cdot 0.00048 / 100 = 99.72 \cdot 0.000488 / 100 = 99.72 \cdot 0.00048$

0.0004866336

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 99.72 \cdot 0.001875/100 = 0.00186975$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.000488 / 100 = 0.000488 / 100 = 0.000$

0.0000013664

Максимальный из разовых выброс, г/с (5.2.4), $_{G}$ = $CI \cdot G/100 = 0.28 \cdot 0.001875/$

100 = 0.00000525

Код	Наименование 3В	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000525	0.0000013664
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00186975	0.0004866336
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

«КАЗГИДРОМЕТ» РМК

РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН
РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ,
ЖӘНЕ ТАБИҒИ
РЕСУРСТАР
МИНИСТРЛІГІ

МИНИСТЕРСТВО
ЭКОЛОГИИ И
ПРИРОДНЫХ
РЕСУРСОВ
РЕСПУБЛИКИ
КАЗАХСТАН

27.09.2025

- 1. Город -
- 2. Agpec Мангистауская область, Мунайлинский район, Баяндинский сельский округ
- 4. Организация, запрашивающая фон TOO \"Saken 23\"
- 5. Объект, для которого устанавливается фон **Проектируемый объект здания для печи по сжиганию мединских отходов.**
 - Разрабатываемый проект Рабочий проект «Строительство здания печи по уничтожению (сжиганию) медицинских отходов (сжечь) по
- адресу:Мангистауская область, Мунайлинский район, Баяндинский с.с., с. Баянды, промышленная зона 1, участок 113/3. (без сметной документации и наружных инженерных сетей).».
- Перечень вредных веществ, по которым устанавливается фон: Взвешанные 7. частицы РМ10, Азота диоксид, Взвеш.в-ва, Диоксид серы, Углерода оксид,
- Азота оксид, Серово дород, Фтористый водород, Водород хлористый, Углеводороды, Свинец,

В связи с отсутствием наблюдений за состоянием атмосферного воздуха в Мангистауская область, Мунайлинский район, Баяндинский сельский округ выдача справки о фоновых концентрациях загрязняющих веществ в агмосферном воздухе не представляется возможным.

Расчет рассеивания ЗВ в приземном слое атмосферы

1. Общие сведения. Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск Заключение экспертизы Министерства природных ресурсов и Росгидромета | № 01-03436/23и выдано 21.04.2023 2. Параметры города ПК ЭРА v4.0. Модель: МРК-2014 Название: с.Баянды Коэффициент А = 200 Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0) Средняя скорость ветра = 4.3 м/с Температура летняя = 27.9 град.С Температура зимняя = -7.2 град.С Коэффициент рельефа = 1.00 Площадь города = 0.0 кв.км Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов 3. Исходные параметры источников. ПК ЭРА v4.0. Модель: MPK-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09 Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4) ПДКмр для примеси 0301 = 0.2 мг/м3Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия Код | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди| Выброс ~Ист.~|~~м~~|~~м~~|~м/с~|~м3/с~~|градС|~~~м~~~~|~~м~~ **√гр.|~~~**| 0001 T 4.0 0.32 15.80 1.26 1100. -528.59 -397.96 1.0 1.00 0 0.0298336 4. Расчетные параметры См, Им, Хм ПК ЭРА v4.0. Модель: МРК-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09 Сезон :ЛЕТО (температура воздуха 27.9 град.С) Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4) ПДКмр для примеси 0301 = 0.2 мг/м3 Коды источников уникальны в рамках всего предприятия Источники Их расчетные параметры |Номер| Код | М |Тип | Ст | Um | Xm | |-п/п-|-Ист.-|--------[м/с]---[м/с]---[м]----1 | 0001 | 0.029834 | T | 0.116030 | 5.70 | 87.4 | |Суммарный Mq= 0.029834 г/с Сумма См по всем источникам = 0.116030 долей ПДК Средневзвешенная опасная скорость ветра =

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

```
Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
       ПДКмр для примеси 0301 = 0.2 мг/м3
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 19
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Исв
                Расшифровка обозначений
      | Ос - суммарная концентрация [доли ПДК]
      Сс - суммарная концентрация [мг/м.куб]
      Фоп- опасное направл. ветра [ угл. град.] |
      | Uоп- опасная скорость ветра [ м/с ] |
 | -Если в расчете один источник, то его вклад и код не печатаются|
y= -980: -1112: -920: -840: -920: -972: -1105: 1114: 1109: 1106: 1118: 1041: -1120: 1106: 1121:
    x= 10: 43: 60: 127: 147: 160: 193: 830: 835: 843: 984: 994: -107: 1043: 1138:
        Qc: 0.014: 0.010: 0.014: 0.014: 0.012: 0.011: 0.009: 0.002: 0.002: 0.002: 0.002: 0.002: 0.013: 0.002: 0.002:
Cc: 0.003: 0.002: 0.003: 0.003: 0.002: 0.002: 0.002: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
y= 973: 1106: 1124: 1106:
         ---:---
              --:--
x= 1154: 1243: 1293: 1294:
    ----:-----:
Oc: 0.002: 0.002: 0.002: 0.002:
Cc: 0.000: 0.000: 0.000: 0.000:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPK-2014
     Координаты точки : X = 60.4 м, Y = -920.0 м
Максимальная суммарная концентрация | Cs= 0.0138497 доли ПДКмр|
                 0.0027699 мг/м3
 Достигается при опасном направлении 311 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф. влияния
 --|-Ист.-|---| b=C/M ---|
 1 | 0001 | T | 0.0298 | 0.0138497 | 100.00 | 100.00 | 0.464232832 |
   Остальные источники не влияют на данную точку (0 источников)
9. Результаты расчета по границе санзоны.
 ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
       ПДКмр для примеси 0301 = 0.2 мг/м3
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 64
  Фоновая концентрация не задана
```

Направление ветра: перебор от 0 до 360 с шагом 10 град.

```
Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Uсв
                Расшифровка_обозначений
     Ос - суммарная концентрация [доли ПДК]
     | Сс - суммарная концентрация [мг/м.куб]
     Фоп- опасное направл. ветра [ угл. град.]
     | Uon- опасная скорость ветра [ м/с ] |
  -Если в расчете один источник, то его вклад и код не печатаются
v= -906: -912: -910: -900: -882: -857: -824: -790: -789: -788: -786: -776: -776: -746: -698:
    x= -450: -513: -576: -638: -698: -755: -809: -854: -855: -856: -859: -869: -869: -901: -941:
         Qc: 0.027: 0.027: 0.027: 0.027: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.027: 0.027: 0.028: 0.028: 0.027:
Cc: 0.005: 0.005: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.005: 0.006: 0.006: 0.006:
y= -645: -588: -529: -467: -404: -342: -280: -220: -163: -110: -61: 39: 38: 63: 103:
    x= -975: -1002: -1022: -1034: -1038: -1035: -1023: -1004: -977: -944: -904: -811: -810: -787: -738:
Qc: 0.028: 0.027: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.028: 0.027: 0.027: 0.026: 0.025:
Cc: 0.006: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.005: 0.005: 0.005: 0.005:
y= 137: 164: 183: 195: 199: 195: 183: 163: 136: 103: 63: 50: 50: 23: -26:
                   x= -685: -628: -569: -507: -444: -382: -320: -260: -203: -150: -102: -89: -89: -62: -22:
Qc: 0.024: 0.024: 0.023: 0.022: 0.021: 0.021: 0.021: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020: 0.020:
Cc: 0.005: 0.005: 0.005: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
y= -80: -137: -197: -259: -322: -384: -446: -505: -561: -614: -662: -760: -760: -767: -809:
             x= 10: 36: 55: 66: 68: 64: 51: 31: 3: -32: -72: -167: -168: -175: -222:
                      ---:---:---:---:
                                   .__:_--:---:
Oc: 0.020: 0.021: 0.021: 0.021: 0.022: 0.022: 0.022: 0.023: 0.024: 0.024: 0.025: 0.027: 0.028: 0.028: 0.027: 0.028:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.005: 0.005: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006:
v= -844: -872: -893: -906:
   ----:----:
x = -274: -330: -389: -450:
    ___.
Oc: 0.028: 0.028: 0.027: 0.027:
Cc: 0.006: 0.006: 0.005: 0.005:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPK-2014
    Координаты точки: X= -944.1 м, Y= -110.0 м
Максимальная суммарная концентрация | Cs= 0.0281585 доли ПДКмр|
                     0.0056317 мг/м3
 Достигается при опасном направлении 125 град.
          и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                           ВКЛАДЫ ИСТОЧНИКОВ
Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
```

```
-|-Ист.-|---|---М-(Mq)--|-С|доли ПДК|-|--
              0.0298| 0.0281585 | 100.00 | 100.00 | 0.943852961 |
   Остальные источники не влияют на данную точку (0 источников)
10. Результаты расчета в фиксированных точках.
 ПК ЭРА v4.0. Модель: MPK-2014
    Группа точек 001
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов...
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
        ПДКмр для примеси 0301 = 0.2 мг/м3
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
               0.5 1.0 1.5 долей Uсв
Точка 1. Расчетная точка.
     Координаты точки : X = -554.0 м, Y = 3.0 м
Максимальная суммарная концентрация | Cs= 0.0385866 доли ПДКмр|
                      0.0077173 мг/м3
 Достигается при опасном направлении 177 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|----М-(Mq)--|-С[доли ПДК]-|------|----- b=C/M ---|
 1 | 0001 | T | 0.0298 | 0.0385866 | 100.00 | 100.00 | 1.2933941 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 2. Расчетная точка.
     Координаты точки: X= -907.0 м, Y= -534.0 м
Максимальная суммарная концентрация | Cs= 0.0387386 доли ПДКмр|
                      0.0077477 \text{ мг/м3}
 Достигается при опасном направлении 70 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---М-(Mq)--|-С[доли ПДК]-|-----|-----|---- b=C/M ---|
 1 | 0001 | T | 0.0298 | 0.0387386 | 100.00 | 100.00 | 1.2984904 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 3. Расчетная точка.
     Координаты точки: X= -179.0 м, Y= -316.0 м
Максимальная суммарная концентрация | Cs= 0.0448498 доли ПДКмр|
                      0.0089700 мг/м3
 Достигается при опасном направлении 257 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
|----|-Ист.-|---М-(Mq)--|-С[доли ПДК]-|-----|----- b=C/M ---|
 1 | 0001 | T | 0.0298 | 0.0448498 | 100.00 | 100.00 | 1.5033302 |
```

```
Остальные источники не влияют на данную точку (0 источников)
Точка 4. Расчетная точка.
     Координаты точки: X= -487.0 м, Y= -758.0 м
Максимальная суммарная концентрация | Cs= 0.0442452 доли ПДКмр|
                      0.0088490 мг/м3
 Достигается при опасном направлении 353 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % | Коэф.влияния |
 ---|-Ист.-|---|---М-(Мq)--|-С[доли ПДК]-|------|------|----- b=С/М ---|
 1 | 0001 | T | 0.0298 | 0.0442452 | 100.00 | 100.00 | 1.4830664 |
   Остальные источники не влияют на данную точку (0 источников)
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
        ПДКмр для примеси 0301 = 0.2 мг/м3
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всей расчетной зоне.
  Расчетный шаг 50 м. Всего просчитано точек: 9
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
               0.5 1.0 1.5 долей Исв
                 Расшифровка обозначений
      | Qc - суммарная концентрация [доли ПДК]
       Сс - суммарная концентрация [мг/м.куб]
       Фоп- опасное направл. ветра [ угл. град.] |
      | Uon- опасная скорость ветра [ м/с ] |
  | -Если в расчете один источник, то его вклад и код не печатаются|
y= -402: -369: -335: -301: -314: -347: -379: -412: -403:
    ---:-----:
x= -538: -507: -476: -445: -431: -463: -495: -527: -537:
    ----:-----:-----:-----:
Oc: 0.089: 0.102: 0.116: 0.103: 0.102: 0.115: 0.104: 0.090: 0.089:
Cc: 0.018: 0.020: 0.023: 0.021: 0.020: 0.023: 0.021: 0.018: 0.018:
Фоп: 67: 217: 220: 221: 229: 231: 241: 351: 60:
Uon: 5.70: 5.70: 5.70: 5.70: 5.70: 5.70: 5.70: 5.70: 5.70:
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
 | № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: MPK-2014
  Название: с.Баянды
  Коэффициент А = 200
  Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)
  Средняя скорость ветра = 4.3 м/с
  Температура летняя = 27.9 град.С
```

Температура зимняя = -7.2 град.С

Коэффициент рельефа = 1.00

Площадь города = 0.0 кв.км

Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов

3. Исходные параметры источников.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0304 - Азот (II) оксид (Азота оксид) (6) ПДКмр для примеси 0304 = 0.4 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников

Коэффициент оседания (F): индивидуальный с источников

Коды источников уникальны в рамках всего предприятия

```
      Код | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP | Ди| Выброс

      ~Ист.~|~м~|~м~|~м/с~|~м3/с~|градС|~~м~~|~м-~|~м3/с~|градС|

      0001 Т 4.0 0.32 15.80 1.26 1100. -528.59 -397.96
      1.0 1.00 0 0.0048480
```

4. Расчетные параметры См, Им, Хм

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09

Сезон :ЛЕТО (температура воздуха 27.9 град.С) Примесь :0304 - Азот (II) оксид (Азота оксид) (6)

ПЛКмр для примеси 0304 = 0.4 мг/м3

Коды источников уникальны в рамках всего предприятия

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09

Примесь :0304 - Азот (II) оксид (Азота оксид) (6)

ПДКмр для примеси 0304 = 0.4 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:09

Примесь :0304 - Азот (П) оксид (Азота оксид) (6)

ПДКмр для примеси 0304 = 0.4 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

10. Результаты расчета в фиксированных точках...

