№ ИЗА	1040	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Вспомогательный бензи- новый генератор	350HD Dumper

Генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполять расчет выбросоо то безыновых электростанций (генераторов) моцностью до 10 кВт по "Методика расчета вы бросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от темакой электро станции — 10 км/час. Количество:		тоящее время отсутствует методика расче				
бросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электро от дли движении по территории со скоростью 5 км/час. Количество. Количество. Количество. Количество. Количество. Максимальный разовый выброс і-го вещества рассчитывается по формуле: М _{кож} =(пы, *L1)/*Пэп*10*, т/год где: Максимальный разовый выброс і-го вещества рассчитывается по формуле: М _{кож} =(пы, *L1)/*Пэп*10*, т/год где: Максимальный разовый выброс і-го вещества рассчитывается по формуле: М _{кож} =(пы, *L1)/*Пэп*10*, т/год где: Тере: Тере: Тере: Максимальный разовый выброс і-го вещества рассчитывается по формуле: М _{кож} =(пы, *L1)/*Пэп*10*, т/год где: Тере:						
транции - 0,25 от величины выброса пеховового карбюраторного автомобиля с объемом двигателя до 1, л при движении по тверритории со скоростью 5 км/час.						
При движении по территории со скоростые 5 км/час. Исходные данные:	бросов загр	рязняющих веществ от автотранспортнь	их предпр	иятий", і	принимая за выброс or	п такой электро-
Моходиные данные: Vacotra вращения вала:	станции - (0,25 от величины выброса легкового ка	рбюрато	рного а	втомобиля с объемом	двигателя до 1,2
Моличество: N	л при движ	ении по территории со скоростью 5 км	и/час.			
Пастота вращения вала: Окаситуатационная мощность бензинового генератора: Максимальный разовый выброс і-го вещества рассчитывается по формуле: М _{еса} =(m _{La} *L1)*U3600, г/с Валовый выброс і-го вещества рассчитывается по формуле: М _{еса} =(m _{La} *L1)*U70*00, г/с Валовый выброс і-го вещества рассчитывается по формуле: М _{еса} =(m _{La} *L1)*U70*00, г/с Валовый выброс за рассчитывается по формуле: М _{еса} =(m _{La} *L1)*U70*00, г/с Валовый выброс за рассчитывается по формуле: М _{еса} =(m _{La} *L1)*U70*00, г/с Валовый выброс за легкового карбораторного автомобиля с объемом двигателя до 1.2 л. т.в. (таблица 3.5): Пето 0.035 г/км 1 лето 0.035 г/км 1 ле		Исход	ные данн	ье:		
Вжелгиуатационная мощность бензинового генератора: Тора: Максимальный разовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещества рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го вещается ватов рассчитывается рассчитывается по формуле: Ми _{тов} (ти _{тов} 1.1/t/13600, г/с Валовый выброс 1-го выбросов вредных веществ в атмосферу всего от одного бензинового генераторов: Валовый выброс 1-го выбросов вредных веществ в атмосферу всего от 2-х бензинового генераторов: Валовый выброс 1-го выбросов вредных веществ в атмосферу всего от 2-х бензинового генераторов: Валовый выброс 1-го вызин (с./н.) 1-го 0.000015 0.0000013 0			N	1	2	ШТ.
Максимальный разовый выброс i-го вещества рассчитывается по формуле: М _{ини} =(m _{Lin} **L1)t/13600, rfc Валовый выброс i-го вещества рассчитывается по формуле: М _{ини} =(m _{Lin} **L1)t/10*10*6, rfrog Валовый выброс i-го вещества рассчитывается по формуле: М _{ини} =(m _{Lin} **L1)t/10*10*6, rfrog Валовый выброс i-го вещества рассчитывается по формуле: М _{ини} =(m _{Lin} *L1)t/10*10*6, rfrog Robert Prix No. 10	Частота вра	щения вала:	r	1	1500	об/мин
Максимальный разовый выброс I-го вещества рассчитывается по формуле: М _{емя} =(m _{Lim} *1-1)/t03600, г/с Валовый выброс I-го вещества рассчитывается по формуле: М _{емя} =(m _{Lim} *1-1)/t070 ⁺¹ 0°, т/год г/с Валовый выброс I-го вещества рассчитывается по формуле: М _{емя} =(m _{Lim} *1-1)/t070 ⁺¹ 0°, т/год г/с Валовый выброс I-го вещества рассчитывается по формуле: М _{емя} =(m _{Lim} *1-1)/t070 ⁺¹ 0°, т/год г/с М _{емя} плето 0.035 г/км мима 0.	Эксплуатаці	ионная мощность бензинового генера-	_)	4 5	.,D=
Валовый выброс і-го вещества рассчитывается по формуле: M _{Ircen} =(m _{Lax} *L1)*Dn*10*, т/год т/гкм пето 0.035 г/гкм лето 0.009 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000						
Валовый выброс і-го вещества рассчитывается по формуле: M _{Ircen} =(m _{Lax} *L1)*Dn*10*, т/год т/гкм пето 0.035 г/гкм лето 0.009 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Ман	симальный разовый выброс і-го вещества	рассчитые	вается по	формуле: М секі=(<i>m</i> Lik*L1)	/t/3600, г/с
Выброс от бензинового генератора равен 0.25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1.2 л: ты, (таблица 3.5): Пробег автомобиля в день без нагрузки по территории предприятия: Пробег автомобиля в день без нагрузки по территории предприятия: Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории одлжна быть принята: Время работы бензинового генератора: Т 12 ч/год Количество рабочих дней в расчетном периоде: Т 12 ч/год Наковой расход бензина за год: Въод 0.0088 т/год Наковой расход бензина: Въод 0.0088 т/год Наковой расход бензина за год: Въод 0.0088 т/год Наковой расход бензина: Въод 0.008 т/год Наковой расход обензина: Въод 0.0006 кг/с Тем 450 Ф/С т/м т/		Валовый выброс і-го вещества рассчиты	вается по	формуле	: $M_{rogi} = (m_{Lik} * L1) * Dn * 10^{-6}$	т/год
Выброс от бензинового генератора равен 0.25 от величины выброса легкового карбюраторного автомо- биля с объемом двигателя до 1.2 л: тель (таблица 3.5): ———————————————————————————————————	где:					
Выброс от бензинового генератора равен 0.25 от величины выброса легкового карбораторного автомобиля с объемом двигателя до 1.2 л: тыж (таблица 3.5): Макаритателя до 1.2 л: тыж (таблица 3.5): Макаритателя до 1.2 л: тыж до 1.2 л				лето	0.035	г/км
Выброс от бензинового генератора равен 0.25 от величные выброса легкового карборагорного автомо- биля с объемом двигателя до 1.2 л: m _{Lx} (таблица 3.5): ———————————————————————————————————			MLNOk	зима	0.035	г/км
личины выброса легкового карбіораторного автомо- биля с объемом двигателя до 1.2 л: ти, ки (таблица 3.5):		-		лето	0.009	г/км
личины выброса легкового кароюраторного автомо- биля с объемом двигателя до 1.2 л: ти. (таблица з.5):			m_{LSO2k}		0.011	г/км
ПІССОК ВИМВ В СОВЕМОМ ДВИГАТЕЛЯ ДО 1.21: ПІЛЬК (ТАВЛИЦА 5.3): ПІЛЬСОК ПІССОКУМ ПЕСОКУМ ПЕСОКУМ ПЕСОКУМ ВИМВ В ДАВТОВ В ДЕНЬ БЕЗ НАГРУЗКИ ПО ТЕРРИТОРИИ ПРОБЕГА ВИЖИВЕЛЯ В ДЕНЬ БЕЗ НАГРУЗКИ ПО ТЕРРИТОРИИ ДОЛЖНА БЕТЬ ПРИНЯТА: В 1 25 КМ/ДенЬ ВЕРМЯ РАБОТЫ БЕНЬИВИЯ В ДЕНЬ БЕЗ НАГРУЗКИ ПО ТЕРРИТОРИИ ДОЛЖНА БЕТЬ ПРИНЯТА: В 5 КМ/ДенЬ ВЕРМЯ РАБОТЫ БЕНЬИВИЯ ОДО В 1 12 Ч/ГОД В						
Пробег автомобиля в день без нагрузки по территории предприятия: Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята: Время работы бензинового генератора: Т 12 Ч/год Количество рабочих дней в расчетном периоде: Т 12 Ч/год Количество рабочих дней в расчетном периоде: Расход бензина за год: Часовой расход бензина: Расход бензина: Время работы бензинового генератора: Расход бензина за год: Наковой расход бензина: Расход бензина: Время работы к газов и топлива Расход бензина: Расход бензина: Время работы к газов и топлива Расход бензина: Время работыных газов и топлива Т 12 Ч/год Дасовой расход бензина: Время расход отработанных газов: Тог 450 °C Плотность газов при Тог (К), уог=уОог/(1+Тог/273) Уог 0.049465 кг/м³ Плотность газов при Тог (К), уог=уОог/(1+Тог/273) Объемный расход отработанных веществ в атмосферу всего от одного бензинового генератора: Код 3В Наименование 3В Наименование 3В Наименование 3В Наименование 3В Валовый выборос Месев г/с Мгов т/год О.00000486 О.0000021 О.0000033 О.00000017 О.3304 Азота оксиды (NO₂) О.0000033 О.00000166 О.0000002 Вегот по источинку: Вегот по источинку: Вегот по источинку: Вегот по источинку: Валовый выборос Мисемиально-разовый выборос Месев г/с Мгов т/год Маскимально-разовый выборос Валовый выборос Месев г/с Мгов т/год О.0000072 О.0000073 О.0000073 О.0000073 О.0000074 О.0000077 О.0000077 О.0000077 О.0000077 О.0000077 О.0000000000	биля с объе	мом двигателя до 1.2 л: m _{Lik} (таблица 3.5):	m_{LCOk}			
Пробег автомобиля в день без нагрузки по территории предприятия: Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята: Время работы бензинового генератора: Количество рабочих дней в расчетном периоде: Т 12 ч/год Количество рабочих дней в расчетном периоде: Впа 0.0088 т/год Насовой расход бензина Расход бензина за год: Средний удельный расход бензина: Средний удельный расход бензина: Время работы бензина за год: Впа 0.0088 т/год Насовой расход бензина: Время рабочих дней в расчетном периоде: Впа 0.0088 т/год Насовой расход бензина: Впа 0.0088 т/год Насовой расход отработанных газов, дог в 7.2°10°40°40°40°40°40°40°40°40°40°40°40°40°40						
Пробег автомобиля в день без нагрузки по территории предприятия:			m_{LCxHyk}			
предприятия:	Проболовто	MORALE D. COLU. ROO HOENVOIG DO TORRISTORIA		зима	0.373	I / KIVI
Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята: v 5 км/час Время работы бензинового генератора: t 5 ч/день Количество рабочих дней в расчетном периоде: T 12 ч/год Расход бензина за год: Вгоза 0.0088 Т/год Часовой расход бензина: b 0.73 кг/ч Часовой расход бензина: b 0.73 кг/ч Расход отработанных газов, Ger в 8.72*10*b-b-yP, Gor 0.006 кг/с Расход отработанных газов, Ger = 8.72*10*b-b-yP, Gor 0.006 кг/с Тремература отходящих газов: Тог 450 °C Плотность газов при Тог (К), Yor=YOor/(1+Tor/273) Yor 0.49465 кг/м³ Плотность газов при Тог (К), Yor=YOor/(1+Tor/273) Yor 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Код 38 Наименование 38 Максимально-разовый выброс Валовый выброс Код 3В Наименование (NO₂) 0.0000486 0.0000021 0301 Азота оксид (NO₂) 0.0000538 0.0000			L	1	25	км/день
рость движения по территории должна быть принята: Время работы бензинового генератора: Т 12 Ч/гень Т 12 Ч/год Количество рабочих дней в расчетном периоде: Вод 0.0088 Т/год Расчет расхода отработанных газов и топлива Расход бензина за год: Вод 0.0088 Т/год Насовой расход бензина: Вод 0.0008 Кг/ч Температура отходящих газов; Вод 0.0006 Кг/с Температура отходящих газов: Тот 450 °C Плотность газов при 0°C: Плотность газов при 0°C: Плотность газов при 0°C: Плотность газов при 0°C: Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Код 3В Наименование 3В Наименование 3В Максимально-разо- Валовый выброс Максимально-разо- Валовый выброс Фрос Максимально-разо- Валовый выброс О 0.0000486 0.0000021 О 0.0000486 0.0000021 О 0.0000486 0.000003 Валовый выброс Весто по источнику: О 0.000486 0.000003 Валовый выброс Маскимально-разо- Весто по источнику: О 0.000486 0.000003 Валовый выброс Маскимально-разо- Весто по источнику: О 0.000486 0.000003 Валовый выброс Маскимально-разо- Валовый выброс Маскимально-разо- Валовый выброс Валовый выброс О 0.0000486 0.000003 О 0.0000486						
Время работы бензинового генератора: t 5 ч/день ч/год Количество рабочих дней в расчетном периоде: Dn 2 дней/год Рассчет расхода отработанных газов и топлива 112 ч/год Расход бензина за год: В _{юд} 0.0088 т/год Часовой расход бензина: b 0.73 кг/ч Средний удельный расход бензина: b 0.73 кг/г Расход отработанных газов, G₀r = 8.72*10 ⁶ *b₃*P₃ G₀r 0.006 кг/с Температура отходящих газов: T₀r 450 °C Плотность газов при °C: Y0₀r 1.31 кг/м³ Объемный расход отработанных газов, Q₀r=Q₀r/q₀r Q₀r 0.0129 м³/с Плотность газов при т₀r (к), y₀r=y0₀r/(1+T₀r/273) Y₀r 0.49465 кг/м³ Объемный расход отработанных газов, Q₀r=Q₀r/q₀r Q₀r 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Максимально-разовый выброс Валовый выброс Код 3B Наименование 3B Максимально-разовый выброс 0.0000017 0301			\	/	5	км/час
Время раооты оензинового генератора: Т 12	рость движе	ения по территории должна оыть принята:				,
Количество рабочих дней в расчетном периоде: Dn 2 Дней/год дней/год Расчет расхода отработанных газов и топлива Расход бензина за год: В _{год} 0.0088 т/год Часовой расход бензина: b 0.73 кг/ч Средний удельный расход бензина: b₃ 162 г/кВт.ч Расход отработанных газов, G _{or} = 8.72*10-6*b₃*P₃ G _{or} 0.006 кг/с Температура отходящих газов: T _{or} 450 °C Плотность газов при Т _{or} (K), Y _{or} =Y0 _{or} /(1+T _{or} /273) Y _{or} 0.49465 кг/м³ Плотность газов при Т _{or} (K), Y _{or} =Y0 _{or} /(1+T _{or} /273) Y _{or} 0.49465 кг/м³ Объемный расход отработанных газов, Q _{or} =G _{or} /Y _{or} Q _{or} 0.129 м³/c Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератораз код 3В Наименование 3В Максимально-разовый выброс брос М _{ses} , г/с М _{ses} , г/с М _{ses} , г/с м _{ses} , г/с 0301 Азота оксид (NO ₂) 0.0000389 0.0000017 0330 Сера диоксид (SO ₂) 0.00005208 <td>Время рабо</td> <td>ты бензинового генератора:</td> <td></td> <td></td> <td></td> <td></td>	Время рабо	ты бензинового генератора:				
Расчет расхода отработанных газов и топлива Расход бензина за год: Насовой расход бензина: Вова		<u> </u>				
Расход бензина за год: В _{год} 0.0088 т/год Часовой расход бензина: b 0.73 кг/ч Средний удельный расход бензина: b₃ 162 г/кВт.ч Расход отработанных газов, G₀r = 8.72*10*6*b₃*P₃ G₀r 0.006 кг/с Температура отходящих газов: T₀r 450 °C Плотность газов при 0°C: Y0₀r 1.31 кг/м³ Плотность газов при 7₀r (к), Y₀r=Y0₀r/(1+T₀r/273) Y₀r 0.49465 кг/м³ Объемный расход отработанных газов, Q₀r=G₀r/Y₀r Q₀r 0.0129 м³³C Код 3В Наименование 3В Максимально-разовый вывоброс Валовый вывоброс брос Код 3В Наименование 3В Максимально-разовый выборос брос Мевьк г/с Мгод. т/год 0.0000486 0.0000021 0301 Азота оксид (NО₂) 0.0000389 0.0000017 0334 Азота оксид (КО) 0.0003292 0.000156 0.000007 0337 Углерод оксид (СО) 0.0032292 0.0001395 2704 Бензин (С, Н _и)	Количество					дней/год
Часовой расход бензина: b 0.73 кг/ч Средний удельный расход бензина: b₃ 162 г/кВт.ч Расход отработанных газов, G₀r = 8.72*10-8*b₃*P₃ G₀r 0.006 кг/с Температура отходящих газов: T₀r 450 °C Плотность газов при 0°C: y0₀r 1.31 кг/м³ Плотность газов при T₀r (К), y₀r=y0₀r/(1+T₀r/273) y₀r 0.49465 кг/м³ Объемный расход отработанных газов, Q₀r=G₀r/y₀r Q₀r 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Максимально-разовий выброс Мо₀ви, г/с мольт г/с Мъови, г/с						
Средний удельный расход бензина: b₃ 162 г/кВт.ч Расход отработанных газов, G₀r = 8.72*10-6*b₃*P₃ G₀r 0.006 кг/с Температура отходящих газов: T₀r 450 °C Плотность газов при 0°C: y0₀r 1.31 кг/м³ Плотность газов при T₀r (К), y₀r=y0₀r/(1+T₀r/273) y₀r 0.49465 кг/м³ Объемный расход отработанных газов, Q₀r=G₀r/y₀r Q₀r 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Код 3В Наименование 3В Максимально-разовый выбыброс брос брос Мсом, (Nо₂) 0.0000486 0.0000021 0301 Азота оксидц (Nо₂) 0.0000486 0.0000021 0334 Азота оксид (Nо₂) 0.0000486 0.0000017 0337 Углерод оксид (СО) 0.0032292 0.000156 0.0000007 0337 Углерод оксид (Сх,Ну) 0.0032292 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Код 3В Наименование 3В Максимально-разовый выброс брос Мгод, Ооооообо брос Мгод, Ооооообо брос Мгод, Ооооообо брос						
Расход отработанных газов, G _{or} = 8.72*10-6*b₃*P₃ G _{or} 0.006 кг/с Температура отходящих газов: T _{or} 450 °C Плотность газов при 0°C: Y0 _{or} 1.31 кг/м³ Плотность газов при 0°C: Y0 _{or} 0.49465 кг/м³ Объемный расход отработанных газов, Q _{or} =G _{or} /Y _{or} Q _{or} 0.0129 м³/с Код 3В Наименование 3В Максимально-разо-вый выброс брос мискиды (NO₂) Валовый вывыбы выбьрос брос мискиды (NO₂) 0.0000486 0.0000021 0301 Азота оксиды (NO₂) 0.0000389 0.0000021 0330 Азота оксид (NO) 0.0000063 0.000007 0337 Углерод оксид (SO₂) 0.0003292 0.0001395 2704 Бензин (C _x H _y) 0.003292 0.0001395 Всего по источнику: 0.0038108 0.000146628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разо-вый выброс брос Маскимально-разо-вый выброс Максимально-разо-вый выброс брос 6poc Маскимально-разо-вый выброс Олобо0972 0.0000034 <		• •				кг/ч
Температура отходящих газов: T _{or} 450 °C Плотность газов при 0°C: y0 _{or} 1.31 кг/м³ Плотность газов при Т _{or} (K), γ _{or} =γ0 _{or} /(1+T _{or} /273) γ _{or} 0.49465 кг/м³ Объемный расход отработанных газов, Q _{or} =G _{or} /γ _{or} Q _{or} 0.0129 м³/с Код 3В Наименование 3В Максимально-разовый выброс брос Маскима, г/с Мгов, г/год Максимально-разовый выброс брос Мисов, г/с Мгов, г/год 0337 Углерод оксид (КО) 0.0032292 0.000136 2704 Бензин (С _x H _v) 0.0032292 0.0001395 2704 Бензин (С _x H _v) 0.0032292 0.0001395 Код 3В Наименование 3В Максимально-разовый выброс брос Мсов, г/с Мгов, г/г Мгов, г/год Валовый выброс брос Мсов, г/г Мгов, г/год О.000073 3031 Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота оксид (NO ₂) 0.0000778 0.0000014 0330 Сера диоксид (SO ₂) <td></td> <td></td> <td colspan="2"></td> <td>162</td> <td>г/кВт.ч</td>					162	г/кВт.ч
Плотность газов при 0°С: УОог 1.31 Кг/м³ Плотность газов при 1°С; (К), уог=уОог/(1+Тог/273) Уог 0.49465 Кг/м³ Объемный расход отработанных газов, Оог=Сог/уог Оог 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Код 3В Наименование 3В Валовый выборос Мосев, г/с Мгоа, т/год Азота оксиды (NО₂) 0.0000486 0.0000021 ОЗО1 Азота диоксид (NО₂) 0.0000486 0.0000021 ОЗО4 Азота оксиды (NO) 0.000063 0.0000003 ОЗО30 Сера диоксид (SO₂) 0.0000156 0.000003 ОЗО37 Углерод оксид (СО) 0.003292 0.0001395 ОЗОЗОВ Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разовый выборос Мосев, г/с Мгоа, т/год ОЗО1 Азота оксиды (NО₂) 0.0000778 0.0000042 ОЗО1 Азота оксиды (NО₂) 0.0000778 0.0000042 ОЗО1 Азота оксид (NО₂) 0.0000126 0.0000074 ОЗО1 Азота оксид (NО₂) 0.0000778 0.0000042 ОЗО1 Азота оксид (NО₂) 0.0000126 0.0000050 ОЗО30 Сера диоксид (SO₂) 0.0000012 0.0000014 ОЗО1 Азота оксиды (NО₂) 0.000012 0.0000005	Расход отра	аботанных газов, G _{ог} = 8.72*10 ^{-6*} b ₃ * P ₃				
Плотность газов при Т _{ог} (K), у _{ог} =γ0 _{ог} /(1+Т _{ог} /273) у _{ог} 0.49465 кг/м³ Объемный расход отработанных газов, Q _{ог} =G _{ог} /у _{ог} Q _{ог} 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Код 3В Наименование 3В Выброс Ворос Мевк г/с Мгод, т/год Азота оксиды (NО₂) 0.0000486 0.0000021 0301 Азота диоксид (NО₂) 0.0000389 0.0000017 0304 Азота оксид (NO) 0.000063 0.0000063 0330 Сера диоксид (SO₂) 0.000156 0.000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (С₂Н₂) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Код 3В Наименование 3В Максимально-разовый выберос Мевк г/с Мгод, т/год Азота оксиды (NО₂) 0.0000972 0.0000042 0301 Азота диоксид (NО₂) 0.0000778 0.0000034 0304 Азота оксид (NО) 0.0000126 0.0000014 0337 Углерод оксид (SO₂) 0.0000126 0.0000014 0330 Сера диоксид (SO₂) 0.0000126 0.0000014 0337 Углерод оксид (SO₂) 0.0000312 0.0000014 0337 Углерод оксид (SO₂) 0.0000312 0.0000014 0337 Углерод оксид (SO₂) 0.0000312 0.0000014	Температур	а отходящих газов:	T	ог	450	٥C
Объемный расход отработанных газов, Q _{or} =G _{or} /γ _{or} Q _{or} 0.0129 м³/с Код 3В Наименование 3В Максимально-разовый выборос Максимально-разовый выборос м_сек, г/с М_сек, г/с М_год, т/год 0301 Азота оксиды (NO₂) 0.0000486 0.0000021 0304 Азота оксид (NO) 0.0000389 0.0000017 0337 Углерод оксид (SO₂) 0.0000156 0.0000007 2704 Бензин (C _x H _y) 0.0032292 0.0001395 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Валовый выброс Код 3В Наименование 3В Максимально-разовый выброс Беловый выброс Код 3В Наименование 3В Максимально-разовый выброс Баловый выброс Код 3В Наименование 3В Валовый выброс брос Мсек, г/с М _{год} , т/год 0.0000972 0.00000972 О301 Азота оксиды (NO₂) 0.0000778 0.00000972 О303 Сера диоксид (SO₂) 0.0000312 0.0000014 О330 Сера диоксид (SO₂) <td></td> <td></td> <td colspan="2">$\gamma 0_{ m or}$</td> <td>1.31</td> <td>кг/м³</td>			$\gamma 0_{ m or}$		1.31	кг/м ³
Объемный расход отработанных газов, Q₀r=G₀r/у₀r Q₀r 0.0129 м³/с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Код 3В Наименование 3В Максимально-разовый выброс брос Мсек, г/с Мгоа, т/год Оброс Мсек, г/с Мгоа, т/год Оброс Обр	Плотность г	азов при Т _{ог} (К), ү_{ог}=ү0_{ог}/(1+Т_{ог}/273)	Yor		0.49465	
Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Максимально-разовый выброс Валовый выброс Максимально-разовый выброс Валовый выброс Валовый выброс Валовый выброс Валовый выброс Месек; г/с М _{год} , т/год О.0000021 0301 Азота оксид (NO2) 0.0000389 0.0000017 0.0000038 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000003 0.0000025 0.00001395 0.0000225 0.00001395 0.0000225 0.00001395 0.0000225 0.0000146628 0.0000164628 0.0000164628 0.0000164628 0.0000164628 0.0000164628 0.0000164628 0.0000164628 0.0000164628 0.0000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.00000164628 0.000001646628 0.000001646628 0.000001646628 0.0			Q	ог	0.0129	м ³ /с
Код 3ВНаименование 3ВМаксимально-разовый выбросВаловый выброс0.000М_сек, г/сМ_год, т/год0.301Азота оксиды (NO2)0.00004860.00000210.304Азота оксид (NO)0.0000630.00000030.330Сера диоксид (SO2)0.00001560.00000070.337Углерод оксид (CO)0.00322920.00013952704Бензин (CxHy)0.00320980.0000225Всего по источнику:0.00381080.000164628Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов:Код 3ВНаименование 3ВМаксимально-разовый выбросБаловый выбросКод 3ВНаименование 3ВМаксимально-разовый выбросБосс1Азота оксиды (NO2)0.0000770.00000420301Азота диоксид (NO2)0.00007780.00000340304Азота оксид (NO)0.00001260.00000050330Сера диоксид (SO2)0.00003120.00000140337Углерод оксид (CO)0.00645840.000279			осферу в	сего от о	дного бензинового ген	ератора:
Код 3В Наименование 3В вый выброс брос М _{сек} , г/с М _{год} , т/год 0301 Азота оксиды (NO₂) 0.0000486 0.0000021 0304 Азота оксид (NO) 0.0000063 0.0000003 0330 Сера диоксид (SO₂) 0.0000156 0.0000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (CxHy) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Код 3В Наименование 3В Максимально-разовый выброс Валовый выброс маски мально-разовый выброс Корск, г/с М _{год} , т/год 0301 Азота оксиды (NO₂) 0.0000972 0.0000042 0301 Азота диоксид (NO₂) 0.0000778 0.0000034 0304 Азота оксиды (NO⟩ 0.0000126 0.0000005 0330 Сера диоксид (SO₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
Мсек, г/с Мгод, т/год 0301 Азота диоксид (NO₂) 0.0000486 0.0000021 0304 Азота диоксид (NO) 0.000063 0.000003 0330 Сера диоксид (SO₂) 0.0000156 0.000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (С, Н₂) 0.003208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Код 3В Наименование 3В Максимально-разовый выброс брос Мсек, г/с Мгод, т/год 0301 Азота оксиды (NO₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000014 0330 Сера диоксид (SO₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279	Код ЗВ	Наименование ЗВ				брос
Озота оксиды (NО _х) 0.0000486 0.0000021 0301 Азота диоксид (NО ₂) 0.0000389 0.0000017 0304 Азота оксид (NO) 0.0000063 0.0000003 0330 Сера диоксид (SO ₂) 0.0000156 0.0000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (С _х Н _у) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разовый выборос Бый выброс брос М _{сек} , г/с М _{год} , т/год 0301 Азота оксиды (NО _x) 0.0000972 0.0000034 0304 Азота оксид (NO) 0.0000778 0.0000034 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						Мгол, т/год
0301 Азота диоксид (NO₂) 0.0000389 0.0000017 0304 Азота оксид (NO) 0.0000063 0.0000003 0330 Сера диоксид (SO₂) 0.0000156 0.0000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (C _x H _y) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разовый выброс брос брос М _{сек} , г/с М _{год} , т/год 4 Азота оксиды (NO₂) 0.0000972 0.0000042 0301 Азота диоксид (NO₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000014 0330 Сера диоксид (SO₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279		Азота оксиды (NO _v)				
0304 Азота оксид (NO) 0.0000063 0.0000003 0330 Сера диоксид (SO ₂) 0.0000156 0.0000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (C _x H _y) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разо- вый выброс Валовый вы- вый выброс брос М _{сек} , г/с М _{год} , т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279	0301					
0330 Сера диоксид (SO ₂) 0.0000156 0.0000007 0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (C _x H _y) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разо-вый выброс Баловый вывыброс 6рос М _{сек} , г/с М _{год} , т/год 4 Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
0337 Углерод оксид (CO) 0.0032292 0.0001395 2704 Бензин (С _х Н _у) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разо- вый выброс брос Мсек, г/с Мгод, т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
2704 Бензин (С _х Н _у) 0.0005208 0.0000225 Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разовый вывыброс брос М _{сек} , г/с М _{год} , т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
Всего по источнику: 0.0038108 0.000164628 Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Максимально-разовый вывыброс брос М _{сек} , г/с М _{год} , т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
Расчет выбросов вредных веществ в атмосферу всего от 2-х бензиновых генераторов: Код 3В Наименование 3В Максимально-разовый выброс брос М _{сек} , г/с М _{год} , т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279	2104					
Код 3В Наименование 3В Максимально-разо- вый выброс Валовый вы- брос М _{сек} , г/с М _{год} , т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279		•	uoodess:	D00F0 0=		
Код 3В Наименование 3В вый выброс Мсек, г/с брос Мгод, т/год 1 Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279	1	гасчет выоросов вредных веществ в ат	мосферу	PCGLO OL		
Мсек, г/с Мгод, т/год Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279	Ko = 2D	H				
Азота оксиды (NO _x) 0.0000972 0.0000042 0301 Азота диоксид (NO ₂) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279	код зв	наименование зв				
0301 Азота диоксид (NO2) 0.0000778 0.0000034 0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO2) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279		A (2.0.)				
0304 Азота оксид (NO) 0.0000126 0.0000005 0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
0330 Сера диоксид (SO ₂) 0.0000312 0.0000014 0337 Углерод оксид (CO) 0.0064584 0.000279						
0337 Углерод оксид (СО) 0.0064584 0.000279						
0337 Углерод оксид (CO) 0.0064584 0.000279 2704 Бензин (С _х Н _у) 0.0010416 0.000045						
2704 Бензин (С _х Н _у) 0.0010416 0.000045		Углерод оксид (СО)				0.000279
	2704				0.0010416	0.000045
Всего по источнику: 0.0076216 0.0003293						

№ ИЗА	1041	Наименование и мосферы	сточника загрязнения ат-	Дымо	вая труба	
№ИВ	001	Наименование и	сточника выделения	ная ус	хонагреватель- тановка	Master
Выбро	сы от котла о	пределены согласн	ю, <mark>"Сборника методик по р</mark>	асчету і	зыбросов вреднь	их веществ в ат-
			ИЭБ РК РНПЦЭЭАиЭ «КазЭ			
выбросов в	редных вещ	еств при сжигании	и топлива в котлах произво Исходные данные:	дителы	ностью до 30 т/ча	c".
Количество н	котлов:			n	5	ШТ
Номинальна	я мощность к	отла:	Q_{M}	20	кВт	
Фактическая	мощность ко	тла:		$Q_{\scriptscriptstyle{\Phi}}$	18.4	кВт
				В	1.48	кг/ч
Расход топл	ива на 1 котло	рагрегат:		ь	0.411	г/с
				Br	0.0178	т/год
Топливо:				Sr	0.2	%
– керосин:				Ar	0.003	%
Теплота сгор	ания топлива	1 :		Q_i^r	43.12	МДж/кг
Время работ	Ъ:			Τ _Γ	12	ч/год
Количество о	оксидов азота	, образующихся на	1 ГДж тепла:	K _{NO2}	0.058	кг/ГДж
		от степени снижен технических решен	ия выбросов оксидов азота ий:	β	0	
	•	ций долю золы топл		Χ	0.01	
Доля тверды	іх частиц, ула	вливаемых в золоу.	ловителях:	η	0	
		ваемых летучей зо		η'	0.02	
		иваемых в золоуло		ŋ"	0	
Количество (оксидов углер	оода на ед.теплоть	, выделяющейся при горе-	K _{co}	0.16	кг/ГДж
	оты вследств	ие механической не	еполноты сгорания газа:	q_4	0	%
		здушной смеси:		V _r	0.0109	м³/сек
		ций характер топли	Ba:	К	0.355	,
			_{цных} веществ в атмосферу	от одн		l .
			, , , , , , , , , , , , , , , , , , ,			няющих веществ
Код ЗВ		ание загрязняю- ещества (ЗВ)	Расчетная формула		Максимально- разовый, г/с	Валовый, т/год
	A30 ⁻	га оксиды	$\Pi = 0.001^*B^*Q_i^{f*}K_{NO2}^*(1 - 1)$	- B)	0.001028145	4.45171E-05
0301		а диоксид	$\Pi_{NO2} = 0.8 * \Pi_{NOx}$	<u> </u>	0.0008225	0.0000356
0304		та оксид	$\Pi_{NO} = 0.13 * \Pi_{NOx}$		0.0001337	0.0000058
0328		Сажа	$\Pi = B^*A^{r*}x^*(1 - \eta)$		0.0000123	0.0000005
0330		а диоксид	$\Pi = 0.02^*B^*S^*(1 - \eta')^*(1 - \eta')^*$	n")	0.0016115	0.0000698
0337	•	род оксид	$\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4)$		0.0028363	0.0001228
		Всего по источ			0.0054163	0.0002345
	Pac		дных веществ в атмосфер	у от 5-т	и установок:	•
Код ЗВ			зняющего вещества (3В)		Максимально- разовый вы- брос	Валовый вы- брос
					г/с	т/год
		Азот	а оксиды		0.0051407	0.0002226
0301			а диоксид		0.0041125	0.000178
0304		Азо	та оксид		0.0006685	0.000029
0328		(Сажа		0.0000615	0.0000025
0330		Сера	а диоксид		0.0080575	0.000349
0337		Углер	оод оксид		0.0141815	0.000614
		Всего по источ	інику:		0.0270815	0.0011725

№ ИЗА	1042		аименование источника загрязнения тмосферы		Топливозаправщик			
№ИВ	001	Наим	енование источни	ка выделения	Закачка и хранение дизтоплива			
Расчет	выбросов в а	9-2004 "Методические указания по опреде-						
лению выбр	лению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.							
		Исходн	ые данные:		Расчетные формулы:			
Количество р	езервуаров	N_p	1	ШТ				
Объем (одноцелевы ров)	резервуара х резервуа-	V _{pe3}	20	M ³	Годовые выбросы загрязняющих веществ в атмосферу, т/год:			
Тип резервуа	ра		Горизонтальный, наземный		$G=(Y_{o3}*B_{o3}+Y_{Bn*}B_{Bn})*K_{p}^{Max*}10^{-6}+G_{XP}*K_{H\Pi}*N_{p}$			
Объем перек	ачки	Вобщ	39.7	т/год				
Объем перек ние осенне-з риода		B _{o3}	19.9	т/год	Максимально-разовый выброс, г/с:			
	Объем перекачки в течение весенне-летнего периода		19.9	т/год	M=C ₁ *K _p ^{max} *V _ч ^{max} /3600			
			Расчет	гные показатели:	-			

Горедние удельные выбросы из резервуара в осенне-зимний период года (приложение 12) Средние удельные выбросы из резервуара в весенне-летний период года (приложение 12) Концентрация паров нефтепродукта в резервуаре (приложение 12) Сп. 3.15 г/т Концентрация паров нефтепродукта в резервуаре (приложение 12) Сп. 3.92 г/м³ Концентрация паров нефтепродукта в резервуаре (приложение 12) Польтный козеффициент (приложение 8) Максимальный объем паровозлушной смеси, вытесняемой из резервуара во время его закачи Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Олытный коэффициент (приложение 12) Выбросы паров нефтепродуктов в атмосферу из резервуара: Максимальный выброс загрязняющих веществ в атмосферу Максимальный выброс загрязняющих веществ в атмосферу Код 3В Наименование 3В Максимальный выбросы загрязняющих веществ в атмосферу Масс. содменс Сп. № биличество выбросов 2754 Углеводорода О. 2.8% О.0000126 О.0000126 О. 2.8% О.000126 О.0000126 О. 2.8% О.0004931 О.000889 № ИЗА 1042 Наименование источника загрязнения Топливозаправщик № ИВ ОО2 Наименование источника загрязнения Топливозаправщик Топливозаправщик Подовые выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Объем резервуара (одноцелевых резервуара Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Расчетные перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные перкачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные прекачки в течение весенне-летнего периода в атмосферу и г/год. Максимальная концентрация паров нефтепродуктов в выб
Средние удельные выбросы из резервуара в весенне-летний период года (приложение 12) Увл (приложение 12) З.15 г/т Концентрация паров нефтепродукта в резервуаре (приложение 12) С1 3.92 г/м³ Опытный коэффициент (приложение 8) К _м ммх 1 Максимальный объем паровоздушной смеси, вытесняемой из резерву- зара во время его закачки 4 м³/ч Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруар (приложение 13) 6 xp 0.27 т/год Опытный коэффициент (приложение 12) Кнеп 0.0029 0.0029 0.0029 Максимальный выброссь загрязняющих веществ в атмосферу М 0.0045057 г/с Годовые выбросы загрязняющих веществ в атмосферу М 0.0049057 г/с Код 3В Наименование 3В Масс. сод. Количество выбросов масс. Количество выбросов масс. Количество выбросов масс. г/с т/год № ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Топливозаправщик № ИВ 002 Наименование источника выделения Запраека оборудования дизтопливом голические указания по опредению выбросов загрязняющих веществ в атмосферу из резервуара (одноцелевых резервуа) Ка
Концентрация паров нефтепродукта в резервуаре (приложение 12) С.1 3.92 г/м³ Опытный коэффициент (приложение 8) К _м мах 1 Максимальный объем перекачки в течение объем первизора К _м мах 4 м³/ч ара во время его закачки Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Кнп 0.029 17год Опытный коэффициент (приложение 12) Кнп 0.0029 0.0029 0.0029 Максимальный выброс загрязняющих веществ в атмосферу M 0.0029 0.0029 Код 3В Наименование 3В Масс. содние Си, % масс. Количество выбросов Количество выбросов Количество выбросов (количество кыбросов (количество выбросов (количество кыбросов (кыбросов (кыбросов (кыбросов (кыбросов (кыбросов (кыбросов (кыбросов (кыбро
Опытный коэффициент (приложение 8) Максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Выбросы паров нефтепродуктов в тмосферу из резервуара: Кып 0.0029 Выбросы паров нефтепродуктов в атмосферу из резервуара: Максимальный выброс загрязняющих веществ в атмосферу (приложение 12) Код 3В Наименование 3В (приложение 13) Кып 0.0045057 г/с (приложение 13) Выбросы паров нефтепродуктов в атмосферу из резервуара: Код 3В Наименование 3В (приложение 13) Кып 0.0045057 г/с (приложение 13) Максимальный выброс загрязняющих веществ в атмосферу (приложение 14) Код 3В (приложение 15) Кып 0.0045057 г/с (приложение 15) Кып 0.0045057 г/с (приложение 15) Кып 0.0045057 г/с (приложение 15) Максимальный выбросы загрязняющих веществ в атмосферу (приложение 15) Код 3В (приложение 15) Кып 0.0045057 г/с (приложение 15) Масс. содние с., (приложение 15) Масс. содние с., (приложение 15) Кып 0.0045057 г/с (приложение 15) Масс. содние с., (приложение 15) Кып 0.0045057 г/с (приложение) (приложени
Максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки V _ч мах 4 м³/ч разо во время его закачки Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) К _{НП} 0.0029 Опытный коэффициент (приложение 12) К _{НП} 0.0029 Максимальный выброс загрязняющих веществ в атмосферу М 0.0045057 г/с Годовые выбросы загрязняющих веществ в атмосферу М 0.0045057 г/с Код 3В Наименование 3В Масс. содние С ₁ , % масс. Количество выбросов количество выбросов ние С ₁ , % масс. г/с т/год 0333 Сероводород 0.28% 0.0000126 0.000029 2754 Углеводороды предельные С12-С19 99.72% 0.0044931 0.000889 № ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Топливозаправщик № ИВ 002 Наименование источника выделения Заправка оборудования дизтопливом пливом гольного преденыя датмосферы гольновыбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредению выбросов загрязняющих вещест в атмосферу из резервуара (одноцелевых резервуа) Годовые выбросы загрязняющих вещест в атмосферу (одноцелевых резервуа) <
ара во время его закачки Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Опытный коэффициент (приложение 12) Выбросы паров нефтепродуктов в атмосферу из резервуара: Максимальный выброс загрязняющих веществ в атмосферу Код 3В Наименование 3В Наименование 3В Масс. содние С₁, % масс. Код 3В Наименование 3В Масс. содние С₁, % масс. О.28% О.0008924 Т/год О.28% О.0009324 Т/год О.28% О.0009324 Т/год О.28% О.0004931 О.0008899 № ИЗА 1042 Наименование источника загрязнения атмосферы № ИЗА 1042 Наименование источника выделения Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определьные: Объем резервуара (одноцелевых
опытный коэффициент (приложение 12) Выбросы паров нефтепродуктов в атмосферу из резервуара: Максимальный выброс загрязняющих веществ в атмосферу Код 3В Наименование 3В Наименование 3В Наименование источника загрязнения атмосферы Расчет выбросов в атмосферы Месимальный выброс загрязняющих веществ в атмосферу Код 3В Наименование источника загрязнения атмосферы Топливозаправщик Подовые выбросы загрязняющих вещест в атмосферу, т/год: Съсменные формулы: Годовые выбросы загрязняющих вещест в атмосферу, т/год: Подовые выбросы загрязняющих вещест в атмосферу в ат
Выбросы паров нефтепродуктов в атмосферу из резервуара: Максимальный выброс загрязняющих веществ в атмосферу Код 3В Код 3В Наименование 3В наименосвания 3В Наименование 3В Наименование 3В Наименование 3В наименосвания 3В Наименование 3В наименосвания 5В наименосвания 5В наименосвания 5В
Максимальный выброс загрязняющих веществ в атмосферу M 0.045057 г/с Годовые выбросы загрязняющих веществ в атмосферу G 0.0008924 т/год Код 3В Наименование 3В Масс. содние Сі, % масс. количество выбросов тигод. 0333 Сероводород 0.28% 0.0000126 0.000002 2754 Углеводороды предельные С12-С19 99.72% 0.0044931 0.000889 № ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Топливозаправщик Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Расчетные формулы: Объем резервуара (одноцелевых резервуара) № 3/год Годовые выбросы загрязняющих вещест в атмосферу, т/год: Объем перекачки в течение осенне-зимнего периода Q _{общ} 45.7 м³/год Максимально-разовый выброс, г/с: Объем перекачки в течение весенне-летнего периода Q _{общ} 22.8 м³/год Максимально-разовый выброс, г/с: </td
Годовые выбросы загрязняющих веществ в атмосферу G 0.0008924 т/год Код 3В Наименование 3В Масс. содние Сг, % масс. Количество выбросов г/го т/год 0333 Сероводород 0.28% 0.0000126 0.0000025 2754 Углеводороды предельные С12-С19 99.72% 0.004931 0.000889 № ИЗА 1042 Наименование источника загрязнения атмосферы в тимосферы выборсов в атмосферы выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Заправка оборудования дизтопливом Объем резервуара (одноцелевых резервуара (
Код 3В Наименование 3В Масс. содние С _I , % масс. Количество выбросов г/с т/год 0333 Сероводород 0.28% 0.000126 0.000002: 2754 Углеводороды предельные С12-С19 99.72% 0.0044931 0.000889: № ИЗА 1042 Наименование источника загрязнения атмосферы Заправка оборудования дизтопливом дизтопл
Код 3В Наименование 3В ние C _I , % масс. г/с т/год 0333 Сероводород 0.28% 0.0000126 0.0000022 2754 Углеводороды предельные С12-С19 99.72% 0.0044931 0.000889 № ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Расчет выбросов в атмосферы Запраека оборудования дизтопливом Расчет выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Расчетные формулы: Объем резервуара (одноцелевых резервуар-ров) V _{рез} 6. а/м м³ Годовые выбросы загрязняющих вещест в атмосферу, т/год: В атмосферу, т/год: Объем перекачки Q _{общ} 45.7 м³/год Сбъем перекачки в течение осенне-зимнего периода Максимально-разовый выброс, г/с: Объем перекачки в течение весенне-летнего периода Q _{оз} 22.8 м³/год Максимально-разовый выброс, г/с: Мбълю перекачки в течение весенне-летнего периода Расчетные показатели: V _{сл} 4 м³/ч
Масс. 0333 Сероводород 0.28% 0.0000126 0.000002 2754 Углеводороды предельные C12-C19 99.72% 0.0044931 0.000889 № ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Расчетные формулы: Объем резервуара (одноцелевых резервуаров) V _{рез} 6. а/м м³ Годовые выбросы загрязняющих вещест в атмосферу, т/год: Объем перекачки Q _{общ} 45.7 м³/год Сара (Совеннования выброс), т/с. Объем перекачки в течение осенне-зимнего периода Q _{оз} 22.8 м³/год Максимально-разовый выброс, г/с. Объем перекачки в течение весенне-летнего периода Q _{оз} 22.8 м³/год Максимально-разовый выброс, г/с. Фактический максимальный объем топлива чера ТРК V _{сл} 4 м³/ч
№ ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Расчетные формулы: Объем резервуара (одноцелевых резервуаров) V _{рез} б. а/м м³ Объем перекачки Q _{общ} 45.7 м³/год Сустана, 2005 г. Объем перекачки в течение осенне-зимнего периода Q _{оз} 22.8 м³/год Максимально-разовый выброс, г/с: Максимально-разо
№ ИЗА 1042 Наименование источника загрязнения атмосферы Топливозаправщик Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Расчетные формулы: Объем резервуара (одноцелевых резервуар ров) V _{рез} б. а/м м³ Годовые выбросы загрязняющих вещест в атмосферу, т/год: Объем перекачки Q _{общ} 45.7 м³/год G _{трх} =G _{б.а.} +G _{пр.а.} ; G _{б.a.} =(C _s ^{osx} Q _{os} +C _s ^{mix} Q _{mn})*10-6; G _{пр.a} =0,5*J*(Q _{os} +Q _{sm})*10-6; G _{пр.a} =0,5*J*(Q _{os} +Q _{sm})*10-6; G _{пр.a} =0,5*J*(Q _{os} +Q _{sm})*10-6 Объем перекачки в течение осенне-зимнего периода Q _{ss} 22.8 м³/год Максимально-разовый выброс, г/с: Максимально-разовый выброс, г/с: Ф _{б.а/м} =(V _{cn} *C _{б.а/м} ^{мах})/3600 Расчетные показатели: Фактический максимальный объем топлива через ТРК V _{cn} 4 м³/ч
№ ИВ 002 Наименование источника выделения Заправка оборудования дизтопливом Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Расчетные формулы: Объем резервуара (одноцелевых резервуаров) V _{рез} б. а/м м³ Годовые выбросы загрязняющих вещест в атмосферу, т/год: Объем перекачки Q _{общ} 45.7 м³/год G _{трк} =G _{6.a} +G _{пр.a} .; G _{6.a} =C ₆ ^{03*} Q _{о3} +C ₆ ^{вл*} Q _{вл} *10-6; G _{пр.a} =0,5*J*(Q ₀₃ +Q _{вл})*10-6 Объем перекачки в течение осенне-зимнего периода Q _{оз} 22.8 м³/год Максимально-разовый выброс, г/с: Можимально-разовый выброс, г/с: Расчетные показатели: V _{сл} 4 м³/ч
Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Объем резервуара (одноцелевых резервуаров) Объем перекачки Объем перекачки Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК Остана, 2005 г. Расчетные формулы: Годовые выбросы загрязняющих веществ в атмосферу, т/год: Бодовые выбросы загрязняющих веществ в атмосферу, т/год: В атмосферу, т/год: Содовые выбросы загрязняющих веществ в атмосферу, т/год: В атмосфе
Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опредлению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Объем резервуара (одноцелевых резервуар ров) Объем перекачки Объем перекачки Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК Остана, 2005 г. Расчетные формулы: Годовые выбросы загрязняющих веществ в атмосферу, т/год: В атмосферу, т/год: Объем перекачки в течение осенне-зимнего периода Максимально-разовый выброс, г/с: Максимально-разовый выброс, г/с: Максимально-разовый выброс, г/с: Расчетные показатели: Фактический максимальный объем топлива через ТРК Максимальный объем топлива через ТРК Максимальный объем топлива через ТРК
лению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Исходные данные: Объем резервуара (одноцелевых резервуаров) Объем перекачки Объем перекачки Объем перекачки Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение осенна-летнего периода перекачки в течение осенна-летнего периода периода периода периода периода пер
Исходные данные: Расчетные формулы: Объем резервуара (одноцелевых резервуаров) V _{рез} б. а/м м³ Годовые выбросы загрязняющих вещества тимосферу, т/год: в атмосферу, т/год: в ат
Объем резервуара (одноцелевых резервуара (одноцелевых резервуаров) Объем перекачки Объем перекачки Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летне-летнего периода
Объем перекачки Q _{общ} 45.7 М³/год G _{трк} =G _{6.a} +G _{пр.a.} ; G _{6.a.} =(C ₆ ^{03*} Q ₀₃ +C ₆ ^{вл*} Q _{вл})*10 ⁻⁶ ; G _{пр.a} =0,5*J*(Q ₀₃ +Q _{вл})*10 ⁻⁶ Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК V _{сл} 4 M³/ч
Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК Объем перекачки в течение весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК Осл. 4 м³/ч
риода Объем перекачки в течение весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК V _{Cл} V _C V
ние весенне-летнего периода Расчетные показатели: Фактический максимальный объем топлива через ТРК Von 4 м³/ч
Расчетные показатели: Фактический максимальный объем топлива через ТРК V _{сл} 4 м³/ч Максимальный объем топлива через ТРК V _{сл} 4 м³/ч
Mayoure Filling you well thought force we the first portion of the force of the force of the filling t
Mayoure Flying Value Value France Lock Tolling Flying P. P. Vising P. Vising P. Vising P. P. Vising P. P. Vising P. Vi
максимальная концентрация паров нефтепродуктов в выоросах паровоздушной смеси при заполнении автомашин (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной
смеси при заполнении автомашин в осенне-зимний период (приложение 15, 17)
Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении автомашин в весенне-летний период (приложение 15, 17) $C_6^{\mbox{\footnotesize вп}}$ 2.66 г/м³
Удельные выбросы при проливах J 50 г/м³
Выбросы паров нефтепродуктов в атмосферу:
Выбросы из баков автомобилей: $G_{6.a.}$ 0.0001059 т/год
Выбросы из баков автомобилем: С _{6.а.} 0.0001603 глод Выбросы от проливов на поверхность: G _{пр.а.} 0.0011413 т/год
Максимальный (разовый) выброс ЗВ при заполнении баков М 0.0045057 г/с
Годовые выбросы паров нефтепродуктов от ТРК при заправке С.00-1007 Т/год
Масс. сод- Количество выбросов
Код ЗВ Наименование ЗВ ние С _і , %
Macc.
Pooro no versuava
Всего по источнику: г/с т/год
0333 Сероводород 0.0000252 0.0000060

№ ИЗА	1043		Наименование источника загрязнения ат- мосферы		Топливозаправщик				
№ ИВ	001	Наиме	нование источни	ка выделения	Закачка и хранение бензина				
Расчет	Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по опреде-								
лению выбр	лению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.								
	Исходные данные: Расчетные формулы:								
Количество р	езервуаров	N_p	1	ШТ					