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0304 - Азот (II) оксид (Азота оксид) (6) ПДКмр для примеси 0304 = 0.4 мг/м3 Расчет не проводился: См < 0.05 долей ПДК 11. Результаты расчета по расчетной зоне "Территория предприятия". ПК ЭРА v4.0. Модель: MPK-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0304 - Азот (II) оксид (Азота оксид) (6) ПДКмр для примеси 0304 = 0.4 мг/м3 Расчет не проводился: См < 0.05 долей ПДК 1. Общие сведения. Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск Заключение экспертизы Министерства природных ресурсов и Росгидромета 1 | № 01-03436/23и выдано 21.04.2023 2. Параметры города ПК ЭРА v4.0. Модель: МРК-2014 Название: с.Баянды Коэффициент А = 200 Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0) Средняя скорость ветра = 4.3 м/с Температура летняя = 27.9 град.С Температура зимняя = -7.2 град.С Коэффициент рельефа = 1.00 Площадь города = 0.0 кв.км Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов 3. Исходные параметры источников. ПК ЭРА v4.0. Модель: МРК-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0316 - Гидрохлорид (Соляная кислота, Водород хлорид) (163) ПДКмр для примеси 0316 = 0.2 мг/м3 Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 |Alf| F | КР |Ди| Выброс ~Ист.~|~~|~~м~~|~м/с~|~м3/с~-|градС|~~~м~~~-|~~м~~~-|~~~м~~~-|~~~м~~~ ~~|гр.|~~~|~~~|~~|г/с~~~ 0001 T 4.0 0.32 15.80 1.26 1100. -528.59 -397.96 4. Расчетные параметры См, Им, Хм ПК ЭРА v4.0. Модель: МРК-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Сезон :ЛЕТО (температура воздуха 27.9 град.С) Примесь :0316 - Гидрохлорид (Соляная кислота, Водород хлорид) (163) ПДКмр для примеси 0316 = 0.2 мг/м3

Коды источников уникальны в рамках всего предприятия

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0316 - Гидрохлорид (Соляная кислота, Водород хлорид) (163) ПДКмр для примеси 0316 = 0.2 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0316 - Гидрохлорид (Соляная кислота, Водород хлорид) (163) ПДКмр для примеси 0316 = 0.2 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

10. Результаты расчета в фиксированных точках..

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0316 - Гидрохлорид (Соляная кислота, Водород хлорид) (163) ПДКмр для примеси 0316 = 0.2 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

11. Результаты расчета по расчетной зоне "Территория предприятия".

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0316 - Гидрохлорид (Соляная кислота, Водород хлорид) (163) ПДКмр для примеси 0316 = 0.2 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

1. Общие сведения.

Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск

| Заключение экспертизы Министерства природных ресурсов и Росгидромета | № 01-03436/23и выдано 21.04.2023 |

2. Параметры города

ПК ЭРА v4.0. Модель: MPK-2014

Название: с.Баянды Коэффициент A = 200

Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0) Средняя скорость ветра = 4.3 м/с

Температура летняя = 27.9 град. С Температура зимняя = -7.2 град. С

Коэффициент рельефа = 1.00

Площадь города = 0.0 кв.км

Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов

3. Исходные параметры источников.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0328 - Углерод (Сажа, Углерод черный) (583)

ПДКмр для примеси 0328 = 0.15 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников

Коэффициент оседания (F): индивидуальный с источников

Коды источников уникальны в рамках всего предприятия

4. Расчетные параметры См, Им, Хм

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.гол: 2026 (СП) Расчет проводился 08.09.2025 11:10

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.20

Сезон :ЛЕТО (температура воздуха 27.9 град.С)

Примесь :0328 - Углерод (Сажа, Углерод черный) (583)

ПДКмр для примеси 0328 = 0.15 мг/м3

Коды источников уникальны в рамках всего предприятия

Источники	Их расчетные параметры
Номер Код М Тип Ст	Um Xm
-п/п- -Ист -[доли ПДК	[]- [m/c] [m]
1 0001 0.000161 T 0.002498	
	· · · · · · · · · · · · · · · · · · ·
Суммарный Мq= 0.000161 г/с	
Сумма См по всем источникам =	0.002498 долей ПДК
Средневзвешенная опасная скорост	гь ветра = 5.70 м/с
Дальнейший расчет нецелесообраз	ен: Сумма См < 0.05 долей ПДК
- 	

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0328 - Углерод (Сажа, Углерод черный) (583)

ПДКмр для примеси 0328 = 0.15 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0328 - Углерод (Сажа, Углерод черный) (583)

ПДКмр для примеси 0328 = 0.15 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

```
10. Результаты расчета в фиксированных точках..
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
        ПДКмр для примеси 0328 = 0.15 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10
  Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
        ПДКмр для примеси 0328 = 0.15 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPК-2014
     Координаты точки: X= -475.8 м, Y= -335.0 м
Максимальная суммарная концентрация | Cs= 0.1160009 доли ПДКмр|
                      0.0232002 \text{ мг/м3}
 Достигается при опасном направлении 220 град.
           и скорости ветра 5.70 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---M-(Mq)--|-С[доли ПДК]-|-----|-----b=C/M ---|
 1 | 0001 | T | 0.0298 | 0.1160009 | 100.00 | 100.00 | 3.8882639 |
   Остальные источники не влияют на данную точку (0 источников)
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
 № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: МРК-2014
  Название: с.Баянлы
  Коэффициент А = 200
  Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)
  Средняя скорость ветра = 4.3 м/с
  Температура летняя = 27.9 град.С
  Температура зимняя = -7.2 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП)
                                    Расчет проводился 08.09.2025 11:10
  Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
        ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
```

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия

4. Расчетные параметры См, Им, Хм

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Сезон :ЛЕТО (температура воздуха 27.9 град.С)

Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) ПДКмр для примеси 0330 = 0.5 мг/м3

Коды источников уникальны в рамках всего предприятия

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

ПДКмр для примеси 0330 = 0.5 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

ПДКмр для примеси 0330 = 0.5 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

10. Результаты расчета в фиксированных точках..

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов...

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

ПДКмр для примеси 0330 = 0.5 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

11. Результаты расчета по расчетной зоне "Территория предприятия".

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) ПДКмр для примеси 0330 = 0.5 мг/м3Расчет не проводился: См < 0.05 долей ПДК 1. Общие сведения. Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск Заключение экспертизы Министерства природных ресурсов и Росгидромета | № 01-03436/23и выдано 21.04.2023 2. Параметры города ПК ЭРА v4.0. Модель: MPK-2014 Название: с.Баянды Коэффициент А = 200 Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0) Средняя скорость ветра = 4.3 м/с Температура летняя = 27.9 град.С Температура зимняя = -7.2 град.С Коэффициент рельефа = 1.00 Площадь города = 0.0 кв.км Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов 3. Исходные параметры источников. ПК ЭРА v4.0. Модель: MPК-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов... Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0333 - Сероводород (Дигидросульфид) (518) ПДКмр для примеси 0333 = 0.008 мг/м3 Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP |Ди| Выброс ~Ист.~|~м~|~м~|~м/с~|~м3/с~|градС|~~м~~~|~м~~~|~м~~~|~тр.|~~ 6001 П1* 2.0 25.0 -521.59 -398.91 2.85 1.87 44 1.0 1.00 0 0.0000052 Источники, имеющие произвольную форму (помеченны *) | Код | Тип| Координаты вершин Площадь или | ист. | ИЗ | (X1,Y1),...(Xn,Yn), M | длина, м | | 6001 | 111 | (-523.2,-398.96), (-521.21,-397.37), (-519.82,-398.56), (-522.01,-400.55), (-523.2,-399.16) | 5.3 4. Расчетные параметры См, Им, Хм ПК ЭРА v4.0. Модель: MPK-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Сезон :ЛЕТО (температура воздуха 27.9 град.С) Примесь :0333 - Сероводород (Дигидросульфид) (518) ПДКмр для примеси 0333 = 0.008 мг/м3 Коды источников уникальны в рамках всего предприятия | - Для линейных и площадных источников выброс является суммарным| по всей площади, а Ст - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М

```
Источники
                                     Их расчетные параметры
                  |Тип | Ст |
|Номер| Код | М
                                   Um | Xm |
                ----|----|-[доли ПДК]-|--[м/с]--|----[м]----|
|-п/п-|-Ист.-|---
 1 | 6001 | 0.00000525 | 111* | 0.023439 | 0.50 | 11.4 |
|Суммарный Mq= 0.00000525 г/с
                                 0.023439 долей ПДК
|Сумма См по всем источникам =
Средневзвешенная опасная скорость ветра
Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
8. Результаты расчета по жилой застройке.
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКмр для примеси 0333 = 0.008 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
9. Результаты расчета по границе санзоны.
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКмр для примеси 0333 = 0.008 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
10. Результаты расчета в фиксированных точках..
 ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКмр для примеси 0333 = 0.008 \text{ мг/м3}
Расчет не проводился: См < 0.05 долей ПДК
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10
  Примесь :0333 - Сероводород (Дигидросульфид) (518)
        ПДКмр для примеси 0333 = 0.008 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
                                                                                   № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: MPK-2014
  Название: с.Баянды
  Коэффициент А = 200
```

Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)

Средняя скорость ветра = 4.3 м/с

Температура летняя = 27.9 град.С

Температура зимняя = -7.2 град.С

Коэффициент рельефа = 1.00

Площадь города = 0.0 кв.км

Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов

3. Исходные параметры источников.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Коды источников уникальны в рамках всего предприятия

```
Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP |Ди| Выброс
```

4. Расчетные параметры См, Им, Хм

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Сезон :ЛЕТО (температура воздуха 27.9 град.С)

Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Коды источников уникальны в рамках всего предприятия

Источники Номер Код М Тип Ст	Их расчетные параметры Um Xm
-п/п- -Ист -[доли ПД] 1 0001 0.044623 Т 0.006942	K]- [m/c] [m]
Суммарный Мq= 0.044623 г/с Сумма См по всем источникам =	 0.006942 долей ПДК
 Средневзвешенная опасная скороо	
Дальнейший расчет нецелесообраз	зен: Сумма См < 0.05 долей ПДК

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584) ПДКмр для примеси 0337 = 5.0 мг/м3

Расчет не проводился: Cm < 0.05 долей ПДК

10. Результаты расчета в фиксированных точках..

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

11. Результаты расчета по расчетной зоне "Территория предприятия".

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

1. Общие сведения.

Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск

| Заключение экспертизы Министерства природных ресурсов и Росгидромета | № 01-03436/23и выдано 21.04.2023 |

2. Параметры города

ПК ЭРА v4.0. Модель: MPК-2014

Название: с.Баянды Коэффициент A = 200

Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)

Средняя скорость ветра = 4.3 м/с Температура летняя = 27.9 град.С Температура зимняя = -7.2 град.С Коэффициент рельефа = 1.00

Площадь города = 0.0 кв.км

Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов

3. Исходные параметры источников.

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :2424 - Фуран (Фурфуран) (1355*)

ПДКмр для примеси 2424 = 0.01 мг/м3 (ОБУВ)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Коды источников уникальны в рамках всего предприятия

4. Расчетные параметры См, Им, Хм

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Сезон :ЛЕТО (температура воздуха 27.9 град.С)

Примесь :2424 - Фуран (Фурфуран) (1355*)

ПДКмр для примеси 2424 = 0.01 мг/м3 (ОБУВ)

Коды источников уникальны в рамках всего предприятия

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :2424 - Фуран (Фурфуран) (1355*)

ПДКмр для примеси 2424 = 0.01 мг/м3 (ОБУВ)

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.гол: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :2424 - Фуран (Фурфуран) (1355*)

ПДКмр для примеси 2424 = 0.01 мг/м3 (ОБУВ)

Расчет не проводился: См < 0.05 долей ПДК

10. Результаты расчета в фиксированных точках..

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Примесь :2424 - Фуран (Фурфуран) (1355*)

ПДКмр для примеси 2424 = 0.01 мг/м3 (ОБУВ)

Расчет не проводился: Cм < 0.05 долей ПДК

11. Результаты расчета по расчетной зоне "Территория предприятия".

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10

Примесь :2424 - Фуран (Фурфуран) (1355*)

ПДКмр для примеси 2424 = 0.01 мг/м3 (ОБУВ)

Расчет не проводился: См < 0.05 долей ПДК

1. Общие сведения.

Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск

| Заключение экспертизы Министерства природных ресурсов и Росгидромета | № 01-03436/23и выдано 21.04.2023

2. Параметры города

ПК ЭРА v4.0. Модель: MPК-2014

Название: с.Баянды

Коэффициент А = 200 Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0) Средняя скорость ветра = 4.3 м/с Температура летняя = 27.9 град.С Температура зимняя = -7.2 град.С Коэффициент рельефа = 1.00 Площадь города = 0.0 кв.км Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов 3. Исходные параметры источников. ПК ЭРА v4.0. Модель: МРК-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11 Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10) ПДКмр для примеси 2754 = 1.0 мг/м3 Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс ~Ист.~|~~|~~м~~|~м~~|~м/с~|~м3/с~~|градС|~~~м~~~ ~~M~~~~|~~~M~~~~|~~~M~ 6001 П1* 2.0 25.0 -521.59 -398.91 2.85 1.87 44 1.0 1.00 0 0.0018697 Источники, имеющие произвольную форму (помеченны *) | Код | Тип| Координаты вершин Площадь или | ист. | ИЗ | (X1,Y1),...(Xn,Yn), M | длина, м | | 6001 | 111 | (-523.2,-398.96), (-521.21,-397.37), (-519.82,-398.56), (-522.01,-400.55), (-523.2,-399.16) | 5.3 4. Расчетные параметры См, Им, Хм ПК ЭРА v4.0. Модель: МРК-2014 Город :024 с.Баянды. Объект :0001 Строительство здания для печи по сжиганию медотходов.. Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:10 Сезон :ЛЕТО (температура воздуха 27.9 град.С) Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10) ПДКмр для примеси 2754 = 1.0 мг/мКоды источников уникальны в рамках всего предприятия - Для линейных и площадных источников выброс является суммарным по всей плошали, а Ст - концентрация одиночного источника. расположенного в центре симметрии, с суммарным М Источники Их расчетные параметры 1 | 6001 | 0.001870 | П1* | 0.066781 | 0.50 | 11.4 | |Суммарный Mq= 0.001870 г/с Сумма См по всем источникам = 0.066781 долей ПДК Средневзвешенная опасная скорость ветра = 0.50 m/c

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: МРК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

```
Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
           Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 мг/м3
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 19
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
               0.5 1.0 1.5 долей Исв
                 Расшифровка обозначений
      | Qc - суммарная концентрация [доли ПДК] |
       Сс - суммарная концентрация [мг/м.куб]
       Фоп- опасное направл. ветра [ угл. град.] |
      | Uon- опасная скорость ветра [ м/с ] |
  | -Если в расчете один источник, то его вклад и код не печатаются|
y= -980: -1112: -920: -840: -920: -972: -1105: 1114: 1109: 1106: 1118: 1041: -1120: 1106: 1121:
          10: 43: 60: 127: 147: 160: 193: 830: 835: 843: 984: 994: -107: 1043: 1138:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    973: 1106: 1124: 1106:
     ---:----:----
x= 1154: 1243: 1293: 1294:
   ----:----:
Qc: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPК-2014
     Координаты точки : X = 60.4 м, Y = -920.0 м
Максимальная суммарная концентрация | Cs= 0.0004557 доли ПДКмр|
                     0.0004557 мг/м3
                  Достигается при опасном направлении 311 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|----|----b=C/M ---|
 1 | 6001 | 111 | 0.001870 | 0.0004557 | 100.00 | 100.00 | 0.243728608 |
   Остальные источники не влияют на данную точку (0 источников)
9. Результаты расчета по границе санзоны.
 ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов...
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
           Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 мг/м3
```

Коды источников уникальны в рамках всего предприятия Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

```
Всего просчитано точек: 64
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
             0.5 1.0 1.5 долей Ucв
               Расшифровка обозначений
     | Qc - суммарная концентрация [доли ПДК] |
      Сс - суммарная концентрация [мг/м.куб]
      Фоп- опасное направл. ветра [ угл. град.]
     | Uoп- опасная скорость ветра [ м/с ] |
 | -Если в расчете один источник, то его вклад и код не печатаются|
y= -906: -912: -910: -900: -882: -857: -824: -790: -789: -788: -786: -776: -776: -746: -698:
    x= -450: -513: -576: -638: -698: -755: -809: -854: -855: -856: -859: -869: -869: -901: -941:
             Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= -645: -588: -529: -467: -404: -342: -280: -220: -163: -110: -61: 39: 38: 63: 103:
             x= -975: -1002: -1022: -1034: -1038: -1035: -1023: -1004: -977: -944: -904: -811: -810: -787: -738:
    Oc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= 137: 164: 183: 195: 199: 195: 183: 163: 136: 103: 63: 50: 50: 23: -26:
x= -685: -628: -569: -507: -444: -382: -320: -260: -203: -150: -102: -89: -89: -62: -22:
   Oc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
v= -80: -137: -197: -259: -322: -384: -446: -505: -561: -614: -662: -760: -760: -767: -809:
        x= 10: 36: 55: 66: 68: 64: 51: 31: 3: -32: -72: -167: -168: -175: -222:
         Oc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= -844: -872: -893: -906:
   ----:-----:
x= -274: -330: -389: -450:
    ----:-----:-----:
Qc: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPK-2014
    Координаты точки: X= -174.5 м, Y= -767.2 м
Максимальная суммарная концентрация | Cs= 0.0009903 доли ПДКмр|
                    0.0009903 мг/м3
 Достигается при опасном направлении 317 град.
          и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
```

```
ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---|---М-(Mq)--|-С[доли ПДК]-|------|----- b=C/M ---|
 1 | 6001 | III | 0.001870 | 0.0009903 | 100.00 | 100.00 | 0.529618859 |
   Остальные источники не влияют на данную точку (0 источников)
10. Результаты расчета в фиксированных точках.
 ПК ЭРА v4.0. Модель: МРК-2014
   Группа точек 001
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
           Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 мг/м3
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Uсв
Точка 1. Расчетная точка.
     Координаты точки : X = -554.0 м, Y = 3.0 м
Максимальная суммарная концентрация | Cs= 0.0014055 доли ПДКмр|
                      0.0014055 мг/м3
                  Достигается при опасном направлении 175 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 1 | 6001 | 111 | 0.001870 | 0.0014055 | 100.00 | 100.00 | 0.751716435 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 2. Расчетная точка.
     Координаты точки: X= -907.0 м, Y= -534.0 м
Максимальная суммарная концентрация | Cs= 0.0013805 доли ПДКмр|
                      0.0013805 мг/м3
 Достигается при опасном направлении 71 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|----М-(Mq)--|-С[доли ПДК]-|------|------b=C/M ---|
 1 | 6001 | III | 0.001870 | 0.0013805 | 100.00 | 100.00 | 0.738354564 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 3. Расчетная точка.
     Координаты точки: X= -179.0 м, Y= -316.0 м
Максимальная суммарная концентрация | Cs= 0.0016933 доли ПДКмр|
                      0.0016933 мг/м3
 Достигается при опасном направлении 257 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф. влияния |
```

```
-|-Ист.-|---|M-(Mq)--|-С|доли ПДК|-|----
 1 | 6001 | 111 | 0.001870 | 0.0016933 | 100.00 | 100.00 | 0.905638039 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 4. Расчетная точка.
     Координаты точки: X= -487.0 м, Y= -758.0 м
Максимальная суммарная концентрация | Cs= 0.0016433 доли ПДКмр|
                      0.0016433 мг/м3
 Достигается при опасном направлении 355 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---М-(Mq)--|-С[доли ПДК]-|------|-----b=C/M ---|
 1 | 6001 | 111 | 0.001870 | 0.0016433 | 100.00 | 100.00 | 0.878911555 |
   Остальные источники не влияют на данную точку (0 источников)
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
           Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 мг/м3
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всей расчетной зоне.
  Расчетный шаг 50 м. Всего просчитано точек: 9
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
               0.5 1.0 1.5 долей Ucв
                 Расшифровка обозначений
      | Ос - суммарная концентрация [доли ПДК] |
      Сс - суммарная концентрация [мг/м.куб]
      | Фоп- опасное направл. ветра [ угл. град.] |
      | Uon- опасная скорость ветра [ м/с ] |
  -Если в расчете один источник, то его вклад и код не печатаются
v= -402: -369: -335: -301: -314: -347: -379: -412: -403:
     x= -538: -507: -476: -445: -431: -463: -495: -527: -537:
    ----:-----:-----:-----:
Qc: 0.058: 0.037: 0.012: 0.005: 0.005: 0.012: 0.037: 0.062: 0.060:
Cc: 0.058: 0.037: 0.012: 0.005: 0.005: 0.012: 0.037: 0.062: 0.060:
Фоп: 79: 205: 215: 219: 227: 229: 233: 21: 77:
Uon: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.50: 0.50:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPK-2014
     Координаты точки: X= -526.6 м, Y= -412.1 м
Максимальная суммарная концентрация | Cs= 0.0622889 доли ПДКмр|
                      0.0622889 мг/м3
 Достигается при опасном направлении 21 град.
           и скорости ветра 0.50 м/с
```

```
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                          _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 1 | 6001 | 111 | 0.001870 | 0.0622889 | 100.00 | 100.00 | 33.3140221 |
   Остальные источники не влияют на данную точку (0 источников)
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
Заключение экспертизы Министерства природных ресурсов и Росгидромета
 № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: MPК-2014
  Название: с.Баянды
  Коэффициент А = 200
  Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)
  Средняя скорость ветра = 4.3 м/с
  Температура летняя = 27.9 град.С
  Температура зимняя = -7.2 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов...
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2902 - Взвешенные частицы (116)
       ПДКмр для примеси 2902 = 0.5 мг/м3
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Коды источников уникальны в рамках всего предприятия
Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP |Ди| Выброс
0001 T 4.0 0.32 15.80 1.26 1100. -528.59 -397.96
                                                         3.0 1.00 0 0.0017800
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Сезон :ЛЕТО (температура воздуха 27.9 град.С)
  Примесь :2902 - Взвешенные частицы (116)
       ПДКмр для примеси 2902 = 0.5 \text{ мг/м3}
  Коды источников уникальны в рамках всего предприятия
                                  Их расчетные параметры
         Источники
|Номер| Код | М |Тип | Ст |
                                Um | Xm |
1 | 0001 | 0.001780 | T | 0.008307 | 5.70 | 43.7 |
|Суммарный Mq= 0.001780 г/с
Сумма См по всем источникам =
                              0.008307 долей ПДК
Средневзвешенная опасная скорость ветра =
Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
```

8. Результаты расчета по жилой застройке. ПК ЭРА v4.0. Модель: MPK-2014

```
Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2902 - Взвешенные частицы (116)
        ПДКмр для примеси 2902 = 0.5 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
9. Результаты расчета по границе санзоны.
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2902 - Взвешенные частицы (116)
        ПДКмр для примеси 2902 = 0.5 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
10. Результаты расчета в фиксированных точках..
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2902 - Взвешенные частицы (116)
        ПДКмр для примеси 2902 = 0.5 мг/м3
Расчет не проводился: См < 0.05 долей ПДК
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :2902 - Взвешенные частицы (116)
        ПДКмр для примеси 2902 = 0.5 \text{ мг/м}3
Расчет не проводился: См < 0.05 долей ПДК
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
 | № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: MPК-2014
  Название: с.Баянды
  Коэффициент А = 200
  Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)
  Средняя скорость ветра = 4.3 м/с
  Температура летняя = 27.9 град.С
  Температура зимняя = -7.2 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
```

1

Примесь :3620 - Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239) ПДКмр для примеси 3620 = 5E-9 мг/м3 (=10ПДКсс)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Коды источников уникальны в рамках всего предприятия

4. Расчетные параметры См, Им, Хм

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11

Сезон :ЛЕТО (температура воздуха 27.9 град.С)

Примесь :3620 - Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239)

ПДКмр для примеси 3620 = 5Е-9 мг/м3 (=10ПДКсс)

Коды источников уникальны в рамках всего предприятия

ИсточникиИх расчетные параметры
Номер Код М Тип Ст Um Xm
-п/п- -Ист [доли ПДК]- [м/с] [м]
1 0001 2E-11 T 0.003111 5.70 87.4
Суммарный Mq= 2E-11 г/с
Сумма См по всем источникам = 0.003111 долей ПДК
Средневзвешенная опасная скорость ветра = 5.70 м/с
Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК

8. Результаты расчета по жилой застройке.