	резервуара	v	20	M ³	Годовые вы	ыбросы загрязн	няющих ве-
ров)	с резервуа-	V _{pe3}	-		· ·	в атмосферу,	* *
Тип резервуар		_	Горизонтальный,		$G=(Y_{o3}*B_{o3}+Y_{i}$	_{вл*} В _{вл})*К _р мах*10	-⁵+G _{хР} *К _{нп} *N _г
Объем перека		Вобщ	1.6	т/год	-		
Объем перека		B _{o3}	0.8	т/год	Максимально-разовый выброс, г/с		
ода Объем перека	ачки в тече-						
ние весенне-		Ввл	0.8	т/год	M=0	C ₁ *K _p ^{max} *V _ч ^{max} /3	600
			Расчетн	ые показатели:	1		
Средние удел (приложение 1	ьные выбросі 12)	ы из рез	вервуара в осенне-зи	имний период года	Уоз	967.2	г/т
Средние удел года (приложе		ы из рез	вервуара в весенне-л	петний период	У _{вл}	1331	г/т
		продукт	а в резервуаре (при	ложение 12)	C ₁	1176.12	г/м ³
Опытный коэф					К _р мах	1	
	•	воздуш	ной смеси, вытесняє	емой из резервуара	V _ч мах	5	м ³ /ч
во время его з					¥q		
аре (приложен		уктов пр	ои хранении бензина	а в одном резеру-	G_{XP}	0.27	т/год
Опытный коэф	р фициент (пр	иложен	ие 12)		Кнп	1	
	В	ыбросі	ы паров нефтепрод	уктов в атмосферу			
			цих веществ в атмос		M	1.6111233	г/с
і одовые выбр	осы загрязня	ющих в	еществ в атмосферу	/	G	0.2718645	т/год
Kon 3P			Наименование 3В		Масс. сод-	количеств	о выбросов
Код ЗВ			паименование ЗВ		ние С _і , % масс.	г/с	т/год
0415	Углеволорог	ы прел	ельные С1-С5		67.67%	1.0902471	0.1839707
0416			ельные С6-С10		25.01%	0.4029419	0.0679933
0501	Пентилены				2.5%	0.0402781	0.0067966
0602	Бензол				2.3%	0.0370558	0.0062529
0616	Ксилол				0.29%	0.0046723	0.0007884
0621	Толуол				2.17%	0.0349614	0.0058995
0627	Этилбензол				0.06%	0.0009667	0.0001631
№ ИЗА	1043	Наим мосф	енование источник	а загрязнения ат-	Топливозап	оавщик	
№ ИВ	002		енование источни	ка выделения	Заправка об	орудования б	ензином
				ю: РНД 211.2.02.09-2			
	осов загрязн	яющих		еру из резервуаров	" , Астана, 2005		
Объем					Pac		
		исходн	ди		1		
(одноцелевых	резервуара	Исходн V _{peз}	б. а/м	M ³	Годовые вы	ыбросы загрязь в атмосферу,	, няющих ве-
(одноцелевых ров)	резервуара с резервуа-	V _{pe3}	б. а/м		Годовые вы ществ	в атмосферу, Стрк=Сба+Спра	няющих ве- т/год: :
(одноцелевых ров) Объем перека	резервуара с резервуа- ачки			м ³ м ³ /год	Годовые вы ществ (G _{6.a.} =(C	в атмосферу,	няющих ве- т/год: ; _{вл})* 10 ⁻⁶ ;
(одноцелевых ров) Объем перека Объем перека ние осенне-зи	резервуара с резервуа-	V _{pe3}	б. а/м		Годовые вы ществ (G _{6.a.} =(C G _{пр.a} =	В атмосферу, $G_{\text{трк}} = G_{\text{б.а.}} + G_{\text{пр.а.}}$ $G_{\text{6}}^{\text{03*}} Q_{\text{03}} + C_{\text{6}}^{\text{вл*}} Q_{\text{6}}$	няющих ве- т/год: ; _{вл})*10 ⁻⁶ ; ,)*10 ⁻⁶
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода	резервуара с резервуа- ачки ачки в тече- имнего пери-	V _{рез}	б. а/м 2.22	м ³ /год	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} =	в атмосферу, $G_{\text{трк}} = G_{6.a.} + G_{\text{пр.a.}}$ $G_{6}^{\text{оз*}} Q_{\text{оз}} + C_{6}^{\text{вл*}} Q_{\text{оз}}$ $G_{6}^{\text{оз*}} Q_{\text{оз}} + Q_{\text{вл}}$	няющих ве- т/год: ; _{вл})*10 ⁻⁶ ; ,)*10 ⁻⁶
(одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-ы	резервуара с резервуа- ачки ачки в тече- имнего пери-	V _{рез}	б. а/м 2.22	м ³ /год	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} =	в атмосферу, $G_{\text{трк}} = G_{6.a.} + G_{\text{пр.a.}}$ $G_{6}^{\text{оз*}} Q_{\text{оз}} + C_{6}^{\text{вл*}} Q_{\text{оз}}$ $G_{6}^{\text{оз*}} Q_{\text{оз}} + Q_{\text{вл}}$	няющих вет т/год: ; ; ; ;)*10- ⁶ ; ;)*10- ⁶ ыброс, г/с:
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека	резервуара с резервуа- ачки ачки в тече- имнего пери-	V _{рез} Q _{общ}	б. а/м 2.22 1.11	м ³ /год м ³ /год	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} =	в в атмосферу, G _{трк} =G _{6.a.} +G _{пр.а.} 6 ^{03*} Q ₀₃ +C ₆ ^{вл*} Q :0,5*J*(Q ₀₃ +Q _{вл} ьно-разовый в	няющих вет т/год: ; , _{вв})*10 ⁻⁶ ; ,)*10 ⁻⁶ ыброс, г/с:
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-зи риода	резервуара с резервуа- ачки ачки в тече- имнего пери- ачки в тече- летнего пе-	V _{рез} Q _{общ} Q _{оз}	б. а/м 2.22 1.11	м ³ /год м ³ /год	Годовые вы ществ (G _{6.a.} =(C G _{пр.а} = Максимал	в в атмосферу, G _{трк} =G _{6.a.} +G _{пр.а.} 6 ^{03*} Q ₀₃ +C ₆ ^{вл*} Q :0,5*J*(Q ₀₃ +Q _{вл} ьно-разовый в	няющих вет т/год: ; , _{вв})*10 ⁻⁶ ; ,)*10 ⁻⁶ ыброс, г/с:
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-з риода Фактический м Максимальная	резервуара грезервуара грезервуара грезервуара гремики в течелетнего перинативного перинативного перинаксимальный я концентраци	V _{рез} Q _{общ} Q _{оз} Q _{вл}	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в	м³/год м³/год м³/год вые показатели: выбросах паровоз-	Годовые вы ществ (в в атмосферу, $3_{трк} = \mathbf{G}_{6.a.} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{en*} \mathbf{Q}_{i}$ $0, 5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вп})$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{вп}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{вп}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{вп}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{sn}$	няющих вет/год: ; ;)*10 ⁻⁶ ;)*10 ⁻⁶ ыброс, г/с:
(одноцелевых ров) Объем перека Ние осенне-зи ода Объем перека ние весенне-зриода Фактический м Максимальная душной смеси	резервуара грезервуара грезервуара грезервуара гремики в течелетнего перимаксимальный я концентраци при заполне	V _{рез} Q _{общ} Q _{оз} Q _{вл}	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложен	м³/год м³/год м³/год вые показатели: выбросах паровозие 15, 17)	Годовые вы ществ (G _{6.a.} =(C G _{пр.а} = Максимал	в в атмосферу, $G_{Tpk} = G_{6.a.} + G_{пp.a.}$ $G_{60} = G_{0.a} + G_{60}$ $G_{0.5} = G_{0.a} + G_{6.a}$ $G_{0.5} = G_{0.a} + G_{0.a}$ $G_{0.5} = G_{0.a} + G_{0.a}$ $G_{0.a} = G_{0.a} + G_{0.a}$	няющих вет/год: ; ; ; ;)*10 ⁻⁶ ; ;)*10 ⁻⁶ ыброс, г/с:
(одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-зи риода Фактический м Максимальная душной смеси Концентрация при заполнени	резервуара к резервуара вчки вчки в тече- минего пери- вчки в тече- летнего пе- максимальный я концентраци при заполне	V _{рез} Q _{общ} Q _{оз} Q _{вл} Й объемия парогении авт	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в	м³/год м³/год м³/год вые показатели: выбросах паровозие 15, 17) воздушной смеси	Годовые вы ществ (в в атмосферу, $3_{трк} = \mathbf{G}_{6.a.} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{en*} \mathbf{Q}_{i}$ $0, 5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вп})$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{вп}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{вп}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{вп}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{sn}$	няющих вет/год: ; ; ;)*10 ⁻⁶ ;)*10 ⁻⁶ ыброс, г/с:
(одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-лиода Фактический м Максимальная душной смеси Концентрация при заполнени 17)	резервуара с резервуара зчки в течеминего перимаксимальный я концентраци при заполне и паров нефте ии резервуаров	V _{рез} Q _{общ} Q _{оз} Объемия пароівнии авт	б. а/м 2.22 1.11 1.11 Расчетна топлива через ТРК в нефтепродуктов в омашин (приложени тов в выбросах паронне-зимний период от в выбросах паронне-зимний период от в выбросах паронне-зимний период от в в в в в в в в в в в в в в в в в в	м³/год м³/год м³/год выбросах паровозие 15, 17) воздушной смеси (приложение 15, воздушной смеси	Годовые вы ществ (С G _{6.a.} =(С G _{пр.a} = Максимал М _{6.a/м} С _{6.a/м}	в в атмосферу, $3_{трк} = \mathbf{G}_{6.a.} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{en*} \mathbf{Q}_{i}$ $0.5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вп})$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$	няющих вет/год: ; ; ;)*10 ⁻⁶ ;)*10 ⁻⁶ ; ыброс, г/с: /3600 M ³ /ч г/м ³
одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-лиода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени 17)	резервуара к резервуара вчки вчки в тече- петнего пери- вчки в тече- летнего пе- максимальный я концентраци п при заполне и паров нефте ии резервуаро	V _{рез} Q _{общ} Q _{оз} Q _{вл} Й объемия паропении авт продуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложени ов в выбросах паронне-зимний период (м³/год м³/год м³/год выбросах паровозие 15, 17) воздушной смеси (приложение 15, воздушной смеси	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} = Максимал	в в атмосферу, $3_{трк} = \mathbf{G}_{6.a} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{вл*} \mathbf{Q}_{is}$ $0.5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вп})$ вно-разовый в $\mathbf{E} = (\mathbf{V}_{cn} * \mathbf{C}_{6.a/M}^{max}) / \mathbf{S}_{os}$ 5 1176.1 520	няющих вет/год: ; ; spn)*10 ⁻⁶ ;))*10 ⁻⁶ ыброс, г/с: //3600 M ³ /Ч г/м ³ г/м ³
(одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-лиода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени заполнени	резервуара к резервуара вчки вчки в тече- петнего пери- вчки в тече- летнего пе- максимальный я концентраци п при заполне и паров нефте ии резервуаро	V _{рез} Q _{общ} Q _{оз} Q _{вл} Объемия пароірний авт продуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в юмашин (приложени гов в выбросах парог нне-зимний период гов в выбросах парог енне-летний период	м³/год м³/год м³/год м³/год выбросах паровозие 15, 17) воздушной смеси (приложение 15, воздушной смеси (приложение 15, приложение 15, прилож	Годовые вы ществ (G _{6.a} .=(C G _{пр.a} = Максимал	в в атмосферу, $3_{трк} = \mathbf{G}_{6.a.} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{en*} \mathbf{Q}_{i}$ $0.5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вп})$ $6^{os*} \mathbf{Q}_{os} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$ $6^{os*} \mathbf{Q}_{sn} + \mathbf{Q}_{sn}$	няющих вет/год: ; ; ;)*10 ⁻⁶ ;)*10 ⁻⁶ ; ыброс, г/с: /3600 M ³ /ч г/м ³
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-зи ода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени 17) Удельные выб	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} Q _{вл} й объемия пароінний автіпродуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в юмашин (приложени гов в выбросах парог нне-зимний период гов в выбросах парог енне-летний период	м³/год м³/год м³/год выбросах паровозие 15, 17) воздушной смеси (приложение 15, воздушной смеси	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} = Максимал	в в атмосферу, $3_{трк} = \mathbf{G}_{6.a} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{вл*} \mathbf{Q}_{is}$ $0.5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вл})$ вно-разовый в $\mathbf{E} = (\mathbf{V}_{cn} * \mathbf{C}_{6.a/M}^{Max}) / \mathbf{S}$ 5 1176.1 520 623.1 125	няющих вет/год: ; ; psn)*10 ⁻⁶ ; ;)*10 ⁻⁶ ; ыброс, г/с: //3600 M³/Ч г/м³ г/м³ г/м³
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-зриода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Удельные выб	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} Q _{вл} И объемия пароінии автиродуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложени ов в выбросах паров нне-зимний период ов в выбросах паров енне-летний период	м³/год м³/год м³/год м³/год выбросах паровозие 15, 17) воздушной смеси (приложение 15, воздушной смеси (приложение 15, приложение 15, прилож	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} = Максимал	В в атмосферу, 3 _{трк} =G _{6.a.} +G _{пр.а.} 6 ^{33*} Q ₀₃ +C ₆ ^{вл*} Q ₁ 10,5*J*(Q ₀₃ +Q _{вл} БНО-разовый в =(V _{сл} *C _{6.a/м} ^{мах})/ 5 1176.1 520 623.1 125 0.0012704	няющих вет/год: ; ; ; ;)*10 ⁻⁶ ; ;)*10 ⁻⁶ ; ыброс, г/с: /3600 M³/ч г/м³ г/м³ г/м³ т/год
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-зи ода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени 17) Удельные выб	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} Q _{вл} И объемия пароінии автиродуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложени ов в выбросах паров нне-зимний период ов в выбросах паров енне-летний период	м³/год м³/год м³/год м³/год выбросах паровозие 15, 17) воздушной смеси (приложение 15, воздушной смеси (приложение 15, приложение 15, прилож	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} = Максимал	в в атмосферу, $3_{трк} = \mathbf{G}_{6.a} + \mathbf{G}_{пр.a.}$ $6^{os*} \mathbf{Q}_{os} + \mathbf{C}_{6}^{вл*} \mathbf{Q}_{is}$ $0.5^* \mathbf{J}^* (\mathbf{Q}_{os} + \mathbf{Q}_{вл})$ вно-разовый в $\mathbf{E} = (\mathbf{V}_{cn} * \mathbf{C}_{6.a/M}^{Max}) / \mathbf{S}$ 5 1176.1 520 623.1 125	няющих вет/год: ; ; psn)*10 ⁻⁶ ; ;)*10 ⁻⁶ ; ыброс, г/с: //3600 M³/Ч г/м³ г/м³ г/м³
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-зи ода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация заполнени 17) Удельные выб Выбросы из ба	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} Q _{вл} и объемия парогении автородуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложен гов в выбросах паро нне-зимний период гов в выбросах паро енне-летний период выбросы паров неф сть:	м³/год м³/год м³/год вые показатели: выбросах паровозие 15, 17) воздушной смеси (приложение 15, 15) воздушной смеси (приложение 15, 15)	Годовые вы ществ ($G_{6.a.}$ = ($C_{6np.a}$ = Максимал $M_{6.a/w}$ V_{cn} $C_{6.a/m}$ C_{6} $C_$	В в атмосферу, 3 _{трк} =G _{6.a.} +G _{пр.а.} 6 ^{33*} Q ₀₃ +C ₆ ^{вл*} Q ₁ 10,5*J*(Q ₀₃ +Q _{вл} вно-разовый в =(V _{сл} *C _{6.a/м} ^{мах})/ 5 1176.1 520 623.1 125 0.0012704 0.0001389	няющих вет/год: ; ; ; ;)*10 ⁻⁶ ; ;)*10 ⁻⁶ ; ыброс, г/с: //3600 M³/Ч г/м³ г/м³ г/м³ т/год т/год
(одноцелевых ров) Объем перека Объем перека ние осенне-зи ода Объем перека ние весенне-зи риода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени 17) Удельные выб Выбросы из ба Выбросы от пр	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} диббъемия парограмия парограмия в породуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложен гов в выбросах парог нне-зимний период гов в выбросах парог енне-летний период быбросы паров неф сть: ВВ при заполнении б	м³/год м³/год м³/год вые показатели: выбросах паровозие 15, 17) воздушной смеси (приложение 15, 15, 15) воздушной смеси (приложение 15, 15, 15)	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} = Максимал М _{6.a/м} V _{сл} С _{6.a/м} С ₆	В в атмосферу, 3 _{трк} =G _{6.a.} +G _{пр.а.} 6 ^{33*} Q ₀₃ +C ₆ ^{вл*} Q ₁ 10,5*J*(Q ₀₃ +Q _{вл} вно-разовый в =(V _{сл} *C _{6.a/м} ^{мах})/ 5 1176.1 520 623.1 125 0.0012704 0.0001389 1.6111233	няющих вет/год: ; ; ; ; ;)*10 ⁻⁶ ; ;)*10 ⁻⁶ ; ыброс, г/с: //3600 M³/Ч г/м³ г/м³ г/м³ т/год т/год г/с
(одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-зи риода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени 17) Удельные выб Выбросы из ба Выбросы от пр	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} диббъемия парограмия парограмия в породуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложен гов в выбросах паро нне-зимний период гов в выбросах паро енне-летний период выбросы паров неф сть:	м³/год м³/год м³/год вые показатели: выбросах паровозие 15, 17) воздушной смеси (приложение 15, 15, 15) воздушной смеси (приложение 15, 15, 15)	Годовые вы ществ (С G _{np.a} = Максимал М _{6.a/м} М _{6.a/м} С ₆ С С С С С С С С С С С С С С С С С С С	В в атмосферу, З _{трк} =G _{6.a.} +G _{пр.а.} 6°°*Q _{0.3} +C ₆ °°*Q _{0.5} +C ₆ вл*Q _{0.5} 60,5*J*(Q _{0.3} +Q _{вл} БНО-разовый в =(V _{сл} *C _{6.a/м} мах)/ 5 1176.1 520 623.1 125 0.0012704 0.0001389 1.6111233 0.0014093	няющих вет/год: ; ; ; ;)*10 ⁻⁶ ;)*10 ⁻⁶ ; ыброс, г/с: //3600
(одноцелевых ров) Объем перека ние осенне-зи ода Объем перека ние весенне-зи риода Фактический м Максимальная душной смеси Концентрация при заполнени 17) Концентрация при заполнени 17) Удельные выб Выбросы из ба Выбросы от пр	резервуара с резе	V _{рез} Q _{общ} Q _{общ} Q _{оз} диббъемия парограмия парограмия в породуктов в осе	б. а/м 2.22 1.11 1.11 Расчетн топлива через ТРК в нефтепродуктов в омашин (приложен гов в выбросах парог нне-зимний период гов в выбросах парог енне-летний период быбросы паров неф сть: ВВ при заполнении б	м³/год м³/год м³/год вые показатели: выбросах паровозие 15, 17) воздушной смеси (приложение 15, 15, 15) воздушной смеси (приложение 15, 15, 15)	Годовые вы ществ (G _{6.a.} =(C G _{пр.a} = Максимал М _{6.a/м} V _{сл} С _{6.a/м} С ₆	В в атмосферу, З _{трк} =G _{6.a.} +G _{пр.а.} 6°°*Q _{0.3} +C ₆ °°*Q _{0.5} +C ₆ вл*Q _{0.5} 60,5*J*(Q _{0.3} +Q _{вл} БНО-разовый в =(V _{сл} *C _{6.a/м} мах)/ 5 1176.1 520 623.1 125 0.0012704 0.0001389 1.6111233 0.0014093	няющих вет/год: ; ; ; ; ;)*10 ⁻⁶ ;)*10 ⁻⁶ ; ыброс, г/с: //3600 M ³ /ч г/м ³ г/м ³ г/м ³ т/год т/год г/с

0416	Углеводороды предельные С6-С10	25.01%	0.4029419	0.0003525
0501	Пентилены	2.5%	0.0402781	0.0000352
0602	Бензол	2.3%	0.0370558	0.0000324
0616	Ксилол	0.29%	0.0046723	0.0000041
0621	Толуол	2.17%	0.0349614	0.0000306
0627	Этилбензол	0.06%	0.0009667	0.0000008
	Всего по источнику:		г/с	т/год
0415	Углеводороды предельные С1-С5		2.1804942	0.1849244
0416	Углеводороды предельные С6-С10		0.8058838	0.0683458
0501	Пентилены		0.0805562	0.0068318
0602	Бензол		0.0741116	0.0062853
0616	Ксилол		0.0093446	0.0007925
0621	Толуол		0.0699228	0.0059301
0627	Этилбензол		0.0019334	0.0001639
	Итого:		3.2222466	0.2732738

№ ИЗА	1044		Наименование источника загрязнения атмосферы Топливозаправщик					
№ ИВ	001	Наиме	енование источни	ка выделения	Закачка и хранение керосина			
Расчет	т выбросов в а	атмосфе	ру выполнен соглас	сно: РНД 211.2.02.0	9-2004 "Методич	ческие указан	ия по опреде-	
лению выбр	росов загряз	няющих Исходн	к веществ в атмос ые данные:	феру из резервуар)5 г. іетные форм у	/лы:	
Количество	резервуаров	N _p	1	ШТ]			
Объем	резервуара	-			Годовые выбр	осы загрязняк	ощих веществ	
(одноцелевь ров)	ых резервуа-	V _{pe3}	10	M^3		тмосферу, т/го		
Тип резервуя	ара		Горизонтальный,	наземный	G=(Y ₀₃ *B ₀₃ +Y _E	_{вл*} В _{вл})*К _р мах*10	-6+G _{XP} *K _{HΠ} *N _p	
Объем пере	качки	Вобщ	0.1	т/год				
ние осенне-	качки в тече- зимнего пе-	B ₀₃	0.0	т/год	Максимал	ьно-разовый в	ыброс, г/с:	
риода Объем переі	VOLUMA D. TOULO							
•	-летнего пе-	Ввл	0.0	т/год	M=C	C ₁ *K _p ^{мах} *Vս ^{мах} /3	600	
P Har			Расче-	тные показатели:	ı			
Средние уде года (прилох		сы из ре	езервуара в осенне-		Уоз	5.46	г/т	
	ельные выбро	сы из ре	езервуара в весення	е-летний период	У _{вл}	9.56	г/т	
		епроду	ста в резервуаре (пр	оиложение 12)	C ₁	10.45	г/м³	
Опытный коз	эффициент (п	риложе	ние 8)	,	K _p ^{Max}	1	·	
Максимальн			иной смеси, вытесн	яемой из резерву-	V _q ^{Max}	5	м ³ /ч	
	ров нефтепро иложение 13)	дуктов г	іри хранении дизтоі	плива в одном ре-	G _{XP}	0.27	т/год	
	эффициент (п	риложе	ние 12)		Кнп	0.0071		
				одуктов в атмосфе	ру из резервуа	pa:		
Максимальн	ый выброс за	грязняю	щих веществ в атм	осферу	М	0.0130625	г/с	
Годовые выб	бросы загрязн	яющих	веществ в атмосфе	ру	G	0.0019177	т/год	
					Масс. сод-	Количест	во выбросов	
Код ЗВ			Наименование 3В	ние С _і , % масс.	г/с	т/год		
0333	Сероводоро	Д			0.06%	0.0000078	0.0000012	
2732	Керосин				99.94%	0.0130547	0.0019165	
№ ИЗА	1044		енование источник феры	ка загрязнения	Топливозапра	вщик		
№ ИВ	002		енование источни	ка выделения	Заправка обо	рудования ке	росином	
		тмосфе	ру выполнен соглас	сно: РНД 211.2.02.0				
лению выбр	росов загряз	няющи	к веществ в атмос ые данные:	феру из резервуар	ов" , Астана, 200)5 г. іетные форм у		
Объем (одноцелевь ров)	резервуара ых резервуа-	V _{pe3}	б. а/м	M ³	Годовые выбросы загрязняющих веществ в атмосферу, т/год:			
Объем пере	качки	Q _{общ}	0.1	м ³ /год	$\begin{array}{c} G_{\text{Tpk}} = G_{6.a} + G_{\text{np.a.}}; \\ G_{6.a} = (C_6^{0.3*} Q_{0.3} + C_6^{B.n*} Q_{B.n})^* 10^{-6}; \\ G_{\text{np.a}} = 0,5^* J^* (Q_{0.3} + Q_{B.n})^* 10^{-6} \end{array}$			
•	качки в тече- зимнего пе-	Q _{o3}	0.1	м ³ /год		ьно-разовый в		
Объем пере	качки в тече-	Q _{вл}	0.1	м ³ /год	М _{б.а/м}	=(V _{сл} *С _{б.а/м} ^{мах})/	3600	
риода		<u> </u>	Dacuo	<u> </u> тные показатели:	J			
			Facee	indie nokasatenii.				

Фактически	й максимальный объем топлива через ТРК	V _{сл}	5	м ³ /ч
	ная концентрация паров нефтепродуктов в выбросах паро- смеси при заполнении автомашин (приложение 15, 17)	С _{б.а/м} мах	3.92	г/ м ³
	ия паров нефтепродуктов в выбросах паровоздушной заполнении автомашин в осенне-зимний период (приложе-	ке- С ₆ ⁹³ 1.98 г/		
	ия паров нефтепродуктов в выбросах паровоздушной заполнении автомашин в весенне-летний период (приложе-	Сбвл	2.66	г/м ³
Удельные в	выбросы при проливах	J	50	г/м ³
	Выбросы паров нефтепродуктов в а	тмосферу:		
Выбросы и:	з баков автомобилей:	$G_{6.a.}$	0.0000003	т/год
Выбросы от проливов на поверхность:			0.0000028	т/год
		G _{пр.а.}		
Максималь	ный (разовый) выброс ЗВ при заполнении баков	M	0.0049000	г/с
Годовые вы	ібросы паров нефтепродуктов от ТРК при заправке	G	0.0000030	т/год
Код ЗВ	Наименование ЗВ	Масс. сод- ние С _і , % масс.	Количест г/с	во выбросов т/год
0333	Сероводород	0.06%	0.0000029	0
2732	Керосин	99.94%	0.0048971	0.0000030
•	Всего по источнику:	•	г/с	т/год
0333	Сероводород	•	0.0000107	0.0000012
2732	Керосин	·	0.0179518	0.0019195
i	Итого:		0.0179625	0.0019207

		T 11					
№ ИЗА	1045	Наименование исто грязнения атмосфе		Выхлопная тр	уба		
		Наименование ист	•				
№ ИВ	001	деления	очника вы-	Дизельный ге	нератор насосов	D75	
Pad	счеты выбросов	выполнены согласно, "І	Иетодики расч	ета выбросов за	грязняющих вещес	тв в атмосферу	
от стаци	онарных дизел	ьных установок" РНД	211.2.02.04-200	4, MOOC PK, Ac	тана 2005 год.		
Mai	ксимальный выб	і́рос і-го вещества стаці	ионарной дизел	ьной установки о	пределяется по фор	муле:	
			$M_{cek} = e_i * P_3 / 3600$), г/с			
где:				u u	u u		
		вещества на единицу п	олезной работы	стационарной д	изельной установки	на режиме номи-	
		^к ч (таблица 1 или 2):				ı	
,	ационная мощн	юсть стационарной ди	зельнои уста-	P₃	4.2	кВт	
новки:	:						
вал	товыи выорос і-г	о вещества за год стац			определяется по фо	ормуле:	
FEO:		ľ	_{Лгод} =q _і *В _{год} /1000	, ілод			
где:	oc i-ro poequoro r	вещества, г/кг топлива, г	приуолашегосан	13 OUNT NE UNSOU!		аботе станионая	
		вещества, г/кг топлива, г г с учетом совокупності					
лица 3 ил		i c yaerow cobokynnoch	л режинов, сост	авляющих экспл	уатационный цикл, і	i/ki Totililiba (Tao-	
•		арной дизельной уста	новкой за гол				
		нным об эксплуатации ч		Вгод	0.0188	т/год	
		ie: В _{год} =b _э *k*Р _э *Т*10 ⁻⁶ :	y or an oblivity vision	Бюд	0.0100	,,,од	
		тод - 3		b	1.15	л/ч	
Расход то	оплива:			b	1.0005	кг/ч	
Средний	удельный расхо	д топлива:		b₃	238	г/кВт.ч	
	ъ дизельного то			ρ	0.87	кг/л	
Коэффиц	циент использова	ания:		k	1		
Время ра	іботы:			T	57.6	ч/год	
		Исходные д	цанные по исто	чнику выбросо	В		
Количест	ВО:			N	6	ШТ	
	вращения вала:			n	1500	об/мин	
Группа С	ДУ:				Α		
				их газов и топл	ива		
		$OB, G_{or} = 8.72*10^{-6*}b_3*P_3$	•	Gor	0.009	кг/с	
	гура отходящих			Тог	450	°C	
	ъ газов при 0°С:			$\gamma 0_{ m or}$	1.31	кг/м ³	
	ъ газов при Т _{ог} (I	K), γ0 _{or} /(1+T _{or} /273)		Y ог	0.49482	кг/м ³	
			Qor	0.0176	м ³ /с		
		отанных газов, Q _{or} = G _{or} /	ОГ	Q or	0.0170	111 / 0	
	ій расход отрабо	отанных газов, Q_{ог}=G_{ог}/ <mark>бросов вредных вещ</mark>		01			
	ій расход отрабо			01	зельного генерато		
Объемнь	ій расход отрабо		еств в атмосфе	ру от одного ди	зельного генерато Максимально-		
Объемнь Код	ий расход отрабо Расчет вы			01	зельного генерато Максимально- разовый вы-	pa:	
Объемнь	ий расход отрабо Расчет вы	бросов вредных веще	еств в атмосфе	ру от одного ди	зельного генерато Максимально-	ра: Валовый вы-	
Объемнь Код	ий расход отрабо Расчет вы	бросов вредных веще	еств в атмосфе е _і ,	ру от одного ди q _i ,	зельного генерато Максимально- разовый вы- брос	ра: Валовый вы- брос	
Объемнь Код	ій расход отрабс Расчет вы Наим	бросов вредных веще енование ЗВ	еств в атмосфе е _і , г/кВт.ч	ру от одного ди q _i , г/кг топлива	зельного генерато Максимально- разовый вы- брос М _{сек} , г/с	ра: Валовый вы- брос М _{год} , т/год	
Объемнь Код	ий расход отрабо Расчет вы Наим Аз	бросов вредных веще	еств в атмосфе е _і ,	ру от одного ди q _i ,	зельного генерато Максимально- разовый вы- брос	ра: Валовый вы- брос	

I 0000 F	2	0.7	۰ .	1 00000407	0.0000500	
0328	Сажа	0.7	3	0.0008167	0.0000563	
0330	Сера диоксид	1.1	4.5	0.0012833	0.0000844	
0337	Углерод оксид	7.2	30	0.0084	0.0005628	
0703	Бенз(а)пирен	0.000013	0.000055	0.00000002	0.0000000010	
1325	Формальдегид	0.15	0.6	0.000175	0.0000113	
2754	Углеводороды пр. С12-С19	3.6	15	0.0042	0.0002814	
•	Всего по источнику:			0.02605052	0.001746311	
	Расчет выбросов вредных веще	ств в атмосф	еру от 6-ти диз	ельных генераторо	B:	
Код 3В	Наименование	Максимально- разовый вы- брос	Валовый вы- брос			
				M _{сек} , г/с	М _{год} , т/год	
	Азота оксид	Ы		0.0721	0.0048399	
0301	Азота диокси	1Д		0.0576798	0.0038719	
0304	Азота оксид	Į.		0.0093732	0.0006292	
0328	Сажа			0.0049002	0.0003377	
0330	Сера диокси	Д		0.0076998	0.0005065	
0337	Углерод окси	0.0504	0.0033767			
0703	Бенз(а)пире					
1325	Формальдег			0.00105	0.0000675	
2754	Углеводороды пр. (0.0252	0.0016883	
	Всего по источнику:			0.1563031	0.010477806	

№ ИЗА	1046	Наименование источника за- грязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника вы- деления	Дизельный генератор	Harrington Generators International

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

М_{сек}=e_i*P₃/3600, г/с

где:

е_і - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: P_э 5.6 кВт

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: $\mathbf{M}_{rog} = \mathbf{q}_i ^* \mathbf{B}_{rog} / 1000$, $\mathbf{\tau} / rog$

где

q_і - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):

расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: B _{rog} = b ₃ * k * P ₃ * T*10 - ⁶ :	В _{год}	0.0902	т/год			
	b	1.8	л/ч			
Расход топлива:	b	1.566	кг/ч			
Средний удельный расход топлива:	b₃	280	г/кВт.ч			
Плотность дизельного топлива:	ρ	0.87	кг/л			
Коэффициент использования:	k	1				
Время работы:	Т	57.6	ч/год			
Исходные данные по источнику выбросов						
Количество:	N	5	ШТ			
Частота вращения вала:	n	1500	об/мин			
Группа СДУ:		Α				
Расчет расхода отработанны	ых газов и топл	ива				
Расход отработанных газов, G _{or} = 8.72*10 ^{-6*} b ₃ * P ₃	Gor	0.014	кг/с			
Температура отходящих газов:	T _{or}	450	°C			
Плотность газов при 0°C:	γ0 _{or}	1.31	кг/м ³			
Плотность газов при Т _{ог} (К), у0 _{ог} /(1+Т _{ог} /273)	Yor	0.49482	кг/м ³			
Объемный расход отработанных газов, Q _{or} = G _{or} / y _{or}	Q_{or}	0.0276	м ³ /с			

Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:

	The fet Belepedes specifical sequents a time empty of equities and entire temperatural						
Код 3В Наименование 3В		e _i ,	q _i ,	Максимально- разовый вы- брос	Валовый вы- брос		
		г/кВт.ч	г/кг топлива	М _{сек} , г/с	М _{год} , т/год		
	Азота оксиды	10.3	43	0.0160222	0.0038786		
0301	Азота диоксид			0.0128178	0.0031029		
0304	Азота оксид			0.0020829	0.0005042		
				0.0010889	0.0002706		

_			1	•	i
0330	Сера диоксид	1.1	4.5	0.0017111	0.0004059
0337	Углерод оксид	7.2	30	0.0112	0.0027060
0703	Бенз(а)пирен	0.000013	0.000055	0.00000002	0.0000000050
1325	Формальдегид	0.15	0.6	0.0002333	0.0000541
2754	Углеводороды пр. С12-С19	3.6	15	0.0056	0.0013530
	Всего по источнику:			0.03473402	0.008396723
	Расчет выбросов вредных веще	ств в атмосф	еру от 5-ти диз	ельных генераторо	B:
Код 3В	Наименование	e 3B		Максимально- разовый вы- брос	Валовый вы- брос
				М _{сек} , г/с	M _{год} , т/год
	Азота оксид	Ы		0.0801111	0.019393
0301	Азота диокси	1Д		0.064089	0.0155144
0304	Азота оксид	1		0.0104145	0.0025211
0328	Сажа			0.0054445	0.001353
0330	Сера диоксид			0.0085555	0.0020295
0337	Углерод оксид			0.056	0.01353
0703	Бенз(а)пирен			0.000001	0.00000002
1325	Формальдегид			0.0011665	0.0002706
2754	54 Углеводороды пр. С12-С19			0.028	0.006765
	Всего по источнику:				0.04198362

		всего по источнику:		0.1/36/01	0.04198362
№ ИЗА	1047	Наименование источника за- грязнения атмосферы	Выхлопная	труба	
№ ИВ	001	Наименование источника вы- деления	Вспомогато генератор	ельный дизельный	Power Pack
		ыполнены согласно, " <mark>Методики расче</mark> ных установок" РНД 211.2.02.04-200			тв в атмосферу
•		• • • • • • • • • • • • • • • • • • • •	,	• •	
iviai	ксимальныи выор	оос і-го вещества стационарной дизель М _{сек} =e _i *P ₃ /3600		определяется по фор	муле:
где:		W _{cek} −e _i P ₃ /3600	, 1/6		
	oc i-ro pnemuoro pe	ещества на единицу полезной работы	танионапиой	пизепьной установии	на ремиме номи.
		і (таблица 1 или 2):	стационарной	дизольной установки	па режиме поми-
		ость стационарной дизельной уста-	_		_
новки:	адготнал шодп	reiz eragnenaphen Ancenzhen yera	P₃	5.8	кВт
	повый выброс і-го	вещества за год стационарной дизель	ьной установко	й определяется по фо	рмуле:
	'	М _{год} =q _i *В _{год} /1000,			. ,
где:		,			
q _i - выбро	с і-го вредного ве	ещества, г/кг топлива, приходящегося н	а один кг дизеј	пьного топлива, при ра	аботе стационар -
ной дизел	пьной установки	с учетом совокупности режимов, соста	авляющих эксп	луатационный цикл, г	/кг топлива (таб-
лица 3 ил					
		ной дизельной установкой за год (бе-			
рется по	отчетным данны	ым об эксплуатации установки) или	Вгод	0.0191	т/год
определя	ется по формуле	e: B _{rog} =b ₃ *k*P ₃ *T*10 ⁻⁶ :			
Расход то	JULINDS.		b	1.83	л/ч
гасход п	лілива.		b	1.592	кг/ч
Средний	удельный расход	ц топлива:	b₃	275	г/кВт.ч
Плотност	ъ дизельного топ	лива:	ρ	0.87	кг/л
Коэффиц	иент использова	ния:	k	1	
Время ра	боты:		Т	12	ч/год
		Исходные данные по источ	нику выброс	ОВ	
Количест	BO:		N	2	ШТ
Частота в	вращения вала:		n	1500	об/мин
Группа С	ДУ:			A	
		Расчет расхода отработаннь	х газов и топл	пива	
Расход о	тработанных газо	$_{\rm BB}$, $G_{\rm or} = 8.72*10^{-6*}b_{\rm s}*P_{\rm s}$	G _{or}	0.014	кг/с
	гура отходящих га		T _{or}	450	0C
	T FOROR FIDIA OOC:		v0	1 21	LC-/NA3

Расчет расхода отработанных газов и топлива					
Расход отработанных газов, G _{or} = 8.72*10 ^{-6*} b ₃ * P ₃	G _{or}	0.014	кг/с		
Температура отходящих газов:	Tor	450	°C		
Плотность газов при 0°C:	γ0 _{or}	1.31	кг/м ³		
Плотность газов при T _{or} (K), у0 _{ог} /(1+T _{ог} /273)	Yor	0.49482	кг/м ³		
Объемный расход отработанных газов, Q _{ог} = G _{ог} / γ _{ог}	Qor	0.0281	м ³ /с		
D					

Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:

Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально- разовый вы- брос	Валовый вы- брос
		г/кВт.ч	г/кг топлива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.0165944	0.0008213
0301	Азота диоксид			0.0132756	0.0006570
0304	Азота оксид			0.0021573	0.0001068
0328	Сажа	0.7	3	0.0011278	0.0000573
0330	Сера диоксид	1.1	4.5	0.0017722	0.0000860

0337	Углерод оксид	7.2	30	0.0116	0.0005730
0703	Бенз(а)пирен	0.000013	0.000055	0.00000002	0.0000000011
1325	Формальдегид	0.15	0.6	0.0002417	0.0000115
2754	Углеводороды пр. С12-С19	3.6	15	0.0058	0.0002865
	Всего по источнику:			0.03597462	0.00177802
	Расчет выбросов вредных веще	ств в атмосф	еру от 2-х дизе	льных генераторов	:
Код ЗВ	Наименование	Наименование ЗВ			Валовый вы- брос
				M _{сек} , г/с	М _{год} , т/год
	Азота оксиді	ol		0.0331889	0.0016426
0301	Азота диокси	ıд		0.0265512	0.0013141
0304	Азота оксид	ļ		0.0043146	0.0002135
0328	Сажа			0.0022556	0.0001146
0330	Сера диокси	Д		0.0035444	0.0001719
0337	Углерод оксид			0.0232	0.001146
0703	Бенз(а)пирен			0.00000004	0.000000002
1325	Формальдегид			0.0004834	0.0000229
2754	Углеводороды пр. С12-С19			0.0116	0.000573
•	Всего по источнику:	•		0.07194924	0.003556002

№ ИЗА	1048	Наименование источника за- грязнения атмосферы	Выхлопная труба				
№ИВ	001	Наименование источника вы- деления	Дизельный генератор вакуум- ной установки VAC MK				
Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год. Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: М _{сек} =e,*P ₃ /3600, г/с							
где: e, - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи-							

нальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной уста-Рэ 14.7 кВт новки:

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: $\mathbf{M}_{\mathsf{rog}} = \mathbf{q}_i ^* \mathbf{B}_{\mathsf{rog}} / 1000, \, \mathsf{T/rog}$

q_і - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таб-

лица 3 или 4).			
расход топлива стационарной дизельной установкой за год (бе-	_		
рется по отчетным данным об эксплуатации установки) или	B_{rog}	0.0446	т/год
определяется по формуле: B _{год} = b ₃ * k * P ₃ * T *10 ⁻⁶ :			
Росуси топпиро:	b	4.27	л/ч
Расход топлива:	b	3.71	кг/ч
Средний удельный расход топлива:	b₃	253	г/кВт.ч
Плотность дизельного топлива:	ρ	0.87	кг/л
Коэффициент использования:	k	1	
Время работы:	T	12	ч/год
Исходные данные по исто	чнику выбросо	В	
Количество:	N	10	ШТ
Частота вращения вала:	n	1500	об/мин
Группа СДУ:		Α	
Расчет расхода отработаннь	іх газов и топл	ива	
Расход отработанных газов, G _{or} = 8.72*10 ^{-6*} b ₃ * P ₃	G_{or}	0.032	кг/с
Температура отходящих газов:	Tor	450	°C
Плотность газов при 0°C:	γ0 _{ог}	1.31	кг/м ³
Плотность газов при Т _{ог} (K), у0 _{ог} /(1+ Т _{ог} /273)	Yor	0.49482	кг/м ³
Объемный расход отработанных газов, Q _{or} = G _{or} / γ _{or}	Q _{or}	0.0655	м ³ /с
Расчет выбросов вредных веществ в атмосфе	ру от одного ди	зельного генерато	pa:

Код 3В	Наименование ЗВ	е _і ,	q _і ,	Максимально- разовый вы- брос М _{сек} , г/с	Валовый вы- брос М _{год} , т/год
	Азота оксиды	10.3	43	0.0420583	0.0019178
0301	Азота диоксид			0.0336467	0.0015342
0304	Азота оксид			0.0054676	0.0002493
0328	Сажа	0.7	3	0.0028583	0.0001338
0330	Сера диоксид	1.1	4.5	0.0044917	0.0002007

			l	1	
0337	Углерод оксид	7.2	30	0.0294	0.0013380
0703	Бенз(а)пирен	0.000013	0.000055	0.0000005	0.0000000025
1325	Формальдегид	0.15	0.6	0.0006125	0.0000268
2754	Углеводороды пр. С12-С19	3.6	15	0.0147	0.0006690
	Всего по источнику:			0.09117685	0.004151816
	Расчет выбросов вредных вещес	тв в атмосфе	ру от 10-ти диз	ельных генераторо	B:
Код 3В				Максимально- разовый вы- брос	Валовый вы- брос
				М _{сек} , г/с	M _{год} , т/год
	Азота оксид	Ы		0.4205833	0.019178
0301	Азота диокси	ıд		0.336467	0.0153424
0304	Азота оксид	ļ		0.054676	0.0024931
0328	Сажа			0.028583	0.001338
0330	30 Сера диоксид			0.044917	0.002007
0337	337 Углерод оксид			0.294	0.01338
0703	03 Бенз(а)пирен			0.0000005	0.00000002
1325	1325 Формальдегид			0.006125	0.0002676
2754				0.147	0.00669
	Всего по источнику:			0.9117685	0.04151812

№ ИЗА	1049	Наименование источника загрязнения атмосферы	Выхлопная труба			
№ИВ	001	Наименование источника выделения	Дизельный г	енератор	Power Pack Desmi	
от стацио	нарных дизельн	полнены согласно, "Методики расч юых установок" РНД 211.2.02.04-200 с і-го вещества стационарной дизел М _{сек} =е _і *Р ₃ /3600)4 , МООС РК, А ьной установки	стана 2005 год.		
	с i-го вредного вец ощности, г/кВт*ч (цества на единицу полезной работы таблица 1 или 2):	стационарной д	цизельной установки	на режиме номи-	
Эксплуата новки:	ционная мощност	гь стационарной дизельной уста-	P₃	50.6	кВт	
Вало	овый выброс і-го в	ещества за год стационарной дизел М_{год}=q i* B _{год} /1000		й определяется по ф	ормуле:	
q _i - выброс	ьной установки с	ества, г/кг топлива, приходящегося учетом совокупности режимов, сост				
берется г	расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или В _{год} 0.7016 т/год определяется по формуле: B _{год} = b ₃ * k * P ₃ * T * 10 - ⁶ :					
Расход то	ппива:		b	14	л/ч	
			b	12.18	кг/ч	
	дельный расход т		b ₉	241	г/кВт.ч	
	дизельного топли		ρ	0.87	кг/л	
	мент использовани -	!R:	k	1	,	
Время раб	оты:		T	57.6	ч/год	

Deeve a Terrupe	b	14	л/ч
Расход топлива:	b	12.18	кг/ч
Средний удельный расход топлива:	b₃	241	г/кВт.ч
Плотность дизельного топлива:	ρ	0.87	кг/л
Коэффициент использования:	k	1	
Время работы:	Т	57.6	ч/год
Исходные данные по	источнику выбросс	ОВ	
Количество:	N	2	ШТ
Частота вращения вала:	n	1500	об/мин
Группа СДУ:		Α	
Расчет расхода отработ	анных газов и топл	тива	
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$	Gor	0.106	кг/с
Температура отходящих газов:	Tor	450	٥C
Плотность газов при 0°C:	γ0 _{ог}	1.31	кг/ м ³
Плотность газов при T_{or} (K), $\gamma 0_{or}/(1+T_{or}/273)$	У ог	0.49482	кг/м ³
Объемный расход отработанных газов, Q _{ог} = G _{ог} / ү _{ог}	Q _{or}	0.2149	м ³ /с

OOPEINIUP	и расход отрасотанных газов, Q or -O or/ y o	Q or	0.2149	IVI /C				
	Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:							
Код ЗВ	Наименование ЗВ	e _i , q _i ,		Максимально- разовый вы- брос	Валовый вы- брос			
		г/кВт.ч	г/кг топлива	М _{сек} , г/с	M _{год} , т/год			
	Азота оксиды	10.3	43	0.1447722	0.0301688			
0301	Азота диоксид			0.1158178	0.0241350			
0304	Азота оксид			0.0188204	0.0039219			
0328	Сажа	0.7	3	0.0098389	0.0021048			
0330	Сера диоксид	1.1	4.5	0.0154611	0.0031572			

		_	1	1	1	
0337	Углерод оксид	7.2	30	0.1012	0.0210480	
0703	Бенз(а)пирен	0.000013	0.000055	0.0000002	0.0000000386	
1325	Формальдегид	0.15	0.6	0.0021083	0.0004210	
2754	Углеводороды пр. С12-С19 3.6 15			0.0506	0.0105240	
	Всего по источнику:			0.3138467	0.065311983	
	Расчет выбросов вредных веще	еств в атмосф	реру от 2-х диз	ельных генераторо	B:	
Код ЗВ	Код 3В Наименование 3В			Максимально- разовый вы- брос	Валовый вы- брос	
	Азота оксид	Ы		0.2895444	0.0603376	
0301	Азота диокси	1Д		0.2316356	0.0482701	
0304	Азота оксид	1		0.0376408	0.0078439	
0328	Сажа			0.0196778	0.0042096	
0330	Сера диокси	ıд		0.0309222	0.0063144	
0337	Углерод окс	Углерод оксид			0.042096	
0703	Бенз(а)пирен			0.0000004	0.00000008	
1325	Формальдегид			0.0042166	0.0008419	
2754	Углеводороды пр. (C12-C19		0.1012	0.021048	
•	Всего по источнику:			0.6276934	0.13062398	

№ ИЗА	1050	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Бензиновый генератор насосов	Балластный насос

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

Исходные данные:

Количество:	N	16	ШТ.
Частота вращения вала:	n	1500	об/мин
Эксплуатационная мощность бензинового генератора:	P ₉	2.03	кВт

Максимальный разовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{секі}} = (m_{\text{Lik}} + \mathbf{L} 1) / t / 3600$, г/с Валовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{годi}} = (m_{\text{Lik}} + \mathbf{L} 1) \cdot \mathbf{D} \mathbf{n} \cdot \mathbf{10}^{-6}$, т/год

	Валовый выброс і-го вещества рассчиты	вается по (формуле:	$M_{rodi} = (m_{Lik} * L1) * Dn * 10^{-6},$	т/год
где:					
		m _{LNOk}	лето	0.035	г/км
		IIILNOk	зима	0.035	г/км
Du lénas at	Bullings of following para rollopatons harou 0.25 of pr		лето	0.009	г/км
	Выброс от бензинового генератора равен 0.25 от величины выброса легкового карбюраторного автомо-			0.011	г/км
	ороса легкового кароюраторного автомо- емом двигателя до 1.2 л: m _{Lik} (таблица 3.5):	m	лето	1.875	г/км
ONJIN C OOBE	жиом двигателя до 1.2 л. підк (таолица 5.5).	m _{LCOk}	зима	2.325	г/км
		-	лето	0.25	г/км
		m _{LCxHyk}	зима	0.375	г/км
Пробег авто предприяти	омобиля в день без нагрузки по территории я:	L	1	25	км/день
	Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята:			5	км/час
Prove note				5	ч/день
время расс	ты бензинового генератора:	T		12	ч/год
Количество	рабочих дней в расчетном периоде:	D	n	2	дней/год
	Расчет расхода отра	аботанны	х газов и	топлива	
Расход бен	зина за год:	Вгод		0.0088	т/год
Часовой ра	сход бензина:	b		0.73	кг/ч
Средний уд	ельный расход бензина:	b₃		360	г/кВт.ч
Расход отра	аботанных газов, G ₀г = 8.72*10 ^{-6*} b₃*P₃	Gor		0.006	кг/с
Температура отходящих газов:		T _{or}		450	٥C
Плотность газов при 0°C:		γ0	ог	1.31	кг/м ³
	Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$		Σ	0.49465	кг/м ³
Объемный	Объемный расход отработанных газов, Q _{or} = G _{or} / γ _{or}		ОГ	0.0129	м ³ /с
P	асчет выбросов вредных веществ в атм	осферу в	сего от од	дного бензинового ген	
				Максимально-разо-	Валовый вы-
Код ЗВ	Наименование ЗВ			вый выброс	брос
				M _{сек} , г/с	М _{год} , т/год

0301

Азота оксиды (NO_x)

Азота диоксид (NO₂)

0.0000486

0.0000389

0.0000021

0.0000017

0304	Азота оксид (NO)	0.000063	0.0000003
0330	Сера диоксид (SO ₂)	0.0000156	0.0000007
0337	Углерод оксид (СО)	0.0032292	0.0001395
2704	Бензин (C _х H _у)	0.0005208	0.0000225
	Всего по источнику:	0.0038108	0.000164628
Расчет в	выбросов вредных веществ в атмосферу в	сего от 16-ти бензиновых генер	аторов:
		Максимально-разо-	Валовый вы-
Код ЗВ	Наименование ЗВ	вый выброс	брос
		М _{сек} , г/с	М _{год} , т/год
	Азота оксиды (NO _x)	0.0007778	0.0000336
0301	Азота диоксид (NO ₂)	0.0006224	0.0000269
0304	Азота оксид (NO)	0.0001008	0.0000044
0330	Сера диоксид (SO ₂)	0.0002496	0.0000108
0337	Углерод оксид (СО)	0.0516672	0.002232
2704	Бензин (C _х H _у)	0.0083328	0.00036
<u>.</u>	Всего по источнику:	0.0609728	0.0026341

№ ИЗА	1051	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Бензиновый генератор насосов	Honda WB20XT GX 120

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

			ые:

Количество:	N	10	ШТ.
Частота вращения вала:	n	1500	об/мин
Эксплуатационная мощность бензинового генератора:	P ₉	2.6	кВт

Максимальный разовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{ceki}} = (\mathbf{m}_{Lik} + \mathbf{L} \mathbf{1}) / t / 3600$, г/с Валовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{год}} = (m_{\text{Lik}} \times \mathbf{L1}) \times \mathbf{Dn} \times \mathbf{10}^{-6}$, т/год

 m_{LNOk}

лето

зима лето

0.035

0.035

0.009

281

0.006

450

г/км

г/км

г/км

г/кВт.ч

кг/с ОC

Выброс от бензинового генератора равен 0.25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1.2 л: m _{Lik} (таблица 3.5):

Средний удельный расход бензина:

Температура отходящих газов:

Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$

	MLSO2k				
выорос от оензинового генератора равен 0.25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1.2 л: мык (таблица 3.5):		зима	0.011	г/км	
		лето	1.875	г/км	
Гойля с оовемом двигателя до 1.2 л. підк (таолица 3.3).	m _{LCOk}	зима	2.325	г/км	
	m	лето	0.25	г/км	
	m _{LCxHyk}	зима	0.375	г/км	
Пробег автомобиля в день без нагрузки по территории предприятия:	L1		25	км/день	
Согласно рекомендациям ОАО "НИИ Атмосфера" ско-	v				
рость движения по территории должна быть принята:			5	км/час	
Время работы бензинового генератора:	t		5	ч/день	
Бремя работы бензинового генератора.	Т	•	12	ч/год	
Количество рабочих дней в расчетном периоде:	Dn		2	дней/год	
Расчет расхода отработанных газов и топлива					
Расход бензина за год:	Вгод		0.0088	т/год	
Часовой расход бензина:	b)	0.73	кг/ч	

Go

Плотность газов при 0°C:	$\gamma 0_{or}$	1.31	кг/м ³
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$	Y ог	0.49465	кг/м ³
Объемный расход отработанных газов, Q _{ог} = G _{ог} / y _{ог}	Qor	0.0129	м ³ /с

Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора:								
Код ЗВ	Наименование ЗВ	Максимально-разо- вый выброс	Валовый вы- брос					
			М _{сек} , г/с	M _{год} , т/год				
	Азота оксиды (NO _x)		0.0000486	0.0000021				
0301	Азота диоксид (NO ₂)		0.0000389	0.0000017				
0304	Азота оксид (NO)		0.000063	0.0000003				
0330	Сера диоксид (SO ₂)		0.0000156	0.0000007				
0337	Углерод оксид (СО)		0.0032292	0.0001395				
2704	Бензин (C _х H _у)		0.0005208	0.0000225				
	Всего по источнику: 0.0038108 0.000164628							
Расчет	выбросов вредных веществ в атмо	осферу всего от 1	0-ти бензиновых генер	Расчет выбросов вредных веществ в атмосферу всего от 10-ти бензиновых генераторов:				

где:

Код ЗВ	Код 3В Наименование 3В	Максимально-разо- вый выброс	Валовый вы- брос
	410)	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды (NO _x)	0.0004861	0.000021
0301	Азота диоксид (NO ₂)	0.000389	0.0000168
0304	Азота оксид (NO)	0.00063	0.000027
0330	Сера диоксид (SO ₂)	0.000156	0.000068
0337	Углерод оксид (СО)	0.032292	0.001395
2704	Бензин (С _х Н _у)	0.005208	0.000225
	Всего по источнику:	0.038108	0.0016463

№ ИЗА	1052	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Вспомогательный бензи- новый генератор	Air Blower ECHO PB-770

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

	исходные данные.					
Кол	пичество:	N	4	ШТ.		
Ча	стота вращения вала:	n	1500	об/мин		
Эк	сплуатационная мощность бензинового генера- ра:	P ₉	2.6	кВт		

Максимальный разовый выброс i-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{секi}} = (m_{Lik} + \mathbf{L} 1) / t / 3600$, г/с Валовый выброс i-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{годi}} = (m_{Lik} + \mathbf{L} 1) + \mathbf{D} \mathbf{n} + \mathbf{10}^{-6}$, т/год

валовыи выорос і-го вещества рассчиты	вается по (формуле:	$M_{\text{годi}}=(m_{Lik}\text{"L1})\text{"Dn"10}^{\circ},$	т/год
где:		лето	0.035	г/км
	m _{LNOk}	зима	0.035	г/км
		лето	0.009	г/км
Выброс от бензинового генератора равен 0.25 от ве-	m _{LSO2k}	зима	0.011	г/км
личины выброса легкового карбюраторного автомо-		лето	1.875	г/км
биля с объемом двигателя до 1.2 л: m _{Lik} (таблица 3.5):	m_{LCOk}	зима	2.325	г/км
		лето	0.25	г/км
	m _{LCxHyk}	зима	0.375	г/км
Пробег автомобиля в день без нагрузки по территории предприятия:	L1		25	км/день
Согласно рекомендациям ОАО "НИИ Атмосфера" ско-	V		5	км/час
рость движения по территории должна быть принята:			<u> </u>	км/час
Время работы бензинового генератора:	t		5	ч/день
Бремя работы бензинового тенератора.	Т	•	58	ч/год
Количество рабочих дней в расчетном периоде:	Dn		12	дней/год
Расчет расхода отра	аботанны	х газов и		
Расход бензина за год:	B _r	од	0.0420	т/год
Часовой расход бензина:	b)	0.73	кг/ч
Средний удельный расход бензина:	b		281	г/кВт.ч
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$	G	ог	0.006	кг/с
Температура отходящих газов:		DΓ	450	°C
Плотность газов при 0°C:		ог	1.31	кг/м ³
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$	γ	ОГ	0.49465	кг/м ³
Объемный расход отработанных газов, Q _{or} = G _{or} / γ _{or}	Q	ог	0.0129	м ³ /с

Код ЗВ	Наименование ЗВ	Максимально-разо- вый выброс	Валовый вы- брос
		M _{сек} , г/с	М _{год} , т/год
	Азота оксиды (NO _x)	0.0000486	0.0000101
0301	Азота диоксид (NO ₂)	0.0000389	0.0000081
0304	Азота оксид (NO)	0.000063	0.000013
0330	Сера диоксид (SO ₂)	0.0000156	0.0000032
0337	Углерод оксид (СО)	0.0032292	0.0006696
2704	Бензин (C _х H _у)	0.0005208	0.0001080
	Всего по источнику:	0.0038108	0.000790214

Расчет выбросов вредных веществ в атмосферу всего от 4-х бензиновых генераторов:					
Код ЗВ	Наименование ЗВ	Максимально-разо- вый выброс	Валовый вы- брос		
		М _{сек} , г/с	М _{год} , т/год		
	Азота оксиды (NO _x)	0.0001944	0.0000403		
0301	Азота диоксид (NO ₂)	0.0001556	0.0000323		
0304	Азота оксид (NO)	0.0000252	0.0000052		

	Всего по источнику:	0.0152432	0.0031609
2704	Бензин (C _х H _v)	0.0020832	0.000432
0337	Углерод оксид (СО)	0.0129168	0.0026784
0330	Сера диоксид (SO ₂)	0.0000624	0.000013

№ ИЗА	1053	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Вспомогательный бензи- новый генератор	Air Blower Desmi EFCO SA2062

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

Исходные данные:

Количество:	N	16	ШТ.
Частота вращения вала:	n	1500	об/мин
Эксплуатационная мощность бензинового генератора:	P _s	3.7	кВт

Максимальный разовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{сек}}$ =(\mathbf{m}_{Lik} *L1)/t/3600, г/с Валовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{год}} = (m_{Lik} + \mathbf{L} \mathbf{1}) + \mathbf{D} \mathbf{n} + \mathbf{10}^{-6}$, $\mathbf{T} / \mathbf{rog}$

 m_{LNOk}

MLSO2k

лето

зима

лето

зима

лето

0.035

0.035

0.009

0.011

1 875

г/км

г/км

г/км

г/км

г/км

Выброс от бензинового генератора равен 0.25 от ве-
личины выброса легкового карбюраторного автомо-
биля с объемом двигателя до 1.2 л: m _{Lik} (таблица 3.5):

где:

ойня с оовешом двигателя до 1.2 л. підк (таолица 5.5).	IIILCOK	зима	2.325	г/км
		лето	0.25	г/км
	m _{LCxHyk}	зима	0.375	г/км
Пробег автомобиля в день без нагрузки по территории предприятия:	территории L1		25	км/день
Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята:	V	,	5	км/час
Provid poporti i poriori porori cononcento	t		5	ч/день
Время работы бензинового генератора:	T	•	58	ч/год
Количество рабочих дней в расчетном периоде:	D	n	12	дней/год
Расчет расхода отра	аботанны	х газов и	топлива	

Расчет расхода отработанных газов и топлива						
Расход бензина за год:	Вгод	0.0086	т/год			
Часовой расход бензина:	b	0.84	кг/ч			
Средний удельный расход бензина:	b₃	227	г/кВт.ч			
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$	G _{or}	0.007	кг/с			
Температура отходящих газов:	Tor	450	٥C			
Плотность газов при 0°C:	$\gamma 0_{or}$	1.31	кг/м ³			
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$	Yor	0.49465	кг/м ³			
Объемный расход отработанных газов, Q _{or} = G _{or} / γ _{or}	Q _{or}	0.0148	м ³ /с			

Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора:

Код ЗВ	Наименование ЗВ	Максимально-разо- вый выброс	Валовый вы- брос	
		М _{сек} , г/с	М _{год} , т/год	
	Азота оксиды (NO _x)	0.0000486	0.0000101	
0301	Азота диоксид (NO₂)	0.0000389	0.0000081	
0304	Азота оксид (NO)	0.000063	0.0000013	
0330	Сера диоксид (SO₂)	0.0000156	0.0000032	
0337	Углерод оксид (СО)	0.0032292	0.0006696	
2704	Бензин (С _х Н _у)	0.0005208	0.0001080	
	Всего по источнику:	0.0038108	0.000790214	

Расчет выблосов вредных веществ в атмосферу всего от 16-ти бензиновых генераторов:

Код ЗВ	Наименование ЗВ	Максимально-разо- вый выброс	Валовый вы- брос	
		М _{сек} , г/с	M_{rog} , т/год	
	Азота оксиды (NO _x)	0.0007778	0.0001613	
0301	Азота диоксид (NO ₂)	0.0006224	0.000129	
0304	Азота оксид (NO)	0.0001008	0.000021	
0330	Сера диоксид (SO ₂)	0.0002496	0.0000518	
0337	Углерод оксид (СО)	0.0516672	0.0107136	
2704	Бензин (С _х Н _у)	0.0083328	0.001728	
,	Всего по источнику:	0.0609728	0.0126434	

№ ИЗА	1054	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Бензиновый генератор компрессора	9Gal Wheellbarrow

	года № 100-п - методики расчета выорос о С РК, Астана 2008 год.	ов загрязн	іяющих в	веществ от автотранспо	ортных предприя-
	от к, дотапа 2000 год. стоящее время отсутствует методика расче	та выброс	ов вредні	ых вешеств от бензинов	ых электростанций
	ов). В связи с этим, до выхода соответствую				
	г выбросов от бензиновых электростанций (
	рязняющих веществ от автотранспортны				
	0,25 от величины выброса легкового ка				
л при движ	кении по территории со скоростью 5 кг	и/час.	•		
		ные данн	ые:		
Количество		N	l .	2	ШТ.
	ащения вала:	r	1	1500	об/мин
Эксплуатационная мощность бензинового генера-		Р	•	5	кВт
тора:					
Ma	ксимальный разовый выброс і-го вещества Валовый выброс і-го вещества рассчиты				
где:	валовый выброс 1-то вещества рассчиты	вается по	формуле.	M_{rodi} - $(M_{Lik} LI)$ DII 10,	тлод
тдс.			лето	0.035	г/км
		m _{LNOk}	зима	0.035	г/км
			лето	0.009	г/км
Выброс от бензинового генератора равен 0.25 от ве-		m _{LSO2k}	зима	0.011	г/км
	броса легкового карбюраторного автомо-		лето	1.875	г/км
биля с объе	биля с объемом двигателя до 1.2 л: m _{Lik} (таблица 3.5):		зима	2.325	г/км
			лето	0.25	г/км
			зима	0.375	г/км
Пробег авто	омобиля в день без нагрузки по территории				
предприяти		L	1	25	км/день
Согласно ре	екомендациям ОАО "НИИ Атмосфера" ско-			5	км/час
рость движе	ения по территории должна быть принята:	V		5	км/час
Врема рабо	Время работы бензинового генератора:			5	ч/день
			•	12	ч/год
Количество	Количество рабочих дней в расчетном периоде:		n	2	дней/год
	Расчет расхода отр				
	зина за год:	В _{год}		0.0131	т/год
	сход бензина:	b		1.10	кг/ч
	ельный расход бензина:	b₃		219	<u>г/кВт.ч</u>
	аботанных газов, G _{or} = 8.72*10 ⁻⁶ * b ₃ * P ₃	G _{or}		0.010	кг/с °С
	ра отходящих газов:	Тог		450 1.31	KL/W3
	газов при 0°C: газов при Т _{ог} (K), ү ог =ү0 ог/ (1+Т ог/ 273)	γ0 _{or}		0.49465	KI/M ³
	расход отработанных газов, Q _{or} = G _{or} / ү _{or}	γ _ι Q		0.49465	M ³ /C
	расход отрасотанных газов, ч_{ог}-9_{ог}/ү ог Расчет выбросов вредных веществ в атм				
	асчет выоросов вредных веществ в атм 	осферу в	Jeio oi o	Максимально-разо-	валовый вы-
Код ЗВ	Наименование ЗВ			вый выброс	брос
код ов	Travimeno Banvie OB			М _{сек} , г/с	М _{год} , т/год
	Азота оксиды (NO _x)			0.0000486	0.0000021
0301	Азота диоксид (NO ₂)			0.0000389	0.0000017
0304	Азота оксид (NO)			0.0000063	0.0000003
0330	Сера диоксид (SO ₂)			0.0000156	0.0000007
0337	Углерод оксид (СО)			0.0032292	0.0001395
2704	Бензин (С _х Н _у)			0.0005208	0.0000225
	Всего по источнику:			0.0038108	0.000164628
	Расчет выбросов вредных веществ в ат	мосферу	всего от		торов:
				Максимально-разо-	Валовый вы-
Код ЗВ	Наименование ЗВ			вый выброс	брос
				М _{сек} , г/с	М _{год} , т/год
Азота оксиды (NO _x)				0.0000972	0.0000042
0301 Азота диоксид (NO ₂)				0.0000778	0.0000034
0304	Азота оксид (NO)			0.0000126	0.0000005
0330	Сера диоксид (SO ₂)			0.0000312	0.0000014
0337	Углерод оксид (СО)			0.0064584	0.000279
2704	Бензин (С _х Н _у)			0.0010416	0.000045
	Всего по источнику:			0.0076216	0.0003293

Ne ИВ 001 Наименование испочника довеления Дизельный генератор Power Pack Desmi Расчеты выборсовов выполнены согласно., "Методики расчета выборсов выполнены согласное, "Методики расчета выборсов выполнены согласное," "Методики расчета не единицу полезной работы стационарной дизельной установки на режиме номи выполнений работы стационарной дизельной установки паработы стационарной дизельной установки паработы стационарной дизельной установки определяется по формуле: "Методики дизельной установки установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таб раско, топлива стационарной дизельной установки и методики эксплуатационный цикл, г/кг топлива (таб раско, топлива: топлива: "Методи дизельный деньным об эксплуатации установки или дизельный деньным об эксплуатации установки или дизельный дизельный деньным об эксплуатации установки или дизельный деньным об эксплуатации установки или дизельный деньным об эксплуатации установки или дизельный дихл, г/кг топлива: "Вка, топлива: "В	№ ИЗА	1055	Наименование ист		Выхлопная труба			
Расчеты выбросов выполнены согласно. "Методики расчета выбросов загрязняющих вещества в атмосферу от стационарных дизальных установов и Правительной установии определяется по формуле: Ме,—е-е, Ру-800, т/с по выброс і-го вещества на единицу полезной работы стационарной дизельной установки на режиме номи нальной мощности, г/сбт-у (таблица 1 или 2): — а выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи нальной мощности, г/сбт-у (таблица 1 или 2): — а выброс і-го вредного вещества за год стационарной дизельной установкий на режиме номи нальной мощности, г/сбт-у (таблица 1 или 2): — а выброс і-го вещества за год стационарной дизельной установкий определяется по формуле: — В в расмарт от вещества, г/м толлика, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установкий за год (беретоги по тченьма денным истановкий сутановкий установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации установкий за год (беретоги по тченьма денным об эксплуатации за год (беретоги по тченьма денным об эк	№ИВ	001	Наименование ист		Дизельный г	енератор		
нальной мощности, r/kB*1* (таблица 1 или 2):	от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год. Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: M _{cek} =e _i *P ₃ /3600, г/с где:							
Валовый выброс I-го вещества за год стационарной дизельной установкой определяется по формуле: Residence Re	нальной г	мощности, г/кВт*ч (та	аблица 1 или 2):		гстационарной д	цизельной установки	на режиме номи-	
де:	новки: P ₉ 24.3 КВТ							
Раскод топлива:	q _i - выбро ной дизел лица 3 ил расход то (берется	пьной установки с уч ли 4): оплива стационарно по отчетным данным	ества, г/кг топлива, пр четом совокупности ой дизельной устано и об эксплуатации ус	риходящегося режимов, сост	на один кг дизел	туатационный цикл,	г/кг топлива (таб-	
Средний удельный расход топлива: b 5.22 К/РЧ Плотность дизельног топлива: р 0.87 к/гл Коэффициент использования: к 1 1 Время работы: Т 57.6 Ч/год Исходные данные по источнику выбросов Количество: Исходные данные по источнику выбросов Количество: Исход отработанных газов и топлива Расход отработанных газов, б.д. в 1.2*10**b,*P, в.д. A 1 450 °C Температура отходящих газов: Т.д. 450 °C Temnepatypa отходящих газов: Т.д. 450 °C Трипотность газов при Тос. (К), УФ.,м/(1+Т.с./273) Уо. 0.49482 к/г/м² 450 °C Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Максимально- разовый выборос Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Максимально- разовый выборос Код 3B Наименование 3B 9.0.562 0.010341 0.099333 <td< td=""><td>Расхол то</td><td>оппива.</td><td></td><td></td><td></td><td></td><td>·</td></td<>	Расхол то	оппива.					·	
Ппотность дажельного топлива:					_			
Коэффициент использования: k		***			-		.,	
Время работы:		• • • • • • • • • • • • • • • • • • • •					кг/л	
Можнество: N 3 шт			l:		K		/	
Количество:	время ра	ЮОТЫ:	Иохоли ю по				ч/год	
Частота вращения вала: Группа СДУ: Расчет расхода отработанных газов и топлива Расход отработанных газов, G _{or} = 8.72*10**b ₃ ·P ₃ Свитемпература отходящих газов: Ппотность газов при °C: Ппотность газов при Т _{or} (K), Y0 _{or} (1+T _{or} /273) Объемный расход отработанных газов, G _{or} = G _{or} (N _{or} Объемный расход отработанных газов: Код 3В Наименование 3В Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Код 3В Наименование 3В Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Код 3В Код 3В Наименование 3В Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Код 3В Код 3В Наименование 3В Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Код 3В Код 3В Наименование 3В Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Код 3В Код 3В Сажа О.7 3 0.004525 О.0129301 О.05562 О.01033441 О.05562 О.003330 Сера дикскид О.7 3 0.004725 О.009383 О.00486 О.009321 О.0337 Углерод оксид 7.2 30 О.0486 О.009021 О.05563 О.0001809 О.0001809 О.0001809 О.0001809 О.0001809 О.00010125 О.0001809 О.0001809 Венз(а)пирен О.000180 О.202755 О.00387903 О.0344 Азота оксиды О.206575 О.00387903 О.0328 Сера дикскид О.155 О.60 О.0071149 О.0050472 О.0001804 О.0001805 О.0001804 О.000180	Копицест	DO:	исходные да	нные по исто			шт	
Группа СДУ: Расчет расхода отработанных газов и топлива О.046 кг/с Расход отработанных газов, Отработанных газов и топлива Тог. 450 °C Температура отходящих газов: Тог. 450 °C Плотность газов при Тог. (К), УО₀/I(1+Тог/273) УО₀. 0.49482 кг/м³ Объемный расход отработанных газов, Qы=G₀r/Y₀r. О₀. 0.0921 м³ КОД ЗВ Наименование ЗВ e₁, q₁, q₁ Максимально-разовый выборос Валовый выборос КОД ЗВ Наименование ЗВ e₁, r/кт топлива Максимально-разовый выборос Валовый выборос 10301 Азота оксиды 10.3 43 0.0695250 0.0129301 30301 Азота оксид 0.095625 0.013441 0.05562 0.013941 30304 Азота оксид 1.1 4.5 0.007425 0.009021 30337 Углерод оксид 7.2 30 0.0486 0.009021 30337 Углерод оксид 1.1 4.5 0.007425 0.0000001 3035 Бена(а)пирен 0.000013								
Расчет расход отработанных газов, G _{or} = 8.72*10 ⁶⁶ b ₃ ·P ₃					"		OO/WINIT	
Расход отработанных газов. Сет = 8.72*10 ⁵⁶ ·b, °P₂ Ger 0.046 кг/с Температура отходящих газов: Ter 450 °C Плотность газов при 0°C: γ0₀г 1.31 кг/м³ Плотность газов при Тег (К), уФе/(1+Тег/273) уг 0.49482 кг/м³ Объемный расход отработанных газов, Qer=Ge/уег Qer 0.0921 м³/с Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: Код 3В Наименование 3В eir qir Максимальноразовый выброс Код 3В Азота оксиды 0.05662 0.013341 0301 Азота оксид 0.7 3 0.009383 0.016809 0328 Сажа 0.7 3 0.004725 0.00090921 03330 Сер диоксид 7.2 30	i pyima o _i	H.,.	Расчет расхода	отработанні	ых газов и топп			
Температура отходящих газов: Т _{ог} 450 °C Плотность газов при °Сг. уО _{ог} 1.31 кг/м³ Плотность газов при Тсг. (К), уО _{ог} (I/+Т _{ог} /273) усг. 0.49482 кг/м³ Объемный расход отработанных газов, Q _{ог} =G _{ог} /у _{ог} Q _{ог} 0.0921 м³/с Код 3В Наименование 3В e₁ q₁ Максимально-разовый выброс брос Код 3В Наименование 3В e₁ q₁ Максимально-разовый выброс брос Код 3В Наименование 3В e₁ q₁ Максимально-разовый выброс брос код 3В Наименование 3В на затовос при брос брос Максимально-разовый выброс оброс 10301 Азота оксиды 0.00562 0.013241 3030 Сажа 0.7 3 0.004725 0.009021 0330 Сара диоксид 7.2 30 0.0486 0.009021 0337 Углерод оксид 7.2 30 0.0486 0.009021 0703 Бенз(а)пирен 0.00013 0.000055 0.00	Расход о	тработанных газов. (кг/с	
Плотность газов при 0°C:								
Плотность газов при Т _{ог.} (К), у0 _{ог.} /(1+Т _{ог} /273)						1.31	кг/м ³	
Объемный расход отработанных газов, Q _{or} = G _{or} /у _{or} Q _{or} 0.0921 м³/с Код 3B Наименование 3B e _i q _i Makсимального генератора: Код 3B Наименование 3B e _i q _i Makcимального брос Baловый выборос 1 Азота оксиды 10.3 43 0.0695250 0.0129301 0301 Азота оксид 0.05562 0.013441 0304 Азота оксид 0.05562 0.0103441 0330 Сера диоксид 1.1 4.5 0.007425 0.009021 0330 Сера диоксид 7.2 30 0.0486 0.009021 0337 Углерод оксид 7.2 30 0.0486 0.009021 1325 Формальдегид 0.15 0.6 0.0010125 0.0001804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.045105 1325 Формальдегид 0.15072089 0.02799218 Код 3B Наименование 3B Macкимального маскид	Плотност	ъ газов при Т _{ог} (К), ү	0 _{or} /(1+T _{or} /273)			0.49482	кг/м ³	
Код 3В Наименование 3В е _і q _i Максимально-разовый выборос Валовый выборос 7/кВТ.Ч г/кВТ.Ч г/кВТ.Ч Мевек г/с М _{гов.} т/год 301 Азота оксиды 10.3 43 0.0695250 0.0129301 3030 Азота оксид 0.005962 0.0103441 3304 Азота оксид 0.0090383 0.0016809 0328 Сажа 0.7 3 0.004725 0.009021 3330 Сера диоксид 7.2 30 0.04486 0.009021 0703 Бенз(а)пирен 0.000013 0.000055 0.0000009 0.000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.00431 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Всего по источнику: 0.15072089 0.02799218 Максимально-разовый выброс Код 3В Наименование 3В Максимально-разовый выброс Максимально-разовый выброс 4 Азота оксиды 0.16686	Объемны	ій расход отработан	ных газов, $Q_{or}=G_{or}/\gamma_{o}$					
Код 3В Наименование 3В е _i , г/кВт.ч г/кг топлива брос разовый выброс Валовыи выброс Код 3В Азота оксиды 10.3 43 0.0695250 0.0129301 0301 Азота оксид 0.05562 0.0103441 0304 Азота оксид 0.0090383 0.0016809 0328 Сажа 0.7 3 0.004725 0.0009021 0330 Сера диоксид 1.1 4.5 0.007425 0.001532 0337 Углерод оксид 7.2 30 0.0486 0.009021 0703 Бенз(а)пирен 0.000013 0.00055 0.0000009 0.000000165 1325 Формальдегид 0.15 0.6 0.001125 0.001804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0243 0.0243 Веего по источнику: 0.15072089 0.02799218 Код 3В Наименование 3В Максимально- разовый выбразовый выбр		Расчет выбро	сов вредных вещес	тв в атмосфе	ру от одного д	изельного генерато	ра:	
Азота оксиды 10.3 43 0.0695250 0.0129301 0301 Азота диоксид 0.05562 0.0103441 0304 Азота оксид 0.0090383 0.0016809 0328 Сажа 0.7 3 0.004725 0.0009021 0330 Сера диоксид 1.1 4.5 0.007425 0.0013532 0337 Углерод оксид 7.2 30 0.0486 0.0090210 0703 Бенз(а)пирен 0.000013 0.000055 0.00000009 0.000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.0041804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Всего по источнику: 0.15072089 0.02799218 Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Максимальноразовый выброс брос Мсем, г/с Мгод, т/год 0301 Азота оксиды 0.16686 0.0310322 0304 Азота оксиды 0.0271149 0.0050427 <th>Код ЗВ</th> <th>Наимено</th> <th>вание ЗВ</th> <th>e_i,</th> <th>q_i,</th> <th>разовый вы-</th> <th></th>	Код ЗВ	Наимено	вание ЗВ	e _i ,	q _i ,	разовый вы-		
0301 Азота диоксид 0.05562 0.0103441 0304 Азота оксид 0.0090383 0.0016809 0328 Сажа 0.7 3 0.004725 0.009021 0330 Сера диоксид 1.1 4.5 0.007425 0.0013532 0337 Углерод оксид 7.2 30 0.0486 0.0090210 0703 Бенз(а)пирен 0.000013 0.000055 0.00000099 0.0000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.001804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Код 3B Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Код 3B Наименование 3B Максимально- разовый выброс брос Максимально- разовый выброс 6poc 0.02799218 Валовый выброс 6poc 0.0387903 0.036866 0.0310322 0301 Азота оксиды 0.16686 0.0310322 0304 Азота оксиды <t< td=""><td></td><td></td><td></td><td>г/кВт.ч</td><td>г/кг топлива</td><td>М_{сек}, г/с</td><td>M_{год}, т/год</td></t<>				г/кВт.ч	г/кг топлива	М _{сек} , г/с	M _{год} , т/год	
0304 Азота оксид 0.0090383 0.0016809 0328 Сажа 0.7 3 0.004725 0.0099021 0330 Сера диоксид 1.1 4.5 0.007425 0.0013532 0337 Углерод оксид 7.2 30 0.0486 0.0090210 0703 Бенз(а)пирен 0.000013 0.00055 0.0000009 0.000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.0001804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Код 3B Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Код 3B Наименование 3B Максимально- разовый выброс Валовый выброс брос Мсек, г/с М-год, т/год 0.301 Азота оксиды 0.208575 0.0387903 0.301 Азота оксид 0.027149 0.0050427 0328 Сажа 0.014175 0.0027063 0330 Сера диоксид 0.1458 0.027063		Азота	оксиды	10.3	43			
0328 Сажа 0.7 3 0.004725 0.0009021 0330 Сера диоксид 1.1 4.5 0.007425 0.0013532 0337 Углерод оксид 7.2 30 0.0486 0.0090210 0703 Бенз(а)пирен 0.000013 0.000055 0.00000099 0.000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.0004804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Всего по источнику: 0.15072089 0.02799218 Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Максимальноразовый выброс 6рос Максимальноразовый выброс 6рос Максимальноразовый выброс 6рос Максимальноразовый выброс 6рос 0.288575 0.0387903 0301 Азота оксид 0.16686 0.0310322 0304 Азота оксид 0.0271149 0.0050427 0328 Сажа 0.014175 0.0027063 <		Азота д	циоксид					
0330 Сера диоксид 1.1 4.5 0.007425 0.0013532 0337 Углерод оксид 7.2 30 0.0486 0.0090210 0703 Бенз(а)лирен 0.000013 0.000055 0.0000009 0.000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.004804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Код 3B Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Код 3B Наименование 3B Максимально- разовый выброс Валовый выброс брос О.0387903 0301 Азота диоксид 0.16686 0.0310322 0304 Азота оксид 0.0277149 0.0027063 0330 Сера диоксид 0.022								
0337 Углерод оксид 7.2 30 0.0486 0.0090210 0703 Бенз(а)пирен 0.000013 0.000055 0.00000009 0.000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.0001804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Васето по источнику: 0.15072089 0.02799218 Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Максимально-разовый выброс брос М _{сек} , г/с М _{год} , т/год 30301 Азота оксиды 0.208575 0.0387903 0304 Азота оксид 0.16686 0.0310322 0304 Азота оксид 0.0271149 0.0050427 0328 Сажа 0.014175 0.0027063 0330 Сера диоксид 0.022275 0.0040595 0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.00300375 0.0000005 1325 Формальдегид								
0703 Бенз(а)пирен 0.000013 0.000055 0.00000009 0.0000000165 1325 Формальдегид 0.15 0.6 0.0010125 0.0001804 2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Код 3В Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Код 3В Наименование 3В Максимально- разовый вы- брос Валовый вы- брос Мсек, г/с Мгод, т/год Азота оксиды 0.208575 0.0387903 0301 Азота диоксид 0.16686 0.0310322 0304 Азота оксид 0.0271149 0.0050427 0328 Сажа 0.014175 0.0027063 0330 Сера диоксид 0.022275 0.0040595 0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.000003 0.000003 1325 Формальдегид 0.0030375 0.00135315 2754 Углеводороды пр. С12-С19 0.0729 0.0135315<								
1325 Формальдегид 0.15 0.6 0.0010125 0.0001804 2754 Углеводороды пр. C12-C19 3.6 15 0.0243 0.0045105 Всего по источнику:								
2754 Углеводороды пр. С12-С19 3.6 15 0.0243 0.0045105 Всего по источнику: 0.15072089 0.02799218 Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов: Максимально-разовый выберос Код 3В Наименование 3В Максимально-разовый выберос Мсек, г/с Мгод, т/год 0.208575 0.0387903 0301 Азота диоксид 0.16686 0.0310322 0304 Азота оксид 0.0271149 0.0050427 0328 Сажа 0.014175 0.0027063 0330 Сера диоксид 0.022275 0.0040595 0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.0000003 0.0000005 1325 Формальдегид 0.0729 0.0135315		,	<i>,</i> ,					
Всего по источнику:0.150720890.02799218Расчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов:Код 3ВМаксимально-разовый выбросКод 3ВМаксимально-разовый выбросКод 3ВНаименование 3ВМсек, г/сМгод, т/годМсек, г/сМгод, т/годАзота оксиды0.2085750.03879030301Азота диоксид0.166860.03103220304Азота оксид0.02711490.00504270328Сажа0.0141750.00270630330Сера диоксид0.0222750.00405950337Углерод оксид0.14580.0270630703Бенз(а)пирен0.00000030.000000051325Формальдегид0.00303750.00054132754Углеводороды пр. C12-C190.07290.0135315								
Код 3ВРасчет выбросов вредных веществ в атмосферу от 3-х дизельных генераторов:Код 3ВМаксимально-разовый выбросКод 3ВМаксимально-разовый выбросФросМсек, г/сМгод, т/годАзота оксиды0.2085750.03879030301Азота диоксид0.166860.03103220304Азота оксид0.02711490.00504270328Сажа0.0141750.00270630330Сера диоксид0.0222750.00405950337Углерод оксид0.14580.0270630703Бенз(а)пирен0.00000030.00000051325Формальдегид0.00303750.00054132754Углеводороды пр. C12-C190.07290.0135315	2134				13			
Код 3ВНаименование 3ВМаксимально-разовый выбросВаловый выбросМсек, г/сМсек, г/сМгод, т/годАзота оксиды0.2085750.03879030301Азота диоксид0.166860.03103220304Азота оксид0.02711490.00504270328Сажа0.0141750.00270630330Сера диоксид0.0222750.00405950337Углерод оксид0.14580.0270630703Бенз(а)пирен0.00000030.00000051325Формальдегид0.00303750.00054132754Углеводороды пр. C12-C190.07290.0135315					bepv от 3-х дизе			
Азота оксиды0.2085750.03879030301Азота диоксид0.166860.03103220304Азота оксид0.02711490.00504270328Сажа0.0141750.00270630330Сера диоксид0.0222750.00405950337Углерод оксид0.14580.0270630703Бенз(а)пирен0.00000030.00000051325Формальдегид0.00303750.00054132754Углеводороды пр. C12-C190.07290.0135315	Код ЗВ		Наименование	∋ 3B		разовый вы- брос	брос	
Азота оксиды0.2085750.03879030301Азота диоксид0.166860.03103220304Азота оксид0.02711490.00504270328Сажа0.0141750.00270630330Сера диоксид0.0222750.00405950337Углерод оксид0.14580.0270630703Бенз(а)пирен0.00000030.00000051325Формальдегид0.00303750.00054132754Углеводороды пр. C12-C190.07290.0135315								
0304 Азота оксид 0.0271149 0.0050427 0328 Сажа 0.014175 0.0027063 0330 Сера диоксид 0.022275 0.0040595 0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.0000003 0.0000005 1325 Формальдегид 0.0030375 0.0005413 2754 Углеводороды пр. С12-С19 0.0729 0.0135315							0.0387903	
0328 Сажа 0.014175 0.0027063 0330 Сера диоксид 0.022275 0.0040595 0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.0000003 0.0000005 1325 Формальдегид 0.0030375 0.0005413 2754 Углеводороды пр. С12-С19 0.0729 0.0135315								
0330 Сера диоксид 0.022275 0.0040595 0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.0000003 0.0000005 1325 Формальдегид 0.0030375 0.0005413 2754 Углеводороды пр. С12-С19 0.0729 0.0135315								
0337 Углерод оксид 0.1458 0.027063 0703 Бенз(а)пирен 0.0000003 0.0000005 1325 Формальдегид 0.0030375 0.0005413 2754 Углеводороды пр. С12-С19 0.0729 0.0135315								
0703 Бенз(а)пирен 0.0000003 0.0000005 1325 Формальдегид 0.0030375 0.0005413 2754 Углеводороды пр. С12-С19 0.0729 0.0135315								
1325 Формальдегид 0.0030375 0.0005413 2754 Углеводороды пр. C12-C19 0.0729 0.0135315				• •				
2754 Углеводороды пр. С12-С19 0.0729 0.0135315								
				• •				
Reso to retounkey:	£1 J+		этлеводороды пр. « Всего по источнику:			0.4521627	0.0133313	

№ ИЗА	Наименование источника загрязнения атмосферы	- Механическая обра- ботка металлов			
№ ИВ	001	Наименование источника выделения			ный станок
Выбросы определены	согласно, "Метод	ических указаний по расчету выделений (вы	брос	ов) заг	рязняющих
веществ в атмосферу при 211.2.02.06-2004, МООС РК, А		обработке металлов (по величинам удель	ных	выбр	осов)" РНД
Выбросы ЗВ, образуюц	цихся при механи	ической обработке металлов, без применения С	ЮЖ,	от одн	юй единицы
оборудования, определяется	по формулам:				
Максимальный разовый	выброс для исто	чников выделения, не обеспеченных местными	отсос	сами: М	l _{сек} =k*Q, г/с
Валовый выброс для ист	очников выделен	ия, не обеспеченных местными отсосами: М год≕	3600°	*k*Q*T/	10 ⁶ , т/год
где:					
Количество оборудования:			n	1	ШТ.
Удельное выделение пыли те	хнологическим об	борудованием (таблица 4):	Q	0.001	1 г/с
Коэффициент гравитационног	о оседания (см. п	. 5.3.2): для пыли абразивной и металлической:	k	0.2	
Фактический годовой фонд вр	емени работы од	ной единицы оборудования в год:	Т	366	час/год
Расчет выбро	сов вредных вег	ществ в атмосферу, при работе сверлильного	о ста	нка:	
			Ma	акси-	
			мал	льно-	Валовый
Код ЗВ	Код ЗВ Наименование ЗВ разовый выбро				
				брос	
2902 Пылі	ь металлическая	(взвешенные вещества)	0.0	0022	0.0002899

№ ИЗА	1057	Наименование источника загрязнения атмо- сферы	Механическая обработка метал- лов			
№ИВ	001	Наименование источника выделения	3am	очной станок,	d=250 мм	
Выбросы	определены с	огласно, "Методических указаний по расчету выде	элени	ий (выбросов) з	агрязняющих	
веществ в атм	иосферу при	механической обработке металлов (по величи	нам	удельных выб	росов)" РНД	
211.2.02.06-200	4, MOOC PK, A	астана, 2005 год.				
Выбросы	3В, образуюц	цихся при механической обработке металлов, без пр	имен	ения СОЖ, от о	дной единицы	
оборудования, с	пределяется	по формулам:				
Максимал	ьный разовый	выброс для источников выделения, не обеспеченных	мес	гными отсосами:	$M_{cek}=k*Q$, Γ/C	
Валовый в	ыброс для ист	очников выделения, не обеспеченных местными отсо	сами	: M _{год} =3600*k*Q*	Т/10 ⁶ , т/год	
где:						
Количество обо	рудования:		n	1	ШТ.	
Удельное выделение металлической пыли технологическим оборудованием (таб-		Q	0.016	г/с		
лица 1):				0.011	г/с	
Коэффициент гравитационного оседания (см. п. 5.3.2): для пыли металлической:				0.2		
Фактический год	anaŭ daua na	т	366	час/год		

Всего по источнику:

Коэффициент г	равитационного оседания (см. п. 5.3.2): для пыли металлической:	k	0.2	
Фактический год	довой фонд времени работы одной единицы оборудования в год:	Т	366	час/год
	Расчет выбросов вредных веществ в атмосферу, при работе	заточ	чного станка:	
Код 3В Наименование 3В			Максимально- разовый вы- брос	Валовый вы- брос
			г/с	т/год
2902	Пыль металлическая (взвешенные вещества)		0.0032	0.0042163
2930	Пыль абразивная		0.0022	0.0028987
	Всего по источнику:		0.0054	0.007115

№ ИЗА	1058	Наименование источника загрязнения ат- мосферы	Дымовая труба			
№ ИВ	001	Наименование источника выделения	-	конагреватель- тановка	Ansell 430W Heater Remco	
мосферу ра	зличными	определены согласно, "Сборника методик по р производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭ ществ при сжигании топлива в котлах произво	коэксп»	, Алматы 1996 г. Р	аздел 2 "Расчет	
Количество	котпов.	Исходные данные:	n	2	ШТ	
Номинальна		котла:	Q _M	71	кВт	
Фактическая	· · · · · · · · · · · · · · · · · · ·		Q _d	65.3	кВт	
				6.8	кг/ч	
Расход топл	ива на 1 кот.	поагрегат:	В	1.885	г/с	
		·	Br	0.0814	т/год	
Топливо:			Sr	0.3	%	
– дизтоплив	10:		Ar	0.025	%	
Теплота сгор	рания топли	ва:	Qir	42.75	МДж/кг	
Время работ	Ъ:		Τ _r	12	ч/год	
Количество	оксидов азот	га, образующихся на 1 ГДж тепла:	K _{NO2}	0.058	кг/ГДж	
		ій от степени снижения выбросов оксидов азота я технических решений:	β	0		
Коэффициен	т, учитывак	ощий долю золы топлива в уносе:	Х	0.01		
Доля твердь	іх частиц, ул	авливаемых в золоуловителях:	η	0		
Доля оксидо	в серы, связ	ываемых летучей золой:	η'	0.02		
Доля оксидо	в серы, улав	вливаемых в золоуловителе:	η"	0	_	

0.00022

0.0002899

Количество нии:	оксидов углерода на ед.теплоть	і, выделяющейся при горе-	K _{CO}	0.32	кг/ГДж
	оты вследствие механической не	еполноты сгорания газа:	q_4	0	%
Объемный р	расход газовоздушной смеси:	·	V _Γ	0.0496	м ³ /сек
Коэффицие	нт, учитывающий характер топли	ва:	К	0.355	
	Расчет выбросов вред	дных веществ в атмосферу	от одн	ой установки:	
	House constant			Выбросы загрязі	няющих веществ
Код ЗВ	Наименование загрязняю- щего вещества (3B)	Расчетная формула		Максимально- разовый, г/с	Валовый, т/год
	Азота оксиды	$\Pi = 0.001*B*Q_i^r*K_{NO2}*(1 -$	- β)	0.0046739	0.0002018
0301	Азота диоксид	Π_{NO2} = 0.8* Π_{NOx}		0.0037391	0.0001615
0304	Азота оксид	Π_{NO} = 0.13* Π_{NOx}		0.0006076	0.0000262
0328	Сажа	$\Pi = B^*A^{r*}x^*(1 - \eta)$		0.0004713	0.0000204
0330	Сера диоксид	$\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta')$	η")	0.0110838	0.0004786
0337	Углерод оксид	$\Pi = 0.001*B*Q_i^r*K_{CO}*(1 - q_4)$	/100)	0.0257868	0.0011136
	Всего по источ	інику:		0.0416886	0.0018003
	Расчет выбросов вре	дных веществ в атмосферу	у от дву	х установок:	
Код ЗВ	Наименование загря	зняющего вещества (3В)		Максимально- разовый вы- брос	Валовый вы- брос
				г/с	т/год
	Азот	а оксиды		0.0093478	0.000403663
0301	Азот	а диоксид		0.0074782	0.000323
0304	Азо	та оксид		0.0012152	0.0000524
0328		Сажа		0.0009426	0.0000408
0330	Сера	а диоксид		0.0221676	0.0009572
0337	Угле	оод оксид		0.0515736	0.0022272
	Всего по источ	інику:		0.0833772	0.0036006

№ ИЗА	1059	Наименование и мосферы	сточника загрязнения ат-	Дымо	вая труба		
№ ИВ	001		сточника выделения	ная ус	хонагреватель- тановка	Remko ATK 25	
Выбро	сы от котла	определены согласн	ю, <mark>"Сборника методик по р</mark>	асчету і	выбросов вреднь	их веществ в ат-	
			ИЭБ РК РНПЦЭЭАиЭ «КазЭ				
выбросов в	редных вег	цеств при сжигании	топлива в котлах произво	дителы	ностью до 30 т/ча	с".	
Количество і	(OTEOD:		Исходные данные:		8		
Номинальна		KOTEO:		n Q _м	25	шт кВт	
Фактическая	· · · · · · · · · · · · · · · · · · ·			Q _d	23.0	кВт	
Фактическая	мощность к	Ullia.		Qφ	23.0	кг/ч	
Расход топл	upo uo 1 voti	TOOFNOTOT:		В	0.592	Γ/C	
гасход топп	ива на ткот	ioai pera i.		Br	0.1214	т/год	
Топливо:				S ^r	0.1214	%	
				A ^r	0.025	% %	
— <u>дизтоплив</u>				Q _r	42.75	70 МДж/кг	
Теплота сгор		за.		T _r	42.75 57.6	- ' '	
Время работ			4 FD			ч/год	
		а, образующихся на		K _{NO2}	0.058	кг/ГДж	
в результате	применени	я технических решен		β	0		
Коэффициен	нт, учитываю	щий долю золы топл	іива в уносе:	Χ	0.01		
Доля твердь	іх частиц, ул	авливаемых в золоу.	ловителях:	η	0		
Доля оксидо	в серы, связ	ываемых летучей зо.	лой:	η'	0.02		
Доля оксидо	в серы, улав	ливаемых в золоуло	вителе:	η"	0		
Количество нии:	оксидов угле	ерода на ед.теплоты	, выделяющейся при горе-	K _{CO}	0.32	кг/ГДж	
Потери тепл	оты вследст	вие механической не	еполноты сгорания газа:	q_4	0	%	
•		оздушной смеси:	•	V _r	0.0156	м ³ /сек	
Коэффициен	т. учитываю	щий характер топли	ва:	K	0.355		
			дных веществ в атмосферу	от одно	ой установки:		
						няющих веществ	
Код ЗВ		вание загрязняю- зещества (3B)	Расчетная формула		Максимально- разовый, г/с	Валовый, т/год	
	Аз	ота оксиды	$\Pi = 0.001^*B^*Q_i^r * K_{NO2} * (1 - 1)^{-1}$	- β)	0.0014681	0.0003009	
0301		та диоксид	$\Pi_{NO2} = 0.8 \times \Pi_{NOX}$. /	0.0011745	0.0002407	
0304		вота оксид	$\Pi_{NO} = 0.13 \times \Pi_{NOx}$		0.0001909	0.0000391	
0328	7.0	Сажа	$\Pi = B^*A^{r*}x^*(1-n)$		0.000148	0.0000303	
0330	Ce	ра диоксид	$\Pi = 0.02*B*S^{r*}(1 - \eta')*(1 - \eta')$	n")	0.0034815	0.0007136	
0337		ерод оксид	$\Pi = 0.001*B*Q_i^r*K_{CO}*(1 - q_4)$		0.0080999	0.0016603	
		Всего по источ		/	0.0130948	0.002684	
	Pac		ных веществ в атмосферу	от вось	ми установок:		

Код ЗВ	Наименование загрязняющего вещества (ЗВ)	Максимально- разовый вы- брос	Валовый вы- брос
		г/с	т/год
	Азота оксиды	0.0117448	0.0024072
0301	Азота диоксид	0.009396	0.0019256
0304	Азота оксид	0.0015272	0.0003128
0328	Сажа	0.001184	0.0002424
0330	Сера диоксид	0.027852	0.0057088
0337	Углерод оксид	0.0647992	0.0132824
	Всего по источнику:	0.1047584	0.021472

Всего по источнику:					0.1047584	0.021472
№ ИЗА	1060	Наименование ист		Выхлопная тр	руба	
No IAD	204	Наименование ист		Дизельный ге	енератор насо-	BOATSPRAY
№ ИВ	выделения сов					100-TS
Pac	четы выбросов вь	полнены согласно, "Ме	ета выбросов з	агрязняющих веще	ств в атмосферу	
		ых установок" РНД 2				
		ос і-го вещества стацис				омуле:
	·		И _{сек} =е _і *Р₃/3600			•
где:				,		
еі - выбро	с і-го вредного ве	щества на единицу пол	езной работы	стационарной д	цизельной установки	на режиме номи-
		(таблица 1 или 2):	•			·
Эксплуата	ационная мощнос	ть стационарной дизе	ельной уста-	P _a	4.0	.,D=
новки:		·	•	P ₉	4.8	кВт
Вал	овый выброс і-го	вещества за год стацио	онарной дизел	ьной установкой	і определяется по ф	ормуле:
	•	Mrs	_{од} =q _i *В _{год} /1000	, т/год	·	
где:						
	с і-го вредного вец	цества, г/кг топлива, пр	иходящегося	на один кг дизел	ьного топлива, при р	аботе стационар-
		учетом совокупности				
лица 3 ил			,	•	, , , ,	
		ной дизельной устано	овкой за год			
		ым об эксплуатации ус		Вгод	0.0157	т/год
		B _{год} =b _э *k*P _э *T*10 ⁻⁶ :		_10д		
		104 3		b	1.5	л/ч
Расход то	оплива:			b	1.305	кг/ч
Спелний	удельный расход	топпива.		b _a	272	г/кВт.ч
	ь дизельного топл			ρ	0.87	кг/л
	иент использован			k	1	KI/JI
Время ра		ил.		T	12	ч/год
Бремя ра	ООТЫ.	Исходи ю да	UUI 10 E0 HCTC			члод
V о пино о т		исходные да	нные по исто	мнику выоросс N	<u>2</u>	
Количест						ШТ
	ращения вала:			n	1500	об/мин
Группа СД	цу:				Α	
_		Расчет расхода	і отработанні			,
		$_{3}$, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$		G _{or}	0.011	кг/с
	ура отходящих га	30B:		T _{or}	450	°C
	ь газов при 0°C:			$\gamma 0_{or}$	1.31	кг/м ³
	ь газов при Т _{ог} (К),			У ог	0.49482	кг/м ³
Объемны		анных газов, Q _{ог} = G _{ог} /γ _о		Q_{or}	0.0230	м ³ /с
	Расчет в	ыбросов вредных ве	ществ в атмо	сферу от дизел	ьного генератора:	
					Максимально-	Валовый вы-
Код ЗВ	Наиме	нование ЗВ	e _i ,	q _i ,	разовый вы-	брос
					брос	
			=/**P= · ·	-/	•	M -/
			г/кВт.ч	г/кг топлива	М _{сек} , г/с	М _{год} , т/год
0004		а оксиды	г/кВт.ч 10.3	г/кг топлива 43	М _{сек} , г/с 0.0137333	0.0006751
0301	Азота	а диоксид			М _{сек} , г/с 0.0137333 0.0109867	0.0006751 0.0005401
0304	Азота Азо	а диоксид та оксид	10.3	43	М _{сек} , г/с 0.0137333 0.0109867 0.0017853	0.0006751 0.0005401 0.0000878
0304 0328	Азота Азо	а диоксид та оксид Сажа	0.7	43	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333	0.0006751 0.0005401 0.0000878 0.0000471
0304 0328 0330	Азот: Азо (Сера	а диоксид та оксид Сажа а диоксид	0.7 1.1	43 3 4.5	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707
0304 0328 0330 0337	Азот: Азо (Сера Угле	а диоксид та оксид Сажа а диоксид род оксид	0.7 1.1 7.2	3 4.5 30	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710
0304 0328 0330 0337 0703	Азот: Азо (Сера Угле	а диоксид та оксид Сажа а диоксид	0.7 1.1 7.2 0.000013	3 4.5 30 0.000055	M _{cek} , r/c 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009
0304 0328 0330 0337 0703 1325	Азота Азо Сера Угле Бенз	а диоксид та оксид Сажа а диоксид род оксид	0.7 1.1 7.2 0.000013 0.15	3 4.5 30	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009 0.0000094
0304 0328 0330 0337 0703	Азота Азо Сера Угле Бенз Форм	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен	0.7 1.1 7.2 0.000013	3 4.5 30 0.000055	M _{cek} , r/c 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009
0304 0328 0330 0337 0703 1325	Азота Азо Сера Угле Бенз Форм	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6	M _{cex} , r/c 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.000000009 0.0000094
0304 0328 0330 0337 0703 1325	Азота Азо Сера Угле Бенз Форм Углеводоро	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид оды пр. С12-С19	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6 15	M _{cex} , r/c 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002 0.0002 0.0048 0.02977202	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009 0.0000094 0.0002355 0.001461514
0304 0328 0330 0337 0703 1325	Азота Азо Сера Угле Бенз Форм Углеводоро	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид оды пр. С12-С19 Всего по источнику:	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6 15	M _{cex} , r/c 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002 0.0002 0.0048 0.02977202	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009 0.0000094 0.0002355 0.001461514
0304 0328 0330 0337 0703 1325	Азота Азо Сера Угле Бенз Форм Углеводоро	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид оды пр. С12-С19 Всего по источнику:	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6 15	M _{cex} , r/c 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002 0.0002 0.0048 0.02977202	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.00000000009 0.0000094 0.0002355 0.001461514 B:
0304 0328 0330 0337 0703 1325 2754	Азота Азо Сера Угле Бенз Форм Углеводоро	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид оды пр. С12-С19 Всего по источнику: бросов вредных веще	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6 15	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002 0.0002 0.0048 0.02977202	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009 0.0000094 0.0002355 0.001461514 в:
0304 0328 0330 0337 0703 1325	Азота Азо Сера Угле Бенз Форм Углеводоро	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид оды пр. С12-С19 Всего по источнику:	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6 15	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002 0.0002 0.0048 0.02977202 ВЛЕННЫХ ГЕНЕРАТОРО	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009 0.0000094 0.0002355 0.001461514 B:
0304 0328 0330 0337 0703 1325 2754	Азота Азо Сера Угле Бенз Форм Углеводоро	а диоксид та оксид Сажа а диоксид род оксид в(а)пирен пальдегид оды пр. С12-С19 Всего по источнику: бросов вредных веще	0.7 1.1 7.2 0.000013 0.15 3.6	3 4.5 30 0.000055 0.6 15	М _{сек} , г/с 0.0137333 0.0109867 0.0017853 0.0009333 0.0014667 0.0096 0.00000002 0.0002 0.0048 0.02977202 ВЛЬНЫХ ГЕНЕРАТОРО МАКСИМАЛЬНО- РАЗОВЫЙ ВЫ-	0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.0000000009 0.0000094 0.0002355 0.001461514 в:

	Азота оксиды	0.0274667	0.0013502
0301	Азота диоксид	0.0219734	0.0010802
0304	Азота оксид	0.0035706	0.0001755
0328	Сажа	0.0018666	0.0000942
0330	Сера диоксид	0.0029334	0.0001413
0337	Углерод оксид	0.0192	0.000942
0703	Бенз(а)пирен	0.0000004	0.000000002
1325	Формальдегид	0.0004	0.0000188
2754	Углеводороды пр. С12-С19	0.0096	0.000471
	Всего по источнику:	0.05954404	0.002923002

2754		Углеводороды пр.	0.0096	0.000471		
	Всего по источнику:			0.05954404	0.002923002	
№ ИЗА	1061	Наименование ис		Выхлопная тр	руба	
№ ИВ	001	Наименование ис		Дизельный ге сов	енератор насо-	ECOSPRAY 80- TS
от стацио Мак где: е _і - выбро	онарных дизель симальный выбр с i-го вредного во	ещества на единицу по	211.2.02.04-20 онарной дизел М _{сек} =е _і *Р _э /360	04 , МООС РК, Ас пьной установки с 0, г/с	стана 2005 год. определяется по фо	рмуле:
		ı (таблица 1 или 2): сть стационарной диз	ельной уста-	P _s	3.5	кВт
новки:						
где: q _i - выброс	с і-го вредного вє	ещества, г/кг топлива, п	_{год} =q _i *В _{год} /100 риходящегося	0, т/год на один кг дизел	ьного топлива, при р	работе стационар-
лица 3 ил		с учетом совокупности	режимов, сос	тавляющих экспл	іуатационный цикл,	ти топлива (тао-
расход то (берется г	оплива стациона по отчетным дан	рной дизельной устаным об эксплуатации у : В _{год} =b₃*k*P₃*T*10 ⁻⁶ :		В _{год}	0.0104	т/год
				b	1	л/ч
Расход то	плива:			b	0.870	кг/ч
Средний у	/дельный расход	топлива:		b₃	249	г/кВт.ч
Плотность	дизельного топ	пива:		ρ	0.87	кг/л
	иент использова	ния:		k	1	
Время раб	боты:			Т	12	ч/год
		Исходные д	анные по ист	очнику выбросо	В	
Количесте	30:			N	2	ШТ
Частота в	ращения вала:			n	1500	об/мин
Группа СД	ļ У:				Α	
			а отработанн	ых газов и топл	ива	
		B, $G_{or} = 8.72*10^{-6*}b_3*P_3$		G _{or}	0.008	кг/с
	ура отходящих га	30B:		T _{or}	450	°C
	ь газов при 0°C:			$\gamma 0_{or}$	1.31	кг/м ³
Плотность	ь газов при Т _{ог} (К), γ0 _{or} /(1+T _{or} /273)		У ог	0.49482	кг/м ³
Объемны		⁻анных газов, Q_{ог}=G ₀г/γ		Q _{or}	0.0154	M ³ /C
	Расчет і	выбросов вредных в	еществ в атмо	осферу от дизел	ьного генератора:	
Код ЗВ	Наиме	енование ЗВ	e _i ,	q _i ,	Максимально- разовый вы- брос	Валовый вы- брос
			г/кВт.ч	г/кг топлива	М _{сек} , г/с	M _{год} , т/год
	Азо	та оксиды	10.3	43	0.0100139	0.0004472
0301		га диоксид			0.0080111	0.0003578
0304	Азо	ота оксид			0.0013018	0.0000581
0328		Сажа	0.7	3	0.0006806	0.0000312
0330		а диоксид	1.1	4.5	0.0010694	0.0000468
0337		ерод оксид	7.2	30	0.007	0.0003120
0703		із(а)пирен	0.000013	0.000055	0.0000001	0.0000000006
	Фор	мальдегид	0.15	0.6	0.0001458	0.0000062
1325			3.6	15	0.0035	0.0001560
2754	Углеводор			·		
		Всего по источнику	:	d	0.02170871	0.000968137
			: еств в атмос	феру от 2-х дизе		
2754		Всего по источнику бросов вредных веш	: еств в атмос	феру от 2-х дизе	эльных генераторо Максимально- разовый вы-	в: Валовый вы-

0301	Азота диоксид	0.0160222	0.0007155
0304	Азота оксид	0.0026036	0.0001163
0328	Сажа	0.0013612	0.0000624
0330	Сера диоксид	0.0021388	0.0000936
0337	Углерод оксид	0.014	0.000624
0703	Бенз(а)пирен	0.0000002	0.00000001
1325	Формальдегид	0.0002916	0.0000125
2754	Углеводороды пр. С12-С19	0.007	0.000312
	Всего по источнику:	0.04341742	0.001936301

	Всего по источнику:					0.001936301
№ ИЗА	1062	Наименование ист		Выхлопная тр	 руба	
№ ИВ	001	Наименование источника выделения Дизельны			энератор	Karcher HDS 8/20 De
Pacy	неты выбросов вь	полнены согласно, "М е	етодики расч	ета выбросов з	агрязняющих веще	
от стацио	нарных дизелы	ных установок" РНД 2 ос і-го вещества стацис	11.2.02.04-20	04 , MOOC PK, Ac выной установки с	стана 2005 год.	
		щества на единицу пол		•	цизельной установки	на режиме номи-
Эксплуата		(таблица 1 или 2): сть стационарной дизе	ельной уста-	P _a	6.8	кВт
новки: Вало	овый выброс і-го	вещества за год стацио		_		
где:		M _{re}	_{од} =q _i *В _{год} /1000), т/год		
q _i - выброс	ьной установки с	щества, г/кг топлива, пр з учетом совокупности				
(берется п	ю отчетным данн	оной дизельной устано ым об эксплуатации ус В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :		В _{год}	0.4246	т/год
		—год wз к гз г IV .		b	2.2	л/ч
Расход тог	плива:			b	1.914	кг/ч
	дельный расход			b₃	281	г/кВт.ч
	дизельного топл			ρ	0.87	кг/л
	ент использован	ия:		k	1	,
Время раб	оты:				221.8	ч/год
Копиностр	io:	исходные да	нные по исто	очнику выбросо N	3	ШТ
	Количество: N Частота вращения вала: n					об/мин
Группа СД					1500 A	OO/WINT
труппа од	,	Расчет расхода	а отработанн	ых газов и топл		
Расход отр	работанных газов	$_{3}$, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$		Gor	0.017	кг/с
	/ра отходящих га			Тог	450	°C
	газов при 0°C:			γ0 _{or}	1.31	кг/м ³
	ь газов при Т _{ог} (К),			У ог	0.49482	кг/м ³
Объемный		анных газов, Q _{ог} = G _{ог} /γ _о		Q_{or}	0.0337	м ³ /с
	Расчет выбр	осов вредных вещес	тв в атмосфе	ру от одного ді	изельного генерато	pa:
Код ЗВ	Наиме	нование ЗВ	e _i ,	q _i ,	Максимально- разовый вы- брос	Валовый вы- брос
			г/кВт.ч	г/кг топлива	M _{Cek} , r/c	Мгод, т/год
	Азот	а оксиды	10.3	43	0.0194556	0.0182580
0301		а диоксид			0.0155644	0.0146064
0304		та оксид			0.0025292	0.0023735
0328		Сажа	0.7	3	0.0013222	0.0012738
0330		а диоксид	1.1	4.5	0.0020778	0.0019107
0337		род оксид	7.2	30	0.0136	0.0127381
0703		в(а)пирен	0.000013	0.000055	0.00000002	0.0000000234
1325		иальдегид	0.15	0.6	0.0002833	0.0002548 0.0063691
2754	утпеводоро	оды пр. С12-С19 Всего по источнику:	3.6	15	0.0068 0.04217692	0.0063691
	Расчет вы	бросов вредных веще		 bepy от 3-х дизе		
Код ЗВ		Наименование			Максимально- разовый вы- брос	Валовый вы- брос
					М _{сек} , г/с	М _{год} , т/год
		A 0.0.T.O. 01/014.T.		-	0.0502667	0.0547700
0301		Азота оксиді Азота диокси			0.0583667 0.0466932	0.0547739 0.0438191

0304	Азота оксид	0.0075876	0.0071206
0328	Сажа	0.0039666	0.0038214
0330	Сера диоксид	0.0062334	0.0057321
0337	Углерод оксид	0.0408	0.0382143
0703	Бенз(а)пирен	0.00000006	0.0000007
1325	Формальдегид	0.0008499	0.0007643
2754	Углеводороды пр. С12-С19	0.0204	0.0191072
	Всего по источнику:	0.12653076	0.11857907

2754	Формальдегид				0.0008499	0.0007643	
<u>.</u>	Углеводороды пр. С12-С19				0.0204	0.0191072	
		Всего по источнику:			0.12653076	0.11857907	
№ ИЗА	1063	Наименование ист	гочника за-	Выхлопная тр	w6a		
Nº NOA	1003	грязнения атмосф	еры	рыхлопная п	пая груба		
№ ИВ	001	Наименование исп	точника	Генератор			
		выделения					
		ыполнены согласно, "М				ств в атмосферу	
		ных установок" РНД 2					
Мак	симальный выбр	оос і-го вещества стацис		,	определяется по фор	омуле:	
		I	М _{сек} =е _і *Р₃/3600	0, г/с			
где:							
		ещества на единицу пол	тезной работы	ı стационарной <i>д</i>	цизельной установки	на режиме номи-	
		ı (таблица 1 или 2):		, ,		1	
•	ационная мощно	ость стационарной дизе	ельной уста-	P _a	73.5	кВт	
новки:				-			
Вале	овый выброс і-го	вещества за год стаци			і определяется по ф	ормуле:	
		Mr	_{од} =q _i *В _{год} /1000), т/год			
где:							
		ещества, г/кг топлива, пр					
	,	с учетом совокупности	режимов, сост	гавляющих экспл	туатационный цикл,	г/кг топлива (таб-	
лица 3 илі						T	
		рной дизельной устано					
		ным об эксплуатации ус	тановки) или	Вгод	0.1800	т/год	
определяе	ется по формуле	e: B _{год} =b _э *k*P _э *T*10 ⁻⁶ :					
Расход то	лпива.			b	17.24	л/ч	
г асход то	лива.			b	15.000	кг/ч	
Средний у	удельный расход	ц топлива:		b₃	204	г/кВт.ч	
	ь дизельного топ			ρ	0.87	кг/л	
Коэффици	иент использова	ния:		k	1		
Время раб	боты:			T	12	ч/год	
		Исходные да	нные по исто	чнику выбросо	В		
Количеств	30:			N	30	ШТ	
Частота вращения вала: n				1500	об/мин		
Группа СД	1 У:				Α		
		Расчет расхода	а отработанні	ых газов и топл	ива		
Расход от	работанных газо	$_{\rm OB}$, $G_{\rm or} = 8.72*10^{-6*}b_{\rm o}*P_{\rm o}$		Gor	0.131	кг/с	
	ура отходящих г			Tor	450	°C	
	ь газов при 0°C:			γ0 _{or}	1.31	кг/м ³	
Плотность	ь газов при Т _{ог} (К), γ0 _{or} /(1+T _{or} /273)		Yor	0.49482	кг/м ³	
Объемныї	й расход отрабо	ганных газов, Q _{ог} = G _{ог} / γ _о	ır	Q _{or}	0.2642	м ³ /с	
		росов вредных вещес		ру от одного д	изельного генерато	pa:	
		<u>,, , , , , , , , , , , , , , , , , , ,</u>				P 4	
					Максимально-	Da ···	
Vo = 2B	Hame	wanawa 2B	e _i ,	q _i ,	Максимально- разовый вы-	Валовый вы-	
Код ЗВ	Наиме	энование ЗВ	e _i ,	q _i ,		Валовый вы- брос	
Код ЗВ	Наиме	энование ЗВ	e _i ,	q _i ,	разовый вы- брос	брос	
Код ЗВ	Наиме	энование ЗВ	г/кВт.ч	г/кг топлива	разовый вы- брос М _{сек} , г/с	брос М _{год} , т/год	
Код ЗВ		е нование 3В эта оксиды		-	разовый вы- брос М _{сек} , г/с 0.2102917	брос	
0301	Азс		г/кВт.ч	г/кг топлива	разовый вы- брос М _{сек} , г/с	брос М _{год} , т/год	
	A30 A30	та оксиды	г/кВт.ч	г/кг топлива	разовый вы- брос М _{сек} , г/с 0.2102917	брос М_{год}, т/год 0.0077400 0.0061920 0.0010062	
0301	A30 A30	эта оксиды та диоксид	г/кВт.ч	г/кг топлива	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333	брос М _{год} , т/год 0.0077400 0.0061920	
0301 0304	A30 A30 A3	ота оксиды та диоксид ота оксид	г/кВт.ч 10.3	г/кг топлива 43	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379	брос М_{год}, т/год 0.0077400 0.0061920 0.0010062	
0301 0304 0328	Азо Азо Аз Сер	ота оксиды та диоксид ота оксид Сажа	г/кВт.ч 10.3	г/кг топлива 43	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917	брос М_{год}, т/год 0.0077400 0.0061920 0.0010062 0.0005400	
0301 0304 0328 0330	Азс Азо Аз Сер Угле	ота оксиды та диоксид ота оксид Сажа оа диоксид	г/кВт.ч 10.3 0.7 1.1	г/кг топлива 43 3 4.5	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0008100	
0301 0304 0328 0330 0337	Азс Азо Аз Сер Угл Бен	ота оксиды та диоксид ота оксид Сажа ра диоксид ерод оксид	г/кВт.ч 10.3 0.7 1.1 7.2	г/кг топлива 43 3 4.5 30	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0008100 0.0054000	
0301 0304 0328 0330 0337 0703	Азс Азо Аз Сер Угл Бен Фор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид нз(а)пирен	г/кВт.ч 10.3 0.7 1.1 7.2 0.000013	7/кг топлива 43 3 4.5 30 0.000055	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0008100 0.0054000 0.0000000099	
0301 0304 0328 0330 0337 0703 1325	Азс Азо Аз Сер Угл Бен Фор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид на(а)пирен мальдегид	г/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735	6poc M _{roa} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0008100 0.0054000 0.000000099 0.0001080 0.0027000	
0301 0304 0328 0330 0337 0703 1325	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа ра диоксид ерод оксид нз(а)пирен мальдегид роды пр. С12-С19 Всего по источнику:	0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735 0.455884	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.0000000099 0.0001080 0.0027000 0.01675621	
0301 0304 0328 0330 0337 0703 1325	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид на(а)пирен мальдегид	0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735 0.455884	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.0000000099 0.0001080 0.0027000 0.01675621	
0301 0304 0328 0330 0337 0703 1325	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа ра диоксид ерод оксид нз(а)пирен мальдегид роды пр. С12-С19 Всего по источнику:	0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735 0.455884	6poc M _{roa} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0008100 0.0054000 0.0000000099 0.0001080 0.0027000 0.01675621 DB:	
0301 0304 0328 0330 0337 0703 1325 2754	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид на(а)пирен мальдегид ооды пр. С12-С19 Всего по источнику: бросов вредных веще	7/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735 0.455884	брос M _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.00054000 0.0000000099 0.001080 0.0027000 0.01675621 ов:	
0301 0304 0328 0330 0337 0703 1325 2754	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа ра диоксид ерод оксид нз(а)пирен мальдегид роды пр. С12-С19 Всего по источнику:	7/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735 0.455884 вельных генератори	6poc M _{rogs} , T/rog 0.0077400 0.0061920 0.0010062 0.0005400 0.0008100 0.0054000 0.0000000099 0.0001080 0.0027000 0.01675621 DB:	
0301 0304 0328 0330 0337 0703 1325 2754	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид на(а)пирен мальдегид ооды пр. С12-С19 Всего по источнику: бросов вредных веще	7/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.0000003 0.0030625 0.0735 0.455884 вельных генераторовановый вы-	брос M _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.0000000099 0.001080 0.0027000 0.01675621 ов:	
0301 0304 0328 0330 0337 0703 1325	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид на(а)пирен мальдегид ооды пр. С12-С19 Всего по источнику: бросов вредных веще	7/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.000003 0.0030625 0.0735 0.455884 вельных генератором Ваксимальноразовый выброс М _{сек} , г/с	брос M _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.0000000099 0.001080 0.0027000 0.01675621 ов:	
0301 0304 0328 0330 0337 0703 1325 2754	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид на(а)пирен мальдегид ооды пр. С12-С19 Всего по источнику: бросов вредных веще	г/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6 ств в атмосфе	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.000003 0.0030625 0.0735 0.455884 вельных генераторе Максимально- разовый вы- брос	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.0054000 0.0001080 0.0027000 0.01675621 ов: Валовый выброс	
0301 0304 0328 0330 0337 0703 1325 2754	Азо Азо Аз Сер Угл Бен Фор Углеводор	ота оксиды та диоксид ота оксид Сажа оа диоксид ерод оксид нз(а)пирен мальдегид ооды пр. С12-С19 Всего по источнику: бросов вредных вещек	г/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6 ств в атмосфо	7/кг топлива 43 3 4.5 30 0.000055 0.6 15	разовый вы- брос М _{сек} , г/с 0.2102917 0.1682333 0.0273379 0.0142917 0.0224583 0.147 0.000003 0.0030625 0.0735 0.455884 вельных генератором Ваксимальноразовый выброс М _{сек} , г/с	брос М _{год} , т/год 0.0077400 0.0061920 0.0010062 0.0005400 0.0054000 0.0054000 0.0000000099 0.001080 0.0027000 0.01675621 ов: Валовый выброс	