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11

Примесь :3620 - Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239)

ПДКмр для примеси 3620 = 5Е-9 мг/м3 (=10ПДКсс)

Расчет не проводился: См < 0.05 долей ПДК

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11

Примесь :3620 - Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239)

ПДКмр для примеси 3620 = 5Е-9 мг/м3 (=10ПДКсс)

Расчет не проводился: См < 0.05 долей ПДК

10. Результаты расчета в фиксированных точках..

ПК ЭРА v4.0. Модель: MPK-2014

Город :024 с.Баянды.

Объект :0001 Строительство здания для печи по сжиганию медотходов..

Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11

Примесь :3620 - Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239)

ПДКмр для примеси 3620 = 5E-9 мг/м3 (=10ПДКсс)

Расчет не проводился: Cм < 0.05 долей ПДК

```
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Примесь :3620 - Диоксины /в пересчете на 2,3,7,8-тетрахлордибензо-1,4-диоксин/ (239)
       ПДКмр для примеси 3620 = 5Е-9 мг/м3 (=10ПДКсс)
Расчет не проводился: См < 0.05 долей ПДК
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
                                                                                | № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: MPК-2014
  Название: с.Баянды
  Коэффициент А = 200
  Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)
  Средняя скорость ветра = 4.3 м/с
  Температура летняя = 27.9 град.С
  Температура зимняя = -7.2 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Коды источников уникальны в рамках всего предприятия
Код | Тип| H \mid D \mid Wo | V1 | T \mid X1 \mid Y1 \mid X2 \mid Y2 \mid Alf| F \mid KP \mid Ди| Выброс
~Ист.~|~м~|~м~|~м/с~|~м3/с~|градС|~~м~~~|~м~~~|~~м~~~|~~м~~~|~гр.|~~|~г/с~~
         --- Примесь 0301--
0001 T 4.0 0.32 15.80 1.26 1100. -528.59 -397.96
                                                             1.0 1.00 0 0.0298336
         --- Примесь 0330----
0001 T 4.0 0.32 15.80 1.26 1100. -528.59 -397.96
                                                             1.0 1.00 0 0.0240116
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Сезон :ЛЕТО (температура воздуха 27.9 град.С)
  Группа суммации:6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
  Коды источников уникальны в рамках всего предприятия
| - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а
 суммарная концентрация См = См1/ПДК1 +...+ Смп/ПДКп
          Источники
                                    Их расчетные параметры
```

```
1 | 0001 | | 0.197191 | T | | 0.153384 | | 5.70 | | 87.4 |
|Суммарный Мq= 0.197191 (сумма Мq/ПДК по всем примесям)
|Сумма См по всем источникам = 0.153384 долей ПДК
Средневзвешенная опасная скорость ветра =
8. Результаты расчета по жилой застройке.
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации:6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 19
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Uсв
                Расшифровка обозначений
      | Qc - суммарная концентрация [доли ПДК]
      Фоп- опасное направл. ветра [ угл. град.] |
     | Uon- опасная скорость ветра [ м/с ] |
  | -При расчете по группе суммации концентр. в мг/м3 не печатается|
 | -Если в расчете один источник, то его вклад и код не печатаются|
y= -980: -1112: -920: -840: -920: -972: -1105: 1114: 1109: 1106: 1118: 1041: -1120: 1106: 1121:
     x= 10: 43: 60: 127: 147: 160: 193: 830: 835: 843: 984: 994: -107: 1043: 1138:
     Qc: 0.018: 0.014: 0.018: 0.018: 0.016: 0.015: 0.012: 0.003: 0.003: 0.003: 0.003: 0.003: 0.017: 0.003: 0.003:
y= 973: 1106: 1124: 1106:
     ---:----:
x= 1154: 1243: 1293: 1294:
     ---:----:
Qc: 0.003: 0.003: 0.003: 0.003:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: МРК-2014
    Координаты точки : X = 60.4 \text{ м}, Y = -920.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0183085 доли ПДКмр|
 Достигается при опасном направлении 311 град.
           и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---| b=C/M ---|
1 | 0001 | T | 0.1972 | 0.0183085 | 100.00 | 100.00 | 0.092846654 |
   Остальные источники не влияют на данную точку (0 источников)
```

9. Результаты расчета по границе санзоны.

ПК ЭРА v4.0. Модель: MPК-2014

Город :024 с.Баянды.

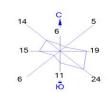
```
Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
           0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 64
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
            0.5 1.0 1.5 долей Uсв
              Расшифровка обозначений
     | Qc - суммарная концентрация [доли ПДК] |
     Фоп- опасное направл. ветра [ угл. град.] |
     | Uon- опасная скорость ветра [ м/с ] |
 | -При расчете по группе суммации концентр. в мг/м3 не печатается|
 | -Если в расчете один источник, то его вклад и код не печатаются
y= -906: -912: -910: -900: -882: -857: -824: -790: -789: -788: -786: -776: -776: -746: -698:
   x= -450: -513: -576: -638: -698: -755: -809: -854: -855: -856: -859: -869: -869: -901: -941:
    Qc: 0.036: 0.036: 0.036: 0.036: 0.036: 0.036: 0.037: 0.037: 0.037: 0.037: 0.037: 0.036: 0.036: 0.036: 0.037: 0.036:
v= -645: -588: -529: -467: -404: -342: -280: -220: -163: -110: -61: 39: 38: 63: 103:
        x= -975: -1002: -1022: -1034: -1038: -1035: -1023: -1004: -977: -944: -904: -811: -810: -787: -738:
 Qc: 0.037: 0.036: 0.037: 0.036: 0.037: 0.037: 0.037: 0.037: 0.037: 0.037: 0.037: 0.036: 0.036: 0.036: 0.035: 0.033:
y= 137: 164: 183: 195: 199: 195: 183: 163: 136: 103: 63: 50: 50: 23: -26:
    x= -685: -628: -569: -507: -444: -382: -320: -260: -203: -150: -102: -89: -89: -62: -22:
             Qc: 0.032: 0.031: 0.030: 0.029: 0.028: 0.028: 0.028: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027:
   -80: -137: -197: -259: -322: -384: -446: -505: -561: -614: -662: -760: -760: -767: -809:
        x= 10: 36: 55: 66: 68: 64: 51: 31: 3: -32: -72: -167: -168: -175: -222:
    Qc: 0.027: 0.027: 0.028: 0.028: 0.029: 0.029: 0.030: 0.031: 0.032: 0.034: 0.035: 0.037: 0.037: 0.036: 0.037:
y= -844: -872: -893: -906:
   ----:-----:----
x = -274: -330: -389: -450:
    ---:----:----:
Qc: 0.036: 0.036: 0.036: 0.036:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: МРК-2014
    Координаты точки: X= -944.1 м, Y= -110.0 м
Максимальная суммарная концентрация | Cs= 0.0372239 доли ПДКмр|
 Достигается при опасном направлении 125 град.
```

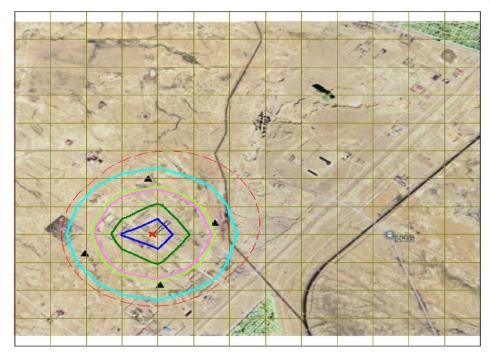
```
и скорости ветра 11.00 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % | Коэф.влияния |
 1 | 0001 | T | 0.1972 | 0.0372239 | 100.00 | 100.00 | 0.188770771 |
   Остальные источники не влияют на данную точку (0 источников)
10. Результаты расчета в фиксированных точках.
 ПК ЭРА v4.0. Модель: MPК-2014
    Группа точек 001
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Uсв
Точка 1. Расчетная точка.
     Координаты точки: X= -554.0 м, Y= 3.0 м
Максимальная суммарная концентрация | Cs= 0.0510092 доли ПДКмр
 Достигается при опасном направлении 177 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс
                         Вклад | Вклад в% | Сум. % | Коэф.влияния |
 ---|-Ист.-|---M-(Mq)--|-С[доли ПДК]-|-----|-----|-----b=C/M ---|
 1 | 0001 | T | 0.1972 | 0.0510092 | 100.00 | 100.00 | 0.258679062 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 2. Расчетная точка.
     Координаты точки : X = -907.0 м, Y = -534.0 м
Максимальная суммарная концентрация | Cs= 0.0512102 доли ПДКмр|
 Достигается при опасном направлении 70 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|----М-(Mq)--|-С[доли ПДК]-|------|----- b=C/M ---|
 1 | 0001 | T | 0.1972 | 0.0512102 | 100.00 | 100.00 | 0.259698331 |
   Остальные источники не влияют на данную точку (0 источников)
Точка 3. Расчетная точка.
     Координаты точки: X= -179.0 м, Y= -316.0 м
Максимальная суммарная концентрация | Cs= 0.0592887 доли ПДКмр|
 Достигается при опасном направлении 257 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---|---М-(Mq)--|-С[доли ПДК]-|------|------|---- b=C/M ---|
| 1 | 0001 | T | | 0.1972 | 0.0592887 | 100.00 | 100.00 | 0.300666332 |
```

```
Остальные источники не влияют на данную точку (0 источников)
Точка 4. Расчетная точка.
     Координаты точки: X= -487.0 м, Y= -758.0 м
Максимальная суммарная концентрация | Cs= 0.0584895 доли ПДКмр|
 Достигается при опасном направлении 353 град.
           и скорости ветра 8.55 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % | Коэф.влияния |
 ---|-Ист.-|---|---М-(Mq)--|-С[доли ПДК]-|------|------|----- b=C/M ---|
 1 | 0001 | T | 0.1972 | 0.0584895 | 100.00 | 100.00 | 0.296613574 |
   Остальные источники не влияют на данную точку (0 источников)
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации:6007=0301 Азота (IV) диоксид (Азота диоксид) (4)
             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всей расчетной зоне.
  Расчетный шаг 50 м. Всего просчитано точек: 9
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
               0.5 1.0 1.5 долей Исв
                 Расшифровка обозначений
      | Qc - суммарная концентрация [доли ПДК]
       Фоп- опасное направл. ветра [ угл. град.] |
      | Иоп- опасная скорость ветра [ м/с ] |
  -При расчете по группе суммации концентр. в мг/м3 не печатается
  | -Если в расчете один источник, то его вклад и код не печатаются|
y= -402: -369: -335: -301: -314: -347: -379: -412: -403:
     ---;-----;-----;-----;-----;
x= -538: -507: -476: -445: -431: -463: -495: -527: -537:
   ----:
Oc: 0.118: 0.135: 0.153: 0.136: 0.135: 0.152: 0.138: 0.119: 0.117:
Фоп: 67: 217: 220: 221: 229: 231: 241: 351: 60:
Uon: 5.70 : 5.70 : 5.70 : 5.70 : 5.70 : 5.70 : 5.70 : 5.70 : 5.70 :
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPК-2014
     Координаты точки: X= -475.8 м, Y= -335.0 м
Максимальная суммарная концентрация | Cs= 0.1533463 доли ПДКмр|
 Достигается при опасном направлении 220 град.
           и скорости ветра 5.70 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
|----|-Ист.-|---М-(Mq)--|-С[доли ПДК]-|-----|----- b=C/M ---|
 1 | 0001 | T | 0.1972 | 0.1533463 | 100.00 | 100.00 | 0.777653515 |
```

```
Остальные источники не влияют на данную точку (0 источников)
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v4.0 фирмы НПП "Логос-Плюс", Новосибирск
Заключение экспертизы Министерства природных ресурсов и Росгидромета
 | № 01-03436/23и выдано 21.04.2023
2. Параметры города
 ПК ЭРА v4.0. Модель: МРК-2014
  Название: с.Баянды
  Коэффициент А = 200
  Скорость ветра Ump = 11.0 м/с (для лета 11.0, для зимы 12.0)
  Средняя скорость ветра = 4.3 м/с
  Температура летняя = 27.9 град.С
  Температура зимняя = -7.2 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
            0333 Сероводород (Дигидросульфид) (518)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Коды источников уникальны в рамках всего предприятия
Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
--- Примесь 0330--
0001 T 4.0 0.32 15.80 1.26 1100. -528.59 -397.96
                                                          1.0 1.00 0 0.0240116
         --- Примесь 0333-
6001 П1* 2.0
                      25.0 -521.59 -398.91
                                             2.85
                                                   1.87 44 1.0 1.00 0 0.0000052
Источники, имеющие произвольную форму (помеченны *)
| Код | Тип
                            Координаты вершин
                                                                Площадь или
| ист. | ИЗ |
                          (X1,Y1),...(Xn,Yn), M
                                                            длина, м
|6001|\Pi1| (-523,2,-398,96), (-521,21,-397,37), (-519,82,-398,56), (-522,01,-400,55), (-523,2,-399,16)
                                                                                    5.3
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v4.0. Модель: МРК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Сезон :ЛЕТО (температура воздуха 27.9 град.С)
  Группа суммации:6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
            0333 Сероводород (Дигидросульфид) (518)
  Коды источников уникальны в рамках всего предприятия
 - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а
  суммарная концентрация См = См1/ПДК1 +...+ Смп/ПДКп
                                   Их расчетные параметры
         Источники
|Номер| Код | Мq |Тип | Ст | Um | Xm |
```

```
2 | 6001 | | 0.000656 | 111* | | 0.023437 | | 0.50 | | 11.4
.
|Суммарный Mq= 0.048679 (сумма Mq/ПДК по всем примесям)
|Сумма См по всем источникам = 0.060792 долей ПДК
Средневзвешенная опасная скорость ветра =
8. Результаты расчета по жилой застройке.
 ПК ЭРА v4.0. Модель: MPК-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
             0333 Сероводород (Дигидросульфид) (518)
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 19
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
               0.5 1.0 1.5 долей Ucв
                 Расшифровка обозначений
      | Qc - суммарная концентрация [доли ПДК]
       Фоп- опасное направл. ветра [ угл. град.] |
       Uоп- опасная скорость ветра [ м/с ] |
      Ви - вклад ИСТОЧНИКА в Ос [доли ПДК]
      Ки - код источника для верхней строки Ви
  | -При расчете по группе суммации концентр. в мг/м3 не печатается|
y= -980: -1112: -920: -840: -920: -972: -1105: 1114: 1109: 1106: 1118: 1041: -1120: 1106: 1121:
         10: 43: 60: 127: 147: 160: 193: 830: 835: 843: 984: 994: -107: 1043: 1138:
Qc: 0.005: 0.004: 0.005: 0.005: 0.004: 0.004: 0.004: 0.003: 0.001: 0.001: 0.001: 0.001: 0.001: 0.004: 0.001: 0.001:
    973: 1106: 1124: 1106:
x= 1154: 1243: 1293: 1294:
     ------
Oc: 0.001: 0.001: 0.001: 0.001:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPК-2014
     Координаты точки : X= 60.4 м, Y= -920.0 м
Максимальная суммарная концентрация | Cs= 0.0046700 доли ПДКмр|
 Достигается при опасном направлении 311 град.
           и скорости ветра 1.85 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                             ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % | Коэф.влияния |
  --|-Ист.-|----М-(Mq)--|-С[доли ПДК]-|------|-----b=C/M ---|
 1 | 0001 | T | 0.0480 | 0.0045687 | 97.83 | 97.83 | 0.095135450 |
          B \text{ cymme} = 0.0045687 97.83
 Суммарный вклад остальных = 0.0001013 2.17 (1 источник)
```


9. Результаты расчета по границе санзоны.

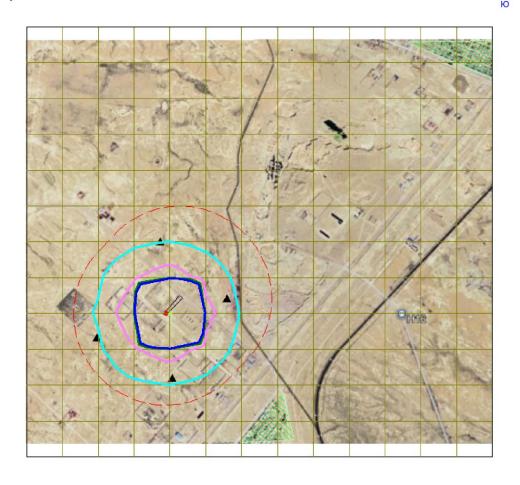

```
ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
           0333 Сероводород (Дигидросульфид) (518)
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 64
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
             0.5 1.0 1.5 долей Исв
               Расшифровка обозначений
     Ос - суммарная концентрация [доли ПДК]
     | Фоп- опасное направл. ветра [ угл. град.] |
     | Uоп- опасная скорость ветра [ м/с ] |
      Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
     Ки - код источника для верхней строки Ви
  -При расчете по группе суммации концентр. в мг/м3 не печатается
y= -906: -912: -910: -900: -882: -857: -824: -790: -789: -788: -786: -776: -776: -746: -698:
    x= -450: -513: -576: -638: -698: -755: -809: -854: -855: -856: -859: -869: -869: -901: -941:
         Qc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009:
v= -645: -588: -529: -467: -404: -342: -280: -220: -163: -110: -61: 39: 38: 63: 103:
    x= -975: -1002: -1022: -1034: -1038: -1035: -1023: -1004: -977: -944: -904: -811: -810: -787: -738:
   Qc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008:
y= 137: 164: 183: 195: 199: 195: 183: 163: 136: 103: 63: 50: 50: 23: -26:
x= -685: -628: -569: -507: -444: -382: -320: -260: -203: -150: -102: -89: -89: -62: -22:
         Qc: 0.008: 0.008: 0.008: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007:
y= -80: -137: -197: -259: -322: -384: -446: -505: -561: -614: -662: -760: -760: -767: -809:
            10: 36: 55: 66: 68: 64: 51: 31: 3: -32: -72: -167: -168: -175: -222:
    Oc: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.009:
v= -844: -872: -893: -906:
x= -274: -330: -389: -450:
    ----:-----:
Qc: 0.009: 0.009: 0.009: 0.009:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPК-2014
    Координаты точки: X= -944.1 м, Y= -110.0 м
Максимальная суммарная концентрация | Cs= 0.0094050 доли ПДКмр|
 Достигается при опасном направлении 125 град.
          и скорости ветра 11.00 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                         _ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---| b=C/M ---|
 1 | 0001 | T | 0.0480 | 0.0090654 | 96.39 | 96.39 | 0.188770652 |
```

```
B \text{ cymme} = 0.0090654
Суммарный вклад остальных = 0.0003396
                                         3.61 (1 источник)
10. Результаты расчета в фиксированных точках.
 ПК ЭРА v4.0. Модель: MPК-2014
    Группа точек 001
        :024 с.Баянды.
  Город
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
             0333 Сероводород (Дигидросульфид) (518)
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Ucв
Точка 1. Расчетная точка.
     Координаты точки : X = -554.0 м, Y = 3.0 м
Максимальная суммарная концентрация | Cs= 0.0127593 доли ПДКмр|
 Достигается при опасном направлении 177 град.
           и скорости ветра 11.00 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
1 | 0001 | T | 0.0480 | 0.0122837 | 96.27 | 96.27 | 0.255787790 |
         B \text{ cymme} = 0.0122837 96.27
Суммарный вклад остальных = 0.0004756 3.73 (1 источник)
Точка 2. Расчетная точка.
     Координаты точки: X= -907.0 м, Y= -534.0 м
Максимальная суммарная концентрация | Cs= 0.0128152 доли ПДКмр|
 Достигается при опасном направлении 70 град.
           и скорости ветра 11.00 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % | Коэф.влияния |
 ---|-Ист.-|---M-(Mq)--|-С[доли ПДК]-|-----|-----b=C/M ---|
 1 | 0001 | T | 0.0480 | 0.0123333 | 96.24 | 96.24 | 0.256820321 |
         B \text{ cymme} = 0.0123333 96.24
Суммарный вклад остальных = 0.0004819 3.76 (1 источник)
Точка 3. Расчетная точка.
     Координаты точки: X= -179.0 м, Y= -316.0 м
Максимальная суммарная концентрация | Cs= 0.0147039 доли ПДКмр|
 Достигается при опасном направлении 257 град.
           и скорости ветра 11.00 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 ---|-Ист.-|---| b=C/M ---|
 1 | 0001 | T | 0.0480 | 0.0141095 | 95.96 | 95.96 | 0.293806702 |
         B \text{ cymme} = 0.0141095 95.96
Суммарный вклад остальных = 0.0005943 4.04 (1 источник)
```

```
Точка 4. Расчетная точка.
     Координаты точки: X= -487.0 м, Y= -758.0 м
Максимальная суммарная концентрация | Cs= 0.0144932 доли ПДКмр|
 Достигается при опасном направлении 353 град.
           и скорости ветра 11.00 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
 1 | 0001 | T | 0.0480 | 0.0139333 | 96.14 | 96.14 | 0.290137589 |
         В сумме = 0.0139333 96.14
Суммарный вклад остальных = 0.0005598 3.86 (1 источник)
11. Результаты расчета по расчетной зоне "Территория предприятия".
 ПК ЭРА v4.0. Модель: MPK-2014
  Город :024 с.Баянды.
  Объект :0001 Строительство здания для печи по сжиганию медотходов..
  Вар.расч. :1 Расч.год: 2026 (СП) Расчет проводился 08.09.2025 11:11
  Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
             0333 Сероводород (Дигидросульфид) (518)
  Коды источников уникальны в рамках всего предприятия
  Расчет проводился по всей расчетной зоне.
  Расчетный шаг 50 м. Всего просчитано точек: 9
  Фоновая концентрация не задана
  Направление ветра: перебор от 0 до 360 с шагом 10 град.
  Перебор скоростей ветра: 0.5 11.0 м/с
              0.5 1.0 1.5 долей Исв
                Расшифровка_обозначений
      | Qc - суммарная концентрация [доли ПДК]
      | Фоп- опасное направл. ветра [ угл. град.] |
      Uоп- опасная скорость ветра [ м/с ] |
      Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
     Ки - код источника для верхней строки Ви
  -При расчете по группе суммации концентр. в мг/м3 не печатается
y= -402: -369: -335: -301: -314: -347: -379: -412: -403:
     x = -538: -507: -476: -445: -431: -463: -495: -527: -537:
 -----;----;----;----;
Qc: 0.029: 0.033: 0.039: 0.035: 0.035: 0.039: 0.035: 0.029: 0.029:
Результаты расчета в точке максимума ПК ЭРА v4.0. Модель: MPK-2014
    Координаты точки: X= -475.8 м, Y= -335.0 м
Максимальная суммарная концентрация | Cs= 0.0393485 доли ПДКмр
 Достигается при опасном направлении 220 град.
           и скорости ветра 5.55 м/с
Всего источников: 2. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                            _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % | Коэф.влияния |
 --|-Ист.-|---M-(Mq)--|-С[доли ПДК]-|----
                                      ---|----|--- b=C/M ---|
 1 | 0001 | T | 0.0480 | 0.0372945 | 94.78 | 94.78 | 0.776594162 |
 2 | 6001 | ??| 0.00065620| 0.0020540 | 5.22 | 100.00 | 3.1301551 |
   Остальные источники не влияют на данную точку (0 источников)
```

Город : 024 с.Баянды Объект : 0001 Строительство здания для печи по сжиганию медотходов. Вар.№ 1 ПК ЭРА v4.0, Модель: МРК-2014 0301 Азота (IV) диоксид (Азота диоксид) (4)

Изолинии в долях ПДК
0.032 ПДК
0.050 ПДК
10.053 ПДК
0.074 ПДК
0.086 ПДК


Макс концентрация 0.0972958 ПДК достигается в точке x= -500 y= -400 При опасном направлении 275° и опасной скорости ветра 5.7 м/с Расчетный прямоугольник № 1, ширина 2600 м, высота 2400 м, шаг расчетной сетки 200 м, количество расчетных точек 14*13 Расчёт на существующее положение.