0328	Сажа	0.428751	0.0162
0330	Сера диоксид	0.673749	0.0243
0337	Углерод оксид	4.41	0.162
0703	Бенз(а)пирен	0.000009	0.0000003
1325	Формальдегид	0.091875	0.00324
2754	Углеводороды пр. С12-С19	2.205	0.081
	Всего по источнику:	13.67652	0.5026863

1020		+ ориальдог			0.001010	0.00021	
2754		Углеводороды пр. (2.205 0.081			
	•	Всего по источнику:			13.67652	0.5026863	
No. 142 A	4004	Наименование ист	гочника за-	D			
№ ИЗА	1064	грязнения атмосф	еры	выхлопная тр	Выхлопная труба		
No. 14D	004	Наименование ист	•	F			
№ ИВ	001	выделения		Генератор			
Pac	счеты выбросов вы	полнены согласно, "М	етодики расч	ета выбросов з	агрязняющих веще	ств в атмосферу	
		ных установок" РНД 2					
		ос і-го вещества стацис				рмуле:	
	'		M _{ceκ} =e _i *P _э /3600			,	
где:				-,			
	ос і-го вредного ве	щества на единицу пол	тезной работь	і стационарной д	іизельной установки	на режиме номи-	
		(таблица 1 или 2):			,, ,		
		сть стационарной дизе	ельной уста-			_	
новки:			,	P ₉	735	кВт	
	повый выброс і-го	вещества за год стаци	онарной лизег	ьной установкой	і определяется по ф	ормупе.	
Das	повый выоростто		_{од} =q _i *В _{год} /1000		топродоллетол по ф	оригуло.	
где:		· · · ·	од Чі Бгоді 1000	,, тод			
	oc i-ro pnemuoro pe	щества, г/кг топлива, пр	муолашегоса	пэ опип кг имзец		эботе станионал-	
		учетом совокупности					
лица 3 ил		учетом совокуппости	режинов, сост	авлиощих эксп	туатациоппый цикл,	וווו וסוווווום (ומט-	
		оной дизельной устано	DRAM 22 FOR				
		ым об эксплуатации ус		B	1.800	т/год	
		В _{год} = $b_3*k*P_3*T*10^{-6}$:	тановки) или	Вгод	1.000	1/10Д	
определя	нется по формуле.	B _{год} =D ₃ K F ₃ I IU .		h	172.41	-1	
Расход то	оплива:			b		л/ч	
				b	150.000	кг/ч	
	удельный расход			b₃	204	г/кВт.ч	
	гь дизельного топл			ρ	0.87	кг/л	
	циент использован	ия:		k	1		
Время ра	вботы:			T	12	ч/год	
		Исходные да	нные по исто	чнику выбросс	В		
Количест	ВО:			N	5	ШТ	
Частота в	вращения вала:			n	1500	об/мин	
Группа С	ДУ:				Б		
		Расчет расхода	а отработанні	ых газов и топл	ива		
Расход о	тработанных газог	$_{3}$, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$		Gor	1.307	кг/с	
	тура отходящих га			T _{or}	450	°C	
Плотност	гь газов при 0°С:			у0 _{ог}	1.31	кг/м ³	
Плотност	гь газов при Т _{ог} (К)	, v0 _{or} /(1+T _{or} /273)		Yor	0.49482	кг/м ³	
		анных газов, Q _{ог} = G _{ог} / γ _о	-	Qor	2.6423	м ³ /с	
0000		осов вредных вещес		-0.			
	1 40 101 5510	оссов вредных вещее	TE E a mileo que	ру от одного д	noon Brior o Torropa To		
					Максимально-		
			e _i ,	q _i ,	разовый вы-	Валовый вы-	
Код ЗВ	наиме	нование ЗВ	.,	1.7	. брос	брос	
					•		
			г/кВт.ч	г/кг топлива	М _{сек} , г/с	M _{год} , т/год	
	Азот	а оксиды	9.6	40	1.9600000	0.0720000	
0301	Азот	а диоксид			1.568	0.0576000	
0304		та оксид			0.2548	0.0093600	
0328		Сажа	0.5	2	0.1020833	0.0036000	
0330		а диоксид	1.2	5	0.245	0.0090000	
0337		род оксид	6.2	26	1.2658333	0.0468000	
0703		род оксид з(а)пирен	0.000012	0.000055	0.0000025	0.0000000990	
1325		з(а)пирен иальдегид	0.000012	0.000055	0.000025	0.000000990	
2754	утлеводоро	оды пр. C12-C19	2.9	12	0.5920833	0.0216000	
	Daa 1	Всего по источнику:			4.0523024	0.148860099	
	Расчет выб	росов вредных веще	ств в атмосф	еру от 5-ти диз	ельных генераторо	DB:	
					Ma		
					Максимально-	Валовый вы-	
Код ЗВ		Наименование	9 3B		разовый вы-	брос	
					брос		
					NA -/-	M =/	
		A · · · ·			М _{сек} , г/с	М _{год} , т/год	
		Азота оксид			9.8	0.36	
0301		Азота писка	4.5		7 9/1	0.288	

0301

0304

0328

Азота диоксид

Азота оксид

Сажа

0.288

0.0468

0.018

7.84

1.274

0.5104165

0330	Сера диоксид	1.225	0.045
0337	Углерод оксид	6.3291665	0.234
0703	Бенз(а)пирен	0.0000125	0.000005
1325	Формальдегид	0.1225	0.0045
2754	Углеводороды пр. С12-С19	2.9604165	0.108
	Всего по источнику:	20.261512	0.7443005

№ ИЗА	1065	Наименование и мосферы	сточника загрязнения ат-	Дымоі	вая труба	
№ИВ	001	Наименование и	хонагревательная установка			
мосферу ра	зличными п	роизводствами <mark>"</mark> , І	но, "Сборника методик по р МЭБ РК РНПЦЭЭАиЭ «КазЭ и топлива в котлах произво Исходные данные:	коэксп»	, Алматы 1996 г. Р	аздел 2 "Расчет
Количество н	(ОТЛОВ:			n	20	ШТ
Номинальна	я мощность к	отла:		Q_{M}	100	кВт
	мощность ко			Q _d	92.0	кВт
	,				20.0	кг/ч
Расход топлі	ива на 1 котло	рагрегат:		В	5.556	г/с
		'		Br	0.2400	т/год
Топливо:				Sr	0.3	%
– дизтоплив	0:			Ar	0.025	%
	ания топлива	1:		Qi ^r	42.75	МДж/кг
Время работ				T _r	12	ч/год
		, образующихся на	1 ГДж тепла:	K _{NO2}	0.058	кг/ГДж
Коэффициен	іт, зависящий		ия выбросов оксидов азота	β	0	- 11
		ций долю золы топл		Х	0.01	
		вливаемых в золоу		η	0	
		ваемых летучей зо		η'	0.02	
• •		иваемых в золоуло		n"	0	
			ы, выделяющейся при горе-	K _{CO}	0.32	кг/ГДж
	оты вследств	ие механической не	еполноты сгорания газа:	q_4	0	%
		душной смеси:		V _r	0.1460	м³/сек
		ций характер топли	Ba:	К	0.355	
			дных веществ в атмосферу	от одно		
				о. од		няющих веществ
Код ЗВ		ание загрязняю-	Расчетная формула		Максимально-	
,	щего ве	ещества (ЗВ)	, and the transfer of the tran		разовый, г/с	Валовый, т/год
	Азот	га оксиды	$\Pi = 0.001*B*Q_f*K_{NO2}*(1 - 1)$	- β)	0.0137751	0.0005951
0301		а диоксид	Π_{NO2} = 0.8* Π_{NOx}	17	0.0110201	0.0004761
0304	Азс	та оксид	$\Pi_{NO} = 0.13^*\Pi_{NOx}$		0.0017908	0.0000774
0328		Сажа	$\Pi = B^*A^{r*}x^*(1 - n)$		0.0013889	0.00006
0330	Cepa	а диоксид	$\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta')$	n")	0.0326669	0.0014112
0337		род оксид	$\Pi = 0.001*B*Q_i^r K_{CO}*(1 - q_4)$		0.0760006	0.0032832
•		Всего по источ	інику:		0.1228673	0.0053079
	Pac		дных веществ в атмосферу	/ от 20-т	и установок:	
					Максимально-	D ×
IC OD			(OD)		разовый вы-	Валовый вы-
Код ЗВ	Н	аименование загря	зняющего вещества (3В)		брос	брос
					г/с	т/год
Азота оксиды				0.275502	0.011902	
0301			а диоксид		0.220402	0.009522
0304		Азо	та оксид		0.035816	0.001548
0328			Сажа		0.027778	0.0012
0330		Сера	а диоксид		0.653338	0.028224
0337			род оксид		1.520012	0.065664
		Всего по источ			2.457346	0.106158

№ ИЗА	1066	Наименование источника за- грязнения атмосферы	Выхлопная труба				
№ИВ	001	Наименование источника выделения	Дизельный генератор компрессора				
	Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.						
Ma	Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:						
	M _{cex} =e _i *P ₃ /3600, г/c						

где:

e_i - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки:

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: М_{год}=q_i*В_{год}/1000, т/год q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4): расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или 0.0437 Вгод т/год определяется по формуле: $B_{rog} = b_3 * k * P_3 * T * 10^{-6}$ b 4.19 л/ч Расход топлива: 3.645 b кг/ч Средний удельный расход топлива: $b_{\mathfrak{g}}$ 197 г/кВт.ч Плотность дизельного топлива: 0.87 кг/л ρ Коэффициент использования: 12 Время работы: ч/год Исходные данные по источнику выбросов Количество: ШΤ 1500 Частота вращения вала: об/мин Группа СДУ: Α Расчет расхода отработанных газов и топлива Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$ 0.032 кг/с ٥С Температура отходящих газов: 450 T_~ Плотность газов при 0°С: 1.31 $K\Gamma/M^3$ $\gamma 0_{\text{or}}$ Плотность газов при T_{or} (K), $\gamma 0_{or} / (1 + T_{or} / 273)$ 0.49482 кг/м³ γог Объемный расход отработанных газов, Q_{or}=G_{or}/γ_{or} Q_{or} 0.0642 м³/с Расчет выбросов вредных веществ в атмосферу от дизельного генератора: Максимально-Валовый выразовый выe, qi, Код ЗВ Наименование ЗВ брос брос г/кВт.ч г/кг топлива Мсек, г/с **М**_{год}, т/год Азота оксиды 10.3 43 0.0529306 0.0018791 0301 0.0423444 Азота диоксид 0.0015033 0304 Азота оксид 0.006881 0.0002443 0328 Сажа 0.7 3 0.0035972 0.0001311 0330 1 1 45 0.0001967 Сера диоксид 0.0056528 0337 7.2 30 0.037 0.001311 Углерод оксид 0.000055 0703 0.000013 0.00000007 0.000000002 Бенз(а)пирен 1325 0.15 0.6 0.0007708 0.0000262 Формальдегид 2754 Углеводороды пр. С12-С19 3.6 15 0.0185 0.0006555 Всего по источнику: 0.11474627 0.004068102

№ ИЗА	1067	Наименование источника за- грязнения атмосферы	Выхлопная труба				
№ ИВ	001	Наименование источника выделения	Дизельная гидравлическая силовая установка				
		ыполнены согласно, "Методики расчоных установок" РНД 211.2.02.04-200			ств в атмосферу		
		оос i-го вещества стационарной дизел М _{сек} =е,*Р ₃ /360(ьной установки		рмуле:		
где:		33%	•				
		ещества на единицу полезной работы н (таблица 1 или 2):	стационарной д	дизельной установки	на режиме номи-		
Эксплуатац новки:	ионная мощно	ость стационарной дизельной уста-	P ₉	10.1	кВт		
Валог	зый выброс і-го	вещества за год стационарной дизел	ьной установко	й определяется по ф	ормуле:		
		М _{год} =q _i *В _{год} /1000	, т/год				
где:							
		ещества, г/кг топлива, приходящегося					
нои дизелы лица 3 или	•	с учетом совокупности режимов, сост	авляющих эксп.	пуатационный цикл,	г/кг топлива (тао-		
	,	арной дизельной установкой за год					
		ным об эксплуатации установки) или е: B _{rog} = b ₃ * k * P ₃ * T * 10 ⁻⁶ :	В _{год}	0.0339	т/год		
			b	3.25	л/ч		
Расход топ	пива.		b	2.828	кг/ч		
Средний уд	ельный расход	ц топлива:	b₃	280	г/кВт.ч		
Плотность д	дизельного тог	лива:	ρ	0.87	кг/л		
Коэффицие	ент использова	ния:	k	1			
Время рабо	ты:		Т	12	ч/год		
		Исходные данные по исто	чнику выбросо	ОВ			

Количество:

Частота вращения вала:

Ν

4

1500

IIIT

об/мин

Группа СДУ	/ :			Α	
-12 -11-		а отработанн	ых газов и топл	ива	ļ.
Расход отра	аботанных газов, G _{ог} = 8.72*10 ⁻⁶ *b ₃ *P ₃	0.025	кг/с		
	ра отходящих газов:		G _{or}	450	°C
	газов при 0°C:		γ0 _{or}	1.31	KΓ/M ³
Плотность і	газов при Т _{ог} (К), у0_{ог}/(1+Т_{ог}/273)	Yor	0.49482	кг/м ³	
	расход отработанных газов, \mathbf{Q}_{or} = \mathbf{G}_{or} / $\mathbf{\gamma}_{o}$	0.0498	м ³ /с		
	Расчет выбросов вредных вещес		ру от одного д	изельного генерато	pa:
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально- разовый вы- брос	Валовый вы- брос
		г/кВт.ч	г/кг топлива	M _{сек} , г/с	M _{год} , т/год
	Азота оксиды	10.3	43	0.0288972	0.0014577
0301	Азота диоксид			0.0231178	0.0011662
0304	Азота оксид			0.0037566	0.0001895
0328	Сажа	0.7	3	0.0019639	0.0001017
0330	Сера диоксид	1.1	4.5	0.0030861	0.0001526
0337	Углерод оксид	7.2	30	0.0202	0.0010170
0703	Бенз(а)пирен	0.000013	0.000055	0.0000004	0.0000000019
1325	Формальдегид	0.15	0.6	0.0004208	0.0000203
2754	Углеводороды пр. С12-С19	3.6	15	0.0101	0.0005085
-	Всего по источнику:			0.06264524	0.003155753
	Расчет выбросов вредных вещ	еств в атмос	феру от 4х дизе	льных генераторог	в:
Код ЗВ	Наименование	e 3B		Максимально- разовый вы- брос	Валовый вы- брос
				М _{сек} , г/с	М _{год} , т/год
	Азота оксид	Ы		0.1155889	0.0058308
0301	Азота диокси	1Д		0.0924712	0.0046646
0304	Азота оксид	1		0.0150264	0.000758
0328	Сажа		_	0.0078556	0.0004068
0330	Сера диокси	ІД		0.0123444	0.0006102
0337	Углерод окси	1Д		0.0808	0.004068
0703	Бенз(а)пире	Н		0.0000002	0.000000007
1325	Формальдег	1Д		0.0016832	0.0000814
2754	Углеводороды пр. (C12-C19		0.0404	0.002034
•	Всего по источнику:			0.250581	0.012623007

№ ИЗА	1068	Наименование источника за- грязнения атмосферы	Выхлопная труба					
№ ИВ	001	Наименование источника выделения	Дизельная мойка под высоким давлением					
	Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004 , МООС РК, Астана 2005 год.							
•		ных установок глд 211.2.02.04-200 ос і-го вещества стационарной дизел	,	• • • • • • • • • • • • • • • • • • • •	омуле:			
	'	М _{сек} =е _і *Р _э /3600	•		,			
		щества на единицу полезной работы (таблица 1 или 2):	стационарной д	дизельной установки	на режиме номи-			
Эксплуат новки:	ационная мощнос	сть стационарной дизельной уста-	P ₉	6.8	кВт			
где: q _i - выбро	ос і-го вредного веї	вещества за год стационарной дизел М _{год} =q _i *В _{год} /1000 щества, г/кг топлива, приходящегося	, т/год					
		учетом совокупности режимов, сост						
лица 3 ил расход т (берется	ıи 4): оплива стационар по отчетным данн							
лица 3 ил расход т (берется определя	ли 4): оплива стационар по отчетным данн вется по формуле:	учетом совокупности режимов, сост рной дизельной установкой за год ным об эксплуатации установки) или	авляющих эксп. В _{год} b	луатационный цикл, 0.0230 2.2	г/кг топлива (таб-			
лица 3 ил расход т (берется определя Расход то	и 4): оплива стационар по отчетным данн вется по формуле: оплива:	учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	авляющих эксп. В _{год} b b	луатационный цикл, 0.0230 2.2 1.914	г/кг топлива (таб- т/год л/ч кг/ч			
лица 3 ил расход т (берется определя Расход то Средний	и 4): оплива стационар по отчетным данн вется по формуле: оплива: удельный расход	учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива:	авляющих эксп. В _{год} b b b	луатационный цикл, 0.0230 2.2 1.914 281	г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч			
лица 3 ил расход т (берется определя Расход то Средний Плотност	и 4): оплива стационар по отчетным данн вется по формуле: оплива: удельный расход ъ дизельного топл	учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива: пива:	В _{год} В b b b p	луатационный цикл, 0.0230 2.2 1.914	г/кг топлива (таб- т/год л/ч кг/ч			
лица 3 иг расход т (берется определя Расход то Средний Плотност Коэффиц	и 4): оплива стационар по отчетным данн вется по формуле: оплива: удельный расход ъ дизельного топл	учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива: пива:	В _{год} В b b b c p k	0.0230 2.2 1.914 281 0.87	г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч кг/л			
лица 3 ил расход т (берется определя Расход то Средний Плотност	и 4): оплива стационар по отчетным данн вется по формуле: оплива: удельный расход ъ дизельного топл	учетом совокупности режимов, сост оной дизельной установкой за год ным об эксплуатации установки) или $\mathbf{B}_{roa} = \mathbf{b}_{a} * \mathbf{k} * \mathbf{P}_{a} * \mathbf{T} * 10^{-6}$: топлива: пива: ия:	В _{год} В b b b c p k T	0.0230 2.2 1.914 281 0.87 1	г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч			
лица 3 ил расход т (берется определя Расход то Средний Плотност Коэффиц Время ра	и 4): оплива стационар по отчетным данн вется по формуле: оплива: удельный расход в дизельного топл циент использован боты:	учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива: пива:	В _{год} В b b b ₃ р k Т	0.0230 2.2 1.914 281 0.87 1 12	г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч кг/л			
лица 3 ил расход т (берется определя Расход то Средний Плотност Коэффиц Время ра	и 4): оплива стационар по отчетным данн вется по формуле: оплива: удельный расход в дизельного топл циент использован боты:	учетом совокупности режимов, сост оной дизельной установкой за год ным об эксплуатации установки) или $\mathbf{B}_{roa} = \mathbf{b}_{a} * \mathbf{k} * \mathbf{P}_{a} * \mathbf{T} * 10^{-6}$: топлива: пива: ия:	В _{год} В b b b c p k T	0.0230 2.2 1.914 281 0.87 1	г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч кг/л			

	Расчет расхода	отработанн	ых газов и топл	ива	
Расход отра	аботанных газов, $G_{or} = 8.72*10^{-6*}b_{9}*P_{9}$	0.017	кг/с		
Температура отходящих газов: T _o				450	°C
Плотность г	газов при 0°C:		γ0 _{or}	1.31	кг/м ³
Плотность г	газов при Т _{ог} (К), у0 _{ог} /(1+ Т _{ог} /273)		Yor	0.49482	кг/м ³
Объемный	расход отработанных газов, $\mathbf{Q}_{or} = \mathbf{G}_{or}/\mathbf{y}_{o}$	7	Q _{or}	0.0337	м ³ /с
	Расчет выбросов вредных вещес	тв в атмосфе	еру от одного д	изельного генерато	pa:
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально- разовый вы- брос	Валовый вы- брос
		г/кВт.ч	г/кг топлива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.0194556	0.0009890
0301	Азота диоксид			0.0155644	0.0007912
0304	Азота оксид			0.0025292	0.0001286
0328	Сажа	0.7	3	0.0013222	0.0000690
0330	Сера диоксид	1.1	4.5	0.0020778	0.0001035
0337	Углерод оксид	7.2	30	0.0136	0.0006900
0703	Бенз(а)пирен	0.000013	0.000055	0.00000002	0.0000000013
1325	Формальдегид	0.15	0.6	0.0002833	0.0000138
2754	Углеводороды пр. С12-С19	3.6	15	0.0068	0.0003450
	Всего по источнику:			0.04217692	0.002141071
	Расчет выбросов вредных вещ	еств в атмос	феру от 4х дизе	льных генераторог	3:
Код ЗВ	Наименование	e 3B		Максимально- разовый вы- брос	Валовый вы- брос
				М _{сек} , г/с	М _{год} , т/год
	Азота оксид	Ы		0.0778222	0.003956
0301	Азота диокси	1Д		0.0622576	0.0031648
0304	Азота оксид	1	_	0.0101168	0.0005143
0328	Сажа			0.0052888	0.000276
0330	Сера диоксид			0.0083112	0.000414
0337	Углерод оксид			0.0544	0.00276
0703	Бенз(а)пире	Н		0.00000008	0.000000005
1325	Формальдег	1Д		0.0011332	0.0000552
2754	Углеводороды пр. (C12-C19		0.0272	0.00138
	Всего по источнику:			0.16870768	0.008564305

№ ИЗА	1069	Наименование источника загрязнения атмосферы	Выхлопная труба	
№ ИВ	001	Наименование источника выделения	Бензиновый генератор	Chain Saw STIHL MS 881

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

станции - 0,25 от величины выброса легкового ка л при движении по территории со скоростью 5 кг	арбюрато			
Исход	цные данн	ые:		
Количество:	١	l	4	ШТ.
Частота вращения вала:	r	1	1500	об/мин
Эксплуатационная мощность бензинового генератора:	Р	э	6.4	кВт
Максимальный разовый выброс і-го вещества Валовый выброс і-го вещества рассчиты где:				
		лето	0.035	г/км
	m _{LNOk}	зима	0.035	г/км
D. 6		лето	0.009	г/км
Выброс от бензинового генератора равен 0.25 от ве-	m _{LSO2k}	зима	0.011	г/км
личины выброса легкового карбюраторного автомо-		лето	1.875	г/км
биля с объемом двигателя до 1.2 л: тик (таблица 3.5):	m _{LCOk}	зима	2.325	г/км
		лето	0.25	г/км
	m _{LCxHyk}	зима	0.375	г/км
Пробег автомобиля в день без нагрузки по территории предприятия:	L	1	25	км/день
Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята:	V		5	км/час

Drawa nafa	TI I FOUNDATOR FOUNDATORS	t	5	ч/день
Время работы бензинового генератора:		Т	12	ч/год
Количество	рабочих дней в расчетном периоде:	Dn	2	дней/год
	Расчет расхода отраб		в и топлива	
Расход бенз	вина за год:	В _{год}	0.0026	т/год
Часовой рас	сход бензина:	b	0.22	кг/ч
Средний уде	ельный расход бензина:	b₃	34	г/кВт.ч
Расход отра	аботанных газов, G _{ог} = 8.72 * 10 ⁻⁶ * b _э * P _э	G_{or}	0.002	кг/с
Температур	а отходящих газов:	T _{or}	450	٥C
Плотность г	азов при 0°С:	γ0 _{ог}	1.31	кг/м ³
Плотность г	азов при Т _{ог} (К), ү ог =ү0 ог/(1+Тог/273)	У ог	0.49465	кг/м ³
Объемный р	расход отработанных газов, Q ог =G ог/ ү ог	Qor	0.0038	м ³ /с
P	асчет выбросов вредных веществ в атмо	сферу всего от	одного бензинового гене	ратора:
			Максимально-разо-	Валовый вы-
Код ЗВ	Наименование ЗВ		вый выброс	брос
			М _{сек} , г/с	M _{год} , т/год
	Азота оксиды (NO _x)		0.0000486	0.0000021
0301	Азота диоксид (NO₂)		0.0000389	0.0000017
0304	Азота оксид (NO)		0.000063	0.0000003
0330	Сера диоксид (SO ₂)		0.0000156	0.0000007
0337	Углерод оксид (СО)		0.0032292	0.0001395
2704	Бензин (C _x H _y)		0.0005208	0.0000225
	Всего по источнику:		0.0038108	0.000164628
	Расчет выбросов вредных веществ в атм	осферу всего с	<u>от 4-х бензиновых генера</u>	торов:
			Максимально-разо-	Валовый вы-
Код ЗВ	Наименование ЗВ		вый выброс	брос
			М _{сек} , г/с	М _{год} , т/год
	Азота оксиды (NO _x)		0.0001944 0.0001556	0.0000084
0301	Азота диоксид (NO ₂)	Азота диоксид (NO ₂)		0.0000067
0304	Азота оксид (NO)		0.0000252	0.0000011
0330	Сера диоксид (SO ₂)		0.0000624	0.0000027
0337	Углерод оксид (СО)		0.0129168	0.000558
2704	Бензин (C_xH_y)		0.0020832	0.00009
	Всего по источнику:		0.0152432	0.0006585

Ж/д ст. Карабатан (011)

№ ИЗА	0620	Наименование и мосферы	сточника загрязнения ат-	Дымо	Дымовая труба котельной		
№ИВ	№ ИВ 001-002 Наименование источника выделения			Котли	Котлы марки КДВ 2035R, BB2035		
Выбро	сы от котела	а определены согла	асно, "Сборника методик п	о расче	ту выбросов вре	дных веществ в	
атмосферу	различными	производствами	", МЭБ РК РНПЦЭЭАиЭ «Каз	Экоэкс	п» , Алматы 1996 г. I	Раздел 2 "Расчет	
выбросов і	зредных вец	цеств при сжигани	и топлива в котлах произв	одитель	ностью до 30 т/ча	ıc".	
			Исходные данные:				
Количество	котлов:			n	2	ШТ	
Номинальна	яя мощность і	котла:		Q_{M}	233	кВт	
Фактическая	я мощность ко	отла:		Q_{Φ}	214.4	кВт	
				0	22.62	кг/ч	
Расход топл	іива на 1 котл	юагрегат:		В	6.2833	г/с	
		·		Вг	61.5168	т/год	
Топливо:				Sr	0.3	%	
– дизтопли	30:			Ar	0.025	%	
Теплота сго	рания топлив	a:		Qir	42.75	МДж/кг	
Время рабо				T,	2719.6	ч/год	
Количество	оксидов азот	а, образующихся на	а 1 ГДж тепла:	K _{NO2}	0.0824	кг/ГДж	
			ния выбросов оксидов азота	β	•		
		технических реше	• • • • • • • • • • • • • • • • • • • •		0		
		щий долю золы топ		Х	0.01		
	_	авливаемых в золо	•	η	0		
		ываемых летучей зо		n'	0.02		
		ливаемых в золоул		η"	0		
			ы, выделяющейся при горе-		2.22	/==	
нии:	,		,	K _{CO}	0.32	кг/ГДж	
Потери тепл	оты вследст	вие механической н	еполноты сгорания газа:	q_4	0	%	
		здушной смеси:	•	V _r	0.3304	м ³ /сек	
		щий характер топлы	1Ba:	K	0.355		
			ных веществ в атмосферу	от котел	ьных установок		
						няющих веществ	
Код ЗВ		ание загрязняю-	Расчетная формула		Максимально-		
	щего в	ещества (3В)	, , ,		разовый, г/с	Валовый, т/год	
	Азо	та оксиды	$\Pi = 0.001*B*Q_i^r*K_{NO2}*(1 - 1)$	- β)	0.0442671	0.4333982	
0301		а диоксид	$\Pi_{NO2} = 0.8 * \Pi_{NOx}$. /	0.0354136	0.3467186	
0304		та оксид	Π_{NO} = 0.13* Π_{NOx}		0.0057548	0.0563418	
0328		Сажа	$\Pi = B^*A^{r*}\chi^*(1 - \eta)$		0.0031416	0.0307584	
0330	Сер	а диоксид	$\Pi = 0.02^*B^*S^r*(1 - \eta')^*(1 - \eta')$	n")	0.0738916	0.7234376	
0337		род оксид	$\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4)$	/100)	0.171911	1.6830996	
Всего по источнику:					0.2901126	2.840356	

№ ИЗА	0621	Наименование источника за- грязнения атмосферы Выхлопная труба				
№ ИВ	001	Наименование источника выделения	Резервный ге	нератор	AJD 44	
от стаци	онарных дизель	ыполнены согласно, "Методики расч н ых установок" РНД 211.2.02.04-20(ос і-го вещества стационарной дизел М _{сек} =e,*P₃/360()4 , MOOC PK, A ьной установки	стана 2005 год.		
		ещества на единицу полезной работь (таблица 1 или 2):	стационарной д	дизельной установк	и на режиме номи-	
Эксплуатационная мощность стационарной дизельной уста- новки:						
	ловыи выброс і-го	вещества за год стационарной дизел M_{rog} = q_i * B_{rog} /1000	•	и определяется по о	формуле:	
	ельной установки с	щества, г/кг топлива, приходящегося с учетом совокупности режимов, сост				
q _i - выбро ной дизе лица 3 и расход т (берется	ельной установки (ли 4): гоплива стациона по отчетным данн	с учетом совокупности режимов, сост оной дизельной установкой за год ым об эксплуатации установки) или				
q _i - выброной дизе лица 3 и расход т (берется определ	ельной установки о ли 4): гоплива стациона по отчетным данняется по формуле	с учетом совокупности режимов, сост оной дизельной установкой за год	авляющих эксп.	пуатационный цикл	, г/кг топлива (таб-	
q _i - выбро ной дизе лица 3 и расход т (берется	ельной установки о ли 4): гоплива стациона по отчетным данняется по формуле	с учетом совокупности режимов, сост оной дизельной установкой за год ым об эксплуатации установки) или	авляющих эксп. В _{год}	пуатационный цикл	, г/кг топлива (таб-	
q _i - выбриной дизе лица 3 и расход т (берется определ Расход т	ельной установки о ли 4): гоплива стациона по отчетным данняется по формуле	с учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или : B _{roд} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	авляющих эксп. В _{год} b	пуатационный ци́кл 0.215 7	, г/кг топлива (таб- т/год л/ч	
q _i - выбріной дизелица 3 и расход тоберется определ. Расход тоберется определиться определий	ельной установки оли 4): гоплива стационар по отчетным дання яется по формуле	с учетом совокупности режимов, сост рной дизельной установкой за год ым об эксплуатации установки) или : B _{rog} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива:	авляющих эксп. В _{год} b b	пуатационный цикл 0.215 7 6.09	, г/кг топлива (таб- т/год л/ч кг/ч	
q _i - выбріной дизелица 3 и расход тоберется определ. Расход тобредний Плотностью діз на выбра на вы на выбра на вы на выбра на вы на	ельной установки оли 4): гоплива стационара отчетным данняется по формуле гоплива:	с учетом совокупности режимов, сост оной дизельной установкой за год ым об эксплуатации установки) или : B _{rog} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива:	вляющих эксп. В _{год} b b b	пуатационный цикл 0.215 7 6.09 174	, г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч	

Количество:

Частота вращения вала:

Ν

1500

ШΤ

об/мин

Группа СД	l У:	Α			
	Расчет расход	а отработанні	ых газов и топ	пива	
Расход от	работанных газов, G _{ог} = 8.72*10^{-6*}b _э * P _э		G_{or}	0.053	кг/с
Температу	ура отходящих газов:		Тог	400	٥C
Плотность	ь газов при 0°C:		$\gamma 0_{or}$	1.31	кг/м ³
Плотность	ь газов при Т _{ог} (K), γ0_{ог}/(1+Т_{ог}/273)		ү ог	0.53157	кг/м ³
Объемный	й расход отработанных газов, Q_{ог}=G_{ог}/ү	ог	Q_{or}	0.0999	м ³ /с
	Расчет выбросов вредных ве	ществ в атмо	феру всего от	дизель-генератора	a:
Код 3В	Наименование ЗВ	еі,		Максимально- разовый вы- брос	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.100138889	0.009230918
0301	Азота диоксид			0.0801111	0.0073847
0304	Азота оксид			0.0130181	0.0012
0328	Сажа	0.7	3	0.0068056	0.000644
0330	Сера диоксид	1.1	4.5	0.0106944	0.000966
0337	Углерод оксид	7.2	30	0.07	0.0064402
0703	Бенз(а)пирен	0.000013	0.000055	0.000001	0.0000001
1325	Формальдегид	0.15	0.6	0.0014583	0.0001288
2754	Углеводороды пр. С12-С19	3.6	15	0.035	0.0032201
2754	этпеводороды пр. 0 12-0 13	0.0	10	0.000	0.00220

№ ИЗА	0622-0623		енование источниі феры	й клапан			
№ИВ	001	Наим	енование источни	іка выделения	Резервуар с	дизтопливом	
			еру выполнен согла				ния по опреде-
лению вы			х веществ в атмос	сферу из резервуа			
		1сходн	ые данные:		Pac	счетные форму	лы:
Количество	о резервуа-	Np	1	шт			
ров Объем		·			Годовые выб	росы загрязняю	щих веществ в
	резервуара вых резерву-	V_{pe3}	5	M ³		атмосферу, т/год	ц:
Тип резерв	зуара		Заглубленн	ный	G=(Y ₀₃ *B ₀₃ +)	У _{вл*} В _{вл})*К _р мах*10	⁻⁶ +G _{хР} *К _{нП} *N _р
Объем пер		Вобщ	61.52	т/год	,	, ,	F
Объем пер	рекачки в те- енне-зимнего	B _{o3}	30.76	т/год	- Максимально-разовый выброс, г/с:		
	рекачки в те- сенне-летнего	В _{вл}	30.76	т/год	M=C ₁ *K _p ^{Max} *V _ч ^{Max} /3600		
		ı	Расче	тные показатели:	<u>.</u>		
Средние у, года (прил		осы из р	езервуара в осенне	-зимний период	λ ^{o3}	2.36	г/т
Средние у		сы из р	езервуара в весенн	е-летний период	У _{вл}	3.15	г/т
Концентра	ция паров неф	тепроду	икта в резервуаре (п	риложение 12)	C ₁	3.92	г/м ³
	оэффициент (г			,	К _р мах	0.8	
Максималь		овозду	шной смеси, вытесн	няемой из резер-	V _q мах	4	м ³ /ч
	іаров нефтепро (приложение 1		при хранении дизто	плива в одном	G _{XP}	0.081	т/год
	оэффициент (г		ение 12)		Кнп	0.0029	
			сы паров нефтепр	одуктов в атмосо		yapa:	
Максималь			ощих веществ в атм		M	0.0036046	г/с
Годовые в	ыбросы загрязі	няющих	веществ в атмосфе	эру	G	0.000370483	т/год
	•				Масс. сод-	Количеств	о выбросов
Код ЗВ		F	łаименование 3B		ние С _і , % масс.	г/с	т/год
0333	Сероводород	1			0.28%	0.0000101	0.0000010
2754			льные С12-С19		99.72%	0.0035945	0.0003694
			Всего по источнику	<i>l</i> :	•	0.0036046	0.0003704

№ ИЗА	0624	Наименование источ ния атмосферы	ника загрязне-	Топливозаправщик				
№ ИВ	001	Наименование источ	ника выделения	Закачка и хранение дизтоплива				
				.09-2004 "Методические указания по опреде-				
лению вы	ібросов загрязі	няющих веществ в атмо	осферу из резерву	аров" , Астана, 2005 г.				
	Исходные данные: Расчетные формулы:							
Количеств	о резервуаров	N _p 1	ШТ					

Объем	резервуара				FOTOBLIA BLIK	DOCEI SSEDGSHGD	IIIIAY BAIIIACTB B		
(одноцеле ров)	вых резервуа-	V _{pes}	20	M ³	Годовые выбросы загрязняющих веществ атмосферу, т/год:				
Тип резер		Вобщ	Горизонтальный, 123.25	наземный т/год	$G=(Y_{o3}*B_{o3}+Y_{Bn}*B_{Bn})*K_p^{Max*}10^{-6}+G_{XP}*K_{H\Pi}*N_p$				
Объем пер									
	рекачки в тече- не-зимнего пе-	Воз	61.62	т/год	Максима	льно-разовый в	ыброс, г/с:		
	рекачки в тече- не-летнего пе-	В _{вл}	61.62	т/год	M:	=C ₁ *K _p ^{Max} *V _ч ^{Max} /3	600		
			Расче	тные показатели	: :				
года (прил	южение 12)		езервуара в осенне	•	Уоз	2.36	г/т		
года (прил	южение 12)		езервуара в весенн		У _{вл}	3.15	г/т		
			кта в резервуаре (п	риложение 12)	C ₁	3.92	г/м³		
	коэффициент (п				К _р мах	1			
вуара во в	ремя его закачк	И	шной смеси, вытесн		V _ч ^{мах}	4	м ³ /ч		
резеруаре	(приложение 13	3)	при хранении дизто	оплива в одном	G _{XP}	0.27	т/год		
ОПЫТНЫЙ І	коэффициент (п			NORWIND D STACK	K _{HП}	0.0029			
Максимал			<mark>сы паров нефтепр</mark> эщих веществ в атм		феру из резерв М	yapa: 0.0045057	г/с		
			веществ в атмосфе		G	0.0043037	т/год		
	cpcobi odi priori	14/1/		- r- J	Масс. сод-		ю выбросов		
Код ЗВ		H	аименование ЗВ		ние С _і , %				
					масс.	г/с	т/год		
0333	Сероводород				0.28%	0.0000126	0.0000031		
2754			тьные C12-C19		99.72%	0.0044931	0.0011194		
№ИВ	002		енование источн			езервуаров ди			
	ібросов загряз	няющи	еру выполнен согла х веществ в атмос не данные:		аров" , Астана, 2		•		
	о резервуаров	N _p	2	ШТ					
•	резервуара вых резервуа-	V_{pe3}	5	M ³		росы загрязняю атмосферу, т/го,			
ров) Тип резер	Byana		Заглубленн	JLIŬ	G =G +G	· G =(C 03*O 4	-С вл∗О *10-6•		
Объем пер		Q _{обш}	141.66	м ³ /год	G	; G _{зак} =(C _p ^{o3*} Q _{o3} + _o =0.5*J*(Q _{o3} +Q _{вл}	.)*10 ⁻⁶		
	рекачки в тече-	Соощ	111.00	ш лод	Onp.;) 0:0 0 (~03 ~B)	,		
ние осенн риода	не-зимнего пе-	Q_{o3}	70.83	м ³ /год	Максима	льно-разовый в	ыброс, г/с:		
	рекачки в тече- не-летнего пе-	Q _{вл}	70.83	м ³ /год		M _p =(C _p ^{мах} *V _{сл})/t	t		
риода					<u>l</u>				
061				тные показатели			3		
			автоцистерны в ре		V _{сл}	5	M^3		
			ов нефтепродуктов нии резервуаров(г		C_p^{Max}	1.88	г/м ³		
Концентра смеси при жение 15,	заполнении рез	ервуар	ктов в выбросах па ов в осенне-зимний	і период (прило-	C_p^{o3}	0.99	г/м ³		
	заполнении рез		ктов в выбросах па ов в весенне-летни		Срвл	1.33	г/ м ³		
			объема (V _{сл}) нефте	продукта	t	1800	сек		
Удельные	выбросы при пр	оливах			J	50	г/м ³		
			Выбросы паров н	ефтепродуктов в					
	три закачке и хр				G _{зак}	0.0001643	т/год		
	от проливов на г				G _{np.p.}	0.0035416	т/год		
			ЗВ при заполнении		M G	0.0052222 0.0037059	r/c		
т одовые в	ыоросы паров н І	ефтепр	одуктов от резерву	аров при закачке:	_		т/год ю выбросов		
Код ЗВ		H	аименование 3В		Масс. сод- ние С _і , %	г/с	т/год		
0333	Сероводород				масс. 0.28%	0.0000146	0.0000104		
2754		Преле	тыные C12-C19		99.72%	0.0052076	0.0036956		
		родсі	.2.1513 3 12 3 13		JJ.12/0				
2704	типоводорода	В	сего по источнику	<i>t</i> :		г/с	т/год		
0333	Сероводород	В	сего по источнику	<i>r</i> :		r/c 0.0000272	т/год 0.0000135		
	Сероводород		сего по источнику пьные С12-С19	<i>r</i> :					

№ ИЗА	6620	Наименование источника загряз-	Перекачка дизел	ьного топлива	
№ ИВ	001	нения атмосферы Наименование источника выде- ления	екачки дизтоплива		
	еделению вы б Maxim Вал	пления атмосферу от средств перекачки выпо бросов загрязняющих веществ в ати um one-time emission is calculated by th повый выброс рассчитывается по форго Исходные параго теристика насоса — центробежный с од	иосферу из резер le formula: М _{сек ј} =(с _ј иуле: М _{год ј} =(с _ј *n _н *0 иетры:	вуаров" , Астана, 2 * n_н*Q)/3.6 , g/sec 2*T)/10 ³, т/год	
Количество		ториотина насеса дентросожный с од	n _H	3	ШТ.
		ирующей арматуры:	n₃ _{pa}	12	ШТ.
	соединений:		n _Φ	24	ШТ.
		РА и фланцевых соединений:	T	8784	ч/год
Удельное вы	ыделение загря	язняющих веществ (таблица 8.1):	Q	0.04	кг/ч
Массовое с	одержание сер	оводорода:	Cj	0.28%	
		еводородов предельные С12-С19:	Cj	99.72%	
	Выбросы пар	ов нефтепродуктов в атмосферу от	нефтеперекачив		ания:
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
0333	Сероводород			0.0000933	0.0029514
2754	Углеводороды	ы предельные С12-С19		0.0332400	1.0511286
№ ИЗА	6620	Наименование источника загряз- нения атмосферы	Перека	чка дизельного т	оплива
№ ИВ	002	Наименование источника выде- ления	Неплотност	ı ЗРА и фланцевь	іх соединений
ние и реали жающей сре	ізацию нефте еды Республик Іаксимально р	етодическими указаниями расчета в продуктов (нефтебазы, АЗС) и друго и Казахстан от 29 июля 2011 года № 1 азовый выброс рассчитывается по форм овый выброс рассчитывается по форм Исходные параю	их жидкостей и га 96-п рмуле: М ј = Ү _{нуіј} /10 іуле: П ј = (Т*Ү _{нуіј})/1	зов". Приказ Минис 00 = g _{нуі} *n _i *x _{нуі} *c _i /1(стра охраны окру-
	вижного и по- соединения	Вид технологического потока	Кол-во единиц работающего оборудования, n _i , шт.	Величина утечки потока через одно уплотнение i-ого типа, g _{нуi} , мг/с	Доля уплотнений і-ого типа потерявших герметичность, х _{нуі}
	егулирующая атура	тяжелые углеводороды	12	1.83	0.07
	соединение	тяжелые углеводороды	24	0.08	0.02
Вы	бросы паров	нефтепродуктов в атмосферу от не	плотностей ЗРА	і фланцевых соед	цинений:
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
0333	Сероводород			0.0000044	0.0001395
2754	Углеводород	ы предельные С12-С19		0.0015712	0.0496847
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
0333	Сероводород			0.0000977	0.0030909
2754	Углеводород	ы предельные С12-С19		0.0348112	1.1008133
		Всего по источнику:		0.0349089	1.1039042

Предзаводская зона (020)

№ ИЗА	0162 - 0163	Наименован загрязнения	ие источника атмосферы	Дымовая труба				
№ ИВ	001		ие источника	Котёл Vitoplex 20	00 E&I Workshop			
Выброс	сы от котла опр	еделены согл	ету выбросов вреді	ных веществ в а				
					ксп» , Алматы 1996 г.			
выбросов в	редных вещес	тв при сжига			ельностью до 30 т/ч	ас".		
lovenioni no			исходнь	ые данные:	1050	D=		
	я мощность кот.			Q _M	1950 1794	кВт		
<u> Рактическая</u>	мощность котл	a.		Q_{Φ}	56.667	кВт г/с		
Расход топли	ива котлоагрега	том:		В	204	кг/ч		
Расуол топпи	ива при опреде	пении ваповы	A Briguocob.	B _r	325.047	т/год		
	ы оборудовани:			T	1593.4	ч/год		
	емого топлива:		W 1436 / C71.	l l		ный газ		
7лотность га		•		ρ	0.81	кг/н. м ³		
	держание серы	в газе.		S ^r	0.0020	масс.%		
	ания топлива п		IX ACHOBINAX.	Q _i r	38.93	МДж/н. м ³		
	оксидов азота, с			-77				
соличество о гепла:	жойдов азота, с	оразующихох	патдж	K _{NO2}	0.0938	кг/ГДж		
	сероводорода	в топпиве:		[H ₂ S]	0.0009	масс.%		
	асход газовозду			V _r	1.627	м³/сек		
	емого топлива:			. ¥1	1:027 C			
7лотность га		=		ρ	2.02	кг/н. м ³		
	держание серы	в газе.		S ^r	0.0334	масс.%		
	ания топлива п		тх усповиях.	Q _i r	95.87	МДж/н. м ³		
	оксидов азота, с			i i		''		
тепла:		, y y	· · · 一 ~	K _{NO2}	0.0938	кг/ГДж		
	сероводорода	в топливе:		[H ₂ S]	0	масс.%		
	асход газовозду			V _r	1.559	м³/сек		
	т, зависящий о		кения выбро-	-1		/ 55.1		
	азота в результ		•	β	0			
ких решений				r	-			
	в серы, связыва	аемых летучей	і́ золой:	η' _{SO2}	0			
	в серы, улавлив			ŋ" _{SO2}	0			
	оксидов углеро		•		0.05	/ 		
цейся при го	• •		,	K _{co}	0.25	кг/ГДж		
	оты вследстви	е механичесь	ой неполноты		_	0/		
сгорания газа				q_4	0	%		
	Расчет выб	росов вредн	ых веществ в а	тмосферу при раб	оте на Топливном га	азе		
	Наименовани	เด ววะทยวนย-			Максимально-	Валовый вы-		
Код ЗВ	ющего веще		Расчетн	ая формула	разовый вы-	брос, т/год		
	тощего вещ	отва (ов)			брос, г/с			
	Азота оксиды			B*Q;*K _{NO2} *(1 - β)	0.2568788	1.4734868		
0301	Азота диоксид			= 0.8*Π _{NOx}	0.2055031	1.1787895		
0304	Азота оксид			0.13*Π _{NOx}	0.0333942	0.1915533		
0330	Сера диоксид			S'*(1 - η')*(1 - η")	0.0022510	0.0129117		
	Осра диоксид			10 ⁻² * [H₂S] * B	0.0009271	0.0053177		
0337	Углерод оксид			Q;*Kco*(1 - q₄/100)	0.6846450	3.9272037		
		Итого по исто	очнику:		0.9267204	5.3157759		
	Расче	ет выбросов	вредных веще	ств в атмосферу п				
	Наименовани	เค วอรทสวนส.			Максимально-	Валовый вы-		
Код ЗВ	ющего веще	•	Расчетн	ая формула	разовый вы-	брос, т/год		
	•	(00)			брос, г/с	• •		
	Азота оксиды			B*Q ^r *K _{NO2} *(1 - β)	0.2517006	1.4437842		
0301	Азота диоксид			= 0.8*Π _{NOx}	0.2013605	1.1550274		
0304	Азота оксид			0.13*Π _{NOx}	0.0327211	0.1876919		
	Сера диоксид			S ^r *(1 - η')*(1 - η'')	0.0379031	0.2174163		
0330	Topa Anonong			10 ⁻² * [H ₂ S] * B	0	0		
0330		ı		Q;*Kco*(1 - q4/100)	0.6708439	3.8480389		
0330 0337	Углерод оксид				0.9428286	5.4081745		
		Итого по исто	очнику:					
		Итого по ист						
		Итого по ист		ивов ПДВ выбрось	ı 3B от котлоагрегат			
0337	Занормир	Итого по исто оованные в п	роекте нормати		Выбро	сы 3В		
	Занормир Наиме	Итого по исто оованные в п			Выбро г/с	осы 3В т/год		
0337	Занормир	Итого по исто оованные в п	роекте нормати		Выбро г/с 0.2568788	т/год 1.4734868		
0337 Код 3В	Занормир Наиме	Итого по исто оованные в п нование загр	роекте нормати		Выбро г/с 0.2568788 0.2055031	т/год 1.4734868 1.1787895		
0337 Код 3В 0301 0304	Занормир Наиме Азота оксиды	Итого по исто оованные в п нование загр	роекте нормати		Выбро г/с 0.2568788 0.2055031 0.0333942	т/год 1.4734868		
0337 Код 3В 0301 0304 0330	Занормир Наиме Азота оксиды Азота диоксид Азота оксид Сера диоксид	Итого по исто оованные в п нование загр	роекте нормати		Выбро г/с 0.2568788 0.2055031 0.0333942 0.0379031	т/год 1.4734868 1.1787895 0.1915533 0.2174163		
0337 Код 3В 0301 0304	Занормир Наиме Азота оксиды Азота диоксид Азота оксид	Итого по исто оованные в п нование загр	роекте нормати		Выбро г/с 0.2568788 0.2055031 0.0333942	т/год 1.4734868 1.1787895 0.1915533		

№ ИЗА	0164 -0165		ие источника атмосферы	Дымовая труба				
№ ИВ	001	выделения	ие источника	Котёл Vitoplex 20				
					ету выбросов вредн			
			нии топлива в		ксп», Алматы 1996 г. ельностью до 30 т/ч			
Номинальна	ая мощность ко	тла:	РЮХОДПЕ	Q _M	350	кВт		
Фактическая	я мощность кот	ла:		Q_{ϕ}	322	кВт		
Расход топл	пива котлоагрег	атом:		В	12.222	г/с		
• •					44	кг/ч		
	пива при опредо ты оборудован			B _r T	76.329 1734.7	т/год ч/год		
	ты ооорудован зуемого топлив		м газе / Суг.	ı	Топлив			
Плотность г	,	и.		ρ	0.81	кг/н. м ³		
	одержание сері	ы в газе:		S ^r	0.0020	масс.%		
Теплота сго	рания топлива	при нормальнь	ых условиях:	Q _i ^r	38.93	МДж/н. м ³		
	оксидов азота,	образующихся	і на 1 ГДж	K _{NO2}	0.0842	кг/ГДж		
тепла:				-		· · · · · · · · · · · · · · · · · · ·		
	е сероводорода			[H ₂ S]	0.0009 0.351	масс.% м³/сек		
	расход газовозд Вуемого топлив	•		l v _r	0.351 C:			
Плотность г	•	и.		ρ	2.02	кг/н. м ³		
	одержание сері	ы в газе:		S ^r	0.0334	масс.%		
Теплота сго	рания топлива	при нормальнь	ых условиях:	Q_i^r	95.87	МДж/н. м³		
	оксидов азота,	образующихся	на 1 ГДж	K _{NO2}	0.0842	кг/ГДж		
тепла:						· · · · · · · · · · · · · · · · · · ·		
	е сероводорода расход газовозд			[H ₂ S]	0.336	масс.% м³/сек		
	нт, зависящий (жения выбро-	V _F	0.330	M /CER		
	азота в резуль			β	0			
ских решени		·		'				
	ов серы, связые			ŋ' _{SO2}	0			
	ов серы, улавли			ŋ" _{SO2}	0			
щейся при г	орении:		оты, выделяю-	K _{CO}	0.25	кг/ГДж		
сгорания газ	за:		кой неполноты	q ₄	0	%		
	Расчет вы	оросов вредн	ых веществ в а	тмосферу при раб	оте на Топливном га Максимально-	130		
Код ЗВ		ие загрязня- цества (ЗВ)	Расчетн	ая формула	разовый вы- брос, г/с	Валовый вы- брос, т/год		
	Азота оксидь	I	$\Pi = 0.001*E$	3*Q; ^r *K _{NO2} *(1 - β)	0.0497348	0.3105982		
0301	Азота диокси	Д		= 0.8*∏ _{NOx}	0.0397878	0.2484786		
0304	Азота оксид		Π_{NO} =	0.13*Π _{NOx}	0.0064655	0.0403778		
0330	Сера диоксид	1		S'*(1 - η')*(1 - η'')	0.0004855	0.0030320		
0337	Углерод окси	П		10 ⁻² * [H ₂ S] * B Q{*Kco*(1 - g ₄ /100)	0.0002 0.1476685	0.0012487 0.9222037		
0337	этперод окси	<u>и</u> Итого по исто		Q(NCO (1 - 94/100)	0.1946073	1.2153408		
			·		1 0.10.100.0			
	Pac	нет выбросов	вредных веще	ств в атмосферу пр	ои работе на СУГ			
	Наименован	ие загрязня-	_		Максимально-	Валовый вы-		
Код ЗВ		цества (ЗВ)	Расчетн	ая формула	разовый вы-	брос, т/год		
	Азота оксидь		$\Pi = 0.001*I$	3*Q;*K _{NO2} *(1 - β)	брос, г/с 0.0487322	0.3043372		
0301	Азота оксидь			$= 0.8*\Pi_{NOx}$	0.0389858	0.2434697		
0304	Азота оксид	• •		0.13*Π _{NOx}	0.0063352	0.0395638		
0330	Сера диоксид	1	Π = 0.02*B*	S ^r *(1 - η')*(1 - η")	0.0081752	0.0510547		
			Π = 1.88 *	10 ⁻² * [H ₂ S] * B	0	0		
0337	Углерод окси			Q;*Kco*(1 - q4/100)	0.1446918	0.9036139		
		Итого по исто	очнику:		0.1981880	1.2377021		
	Занопми	пованные в п	роекте нормати	вов ПЛВ выбросы	зВ от котлоагрегат	 a		
Vs = 07					Выбро			
Код ЗВ	Наим	енование загр	язняющего вец	цества (ЗВ)	г/с	т/год		
	Азота оксидь	I			0.0497348	0.3105982		
0301	Азота диокси	Д			0.0397878	0.2484786		
0304	Азота оксид	_			0.0064655	0.0403778		
0330 0337	Сера диоксид Углерод окси	•			0.0081752 0.1476685	0.0510547 0.9222037		
0337	тэттерод окси	<u>д</u> Всего по исто	очнику.		0.1476685	1.2621148		
_		DCELO HO NCTO	оппику.		0.2020370	1.4041140		