Город: 024 с.Баянды

Объект: 0001 Строительство здания для печи по сжиганию медотходов. Вар.№ 1

ПК ЭРА v4.0, Модель: MPK-2014

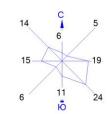
2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10) 24

Макс концентрация $0.0512108\ \Pi$ ДК достигается в точке x= -500 $\ y$ = -400 При опасном направлении 273° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 2600 м, высота 2400 м, шаг расчетной сетки 200 м, количество расчетных точек 14*13 Расчёт на существующее положение.

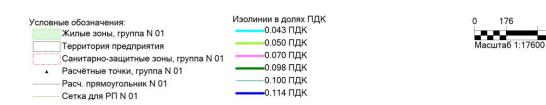
176

528м.

5


19

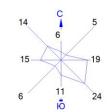

Город: 024 с.Баянды


Объект: 0001 Строительство здания для печи по сжиганию медотходов. Вар.№ 1

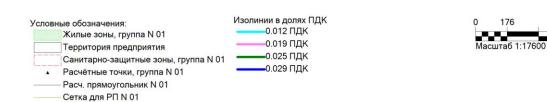
ПК ЭРА v4.0, Модель: MPK-2014

6007 0301+0330

Макс концентрация 0.1286192 ПДК достигается в точке x= -500 y= -400 При опасном направлении 275° и опасной скорости ветра 5.7 м/с Расчетный прямоугольник № 1, ширина 2600 м, высота 2400 м, шаг расчетной сетки 200 м, количество расчетных точек 14*13 Расчёт на существующее положение.

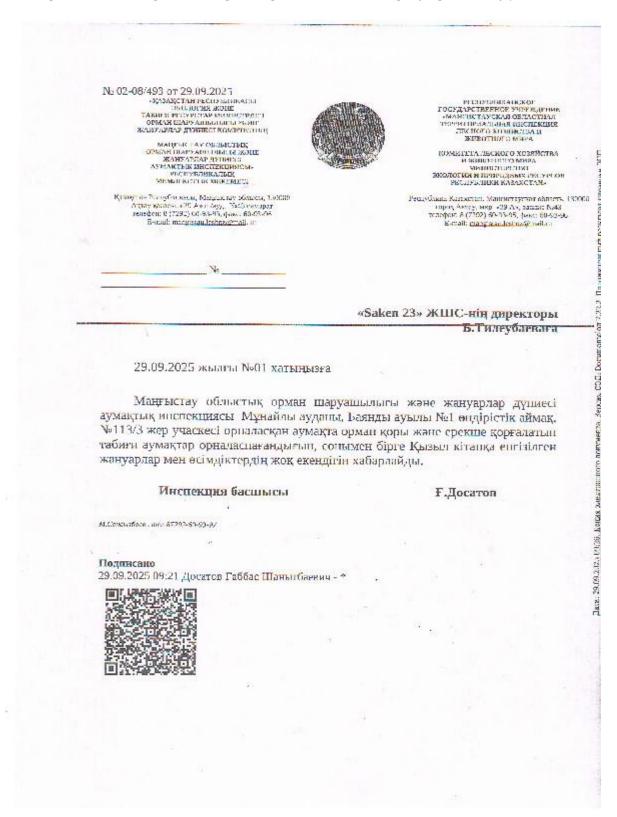

528м.

Город: 024 с.Баянды


Объект: 0001 Строительство здания для печи по сжиганию медотходов. Вар.№ 1

ПК ЭРА v4.0, Модель: MPK-2014

6044 0330+0333



Макс концентрация 0.0344138 ПДК достигается в точке x= -500 y= -400 При опасном направлении 273° и опасной скорости ветра 5.55 м/с Расчетный прямоугольник № 1, ширина 2600 м, высота 2400 м, шаг расчетной сетки 200 м, количество расчетных точек 14*13 Расчёт на существующее положение.

528м.

ПРИЛОЖЕНИЕ 2

СПРАВКА РГУ «МАНГИСТАУСКАЯ ОБЛАСТНАЯ ТЕРРИТОРИАЛЬНАЯ ИНСПЕКЦИЯ ЛЕСНОГО ХОЗЯЙСТВА И ЖИВОТНОГО МИРА» ОБ ОТСУТСТВИИ ЖИВОТНЫХ И РАСТЕНИИ ЗАНЕСЕННЫХ В КРАСНУЮ КНИГУ.

приложение 3

ДОКУМЕНТЫ ЗЕМЕЛЬНОГО УЧАСТКА

«Аличиттерги арапптан укачесь монькажения ворнорациясь в ком верциялы у вмес путропорлас всевныеци Манициам облисы бойингии филиатычные Муно R. и адажновым, таркоу жише жер жарастры болімі

Отари Мунийнанского райена на релестрации и веметитому телтотру Филизальскоемеря живого вышконерного общества «Глеулгретнення» колозивано «Правительство зни гражда по Мангиструской области.

Жер учаскесіне арналған ақт. № 2024-3230942. Акт на вемельный участок № 2024-3230942

t.	Жыргучаскохой с падагарных помері/
	Карадоролый помер земедьного участка

Жер у паскольні і мексикніна, мексикнійдый тірксу

Адрес камельного упастии, регистропполитуй ход Africa *

3 Жараучаскоейте жүкик түүн

Вис, стано на земеньный участих

Жилев адудьов алкталу мерлімі, чен сую ^{ма}

Орек и дили околичния аренда: ""

Жер учискосітің аланы, токтар***

Площадь замельного мезопка, тектурфор

Zienargannama

Категория везгель

Жер учаскесінін нысаналы максалы**** Едді мекседегі функционацык аймак (бар жолы)^{4 дама} солу үшін

[елетре пергология замощавого участка**** Функ (подменя явин в влеедовном кужкте (праnomba mitassess

Жор учаскосін пайчанануусты півктеунер мов аугидина, внигр

Ограничения и подользовании и ображениям замального учистью

9. Балиут (імпенечуюют пвейду)

13:303:087:2987

Маюжеску обл.: Мунайнг ауд.: Баян.
ы а., 1 о л., 117-3 ул., МТК. 2202400017692282

сбл. Мянгистауская, р-н Мунайлинский, с. Іванцик, пл. 1, уч. 113/3, РКА: 2202400017692282

уақытта өтсүлі ұзақ мерзімді жер пайдынану -

врёмонное колменд кое доографиятие вемпериодьзование

б жыл сату кұсығылың, 23.11.2029 есйіп

6 лет в правом продажи, до 23.11 2029

0.7000

0.2000

П., і мекен вран, (коляворазан, канттер мен ауылдык адді мекендердің) жері

Зем, и изовленных лужктов (городов, посетков и сельских населеннях рушков).

мед цво алых жиллықтарды жою (ертізу) үшін беш ғиматарын

син стростельству здлите печи по узрачтожению (ожиговим)

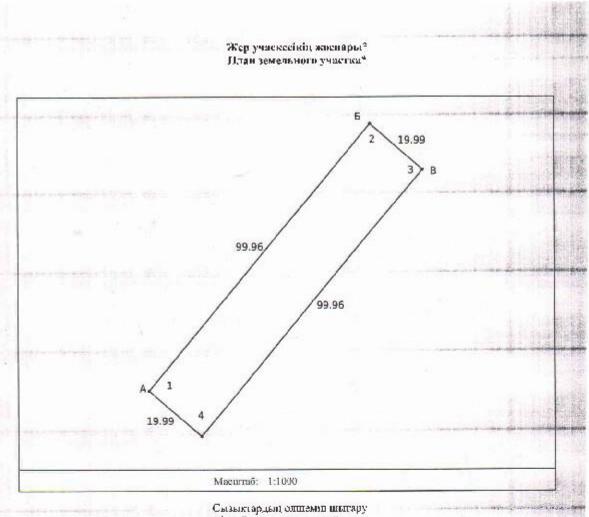
мыцициприях откратов (ежечь).

Дёлимость (делимий/иеделимый)

hamemi Леновный

Гумерты «Примеждае». «Межикаафаци піркоу коста болган эмера (тр. н. прості пері Регионовіщенняю, ана зарвез указаност за при патучет

то святивающий присту воста основного и перестителення общения выполняющего учанняють со при постаную это списка чист и У в высоку повод учання учання выда образования выборь выполняющего учанняющего кололичения производення выда образования и постанующего выполняющего выполняющего выполняющего выполняющего выполняющего выда образования и постанующего выполняющего высок выполняющего высок выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполнительного выполняющего выполняющего выполняющего выполняющего высок выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего высок выполняющего


окуват «Искиренция куват жэнт кот пропрту пофункь билинд, сураны 20% сыны — кунгарыма 5 1951 гуда. Бойины обыс кому жоте утогст куж тур будой. ный сисумых сисимый пумку 1 годин 7%. И 17% от 5 сикара 25% гуда сейб лисенраний спормых и изглеровый пофункты выдраже участительного досумент.

ти повог ЖИВИХ Аболи вышим мене долго брушен выстратирний расположение и пробитие дорговор колгор заходитите гротие учино новтичены воспрациямы болективального в нако к оченичны Менец в иноветь вобыше учение Уррания удинент трату жето мер водатры боле бирового, торрот детом, тору надлагия и ПС ЕКВ и перавилие метриностирующей учиние учение учение дорго и вобыше и воспрация и в поворот и воспрация и в поворот водать в поворот в пово

Выниска мер липий

. Буры пасты пукте верші, Мі Мі поворотных точек	Сызылистыя опоемі Меры плиний	
Эболия не вётью мулікову бірьцувай мемповостів, кадаю карторація веросійшує мордшваго ді жуб Меры папові в свотеме вооршшах, узаконе зё в лубо свотемы одивно о тосу пароценаю	коїндогі октяпутартут, отп'ємпері мумейі хулустровей ізграє штформацизицноїі	
1 7	99 96	
2-3	19.99	S
3.1	99.96	
at a company of the second sec	19,99	

Ска дала в Электритра, крастионт постровую у душна колоную прина 1908 жылы 7 каспексаты У 570-0 КУ , 1 бөлөө ответс колоновый айылык бүстө. Вотако поручет кастегы ту, колон поско Убей ЗАК , 17 жылда 1905 жылым 200 жылымда аккулутта түчтөөрөөгөн ийримб кылынын фаломитек мемуент у ма

Бірынғай қолдокто ік оторунтисттем жүйесіндегі сиз аспарады одшоқа	селу о срад такжет в единим такумаделиениме сполеже сосрования
1-2	99 %6
2 3	19.96
3-4	99.96
4-1	19.99

Аралас учасколердің каластріцік помірлері (жер санянлары)* Кадастровые номера (китегории земещь) емежных земельных участков*

Нуктесінен От точки	Пунксінь дайлі До канки	Синетимаци Описание	
A	Ti II	13:203-087:2192	
li .	В	13:205.087:2986	
D	A	Тогр мокен жарларі	

І-скертте/Примечанне

можения решения подавления ученовой в тайких мурту крински им и дру загіне харымам/Описліне сотчеток, ейотких нью як нових питалеволіва птеттібікніренняем апкумила за сочетня 7 учен на

Жоснар шекарасындағы боғас жер учасқолері Посторошите земельные участки в границах плана

Жоспаровы № Из на шынс	Жослар шегіндегі бетев жер учискедерігін карастрана пимірасрі. Карастроны а немера постеровати зесетьных участков и гранчицах, плана	Алацы, гок ар Плошады, гектар
40000		

Осы актіпі <u>«А заматтарға арналған ұкімет» мемлекеттік корпорациясы» коммерциялық емес актионерлік</u> когамының Мантыстау облысы бойынша филиалының Мұнайды аудапының тірксу және жер каластры болімі жасацы.

(жер каңытрын жүргізетін ұлыманың адауы).

Настрящий акт из, стовлен Отдел Мунайлинского района по регистрации и земельному кадастру Филиана. покоимерческого акционерного общества «Государственная корпоряция «Правительство для граждаю» по Мангистауской области.

(применование призникация, водущей заможный вадлегр)

Актіпін дайындалған күні; 2024 жылғы «2» желгоқсан

Дага изготовления якта; «2» декабря 2024 года

ть и крот т. Это тыс частряет кластинкстви ин порсыя может рукстве 3020 торта 7 украфиях, в 5 об 1 676 г. сайже дагах сатоо сатоотного организа-факсир посмож залили приму 1 самие 570 И 398 от 7 игоду 502 торт жей ком развике изкратива и "камералий пофуткий политие развитаваем м

террового ЖДАМК матри интення жене цывае берен ні конспредилистирующих путив'ятного или модели положень, уче мул «Аксистира привид учес-привости торгорушить снемурцення учес винин цай витектили Калтесту облада (басна» финальна Медийна федиалис, фор это вере постро ост текротого самрене торгору на посторите и 10 КПРН в досторите у текротого принастирующих усторителя буде у учествення рабостирую востиную устаную бынка и посторительного акторирового общення об тудерельных инципаль. «Приниментого для преведно на Малинового общення выполнения инципального для преведно на Малинового общення выполнения инципального для преведно на Малинового общення выполнения и принительного для преведно на Малинового общення выполнения и принительного для преведно на Малинового общення выполнения и принительного для преведно на Малинового общення выполнения принительного для преведно на Малинового общения выполнения принительного для принительного для преведно на Малинового общения принительного для принительного для преведно на Малинового общения принительного для принит

2023 жылғы 26 желтоқсандағы №1315 жер учаскесін жалға беру құқығын сатып алу-сату туралы шарғына өзгеріс ештізу туралы К.Е.Л.І.С.Г.М

Манғыстау ауылы

2024 жыл «04» енектоуста

Баянды ауылы әкімінің 2024 жылғы 22 карашадағы №КZ31VBH00243064 шешімі негізінде біз, томенце қол коюшылар, «Мұпайлы аудандық жер қатынастары бөлімі» мемлекеттік мекемесінің бөлім басшысы Орынбасаров Бакытжан Саресповичальна і бұлап әрі (І-жақ) және «Saken 23» жауянкершілігі шектеулі серіктестігінің дәректоры Тылеубаева Бағыла Бухарбаевна атынап, бұдан әрі (ІІ-жақ) 2023 жылғы 26 желтоксандағы №1315 жер учаскесіп жалға беру кұқытып сатып алу-сату туралы томендегідей ам ерістер ең ізу тура қу осы келісімді жасадық.

«КЕЛІСІМ ШАРТ НЕГІЗІ» «Шарт мені» тарауындағы нысаналы мақсаты «өндірістік база құрылысын кеңейту үшін» дегеп сөздері «медициналық қалдықтарды жою (ортеу) пелгінің гимараты құрылысы үшін» созлерімен өзгертілеін.

1- war

«Мунайлы аудандық жер қатынастары бөлімі» ММ Орынбасаров Бакытжан Сарсепович

Mercen жайы:

Мангыстау ауылы, №14 квартал, 30 курылыс П- жақ

«Saken 23» жауапкерпілігі пісктеулі серіктестігінің директоры Тилсубаева Багила Бухарбаевна

Мекси жайы:

Актау каласы,

16-42-08 BCH 2403400240

приложение 3

ПАСПОРТА ОБОРУДОВАНИЙ

0

ПАСПОРТ

0

Печь-инсинератор модели «Веста Плюс» Hap-1,0K

Регистрационный номер Nº133

При передаче установки другому владельцу вместе с ней передается настоящий формуляр

Руковолетво по эксплуатации

Техническое описание 1.1

Пазначение и область применения Печь-иненператор модели «Веста Плюс» Пир предназначен для нысокотемисратурного термического уничтожения

и обезвреживания биоорганических отходоз, медицинских отходоз (классы опасности А. Б. В. частично Г), ТБО, вефтенизмов. За счет высокой температуры сторапия впутри ппсинераторы происходит практически полнос упичтожение отходов и после завершения рабочего пикля остается стерильный педси массой 2-5% от вирузки.

Оспонные параметры

Загрузка до 1100 кг;

- Рабочая температура в камере сторания от 1100 до 1500С
- ДхШхВ 3200x1500x2000 мм;
- Bec 7500 Kr.
- Мощность ежигания 100-260кг/ч
- Объем камеры сжигания 3.1м3
- Расход природного газа* 8.0м3/х
- Расход дизельного топлива* 12д/ч
- Потребляемая мощность 1,4кВт
- Напряжение сети, В 220, частота сети. Гц 50
- Футеровочный слой помотный кирпич 114мм
- Гарантия Ігод.

RESERVE NO SOLITORING he out was a by 1.2 Устройство и принцип работы

Осповная камера.

В основную камеру загружаются отходы, подлежащие ушичиственно. Для загружи в камеру сгорания и открытия крышки предусмогрена ручная ими электрическая лебедка. В камере имеется лож (бесплятияя вищия), (видонь выпланьно должного.

Камера дожига,

ора

ТИМ

цип

бор

RUM

-80.

VД

20,1

ьте

сго TO. дит

В камере дожига происходит дожигание иссгоровших компонентов дыменых газов. В камере пместея зольный люк (бесплагная опция) ЛЯ ОЧИСТКИ ОТ ИСПТА

Огнеупорная запила.

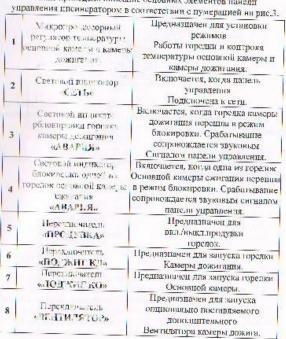
Оспонная камера и камера дожига выпожены изнутри огнеупорным киринчом. Крышки камер и люх камеры ложига защищены от воздействия высокий технературы волокинстым или прессованилы огнеупорным материалом.

Температурный контроль.

В инсинераторах модели «Всета Плюс» пепользуется микропроцессории регулятор температуры, который экономит 50-60% топлива. Это достигается счет датчика температуры, который контролирует температуру в основни камере и камере дожита. Когда температура достигает оптимальной податоплива отключается. При остывании пяже минимальной установлени температуры подача топлива возобновляется.

Горелки

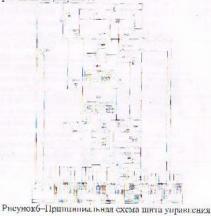
Ипсиператоры имеют две горелки и более для достижения заданной температуры. Горелю устанавливанися в основной камере сжитания и камере ложига отходящих газов.

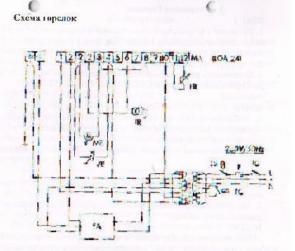

Ланиая конструкция позволяет максимально использовать высокую температуру. Присутствие оператора не потребуется до тех пор, пока таймер ой автоматически не отключит горелки. Автоматическое воспляменение горелок делает запуск быстрым и легким. Благодаря уникальной системе вытяжки возникновение дъвма и запяха сведено к минимуму. Управление работий инсинератора осуществляется посредством щита управления, в котором располагаются микропроцессорный регулятор температуры, сигнальные дампь органы управления.

Щит управления

Внешний вид панели управления показан на рисунке 3.

2.01 сание основных элементов и пазначение индикаторов. Ниже приведено описание основных элементов панели


Реле времени предпазначено для установки времени сжигация отхолов Оно паходится внутри щита управления. Внешший вид принеден на рисупке 5.



На двух разрядном пифровом пидикаторе 1 отноражается текущей установленное время. Изменение значения производится интенциомстром 2. Время можно задать в диапазоне от 1 до 99 часов с шагом в 1 час.

Электрические ехемы

Принципиальная схема щита управления горелками с дополнительным вентилятором приведена на рисупке 6.

3.Указашея по монтажу

Монтаж инсинератора

Установите инсинератор на твердой почис, бетоне или пописоворования по при пописывания под поределения под павесом на открытом воздухе. Для бесперебойной работы инсинератора требуется около 1000кубля, воздуха в час. Держите данный участок свободным от любой растительности. Все комплектукицие упакованы внутри оборудования.

Закрепите дымовую грубу на камеру дожига и срежьте гранспортировочные угушки из основной камеры.

31. Установка Горедок

- 1. Установите фланцы крепления горелок в месте с асбестовой прокладжой па 4 болга М8 (входит в комплект горелок).
- 2. Вставить горелки по фланцы до упора и закрепить.
- 3. Подключить разьемы SC/PB для соединеция электропитация основного блока управления с горедками.

- 1. Ипсинератор работает на жилком топливе. Установите топливный бая ыннямум на расстияния 2,5м от инсиператора. Максимальное расстикни (для дизельного варианта)
- 2. При пенбходимости, прикопсультируйтесь в местпой "специализирован

ШАГ3

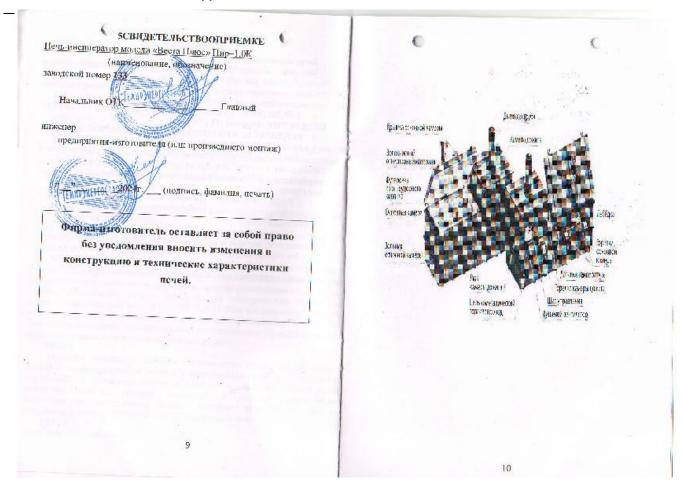
- 1. Подключите через штупер линию подачи тоглина от кондивного бака: входному топливопроводу;
- 2. Мы рекомендуем использовать 3/8"медную линию вли шланг МБС для и динии подачи топлена.

ШАГ4

Подключение, регулирование в техническое обслуживание инсинерадолжно производиться только кналифицированным специалистом, изучив пастояние руководство по эксплуатации, а также руководство по эксплуата горедок. По способу защиты от поражения электрическим током, пре соответствует классу II по ГОСТ 12.2.007.0-75. При эксплуатации, техничен обслуживания и проперкс необходимо соблюдать требования ГОСТ 12.3.019 Правила эксплуатации электроустановак погребителем и Правила охраны г при эксплуатации члектроустановок погребителем.

IIIAI'S

Прокачка тоннивной спексмы производится открытием заглушка букной Р на пасосе допытей гореаки и включение режима Продувки на пууправления до появления стабильной струч топлива из соответствующ отверстия. После чего Продувка выключается и заглушка ставитея па ме Гопливная система прокичена. Вкиючение таймера реле времени происхо поворочом клавиши ПРОДУВКА на пульте управления.


ШАГ6

Проверьте топливную систему па утечку,

4.Эксплуатация Загрузка инсиператора

Загрузка отходов в основную камеру сгорация может осуществияться как вручную, гак и механизированным способом. Отходы полинестью загружаются в холодную установку, следует

- руководствоваться следующими правилами:
 УБЕДИТЕСЬ, ЧТО ОТХОДЫ НЕ ПЕРЕКРЫВАЮТ ОТВЕРСТИЯ ЛЮБОЙ ИЗ ГОРЕЛОК;
- УБЕДИТЕСЬ, ЧТО ОТХОДЫ НЕ БЛОКИРУЮТ КАНАЛЫ В КАМЕРУ ДОЖИГА И ДЫМОХОД.
- Когда загружаете отходы, бросайте их с минимальной безопасной высоты. Это предотвратит повреждение от ударов и возможных разбрызгивания прениествуницих отходных материалов или горячей золы.
- Когда загружаете установку механизировано, будьте очень эксперожны, чтобы продотвратить возможное повреждение установки
- Трактор может причинить механическое повреждение огнеупорному материалу и металлическим конструкциям.
- Не перегружайте отходами камеру сторания, так как при закрытин вы можете повредить отпеупорное волокно крышки, что приведет к значительным затратам на се восстановление.

Паспорт.

€

Установка комплексной системы газоочистки «ВЕСТА ПЛІОС» СГМ — 01 для Печей-Инсписраторов модети «ВЕСТА ПЛЮС»

No 302

прижимытся к стенкам циклона и под влияние сил тяжести опускаются в бупкерпос устройство, из которого щыли периодически удклянятся через пылевой затвор (лючки для ревивни и чистки). Н последующем газы попадают в газопромыватель.