№ ИЗА	0166 - 0167	загрязнения	ие источника атмосферы	Дымовая труба			
№ИВ	001	выделения	ие источника	Котёл Vitoplex 20			
					<mark>ету выбросов вред</mark> к сп », Алматы 1996 г.		
			нии топлива в		ельностью до 30 т/ч		
Номинальная	я мощность ко	тла:		Q _M	270	кВт	
Фактическая	мощность кот	ла:		$Q_{\scriptscriptstyle{\Phi}}$	248	кВт	
Расход топли	іва котлоагрег	атом:		В	8.056 29	г/с кг/ч	
Расхол топпи	тва при опред	елении валовы	х выбросов.	B _r	38.987	т/год	
		ия на топливно		T	1344.4	ч/год	
Тип использу	емого топлива	a:			Топлив	ный газ	
Плотность га				ρ	0.81	кг/н. м ³	
	держание сері			S ^r	0.0020	Macc.%	
		при нормальнь		Q _i ^r	38.93	МДж/н. м ³	
количество о тепла:	ксидов азота,	образующихся	тна 1 гдж	K _{NO2}	0.0830	кг/ГДж	
Содержание	сероводорода	в топливе:		[H ₂ S]	0.0009	масс.%	
		душной смеси:		V _r	0.231	м ³ /сек	
	емого топлива	a:				УГ	
Плотность га				ρ	2.02	кг/н. м ³	
	держание сері			S ^r	0.0334	Macc.%	
		при нормальнь		Q _i ^r	95.87	МДж/н. м ³	
Количество о тепла:	ксидов азота,	образующихся	і на 1 ГДж	K _{NO2}	0.0830	кг/ГДж	
Содержание	сероводорода	в топливе:		[H ₂ S]	0	масс.%	
Объемный ра	асход газовозд	душной смеси:		Vr	0.222	м ³ /сек	
сов оксидов а ских решений	азота в резуль и:	от степени сниз тате применен	ия техниче-	β	0		
Доля оксидов	в серы, связыв	ваемых летучеі	й золой:	ŋ' _{SO2}	0		
		иваемых в золо		ŋ" _{SO2}	0		
Количество с щейся при го		ода на ед.тепл	оты, выделяю-	K _{co}	0.25	кг/ГДж	
Потери тепло		ие механичесь	кой неполноты	q ₄	0	%	
	Расчет вы	бросов вредн	ых веществ в а	атмосферу при раб	оте на Топливном г	азе	
Код ЗВ		ие загрязня- цества (ЗВ)	Расчетн	ая формула	Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год	
	Азота оксидь	I		B*Q; ^r *K _{NO2} *(1 - β)	0.0323126	0.1563865	
0301	Азота диокси	Д		= 0.8*Π _{NOx}	0.0258500	0.1251092	
0304	Азота оксид		Π _{NO} =	0.13*Π _{NOx}	0.0042006	0.0203302	
0330	Сера диоксид	1		S'*(1 - \eta')*(1 - \eta'')	0.0003200	0.0015487	
0337	· · · · · · · · · · · · · · · · · · ·			10 ⁻² * [H ₂ S] * B Q [/] *K _{CO} *(1 - q ₄ /100)	0.0001318 0.0973270	0.0006378 0.4710436	
0337	Углерод окси	<u>и</u> Итого по исто		Qi NCO (1 - 44/100)	0.1278294	0.6186695	
			y.		1 01.12.0204	0.0.0000	
	Pac	нет выбросов	вредных веще	ств в атмосферу пр	ои работе на СУГ		
Код ЗВ	Наименован	ие загрязня- цества (ЗВ)		ая формула	Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год	
	Азота оксидь			3*Q; [*] K _{NO2} *(1 - β)	0.0316612	0.1532340	
0301	Азота диокси	Д		= 0.8*Π _{NOx}	0.0253290	0.1225872	
0304	Азота оксид			0.13*Π _{NOx}	0.0041160	0.0199204	
0330	Сера диоксид	1		S'*(1 - η')*(1 - η") 10 ⁻² * [H₂S] * B	0.0053882 0	0.0260777 0	
0337	Углерод окси	Д		Q;*Kco*(1 - q4/100)	0.0953651	0.4615483	
	<u> </u>	Итого по исто			0.1301983	0.6301336	
	3240044	INOBAHHEIO P. II	DOEKTE HODMSTI	AROR ПЛВ BLIGDOCLI	ı ЗВ от котлоагрегат	-a	
						<u>а</u> осы 3В	
Код ЗВ	Наим	енование загр	язняющего вец	цества (ЗВ)	г/с	т/год	
	Азота оксидь	I			0.0323126	0.1563865	
0301	Азота диокси	Д			0.0258500	0.1251092	
0304	Азота оксид		- 		0.0042006	0.0203302	
0330	Сера диоксид	•			0.0053882	0.0260777	
0337	Углерод окси				0.0973270	0.4710436	
		Всего по исто	очнику:		0.1327658	0.6425607	

№ ИЗА	0168 - 0169	Наименован загрязнения	ие источника атмосферы	Дымовая труба				
№ ИВ	001	выделения	ие источника	Котёл Vitoplex 20				
					ету выбросов вредн			
					ксп», Алматы 1996 г. ельностью до 30 т/ч			
выоросов в	родпых веще	отв при ожита		не данные:	слыностые до се п			
Номинальна	я мощность ко	тла:		$Q_{\scriptscriptstyle M}$	270	кВт		
Фактическая	мощность кот.	па:		$Q_{\scriptscriptstyle{\Phi}}$	248	кВт		
Расход топл	ива котлоагрег	атом:		В	8.056	г/с		
	<u> </u>			D	29	кг/ч		
		елении валовы ия на топливно		B _r T	38.987 1344.4	т/год ч/год		
	уемого топлива		WITASE / CJI.	ı	Топлив			
Плотность га		a		ρ	0.81	кг/н. м ³		
Массовое со	держание серь	ы в газе:		S ^r	0.0020	масс.%		
		при нормальнь		Q _i ^r	38.93	МДж/н. м ³		
	оксидов азота,	образующихся	і на 1 ГДж	K _{NO2}	0.0830	кг/ГДж		
тепла:	сероводорода	D TOURING:		[H ₂ S]	0.0009	масс.%		
	асход газовозд			[Π ₂ δ]	0.0009	масс. % м ³ /сек		
	уемого топлива			I AL	0.231 C)			
Плотность га				ρ	2.02	кг/н. м ³		
Массовое со	держание серь	ы в газе:		Sr	0.0334	масс.%		
Теплота сгор	рания топлива	при нормальнь		Q _i ^r	95.87	МДж/н. м ³		
	оксидов азота,	образующихся	і на 1 ГДж	K _{NO2}	0.0830	кг/ГДж		
тепла:	сероводорода	D TOURISCO		[H ₂ S]	0	масс.%		
	сероводорода асход газовозд			[H ₂ S]	0.222	масс.% м³/сек		
		от степени сни	жения выбро-	V r	U.ZZZ	W /OOK		
		тате применен		β	0			
ских решени	й:	-		·				
		заемых летучеі		ŋ' _{SO2}	0			
		ваемых в золо		ŋ" _{SO2}	0			
щейся при го		ода на ед.тепл	оты, выделяю-	K _{co}	0.25	кг/ГДж		
		ие механичесь	ой неполноты		_	•		
сгорания газ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		q_4	0	%		
	Расчет вы	бросов вредн	ых веществ в а	тмосферу при раб	оте на Топливном га	136		
Vo = 2B	Наименован	ие загрязня-	Decue		Максимально- разовый вы-	Валовый вы-		
Код ЗВ	ющего вец	цества (ЗВ)	Расчетн	ая формула	разовый вы- брос, г/с	брос, т/год		
	Азота оксидь	1	Π = 0.001*E	3*Q; ^r *K _{NO2} *(1 - β)	0.0323126	0.1563865		
0301	Азота диокси			= 0.8*Π _{NOx}	0.0258500	0.1251092		
0304	Азота оксид			0.13*Π _{NOx}	0.0042006	0.0203302		
0330	Сера диоксид	1		S ^r *(1 - η')*(1 - η")	0.0003200	0.0015487		
				10 ⁻² * [H ₂ S] * B	0.0001318	0.0006378		
0337	Углерод окси	•		Q;*K _{CO} *(1 - q₄/100)	0.0973270	0.4710436		
		Итого по исто	очнику:		0.1278294	0.6186695		
	Pacy	ет выбросов	вредных веше	ств в атмосферу пр	ои работе на СУГ			
			1		Максимально-	Baranııı nı		
Код ЗВ		ие загрязня- цества (ЗВ)	Расчетн	ая формула	разовый вы-	Валовый вы- брос, т/год		
	-	. ,			брос, г/с			
0004	Азота оксидь			3*Q;*K _{NO2} *(1 - β)	0.0316612	0.1532340		
0301 0304	Азота диокси Азота оксид	Д		= 0.8*Π _{NOx} 0.13*Π _{NOx}	0.0253290 0.0041160	0.1225872 0.0199204		
				<u>0.13 11_{NOx}</u> S ^r *(1 - η')*(1 - η'')	0.0053882	0.0199204		
0330	Сера диоксид	1	Π = 1.88 *	10 ⁻² * [H ₂ S] * B	0.0033002	0.0200111		
0337	Углерод окси	Д		Q;*Kco*(1 - q4/100)	0.0953651	0.4615483		
		Итого по исто			0.1301983	0.6301336		
1	Занорми	рованные в п	роекте нормати	ивов ПДВ выбрось	3В от котлоагрегат			
Код ЗВ	Наим	енование загр	язняющего вец	цества (ЗВ)	Выбро г/с	сы ЗВ т/год		
	Азота оксидь				0.0323126	17год 0.1563865		
0301	Азота сксидв				0.0323120	0.1353003		
0304	Азота оксид				0.0042006	0.0203302		
0330	Сера диоксид	1			0.0053882	0.0260777		
0337	Углерод окси	<u></u> Д			0.0973270	0.4710436		
		Всего по ист	очнику:		0.1327658	0.6425607		

на назовном комплексе. От ют в весьмежных весделетытих на окружающие ороду										
№ ИЗА	0170	Наименование ис	точника загря	знения атмо-	Выхлопная труба					
№ИВ	001		Наименование источника выделения			тор компрес-				
от стацио Мак где:										
	е _і - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):									
Эксплуата новки:	ционная мощно	сть стационарной диз	ельной уста-	P ₉	260	кВт				
где: q _i - выброс	Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле: М _{год} =q _i *B _{год} /1000, т/год									
нои дизел лица 3 ил		учетом совокупности	режимов, сос	тавляющих эксг	луатационный цикл,	г/кг топлива (тао-				
(берется г	ю отчетным данн	оной дизельной устан ым об эксплуатации ус : В_{год}=b₃*k*P₃*T*10 - ⁶ :		В _{год}	1.175	т/год				
Расход то				b	45	л/ч				
				b	39	кг/ч				
	/дельный расход			b₃	151	г/кВт.ч				
	ь дизельного топл			ρ	0.87	кг/л				
	иент использован -	ІИЯ:		k	1					
Время раб	оты:			T	30.0	ч/год				
16		Исходные да	анные по ист	очнику выброс						
Количеств				N	1	ШТ				
	ращения вала:			n	1500	об/мин				
Группа СД	ĮУ:				Б					
			а отработанн	ых газов и топ						
		B_{s} , $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$		G _{or}	0.342	кг/с °С				
	ура отходящих га	30B:		T _{or}	450					
	ь газов при 0°C:	0 //4.T /070\		γ0 _{or}	1.31	кг/м ³				
		, γ _{or} =γ0 _{or} /(1+T _{or} /273) анных газов, Q or= G or/γ		У ог	0.49482 0.6919	кг/м ³ м ³ /с				
Оовемны		анных газов, Q ог – G ог ү		Q _{or}						
	гасчет выс	росов вредных веще	ств в атмосц	реру всего от д	изельного генератор	Ja.				
Код ЗВ	Код 3В Наименование 3В		e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос				
			г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год				
	Азо	та оксиды	9.6	40	0.6933333	0.0469800				
0301 Азота диоксид				0.5546667	0.0375840					
0304	Азо	ота оксид			0.0901333	0.0061074				
0328		Сажа	0.5	2	0.0361111	0.0023490				
0330		а диоксид	1.2	5	0.0866667	0.0058725				
0337		род оксид	6.2	26	0.4477778	0.0305370				
0703		з(а)пирен	0.000012	0.000055	0.0000009	0.0000006				
1325	I Doni	мапьлегил	0.12	0.5	0.0086667	0 0005873				

№ ИВ 001 Наименование источника выделения Токарный станок Rimex 200/52 (с охлаждением эмульсолом)	№ ИЗА	0171	· ·	Вентиляционная труба Механическая мастерская
	№ИВ	001	Наименование источника выделения	•

0.12

2.9

0.5

12

0.0086667

0.2094444

1.4334676

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: M_{cex} =Q*N, г/c

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: M_{rog}=3600*Q*N*T/10⁶, т/год

где:			
Количество оборудования:	n	1	ШТ.
Фактический годовой фонд времени работы одной единицы оборудования в год:	Т	4380	час/год

1325

2754

Формальдегид

Углеводороды пр. С12-С19

Всего по источнику:

0.0005873

0.0140940

	TIG T IGGGWITON	и комплексе. Отчет о возможных воздействиях на ок	ружа	ощую ороду	
лица 7):		ия эмульсола на 1 кВт мощности оборудования (таб-	Q	0.0000005	г/с
Мощность устан	новленного обор		N	4	кВт
	Расчет выбро	осов вредных веществ в атмосферу, при работе	токар	оного станка:	
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос	Валовый вы- брос
2868	Эмульсол			г/с 0.0000020	т/год 0.0000315
2000	Toy., 2002.			0.0000020	0.00000.0
№ИВ	001	Наименование источника выделения тласно, "Методики расчета выбросов загрязняюц	(c o	арный станок F хлаждением эм	ульсолом)
ханической об 2005 год. Характер воздух в виде тв - аэрозолей мас Максимал по формуле: Ма	работке метал. рной особенност вердых частиц (г сла или эмульсо пьный разовый в све Q*N, г/с	пов (по величинам удельных выбросов)" РНД 2 ью процессов механической обработки является обр промышленной пыли), а в случае применения смазо	: 11.2 . разов чно-о брабо	02.06-2004, МОС ание выбросов в хлаждающих жи отке металлов ра	ОС РК, Астана, атмосферный цкостей (СОЖ) ассчитывается
M _{год} =3600*Q*N* где:	Т/10⁶, т/год			•	,
Количество обо	рудования:		n	1	шт.
		мени работы одной единицы оборудования в год:	T	4380	час/год
Удельные показ лица 7):	ватели выделені	ия эмульсола на 1 кВт мощности оборудования (таб-	Q	0.0000005	г/с
Мощность устан	новленного обор		N	7.5	кВт
	Расчет выбро	осов вредных веществ в атмосферу, при работе	токар		
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос	Валовый вы- брос
				г/с	т/год
2868	Эмульсол			0.0000038	0.0000591
№ ИВ	001	Наименование источника выделения	(c o	арный станок F хлаждением эм	ульсолом)
ханической об 2005 год. Характер воздух в виде тг - аэрозолей мас Максимал по формуле: Мо Валовый Mrog=3600*Q*N*	работке метал. оной особенност вердых частиц (го сла или эмульсо пьный разовый в выброс СОЖ от Т/106, т/год	гласно, "Методики расчета выбросов загрязняющ пов (по величинам удельных выбросов)" РНД 2 вю процессов механической обработки является обраторомышленной пыли), а в случае применения смазогова. па. выброс СОЖ от одной единицы оборудования при обработке мета	211.2. разов чно-о брабо аллов	02.06-2004, МОС ание выбросов в хлаждающих жидотке металлов раз рассчитывается	ОС РК, Астана, атмосферный дкостей (СОЖ) ассчитывается по формуле:
Количество обо			n	1	ШТ.
		мени работы одной единицы оборудования в год: ия эмульсола на 1 кВт мощности оборудования (таб-	T Q	4380 0.0000005	час/год г/с
лица 7): Мощность устан	новленного обор	рудования:	N	11	кВт
		осов вредных веществ в атмосферу, при работе	токар	оного станка:	
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос г/с	Валовый выброс
2868	Эмульсол			0.0000055	т/год 0.0000867
	,,			, :::::::::::::::::::::::::::::::::::::	2.200007
№ИВ	001	Наименование источника выделения	1250	арный станок Р 0/4000 (с охлажо пьсолом)	
ханической об 2005 год. Характер воздух в виде тв - аэрозолей мас	работке метал. эной особенност вердых частиц (г сла или эмульсо	пасно, "Методики расчета выбросов загрязняюц пов (по величинам удельных выбросов)" РНД 2 ью процессов механической обработки является обр промышленной пыли), а в случае применения смазоч ла. выброс СОЖ от одной единицы оборудования при о	: 11.2. разов нно-о	02.06-2004, МОС ание выбросов в хлаждающих жи	оС РК, Астана, атмосферный дкостей (СОЖ)

Дополнение В.2

где:

по формуле: $\mathbf{M}_{\mathsf{cek}} = \mathbf{Q}^* \dot{\mathbf{N}}$, г/с

М_{год}=3600*Q*N*T/10⁶, т/год

Количество оборудования:

Фактический годовой фонд времени работы одной единицы оборудования в год:

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле:

n

4380

ШТ.

час/год

Обустро		кдения Кашаган. Наращивание производительности и комплексе. Отчет о возможных воздействиях на ок			й/сутки
Удельные показ лица 7):	затели выделені	ия эмульсола на 1 кВт мощности оборудования (таб-	Q	0.0000005	г/с
Мощность устан	новленного обор	N	22	кВт	
	Расчет выбро	осов вредных веществ в атмосферу, при работе	токар	оного станка:	
Код 3В Наименование 3В				Максимально- разовый вы- брос	Валовый вы- брос
				г/с	т/год
2868	Эмульсол			0.0000110	0.0001734
№ ИВ 001 Наименование источника выделения станок Rimex FU 301 (с охлаждением эмульсолом) Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана,					
2005 год. Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола. Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: М _{сек} =Q*N, г/с Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: М _{год} =3600*Q*N*T/10 ⁶ , т/год					
где:	DVGODOUHG:		n	1	шт.
					час/год
	Удельные показатели выделения эмульсола на 1 кВт мощности оборудования (таб-				
Мощность устан	новленного обор	рудования:	N	7	кВт
					•

Максимально-Валовый выразовый вы-Код ЗВ Наименование 3В брос брос г/с т/год 2868 0.0000035 0.0000552 Эмульсол

Расчет выбросов вредных веществ в атмосферу, при работе фрезерного станка:

Горизонтальный сверлильно-№ ИВ 001 Наименование источника выделения фрезерный станок W100A (с охлаждением эмульсолом)

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана,

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) аэрозолей масла или эмульсола.

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: $\mathbf{M}_{\mathsf{сек}} = \mathbf{Q}^* \mathbf{N}$, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: **М**_{год}=3600***Q*****N*****T**/10⁶, т/год

·n-·			
Количество оборудования:	n	1	ШТ.
Фактический годовой фонд времени работы одной единицы оборудования в год:	Т	4380	час/год
Удельные показатели выделения эмульсола на 1 кВт мощности оборудования (таблица 7):	Q	0.0000005	г/с
Моличесть установленного оборудования:	N	11	νRτ

Расчет выбросов вредных веществ в атмосферу, при работе сверлильно-фрезерного станка: Максимально-Валовый выразовый вы-Код ЗВ брос Наименование ЗВ брос г/с т/год 2868 0.0000055 Эмульсол 0.0000867

№ ИВ	001	Вертикальный фрезерный ста- нок М5 (с охлаждением эмульсо- лом)

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: $\mathbf{M}_{ce\kappa} = \mathbf{Q}^* \mathbf{N}$, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: M_{rog} =3600*Q*N*T/10⁶, т/год где:

Дополнение В.2

где:

Количество об	1 7		n	1	ШT.
Фактическии г	одовои фонд в	ремени работы одной единицы оборудования в год:		4380	час/год
Удельные пока лица 7):	цельные показатели выделения эмульсола на 1 кВт мощности оборудования (таб- ица 7):			0.0000005	г/с
Мощность уста	ощность установленного оборудования:			10.4	кВт
	Расчет выбр	оосов вредных веществ в атмосферу, при работе ф	резе	рного станка:	
Код ЗВ		Наименование 3В		Максимально- разовый вы- брос	Валовый вы- брос
				г/с	т/год
2868	Эмульсол			0.0000052	0.0000820
№ ИВ	001	Наименование источника выделения	Радиальный сверлильный ста- нок Z 3050х16II (с охлаждением эмульсолом)		

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: $\mathbf{M}_{\text{сек}} = \mathbf{Q}^* \mathbf{N}$, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: M_{rog}=3600*Q*N*T/10⁶, т/год

где:

Количество оборудования:	n	2	ШТ.
Фактический годовой фонд времени работы одной единицы оборудования в год:	Т	4380	час/год
Удельные показатели выделения эмульсола на 1 кВт мощности оборудования (таблица 7):	Q	0.0000005	г/с
Мощность установленного оборудования:	N	5.34	кВт

 Расчет выбросов вредных веществ в атмосферу, при работе сверлильных станков:

 Код 3В
 Наименование 3В
 Максимальноразовый выброс брос г/с т/год
 Валовый выброс брос г/с т/год

 2868
 Эмульсол
 0.0000053
 0.0000842

№ ИВ	001		Ленточнопильный станок KS600 (с охлаждением эмульсо- лом)
------	-----	--	---

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: $\mathbf{M}_{\text{cex}} = \mathbf{Q} * \mathbf{N}$, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: М_{год}=3600*Q*N*T/10⁶, т/год

где:

Количество оборудования:	n	1	ШТ.
Фактический годовой фонд времени работы одной единицы оборудования в год:	Т	4380	час/год
Удельные показатели выделения эмульсола на 1 кВт мощности оборудования (таблица 7):	Ø	0.0000005	г/с
Мощность установленного оборудования:	Ν	4	кВт

Расчет выбросов вредных веществ в атмосферу, при работе ленточнопильного станка:

Код ЗВ	Наименование ЗВ	Максимально- разовый вы- брос	Валовый вы- брос
		г/с	т/год
2868	Эмульсол	0.0000020	0.0000315

№ ИВ	001	Наименование источника выделения	Гидравлический ленточнопиль- ный станок KS 450 (с охлажде- нием эмульсолом)
------	-----	----------------------------------	---

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: **М**_{сек}=Q*N, г/с

где:					
Количество обо	рудования:		n	1	шт.
		мени работы одной единицы оборудования в год:	Τ	4380	час/год
Удельные показ лица 7):	атели выделен	ия эмульсола на 1 кВт мощности оборудования (таб-	Q	0.0000005	г/с
Мощность устан	новленного обор	рудования:	N	3	кВт
Pac	чет выбросов	вредных веществ в атмосферу, при работе лент	очно	пильного станк	a:
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос	Валовый вы брос
2868	311/51 005			г/с 0.0000015	т/год 0.0000237
2000	Эмульсол			0.0000013	0.0000237
№ИВ	001	Наименование источника выделения гласно, "Методики расчета выбросов загрязняюц	ный жде	равлический ле і станок BS 350 нием эмульсол) SHI (с охла- ом)
воздух в виде тв - аэрозолей мас Максимал по формуле: М с	вердых частиц (сла или эмульсс выный разовый в ек =Q*N , г/с выброс СОЖ о	ью процессов механической обработки является обр промышленной пыли), а в случае применения смазов ола. выброс СОЖ от одной единицы оборудования при о т одной единицы оборудования при обработке мета	нно-о браб	хлаждающих жи, отке металлов ра	дкостей (СОЖ ассчитываетс
гдс. Количество обо	рудования:		n	1	шт.
		мени работы одной единицы оборудования в год:	T	4380	час/год
		ия эмульсола на 1 кВт мощности оборудования (таб-	Q	0.0000005	г/с
Мощность устан	новленного обор	удования:	N	3	кВт
Pac	чет выбросов	вредных веществ в атмосферу, при работе лент	очно	пильного станк	a:
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос г/с	Валовый вь брос т/год
2868	Эмульсол			0.0000015	0.0000237
№ИВ	001	Наименование источника выделения гласно. "Методики расчета выбросов загрязняюц	(без	ьбонарезной сп в охлаждения)	0.0000237 панок 440
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал	001 определены согработке метал ЗВ, образующий определяется попределяется попределяет	 гласно, "Методики расчета выбросов загрязняюц лов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр	<i>(без</i> цих в 11.2. оимен х мес	ьбонарезной сп в охлаждения) веществ в атмос 02.06-2004, МОС нения СОЖ, от о	0.0000237 панок 440 сферу при ме ОС РК, Астана одной единиці і: М _{сек} =k*Q, г/с
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, с Максима Валовый г где:	001 определены согработке метал ЗВ, образующь определяется польный разовый выброс для исторавитационного	 гласно, "Методики расчета выбросов загрязняюц лов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр о формулам: выброс для источников выделения, не обеспеченны	<i>(без</i> цих в 11.2. оимен х мес	ьбонарезной сп в охлаждения) веществ в атмос 02.06-2004, МОС нения СОЖ, от о	0.0000237 панок 440 сферу при ме ОС РК, Астана одной единиці т: М _{сек} =k*Q, г/с
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал Валовый г где: Коэффициент г Количество обо	001 определены согработке метал ЗВ, образующи определяется польный разовый выброс для исторавитационного рудования:	роседания (см. п. 5.3.2): для пыли металлической:	(без цих в 11.2. римен х мес осам	ьбонарезной сла охлаждения) веществ в атмос 02.06-2004, МОС вения СОЖ, от остными отсосамии: M _{год} =3600*k*Q	0.0000237 панок 440 сферу при ме ОС РК, Астана одной единиці т: М _{сек} =k*Q, г/с
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал Валовый г где: Коэффициент гр Количество обо	001 определены согработке метал ЗВ, образующи определяется польный разовый выброс для исторавитационного рудования:	гласно, "Методики расчета выбросов загрязняюц лов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр о формулам: выброс для источников выделения, не обеспеченны очников выделения, не обеспеченных местными отс	(без цих в 11.2. римен х мес осами	ьбонарезной сла охлаждения) веществ в атмос ос.06-2004, МОС нения СОЖ, от стыми отсосами и: М _{год} =3600*k*Q	0.0000237 панок 440 сферу при мо ОС РК, Астана одной единиц п: М _{сек} =k*Q, г/с **T/10 ⁶ , т/год
№ ИВ Выбросы канической об 2005 год. Выбросы оборудования, о Максимал Валовый г где: Коэффициент гр Количество обо Удельное выдел	определены согработке метал ЗВ, образующите определяется попределяется попределяется попределяется попределяется попределяется попределяется по пределяется по пределяетс	роседания (см. п. 5.3.2): для пыли металлической:	(без цих в 11.2. римен х мес осами к п	ьбонарезной сла охлаждения) веществ в атмос о2.06-2004, МОС нения СОЖ, от стными отсосами и: М _{год} =3600*k*Q	0.0000237 панок 440 сферу при мерс РК, Астана одной единиц 1: М _{сек} =k*Q, г/ч *T/10 ⁶ , т/год
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал Валовый г где: Коэффициент г Количество обо Удельное выде. лица 4): Фактический год	определены согработке метал ЗВ, образующите определяется попределяется попределяется попределяется попределяется попределяется по пределяется по пределяет	раской пыли технологическим оборудованием (таб-	(без цих в 11.2. римен х мес осами к п	вьбонарезной сладов охлаждения) веществ в атмосов оставления СОЖ, от ставления ставления и: М _{год} =3600*k*Q 0.2 1 0.0056 4380	0.0000237 панок 440 сферу при ме ОС РК, Астана одной единиц п: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал Валовый г где: Коэффициент г Количество обо Удельное выде. лица 4): Фактический год	определены согработке метал ЗВ, образующите определяется попределяется попределяется попределяется попределяется попределяется по пределяется по пределяет	раской пыли технологическим оборудованиям в год:	(без цих в 11.2. римен х мес осами к п	выбонарезной сладовной станка и максимальноразовый выброс	0.0000237 панок 440 сферу при меро РК, Астана одной единиц т. М _{сек} =k*Q, г/ч *T/10 ⁶ , т/год шт. г/с час/год а: Валовый вь брос
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал Валовый г где: Коэффициент гр Количество обо Удельное выделица 4): Фактический год	определены согработке метал ЗВ, образующию пределяется польный разовый выброс для истеравитационного рудования: пение металличение металличение металличение металличение выбросон	работь работь одной единицы оборудования в год: в вредных веществ в атмосферу, при работе рез	(без цих в 11.2. римен х мес осами к п	вобонарезной сла охлаждения) веществ в атмос останом останом от сосами от сосами от мето об от техном от сосами от останом от остан	0.0000237 панок 440 сферу при меро РК, Астана раной единиц к: Мсек=k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год а: Валовый вь
№ ИВ Выбросы ханической об 2005 год. Выбросы оборудования, о Максимал Валовый и где: Коэффициент гр Количество обо Удельное выделица 4): Фактический год Ра Код ЗВ 2902	определены согработке метал 3В, образующь определяется пльный разовый выброс для исторудования: пение металличаровой фонд вресчет выбросог	гласно, "Методики расчета выбросов загрязняюця лов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных местными отсочников выделения, не обеспеченных местными отсососдания (см. п. 5.3.2): для пыли металлической: неской пыли технологическим оборудованием (табмени работы одной единицы оборудования в год: в вредных веществ в атмосферу, при работе резическая (взвешенные вещества)	(без цих в 111.2. 11.2.	вьбонарезной сладов охлаждения) веществ в атмосоров охлаждения СОЖ, от остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0056 4380 арезного станка Максимальноразовый оброс г/с 0.0011200 рлильный стана	0.0000237 панок 440 сферу при меро РК, Астана ОС РК, Астана ОС РК, Астана ОДНОЙ ЕДИНИЦ Т. М.сек=k*Q, г/с *Т/106, т/год ШТ. г/с час/год а: Валовый вы брос т/год 0.0176602
№ ИВ Выбросы канической об 2005 год. Выбросы оборудования, о Максимал Валовый и где: Коэффициент гр Количество обо Удельное выделица 4): Фактический год Ра Код ЗВ 2902 № ИВ Выбросы канической об 2005 год. Выбросы оборудования, о Максима Валовый и где:	определены согработке метал 3В, образующь определяется польный разовый выброс для исторудования: пение металличного рудовай фонд врестет выбросого работке метал 3В, образующь определяется польный разовый выброс для исто	гласно, "Методики расчета выбросов загрязняющов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных местными отсочников выделения, не обеспеченных местными отсососдания (см. п. 5.3.2): для пыли металлической: неской пыли технологическим оборудованием (табмени работы одной единицы оборудования в год: в вредных веществ в атмосферу, при работе резическая (взвешенные вещества) Наименование ЗВ Наименование источника выделения гласно, "Методики расчета выбросов загрязняющов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без при механической обработке металлов.	(без цих в 11.2. римен х месосами к п Q Т Ббон Све охли цих в 11.2.	вьбонарезной сладом в охлаждения) веществ в атмосоров останом от состания от состания от состания от стания от стан	0.0000237 панок 440 сферу при м ОС РК, Астан дной единиц к М _{сек} =к*Q, г/ *Т/10 ⁶ , т/год шт. г/с час/год а: Валовый выброс т/год 0.0176602 нок ND 22 (бо

	еление металли	ческой пыли технологическим оборудованием (таб-	Q	0.0011	г/с
лица 4): Фактический го	довой фонд вре	мени работы одной единицы оборудования в год:	T	4380	час/год
	Расчет выброс	ов вредных веществ в атмосферу, при работе св	ерли		T
Код ЗВ	Наименование ЗВ		Максимально- разовый вы- брос	Валовый вы- брос	
				г/с	т/год
2902	Пыль металлі	ическая (взвешенные вещества)		0.0002200	0.0034690
№ ИВ	001	Наименование источника выделения		рлильный стан	юк ND 32 VS
		гласно, "Методики расчета выбросов загрязняю ц		охлаждения)	
ханической об 2005 год. Выбрось оборудования, Максима	бработке метал ы ЗВ, образующ определяется п альный разовый	лов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр	11.2 . •име⊦ іх ме	02.06-2004 , МОС нения СОЖ, от о стными отсосамі	ОС РК, Астана дной единиць и: М_{сек}=k*Q , г/о
где: Коэффициент г	павитационного	о оседания (см. п. 5.3.2): для пыли металлической:	k	0.2	
Количество обс		оссдания (см. н. э.э.г.). для ныли металлической.	n	2	шт.
		ческой пыли технологическим оборудованием (таб-	Q	0.0011	г/с
	ловой фонд вре	мени работы одной единицы оборудования в год:	Т	4380	час/год
		ов вредных веществ в атмосферу, при работе св			
		, , , , , , , , , , , , , , , , , , , ,		Максимально-	
Код ЗВ		Наименование ЗВ		разовый вы- брос	Валовый вы- брос
				г/с	т/год
2902	Пыль металлі	ическая (взвешенные вещества)		0.0004400	0.0069379
№ ИВ	001	Наименование источника выделения		рлильный стан (без охлаждени	_
ханической об 2005 год. Выбрось оборудования,	бработке метал ы 3В, образующ определяется п		11.2 . имен	02.06-2004, МОС нения СОЖ, от о	ЭС РК, Астана дной единиць
ханической об 2005 год. Выбрось оборудования, Максима Валовый где:	Бработке металы ЗВ, образующ определяется п альный разовый выброс для ист	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр о формулам: выброс для источников выделения, не обеспеченнь очников выделенных местными отс	11.2 . •име⊦ •их ме	02.06-2004 , МОС нения СОЖ, от о стными отсосамі	ЭС РК, Астана дной единиць и: М_{сек}=k*Q , г/с
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г	Бработке метал в ЗВ, образующ определяется пальный разовый выброс для иста травитационного	пов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр о формулам:	11.2 . римен іх ме осамі	02.06-2004 , МОС вения СОЖ, от о стными отсосами и: М_{год}=3600*k*Q 0.2	ЭС РК, Астана дной единиць и: М_{сек}=k*Q , г/с *T/10 ⁶ , т/год
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде	Бработке метал в ЗВ, образующ определяется пальный разовый выброс для ист правитационного рудования:	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр о формулам: выброс для источников выделения, не обеспеченнь очников выделенных местными отс	11.2 . римен іх ме осамі	02.06-2004 , МОС нения СОЖ, от о стными отсосами и: М_{год}=3600*k*Q	ЭС РК, Астана дной единиць и: М_{сек}=k*Q , г/с
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обо Удельное выде лица 4):	бработке метал ы 3В, образующ определяется п альный разовый выброс для ист гравитационного орудования: еление металли	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без пр о формулам: выброс для источников выделения, не обеспеченнь очников выделения, не обеспеченных местными отсо оседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (таб-	11.2. римен их ме росами к	02.06-2004, МОС иения СОЖ, от о остными отсосами и: М _{год} =3600*k*Q	РК, Астана дной единиць и: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го	Бработке метал ы 3В, образующ определяется п альный разовый выброс для ист гравитационного орудования: еление металли довой фонд вре	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченнь очников выделения, не обеспеченных местными отсоросседания (см. п. 5.3.2): для пыли металлической:	11.2. римен их ме росами к п Q	02.06-2004, МОС нения СОЖ, от остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380	PŘ, Астана дной единиць и: М _{сек} =k*Q, г/и * T/10 ⁶ , т/год шт.
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4):	Бработке метал ы 3В, образующ определяется п альный разовый выброс для ист гравитационного орудования: еление металли довой фонд вре	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченны очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табемени работы одной единицы оборудования в год:	11.2. римен их ме росами к п Q	02.06-2004, МОС вения СОЖ, от о стными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 Пъного станка: Максимальноразовый выброс	РК, Астана дной единиць 1: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обо Удельное выде лица 4): Фактический го	Бработке металы 3В, образующопределяется пальный разовый выброс для истравитационного орудования: еление металли довой фонд вре Расчет выброс	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченны очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табиени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе св	11.2. римен их ме росами к п Q	02.06-2004, МОС пения СОЖ, от остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 Пъного станка: Максимальноразовый выброс г/с	РК, Астана дной единиць 1: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс т/год
ханической об 2005 год. Выбрось оборудования, Максими Валовый где: Коэффициент г Количество обо Удельное выде лица 4): Фактический го	Бработке металы 3В, образующопределяется пальный разовый выброс для истравитационного орудования: еление металли довой фонд вре Расчет выброс	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченны очников выделения местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе св	11.2. римен их ме росами к п Q	02.06-2004, МОС вения СОЖ, от о стными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 Пъного станка: Максимальноразовый выброс	РК, Астана дной единиць 1: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го	Бработке металы 3В, образующопределяется пальный разовый выброс для истравитационного орудования: еление металли довой фонд вре Расчет выброс	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченны очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табиени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе св	11.2. имен к ме осами к п Q Т ерли	02.06-2004, МОС пения СОЖ, от остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 Пъного станка: Максимальноразовый выброс г/с	рс РК, Астана дной единиць и: М _{сек} =k*Q, г/ *T/10 ⁶ , т/год шт. г/с час/год Валовый вы брос т/год 0.0034690
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс удельное выде лица 4): Фактический го Код 3В 2902 № ИВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где:	Бработке метальный разовый выброс для ист гравитационного орудования: еление металли довой фонд вре Расчет выброс Пыль металли определены со бработке металы з ЗВ, образующ определяется пальный разовый выброс для ист	ихся при механической обработке металлов, без проформулам: при механической обработке металлов, без проформулам: при механической обработке металлов, без проформулам: при механической обработке металлической: при механической выделения, не обеспеченных местными оторожения (см. п. 5.3.2): для пыли металлической: при меской пыли технологическим оборудованием (табывения работы одной единицы оборудования в год: при меская (взвешенные вещества) при механической обработке металлов, без проформулам: при механической обработке металлов, без про формулам:	11.2. имен	02.06-2004, МОС вения СОЖ, от о вения ОТ	рС РК, Астана дной единиць 4: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс т/год 0.0034690 феру при мерс РК, Астана дной единиць 4: М _{сек} =k*Q, г/с
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го Код 3В 2902 № ИВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г	Бработке метали определяется пальный разовый выброс для ист правитационного орудования: еление металли довой фонд вре расчет выброс Пыль металли определены со бработке метал определяется пальный разовый выброс для ист	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченны очников выделения, не обеспеченных местными ото оседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табмени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе св Наименование ЗВ ическая (взвешенные вещества) Наименование источника выбросов загрязняющим пов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченны выброс для источников выделения, не обеспеченны	11.2. имен	02.06-2004, МОС вения СОЖ, от о остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 Пъного станка: Максимальноразовый выброс г/с 0.0002200 рлильный станко остано в атмос остано в атмос остано остано остано остано остано остано остано остано остными отсосами и: М _{год} =3600*k*Q	рС РК, Астана дной единиць 4: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс т/год 0.0034690 фок LTF_TB 10 феру при мерос РК, Астана дной единиць 4: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го Код ЗВ 2902 № ИВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс	Бработке метальный разовый выброс для истравитационного орудования: Пыль металли ОО1 Определяется пальный разовый выброс для истравитационного орудования: ОО1 Определены собработке метальный разовый выброс для истравитационного орудования:	ихся при механической обработке металлов, без проформулам: при механической обработке металлов, без проформулам: при механической обработке металлов, без проформулам: при механической обработке металлической: при механической выделения, не обеспеченных местными оторожения (см. п. 5.3.2): для пыли металлической: при меской пыли технологическим оборудованием (табывения работы одной единицы оборудования в год: при меская (взвешенные вещества) при механической обработке металлов, без проформулам: при механической обработке металлов, без про формулам:	Терли Свед (без цих ме росам) Свед (без цих ме росам) к ме росам) К п п п п п п п п п п п п п п п п п п	02.06-2004, МОС вения СОЖ, от о стными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 ильного станка: Максимально- разовый выброс г/с 0.0002200 рлильный станка в охлаждения) веществ в атмос 02.06-2004, МОС вения СОЖ, от о стными отсосами и: М _{год} =3600*k*Q 0.2 1	рС РК, Астана дной единиць 1: М _{сек} =k*Q, г/- *T/10 ⁶ , т/год шт. г/с час/год Валовый вы брос т/год 0.0034690 нок LTF_TB 10 феру при ме вос РК, Астана дной единиць 1: М _{сек} =k*Q, г/- *T/10 ⁶ , т/год
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде пица 4): Фактический го Код ЗВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде пица 4):	Бработке метали в 3В, образующопределяется пальный разовый выброс для истравитационногорудования: поределяется пальный разовый фонд врефасчет выброс пыль металли определены собработке метали альный разовый выброс для истравитационногорудования: правитационногорудования: правитационногорудования: правитационногорудования: правитационногорудования: правитационногорудования: правитационногорудования:	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе свименование 3В ическая (взвешенные вещества) Наименование ЗВ ическая (взвешенные вещества) Наименование источника выбросов загрязняющим оборудования в год: ов вредных вещества) исто по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про оформулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табыческой пыли технологической пыли технологической пыли технологической пыли технологической пыли технологической пыли технологической пыли техно	11.2.	02.06-2004, МОС вения СОЖ, от о остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 пьного станка: Максимально-разовый выброс г/с 0.0002200 рлильный станко останка: охлаждения) еществ в атмос остными стосами и: М _{год} =3600*k*Q 0.2 1 0.0011	рС РК, Астана дной единицы а: М _{сек} =k*Q, г/- *T/10 ⁶ , т/год шт. г/с час/год Валовый вы брос т/год 0.0034690 нок LTF_TB 1 феру при ме вос РК, Астана дной единицы а: М _{сек} =k*Q, г/- *T/10 ⁶ , т/год
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го Код ЗВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го	Бработке метали в 3В, образующ определяется п альный разовый выброс для ист равитационного орудования: Пыль металли определены собработке метали определяется п альный разовый выброс для ист равитационного орудования: правитационного орудования:	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе свименование источника выбросов загрязняющегов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных очников выделения, не обеспеченных очников выделения, не обеспеченных оседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год:	11.2.	02.06-2004, МОС вения СОЖ, от о остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 пьного станка: Максимально-разовый выброс г/с 0.0002200 рлильный станко останка: оклаждения) еществ в атмос остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380	рС РК, Астана дной единиць 4: М _{сек} =k*Q, г/л *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс т/год 0.0034690 нок LTF_TB 10 феру при мерос РК, Астана дной единиць 4: М _{сек} =k*Q, г/л *T/10 ⁶ , т/год
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде пица 4): Фактический го Код ЗВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде пица 4): Фактический го	Бработке метали в 3В, образующ определяется п альный разовый выброс для ист равитационного орудования: Пыль металли определены собработке метали определяется п альный разовый выброс для ист равитационного орудования: правитационного орудования:	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе свименование 3В ическая (взвешенные вещества) Наименование ЗВ ическая (взвешенные вещества) Наименование источника выбросов загрязняющим оборудования в год: ов вредных вещества) исто по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про оформулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табыческой пыли технологической пыли технологической пыли технологической пыли технологической пыли технологической пыли технологической пыли техно	11.2.	02.06-2004, МОС вения СОЖ, от о остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 пьного станка: Максимально-разовый выброс г/с 0.0002200 рлильный станко останко	рС РК, Астана дной единицы а: М _{сек} =k*Q, г/« *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс т/год 0.0034690 вок LTF_TB 10 феру при мерос РК, Астана дной единицы а: М _{сек} =k*Q, г/« *T/10 ⁶ , т/год
ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го Код ЗВ 2902 № ИВ Выбросы ханической об 2005 год. Выбрось оборудования, Максима Валовый где: Коэффициент г Количество обс Удельное выде лица 4): Фактический го	Бработке метали в 3В, образующ определяется п альный разовый выброс для ист равитационного орудования: Пыль металли определены собработке метали определяется п альный разовый выброс для ист равитационного орудования: правитационного орудования:	плов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных местными отсороседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год: ов вредных веществ в атмосферу, при работе свименование источника выбросов загрязняющегов (по величинам удельных выбросов)" РНД 2 ихся при механической обработке металлов, без про формулам: выброс для источников выделения, не обеспеченных очников выделения, не обеспеченных очников выделения, не обеспеченных очников выделения, не обеспеченных оседания (см. п. 5.3.2): для пыли металлической: ческой пыли технологическим оборудованием (табымени работы одной единицы оборудования в год:	11.2.	02.06-2004, МОС вения СОЖ, от о остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380 пьного станка: Максимально-разовый выброс г/с 0.0002200 рлильный станко останка: оклаждения) еществ в атмос остными отсосами и: М _{год} =3600*k*Q 0.2 1 0.0011 4380	рС РК, Астана дной единиць и: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год шт. г/с час/год Валовый выброс т/год 0.0034690 вок LTF_TB 16 феру при мерос РК, Астана дной единиць и: М _{сек} =k*Q, г/с *T/10 ⁶ , т/год

№ ИВ	001	Наименование источника выделения	Универсальный шлифовальный станок Omicron 2000E (с охла- ждением эмульсолом)

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Применение СОЖ снижает выделение пыли до минимальных значений, однако, в процессах шлифования изделий количество выделяющейся совместно с аэрозолями СОЖ металлоабразивной пыли остается значительным (до 10%).

Выбросы ЗВ, образующиеся при механической обработке металлов, с применением СОЖ, от одной единицы оборудования, определяются по формулам:

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами: М_{сек}=k*Q, г/с Валовый выброс для источников выделения, не обеспеченных местными отсосами: M_{год}=3600*k*Q*T/10⁶, т/год

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: **М**_{сек}**=Q*N**, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: М_{год}=3600*Q*N*T/10⁶, т/год

гπ	_	•
Н	ᆫ	

Коэффициент гравитационного оседания (см. п. 5.3.2): для пыли металлической:	k	0.2	
Количество оборудования:	n	1	ШТ.
Удельное выделение металлической пыли технологическим оборудованием (таб-	Q	0.0036	г/с
лица 1):	Q	0.0023	г/с
Фактический годовой фонд времени работы одной единицы оборудования в год:	Т	4380	час/год
Удельные показатели выделения эмульсола на 1 кВт мощности оборудования (таблица 7):	Q	0.00000104	г/с
Мощность установленного оборудования:	Ν	14	кВт

Расчет выбросов вредных веществ в атмосферу, при работе шлифовального станка:

Код ЗВ	Наименование ЗВ	Максимально- разовый вы- брос	Валовый вы- брос
		г/с	т/год
2902	Пыль металлическая (взвешенные вещества)	0.0007200	0.0113530
2930	Пыль абразивная	0.0004600	0.0072533
2868	Эмульсол	0.0000146	0.0002296
ı			

№ИВ	001	Наименование источника выделения	Плоскошлифовальный станок Winner_PFG-D4080AH (с охла- ждением эмульсолом)
-----	-----	----------------------------------	---

Выбросы определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год.

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола.

Применение СОЖ снижает выделение пыли до минимальных значений, однако, в процессах шлифования изделий количество выделяющейся совместно с аэрозолями СОЖ металлоабразивной пыли остается значительным (до 10%).

Выбросы 3В, образующихся при механической обработке металлов, с применением СОЖ, от одной единицы оборудования, определяется по формулам:

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами: $\mathbf{M}_{\text{сек}} = \mathbf{k}^* \mathbf{Q}$, г/с Валовый выброс для источников выделения, не обеспеченных местными отсосами: M_{год}=3600*k*Q*T/10⁶, т/год

Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: $\mathbf{M}_{\mathsf{сек}} = \mathbf{Q}^* \dot{\mathbf{N}}$, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: М_{год}=3600*Q*N*T/10⁶, т/год

·H-·			
Коэффициент гравитационного оседания (см. п. 5.3.2): для пыли металлической:	k	0.2	
Количество оборудования:	n	2	ШТ.
Удельное выделение металлической пыли технологическим оборудованием (таб-	Q	0.0033	г/с
лица 1):	Ø	0.0022	г/с
Фактический годовой фонд времени работы одной единицы оборудования в год:	Т	4380	час/год
Удельные показатели выделения эмульсола на 1 кВт мощности оборудования (таблица 7):	Q	0.00000104	г/с
Мощность установленного оборудования:	Ν	6	кВт

Расче	Расчет выбросов вредных веществ в атмосферу, при работе плоскошлифовального станка:						
Код ЗВ	Наименование 3В	Максимально- разовый вы- брос	Валовый вы- брос				
		г/с	т/год				
2902	Пыль металлическая (взвешенные вещества)	0.0013200	0.0208138				
2930	Пыль абразивная	0.0008800	0.0138758				
2868	Эмульсол	0.0000125	0.0001968				

№ИВ	001	Наименование источника выделения	круг	очной станок (га 250 мм SM/6Т ния)	
		огласно, "Методики расчета выбросов загрязняю ц	их в	еществ в атмос	
	работке метал	плов (по величинам удельных выбросов)" РНД 2	11.2.	02.06-2004 , MOC	ОС РК, Астана
2005 год.	EL LULIA DOGGELLI	A PLIEDOS EEG MOTOLIUMVOR RUEGEGUMG. US OFOODOUGUM	v 140	TIII IMIA OTOOOMIA	. M =k*O =/o
		и выброс для источников выделения, не обеспеченны точников выделения, не обеспеченных местными отс			
	равитационног	о оседания (см. п. 5.3.2): для пыли металлической:	k	0.2	
Количество обо			n	4	шт.
		ической пыли технологическим оборудованием (таб-	Q	0.016	г/с
лица 1):		1,7	Q	0.011	г/с
Фактический год	довой фонд вр	емени работы одной единицы оборудования в год:	Т	4380	час/год
	Расчет выбр	осов вредных веществ в атмосферу, при работе	зато	чного станка:	
				Максимально-	Валовый вы-
Код ЗВ		Наименование ЗВ		разовый вы-	брос
				брос	
2902	Пин мотопп	MATIONICO (DODOUGOURI LO DOUGOTRO)		г/с 0.0128000	т/год 0.2018304
2930	Пыль металл	ическая (взвешенные вещества)		0.0088000	0.2016304
2500	ттылы аорази	ыши		0.0000000	0.1307304
			Поп	еречно-строга	тельный
№ ИВ	001	Наименование источника выделения	cma	нок Rimex_HC6 нием эмульсол	32 (с охла-
Выбросы	определены со	огласно, "Методики расчета выбросов загрязняю ц			
		плов (по величинам удельных выбросов)" РНД 2			
2005 год.		. , , , , , , , , , , , , , , , , , , ,			
		тью процессов механической обработки является обр			
	• • • • •	(промышленной пыли), а в случае применения смазоч	∙о-он	хлаждающих жи	дкостей (СОЖ)
- аэрозолей мас		юла. 1 выброс СОЖ от одной единицы оборудования при о	_{คือ}	OTIVO MOTORROD D	000111471 1000705
по формуле: М		т выорос СОЖ от однои единицы ооорудования при о	opao	отке металлов ра	ассчитывается
		от одной единицы оборудования при обработке мета	аппов	в рассчитываетс	я по формуле
М _{год} =3600*Q*N*		эт одной одиницы оборудований при обрасотко шето	2313101	pado imbibadio	л по форшуло
где:	- , - 11				
Количество обо	рудования:		n	1	шт.
Количество обо		емени работы одной единицы оборудования в год:	n T	1 4380	шт. час/год
Количество обо Фактический год Удельные показ	довой фонд вр	емени работы одной единицы оборудования в год: ния эмульсола на 1 кВт мощности оборудования (таб-	Т	4380	час/год
Количество обо Фактический год Удельные показ лица 7):	довой фонд вр затели выделен	ния эмульсола на 1 кВт мощности оборудования (таб-	T Q	4380 0.0000005	час/год г/с
Количество обо Фактический го, Удельные показ лица 7): Мощность уста	довой фонд врематели выделенновленного обс	ния эмульсола на 1 кВт мощности оборудования (таб- рудования:	T Q N	4380 0.0000005 4.86	час/год г/с кВт
Количество обо Фактический го, Удельные показ лица 7): Мощность уста	довой фонд врематели выделенновленного обс	ния эмульсола на 1 кВт мощности оборудования (таб-	T Q N	4380 0.0000005 4.86 трогального ст	час/год г/с кВт
Количество обо Фактический го, Удельные показ лица 7): Мощность устан Расче	довой фонд врематели выделенновленного обс	ния эмульсола на 1 кВт мощности оборудования (таб- рудования:	T Q N	4380 0.0000005 4.86 строгального ст Максимально-	час/год г/с кВт
Количество обо Фактический го, Удельные показ лица 7): Мощность уста	довой фонд врематели выделенновленного обс	ния эмульсола на 1 кВт мощности оборудования (таб- рудования:	T Q N	4380 0.0000005 4.86 строгального ст Максимально- разовый вы-	час/год г/с кВт анка:
Количество обо Фактический го, Удельные показ лица 7): Мощность устан Расче	довой фонд врематели выделенновленного обс	ния эмульсола на 1 кВт мощности оборудования (таборудования: ррудования: редных веществ в атмосферу, при работе попереч	T Q N	4380 0.0000005 4.86 строгального ст Максимально-	час/год г/с кВт анка: Валовый вы- брос
Количество обо Фактический го, Удельные показ лица 7): Мощность устан Расче	довой фонд врематели выделенновленного обс	ния эмульсола на 1 кВт мощности оборудования (таборудования: ррудования: редных веществ в атмосферу, при работе попереч	T Q N	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс	час/год г/с кВт анка: Валовый вы-
Количество обо Фактический год Удельные показ лица 7): Мощность устан Расче Код 3В	довой фонд вр затели выделен новленного обс т выбросов в	ния эмульсола на 1 кВт мощности оборудования (таборудования: ррудования: редных веществ в атмосферу, при работе попереч	T Q N	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с	час/год г/с кВт анка: Валовый выброс т/год
Количество обо Фактический год Удельные показ лица 7): Мощность устан Расче Код 3В	довой фонд вр ватели выделен новленного обс т выбросов в Эмульсол	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ	N HHO-C	4380 0.0000005 4.86 строгального ст Максимальноразовый выброс г/с 0.0000024	час/год г/с кВт анка: Валовый выброс т/год 0.0000383
Количество обо Фактический год Удельные показ лица 7): Мощность устан Расче Код 3В	довой фонд вр затели выделен новленного обс т выбросов в	ния эмульсола на 1 кВт мощности оборудования (таборудования: ррудования: редных веществ в атмосферу, при работе попереч	T Q N HHO-C	4380 0.0000005 4.86 строгального ст Максимальноразовый выброс г/с 0.0000024 арно-витнторе	час/год г/с кВт анка: Валовый выброс т/год 0.0000383
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код 3В	довой фонд вреватели выделенного обс т выбросов в Эмульсол	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения	T Q N HHO-C	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе	час/год г/с кВт анка: Валовый выброс т/год 0.0000383
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код 3В 2868 № ИВ Выбросы	довой фонд вреватели выделенного обс т выбросов в Эмульсол	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения ргласно, "Методики расчета выбросов загрязняюще	Т Q N HHO-C TOKA RT : сол цих в	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе	час/год г/с кВт анка: Валовый выброс т/год 0.0000383
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо	довой фонд вреватели выделенного обс т выбросов в Эмульсол	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения	Т Q N HHO-C TOKA RT : сол цих в	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе	час/год г/с кВт анка: Валовый выброс т/год 0.0000383
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год.	довой фонд вреватели выделенного обс т выбросов в Эмульсол определены сс работке метал	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющилов (по величинам удельных выбросов)" РНД 2	Т Q N HHO-C	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 стиний стинок
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер	довой фонд вреватели выделенного обствыбросов в Эмульсол определены ссработке метальной особеннос	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереченых веществ в атмосферу, при работе попереченых выменование ЗВ Наименование источника выделения ргласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 отью процессов механической обработки является обработк	Т	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 стиний стинок
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде ті - аэрозолей мас	довой фонд вриватели выделенного обот выбросов вримульсол ООТ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕННОЕ ОПРЕДЕЛЕННОЕ ОПРЕД	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки является обработки является обработышленной пыли), а в случае применения смазочнола.	Т Q N HHO-C	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станокением эмуль-
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код 3В 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде ті - аэрозолей має Максима.	довой фонд вриматели выделенного обот выбросов вримульсол определены соработке металиной особенносовердых частицельный разовый разовый разовый разовый	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющего плов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обрапомышленной пыли), а в случае применения смазоч	Т Q N HHO-C	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станокением эмуль-
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код 3В 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде тв - аэрозолей мас Максима по формуле: Ма	довой фонд вреватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО СО РОВОТЬ В В В В В В В В В В В В В В В В В В В	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереченых веществ в атмосферу, при работе попереченых выменование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки при серона. (промышленной пыли), а в случае применения смазоченыя смазоченыя при серона.	Т Q N HHO-C	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов р	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок ением эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ)
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде тварозолей масимаа по формуле: Ма	довой фонд вреватели выделенновленного обс т выбросов в Эмульсол определены соработке метановной особенности, сла или эмульсольный разовый разовый разовогом, г/с выброс СОЖ обсательной разовый разовогом особенности, сла или эмульсонный разовый разовыброс СОЖ обсать правительный разовый разо	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки является обработки является обработышленной пыли), а в случае применения смазочнола.	Т Q N HHO-C	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов р	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок ением эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ)
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде тв- аэрозолей мас Максима по формуле: Ме Валовый Мгод=3600*Q*N*	довой фонд вреватели выделенновленного обс т выбросов в Эмульсол определены соработке метановной особенности, сла или эмульсольный разовый разовый разовогом, г/с выброс СОЖ обсательной разовый разовогом особенности, сла или эмульсонный разовый разовыброс СОЖ обсать правительный разовый разо	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереченых веществ в атмосферу, при работе попереченых выменование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки при серона. (промышленной пыли), а в случае применения смазоченыя смазоченыя при серона.	Т Q N HHO-C	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов р	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок ением эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ)
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде ті - аэрозолей мас максимало формуле: М. Валовый Мгод=3600°Q*N*где:	определены сорвотке метали вый разовый особеннос вердых частиц сла или эмульстыный разовый сек=Q*N, г/с выброс СОЖ от/10°, т/год	ния эмульсола на 1 кВт мощности оборудования (таборудования: редных веществ в атмосферу, при работе попереченых веществ в атмосферу, при работе попереченых выменование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки при серона. (промышленной пыли), а в случае применения смазоченыя смазоченыя при серона.	Т Q N нно-с	4380 0.0000005 4.86 Трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок ением эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде ті - аэрозолей масимало формуле: Мормуле: Мормуле	довой фонд вриватели выделенного обствыбросов в Эмульсол Определены соработке металоной особеннос вердых частиц сла или эмульсольный разовый ем — Q*N, г/с выброс СОЖ от/10°, т/год орудования:	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки промышленной пыли), а в случае применения смазочола. 1 выброс СОЖ от одной единицы оборудования при обработке мета	Т Q N ННО-СС	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов раз в рассчитываетс	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде ті - аэрозолей мас Максима. по формуле: Ма Валовый Мгод=3600*Q*N* где: Количество обо	довой фонд вриватели выделенновленного обс т выбросов в эмульсол ООТ ОПРЕДЕЛЕННО СОВЕРДЫХ ЧАСТИЦ СЛА ИЛИ ЭМУЛЬСОВ В Э	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняюце плов (по величинам удельных выбросов)" РНД 2 ктью процессов механической обработки является обработки является обработки является обработки применения смазочола. 1 выброс СОЖ от одной единицы оборудования при обработке мета одной единицы оборудования при обработке мета одной единицы оборудования в год:	Т Q N нно-с	4380 0.0000005 4.86 Трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов роз в рассчитывается 1 4380	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана катмосферный дкостей (СОЖ) ассчитывается я по формуле: час/год
Количество обо Фактический го, Удельные показ лица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической об 2005 год. Характер воздух в виде ті - аэрозолей максима. по формуле: Мормуле: Мор	довой фонд вриватели выделенновленного обс т выбросов в эмульсол ООТ ОПРЕДЕЛЕННО СОВЕРДЫХ ЧАСТИЦ СЛА ИЛИ ЭМУЛЬСОВ В Э	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняющеннов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки промышленной пыли), а в случае применения смазочола. 1 выброс СОЖ от одной единицы оборудования при обработке мета	Т Q N ННО-СС	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов раз в рассчитываетс	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо 2005 год. Характер воздух в виде ті - аэрозолей мак Максима. по формуле: Ма Валовый Мгод=3600*Q*N*где: Количество обо Фактический го, Удельные показлица 7):	довой фонд вриватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОСОБЕННО ОСОБЕННО ОСОБЕННО ОПРЕДЕЛЕНИЯ В ОПРЕДЕЛЕНИЯ ОПРЕДЕЛЕН	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняюця плов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки является обработки является обработки является обработа. от процессов механической обработки является обработа. от одной единицы оборудования при обработке метания обработке метания работы одной единицы оборудования в год: емени работы одной единицы оборудования в год: ния эмульсола на 1 кВт мощности оборудования (таб-	Т Q N нно-с	4380 0.0000005 4.86 трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра в рассчитываетс 1 4380 0.0000005	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 стини стиничения образования образов
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо 2005 год. Характер воздух в виде ті - аэрозолей мас Максима по формуле: Мощность устав Количество обо Фактический го, Удельные показлица 7): Мощность устав	довой фонд вриватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОСОБЕННОО ОСОБЕННОО ОСОБЕННОО ОБЕРДЫХ ЧАСТИЦЕЛА ИЛИ ЭМУЛЬСИВНО СОЖНО ОТТ/10°, Т/год ВЫБРОС СОЖ ОТТ/10°, т/год ОВОВОЙ фонд вриватели выделенного обственного об	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняюця плов (по величинам удельных выбросов)" РНД 2 ктью процессов механической обработки является обработки является обработки является обработки является обработа. от процессов механической обработки является обработа. от одной единицы оборудования при обработке метания одной единицы оборудования в годения эмульсола на 1 кВт мощности оборудования (таборудования:	Т Q N HHO-CC	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра в рассчитываетс 1 4380 0.0000005 33	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- феру при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле: час/год г/с кВт
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо 2005 год. Характер воздух в виде ті - аэрозолей мас Максима по формуле: Мощность устав Количество обо Фактический го, Удельные показлица 7): Мощность устав	довой фонд вриватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОСОБЕННОО ОСОБЕННОО ОСОБЕННОО ОБЕРДЫХ ЧАСТИЦЕЛА ИЛИ ЭМУЛЬСИВНО СОЖНО ОТТ/10°, Т/год ВЫБРОС СОЖ ОТТ/10°, т/год ОВОВОЙ фонд вриватели выделенного обственного об	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняюця плов (по величинам удельных выбросов)" РНД 2 стью процессов механической обработки является обработки является обработки является обработки является обработа. от процессов механической обработки является обработа. от одной единицы оборудования при обработке метания обработке метания работы одной единицы оборудования в год: емени работы одной единицы оборудования в год: ния эмульсола на 1 кВт мощности оборудования (таб-	Т Q N HHO-CC	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра в рассчитываетс 1 4380 0.0000005 33	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле шт. час/год г/с кВт
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо 2005 год. Характер воздух в виде ті - аэрозолей мас Максима. по формуле: М. Валовый Мгод=3600*Q*N*где: Количество обо Фактический го, Удельные показлица 7): Мощность устав	довой фонд вриватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОСОБЕННОО ОСОБЕННОО ОСОБЕННОО ОБЕРДЫХ ЧАСТИЦЕЛА ИЛИ ЭМУЛЬСИВНО СОЖНО ОТТ/10°, Т/год ВЫБРОС СОЖ ОТТ/10°, т/год ОВОВОЙ фонд вриватели выделенного обственного об	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выбросов загрязняющенное (по величинам удельных выбросов)" РНД 2 ктью процессов механической обработки является обработки при оброла. В выброс СОЖ от одной единицы оборудования при обрато одной единицы оборудования при обработке метания эмульсола на 1 кВт мощности оборудования (таборудования: вредных веществ в атмосферу, при работе токаривредных веществ в атмосферу в при работе токаривредных веществ в атмосферу в при работе токаривредных веществ в атмосферу в при работе токаривредных в при веществ в атмосферу в при работе токаривредных веществ в атмосферу в при работе токаривредных в при веществ в атмосферу в при работе токаривредных в при веществ в при веществ в атмосферу в при работе токаривредных в при веществ в при	Т Q N HHO-CC	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра в рассчитываетс 1 4380 0.0000005 33 нторезного ста	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле шт. час/год г/с кВт нка: Валовый вы-
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо 2005 год. Характер воздух в виде ті - аэрозолей мас Максима по формуле: Мощность устав Количество обо Фактический го, Удельные показлица 7): Мощность устав	довой фонд вриватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОСОБЕННОО ОСОБЕННОО ОСОБЕННОО ОБЕРДЫХ ЧАСТИЦЕЛА ИЛИ ЭМУЛЬСИВНО СОЖНО ОТТ/10°, Т/год ВЫБРОС СОЖ ОТТ/10°, т/год ОВОВОЙ фонд вриватели выделенного обственного об	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выделения огласно, "Методики расчета выбросов загрязняюця плов (по величинам удельных выбросов)" РНД 2 ктью процессов механической обработки является обработки является обработки является обработки является обработа. от процессов механической обработки является обработа. от одной единицы оборудования при обработке метания одной единицы оборудования в годения эмульсола на 1 кВт мощности оборудования (таборудования:	Т Q N HHO-CC	4380 0.0000005 4.86 Трогального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра в рассчитывается 1 4380 0.0000005 33 нторезного ста Максимально- разовый выброс	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле шт. час/год г/с кВт
Количество обо Фактический го, Удельные показлица 7): Мощность устав Расче Код ЗВ 2868 № ИВ Выбросы ханической обо 2005 год. Характер воздух в виде ті - аэрозолей мас Максима. по формуле: М. Валовый Мгод=3600*Q*N*где: Количество обо Фактический го, Удельные показлица 7): Мощность устав	довой фонд вриватели выделенного обствыбросов в Эмульсол ООП ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОПРЕДЕЛЕННО ОСОБЕННОО ОСОБЕННОО ОСОБЕННОО ОБЕРДЫХ ЧАСТИЦЕЛА ИЛИ ЭМУЛЬСИВНО СОЖНО ОТТ/10°, Т/год ВЫБРОС СОЖ ОТТ/10°, т/год ОВОВОЙ фонд вриватели выделенного обственного об	ния эмульсола на 1 кВт мощности оборудования (таб- рудования: редных веществ в атмосферу, при работе попереч Наименование ЗВ Наименование источника выбросов загрязняющенное (по величинам удельных выбросов)" РНД 2 ктью процессов механической обработки является обработки при оброла. В выброс СОЖ от одной единицы оборудования при обрато одной единицы оборудования при обработке метания эмульсола на 1 кВт мощности оборудования (таборудования: вредных веществ в атмосферу, при работе токаривредных веществ в атмосферу в при работе токаривредных веществ в атмосферу в при работе токаривредных веществ в атмосферу в при работе токаривредных в при веществ в атмосферу в при работе токаривредных веществ в атмосферу в при работе токаривредных в при веществ в атмосферу в при работе токаривредных в при веществ в при веществ в атмосферу в при работе токаривредных в при веществ в при	Т Q N HHO-CC	4380 0.0000005 4.86 строгального ст Максимально- разовый выброс г/с 0.0000024 арно-витнторе 317-6 (с охлажде ом) веществ в атмос 02.06-2004, МОС ание выбросов в хлаждающих жи, отке металлов ра в рассчитываетс 1 4380 0.0000005 33 инторезного ста Максимально- разовый вы-	час/год г/с кВт анка: Валовый выброс т/год 0.0000383 ваный станок внием эмуль- сферу при мерос РК, Астана атмосферный дкостей (СОЖ) ассчитывается я по формуле шт. час/год г/с кВт нка: Валовый вы-