собой Газопромыватель представляет вертикальную изготовленную из нержавеющей стали. Газопромыватель состоит из фореунок распыдення жидкости, фильгов, капельника, газоотволной трубы со штупером (дочок для отбора проб), лючков для ревизии и чистки форсунск и фильтра, конуснообразного канала для слива воды с примсеями, который соединен с вмкостые отстойника.

В испарительной каморе раствор нейтральной среды нагнетается через форсунки распылители. Смешиванием водиного пара, вторичного воздуха и дымовых газов происходит газофикация сажи и дожитание горючих газов, по известным реакциям:

 $C + H_2O = CO + H_2;$ $C + O_2 = CO_2;$ $2CO + O_2 = 2CO_2.$

 $H_2 - O_2 = H_2O$

Суммарно реакции газификации эпастермичны, из-за чего, на выходе реакционной зоны температура откодищих газов подает до 400°C.

Из зоны системы газаочистки, вода е примесями, е помищью пиркуляционного насеса попачают в емкость отстойники, в котором охлаждаются смешиняются 10%-им раствором ваустической соды и охляждяются до температуры (30÷50)°С.

В пиркулирующем растаоре растворяются и хемо сорбируются кислые газы, образующейся в трубе газопромывателя: 502, SO3, NO2, Cl2, F2,

Очистка и охнаждение пиркулирующего раствора происходит в очистном сооружении, а образующиеся нейтральные соли утилизируются известными епособами. Эффектизность очнетки газов от 75 до 90 %.

Промывка каустическим растворам сбеспечивает стъясно отходящих газов от примесей на таком уровне, что после выброся в атмосфору, они не создают экологическую опасность для окружающей среды

1 Вветение

Установка комплексной системы газопчистки «ВЕСТА ПЛЮС» СГМ предназначена для очистки отходащих газов на инсинераторных

Дашная установка изготовлена до требованиям Написывныего стандарта Республики Казахетан «Опасные медининские отходы» СТ РК 3498-2019 и Пацинального станавтта Республики Казакстан «Оборудование пункутожению и обезвреживанию опасных медицинских отколов» СТ РК 3827-

Принции работы установки для мокрой очистки газов.

Температура на въсходе из камеры дожигания, в зависи ости от количества вторичного воздуха и состава ежитаемого сырья меняется в интериале 900 - 1500 °C. Из камеры дожигания дымовые газы поступцют в рекуператор (теплазобменную камеру) (Рис.1 п.4), в которую е помощью дымосося (Рис. 1 п.7) поластся объек воздуха и охлаждает отходящие газы до 500-550 гранусов в Цельскю. В последующем гизы попадают в Фильтр сухой (трубой) очнотки (циклоп) (Рис 1 п.2) из нержавеющей стали, в который оседают тяженые частицы. При помощи дымососа газы ускоряются в газопромыватель (фильтр мокрой очистки) (Рис. 1 и.3), где, проходя через фарфоровый фильтр и смешиванстся с водящым паром. Добявление водяного нара способствует полному превращению сажи и утольной цыли в оксуды углерода и образованию кислых газов из сернистых и талоген содержащих компонентов.

Теплпобменник (рекуператор) изготовлен из пержавенощей сталы. Он присоединяется к камере дожига и предпиличен для охлаждения отходяних газов до 550 градуеов по Цельсию. Охлаждение происходит как при помощи воздушной массы, гис и при помощи жидкости (воды). Рекунератор состои: из двух труб диамогр первой трубы не менее 325мм, общитой спиравыю, и внешней трубой дивыстром не менес 500мм. Воздух подлется с помощью дымосоза/вентилитора в входной изтрубок рехуператора, преходя через спираль приток воздуха охлаждяет трубу с отходящими газами до 550 градусов в Цельсия и горячий вознух с помощью выходного отверстия и грубопроводов ускоряется и грубу газопромывания, сездавая тягу в комплексе системе газоочистки. В последующем газы уходят в фильтр грубой очистки (Циклоп).

Циклон изготовлен ил пержавсющей стани телициной не менее 2мм, Приниции работы циклона заключается в спирадедищием закручивании потока запыленного воздуха в цилиндрической части цихлопа, где инд действием центробежной силы частицы пыли

2

Гарантан изготовителя.

Установка должня храпиться и эксплуатироваться в защищенных от потоды условиях. ГОСТ 15150 Исполнения для различных климатических райопов. Категории, условия эксплуятяции. хранения транспортирования в чисти воздействия климатических факторов висшией среды

Гарянтийный срок 12 месяцев со дня продажи,

 В течение гарантийного периода изголовитель обязуется безвозмезано устранять любые заводские дефекты, вызванные недостаточным качеством материалов или сборки.

Гарантия обратает ситу, тодько если дата покупки подтверждается печатью и пошнисью производителя или торговой организации в Наспорте установки.

- Изготовитель не цесет ответственности и не гарантирует пермальную работу установки в случаях:
 - дефекдов, вызванных фонс-мажорными обстоительствими:
- несоблюдения правил гранспиртировки, монтажа, эксплуатации, (обслужилация и ухода за установкой);

не сапилионированной разберки (вакрытия) оборудования.

Все другие требования иключая требования возмещения убынков, исключаются, если ответственнаеть изготорителя не установлена в закоплом порядке.

Эта гарантия действительна в любой стране, в которую поставлено изделие и где пикакие ограничения по пупорту или другие правовые положения не прецятетвуют предоставлению гарантийного обслуживания.

Тосбования безопасности

При монтаже и демонцаже следует надежно закрешвиь его на подъемных устройствах. Монтаж производить с устойчивых плотадок, исправным инструментом.

Транспортирование и хранение

Изделие может транепортироваться пнобым вилом транепорта при условии соблюшения инструкций при перевозке грузов на данном видс транспорта. ГОСТ 23170-78 Упаковка для изделий машкиостроения. Общие требования

3

4 Техническая тарактеристика

Под установкой ичнетки тяза понимается сооружение, оборудование и аппаратура, используемые для очнетки отходящих газов от загрязилющих всщести и (или) их обствреживация.

Таб.1. Характеристики установки очистки газа

Гаименование	Производительность, м3/ч	11 мм. на более	Н жи, пе болег	НІ мм. не болес	112 мм., на болае	Масса, ти, не более
ептиплиенцая - камера (ракупериюр)		500	-0			0,5
Филътр сухой истки (цихлон)	500-2500	50C	1500	До 7000	До 9000	1,8
зопромынятель ильтр мокрей очистки)	500-2500	1000	3500	До 6000	До 9000	<i>I</i> ₁₀ 2,4
ольтр мокрой		1000	3500	До 6000	До 9	000

Производитель оставляет за собой право на изменение технического наспорта без уведомления Покупателя

5 1, обования и эксплуатации и обслуживанию Стацовки.

- Периоличность технического обслуживания деталей фильтра обслуживание должно производиться по мере загрязнения отдельных частей, но не реже одного раза в месян, квалифицированным персоналом.
- При ухудшении степеци очистки или уменьшении поздушного петока фильтри цеобходимо промыть фильтрующие элементы установки.
- При праведении работ по очистке внутренного объема каморы установки пеобходимо удалить продукты пеполного сгорания твердого теплива и частник жира со стемок и лиища камеры при помощи щеток и различных скребков. Для чистко внутреннего объема камеры установки и для чистки лабиришных фильтров рекомецијуется использовать различные можнико средства для уделения лабиринтных фильтров необходимо производить по мере их загразнения.
- При очистке фильтрующих этоментов какие-либо инструменты не понадобятся, пообходимо процедать следующие работы;
- -Отколочить установку от подачи раствори.
- Слить раствор из камеры установки.
- -Открыть ревизнонные окна.
- Очистить сетчятый и дабирингные фильтры от загрязнений.

При обслуживании и экинтуатании отрого соблюдать технику безопасности.

Винмапие!

Во избежание преждевременного выхода из строя оборудования, следует непользовать раствор с пейгральной средой.

- Общий объем раствора для работы установки не менее 4 м.куб.
- Для созрания необходимого давления раствора на выходе из сопла форсунов, следует применять жидкостной насое с максиматылым напором не менес 4м., и максимальной производительностью не менее 4м. кмб /час
- не менее 4м., и максимальной производительностью не менее 4 м.куб./час.
 Емкость с раствором следует очищать от накопившихся твердых частиц не реже 1 раза в 3мес в зависимости от часов работы инсинератора.
 - Для нагнетация воздуми применяется напорный вентилятор с коллектором в сборс. Мопность 0,75-1,5 кВт, 2800-3000 об/мин. Коллектор с двумя точками подачи воздуха (воздуховод верхний канал – нежектор, воздуховод нижний канал).

6

ä

6 Свидетельство о приемке

CTM - 01 302

Соответствует требованиям ГОСТ, Национальным стандартам Республики Казахстан «Опасные медиципиские отходы» СТ РК 3498-2019 и Национального стандарта Республики Казахстан «Оборудование по унаттержению и обезвреживанию опясцых медицинских этходов» СТ РК 3822-2022 и призная транамы ужеплуатации.

Дага выпуска: « » 2034 г.
ОТТЕ:

Изготомисть принтирует надежную работу изделия при условии применения изделия по пальячению.

Гарянтийный срок сестанияет 12 месяцев с момента ввода изделия в зколнуатацию, но не более 18 месяцев с момента отгрузки изделия в адрес заказчика.

Вдимание! Входная труба въдистся расходным материалом. Гарантии на нее де распрострапается!

	7 Гаринтийная отметка:	0
Дата «	2024 r.	
Orne, Ore	ТОО «ТемирЭпергоСт	рой»,
/bra a		
Причина		
4		
	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-45
Ответственные:		
Подпись		
подпись		
/lara « »		
Причина		
		*
		10
Ответственные; подпись		
папись		

7

. (8 СВЕДЕ <mark>Н</mark> ИЯ ОБ УСТАНОВК	E C.	C
8.1 Сведения о местонахождении установки		установки	\$4049.040454\$\$\$\$\$\$\$\$\$\$\$\$\$\$
Наименование предприятия и его адрес	Местонахождение установки (адрес установки)	Дата монтажа	
			Рис. 1. Установки комплексной спотомы газоочистки «ВЕСТА ПЛЮС» СГМ — 01
			1Фильтр грубой сухой очистки (Циклов) 2Газопремыватель (фильтр мокрой очистки), 3 Рекуператор (теплоообмешник) 4Дымосос/вентилятор
			5 Емкость под возу 6 Циркуляционный насос
	9		10

ПРИЛОЖЕНИЕ 4

лицензия

1 - 1

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

Выдана КУШЕНОВА СВЕТЛАНА МУСАЕВНА

Республика Казахстан, Мангистауская область, Актау Г.А., г.Актау, МКР.15, 64, 37 (полное наименование, местонахождение, реквизиты юридического лица /

полностью фамилия, имя, отчество физического лица)

на занятие Выдача лицензии на выполнение работ и оказание услуг в области

охраны окружающей среды

(наименование вида деятельности (действия) в соответствии с Законом

Республики Казахстан «О лицензировании»)

Особые условия действия лицензии

(в соответствии со статьей 9 Закона Республики Казахстан «О лицензировании»)

Орган, выдавший лицензию Министерство энергетики Республики Казахстан. Республиканское

государственное учреждение «Комитет экологического

регулирования и контроля Министерства энергетики Республики

<u>Казахстан»</u>

(полное наименование государственного органа лицензирования)

Руководитель (уполномоченное лицо)

(фамилия и инициалы руководителя (уполномоченного лица) органа, выдавшего

лицензию)

Дата выдачи лицензии 31.03.2008

Номер лицензии <u>01796Р</u>

Город г.Астана

Страница 1 из 2

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ **ЛИЦЕНЗИИ**

Номер лицензии 01796P Дата выдачи лицензии 31.03.2008

Перечень лицензируемых видов работ и услуг, входящих в состав лицензируемого вида деятельности

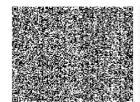
Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

Орган, выдавший приложение к

Министерство охраны окружающей среды Республики Казахстан. Комитет экологического регулирования и контроля МҰХАН НҰР-СТАСБЕК СҰЛТАНБЕКҰЛЫ

01796P

лицензии


Руководитель (уполномоченное лицо)

11.03.2012

Дата выдачи приложения к лицензии

Номер приложения к лицензии

Город Республика Казахстан, г.Астана