№ИВ	001	арный станок S в охлаждения)	7-		
		тласно, "Методики расчета выбросов загрязняю ц			
	работке метал	лов (по величинам удельных выбросов)" РНД 2	11.2.	02.06-2004 , MOC	С РК, Астана,
2005 год.					
		ихся при механической обработке металлов, без пр	имен	нения СОЖ, от о	дной единицы
оборудования, с					
		выброс для источников выделения, не обеспеченны			
	выброс для исто	очников выделения, не обеспеченных местными отс	осам	и: М_{год}=3600*k*Q	*Т/10 ⁵, т/год
где:				1	
		оседания (см. п. 5.3.2): для пыли металлической:	k	0.2	
Количество обор	<i>j</i>		n	1	ШТ.
	тение металлич	неской пыли технологическим оборудованием (таб-	Q	0.0063	г/с
лица 4):			`		.,.
Фактический год	овой фонд вре	мени работы одной единицы оборудования в год:	Т	4380	час/год
	Расчет выбро	осов вредных веществ в атмосферу, при работе	тока	рного станка:	
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос	Валовый вы- брос
				г/с	т/год
2902	Пыль металли	ческая (взвешенные вещества)		0.0012600	0.0198677
		Итого по источнику:		г/с	т/год
2868	Эмульсол			0.0000928	0.0014626
2902	Пыль металли	ческая (взвешенные вещества)		0.0183200	0.2888700
2930	Пыль абразив	ная		0.0101400	0.1598875
		Всего по источнику:		0.0285528	0.4502201

	№ ИЗА	0171	Наименование источника за-	Вентиляционная труба
	ME NOW		грязнения атмосферы	Сварочные работы
	№ИВ	002	наименование источника вы- деления	Электроды ОЗС-12 и Полуавтоматическая сварка алюминиевых сплавов в среде аргона и гелия алю- миниевой проволокой

Выбросы от сварочного участка определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

Исходные данные:

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе сварки выполнен на единицу массы расходуемых материалов.

Максимальный разовый выброс ЗВ, выбрасываемых в атмосферу в процессе сварки, определяют по формуле:

М_{сек}=((K_m**B_{час})/3600)*(1-η)*k, г/с
Валовое количество ЗВ, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле:

 $M_{rod} = ((B_{rod} * K_m *)/10^6) * (1-\eta) * k, т/год$

		WIгод ((Droд Nm // I	о) (1-1]) к , 1/10д		
где:			Электроды ОЗС-12	ниевых сплавов в	кая сварка алюми- среде аргона и ге- вой проволокой
Время раб год:	оты сварочного оборудования в	G	1460	1460	ч/год
няемых сь	ий максимальный расход примеррья и материалов, с учетом дисработы оборудования:	Вчас	4	2	кг/час
Расход при	именяемого сырья и материалов:	Вгод	5840	2920	кг/год
частиц:	ент гравитационного осаждения	K	1.0	1.0	дол.
	ный показатель выброса ЗВ "х" н		расходуемых (п		я и материалов:
0101	Алюминий оксид	K _m ^x		10	г/кг
0123	Железа оксид	K _m ^x	8.9		г/кг
0143	1 1		0.8		г/кг
0203	Хром (VI) оксид	K _m ^x	0.5		г/кг
0301	Азота диоксид			0.9	г/кг
0344	0344 Фториды неорг-ие плохо растворимые		1.8		г/кг
	нистки твердой фазы аэрозоля в ем фильтре:	η	0.995	0.995	дол.
	чистки газообразной фазы в со- и фильтре:	η	0.9	0.9	дол.
	Расчет выбросов вре	дных веществ в	атмосферу от с	варочного агрегата:	
Код ЗВ	Наименование ЗВ	Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год	Максимально-разо- вый выброс, г/с	Валовый выброс, т/год
код зв	паименование ЗБ	Электроды ОЗС-12		Полуавтоматическая сварка алюми ниевых сплавов в среде аргона и го лия алюминиевой проволокой	
0101	Алюминий оксид			0.0000278	0.0001460
0123	Железа оксид	0.0000494	0.0002599		

Марганец и его соединения

0143

0.0000234

0203	Хрома (VI) оксид	0.0000028	0.0000146		
0301	Азота диоксид			0.0000500	0.0002628
0344	0344 Фториды неорг-ие плохо растворимые		0.0000526		
	Всего	выбросов при	сварочных рабо	тах:	
Код ЗВ	Код 3В Наименование 3В		г/с	т/год	
0101	0101 Алюминий оксид			0.0000278	0.0001460
0123	Железа оксид			0.0000494	0.0002599
0143	Марганец и его соединения			0.0000044	0.0000234
0203	0203 Хрома (VI) оксид			0.0000028	0.0000146
0301 Азота диоксид			0.0000500	0.0002628	
0344	0344 Фториды неорг-ие плохо растворимые			0.0000100	0.0000526
Всего по источнику:				0.0001444	0.0007593

№ ИЗА	0171	Наименование источника загряз- нения атмосферы	Вентиляционная труба
№ИВ	003	Наименование источника выде- ления	Покрасочные работы кистью, валиком эмаль ПФ-115

Расчет выделений (выбросов) загрязняющих веществ (3B) в атмосферу выполнен согласно: РНД 211.2.02.05 -2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов", Астана, 2005 г.

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (г/с):

при окраске:

$$M_{\text{okp}}^{x} = m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}} \times \delta_{\text{x}} / (10^{6} \times 3.6) \times (1 - \eta)$$
 $M_{\text{m}}^{x} = m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{m}}^{x} \times \delta_{\text{m}} / (10^{6} \times 3.6) \times (1 - \eta)$

при сушке: $\mathbf{M}^{\mathsf{x}}_{\mathsf{суш}} = \mathbf{m}_{\mathsf{M}} \times \mathbf{f}_{\mathsf{p}} \times \delta_{\mathsf{p}}^{\mathsf{y}} \times \delta_{\mathsf{x}}^{\mathsf{y}} / (10^6 \times 3.6) \times (1 - \eta)$ Валовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (т/год):

при окраске:

$$M_{cym}^{x} = m_{\phi} \times f_{p} \times \delta_{p}' \times \delta_{x} / 10^{6} \times (1 - \eta)$$

$$M_{cym}^{x} = m_{\phi} \times f_{p} \times \delta_{y}' \times \delta_{x} / 10^{6} \times (1 - \eta)$$

при сушке:

Максимальный разовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле:

$$M^{a}_{H.OKp} = m_{M} x \delta_{a} x (100 - f_{p}) / (10^{4} x 3.6) x (1 - \eta)*Koc, (\Gamma/C)$$

Валовый выброс нелетучей (сухой) части аэрозоля краски, образующегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле:

$$M_{\text{н.окр}}^{a} = m_{\phi} \times \delta_{a} \times (100 - f_{p}) / 10^{4} \times (1 - \eta) * Koc, (т/год)$$

Общий валовый или максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

 $\mathbf{M}^{x}_{oбщ} = \mathbf{M}^{x}_{okp} + \mathbf{M}^{x}_{cym}$ Исходные данные:

	Способ нанесения:	кистью, в	заликом
	Окрасочный материал	Von 3B	ПФ-115
	Наименование ЗВ	Код ЗВ	ΠΦ-115
Ксилол		0616	50
Уайт-спирит		2752	50
Доля летучей	части (растворителя) в ЛКМ, (%, мас.), (таблица 2)	f _p	45
Сухой остаток		(100-f _p)	55
Доля растворь	ителя, выделяющаяся при окраске и сушке	Dp	100
	отерянной в виде аэрозоля, (% мас.), (таблица 3)	δ_{a}	0
Коэффициент	оседания аэрозоля краски, (таблица 1)	K _{oc}	0.4
Количество ра	асходуемого материала, (кг/час)	m _ф	2
Количество ра	асходуемого материала, (т/год)	m _м	0.2
	ителя в ЛКМ, выделившегося при нанесении покры- (% мас.), (таблица 3)	δ' _p	28
Доля растворі (% мас.), (табі	ителя в ЛКМ, выделившегося при сушке покрытия, пица 3)	δ"p	72
Степень очист	гки воздуха газоочистного оборудования (доли ед.)	η	0
	Расчет выбросов вредных веществ в атмо	сферу при покраске изде	пия:
K 2D	Harris 2D	Максимально-разовый	P

Код ЗВ Наименование ЗВ Валовый выброс, т/г выброс, г/с 0.0151200 0616 0.0350000 Ксилол 2752 0.0151200 Уайт-спирит 0.0350000 2902 0 0 Взвешенные вещества

Расчет выбросов вредных веществ в атмосферу при сушке изделия:

Код ЗВ	Наименование ЗВ	максимально-разовыи выброс, г/с	Валовый выброс, т/г
0616	Ксилол	0.0900000	0.0388800
2752	Уайт-спирит	0.0900000	0.0388800
2902	Взвешенные вещества		

Всего при использовании данного типа ЛКМ:

Код ЗВ	Наименование ЗВ	Максимально-разовый выброс	Валовый выброс
		г/с	т/год
0616	Ксилол	0.1250000	0.0540000
2752	Уайт-спирит	0.1250000	0.0540000
	Всего по источнику:	0.2500000	0.1080000

№ ИВ 003 Наименование источника выделения Покрасочные работы кистью, валиком эмаль ЭП-525

Расчет выделений (выбросов) загрязняющих веществ (3В) в атмосферу выполнен согласно: РНД 211.2.02.05 - 2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов", Астана, 2005 г.

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (г/с):

при окраске: $\mathbf{M^{x}}_{\text{окр}} = \mathbf{m_{M}} \mathbf{x} \ \mathbf{f_{p}} \mathbf{x} \ \mathbf{\delta^{t}_{p}} \mathbf{x} \ \mathbf{\delta_{x}} \ / \ (10^{6} \mathbf{x} \ 3.6) \mathbf{x} \ (1 - \eta)$ при сушке: $\mathbf{M^{x}}_{\text{суш}} = \mathbf{m_{M}} \mathbf{x} \ \mathbf{f_{p}} \mathbf{x} \ \mathbf{\delta^{v}_{p}} \mathbf{x} \ \mathbf{\delta_{x}} \ / \ (10^{6} \mathbf{x} \ 3.6) \mathbf{x} \ (1 - \eta)$

Валовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (т/год):

Максима́льный разовый выброс нелетучей (сухой) ча́сти аэрозоля кра́ски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле:

 $M_{H,OKD}^a = m_M \times \delta_a \times (100 - f_D) / (10^4 \times 3.6) \times (1 - \eta) \times (\Gamma/C)$

Валовый выброс нелетучей (сухой) части аэрозоля краски, образующегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле:

 $M^{a}_{H.окр} = m_{\phi} \times \delta_{a} \times (100 - f_{p}) / 10^{4} \times (1 - \eta)*Кос, (т/год)$

Общий валовый или максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

по формуле:	· · · · · · · · · · · · · · · · · · ·			
	$\mathbf{M}^{x}_{o6uu} = \mathbf{M}^{x}_{okp} + \mathbf{M}^{y}$			
	Исходные данны			
	Способ нанесения:	кистью,	валиком	
	Окрасочный материал	Код ЗВ	ЭП-525	
16	Наименование ЗВ	0010	20.44	
Ксилол		0616	30.44	
Бутилацетат		1210 1401	45.99	
Ацетон	×	· · · · · · · · · · · · · · · · · · ·	23.57	
	й части (растворителя) в ЛКМ, (%, мас.), (таблица 2)	f _p (400 f.)	29	
Сухой остато		(100-f _p)	71	
доля раство	рителя, выделяющаяся при окраске и сушке	Dp	100	
	, потерянной в виде аэрозоля, (% мас.), (таблица 3)	δ _a	0	
	нт оседания аэрозоля краски, (таблица 1)	K _{oc}	0.4	
	расходуемого материала, (кг/час)	m _φ	2	
Количество	расходуемого материала, (т/год)	m _м	0.24	
	рителя в ЛКМ, выделившегося при нанесении покры-	δ' _p	28	
	я, (% мас.), (таблица 3)	'		
(% мас.), (та		δ" _p	72	
Степень очи	стки воздуха газоочистного оборудования (доли ед.)	η	0	
	Расчет выбросов вредных веществ в атмо		лия:	
Код ЗВ	Наименование ЗВ	Максимально-разовый выброс, г/с	Валовый выброс, т/г	
0616	Ксилол	0.0137318	0.0059321	
1210	Бутилацетат	0.0207466	0.0089625	
1401	Ацетон	0.0106327	0.0045933	
2902 Взвешенные вещества		0	0	
	Расчет выбросов вредных веществ в атм	осферу при сушке издел	ия:	
Код ЗВ	Наименование ЗВ	Максимально-разовый выброс, г/с	Валовый выброс, т/г	
0616	Ксилол	0.0353104	0.0152541	
1210	Бутилацетат	0.0533484	0.0230465	
1401	Ацетон	0.0273412	0.0230403	
2902	Взвешенные вещества	0.0275412	0.0110114	
2302	Всего при использовании да	нного типа ПКМ:	<u> </u>	
	Восто при использовании да	Максимально-разовый		
Код ЗВ	Наименование ЗВ	выброс	Валовый выброс	
код ов	Transierio Barinio OD	r/c	т/год	
0616	Ксилол	0.0490422	0.0211862	
1210	Бутилацетат	0.0740950	0.0320090	
1401	Ацетон	0.0379739	0.0164047	
	Всего по источнику:	0.1611111	0.0695999	
	Итоговый выброс вредных веществ в атмос			
Код ЗВ	Наименование 3В	r/c	т/год	
0616	Ксилол	0.1740422	0.0751862	
1210	Бутилацетат	0.0740950	0.0320090	
1401	Ацетон	0.0379739	0.0164047	
2752	Уайт-спирит	0.1250000	0.0540000	
	Итого по источнику:	0.4111111	0.1775999	

№ ИЗА	0171	Наименование источника загрязнения атмо-	Вентиляционная труба
ME NISA	0171	сферы	Газовая сварка стали
№ ИВ	004	Наименование источника выделения	Пропан-бутановая смесь и ацетилен- кислородное пламя

Выбросы от сварочного участка определены согласно, "Методики расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

Исходные данные:

Расходный материал, используемый при газовой сварке - пропан-бутановая смесь и ацетилен-кислородное пламя.

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе сварки выполнен на единицу массы расходуемых материалов.

Максимальный разовый выброс 3В, выбрасываемых в атмосферу в процессе сварки, определяют по формуле: _{сек}=((K_m×*В_{час})/3600)*(1-η), г/с

Валовое количество ЗВ, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле:

$M_{rod} = ((B_{rod})^2)$	*K _m *)/10°)*(1-η), т/год				
Время раб	оты сварочного оборудования в год:	G	730	730	ч/год
	ий максимальный расход применяемых сырья и в, с учетом дискретности работы оборудования:	Вчас	1	2	кг/час
Расход при	именяемого сырья и материалов:	Вгод	730	1460	кг/год
Удель	ный показатель выброса ЗВ "х" на единицу массы	расходуемых (приготовляемы	ых) сырья и мат	ериалов:
0301	Азота диоксид	K _m ^x	15	22	г/кг
	нистки воздуха в соответствующем аппарате, коб бжается группа технологических агрегатов:	η	-	-	
	Расчет выбросов вредных веществ	в в атмосферу	от газовой св	арки:	
		Макси-		Макси-	
		мально-разо-	Валовый вы-	мально-разо-	Валовый вы-
Kon OD	Hamana OD	вый выброс,	брос, т/год	вый выброс,	брос, т/год

Код ЗВ Наименование ЗВ г/с Ацетилен-кислородное Пропан-бутановая смесь пламя 0301 0.0041667 0.0109500 0.0321200 Азота диоксид

	итоговые выоросы.				
Код ЗВ	Наимонорание ЗВ		Наименование 3В		сы 3В
код зв	паименование зв	г/с	т/год		
0301	Азота диоксид	0.0163889	0.0430700		

Nº N3A	0171	атмосферы	Газовая резка металла		
№ ИВ	005	Наименование источника выделения	Разрезаемый материал 5, 10, 20 мм		
Вы6	бросы от о	сварочного участка определены согласно, "	Методики расчета выделений (выбросов) загрязняю-		
щих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004					
МООС РК, Астана, 2005 год.					

Вентиляционная труба

Исходные данные:

Расходный материал, используемый при резке - сталь углеродистая

Наименование источника загрязнения

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе резки выполнен на единицу времени работы оборудования.

Максимальный разовый выброс ЗВ, выбрасываемых в атмосферу в процессе газорезки, определяют по фор-

$M_{cek} = (K_m^x/3600)*(1-\eta)*k$, Γ/c

Валовое количество 3В, выбрасываемых в атмосферу, в процессе газорезки, определяют по формуле: $M_{rod} = (G^*K_m^*)/10^6)^*(1-\eta)^*k$, т/год

Исходные данные:

Толщина	а разрезаемого слоя металла:	b	5	10	20	MM
Время работы оборудования в год:		G	366	366	366	ч/год
Коэффи	циент гравитационного осаждения частиц	k	1.0	1.0	1.0	дол.
	Удельный показатель выброса ЗВ ">	к" на единиц	у времени работ	ы оборудова	ания (табл.4):	
0123	Железа оксид	K _m ^x	72.9	129.1	197	г/ч
0143	Марганец и его соединения	K _m ^x	1.1	1.9	3	г/ч
0301	Азота диоксид	K _m ^x	39	64.1	53.2	г/ч
0337	0337 Углерод оксид		49.5	63.4	65	г/ч
Степень очистки твердой фазы аэрозоля в очищающем фильтре:		η	0.995	0.995	0.995	505
Степень очистки газообразной фазы в сочищаю-		η	0.9	0.9	0.9	дол.

Расчет выбросов вредных веществ в атмосферу от газовой резки:

	. по тол профинент подоти по поставить по						
		Максимально-	Валовый	Максимально-	Валовый	Максимально-	Валовый
		разовый вы-	выброс,	разовый вы-	выброс,	разовый вы-	выброс,
Код ЗВ	Наименование 3В	брос, г/с	т/год	брос, г/с	т/год	брос, г/с	т/год
		Толщина материала 5		Толщина материала 10		Толщина материала 20	
		ММ		ММ		ММ	
0123	Железа оксид	0.0001013	0.0001334	0.0001793	0.0002363	0.0002736	0.0003605
0143	Марганец и его соеди- нения	0.0000015	0.0000020	0.0000026	0.0000035	0.0000042	0.0000055
0301	Азота диоксид	0.0010833	0.0014274	0.0017806	0.0023461	0.0014778	0.0019471
0337	Углерод оксид	0.0013750	0.0018117	0.0017611	0.0023204	0.0018056	0.0023790
Итого по источнику выделения:		0.0025611	0.0033745	0.0037236	0.0049063	0.0035612	0.0046921
	, .						

Код ЗВ

№ ИЗА

Наименование ЗВ

т/год

г/с

0123 Железа оксид 0.0005542 0.0007302 0143 Марганец и его соединения 0.0000083 0.0000110 0301 Азота диоксид 0.0043417 0.0057206 0337 Углерод оксид 0.0049417 0.0065111		Всего по источнику:	0.0098459	0.0129729
0143 Марганец и его соединения 0.0000083 0.0000110	0337	Углерод оксид	0.0049417	0.0065111
	0301	Азота диоксид	0.0043417	0.0057206
0123 Железа оксид 0.0005542 0.0007302	0143	Марганец и его соединения	0.0000083	0.0000110
	0123	Железа оксид	0.0005542	0.0007302

№ ИЗА	0173	Наименование источника загрязнения атмо- сферы	Выхлопная труба
№ ИВ	001	Наименование источника выделения	Дизельный генератор освети- тельной мачты Mosa GE33 VSX- EAS в механической мастерской

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: $\mathbf{M}_{\mathtt{cex}} = \mathbf{e}_i ^* \mathbf{P}_{\mathtt{s}} / 3600, \, \mathbf{r/c}$

гле:

е, - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки:

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: $\mathbf{M}_{rog} = \mathbf{q}_i ^* \mathbf{B}_{rog} / 1000$, $\mathbf{\tau} / rog$

де:

q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):

расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: В _{год} = b ₃ * k * P ₃ * T*10 - ⁶ :	В _{год}	0.008	т/год
Расход топлива:	b	6.37	л/ч
т асход топлива.	b	5.54	кг/ч
Средний удельный расход топлива:	b₃	210	г/кВт.ч
Плотность дизельного топлива:	ρ	0.87	кг/л
Коэффициент использования:	k	1	
Время работы:	Т	19.8	ч/год
Исходные данные по исто	очнику выброс	СОВ	
Количество:	N	1	ШТ
Частота вращения вала:	n	1500	об/мин
Группа СДУ:		Α	
Расчет расхода отработанн	ых газов и топ	ілива	
Расход отработанных газов, G _{or} = 8.72*10 ^{-6*} b ₃ * P ₃	Gor	0.048	кг/с
Температура отходящих газов:	T _{or}	723	K
Плотность газов при 0°C:	γ0 _{or}	1.31	кг/м ³
Плотность газов при Т _{ог} (К), у ог= у0 ог/ (1+Т ог/ 273)	У ог	0.35916	кг/м ³
Объемный расход отработанных газов, Q _{ог} = G _{ог} / у _{ог}	Q _{or}	0.1346	м ³ /с
Расчет выбросов вредных веществ в атмосф	env scero ot r	изепьного генерато	na:

	Расчет выоросов вредных веществ в атмосферу всего от дизельного генератора:						
Код ЗВ	е _і , q _і , Наименование ЗВ		Максимально-ра- зовый выброс	Валовый вы- брос			
		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год		
	Азота оксиды	10.3	43	0.075533333	0.0003422		
0301	Азота диоксид			0.0604267	0.0002738		
0304	Азота оксид			0.0098193	0.0000445		
0328	Сажа	0.7	3	0.0051333	0.0000239		
0330	Сера диоксид	1.1	4.5	0.0080667	0.0000358		
0337	Углерод оксид	7.2	30	0.0528	0.0002387		
0703	Бенз(а)пирен	0.000013	0.000055	0.0000001	4E-10		
1325	Формальдегид	0.15	0.6	0.0011	0.0000048		
2754	Углеводороды пр. С12-С19	3.6	15	0.0264	0.0001194		
•	Всего по источник	v:		0.1637461	0.0007409		

№ ИЗА	0174, 0176 -	Наименование источника за-	Вентиляционная труба
INº VISA	0178	грязнения атмосферы	Оборудование для пожаротушения
№ ИВ	001	Наименование источника выделения	Гидравлический насос с бензоприводом Holmatro

Выбросы от бензинового генератора определены согласно, Приложения №3 к приказу Министра ООС РК от 18.04.2008 года № 100-п **"Методики расчета выбросов загрязняющих веществ от автотранспортных предприятий"**, МООС РК, Астана 2008 год.

В настоящее время отсутствует мотодика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выпол-

нять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0.25 от величины выброса легкового карбюраторного автомомбиля с объемом двигателя до 1.2 л при движении по территории со скоростью 5 км/час.

		исходные дан	ные:		
Количеств			N	1	ШТ.
Частота в	ращения вала:		n	1500	об/мин
Эксплуатационная мощность бензинового генератора:			P _s	3.75	кВт
М	аксимальный разовый выброс i-го веще Валовый выброс i-го вещества расс	ества рассчить считывается п	ывается по фо о формуле: М	ррмуле: М _{секі} =(<i>m_{Lik}*</i> L1)/t/ _{годі} =(<i>m_{Lik}*</i> L1)*Dn*10 ⁻⁶ , т/	/3600, г/с год
лето		лето	m	0.035	г/км
		зима	m_{LNOk}	0.035	г/км
Выб	рос от бензинового генератора равен	лето		0.009	г/км
	личины выброса легкового карбюра-	зима	m _{LSO2k}	0.011	г/км
торного а	втомобиля с объемом двигателя до	лето		1.875	г/км
1.2 л: m _{Lik}	(таблица 3.5):	зима	m_{LCOk}	2.325	г/км
	, ,	лето		0.25	г/км
		зима	m_{LCxHyk}	0.375	г/км
Про(предприят	бег автомобиля в день без нагрузки по гия:	территории	L1	5	км/день
	пасно рекомендациям ОАО "НИИ Атмо кения по территории должна быть прин		٧	5	км/час
D========	·		t	1	ч/день
время рас	боты бензинового генератора:		Т	13.8	ч/год
Количеств	о рабочих дней в расчетном периоде:		Dn	14	дней/год
	Расчет расход	а отработанн	ых газов и то	плива	
	нзина за год:		Вгод	0.010	т/год
	асход бензина:		b	0.73	кг/ч
Средний у	дельный расход бензина:		b₃	195	г/кВт.ч
Расход от	работанных газов, G _{or} = 8.72*10⁻⁶*b _э *P _э		G_{or}	0.006	кг/с
	/ра отходящих газов:		T _{or}	400	ပ္
Плотность	газов при 0°C:		γ0 _{ог}	1.31	кг/м ³
Плотность	газов при Т _{ог} (К), ү_{ог}=ү0_{ог}/(1+Т_{ог}/273)		Y ог	0.53157	кг/м ³
Объемный	и́ расход отработанных газов, Q or =G or /ү	ог	Qor	0.0120	м ³ /с
	Расчет выбросов вредных веще	ств в атмосф	еру всего от	бензинового генерато	ра:
Код ЗВ	Наименовани	e 3B		Максимально-ра- зовый выброс	Валовый вы- брос
				М _{сек} , г/с	М _{год} , т/год
	Азота оксиды			0.0000486	0.0000024
0301	Азота диоксид			0.0000389	0.0000019
0304 Азота оксид			0.0000063	0.0000003	
0330 Сера диоксид			0.0000156	0.0000008	
0337	Углерод окс	ид		0.0032292	0.0001604
2704	Бензин			0.0005208	0.0000259
	Всего по источнику выдел	IDHNG.		0.0038108	0.0001893

№ИВ	002	Наименование источника выделения	Гидравлической насос с дизприводом Holmatro SPU35YF.ENG M L48N6AF3R4AACD				
Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу							
от стацион	арных дизельн	ых установок" РНД 211.2.02.04-20	104, MOOC PK, A	Астана 2005 год.			
Макси	имальный выбро	ос і-го вещества стационарной дизел	пьной установкі	и определяется по фор	рмуле:		
		М _{сек} =e _i *Р₃/360	00, г/с				
где:							
		щества на единицу полезной работь	ы стационарной	і́ дизельной установки	на режиме номи-		
нальной мо	щности, г/кВт*ч	(таблица 1 или 2):					
Эксплуатац	ионная мощнос	ть стационарной дизельной уста-	P _a	3.5	кВт		
новки:			1 9	0.0	KDT		
где:		М _{год} =q _i *В _{год} /100	u, т/год				
q _i - выброс і ной дизелы лица 3 или	ной установки с 4):	цества, г/кг топлива, приходящегося учетом совокупности режимов, сос					
q _i - выброс і ной дизель лица 3 или расход топ	ной установки с 4): пива стационар	учетом совокупности режимов, сос ной дизельной установкой за год	тавляющих экс	плуатационный цикл,	г/кг топлива (таб-		
q _i - выброс і ной дизель лица 3 или расход топ. (берется по	ной установки с 4): пива стационар о отчетным дан	учетом совокупности режимов, сос					
q _i - выброс і ной дизель лица 3 или расход топ (берется по или опреде	ной установки с 4): пива стационар о отчетным дан ляется по форм	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки)	тавляющих экс	плуатационный цикл,	г/кг топлива (таб-		
q _i - выброс і ной дизель лица 3 или расход топ. (берется по	ной установки с 4): пива стационар о отчетным дан ляется по форм	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки)	тавляющих экс В _{год}	плуатационный цикл,	г/кг топлива (таб- т/год		
q _i - выброс і ной дизель лица 3 или расход топ (берется по или опреде Расход топ	ной установки с 4): пива стационар о отчетным дан ляется по форм	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки) уле: B_{год}=b₃*k*P ₃ * T*10 - ⁶ :	ставляющих экс В _{год} b	плуатационный цикл, 0.021	г/кг топлива (таб- т/год л/ч		
q _i - выброс і ной дизель лица 3 или расход топ (берется по или опреде Расход топ Средний уд	ной установки с 4): пива стационар о отчетным дан ляется по форм пива:	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки) уле: B_{rog}=b₃*k*P₃*T*10 - ⁶ : топлива:	втавляющих экс В _{год} b b	оплуатационный цикл, 0.021 1 0.87	г/кг топлива (та́б- т/год л/ч кг/ч		
q _i - выброс і ной дизель лица 3 или расход топ (берется по или опреде Расход топ). Средний уд Плотность и	ной установки с 4): пива стационар о отчетным дан ляется по форм пива: ельный расход	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки) уле: B _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива: ива:	В _{год} В b b b b	0.021 1 0.87 249	г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч		
q _i - выброс і ной дизель лица 3 или расход топ (берется по или опреде Расход топ). Средний уд Плотность и	ной установки с 4): пива стационар о отчетным дан ляется по форм пива: ельный расход цизельного топл ент использован	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки) уле: B _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива: ива:	В _{год} В b b р _э	0.021 1 0.87 249	г/кг топлива (та́б- т/год л/ч кг/ч г/кВт.ч		
q _i - выброс і ной дизель лица 3 или расход топ (берется по или опреде Расход топ Средний уд Плотность и Коэффицие	ной установки с 4): пива стационар о отчетным дан ляется по форм пива: ельный расход цизельного топл ент использован	учетом совокупности режимов, сос ной дизельной установкой за год ным об эксплуатации установки) уле: B _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ : топлива: ива:	В _{год} В b	0.021 1 0.87 249 0.87 1 26.1	г/кг топлива (та́б- т/год л/ч кг/ч г/кВт.ч кг/л		

Частота в	ращения вала:	n	1500	об/мин	
Группа СД	ļУ:			Α	
	Расчет расхо	да отработань	ных газов и то	плива	
Расход от	работанных газов, G₀ г = 8.72*10⁻⁶*b₃*Р	0.008	кг/с		
Температу	ура отходящих газов:		T _{or}	400	٥C
Плотность	ь газов при 0°C:		γ0 _{or}	1.31	кг/м ³
Плотность	ь газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$		Yor	0.53157	кг/м ³
Объемный	й расход отработанных газов, Q or =G or	Y ог	Q_{or}	0.0143	м ³ /с
	Расчет выбросов вредных в	еществ в атмо	сферу всего о	от дизель-генератора:	
Код ЗВ	е _і , Наименование ЗВ		q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	M _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.0100139	0.0009176
0301	Азота диоксид			0.0080111	0.0007341
0304	Азота оксид			0.0013018	0.0001193
0328	Сажа	0.7	3	0.0006806	0.0000640
0330	Сера диоксид	1.1	4.5	0.0010694	0.0000960
0337	Углерод оксид	7.2	30	0.0070000	0.0006402
0703	Бенз(а)пирен	0.000013	0.000055	0.0000001	0.00000001
1325	Формальдегид	0.15	0.6	0.0001458	0.0000128
2754	Углеводороды пр. C ₁₂ -C ₁₉	3.6	15	0.0035000	0.0003201
	Всего по источнику выде	епения:		0.02170871	0.001986501

№ ИВ	003	Наименование источника выделения	Бензорез Makita DPC 6430		
Выбросы от бензопил (бензорезов) определены согласно, Приложения №3 к приказу Министра ООС РК от					
18.04.2008	18.04.2008 года № 100-п "Методики расчета выбросов загрязняющих веществ от автотранспортных предприя-				
тий", МОС	DC РК, Астана 200)8 год.			
OAC) "НИИ Атмосфера	а" сказано: выделение вредных ве	ществ в атмосферу при работе бензопил рассчитыва-		
ется по уд	ельным показател	тям выбросов загрязняющих веще <mark>с</mark>	ств легковыми автомобилями выпуска после 01.01.94 г.		
(а именно	, современными л	іегковыми автомобилями с улучше	енными экологическими характеристиками), с рабочим		
объемом д	двигателя - до 1.2	литра, работающих в режиме холе	остого хода, согласно данным таблицы 3.6 "Методики		
расчета выбросов загрязняющих веществ от автотранспортных предприятий", эти показатели имеют следую-					
щие значе	ения: СО=0,8 г/мин	; С _х H _у =0,07 г/мин (по бензину); NO _х	=0,01 г/мин; SO ₂ =0,006 г/мин.		
		Исходные да	нные:		

· · · · · · · · · · · · · · · · · · ·						
Количество:	N	1	ШТ.			
Частота вращения вала:	n	1500	об/мин			
Эксплуатационная мощность бензопилы (бензореза):	P ₉	3.3	кВт			
Максимальный разовый выброс і-го вещества рассчитывается по формуле: М _{секі} = <i>т_{ххік}</i> /60, г/с						
Poponi i poponi po popularno popular popular popular po deputati M *CO*T*40-6 -/						

 m_{xxNOk}

0.01

г/мин

максимальный разовый выброс і-го вещества рассчитывается по формуле: **М**_{соді}=**//***m_{xxik}**60*T*10⁻⁶, т/год

Выделение вредных веществ в атмосферу при работе

бензопил рассчитывается по удельным показателям выбро-	m _{xxSO2k}	0.006	г/мин
сов загрязняющих веществ легковыми автомобилями, с рабо-	m _{xxCOk}	0.8	г/мин
чим объемом двигателя - до 1.2 литра, работающих в режиме холостого хода: m _{xxik} (таблица 3.6):	m _{xxCxHyk}	0.07	г/мин
Время работы бензопилы (бензореза):	T	30.0	ч/год
Расчет расхода отработанн	ных газов и то	плива	
Расход бензина за год:	Вгод	0.022	т/год
Часовой расход бензина:	b	0.73	кг/ч
Средний удельный расход бензина:	b₃	221	г/кВт.ч
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$	G_{or}	0.006	кг/с
Температура отходящих газов:	T _{or}	400	٥C
Плотность газов при 0°С:	$\gamma 0_{or}$	1.31	кг/м ³
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$	Y ог	0.53157	кг/м ³
Объемный расход отработанных газов, Q _{ог} = G _{ог} / γ _{ог}	Q_{or}	0.0120	м ³ /с

Расчет выбросов вредных веществ в атмосферу всего от бензореза:						
Код ЗВ	Наименование ЗВ	Максимально-ра- зовый выброс	Валовый вы- брос			
		M _{сек} , г/с	M _{год} , т/год			
	Азота оксиды	0.0001667	0.0000180			
0301	Азота диоксид	0.0001333	0.0000144			
0304	Азота оксид	0.0000217	0.0000023			
0330	Сера диоксид	0.0001000	0.0000108			
0337	Углерод оксид	0.0133333	0.0014400			
2704	Бензин	0.0011667	0.0001260			
	Всего по источнику выделения: 0.0147550 0.0015935					

№ИВ	004-006	Наименование источника выделения	Дизельный генератор Yanmar, ENG M L70N5EF1C1AA
-----	---------	-------------------------------------	---

где:

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: $\mathbf{M}_{\mathsf{cek}} = \mathbf{e}_i ^* \mathbf{P}_{\mathsf{a}} / 3600, \, \mathsf{r/c}$

где:

еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: $P_{\text{\tiny 3}}$ 4.5

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:

$M_{rod} = q_i * B_{rod} / 1000, \tau / rod$

где:

q_i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):

Вгод

0.031

т/год

расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки)

или определяется по формуле: $B_{rog} = b_3 * k * P_3 * T * 10^{-6}$

Dooyon Tonnung:	b	1.5	л/ч
Расход топлива:	b	1.31	кг/ч
Средний удельный расход топлива:	b₃	290	г/кВт.ч
Плотность дизельного топлива:	ρ	0.87	кг/л
Коэффициент использования:	k	1	
Время работы:	T	25.1	ч/год
Исходные данные по ист	гочнику выбро	СОВ	
Количество:	N	3	ШТ
Частота вращения вала:	n	1500	об/мин
Группа СДУ:		Α	
Расчет расхода отработан	ных газов и тог	плива	
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$	Gor	0.011	кг/с
Температура отходящих газов:	T _{or}	400	°C
Плотность газов при 0°C:	$\gamma 0_{or}$	1.31	кг/ м ³
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$	Yor	0.53157	кг/м ³
Объемный расход отработанных газов, Q _{or} = G _{or} / γ _{or}	Q _{or}	0.0214	м ³ /с

Расчет выбросов вредных веществ в атмосферу всего от дизель-генераторов: Максимально-ра-Валовый выqi. зовый выброс брос Код ЗВ Наименование ЗВ г/кг топг/кВт.ч $M_{\text{сек}}$, г/с M_{rog} , т/год лива Азота оксиды 10.3 43 0.038625 0.003960667 0301 0.0031685 0.0309 Азота диоксид 0304 Азота оксид 0.0050214 0.0005149 0328 0.7 0.0002763 Сажа 3 0.002625 0330 Сера диоксид 1.1 4.5 0.004125 0.0004145 0337 Углерод оксид 7.2 30 0.027 0.0027633 0.000013 0.000055 0.00000006 0703 Бенз(а)пирен 0.000000005 1325 Формальдегид 0.15 0.6 0.0005625 0.0000553 2754 Углеводороды пр. С₁₂-С₁₉ 3.6 15 0.0135 0.0013816 0.08373396 0.008574405 Всего по источнику выделения:

№ ИВ	007	Наименование источника	Гидравлический насос с бензоприводом Holmatro
Nº ND	007	выделения	TPU15

Выбросы от бензинового генератора определены согласно, Приложения №3 к приказу Министра ООС РК от 18.04.2008 года № 100-п **"Методики расчета выбросов загрязняющих веществ от автотранспортных предприятий"**, МООС РК, Астана 2008 год.

В настоящее время отсутствует мотодика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0.25 от величины выброса легкового карбюраторного автомомбиля с объемом двигателя до 1.2 л при движении по территории со скоростью 5 км/час.

Исходные данные

Количество:		N	1	шт.
	Частота вращения вала:	n	1500	об/мин
Эксплуатационная мощность бензинового генератора:		P ₉	1.5	кВт

Максимальный разовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{сек}} = (m_{Lik} + \mathbf{L}1) / t / 3600$, г/с Валовый выброс і-го вещества рассчитывается по формуле: $\mathbf{M}_{\text{год}} = (m_{Lik} + \mathbf{L}1) + \mathbf{D} \mathbf{n} + \mathbf{1} \mathbf{0}^{-6}$, т/год

где:

m=·				
Выброс от бензинового генератора рав	зен лето	m	0.035	г/км
0.25 от величины выброса легкового карбю	ра- зима	m _{LNOk}	0.035	г/км
горного автомобиля с объемом двигателя	до лето		0.009	г/км
1.2 л: m _{Lik} (таблица 3.5):	зима	m _{LSO2k}	0.011	г/км

		лето		1.875	г/км
	Ţ	зима	m _{LCOk}	2.325	г/км
		лето		0.25	г/км
		зима	m _{LCxHyk}	0.375	г/км
Проб	бег автомобиля в день без нагрузки по	территории	L1	5	км/день
предприят	гия:		LI	3	кім/день
Согл	пасно рекомендациям ОАО "НИИ Атмо	сфера" ско-	v	5	км/час
рость двих	жения по территории должна быть прин	ята:	V	3	NIVI/ 9ac
Rnewa naf	боты бензинового генератора:		t	1	ч/день
Бремя рас	лоты оензинового генератора.		T	30.0	ч/год
Количеств	Количество рабочих дней в расчетном периоде:			30	дней/год
	Расчет расхода	а отработань	ных газов и то	плива	
Расход бе	Расход бензина за год:		Вгод	0.011	т/год
Часовой р	Часовой расход бензина:		b	0.37	кг/ч
Средний у	Средний удельный расход бензина:			243	г/кВт.ч
Расход от	работанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$		G _{or}	0.003	кг/с
Температу	ура отходящих газов:		T _{or}	400	°C
Плотность	ь газов при 0°C:		$\gamma 0_{or}$	1.31	кг/м ³
Плотность	ь газов при Т _{ог} (К), ү_{ог}=ү0_{ог}/(1+Т_{ог}/273)		Yor	0.53157	кг/м ³
Объемный	й расход отработанных газов, Q_{or}=G or/γ _o	ог	Q_{or}	0.0060	м ³ /с
	Расчет выбросов вредных вещес	ств в атмосф	реру всего от 6	бензинового генерато	ра:
				Максимально-ра-	Валовый вы-
Код ЗВ	Наименование	e 3B		зовый выброс	брос
				M _{сек} , г/с	М _{год} , т/год
Азота оксиды			0.0000486	0.0000053	
0301 Азота диоксид			0.0000389	0.0000042	
0304 Азота оксид			0.000063	0.0000007	
0330 Сера диоксид			0.0000156	0.0000017	
0337	Углерод окси	ΛД		0.0032292	0.0003488
2704	F	<u> </u>		0.0005000	0.0000500

Всего выбросов вредных веществ в атмосферу через вентиляционную трубу:							
Код ЗВ	Наименование ЗВ	Максимально-ра- зовый выброс	Валовый вы- брос				
		М _{сек} , г/с	М _{год} , т/год				
0301	Азота диоксид	0.0391222	0.0039231				
0304	Азота оксид	0.0063575	0.0006375				
0328	Сажа	0.0033056	0.0003403				
0330	Сера диоксид	0.0053256	0.0005238				
0337	Углерод оксид	0.0537917	0.0053527				
0703	Бенз(а)пирен	0.0000007	0.000000006				
1325	Формальдегид	0.0007083	0.0000681				
2704	Бензин	0.0022083	0.0002082				
2754	Углеводороды пр. C ₁₂ -C ₁₉	0.0170000	0.0017017				
Bcero	Всего по источникам загрязнения атмосферы: 0.12781927 0.01275541						

Бензин

Всего по источнику выделения:

№ ИЗА	0175	Наименование источника загря сферы	Наименование источника загрязнения атмо- сферы Наименование источника выделения		
№ИВ	001	Наименование источника выде			тор
от стацион	нарных дизель	ыполнены согласно, "Методики расч ных установок" РНД 211.2.02.04-20 0	04 , MOOC PK, <i>A</i>	Астана 2005 год.	
Макс	имальный выбр	ос і-го вещества стационарной дизел М _{сек} =е;*Р ₃ /3600	•	определяется по фор	рмуле:
где:		55. 1. 6 1. 1.	,		
		ещества на единицу полезной работь (таблица 1 или 2):	і стационарной	дизельной установки	на режиме номи-
Эксплуатационная мощность стационарной дизельной уста- новки: P _э 270 кЕ					кВт
	вый выброс і-го		тыной установко	і ой определяется по ф	и пормуле:
		$M_{rod} = q_i * B_{rod} / 1000$	•		
где:					
	ьной установки	щества, г/кг топлива, приходящегося с учетом совокупности режимов, сост			
расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или В _{год} 0.261 т/год определяется по формуле: B _{год} = b ₃ * k * P ₃ * T * 10 ⁻⁶ :					
Расуол топ	IUNDO:		b	12.5	л/ч
Расход топлива:			b	10.88	кг/ч

2704

0.0000563 **0.0004117**

0.0005208

Средний у	дельный расход топлива:		b₃	40	г/кВт.ч
Плотность	дизельного топлива:	0.87	кг/л		
Коэффици	ент использования:		k	1	
Время раб	оты:		Т	24.0	ч/год
	Исходные д	анные по ист	очнику выброс	ОВ	
Количеств	0:		N	1	ШТ
Частота вр	ращения вала:		n	1500	об/мин
Группа СД	У:			Б	
	Расчет расход		ых газов и топ	лива	
Расход отр	оаботанных газов, G _{or} = 8.72*10 ⁻⁶ * b ₃ * P ₃		G _{or}	0.094	кг/с
Температу	ра отходящих газов:		Tor	450	°C
	газов при 0°C:		$\gamma 0_{or}$	1.31	кг/м ³
Плотность	газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$		Yor	0.49482	кг/м ³
Объемный	і расход отработанных газов, Q _{ог} = G _{ог} / ү	Q_{or}	0.1903	м ³ /с	
	Расчет выбросов вредных ве	ществ в атмо	сферу всего о ⁻	г дизель-генератора:	
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	M _{сек} , г/с	М _{год} , т/год
	Азота оксиды	9.6	40	0.72	0.01044
0301	Азота диоксид			0.576	0.008352
0304	Азота оксид			0.0936	0.0013572
0328 Сажа		0.5	2	0.0375	0.000522
0330	Сера диоксид	1.2	5	0.09	0.001305
0337	Углерод оксид	6.2	26	0.465	0.006786
0703 Бенз(а)пирен		0.000012	0.000055	0.0000009	0.0000001
1325 Формальдегид		0.12	0.5	0.009	0.0001305
2754	Углеводороды пр. С12-С19	2.9	12	0.2175	0.003132
	Всего по источнику	:		1.4886009	0.02158471

Всего по источнику:				1.4886009	0.02158471
№ ИЗА	0179	Наименование источника загрязнения атмо- сферы Выхлопная труба			
№ ИВ	001	Наименование источника выд	Наименование источника выделения		
от стацио	нарных дизель	ыполнены согласно, "Методики расч ных установок" РНД 211.2.02.04-20 ос і-го вещества стационарной дизел М _{сек} =e,*Р₃/360	04 , МООС РК, <i>А</i> тьной установки	Астана 2005 год.	,
где:			·		
		ещества на единицу полезной работь н (таблица 1 или 2):	ы стационарной	дизельной установки	на режиме номи-
Эксплуатаі новки:	ционная мощно	сть стационарной дизельной уста-	P ₉	8	кВт
Вало	вый выброс і-го	вещества за год стационарной дизе	льной установк	ой определяется по ф	ормуле:
	•	М _{год} =q _i *В _{год} /100			. ,
где:					
q _i - выброс	і-го вредного ве	ещества, г/кг топлива, приходящегося	на один кг дизе	льного топлива, при р	аботе стационар-
		с учетом совокупности режимов, сос			
лица 3 или		, , ,	·	, , , ,	
		рной дизельной установкой за год			
	•	ным об эксплуатации установки) или	Вгод	0.185	т/год
		E: B _{rog} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	_ тод	000	
		т — под научи и учи и	b	2	л/ч
Расход тог	ілива:		b	1.74	кг/ч
Средний у	дельный расход	і топлива:	b _a	218	г/кВт.ч
	дизельного топ		ρ	0.87	кг/л
	ент использова		k	1	
Время раб			Т	59.7	ч/год
		Исходные данные по ист	очнику выброс	ОВ	
Количество	0:		N N	1	ШТ
	ащения вала:		n	1500	об/мин
Группа СД				A	
, , <u></u>	·	Расчет расхода отработанн	ых газов и топ		
Расход отг	работанных газо	DB, G _{or} = 8.72*10 ⁻⁶ *b ₃ *P ₃	Gor	0.015	кг/с
	ра отходящих га		Tor	450	°C
	газов при 0°C:		γ0 _{or}	1.31	кг/м ³
П	T (16	\ 0 //4.T /070\	1 -01	0.40400	/3

Код ЗВ

Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$

Объемный расход отработанных газов, \mathbf{Q}_{or} = \mathbf{G}_{or} / $\mathbf{\gamma}_{or}$

Наименование ЗВ

Расчет выбросов вредных веществ в атмосферу всего от дизель-генератора

e_i,

γог

 Q_{\circ}

q_i,

кг/м³

м³/с

Валовый вы-

брос

0.49482

0.0307

Максимально-ра-

зовый выброс

		г/кВт.ч	г/кг топ- лива	M _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.0228889	0.0079525
0301	Азота диоксид			0.0183111	0.0063620
0304	Азота оксид			0.0029756	0.0010338
0328	Сажа	0.7	3	0.0015556	0.0005548
0330	Сера диоксид	1.1	4.5	0.0024444	0.0008322
0337	Углерод оксид	7.2	30	0.0160000	0.0055483
0703	Бенз(а)пирен	0.000013	0.000055	0.00000003	0.0000001
1325	Формальдегид	0.15	0.6	0.0003333	0.0001110
2754	Углеводороды пр. С12-С19	3.6	15	0.0080000	0.0027741
	Всего по источнику	0.04962003	0.01721621		

№ ИЗА	0180	Наименование источника загрязнения атмо- сферы	Выхлопная труба			
№ИВ	001	Наименование источника выделения	Дизельный генератор свароч- ного оборудования Mosa GE33 DSP415VSX			
	Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.					

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: M_{ceκ}=e_i*P₃/3600, г/с

еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной уста- $P_{\mathfrak{s}}$ 20.6 кВт новки

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:

$M_{rog} = q_i * B_{rog} / 1000, \tau / год$

q - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):

711.14a 0 112.11 1/1			
расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: B _{rog} = b ₃ * k * P ₃ * T * 10 - ⁶ :	В _{год}	0.0033	т/год
Росуси топпира:	b	3.6	л/ч
Расход топлива:	b	3.13	кг/ч
Средний удельный расход топлива:	b₃	152	г/кВт.ч
Плотность дизельного топлива:	ρ	0.87	кг/л
Коэффициент использования:	k	1	
Время работы:	T	9.1	ч/год
Исходные данные по исто	чнику выброс	ЮВ	

Количество: ШΤ Частота вращения вала: 1500 об/мин n Группа СДУ: Α

Расчет расхода отработанных газов и топлива Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$ 0.027 кг/с Температура отходящих газов: 450 ٥C Плотность газов при 0°C: 1.31 кг/м³ $\gamma 0_{\text{or}}$ Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$ 0.49482 $K\Gamma/M^3$ Vor Объемный расход отработанных газов, Q_{ог}=G_{ог}/у_{ог} 0.0552 м³/с Qor

Расчет выбросов вредных веществ в атмосферу всего от дизель-генератора:

Код ЗВ	Наименование 3В	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос	
		г/кВт.ч	г/кг топ- лива	M _{сек} , г/с	М _{год} , т/год	
	Азота оксиды	10.3	43	0.0589389	0.000141	
0301	Азота диоксид			0.0471511	0.0001128	
0304	Азота оксид			0.0076621	0.0000183	
0328	Сажа	0.7	3	0.0040056	0.0000098	
0330	Сера диоксид	1.1	4.5	0.0062944	0.0000148	
0337	Углерод оксид	7.2	30	0.0412	0.0000984	
0703	Бенз(а)пирен	0.000013	0.000055	0.0000007	2E-10	
1325	Формальдегид	0.15	0.6	0.0008583	0.000002	
2754	Углеводороды пр. С12-С19	3.6	15	0.0206	0.0000492	
	Всего по источнику:				0.0003053	

№ ИЗА	0181	Наименование ис-	гочника загря	знения атмо-	Выхлопная труба	
№ИВ	001	Наименование ис		Дизельный генератор свароч- ного оборудования Mosa GE33 DSP415VSX		
		ıполнены согласно, "№				ств в атмосферу
		ıых установок" РНД∶				
Макс	имальныи выоро	ос і-го вещества стаци	онарнои дизел М_{сек}=е լ* Р ∍/360		і определяется по фор	омуле:
где:				·		
		щества на единицу по	лезной работь	ы стационарной	дизельной установки	на режиме номи-
		(таблица 1 или 2):		ı	T	
•	ционная мощнос	ть стационарной диз	ельной уста-	P₃	20.6	кВт
новки:	:					
вало	выи выорос і-го	вещества за год стаци м	юнарнои дизе. _{год} = q _i *В _{год} /100		ои определяется по ф	ормуле:
где:		IVI	год-Чі Бгод/ 100	о, тлод		
	і-го вредного веї	цества, г/кг топлива, п	риходящегося	на один кг дизе	льного топлива, при р	аботе стационар-
		учетом совокупности				
лица 3 или		,	'		, , ,	
расход тог	лива стационар	ной дизельной устан	овкой за год			
		ым об эксплуатации ус	тановки) или	Вгод	0.226	т/год
определяе	тся по формуле:	B _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :				
Расход топ	іпива.			b	3.6	л/ч
				b	3.13	кг/ч
	дельный расход			b₃	152	г/кВт.ч
	дизельного топл			ρ	0.87	кг/л
	ент использован	ия:		k	1	
Время раб	оты:			T	72.0	ч/год
16		Исходные да	анные по ист	очнику выброс		
Количество				N	1	ШТ
	ащения вала:			n	1500	об/мин
Группа СД	у:	Decues needes			A	
Восуол отп	2050701111111 17 50005	Расчет расход 3, G _{or} = 8.72*10 ⁻⁶ *b ₃ *P ₃	а отраоотанн			vr/0
	ра отходящих га			G _{or}	0.027 450	кг/с °С
	ра отходящих га газов при 0°С:	3UB.		ν ₀ ο _Γ	1.31	кг/м ³
		γ _{or} =γ0 _{or} /(1+T _{or} /273)		Yor	0.49482	КГ/М ³
		анных газов, Q _{or} = G _{or} / y		Q _{or}	0.0552	M ³ /C
0020		ыбросов вредных ве		-01		
			10000		H	
Код ЗВ	Наиме	нование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
			г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год
	Азот	а оксиды	10.3	43	0.0589389	0.0096967
0301		а диоксид			0.0471511	0.0077573
0304		та оксид	_		0.0076621	0.0012606
0328		Сажа	0.7	3	0.0040056	0.0006765
0330		а диоксид	1.1	4.5	0.0062944	0.0010148
0337		род оксид	7.2	30	0.0412	0.0067651
0703		з(а)пирен	0.000013	0.000055	0.00000007	0.00000001
1325		иальдегид	0.15	0.6	0.0008583	0.0001353
2754 Углеводороды пр. C12-C19 3.6				15	0.0206	0.0033826

№ ИЗА	0182	Наименование источника загрязнения атмо- сферы	Выхлопная труба	
№ИВ	001	Наименование источника выделения	Дизельный генератор МТ.1000 FTR C	
Расчеты выбросов выполнены согласно "Метолики расчета выбросов загрязняющих веществ в атмосферу				

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

Всего по источнику:

M_{ceκ}=e_i*P₃/3600, г/с

где:

е_і - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки:

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:

M_{год}=q_i*B_{год}/1000, т/год

где:

ной дизельн	го вредного вещества, г/кг топлива, п ной установки с учетом совокупности				
(берется по	4): лива стационарной дизельной устан отчетным данным об эксплуатации ус ся по формуле: В год =b₃*k*P₃*T*10 - ⁶ :		В _{год}	1.644	т/год
Расход топл			b	100	л/ч
Расход голл	ива.		b	87	кг/ч
	ельный расход топлива:		b₃	99	г/кВт.ч
	изельного топлива:		ρ	0.87	кг/л
Коэффицие	нт использования:		k	1	
Время работ	ты:		T	21.0	ч/год
	Исходные д	анные по исто	очнику выброс	СОВ	
Количество:			N	1	ШТ
Частота вра	щения вала:		n	1500	об/мин
Группа СДУ:				Γ	
	Расчет расход	а отработанн	ых газов и топ	ілива	
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$			G_{or}	0.760	кг/с
Температура	а отходящих газов:		T _{or}	400	°C
	азов при 0°С:		γ0 _{ог}	1.31	кг/м ³
	азов при Т _{ог} (К), у_{ог}=у0_{ог}/(1+Т_{ог}/273)		У ог	0.53157	кг/м ³
	расход отработанных газов, Q or =G or/ y	ог	Qor	1.4291	м ³ /с
<u> </u>	Расчет выбросов вредных ве	ществ в атмо	сферу всего о	т дизель-генератора:	
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	M _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.8	45	2.64	0.0739935
0301	Азота диоксид			2.112	0.0591948
0304	Азота оксид			0.3432	0.0096192
0328	Сажа	0.6	2.5	0.1466667	0.0041108
0330	Сера диоксид	1.2	5	0.2933333	0.0082215
0337	Углерод оксид	7.2	30	1.76	0.049329
0703	Бенз(а)пирен	0.000013	0.000055	0.0000032	0.00000009
1325	Формальдегид	0.15	0.6	0.0366667	0.0009866
2754	Углеводороды пр. С12-С19	3.6	15	0.88	0.0246645
	Всего по источнику:	:		5.5718699	0.15612649

№ ИЗА	0183	Наименование источника загряз сферы	Выхлопная труба Дизельный генератор МТ.1000 FTR B		
№ ИВ	001	Наименование источника выде			
от стацион Максигде:	арных дизель имальный выбр	ыполнены согласно, "Методики расчє ных установок" РНД 211.2.02.04-200 осс і-го вещества стационарной дизель М_{сек}=e ¡* P₃/3600 ещества на единицу полезной работы	/4 , MOOC PK, <i>A</i> ьной установки), г/с	остана 2005 год. определяется по фор	рмуле:
		ı (таблица 1 или 2):		T	I
Эксплуатационная мощность стационарной дизельной уста- новки:				880	кВт
				ой определяется по ф	
	ной установки	М _{год} =q́ _і *В _{год} /1000 ещества, г/кг топлива, приходящегося н с учетом совокупности режимов, сост	, т/год на один кг дизе	льного топлива, при р	аботе стационар-
q _i - выброс і ной дизелы лица 3 или расход топ. (берется по	ной установки 4): лива стациона отчетным дані	М _{год} =q _i *В _{год} /1000 вщества, г/кг топлива, приходящегося в с учетом совокупности режимов, сост рной дизельной установкой за год ным об эксплуатации установки) или	, т/год на один кг дизе	льного топлива, при р	аботе стационар-
q _i - выброс і ной дизелы лица 3 или расход топ (берется по определяет	ной установки 4): лива стациона отчетным дані ся по формуле	М _{год} =q _i *В _{год} /1000 ещества, г/кг топлива, приходящегося в с учетом совокупности режимов, сост рной дизельной установкой за год	, т/год на один кг дизе авляющих эксг	льного топлива, при р плуатационный цикл,	аботе стационар- г/кг топлива (таб-
q _i - выброс і ной дизелы лица 3 или расход топ. (берется по	ной установки 4): лива стациона отчетным дані ся по формуле	М _{год} =q _i *В _{год} /1000 вщества, г/кг топлива, приходящегося в с учетом совокупности режимов, сост рной дизельной установкой за год ным об эксплуатации установки) или	, т/год на один кг дизе авляющих эксг В _{год}	льного топлива, при р плуатационный цикл, 1.644	аботе стационар- г/кг топлива (таб- т/год
qі - выброс і ной дизелы лица 3 или расход топ (берется по определяет Расход топ	ной установки 4): лива стациона отчетным дані ся по формуле	М _{год} =q _i *В _{год} /1000 вщества, г/кг топлива, приходящегося в с учетом совокупности режимов, сост рной дизельной установкой за год ным об эксплуатации установки) или в: В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	, т/год на один кг дизе авляющих эксг В _{год} b	льного топлива, при р плуатационный цикл, 1.644 100	аботе стационар- г/кг топлива (таб- т/год л/ч
qі - выброс і ной дизелы лица 3 или расход топ (берется по определяет Расход топ Средний уд	ной установки 4): лива стациона отчетным данн ся по формуле	М _{год} =q _i *В _{год} /1000 вщества, г/кг топлива, приходящегося в с учетом совокупности режимов, сост рной дизельной установкой за год ным об эксплуатации установки) или в: В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	, т/год на один кг дизе авляющих эксг В _{год} b b b	льного топлива, при р плуатационный цикл, 1.644 100 87	аботе стационар- г/кг топлива (таб- т/год л/ч кг/ч
qі - выброс і ной дизелы лица 3 или расход топ (берется по определяет Расход топ Средний уд Плотность д	ной установки 4): пива стациона отчетным данн ся по формуле пива: ельный расход цизельного топ ент использова	М _{год} =q _i *В _{год} /1000 вщества, г/кг топлива, приходящегося в с учетом совокупности режимов, сост рной дизельной установкой за год ным об эксплуатации установки) или в: В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	, т/год на один кг дизе авляющих эксг В _{год} b b b _э	льного топлива, при р плуатационный цикл, 1.644 100 87 99	лаботе стационар- г/кг топлива (таб- т/год л/ч кг/ч г/кВт.ч

Количество:

Группа СДУ:

Частота вращения вала:

Расчет расхода отработанных газов и топлива

ШΤ

об/мин

1500

Расход от	работанных газов, G _{or} = 8.72*10 ^{-6*} b ₃ * P ₃	G _{or}	0.760	кг/с	
Температу	/ра отходящих газов:	Тог	400	°C	
Плотность	газов при 0°C:		γ0 _{or}	1.31	кг/м ³
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$ γ_{or}				0.53157	кг/м ³
	и́ расход отработанных газов, Q ₀г =G ₀г/ γ	ог	Q _{or}	1.4291	м ³ /с
	Расчет выбросов вредных ве	ществ в атмо	сферу всего о	т дизель-генератора:	
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.8	45	2.64	0.0739935
0301	Азота диоксид			2.112	0.0591948
0304	Азота оксид			0.3432	0.0096192
0328	Сажа	0.6	2.5	0.1466667	0.0041108
0330	Сера диоксид	1.2	5	0.2933333	0.0082215
0337	Углерод оксид	7.2	30	1.76	0.049329
0703	Бенз(а)пирен	0.000013	0.000055	0.0000032	0.00000009
1325	Формальдегид	0.15	0.6	0.0366667	0.0009866
2754	Углеводороды пр. С12-С19	3.6	15	0.88	0.0246645
	Всего по источнику		-	5.5718699	0.15612649

№ ИЗА	0184	Наименование ис сферы	ание источника загрязнения атмо- Дымовая труба			
№ ИВ	001	,				
атмосфер	у различным	и производствами	асно, <mark>"Сборника методик по </mark> и", МЭБ РК РНПЦЭЭАиЭ «КазЭк и топлива в котлах производи	оэксп»,	Алматы 1996 г. Ра	аздел 2 "Расчет
			Исходные данные:		от не	
Количеств	о котлов:			n	1	ШТ
Номинальная мощность котла:					28	кВт
Фактическа	ая мощность	котла:		Q_{Φ}	25.8	кВт
				В	2.26	кг/ч
Расход топлива на 1 котлоагрегат:				Ь	0.6	г/с
				B _r	0.163	т/год
Топливо:				Sr	0.3	%
– дизельн	ое топливо:			Ar	0.025	%
Теплота сг	орания топли	ва:		Qir	42.75	МДж/кг
Время раб	оты:			T _r	72.0	ч/год
Количеств	о оксидов азо	та, образующихся н	а 1 ГДж тепла:	K _{NO2}	0.0626	кг/ГДж
Коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений:				β	0	
Коэффици	ент, учитыван	ощий долю золы тог	плива в уносе:	Х	0.01	
Доля тверд	дых частиц, ул	павливаемых в золо	уловителях:	η	0	
Доля оксид	дов серы, свя	зываемых летучей з	олой:	η'	0.02	
Доля оксид	дов серы, ула	вливаемых в золоул	овителе:	η"	0	
Количеств	о оксидов угл	ерода на ед.теплоть	ы, выделяющейся при горении:	Ксо	0.32	кг/ГДж
Потери тег	плоты вследс	твие механической н	неполноты сгорания газа:	q_4	0	%
Объемный	расход газов	оздушной смеси:		Vr	0.0165	м ³ /сек
Коэффици	ент, учитыван	ощий характер топл	ива:	К	0.355	
	Pac	ет выбросов вред	ных веществ в атмосферу от і	котельн	ых установок	
					Выбросы загр	язняющих ве-
Код ЗВ	Наименов	ание загрязняю-	Расчетная формула		ще	СТВ
Код ЗБ	щего в	ещества (ЗВ)	Гасчетная формула		Максимально-	Валовый,
					разовый, г/с	т/год
	Азота	оксиды (NO _x)	$\Pi = 0.001*B*Q_i^r*K_{NO2}*(1 - \beta)$		0.0016814	0.0004358
0301		циоксид (NO₂)	$\Pi_{NO2} = 0.8 * \Pi_{NOx}$		0.0013451	0.0003487
0304	Азота	а оксид (NO)	Π _{NO} = 0.13*Π _{NOx}		0.0002186	0.0000567
0328		Сажа	$\Pi = B^*A^{r*}\chi^*(1 - \eta)$		0.0001571	0.0000407
0330		циоксид (SO ₂)	$\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta')$		0.0036944	0.0009576
0337	Углеро,	да оксид (СО)	$\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4/1)$	00)	0.0085951	0.002228
	Всего по источнику: 0.0140103 0.0036317					

№ ИЗА	0187	Наименование источника загрязнения атмо- сферы	Выхлопная труба
№ИВ	001	Наименование источника выделения	Компрессор XAS 77

Расчеты выбросов выполнены согласно, **"Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004**, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

М_{сек}=e_i*P_э/3600, г/с

где:

еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2) Эксплуатационная мощность стационарной дизельной уста-P_a 31.5 кВт новки Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: $M_{rog} = q_i * B_{rog} / 1000$, т/год qі - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4): расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или 0.425 Вгод т/год определяется по формуле: B_{год}=b₃*k*P₃*T*10⁻⁶ b 6.78 л/ч Расход топлива: b 5.9 кг/ч Средний удельный расход топлива: 187 г/кВт.ч ba Плотность дизельного топлива: ρ 0.87 кг/л Коэффициент использования: k Время работы: 72.0 ч/год Исходные данные по источнику выбросов Количество: 1 IIIT N Частота вращения вала: 1500 об/мин n Группа СДУ: Α Расчет расхода отработанных газов и топлива Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$ 0.051 кг/с G_{or} <u>₀</u>C Температура отходящих газов: 450 Tor Плотность газов при 0°C: $\gamma 0_{or}$ 1.31 кг/м³ Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$ 0.49482 $K\Gamma/M^3$ γог Объемный расход отработанных газов, $\mathbf{Q}_{or} = \mathbf{G}_{or} / \mathbf{\gamma}_{or}$ Q_o 0.1038 M^3/C Расчет выбросов вредных веществ в атмосферу всего от дизель-генератора: Максимально-ра-Валовый выq_i, e, зовый выброс брос Код ЗВ Наименование ЗВ г/кг топг/кВт.ч $M_{\text{сек}}$, г/с $\mathbf{M}_{\mathsf{год}}$, т/год лива 0.090125 10.3 0.0182664 43 Азота оксиды 0301 0.0721 0.0146131 Азота диоксид 0304 0.0117163 0.0023746 Азота оксид 0328 Сажа 0.7 3 0.006125 0.0012744 0330 0.009625 4.5 0.0019116 Сера диоксид 1 1 0337 Углерод оксид 7.2 30 0.063 0.012744 0703 0.000013 0.000055 0.0000001 0.00000002 Бенз(а)пирен 1325 Формальдегид 0.15 0.6 0.0013125 0.0002549 2754 Углеводороды пр. С12-С19 3.6 0.0315 0.006372 0.03954462 Всего по источнику: 0.1953789

№ ИЗА	0188	Наименование источника загря сферы	знения атмо-	Выхлопная труба					
№ИВ	001	Наименование источника выд	еления	Дизельный генератор моечной машины Karcher HDS 6/14-4CX					
от стацио	Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.								
	симальный выбро	с і-го вещества стационарной дизел М _{сек} =е _і *Р₃/360		определяется по фор	омуле:				
	где: e _i - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):								
Эксплуата новки:	ационная мощност	гь стационарной дизельной уста-	P _s	43	кВт				
Вал	овый выброс і-го в	ещества за год стационарной дизе	•	й определяется по ф	ормуле:				
FEO:		М _{год} =q _i *В _{год} /1000), т/год						
где: q _i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):									
		ной дизельной установкой за год им об эксплуатации установки) или	В _{год}	0.252	т/год				

Расход топлива:

определяется по формуле: B_{год}=b₃*k*P₃*T*10⁻⁶

Средний удельный расход топлива:

Плотность дизельного топлива:

Коэффициент использования:

b

b

bэ

ρ

л/ч

кг/ч

г/кВт.ч

кг/л

4.02

3.5

81

0.87

1

Время раб	боты:		Т	72.0	ч/год
2 p o p a c		анные по исто	очнику выбро		и. од
Количеств		1	ШТ		
Количество: N Частота вращения вала: n				1500	об/мин
Группа СД	У:			Α	
	Расчет расход	а отработанн	ых газов и тог	ілива	
Расход от	работанных газов, G _{or} = 8.72*10⁻⁶*b _э *P _э		G _{or}	0.030	кг/с
Температу	/ра отходящих газов:		T _{or}	450	٥C
Плотность	газов при 0°C:		γ0 _{ог}	1.31	кг/м ³
Плотность	газов при Т _{ог} (К), у_{ог}=у0_{ог}/(1+Т_{ог}/273)		Y ог	0.49482	кг/м ³
	и́ расход отработанных газов, Q ₀г =G ₀г /γ	ог	Qor	0.0614	м ³ /с
	Расчет выбросов вредных ве	ществ в атмо	сферу всего о	т дизель-генератора:	
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	M _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.1230278	0.010836
0301	Азота диоксид			0.0984222	0.0086688
0304	Азота оксид			0.0159936	0.0014087
0328	Сажа	0.7	3	0.0083611	0.000756
0330	Сера диоксид	1.1	4.5	0.0131389	0.001134
0337	Углерод оксид	7.2	30	0.086	0.00756
0703	Бенз(а)пирен	0.000013	0.000055	0.0000002	0.00000001
1325	Формальдегид	0.15	0.6	0.0017917	0.0001512
2754	Углеводороды пр. С12-С19	3.6	15	0.043	0.00378
	Всего по источнику	:		0.2667077	0.02345871

№ ИЗА	0189	Наименование источника загрязнения атмо- сферы Выхлопная труба				
№ИВ	001	Наименование источника выде	еления	Дизельный генератор моечной машины Karcher HDS 6/14-4CX		
от стациона Максим где: е _і - выброс і-г нальной мош	рных дизель иальный выбр го вредного в ности, г/кВт*ч	ыполнены согласно, "Методики расч юных установок" РНД 211.2.02.04-200 рос і-го вещества стационарной дизел М _{сек} =e _i *P ₃ /3600 рещества на единицу полезной работь и (таблица 1 или 2):	04, МООС РК, А ьной установки 0, г/с	отана 2005 год. определяется по фор	рмуле:	
Эксплуатаци новки:	онная мощно	ость стационарной дизельной уста-	P ₉	43	кВт	
ной дизельно лица 3 или 4)	ой установки):	М _{год} =q _i *В _{год} /1000 ещества, г/кг топлива, приходящегося с учетом совокупности режимов, сост рной дизельной установкой за год	на один кг дизе			
(берется по о	тчетным дані	ным об эксплуатации установки) или е: В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	В _{год}	0.252	т/год	
Расход топли			b b	4.02 3.5	л/ч кг/ч	
Средний уде.	льный расход	ц топлива:	b₃	81	г/кВт.ч	
Плотность ди	изельного топ	лива:	ρ	0.87	кг/л	
Коэффициен	т использова	ния:	k	1		
Время работ	Ы:		Т	72.0	ч/год	
		Исходные данные по исто	чнику выброс	ОВ		
Количество:			N	1	ШТ	
Частота врац	цения вала:		n	1500	об/мин	
Группа СДУ:				Α		
-	-	Расчет расхода отработанні	ых газов и топ	лива		
Расход отраб	ботанных газо	$_{\rm OB}, G_{\rm or} = 8.72*10^{-6*}b_{\rm s}*P_{\rm s}$	G _{or}	0.030	кг/с	
	отходящих г	азов:	T _{or}	450	°C	
Плотность га	зов при 0°С:		$\gamma 0_{or}$	1.31	кг/м ³	
), γ _{or} =γ0 _{or} /(1+T _{or} /273)	ү ог	0.49482	кг/м ³	
Объемный ра		танных газов, \mathbf{Q}_{or} = \mathbf{G}_{or} / $\mathbf{\gamma}_{or}$	Q_{or}	0.0614	м ³ /с	
	Расчет в	ыбросов вредных веществ в атмос	феру всего от	дизель-генератора	:	

Код ЗВ

Наименование ЗВ

e,,

q_i,

Валовый вы-

брос

Максимально-ра-

зовый выброс

		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.1230278	0.010836
0301	Азота диоксид			0.0984222	0.0086688
0304	Азота оксид			0.0159936	0.0014087
0328	Сажа	0.7	3	0.0083611	0.000756
0330	Сера диоксид	1.1	4.5	0.0131389	0.001134
0337	Углерод оксид	7.2	30	0.086	0.00756
0703	Бенз(а)пирен	0.000013	0.000055	0.0000002	0.0000001
1325	Формальдегид	0.15	0.6	0.0017917	0.0001512
2754	Углеводороды пр. С12-С19	3.6	15	0.043	0.00378
	Всего по источнику:				0.02345871

Всего по источнику:					0.2667077	0.02345871
					•	
№ ИЗА	0190	Наименование ист	гочника загря	Выхлопная труба		
№ИВ	001	Наименование ис	точника выд	еления	Дизельный генера машины Karcher H	
					загрязняющих веще	ств в атмосферу
		ых установок" РНД				
Mak	симальныи выбро		онарнои дизел М_{сек}=е і* Р ₃/360		определяется по фор	омуле:
где:			IVI _{Сек} —е; Г _э /300	0, 1/C		
	с і-го вредного вец	цества на единицу по	лезной работь	ы стационарной	дизельной установки	на режиме номи-
	иощности, г/кВт*ч ([.]				,	'
Эксплуата	ационная мощност	ъ стационарной дизе	ельной уста-	P _a	86	кВт
новки:				ŭ		
Вал	овый выброс і-го в				ой определяется по ф	ормуле:
FEO:		IVI	_{год} =q _i *В _{год} /100	∪, т/год		
где: а выброс	c i-ro pneлного pelli	ества г/кг топпива п	пихолашегоса	на олин кг лизе	льного топлива, при р	аботе стационар-
					лыного топыный, при р плуатационный цикл,	
лица 3 илі		,	'	•	, , ,	,
расход то	плива стационарн	ой дизельной устан	овкой за год			
		м об эксплуатации ус	тановки) или	Вгод	0.497	т/год
определя	ется по формуле: I	B _{год} =b _э *k*P _э *Т*10 ⁻⁶ :				
Расход то	плива:			b	7.93	л/ч
Сполиці	/5051 III III BOOYO 5 T	00000		b	6.9	KГ/Ч
	<u>/дельный расход т</u> ь дизельного топли			b ₃ ρ	80 0.87	г/кВт.ч кг/л
	иент использовани			k	1	NI/JI
Время раб		71.		T	72.0	ч/год
		Исходные да	анные по ист	очнику выброс	_	,,-H
Количеств	30:			N	1	ШТ
Частота в	ращения вала:			n	1500	об/мин
Группа СД	 ЈУ:				Б	
		Расчет расход	а отработанн			
		$G_{or} = 8.72*10^{-6*}b_3*P_3$		G _{or}	0.060	кг/с
	ура отходящих газ	OB:		T _{or}	450	⁰ C
	ь газов при 0°С:	: (0 //4 LT /272)		γ0 _{or}	1.31	ΚΓ/M ³
		γ _{ог} =γ0 _{ог} /(1+Т _{ог} /273) нных газов, Q ог= G ог/γ		Yor Qor	0.49482 0.1212	кг/м ³ м ³ /с
ООВСІЛІНЫІ				- 01	г дизель-генератора:	· · · · · · · · · · · · · · · · · · ·
	T do lot BBI	оросов вредных ве			дизель теператора.	
Код ЗВ	Наимен	ование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
г/кВт.ч			г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год	
	Азота	а оксиды	9.6	40	0.2293333	0.019872
0301 Азота диоксид				0.1834667	0.0158976	
0304 Азота оксид				0.0298133	0.0025834	
0328 Сажа 0.5			2	0.0119444	0.0009936	
0330		диоксид	1.2	5	0.0286667	0.002484
0337		од оксид	6.2	26	0.1481111	0.0129168
0703		(а)пирен	0.000012	0.000055	0.0000003	0.00000003
1325		альдегид	0.12	0.5	0.0028667	0.0002484

2754

2.9

12

Углеводороды пр. C12-C19 Всего по источнику:

0.0059616

0.04108543

0.0692778

№ ИЗ/	0131	Наименование источника загрязнения атмосферы	Выхлопная труба
№ИЕ	001	Наименование источника выделения	Генератор гидравлической силовой установки Holmatro PU 30

Выбросы от бензинового генератора определены согласно, Приложения №3 к приказу Министра ООС РК от 18.04.2008 года № 100-п **"Методики расчета выбросов загрязняющих веществ от автотранспортных предприятий"**, МООС РК, Астана 2008 год.

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 при движении по территории со скоростью 5 км/час

станции -	грязняющих веществ от автотранспортных п - 0,25 от величины выброса легкового карбк жении по территории со скоростью 5 км/ча	редприя́ <i>ораторн</i>	гий", <i>пр</i>	оинимая за выброс оп	n такой электро-
n npa osa	жении по территории со скороствю о кылчи Исходные		:		
Количество	0:	N		1	ШТ.
Частота вр	ращения вала:	n		1500	об/мин
	ционная мощность бензинового генератора:	P	9	2.2	кВт
Ма	аксимальный разовый выброс i-го вещества расс Валовый выброс i-го вещества рассчитывает	считывает ся по фор	гся по ф омуле: N	юрмуле: М _{секі} =(<i>m_{Lik}</i> *L1) <i>I</i> И _{годі} =(<i>m_{Lik}</i> *L1)*Dn*10 ⁻⁶ , т	/t/3600, г/с г/год
			лето	0.035	г/км
		m _{LNOk}	зима	0.035	г/км
D 6			лето	0.009	г/км
	рос от бензинового генератора равен 0,25 от ве-	m _{LSO2k}	зима	0.011	г/км
	броса легкового карбюраторного автомобиля с		лето	1.875	г/км
ооъемом д	цвигателя до 1,2 л: m _{Lik} (таблица 3.5):	m_{LCOk}	зима	2.325	г/км
		m _{LCxHyk}	лето	0.25	г/км
				0.375	г/км
	Пробег автомобиля в день без нагрузки по территории предприятия:			5	км/день
	Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята:			5	км/час
		t		1	ч/день
В	ремя работы бензинового генератора:	Т		13.8	ч/год
Колич	нество рабочих дней в расчетном периоде:	Dn		14	дней/год
	Расчет расхода отработ	ганных га	азов и т	оплива	
Расход бен	нзина за год:	Вгод		0.012	т/год
Часовой ра	асход бензина:	b		0.73	кг/ч
Средний уд	дельный расход бензина:	b _a		332	г/кВт.ч
Расход отр	работанных газов, G _{or} = 8.72*10 ^{-6*} b ₃ * P ₃	G,	DΓ	0.006	кг/с
Температу	ра отходящих газов:	T,	DΓ	450	°C
Плотность	газов при 0°С:	γ0		1.31	кг/м ³
Плотность	газов при Т _{ог} (К), у _{ог} = у0 _{ог} /(1+ Т _{ог} /273)	Ϋ́c	ог	0.49482	кг/м ³
Объемный	расход отработанных газов, Q _{ог} = G _{ог} / γ _{ог}	Q,	DΓ	0.0129	м ³ /с
	Расчет выбросов вредных веществ в атм	осферу в	всего от	бензинового генерат	ора:
				Максимально-ра-	Валовый вы-
Код ЗВ	Код 3В Наименование 3В			зовый выброс	брос
				М _{сек} , г/с	М _{год} , т/год
	Азота оксиды			0.0000486	0.0000024
0301	Азота диоксид			0.0000389	0.0000019
0304	Азота оксид			0.0000063	0.0000003
0330	0330 Сера диоксид			0.0000156	0.0000008

№ ИЗА	0191	Наименование источника загрязнения атмо- сферы	Выхлопная труба
№ ИВ	001	Наименование источника выделения	Дизельный генератор освети- тельной мачты Super Light VT1

0.0032292

0.0005208

0.0038108

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

Углерод оксид

Бензин

Всего по источнику:

М_{сек}=e_i*P_э/3600, г/с

где:

0337

2704

е_і - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: P_э 8 кВт

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: $\mathbf{M}_{\mathsf{rog}} = \mathbf{q}_i^* \mathbf{B}_{\mathsf{rog}} / 1000$, $\mathsf{t/rog}$

где:

0.0001604

0.0000259

ной дизельн	го вредного вещества, г/кг топлива, п ной установки с учетом совокупности				
(берется по с	¥): пива стационарной дизельной устан отчетным данным об эксплуатации ус ся по формуле: В_{год}=b₃*k*P₃*T*10 - ⁶ :		В _{год}	0.185	т/год
Расход топл			b	2	л/ч
			b	1.7	кг/ч
	ельный расход топлива:		b₃	218	г/кВт.ч
	изельного топлива:		ρ	0.87	кг/л
	нт использования:		k	1	
Время работ	гы:		T	59.7	ч/год
	Исходные да	анные по исто	очнику выброс	ОВ	
Количество:			N	1	ШТ
Частота враг	щения вала:		n	1500	об/мин
Группа СДУ:			A		
	Расчет расход	а отработанн	ых газов и топ	лива	
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$			G_{or}	0.015	кг/с
Температура	Температура отходящих газов:			450	°C
	азов при 0°С:		γ0 _{or}	1.31	кг/м ³
	азов при Т _{ог} (К), у ог =у0 ог/(1+Т ог/ 273)		Y ог	0.49482	кг/м ³
	расход отработанных газов, Q or =G or/ y	ог	Q _{or}	0.0307	м ³ /с
	Расчет выбросов вредных ве		сферу всего о	г дизель-генератора:	
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	10.3	43	0.0228889	0.0079525
0301	Азота диоксид			0.0183111	0.0063620
0304	Азота оксид			0.0029756	0.0010338
0328	Сажа	0.7	3	0.0015556	0.0005548
0330	Сера диоксид	1.1	4.5	0.0024444	0.0008322
0337	Углерод оксид	7.2	30	0.0160000	0.0055483
0703	Бенз(а)пирен	0.000013	0.000055	0.0000003	0.0000001
1325	Формальдегид	0.15	0.6	0.0003333	0.0001110
2754	Углеводороды пр. С12-С19	3.6	15	0.0080000	0.0027741
	Всего по источнику:			0.04962003	0.01721621

№ ИЗА	0192	Наименование источника загрязнения атмо- сферы Выхлопная труба			
№ИВ	001	Наименование источника выде.	Дизельный генера Pioneer pump Perk		
от стацион а Макси	арных дизель	ныполнены согласно, "Методики расче -ных установок" РНД 211.2.02.04-200 рос і-го вещества стационарной дизель М _{сек} =e _i *P ₃ /3600	4 , МООС РК, <i>А</i> ьной установки	\стана 2005 год.	
		ещества на единицу полезной работы н (таблица 1 или 2):	стационарной	дизельной установки	на режиме номі
Эксплуатаці новки:	ионная мощно	ость стационарной дизельной уста-	P₃	130	кВт
	юй установки	ещества, г/кг топлива, приходящегося н с учетом совокупности режимов, соста			
расход топл (берется по	лива стациона отчетным дан	рной дизельной установкой за год ным об эксплуатации установки) или э: В _{год} =b ₃ *k*P ₃ *T*10 ⁻⁶ :	В _{год}	12.528	т/год
Расход топл			b	20	л/ч
-асход топі	ива.		b	17.4	кг/ч
Средний уде	ельный расход	ц топлива:	b₃	134	г/кВт.ч
Плотность д	изельного тог	ілива:	ρ	0.87	кг/л
Коэффицие	нт использова	ния:	k	1	
Время рабо	ты:		T	720	ч/год
		Исходные данные по исто	UHIAKV BLIKNAG	OB	
		исходные данные по исто	чнику выорос	, OB	
Количество:		исходные данные по исто-	N	1	ШТ

Группа СДУ:

Частота вращения вала:

Расчет расхода отработанных газов и топлива

n

об/мин

1500

Б

Расход отра	аботанных газов, G _{or} = 8.72*10⁻⁶*b ₃ *P ₃	G_{or}	0.152	кг/с	
Температур	а отходящих газов:		Tor	450	°C
Плотность г	азов при 0°С:		γ0 _{οΓ}	1.31	кг/м ³
Плотность г	азов при Т _{ог} (К), ү ог= ү0 ог/ (1+Т ог/ 273)		У ог	0.49482	кг/м ³
Объемный р	расход отработанных газов, Q_{or}=G or / \	/ ог	Q_{or}	0.3070	м ³ /с
	Расчет выбросов вредных ве	еществ в атмо	сферу всего о	т дизель-генератора:	
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос
		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год
	Азота оксиды	9.6	40	0.3466667	0.5011200
0301	Азота диоксид			0.2773333	0.4008960
0304	Азота оксид			0.0450667	0.0651456
0328	Сажа	0.5	2	0.0180556	0.0250560
0330	Сера диоксид	1.2	5	0.0433333	0.0626400
0337	Углерод оксид	6.2	26	0.2238889	0.3257280
0703	Бенз(а)пирен	0.000012	0.000055	0.0000004	0.0000007
1325	Формальдегид	0.12	0.5	0.0043333	0.0062640
2754	Углеводороды пр. С12-С19	2.9	12	0.1047222	0.1503360
	Всего по источнику	0.7167337	1.0360663		

№ ИЗА	0193	Наименование источника загря сферы	Наименование источника загрязнения атмо-					
№ ИВ	001	Наименование источника выд	еления	Дизельный генера 1В40Т-4	mop HATZ			
от стацио	Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год. Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: М _{сек} =e _i *P ₃ /3600, г/с							
	COR -1 J							
Эксплуата новки:	ционная мощно	сть стационарной дизельной уста-	P _°	7	кВт			
Вало	Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле: М _{год} =q _i *В _{год} /1000, т/год							
где: q _i - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):								
		оной дизельной установкой за год	D	0.02	7/50 5			

(берется по отчетным данным об эксплуатации установки) или т/год Вгод 0.03

определяется по формуле: B _{год} = b ₃ * k * P ₃ * T *10 ⁻⁶ :					
	b	0.46	л/ч		
Расход топлива:	b	0.4	кг/ч		
Средний удельный расход топлива:	b₃	59	г/кВт.ч		
Плотность дизельного топлива:	ρ	0.87	кг/л		
Коэффициент использования:	k	1			
Время работы:	T	72	ч/год		
Исходные данные по источнику выбросов					
Количество:	N	1	ШТ		
Частота вращения вала:	n	1500	об/мин		
Группа СДУ:		Α			
Расчет расхода отработанных газов и топлива					
Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$	G _{or}	0.003	кг/с		
Температура отходящих газов:	T _{or}	450	°C		
Плотность газов при 0°C:	у0 _{ог}	1.31	кг/м ³		
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$	Y ог	0.49482	кг/м ³		
Объемный расход отработанных газов, Q _{or} = G _{or} / ү _{or}	Q _{or}	0.0071	м ³ /с		

Расчет выбросов вредных веществ в атмосферу всего от дизель-генератора: Максимально-ра-Валовый выe, q_i, зовый выброс брос Код ЗВ Наименование ЗВ г/кг топг/кВт.ч $M_{\text{сек}}$, г/с $M_{\text{год}}$, т/год лива 0.0194556 0.0012444 Азота оксиды 10.3 43 0301 0.0155644 0.0009955 Азота диоксид 0304 Азота оксид 0.0025292 0.0001618 0328 0.0013222 0.0000868 Сажа 0.7 3 0330 Сера диоксид 1.1 4.5 0.0020778 0.0001302

2754	Углеводороды пр. С12-С19	3.6	15	0.0068000 0.04217692	0.0004341 0.002694002
1325	Формальдегид	0.15	0.6	0.0002833	0.0000174
0703	Бенз(а)пирен	0.000013	0.000055	0.00000002	0.000000002
0337	Углерод оксид	7.2	30	0.0136000	0.0008682

N	№ ИЗА	0194	Наименование источника загрязнения атмо- сферы	Выхлопная труба
1	№ ИВ	001	Наименование источника выделения	Дизельный генератор НАТZ 1B30- Х

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: $M_{cek}=e_i*P_3/3600, r/c$

где:

еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной уста-4.6 новки

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: $M_{rog} = q_i * B_{rog} / 1000, \tau / rog$

(берется по отчетным данным об эксплуатации установки) или

определяется по формуле: $B_{rog} = b_3 * k * P_3 * T * 10^{-6}$

q_і - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4): расход топлива стационарной дизельной установкой за год

Вгод

0.0217

0.35

т/год

л/ч

Расход топлива:	b	0.302	кг/ч		
Средний удельный расход топлива:	b₃	66	г/кВт.ч		
Плотность дизельного топлива:	ρ	0.87	кг/л		
Коэффициент использования:	k	1			
Время работы:	T	72	ч/год		
Исходные данные по источнику выбросов					
Количество:	N	1	ШТ		
Частота вращения вала:	n	1500	об/мин		
Группа СДУ:		Α			
Расчет расхода отрабо	танных газов и тог	ілива			
Расход отработанных газов, G _{or} = 8.72*10 ^{-6*} b _э *P _э	Gor	0.003	кг/с		
Температура отходящих газов:	Тог	450	°C		
Плотность газов при 0°C:	γ0 _{ог}	1.31	кг/м ³		
Плотность газов при T_{or} (K), $\gamma_{or} = \gamma_{or}/(1 + T_{or}/273)$	Yor	0.49482	кг/м ³		
Объемный расход отработанных газов, Q _{ог} =G _{ог} /у _{ог}	Q_{or}	0.0054	M ³ /C		

201 - 101 - 101 - 101 - 101 - 101								
	Расчет выбросов вредных веществ в атмосферу всего от дизель-генератора:							
Код ЗВ	Наименование ЗВ	e _i ,	q _i ,	Максимально-ра- зовый выброс	Валовый вы- брос			
		г/кВт.ч	г/кг топ- лива	М _{сек} , г/с	М _{год} , т/год			
	Азота оксиды	10.3	43	0.0131611	0.0009347			
0301	Азота диоксид			0.0105289	0.0007477			
0304	Азота оксид			0.0017109	0.0001215			
0328	Сажа	0.7	3	0.0008944	0.0000652			
0330	Сера диоксид	1.1	4.5	0.0014056	0.0000978			
0337	Углерод оксид	7.2	30	0.0092000	0.0006521			
0703	Бенз(а)пирен	0.000013	0.000055	0.00000002	0.000000001			
1325	Формальдегид	0.15	0.6	0.0001917	0.0000130			
2754	Углеводороды пр. С12-С19	3.6	15	0.0046000	0.0003260			
	Всего по источник	0.02853152	0.002023301					

№ ИЗА	6080	Наименование источника загрязнения ат- мосферы	Покрасочные работы
№ ИВ	001	Наименование источника выделения	Окраска и сушка поверхности и изде- пий

Расчет выделений (выбросов) загрязняющих веществ (ЗВ) в атмосферу выполнен согласно: РНД 211.2.02.05 2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов", Астана, 2005 г.

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (г/с):

 $\begin{aligned} \mathbf{M^{x}}_{\text{oxp}} &= \mathbf{m_{M}} \times \mathbf{f_{p}} \times \delta^{\text{t}_{p}} \times \delta_{x} / (10^{6} \times 3.6) \times (1 - \eta) \\ \mathbf{M^{x}}_{\text{cym}} &= \mathbf{m_{M}} \times \mathbf{f_{p}} \times \delta^{\text{t}_{p}} \times \delta_{x} / (10^{6} \times 3.6) \times (1 - \eta) \end{aligned}$ при окраске: при сушке:

Валовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (т/год):

 $m{M^x}_{
m o\kappa p} = m{m_{\varphi}} \ x \ f_p \ x \ \delta^r_p \ x \ \delta_x \ / \ 10^6 \ x \ (1 - \eta) \ m{M^x}_{
m cyw} = m{m_{\varphi}} \ x \ f_p \ x \ \delta^w_p \ x \ \delta_x \ / \ 10^6 \ x \ (1 - \eta) \$ ос по каждому компоненту летучей части ЛКМ рассчитыв при окраске: **М^хок** при сушке: **М**^хсу Общий валовый или максимальный разовый выброс по

лица 2) Сухой остаток Доля раствори Доля краски, г лица 3) Количество ра Количество ра Доля раствори покрытия аэро Доля раствори крытия, (% ма Степень очист (доли ед.)	Окр вый части (растворной растрянной в виделя, выделяк потерянной в виделяю в лКМ, вы возоля, (% мас.), ителя в ЛКМ, выс.), (таблица 3) тки воздуха газо	ыделившегося пр	исходны одал од	х _{окр} + Мх _{суш} не данные: 0616 0621 1042 1210 1240 1401 2752 f _p (100-f _p) D _p δ _a m _M m _ф δ' _p	Грунтовка	кисть, валик Эмаль ПФ-115 50	Эмаль ЭП- 51 - 43 4 33 16 4 - 76.5 24 100 0 2.5 0.3
Ксилол Толуол Спирт бутилов Бутилацетат Этилацетат Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля раствори Доля краски, г лица 3) Количество ра Количество ра Доля раствори покрытия аэро Доля раствори покрытия аэро Доля раствори крытия, (% ма Степень очист (доли ед.)	Окр вый части (растворной растрянной в виделя, выделяк потерянной в виделяю в лКМ, вы возоля, (% мас.), ителя в ЛКМ, выс.), (таблица 3) тки воздуха газо	ителя) в ЛКМ, (% ощаяся при окрас иде аэрозоля, (% атериала, (кг/час) отериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	о, мас.), (таб- ске и сушке мас.), (таб- си нанесении	$\begin{array}{c} 0621 \\ 1042 \\ 1210 \\ 1240 \\ 1401 \\ 2752 \\ \hline f_p \\ (100\text{-}f_p) \\ \hline D_p \\ \hline \delta_a \\ \hline m_{_{\! I\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	7 0-021 100 45 55 100 0 3 0.36	Эмаль ПФ-115 50 50 45 55 100 0 4 0.48	76.5 24 100 0 2.5 0.3
Толуол Спирт бутилов Бутилацетат Этилацетат Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля краски, г лица 3) Количество ра Количество ра Доля раствори покрытия аэро Доля раствори доля раствори крытия, (% ма Степень очист (доли ед.)	части (растворі части (растворі с ителя, выделяк потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	ителя) в ЛКМ, (% ощаяся при окрас иде аэрозоля, (% атериала, (кг/час) отериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	о, мас.), (таб- ске и сушке мас.), (таб- си нанесении	$\begin{array}{c} 0621 \\ 1042 \\ 1210 \\ 1240 \\ 1401 \\ 2752 \\ \hline f_p \\ (100\text{-}f_p) \\ \hline D_p \\ \hline \delta_a \\ \hline m_{_{\! I\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	7 0-021 100 45 55 100 0 3 0.36	50 - - - - - 50 45 55 100 0 4 0.48	76.5 24 100 0 2.5 0.3
Толуол Спирт бутилов Бутилацетат Этилацетат Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля краски, г лица 3) Количество ра Количество ра Доля раствори покрытия аэро Доля раствори доля раствори крытия, (% ма Степень очист (доли ед.)	части (растворі к ителя, выделяк потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	же и сушке мас.), (таб- и нанесении и сушке по-	$\begin{array}{c} 0621 \\ 1042 \\ 1210 \\ 1240 \\ 1401 \\ 2752 \\ \hline f_p \\ (100\text{-}f_p) \\ \hline D_p \\ \hline \delta_a \\ \hline m_{_{\! I\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	- - - - - - 45 55 100 0 3 0.36	- - - - 50 45 55 100 0 4 0.48	4 33 16 4 - 76.5 24 100 0 2.5 0.3
Спирт бутилов Бутилацетат Этилацетат Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля раствори Количество ра Количество ра Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	части (растворі к ителя, выделяк потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	же и сушке мас.), (таб- и нанесении и сушке по-	$\begin{array}{c} 1042 \\ 1210 \\ 1240 \\ 1401 \\ 2752 \\ f_p \\ \hline (100\text{-}f_p) \\ D_p \\ \delta_a \\ m_{\Phi} \\ \delta'_p \end{array}$	- - - - - 45 55 100 0 3 0.36	- - - 50 45 55 100 0 4 0.48	4 33 16 4 - 76.5 24 100 0 2.5 0.3
Бутилацетат Этилацетат Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля раствори Доля краски, г лица 3) Количество ра Количество ра Доля раствори покрытия аэро Доля раствори крытия, (% ма Степень очист (доли ед.)	части (растворі к ителя, выделяк потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	ске и сушке мас.), (таб- ли нанесении ли сушке по-	$\begin{array}{c} 1210 \\ 1240 \\ 1401 \\ 2752 \\ f_p \\ \hline (100\text{-}f_p) \\ D_p \\ \delta_a \\ \hline m_M \\ m_\Phi \\ \delta'_p \end{array}$	- - - - 45 55 100 0 3 0.36	- - 50 45 55 100 0 4 0.48	33 16 4 - 76.5 24 100 0 2.5 0.3
Этилацетат Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля краски, г лица 3) Количество ра Количество ра Доля раствори покрытия аэро Доля раствори крытия, (% ма Степень очист (доли ед.)	с ителя, выделяк потерянной в ви асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	ске и сушке мас.), (таб- ли нанесении ли сушке по-	$\begin{array}{c} 1240 \\ 1401 \\ 2752 \\ f_p \\ \hline (100\text{-}f_p) \\ D_p \\ \delta_a \\ m_M \\ m_\Phi \\ \delta'_p \end{array}$	- - - 45 55 100 0 3 0.36	- 50 45 55 100 0 4 0.48	16 4 - 76.5 24 100 0 2.5 0.3
Ацетон Уайт-спирит Доля летучей лица 2) Сухой остаток Доля растворь Доля краски, г лица 3) Количество ра Количество ра Доля растворь покрытия аэро Доля растворь крытия, (% ма Степень очист (доли ед.)	с ителя, выделяк потерянной в ви асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	ске и сушке мас.), (таб- ли нанесении ли сушке по-	$\begin{array}{c} 1401 \\ 2752 \\ f_p \\ (100\text{-}f_p) \\ D_p \\ \delta_a \\ m_M \\ m_{\Phi} \\ \delta'_p \end{array}$	- 45 55 100 0 3 0.36	- 50 45 55 100 0 4 0.48	4 - 76.5 24 100 0 2.5 0.3
Уайт-спирит Доля летучей лица 2) Сухой остаток Доля раствори Доля краски, глица 3) Количество ра Количество ра Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	с ителя, выделяк потерянной в ви асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	ске и сушке мас.), (таб- ли нанесении ли сушке по-	$\begin{array}{c} 2752 \\ f_p \\ (100\text{-}f_p) \\ D_p \\ \delta_a \\ m_M \\ m_{\Phi} \\ \delta'_p \end{array}$	45 55 100 0 3 0.36	45 55 100 0 4 0.48	76.5 24 100 0 2.5 0.3
Доля летучей лица 2) Сухой остаток Доля раствори Доля краски, глица 3) Количество ра Количество ра Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	с ителя, выделяк потерянной в ви асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	рщаяся при окрасиде аэрозоля, (% атериала, (кг/час) атериала, (т/год) ыделившегося пр	ске и сушке мас.), (таб- ли нанесении ли сушке по-	$\begin{array}{c} f_{p} \\ (100\text{-}f_{p}) \\ D_{p} \\ \delta_{a} \\ \hline m_{M} \\ m_{\Phi} \\ \delta'_{p} \end{array}$	45 55 100 0 3 0.36	45 55 100 0 4 0.48	76.5 24 100 0 2.5 0.3
Сухой остаток Доля растворь Доля краски, г лица 3) Количество ра Количество ра Доля растворь покрытия аэрс Доля растворь крытия, (% ма Степень очист (доли ед.)	ителя, выделяк потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	иде аэрозоля, (% втериала, (кг/час) втериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	и нанесении сушке по-	$(100-f_p)$ D_p δ_a m_{M} m_{Φ} δ'_p	55 100 0 3 0.36	55 100 0 4 0.48	24 100 0 2.5 0.3
Доля растворь Доля краски, г лица 3) Количество ра Количество ра Доля растворь покрытия аэрс Доля растворь крытия, (% ма Степень очист (доли ед.)	ителя, выделяк потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	иде аэрозоля, (% втериала, (кг/час) втериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	и нанесении сушке по-	D _p δ _a m _M m _Φ δ' _p	100 0 3 0.36	100 0 4 0.48	100 0 2.5 0.3
Доля краски, глица 3) Количество ра Количество ра Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	потерянной в ви асходуемого ма асходуемого ма ителя в ЛКМ, вь озоля, (% мас.), ителя в ЛКМ, вь ас.), (таблица 3) тки воздуха газо	иде аэрозоля, (% втериала, (кг/час) втериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	и нанесении сушке по-	δ_a m_M m_Φ δ'_p	0 3 0.36	4 0.48	0 2.5 0.3
лица 3) Количество ра Количество ра Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	асходуемого ма асходуемого ма ителя в ЛКМ, вь озоля, (% мас.), ителя в ЛКМ, вь ас.), (таблица 3) тки воздуха газо	атериала, (кг/час) атериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	и нанесении	m _м m _Φ δ' _p	3 0.36	4 0.48	2.5 0.3
Количество ра Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	асходуемого ма ителя в ЛКМ, вь озоля, (% мас.), ителя в ЛКМ, вь ас.), (таблица 3) тки воздуха газо	атериала, (т/год) ыделившегося пр , (таблица 3) ыделившегося пр	и сушке по-	m _Φ δ' _p	0.36	0.48	0.3
Доля раствори покрытия аэрс Доля раствори крытия, (% ма Степень очист (доли ед.)	ителя в ЛКМ, вы озоля, (% мас.), ителя в ЛКМ, вы ос.), (таблица 3) тки воздуха газо	ыделившегося пр , (таблица 3) ыделившегося пр	и сушке по-	δ'p			
покрытия аэрс Доля растворь крытия, (% ма Степень очист (доли ед.)	озоля, (% мас.), ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	, (таблица 3) ыделившегося пр	и сушке по-		28	28	28
Доля растворь крытия, (% ма Степень очист (доли ед.)	ителя в ЛКМ, вы ас.), (таблица 3) тки воздуха газо	ыделившегося пр		δ"			
Степень очист (доли ед.)	тки воздуха газо			Ор	72	72	72
Н.	Расчет		/дования	η	0	0	0
Код ЗВ		выбросов вред	ных вешеств		ри покраске I	 издепия:	
код ЗВ	Іаименование	Максимально- разовый вы-	Валовый	Максимально-	Валовый	Максимально-	Валовый
· · ·	3B	′ брос, г/с	выброс, т/г	брос, г/с	выброс, т/г	′ брос, г/с	выброс, т/г
	Грунтовка ГФ-021			Эмаль П		Эмаль З	ЭП-51
	илол	0.1050000	0.0453600	0.0700000	0.0302400		
	луол					0.0639625	0.0276318
1042 Сп вы	нирт бутило- нй					0.0059500	0.0025704
	тилацетат					0.0490875	0.0212058
	илацетат					0.0238000	0.0102816
	цетон			0.0700000	0.0000400	0.0059500	0.0025704
2752 Уа	ит-спирит			0.0700000	0.0302400		
	Расчет	т выбросов вре	дных вещест	тв в атмосферу	при сушке из	зделия:	
		Максимально-	Валовый	Максимально-	Валовый	Максимально-	Валовый
Код ЗВ	Іаименование	разовый вы-	выброс, т/г	разовый вы-	выброс, т/г	разовый вы-	выброс, т/г
код ов	3B	брос, г/с		брос, г/с	·	брос, г/с	•
2212		Грунтовка		Эмаль П		Эмаль З)Π-51
	илол Элуол	0.2700000	0.1166400	0.1800000	0.0777600	0.1644750	0.0710532
1042 Сп	ирт бутило-					0.0153000	0.0066096
ВЫ	ій тилацетат					0.1262250	0.0545292
	гилацетат					0.0612000	0.0264384
	цетон					0.0153000	0.0066096
	нйт-спирит			0.1800000	0.0777600		
	Всего ві	ыброс вредных	веществ в а	тмосферу при п	окрасочных		
						Максимально-	Валовый
Код ЗВ		Наим	енование ЗВ	3		разовый вы- брос	выброс
						г/с	т/год
	илол			<u> </u>	·	0.6250000	0.27
	луол					0.2284375	0.098685
	ирт бутиловый					0.02125	0.00918
	тилацетат					0.1753125	0.075735
	илацетат					0.085	0.03672
	етон 0.02125 0.00918						
2102 ya	2752 Уайт-спирит 0.25 0.108 Всего по источнику: 1.40625 0.6075						

№ ИЗА	6080	Наименование источника загрязнения атмо- сферы	Газовая сварка стали
№ИВ	002	Наименование источника выделения	Пропан-бутановая смесь и ацетилен- кислородное пламя

Выбросы от сварочного участка определены согласно, "Методики расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

Исходные данные:

Расходный материал, используемый при газовой сварке - пропан-бутановая смесь и ацетилен-кислородное

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе сварки выполнен на единицу массы расходуемых материалов.

Максимальный разовый выброс 3В, выбрасываемых в атмосферу в процессе сварки, определяют по формуле: М_{сек}=((K_m×*В_{час})/3600)*(1-η), г/с

Валовое количество 3В, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле: М_{год}=((B_{год}*K_m*)/10⁶)*(1-η), т/год

Время работы сварочного оборудования в год:	G	730	730	ч/год		
Фактический максимальный расход применяемых сырья и материалов, с учетом дискретности работы оборудования:	Вчас	1	2	кг/час		
Расход применяемого сырья и материалов:	Вгод	730	1460	кг/год		
Удельный показатель выброса ЗВ "х" на единицу массь	і расходуемых (приготовляемы	ых) сырья и мат	ериалов:		
0301 Азота диоксид	K _m ^x	15	22	г/кг		
Степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов:	η	-	-			

L	Расчет выоросов вредных веществ в атмосферу от газовои сварки:						
ſ			Макси-		Макси-		
		Код ЗВ Наименование ЗВ	мально-разо-	Валовый вы-	мально-разо-	Валовый вы-	
	Von 3B		вый выброс,	брос, т/год	вый выброс,	брос, т/год	
	код зв		г/с		г/с		
			Пропан-бутановая смесь		Ацетилен-кислородное		
			пропан-оутановая смесь		пламя		
I	0301	Азота диоксид	0.0041667	0.0109500	0.0122222	0.0321200	
ſ	•	Итоговые в	ыбросы:	•			

Код ЗВ	Наименование ЗВ	Выбросы ЗВ	
код зв	паименование зв	г/с	т/год
0301	Азота диоксид	0.0163889	0.0430700

№ ИЗА	6080	Наименование источника загрязнения атмосферы	Газовая резка металла			
№ИВ	003	Наименование источника выделения	Разрезаемый материал 5, 10, 20 мм			
Вы	Выбросы от сварочного участка определены согласно, "Методики расчета выделений (выбросов) загрязняю-					

Выбросы от сварочного участка определены согласно, "Методики расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

Исходные данные:

Расходный материал, используемый при резке - сталь углеродистая

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе резки выполнен на единицу времени работы оборудования.

Максимальный разовый выброс ЗВ, выбрасываемых в атмосферу в процессе газорезки, определяют по формуле:

$M_{cek} = (K_m/3600)*(1-\eta)*k$, Γ/c

Валовое количество 3В, выбрасываемых в атмосферу, в процессе газорезки, определяют по формуле: $\mathbf{M}_{\text{год}} = (\mathbf{G}^* \mathbf{K}_{\text{m}}^{\mathrm{x}}) / 10^6)^* (1-\eta)^* \mathbf{k}$, т/год

Исходные данные:

Толщина	а разрезаемого слоя металла:	b	5	10	20	MM
Время ра	аботы оборудования в год:	G	366	366	366	ч/год
Коэффи	циент гравитационного осаждения частиц	k	0.4	0.4	0.4	
	Удельный показатель выброса ЗВ "х	" на единицу	времени работ	ы оборудова	ания (табл.4):	
0123	Железа оксид	K _m ^x	72.9	129.1	197	г/ч
0143	Марганец и его соединения	K _m ^x	1.1	1.9	3	г/ч
0301	Азота диоксид	K _m ^x	39	64.1	53.2	г/ч
0337	0337 Углерод оксид		49.5	63.4	65	г/ч
степень (очистки воздуха в соответствующем аппа-					
рате, кот	орым снабжается группа технологических	η	0	0	0	
агрегато	В:					

Расчет выбросов вредных веществ в атмосферу от газовой резки:

		Максимально-	Валовый	Максимально-	Валовый	Максимально-	Валовый
		разовый вы-	выброс,	разовый вы-	выброс,	разовый вы-	выброс,
Код ЗВ	Наименование 3В	брос, г/с	т/год	брос, г/с	т/год	брос, г/с	т/год
		Толщина материала 5		Толщина материала 10		Толщина материала 20	
		мм		MM		мм	
0123	Железа оксид	0.0081000	0.0106726	0.0143444	0.0189002	0.0218889	0.0288408
0143	Марганец и его соедине-		0.0001610		0.0002782		0.0004392
0143	ния	0.0001222	0.0001010	0.0002111	0.0002762	0.0003333	0.0004392
0301	Азота диоксид	0.0108333	0.0142740	0.0178056	0.0234606	0.0147778	0.0194712
0337	Углерод оксид	0.0137500	0.0181170	0.0176111	0.0232044	0.0180556	0.0237900

Итого по	о источнику выделения: 0.0328055 0.0432246 0.0499722 0.0658434	0.0550556	0.0725412
Код ЗВ	Наименование ЗВ	г/с	т/год
	Железа оксид	0.0443333	0.0584136
0143	Марганец и его соединения	0.0006666	0.0008784
0301	Азота диоксид	0.0434167	0.0572058
0337	Углерод оксид	0.0494167	0.0651114
	Всего по источнику:	0.1378333	0.1816092

№ ИЗА	6080	Наименование источника загрязнения ат- мосферы	Сварочные работы
№ ИВ	004		Электроды ОЗС-12 и Полуавтоматическая сварка алюминиевых сплавов в среде аргона и гелия алюминиевой проволокой

Выбросы от сварочного участка определены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

Исходные данные:Расход выбросов загрязняющих веществ в воздушный бассейн в процессе сварки выполнен на единицу массы расходуемых материалов.

Максимальный разовый выброс ЗВ, выбрасываемых в атмосферу в процессе сварки, определяют по формуле: М_{сек}=((К_m**В_{час})/3600)*(1-η)*k, г/с Валовое количество 3В, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле:

	M _{ron} =((B _{ron} *k	(_m ^x)/10 ⁶)*(1-η)*	k , т/год	,	- 4-1
где:			Электроды ОЗС-12	и гелия алюмини	ская сварка алю- ов в среде аргона евой проволокой
	боты сварочного оборудования в год:	G	1460	1460	ч/год
	кий максимальный расход применяемых сы- териалов, с учетом дискретности работы обо- я:	В _{час}	4	2	кг/час
Расход п	рименяемого сырья и материалов:	Вгод	5840	2920	кг/год
Коэффиц	иент гравитационного осаждения частиц:	k	0.4	0.4	
удел	льный показатель выброса ЗВ "x" на единицу м	иассы расходу	емых (приготог	вляемых) сырья и	материалов:
0101	Алюминий оксид	K _m ^x		10	г/кг
0123	Железа оксид	K _m ^x	8.9		г/кг
0143	Марганец и его соединения	K _m ^x	8.0		г/кг
0203	Хром (VI) оксид	K _m ^x	0.5		г/кг
0301	Азота диоксид			0.9	г/кг
0344	Фториды неорг-ие плохо растворимые	Κ _m ^x	1.8		г/кг
	очистки воздуха в соответствующем аппа- орым снабжается группа технологических аг-	η	-	-	
	Расчет выбросов вредных веще		еру от свароч	ного агрегата:	
Kon OD		Макси- мально-ра- зовый вы- брос, г/с	Валовый вы- брос, т/год	Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
Код ЗВ	Наименование 3В	Электроды ОЗС-12		Полуавтоматическая сварка алюминиевых сплавов в среде аргона и гелия алюминиевой проволокой	
0101	Алюминий оксид			0.0022222	0.0116800
0123	Железа оксид	0.0039556	0.0207904		
0143	Марганец и его соединения	0.0003556	0.0018688		
0203	Хрома (VI) оксид	0.0002222	0.0011680		
0301	Азота диоксид			0.0005000	0.0026280
0344	Фториды неорг-ие плохо растворимые	0.0080000	0.0042048		
1/a = 2B	Hausana anns 21	<u> </u>		г/с	=/===
Код ЗВ 0101	Наименование 38 Алюминий оксид	D		0.0022222	т/год 0.0116800
0101	Железа оксид	0.0022222	0.0207904		
0123	Марганец и его соединения	0.0039556	0.0207904		
0203	Хрома (VI) оксид	0.0003330	0.0011680		
0301	Азота диоксид			0.0005000	0.0026280
0344	Фториды неорг-ие плохо растворимые			0.0008000	0.0042048
5544	Всего по источнику:			0.0080556	0.0423400
	Door o no no ro minky.			1 2.000000	3.0.20.03

№ ИЗА	0132	Наименование источника за- грязнения атмосферы	Лаборатория поверки газоанализаторов E&I	
№ ИВ	001	Наименование источника выделения	Помещение лаборатории	
Максимальный разовый выброс 3B, выбрасываемых в атмосферу, рассчитан по формуле: Мсек = n * p / 60 , г/				

Валовое количество ЗВ, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле: Мгод = N * 								
Модель газоана- лизатора	Наименование газа	Продол- житель- ность анализа, мин	Общее количе- ство из- мерений в год	n - Коли- чество за один анализ (л\мин)	N - Об- щий объем в год (л/год)	ρ - Плот- ность, г/л при 20'C	Выброс г/с	Выброс т/год
GD10/10P	Метан	4	50	2	400	0.7168	0.023893	0.0002867
PIR 7000	Метан	3	55	1.5	247.5	0.7168	0.017920	0.0001774
POLYTRON 2IR	Метан	3	130	1.5	585	0.7168	0.017920	0.0004193
POLYTRON 7000	Серы диоксид	3	20	1.5	90	2.92655	0.073164	0.0002634
POLYTRON 7000	Сероводород	3	60	1.5	270	1.434	0.035850	0.0003872
Выбросы загр	язняющих веще	ств в атмо	сферу сос	тавят:				
Код ЗВ		Наименование 3В					Макси- мально-ра- зовый вы- брос, г/с	Валовый выброс, т/год
0330	Сера диоксид					0.073164	0.0002634	
0333	Сероводород	Сероводород					0.035850	0.0003872
0410	Метан						0.059733	0.0008834
	Всего по источнику: 0.1687471 0.001534							

Зона инженерного обеспечения УКПНиГ (021)

№ ИЗА	0560	Наименование источника загрязнения атмо- сферы	Дыхательный клапан
№ ИВ	001	Наименование источника выделения	Бак приготовления раствора МЭГ А1-400-TA-001

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.

В качестве теплоносителя и хладагента используется 55%об. раствор моноэтиленгликоля (МЭГ). Данный 55%об. раствор МЭГ готовится в емкости приготовления раствора МЭГ А1-400-ТА-001 с использованием МЭГ из бочек и деминерализованной воды.

Выбросы паров многокомпонентных жидких смесей известного состава из водных растворов. Выбросы паров жидкости рассчитываются по формулам:

максимально-разовые выбросы, (г/сек)

 $M=0.445^*P_{t\,MЭ\Gamma}^{max*}X_{MЭ\Gamma}^*K_p^{max*}K_s^*V_q^{max}/10^{2*}(X_{MЭ\Gamma}/m_{MЭ\Gamma}+X_{вод}/m_{вод})^*(273+t_x^{max});$ валовые выбросы, (т/год)

 $G = 0.160^{*}(P_{tM3\Gamma}{}^{max}*K_{_{B}} + P_{tM3\Gamma}{}^{min})^{*}X_{M3\Gamma}{}^{*}K_{_{D}}{}^{cp}*K_{_{O}}{}^{*}B^{*}(X_{M3\Gamma}/\rho_{M3\Gamma} + X_{Bog}/\rho_{Bog})/10^{4}*(X_{M3\Gamma}/m_{M3\Gamma} + X_{Bog}/m_{Bog})^{*}(546 + t_{_{M}}{}^{max} + t_{_{M}}{}^{min})$ Конструкция резервуара: Вертикальный, наземный Объем резервуара: 15 P.max Давление насыщенных паров жидкости при максимальной и мини-21 мм.рт.ст. P_tmin мальной температуре жидкости: 1.3 мм.рт.ст. t_ж max 105 Максимальная и минимальная температура жидкости в резервуаре: $t_{*}^{\overline{min}}$ ٥С 57.7 Массовая доля вещества, в долях единицы (X_i=C_i/100, где C_i - мас-0.5793 $X_{MЭ\Gamma}$ совая доля вещества в растворе, %) Хвод 0.4207 62.0689 $m_{M \ni \Gamma}$ Молекулярная масса вещества: m_{вод} 18.0153 K_p' 1 Опытный коэффициент, определяемый по Приложению 8: Κ_pcp Опытный коэффициент, определяемый по Приложению 9: K, 1 Максимальный объем паровоздушной смеси, вытесняемой из резер-V..max 2 м3/час вуаров во время его закачки: Коэффициент оборачиваемости, принимается по Приложению 10: Kоб 2.5 Количество жидкости, закачиваемое в резервуар в течение года: В 75.81 т/год $\rho_{M \ni \Gamma}$ 1.047 T/M^3 Плотность вещества: T/M^3 $\rho_{\text{вод}}$ Выбросы паров жидкости из резервуара в атмосферу: Выбросы загрязняющих веществ Код ЗВ Наименование ЗВ r/c т/год

№ ИЗА	0561	Наименование источника загрязнения атмо- сферы	Дыхательный клапан
№ИВ	001	Наименование источника выделения	Расширительный бак хладагента A1- 400-VB-001

0.0087633

0.0087633

0.001153

0.001153

Этиленгликоль

Всего по источнику:

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.

В качестве теплоносителя и хладагента используется 55%об. раствор моноэтиленгликоля (МЭГ). Данный 55%об. раствор МЭГ готовится в емкости приготовления раствора МЭГ и когда требуется передается в Установку 690 насосами подачи раствора МЭГ. Расширительный бак хладагента А1-400-VB-001 предусмотрен для компенсации изменений объема хладагента вследствие теплового расширения.

Выбросы паров многокомпонентных жидких смесей известного состава из водных растворов. Выбросы паров жидкости рассчитываются по формулам:

максимально-разовые выбросы, (г/сек)

M=0.445* $P_{t MЭ\Gamma}^{max}$ $X_{MЭ\Gamma}$ * K_p^{max} K_s^{b} V_v^{max} / 10^{2*} $(X_{MЭ\Gamma}^{r}$ / $m_{MЭ\Gamma}$ + $X_{вод}$ / $m_{вод}$)*(273+ t_x^{max}); валовые выбросы, (т/год)

 $G = 0.160*(P_{tM3\Gamma}{}^{max*}K_{_B} + P_{tM3\Gamma}{}^{min})*X_{M3\Gamma}{}^*K_{_P}{}^{cp*}K_{_D}{}^{cp*}K_{_D}{}^*B^*(X_{M3\Gamma}/\rho_{M3\Gamma} + X_{Bod}/\rho_{Bod})/10^{4*}(X_{M3\Gamma}/m_{M3\Gamma} + X_{Bod}/m_{Bod})*(546 + t_{_M}{}^{max} + t_{_M}{}^{min})*X_{M3\Gamma}{}^*K_{_D}{}^*C^{p*}K_{_D}{}^*C^{p*$ Конструкция резервуара: Горизонтальный, наземный Объем резервуара: V M^3 P_tmax Давление насыщенных паров жидкости при максимальной и мини-1.5 мм.рт.ст. P_tmin мальной температуре жидкости: 1.3 мм.рт.ст. t_{x}^{max} 75 °C. Максимальная и минимальная температура жидкости в резервуаре: $t_{\rm w}^{\rm min}$ 57.7 °C Массовая доля вещества, в долях единицы (X_i=C_i/100, где C_i - мас-0.5793 $X_{M \ni \Gamma}$ совая доля вещества в растворе, %) 0.4207 Хвод 62.0689 $m_{M \ni \Gamma}$ Молекулярная масса вещества: m_{вод} 18.0153 K_p^{max} Опытный коэффициент, определяемый по Приложению 8: 0.7 Опытный коэффициент, определяемый по Приложению 9: K_B 1 Максимальный объем паровоздушной смеси, вытесняемой из резер- $V_{\rm q}^{\rm max}$ 11.09 м³/час вуаров во время его закачки: Коэффициент оборачиваемости, принимается по Приложению 10: K_o 2.5

1078

Количество жидкости, закачиваемое в резервуар в течение года:			75.81	т/год	
_			1.047	т/м ³	
Плотность вещества:		$\rho_{\scriptscriptstyle BOJ}$	1	т/м ³	
Выбросы паров жидкости из резервуара в атмосферу:					
	Ko- 2D Hawaaa-awa 2D		Выбросы загрязняющих веществ		
Von 2D	Цаниана раниа 2P		рыоросы загряз	пиющих веществ	
Код ЗВ	Наименование ЗВ	-	г/с	т/год	
Код 3В 1078	Наименование 3В Этиленгликоль				

№ ИЗА	0562-0563	Наименование источника загрязнения атмо- сферы	Дыхательный клапан
№ ИВ	001	Наименование источника выделения	Химический бак хладагента 5 и 6-ой турбины (ТК 501)

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.

В качестве теплоносителя и хладагента используется 55%об. раствор моноэтиленгликоля (МЭГ). Данный 55%об. раствор МЭГ готовится в химическом баке приготовления раствора хладагента МЭГ ТК 501 с использованием МЭГ из бочек и деминерализованной воды.

Выбросы паров многокомпонентных жидких смесей известного состава из водных растворов. Выбросы паров жидкости рассчитываются по формулам:

максимально-разовые выбросы, (г/сек)

M=0.445* $P_{t MЭ\Gamma}^{max*}X_{MЭ\Gamma}^{*}K_{p}^{max*}K_{s}^{*}V_{v}^{max}/10^{2*}(X_{MЭ\Gamma}^{*}/m_{MЭ\Gamma}^{*}+X_{вод}^{*}/m_{вод})^{*}(273+t_{x}^{max});$ валовые выбросы, (т/год)

 $G = 0.160^* (P_{tM3\Gamma}{}^{max} + K_{_B} + P_{tM3\Gamma}{}^{min})^* X_{M3\Gamma}{}^* K_{_D}{}^{cp} + K_{_O6}{}^* B^* (X_{M3\Gamma}/\rho_{M3\Gamma} + X_{BOD}/\rho_{BOD})/10^{4*} (X_{M3\Gamma}/m_{M3\Gamma} + X_{BOD}/m_{BOD})^* (546 + t_{_X}{}^{max} + t_{_X}{}^{min}) + t_{_X}{}^{min} (100 + t_{_X}{}^{min$ Химический бак хладагента 5-ой турбины (ТК 501) ИЗА №0562 Химический бак хладагента 6-ой турбины (ТК 501) ИЗА №0563 Вертикальный, наземный Конструкция резервуара: V Объем резервуара: 0.05 P_tmax Давление насыщенных паров жидкости при максимальной и мини-21 мм.рт.ст. $\overline{P_t^{min}}$ мальной температуре жидкости: 1.3 мм.рт.ст. 105 t_жmin Максимальная и минимальная температура жидкости в резервуаре: 57.7 $X_{M \ni \Gamma}$ Массовая доля вещества, в долях единицы (X_i=C_i/100, где C_i - мас-0.5793 совая доля вещества в растворе, %) Хвод 0.4207 62.0689 $m_{M3\Gamma}$ Молекулярная масса вещества: 18.0153 m_{вод} Опытный коэффициент, определяемый по Приложению 8: K_pcp 0.7 Опытный коэффициент, определяемый по Приложению 9: K_B 1 Максимальный объем паровоздушной смеси, вытесняемой из резер-V..max 8 м³/час вуаров во время его закачки: K_{of} Коэффициент оборачиваемости, принимается по Приложению 10: 1.35 8 376 т/год Количество жидкости, закачиваемое в резервуар в течение года: В 1.047 T/M^3 $\rho_{M3\Gamma}$ Плотность вещества: T/M³ $\rho_{\text{вод}}$ 1 Выбросы паров жидкости из резервуара в атмосферу: Выбросы загрязняющих веществ Код ЗВ Наименование 3В г/с т/год

№ ИЗА	0564-0565	Наименование источника загрязнения атмо- сферы	Дыхательный клапан
№ ИВ	001	Наименование источника выделения	Расширительный бак хладагента 5 и 6-ой турбины (ТК 301)

0.0350531

0.0350531

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.

В качестве теплоносителя и хладагента используется 55%об. раствор моноэтиленгликоля (МЭГ). Данный 55%об. раствор МЭГ готовится в емкости приготовления раствора МЭГ и когда требуется передается в Установку 690 насосами подачи раствора МЭГ. Расширительный бак хладагента ТК 301 предусмотрен для компенсации изменений объема хладагента вследствие теплового расширения.

Выбросы паров многокомпонентных жидких смесей известного состава из водных растворов. Выбросы паров жидкости рассчитываются по формулам:

максимально-разовые выбросы, (г/сек)

Этиленгликоль

Всего по источнику:

 $\text{M=}0.445^{\star}P_{t\,\text{M3}\Gamma}^{\text{max}\star}X_{\text{M3}\Gamma}^{\star}K_{\text{p}}^{\text{max}\star}K_{\text{B}}^{\star}V_{\text{q}}^{\text{max}}/10^{2\star}(X_{\text{M3}\Gamma}/m_{\text{M3}\Gamma}+X_{\text{Bog}}/m_{\text{Bog}})^{\star}(273+t_{\text{w}}^{\text{max}});$

валовые выбросы, (т/год)

 $G=0.160^*(P_{tM3\Gamma}^{max} + K_B + P_{tM3\Gamma}^{min})^*X_{M3\Gamma}^*K_p^{cp*}K_{o6}^*B^*(X_{M3\Gamma}/\rho_{M3\Gamma} + X_{Bod}/\rho_{Bod})/10^{4*}(X_{M3\Gamma}/m_{M3\Gamma} + X_{Bod}/m_{Bod})^*(546 + t_x^{max} + t_x^{min})$

Расширительный бак хладагента 5-ой турбины (ТК 301)	ИЗА №0564		
Расширительный бак хладагента 6-ой турбины (ТК 301)	01) ИЗА №0565		
Конструкция резервуара:	Горизонтальный, наземный		
Объем резервуара:		0.93	M ³
Давление насыщенных паров жидкости при максимальной и мини-		1.5	мм.рт.ст.
мальной температуре жидкости:	P_t^{min}	1.3	мм.рт.ст.

1078

0.0000688

		t _ж max	75	°C	
Максимальная и минимальная температура жидкости в резервуаре:		t _ж min	57.7	°C	
Массовая доля вещества, в долях единицы (X _i =C _i /100, где C _i - мас-			0.5793		
	ещества в растворе, %)	Хвод	0.4207		
Молекулярная масса вещества:		m _{мэг}	62.0689		
		m _{вод}	18.0153		
Опытный коэффициент, определяемый по Приложению 8:		K _p max	1		
		K_p^{cp}	0.7		
Опытный коэффициент, определяемый по Приложению 9:			1		
Максимальный объем паровоздушной смеси, вытесняемой из резервуаров во время его закачки:			2.94	м³/час	
Коэффициент оборачиваемости, принимается по Приложению 10:			2.5		
Количество жидкости, закачиваемое в резервуар в течение года:			8.376	т/год	
Плотность вещества:		Рмэг	1.047	т/м ³	
		$\rho_{\text{вод}}$	1	T/M ³	
	Выбросы паров жидкости из резерв	уара в	атмосферу:		
Von 3B	Код 3В Наименование 3В		Выбросы загрязняющих веществ		
код зв			г/с	т/год	
1078	1078 Этиленгликоль		0.0009995	0.0000167	
Всего по источнику:			0.0009995	0.0000167	

№ ИЗА	6560	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	Наименование источника выделения	Насос перекачки МЭГ из бочек А1-400- РВ-001

Выделение вредных веществ через неплотности запорно-регулирующей арматуры и фланцевых соединений определены в соответствии с: 1) "Методическими указаниями расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов". Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п; 2) "Методикой расчета выбросов вредных веществ в окружающую среду от неорганизованных источников нефтегазового оборудования". РД 39.142-00, Минэнергетики РФ ОАО "НИПИГАЗПЕРЕРАБОТКА", 2000 г. (Ответ Министра экологии, геологии и природных ресурсов РК от 16 декабря 2020 года на вопрос от 3 декабря 2020 года № 655260)

максимально разовый выброс расчитывается по формуле: $\mathbf{M}_{i} = \mathbf{Y}_{Hyii}/1000 = \mathbf{g}_{Hyi}^{*}\mathbf{n}_{i}^{*}\mathbf{x}_{Hyi}^{*}\mathbf{c}_{i}/1000$, г/с Валовый выброс расчитывается по формуле: $\mathbf{\Pi}_{i} = (\mathbf{T}^{*}\mathbf{Y}_{Hyii})/10^{9*}3600$, т/год

К вспомогательным технологическим потокам, способным образовать вредные выбросы, относится хладагент. Система хладагента выполнена в виде замкнутого контура. Насосы перекачки МЭГ из бочек, этот поток находится постоянно в жидком состоянии и, согласно принятому в настоящем РД-39-142-00 относится к тяжелым жидкостям.

Расчетная величина утечки для двойных торцевых уплотнений насосов (Приложение 1): Количество работающих насосов на потоке МЭГ: Расчетная доля уплотнений насосов, потерявших герметичность (общее	g _{Hyi} n _i X _{Hyi}	5.56	мг/с шт.	
Количество работающих насосов на потоке МЭГ:		1	ШТ.	
Расчетная доля уппотнений насосов потерявших герметичность (общее	Xuvi	İ		
число уплотнений насосов принято 1) (М2- Приложение 1):	Tiyi	0.226	доли ед-цы	
Расчетная величина утечки запорно-регулирующей арматуры (М1 - Таблица 6.2):	g _{нуі}	1.83	мг/с	
Количество ЗРА на работающих насосах на потоке МЭГ:	n _i	4	ШТ.	
Расчетная доля уплотнений ЗРА, потерявших герметичность (общее число уплотнений ЗРА принято 1) (М1 - Таблица 6.2):	X _{Hyi}	0.07	доли ед-цы	
Расчетная величина утечки фланцевых соединений (М1 - Таблица 6.2):	g _{нуі}	0.08	мг/с	
Количество ФС на работающих насосах на потоке МЭГ:	n _i	8	ШТ.	
Расчетная доля уплотнений ФС, потерявших герметичность (общее число уплотнений ФС принято 1) (М1 - Таблица 6.2):	X _{Hyi}	0.02	доли ед-цы	
Массовая доля вредного компонента в продукте утечки:	C _i	1		
Итого утечки МЭГ от насосов, ЗРА и ФС:	Y _{Hyij}	1.78176	мг/с	
Годовой (валовый) выброс от одной единицы оборудования:	M	0.0563448	т/год	
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год	
Выбросы паров МЭГ в атмосферу от неплотностей насосов, ЗРА и ФС:				
Код 3В Наименование 3В	,	Макси- мально ра- зовый вы- брос ЗВ, г/с	Валовый вы- брос 3В, т/год	

№ ИЗА	6561-6566	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ИВ	001		Насос подачи МЭГ А1-400-РА-002А/В и Циркуляционный насос хладагента А1- 400-РА-001А/В/С/D

Всего по источнику:

Выделение вредных веществ через неплотности запорно-регулирующей арматуры и фланцевых соединений определены в соответствии с: 1) "Методическими указаниями расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов". Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п; 2) "Методикой расчета выбросов

1078

Этиленгликоль

0.0563448

0.0563448

0.0017818

вредных веществ в окружающую среду от неорганизованных источников нефтегазового оборудования". РД 39.142-00, Минэнергетики РФ ОАО "НИПИГАЗПЕРЕРАБОТКА", 2000 г. (Ответ Министра экологии, геологии и природных ресурсов РК от 16 декабря 2020 года на вопрос от 3 декабря 2020 года № 655260)

Максимально разовый выброс расчитывается по формуле: M_j = Y_{нуіј}/1000 = g_{нуі}*n_i*x_{нуі}*c_i/1000, г/с Валовый выброс расчитывается по формуле: П_i = (T*Y_{нуіј})/10⁹*3600 , т/год К вспомогательным технологическим потокам, способным образовать вредные выбросы, относится хладагент.

К вспомогательным технологическим потокам, способным образовать вредные выбросы, относится хладагент. Система хладагента выполнена в виде замкнутого контура. Хладагент используется для охлаждения смазочного масла для газовых и паровых турбин энергетических установок. В качестве хладагента используется 55%об. раствор моноэтиленгликоля (МЭГ). Этот поток находится постоянно в жидком состоянии и, согласно принятому в настоящем РД-39-142-00 относится к тяжелым жидкостям.

	Исходные параметры:			
	Насос подачи МЭГ А1-400-РА-002А/В	V	13A №6561-656	2
Цирі	куляционный насос хладагента А1-400-PA-001A/B/C/D	ИЗА №6563-6566		
Расчетная (Приложен	величина утечки для двойных торцевых уплотнений насосов ие 1):	g _{нуі}	5.56	мг/с
Количество	работающих насосов на потоке МЭГ:	n _i	1	ШТ.
	доля уплотнений насосов, потерявших герметичность (общее тнений насосов принято 1) (M2- Приложение 1):	X_{Hyi}	0.226	доли ед-цы
Расчетная лица 6.2):	величина утечки запорно-регулирующей арматуры (М1 - Таб-	g _{нуі}	1.83	мг/с
Количество	э ЗРА на работающих насосах на потоке МЭГ:	n _i	4	ШТ.
	доля уплотнений 3PA, потерявших герметичность (общее тнений 3PA принято 1) (М1 - Таблица 6.2):	\mathbf{X}_{Hyi}	0.07	доли ед-цы
Расчетная	величина утечки фланцевых соединений (М1 - Таблица 6.2):	g _{нуі}	0.08	мг/с
Количество	о ФС на работающих насосах на потоке МЭГ:	n _i	8	ШТ.
	доля уплотнений ФС, потерявших герметичность (общее число и ФС принято 1) (М1 - Таблица 6.2):	X_{Hyi}	0.02	доли ед-цы
Массовая	доля вредного компонента в продукте утечки:	C _i	0.5793	
Итого утеч	ки МЭГ от насосов, ЗРА и ФС:	Y_{Hyij}	1.03217	мг/с
Годовой (в	аловый) выброс от одной единицы оборудования:	М	0.03264	т/год
Фактически ния:	и годовой фонд времени работы одной единицы оборудова-	Т	8784	ч/год
	Выбросы паров МЭГ в атмосферу от неплотносте	ей насосов, ЗР	А и ФС:	
Код ЗВ	Код 3В Наименование 3В			Валовый вы- брос 3В, т/год
1078	Этиленгликоль		0.0010322	0.0326406
	Всего по источнику:	•	0.0010322	0.0326406

№ ИЗА	6567	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	Наименование источника выделения	Пусковой нагреватель хладагента А1- 400-НА-001

Выбросы паров нефтепродуктов от теплообменных аппаратов и средств перекачки, выполнен согласно: 1. "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004. Астана 2005. Раздел 8. 2. "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов паров нефтепродуктов в атмосферу из теплообменных аппаратов и средств перекачки определяется в зависимости от типа оборудования, вида продукта, количества оборудования и времени его работы.

Циркулирующий хладагент подогревается в турбинах и охлаждается в воздушном холодильнике A1-400-HC-001. Хладагент может также подаваться в обход воздушного холодильника через клапан регулирования расхода 4000-FCV-703В или в пусковой нагреватель **A1-400-HA-001** для обеспечения нормальной работы системы во время пуска и в периоды очень низких температур окружающего воздуха.

Удельное выделение загрязняющих веществ, которое можно определить по таблице 8.1. РНД 211.2.02.09-2004 или по таблице 5.4. Сборника «КазЭкоэксп»:		0.1	кг/час
Фактический годовой фонд времени работы одной единицы оборудования:	T	8784	ч/год
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: $\mathbf{M}_{\text{сек}} = \mathbf{Q}/3.6$, г/сек	М _{сек}	0.02778	г/сек
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: M=Q*T/10 ³, т/год	М _{год}	0.87840	т/год

Выбросы 3В от воздушного холодильника хладагента A1-400-HC-001 МЭГ (водный раствор 55%об.)

Код ЗВ	Наименование 3В	[%] мас.	Макси- мально ра- зовый вы- брос ЗВ, г/с	Валовый вы- брос 3В, т/год
1078	Этиленгликоль	57.93%	0.0160917	0.5088571
	Всего по источнику:		0.0160917	0.5088571

№ ИЗА	6568	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	Наименование источника выделения	Воздушный холодильник хладагента А1-400-HC-001

Выбросы паров нефтепродуктов от теплообменных аппаратов и средств перекачки, выполнен согласно: 1. "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004. Астана 2005. Раздел 8. 2. "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов паров нефтепродуктов в атмосферу из теплообменных аппаратов и средств перекачки определяется в зависимости от типа оборудования, вида продукта, количества оборудования и времени его работы.

	8.1. РНД 211.2.02.09-2004 или по таблице 5.4. Сборника	Q	0.07	кг/час
«КазЭкоэксг	1»:			
Фактический	й годовой фонд времени работы одной единицы оборудова-	т	8784	ч/год
ния:		•	0704	члод
	ный (разовый) выброс от одной единицы оборудования рассчи-	М _{сек}	0.01944	г/сек
тывается по	формуле: М _{сек} = Q/3.6 , г/сек	IVICEK	0.01344	170 0 K
	ловые) выбросы от одной единицы оборудования рассчиты-	Мгод	0.61488	т/год
ваются по ф	ваются по формуле: M=Q*T/10 ³ , т/год		0.01400	ттод
	Выбросы ЗВ от воздушного холодильника хлада	гента A1-400-H	IC-001	
	МЭГ (водный раствор 55%об.)			
			Макси-	
Код ЗВ	Наименование ЗВ	[%] мас.	мально ра-	Валовый вы-
Код об	Паименование ЭВ	[70] Mac.	зовый вы-	брос ЗВ, т/год
			брос ЗВ, г/с	
1078	Этиленгликоль	57.93%	0.0112642	0.3562
	Всего по источнику:		0.0112642	0.3562

№ ИЗА	6570-6573	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	Наименование источника выделения	Циркуляционный насос хладагента 5 и 6-ой турбины

Выделение вредных веществ через неплотности запорно-регулирующей арматуры и фланцевых соединений определены в соответствии с: 1) "Методическими указаниями расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов". Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п; 2) "Методикой расчета выбросов вредных веществ в окружающую среду от неорганизованных источников нефтегазового оборудования". РД 39.142-00, Минэнергетики РФ ОАО "НИПИГАЗПЕРЕРАБОТКА", 2000 г. (Ответ Министра экологии, геологии и природных ресурсов РК от 16 декабря 2020 года на вопрос от 3 декабря 2020 года № 655260)

Максимально разовый выброс расчитывается по формуле: **M**_i = **Y**_{нуіj}/1000 = **g**_{нуі}***n**_i***x**_{нуі}***c**_j/1000, г/с Валовый выброс расчитывается по формуле: **П**_i = (**T*****Y**_{нуіj})/10⁹*3600 , т/год

К вспомогательным технологическим потокам, способным образовать вредные выбросы, относится хладагент. Система хладагента выполнена в виде замкнутого контура. Хладагент используется для охлаждения смазочного масла для газовых и паровых турбин энергетических установок. В качестве хладагента используется 55%об. раствор моноэтиленгликоля (МЭГ). Этот поток находится постоянно в жидком состоянии и, согласно принятому в настоящем РД-39-142-00 относится к тяжелым жидкостям.

Исходные параметры	:
--------------------	---

Циркуляционный насос хладагента 5-ой турбины		//3A №6570-65	71
Циркуляционный насос хладагента 6-ой турбины	ИЗА №6572-6573		
Расчетная величина утечки для двойных торцевых уплотнений насосов (Приложение 1):	днуі	5.56	мг/с
Количество работающих насосов на потоке МЭГ:	n _i	1	ШТ.
Расчетная доля уплотнений насосов, потерявших герметичность (общее число уплотнений насосов принято 1) (M2- Приложение 1):	X _{Hyi}	0.226	доли ед-цы
Расчетная величина утечки запорно-регулирующей арматуры (М1 - Таб лица 6.2):	9нуі	1.83	мг/с
Количество ЗРА на работающих насосах на потоке МЭГ:	n _i	4	ШТ.
Расчетная доля уплотнений ЗРА, потерявших герметичность (общее число уплотнений ЗРА принято 1) (М1 - Таблица 6.2):	X _{Hyi}	0.07	доли ед-цы
Расчетная величина утечки фланцевых соединений (М1 - Таблица 6.2):	g _{нуі}	0.08	мг/с
Количество ФС на работающих насосах на потоке МЭГ:	n _i	8	ШТ.
Расчетная доля уплотнений ФС, потерявших герметичность (общее число уплотнений ФС принято 1) (М1 - Таблица 6.2):	X _{Hyi}	0.02	доли ед-цы
Массовая доля вредного компонента в продукте утечки:	C _i	0.5793	
Итого утечки МЭГ от насосов, ЗРА и ФС:	Y _{hyij}	1.03217	мг/с
Годовой (валовый) выброс от одной единицы оборудования:	М	0.03264	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год
Выбросы паров МЭГ в атмосферу от неплотнос	тей насосов, З	РА и ФС:	
Код 3В Наименование 3В		Максимально разовый вы- брос ЗВ, г/с	Валовый вы- брос 3В, т/год
1078 Этиленгликоль		0.0010322	0.0326406

Всего по источнику:	0.0010322	0.0326406
Beero no nero-ninky:	0.00	0.0020700

№ ИЗА	6574-6575	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	І наименование источника выпеления	Воздушный холодильник хладагента 5 и 6-ой турбины

Выбросы паров нефтепродуктов от теплообменных аппаратов и средств перекачки, выполнен согласно: 1. "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004. Астана 2005. Раздел 8. 2. "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАИЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов паров нефтепродуктов в атмосферу из теплообменных аппаратов и средств перекачки определяется в зависимости от типа оборудования, вида продукта, количества оборудования и времени его работы. Циркулирующий хладагент подогревается в турбинах и охлаждается в воздушном холодильнике 5 и 6-ой турбины.

	Воздушный холодильник хладагента 5-ой турбины	,	ИЗА №6574	71
	Воздушный холодильник хладагента 6-ой турбины	ИЗА №6575		
	выделение загрязняющих веществ, которое можно определить по 1. РНД 211.2.02.09-2004 или по таблице 5.4. Сборника «КазЭко-	Q	0.07	кг/час
Фактическ	ий годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год
	ьный (разовый) выброс от одной единицы оборудования рассчию формуле: М сек = Q/3.6 , г/сек	М _{сек}	0.01944	г/сек
	заловые) выбросы от одной единицы оборудования рассчитыва- ормуле: M=Q*T/10 ³, т/год	М _{год}	0.61488	т/год
-	Выбросы 3В от воздушного холодильника хладаге	нта 5 и 6-ой ту	/рбины	
	МЭГ (водный раствор 55%об.)			
Код ЗВ	Наименование ЗВ	[%] мас.	Макси- мально ра- зовый вы- брос ЗВ, г/с	Валовый вы- брос 3В, т/год
1078	Этиленгликоль	57.93%	0.0112642	0.3562

№ ИЗ	0580	Наименование источника загрязнения атмо- сферы	Свеча
№ИЕ	001	Наименование источника выделения	FG1, Cold vent for line from FG2 till SU. D7-4200 AG-036-2"-C58

Всего по источнику:

Расчеты выбросов со свечей выполнены согласно **"Методики расчета выбросов загрязняющих веществ в атмосферу на объектах транспорта и хранения газа"**. Приложение № 1 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа					
V۲	1079	CT.M ³			
m	925	КГ			
ρ	0.86	кг/ст.м ³			
т	1	час			
1	3600	сек.			
Всек	256.98183	г/сек			
Вгод	0.92513	т/один сброс			
	V _r m ρ T	V _r 1079 m 925 ρ 0.86 T 1 3600 B _{cek} 256.98183			

Выбросы 3B от FG1, Cold vent for line from FG2 till SU D7-4200_AG-036-2"-C58 Топливный газ Выбросы ЗВ Код ЗВ Наименование ЗВ r/c т/год % масс. 0333 0.002409% 0.0061903 0.0000223 Сероводород 0334 0.000010% 0.0000245 0.0000001 Сероуглерод 0370 0.004412% 0.0113391 0.0000408 Углерода сероокись 0415 Углеводороды пр. С1-С5 98 843608% 254 0101169 0.9144364 0416 Углеводороды пр. С6-С10 3.762211% 9.6681978 0.03480550.321455% 0.826081 0.0029739 0602 Бензол 0616 Ксилол 0.005869% 0.015082 0.0000543 1.2049883 0621 Толуол 0.468900% 0.004338 0627 0.00000001% 0.00000003 Этилбензол 1E-11 1702 Бутилмеркаптан 0.004347% 0.0111698 0.0000402 1707 Диметилсульфид 0.000024% 0.0000617 0.0000002 1715 Метилмеркаптан 0.005087% 0.0130736 0.0000471 1720 0.011243% 0.0288921 0.000104 Пропилмеркаптан 0.009768% 0.0000904 1728 Этилмеркаптан 0.025101 2754 0.029299% 0.0002711 Углеводороды пр. С12-С19 0.0752923 265.8956104 0.95722430001 Всего по источнику:

0.0112642

0.3562

№ ИЗА	0581	Наименование источника загрязнения атмо- сферы	Свеча
№ИВ	001	Наименование источника выделения	FG2, Metering skid Cold vent. D7- 4200 FG-108-2"-C13

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа						
Количество газа, при опорожнении технологического	Vr	52	CT.M ³			
оборудования в атмосферу:	m	45	КГ			
Плотность газа:	ρ	0.86	кг/ст.м ³			
Прополукитоли нести	-	3	минуты			
Продолжительность:	I .	180	сек.			
Количество сбросов	n	2	ед.			
Максимальный (разовый) выброс:	Всек	247.69333	г/сек			
Годовые (валовые) выбросы:	Вгод	0.08917	т/год			
Выбросы 3B от FG2, Metering skid Cold vent D7-4200_FG-108-2"-C13						
T						

Выоросы 3B от FG2, Metering skid Cold vent D7-4200_FG-108-2"-C13						
Код ЗВ	Наименование ЗВ	Топливный газ	Выбросы ЗВ			
код зв	паименование зв	% масс.	г/с	т/год		
0333	Сероводород	0.002409%	0.0059666	0.0000021		
0334	Сероуглерод	0.000010%	0.0000237	0.000000009		
0370	Углерода сероокись	0.004412%	0.0109293	0.0000039		
0415	Углеводороды пр. С1-С5	98.843608%	244.8290283	0.0881385		
0416	Углеводороды пр. С6-С10	3.762211%	9.3187449	0.0033547		
0602	Бензол	0.321455%	0.7962226	0.0002866		
0616	Ксилол	0.005869%	0.0145369	0.0000052		
0621	Толуол	0.468900%	1.1614345	0.0004181		
0627	Этилбензол	0.00000001%	0.000000002	1E-12		
1702	Бутилмеркаптан	0.004347%	0.0107661	0.0000039		
1707	Диметилсульфид	0.000024%	0.0000595	0.00000002		
1715	Метилмеркаптан	0.005087%	0.0126011	0.0000045		
1720	Пропилмеркаптан	0.011243%	0.0278478	0.00001		
1728	Этилмеркаптан	0.009768%	0.0241938	0.0000087		
2754	Углеводороды пр. С12-С19	0.029299%	0.0725709	0.0000261		
Всего по источнику: 256.284926 0.0922623290010						

№ ИЗА	0583	Наименование источника загрязнения атмосферы	Свеча
№ ИВ	001	Наименование источника выделе- ния	Свеча газоанализатора на FG-2

Расчеты выбросов со свечей выполнены согласно **"Методики расчета выбросов загрязняющих веществ в атмосферу на объектах транспорта и хранения газа**". Приложение № 1 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Расчет выбросов топливного газа газоанализатора					
Количество газа, при работе газоанализатора на FG-2 в ат-	V	30	ст.м ³ /год		
мосферу:	m	25.722	кг/год		
Плотность газа:	ρ	0.86	кг/ст.м ³		
Время работы	Т	8784	ч/год		
Максимальный (разовый) выброс:	Всек	0.0008	г/сек		
	_	0.0057	,		

Годовые (валовые) выбросы:		В _{год}	0.0257	т/год		
	Выбросы 3В от свечи газоанализатора на FG-2					
Код ЗВ	Наименование ЗВ	Топливный газ	Максимально- разовые вы- бросы, г/с	Валовые вы- бросы ЗВ, т/год		
0333	Сероводород	0.002409%	0.00000002	0.0000006		
0334	Сероуглерод	0.000010%	1E-10	0.000000002		
0370	Углерода сероокись	0.004412%	0.0000004	0.0000011		
0415	Углеводороды пр. С1-С5	98.843608%	0.000804	0.0254246		
0416	Углеводороды пр. С6-С10	3.762211%	0.0000306	0.0009677		
0602	Бензол	0.321455%	0.0000026	0.0000827		
0616	Ксилол	0.005869%	0.0000005	0.0000015		
0621	Толуол	0.468900%	0.000038	0.0001206		
0627	Этилбензол	0.00000001%	0	0		
1702	Бутилмеркаптан	0.004347%	0.0000004	0.0000011		
1707	Диметилсульфид	0.000024%	2E-10	0.000000006		
1715	Метилмеркаптан	0.005087%	0.0000004	0.0000013		
1720	Пропилмеркаптан	0.011243%	0.000001	0.0000029		
1728	Этилмеркаптан	0.009768%	0.000001	0.0000025		
2754	Углеводороды пр. С12-С19	0.029299%	0.0000002	0.0000075		

Всего по истоиния	0.00084159	0.026614108
Всего по источнику:	0.00064155	0.020014100

№ ИЗА	0584	Наименование источника загрязнения атмо- сферы	Свеча
№ИВ	001	Наименование источника выделения	FG3, Cold vent of Pig Trap D7-420-VL- 003. D7-4200 AG-001-2"-C58

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа						
Количество газа, при опорожнении технологического	V _Γ	57	CT.M ³			
оборудования в атмосферу:	m	49	КГ			
Плотность газа:	ρ	0.86	кг/ст.м ³			
Прополучитоли пости	т	1	минуты			
Продолжительность:	I	60	сек.			
Максимальный (разовый) выброс:	Всек	814.53000	г/сек			
Годовые (валовые) выбросы:	В _{год}	0.04887	т/один сброс			

Выбросы ЗВ от сброса на свечу

Код ЗВ	Наименование ЗВ	Топливный газ	газ Выбросы ЗВ	
код зв	паименование зв	% масс.	г/с	т/год
0333	Сероводород	0.002409%	0.0196209	0.0000012
0334	Сероуглерод	0.000010%	0.0000778	0.00000005
0370	Углерода сероокись	0.004412%	0.0359405	0.0000022
0415	Углеводороды пр. С1-С5	98.843608%	805.1108431	0.0483067
0416	Углеводороды пр. С6-С10	3.762211%	30.6443341	0.0018387
0602	Бензол	0.321455%	2.6183474	0.0001571
0616	Ксилол	0.005869%	0.0478041	0.0000029
0621	Толуол	0.468900%	3.8193328	0.0002292
0627	Этилбензол	0.00000001%	0.000000008	5E-13
1702	Бутилмеркаптан	0.004347%	0.0354039	0.0000021
1707	Диметилсульфид	0.000024%	0.0001955	0.0000001
1715	Метилмеркаптан	0.005087%	0.0414382	0.0000025
1720	Пропилмеркаптан	0.011243%	0.0915765	0.0000055
1728	Этилмеркаптан	0.009768%	0.0795603	0.0000048
2754	2754 Углеводороды пр. С12-С19		0.2386465	0.0000143
	Всего по источнику:	842.7831216	0.050567215	

№ ИЗА	0586	Наименование источника загрязнения атмо- сферы	Свеча
№ ИВ	001	Наименование источника выделения	FG4, Cold vent for Line from FG2 till OPF. D7-4200 AG-032-4"-C58

Расчеты выбросов со свечей выполнены согласно **"Методики расчета выбросов загрязняющих веществ в атмосферу на объектах транспорта и хранения газа**". Приложение № 1 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа					
Количество газа, при опорожнении технологического	V _Γ	1079	CT.M ³		
оборудования в атмосферу:	m	925	КГ		
Плотность газа:	ρ	0.86	кг/ст.м ³		
Прополучитольность	т	60	минуты		
Продолжительность:	l	3600	сек.		
Максимальный (разовый) выброс:	Всек	256.98183	г/сек		
Годовые (валовые) выбросы:	В _{год}	0.92513	т/один сброс		

Выбросы ЗВ от сброса на свечу

Код ЗВ	Наименование ЗВ	Топливный газ	Выбро	сы 3В
код зв		% масс.	г/с	т/год
0333	Сероводород	0.002409%	0.0061903	0.0000223
0334	Сероуглерод	0.000010%	0.0000245	0.00000009
0370	Углерода сероокись	0.004412%	0.0113391	0.0000408
0415	Углеводороды пр. С1-С5	98.843608%	254.0101169	0.9144364
0416	Углеводороды пр. С6-С10	3.762211%	9.6681978	0.0348055
0602	Бензол	0.321455%	0.826081	0.0029739
0616	Ксилол	0.005869%	0.015082	0.0000543
0621	Толуол	0.468900%	1.2049883	0.004338

	Всего по источнику:		265.8956104	0.95722429
2754	Углеводороды пр. С12-С19	0.029299%	0.0752923	0.0002711
1728	Этилмеркаптан	0.009768%	0.025101	0.0000904
1720	Пропилмеркаптан	0.011243%	0.0288921	0.000104
1715	Метилмеркаптан	0.005087%	0.0130736	0.0000471
1707	Диметилсульфид	0.000024%	0.0000617	0.0000002
1702	Бутилмеркаптан	0.004347%	0.0111698	0.0000402
0627	Этилбензол	0.000000001%	0.000000003	0.0000000001

№ ИЗА	0587	Наименование источника загрязнения атмосферы	Свеча
№ 3B	001	Наименование источника выделе- ния	D1-420-VN-002

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа					
Количество газа, при опорожнении технологического обо-	V_{Γ}	126	CT.M ³		
рудования в атмосферу:	m	108	КГ		
Плотность газа:	ρ	0.86	кг/ст.м ³		
	Т	7	минут		
Продолжительность продувки:		420	сек.		
Максимальный (разовый) выброс:	Всек	257.22000	г/сек		
Годовые (валовые) выбросы:	Вгод	0.10803	т/один сброс		

Продолжительность продувки:

Т 7 минут
420 сек.

Максимальный (разовый) выброс:
В_{сек} 257.22000 г/сек
Годовые (валовые) выбросы:
Выбросы ЗВ от D1-420-VN-002

Код ЗВ Наименование ЗВ Топливный газ
Выбросы ЗВ
7 масс. г/с т/год
0333 Сероводород 0.002409% 0.0061961 0.0000026
0334 Сероуглерод 0.00010% 0.0000246 0.00000001

Код ЗВ	Наименование ЗВ	Топливный газ	Выбро	сы 3В
код зв	паименование зв	% масс.	г/с	т/год
0333	Сероводород	0.002409%	0.0061961	0.0000026
0334	Сероуглерод	0.000010%	0.0000246	0.0000001
0370	Углерода сероокись	0.004412%	0.0113496	0.0000048
0415	Углеводороды пр. С1-С5	98.843608%	254.2455294	0.1067831
0416	Углеводороды пр. С6-С10	3.762211%	9.6771581	0.0040644
0602	Бензол	0.321455%	0.8268466	0.0003473
0616	Ксилол	0.005869%	0.01509602	0.0000063
0621	Толуол	0.468900%	1.2061051	0.0005066
0627	Этилбензол	0.00000001%	0.00000003	0.000000000001
1702	Бутилмеркаптан	0.004347%	0.0111802	0.0000047
1707	Диметилсульфид	0.000024%	0.0000617	0.00000003
1715	Метилмеркаптан	0.005087%	0.0130858	0.0000055
1720	Пропилмеркаптан	0.011243%	0.0289189	0.0000121
1728	Этилмеркаптан	0.009768%	0.0251243	0.0000106
2754	Углеводороды пр. С12-С19	0.029299%	0.0753621	0.0000317
	Всего по источнику:	<u> </u>	266.1420385	0.11177974

№ ИЗА	0588	Наименование источника загрязне- ния атмосферы	Свеча
№ 3B	001	Наименование источника выделения	D1-420-VN-001

Расчеты выбросов со свечей выполнены согласно **"Методики расчета выбросов загрязняющих веществ в атмосферу на объектах транспорта и хранения газа"**. Приложение № 1 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа				
Количество газа, при опорожнении технологического обо-	Vr	2	CT.M ³	
рудования в атмосферу:	m	1.71	КГ	
Плотность газа:	ρ	0.86	кг/ст.м ³	
		5	минут	
Продолжительность продувки:	ı	300	сек.	
Максимальный (разовый) выброс:	Всек	5.71600	г/сек	
Годовые (валовые) выбросы:	Вгод	0.00171	т/один сброс	
Выбросы 3В от D1	I-420-VN-001			

Von 2D	Наименование ЗВ	Топливный газ	Выбро	сы 3В
Код ЗВ	паименование эв	% масс.	г/с	т/год
0333	Сероводород	0.002409%	0.0001377	0.00000004

0334	Сероуглерод	0.000010%	0.0000005	0.0000000002
0370	Углерода сероокись	0.004412%	0.0002522	0.0000001
0415	Углеводороды пр. С1-С5	98.843608%	5.6499007	0.001695
0416	Углеводороды пр. С6-С10	3.762211%	0.215048	0.0000645
0602	Бензол	0.321455%	0.0183744	0.0000055
0616	Ксилол	0.005869%	0.0003355	0.000001
0621	Толуол	0.468900%	0.0268023	0.000008
0627	Этилбензол	0.00000001%	6E-11	2E-14
1702	Бутилмеркаптан	0.004347%	0.0002484	0.0000007
1707	Диметилсульфид	0.000024%	0.0000014	0.0000000004
1715	Метилмеркаптан	0.005087%	0.0002908	0.00000009
1720	Пропилмеркаптан	0.011243%	0.0006426	0.0000002
1728	Этилмеркаптан	0.009768%	0.0005583	0.0000002
2754	Углеводороды пр. С12-С19	0.029299%	0.0016747	0.000005
	Всего по источнику:		5.9142675	0.0017743006

№ ИЗА	6580	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ ИВ	001	Наименование источника выделе- ния	FG-1 Отсечная задвижка топ- ливного газа

При расчете выбросов 3В учтено число часов работы ИЗА, количество неплотностей 3РА и Φ С, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:

Среда	Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных утечек,	
Газовая		кг/час	ед.	кг/час	
	Фланцы	0.00039	12	0.00468	
Топливный газ	Насосы	0.0024	0	0	
топливный газ	3PA	0.00000036	6	0.00000216	
	Другие	0.0088	2	0.0176	
Время работы оборудования:		T	8784	ч/год	

Выбросы от неплотностей ЗРА и ФС:

выоросы от неплотностей зра и ФС:				
Код ЗВ	Наименование ЗВ	Топливный газ	Максимально- разовые вы-	Валовые вы- бросы ЗВ,
		% масс.	бросы, г/с	т/год
0333	Сероводород	0.002409%	0.000001	0.0000047
0334	Сероуглерод	0.000010%	0.00000001	0.00000002
0370	Углерода сероокись	0.004412%	0.000003	0.0000086
0415	Углеводороды пр. С1-С5	98.843608%	0.0061179	0.1934631
0416	Углеводороды пр. С6-С10	3.762211%	0.0002329	0.0073636
0602	Бензол	0.321455%	0.0000199	0.0006292
0616	Ксилол	0.005869%	0.000004	0.0000115
0621	Толуол	0.468900%	0.000029	0.0009178
0627	Этилбензол	0.00000001%	1E-13	2E-12
1702	Бутилмеркаптан	0.004347%	0.000003	0.0000085
1707	Диметилсульфид	0.000024%	0.00000001	0.0000005
1715	Метилмеркаптан	0.005087%	0.000003	0.00001
1720	Пропилмеркаптан	0.011243%	0.0000007	0.000022
1728	Этилмеркаптан	0.009768%	0.0000006	0.0000191
2754	Углеводороды пр. С12-С19	0.029299%	0.0000018	0.0000573
	Всего по источнику:	•	0.006404202	0.20251547

№ ИЗА	6581	Наименование источника загрязнения атмосферы	Установка 420. Система топливного газа
№ИВ	001	Наименование источника выделе- ния	FG-2 Отсечная задвижка топ- ливного газа. D7-420-JM-001 ком- плектная установка измерения газа

В состав неорганизованных выбросов входят утечки от неплотностей запорно-регулирующей арматуры и фланцевых соединений, которые определяются по "Протоколу оценки утечек из оборудования", EPA-453/R-95-017, США, 1995 год.

При расчете выбросов 3B учтено число часов работы ИЗА, количество неплотностей 3PA и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:

MOXOGINDIO ANIMBIO ANIM PAO IOTA BEIOPOCOE EPOANDIX BOLLOCIE OT MONITORIO IOTA OT ATTA				
Среда	Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных утечек,
Газовая		кг/час	ед.	кг/час
Топливный газ	Фланцы	0.00039	10	0.0039

		Насосы	0.0024	0	0
		3PA	0.0000036	5	0.0000018
		Другие	0.0088	1	0.0088
Время ра	боты оборудования:		Т	8784	ч/год
	Выбр	осы от неплот	ностей ЗРА и ФС:		
			Топливный	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗЕ	3	газ	разовые вы-	бросы ЗВ,
			% масс.	бросы, г/с	т/год
0333	Сероводород		0.002409%	0.000001	0.0000027
0334	Сероуглерод		0.000010%	0.000000003	0.0000001
0370	Углерода сероокись		0.004412%	0.0000002	0.0000049
0415	Углеводороды пр. С1-С5		98.843608%	0.0034875	0.1102824
0416	Углеводороды пр. С6-С10		3.762211%	0.0001327	0.0041976
0602	Бензол		0.321455%	0.0000113	0.0003587
0616	Ксилол		0.005869%	0.0000002	0.0000065
0621	Толуол		0.468900%	0.0000165	0.0005232
0627	Этилбензол		0.000000001%	4E-14	1E-12
1702	Бутилмеркаптан		0.004347%	0.0000002	0.0000048
1707	Диметилсульфид		0.000024%	0.0000000008	0.00000003
1715	Метилмеркаптан		0.005087%	0.0000002	0.0000057
1720	Пропилмеркаптан	<u> </u>	0.011243%	0.000004	0.0000125
1728	Этилмеркаптан	•	0.009768%	0.000003	0.0000109
2754	Углеводороды пр. С12-С19	•	0.029299%	0.000001	0.0000327
	Всего по источ	нику:		0.003650601	0.11544264

№ ИЗА	6582	Наименование источника загрязнения атмосферы	Установка 420. Система топливного газа
№ ИВ	001	Наименование источника выделе- ния	FG-3 Точка врезки в газопровод топливного газа. D7-420-VL-003 камера пуска скребка магистрали ПГ

При расчете выбросов 3B учтено число часов работы ИЗА, количество неплотностей 3PA и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:				
Среда	Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных утечек,
Газовая		кг/час	ед.	кг/час
Топливный газ	Фланцы	0.00039	22	0.00858
	Насосы	0.0024	0	0
	3PA	0.00000036	11	0.00000396
	Другие	0.0088	3	0.0264
Время работы оборудования:		T	8784	ч/год

Выбросы от неплотностей ЗРА и ФС:

Код ЗВ	Наименование ЗВ	Топливный газ % масс.	Максимально- разовые вы- бросы, г/с	Валовые вы- бросы 3В, т/год
0333	Сероводород	0.002409%	0.0000002	0.000074
0334	Сероуглерод	0.002409%	0.0000002	0.0000074
0370	Углерода сероокись	0.004412%	0.00000001	0.0000003
0415	Углеводороды пр. С1-С5	98.843608%	0.0096054	0.3037455
0416	Углеводороды пр. С6-С10	3.762211%	0.0003656	0.0115612
0602	Бензол	0.321455%	0.0000312	0.0009878
0616	Ксилол	0.005869%	0.0000006	0.000018
0621	Толуол	0.468900%	0.0000456	0.0014409
0627	Этилбензол	0.00000001%	1E-13	3E-12
1702	Бутилмеркаптан	0.004347%	0.0000004	0.0000134
1707	Диметилсульфид	0.000024%	0.000000002	0.00000007
1715	Метилмеркаптан	0.005087%	0.0000005	0.0000156
1720	Пропилмеркаптан	0.011243%	0.0000011	0.0000345
1728	Этилмеркаптан	0.009768%	0.0000009	0.00003
2754	Углеводороды пр. С12-С19	0.029299%	0.0000028	0.00009
	Всего по источнику:			0.317958

№ ИЗА	6582	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	002	Наименование источника выделе- ния	FG-3 Точка врезки в газопровод топливного газа. D7-420-VA-001 дренажная емкость

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011)^{0,8}* $\sqrt{(M_n/T)}$, кг/час

107 100			
Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.234113856	кг/час
Давление в аппарате:	Р	3500	гПа
Объём аппарата:	V	7.3	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	Mn	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{нк}	30	°C
Средняя температура в аппарате:	T	278.15	K
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М сек = П/3.6 , г/сек	М _{сек}	0.06503	г/сек
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} =П*Т/10³, т/год	М _{год}	2.05646	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год

Выбросы 3B от FG-3 Точка врезки в газопровод топливного газа. D7-420-VA-001

		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы- бросы, г/с	бросы ЗВ, т/год
0333	Сероводород	0.002409%	0.0000016	0.0000495
0334	Сероуглерод	0.000010%	0.0000001	0.0000002
0370	Углерода сероокись	0.004412%	0.0000029	0.0000907
0415	Углеводороды пр. С1-С5	98.843608%	0.0642796	2.0326754
0416	Углеводороды пр. С6-С10	3.762211%	0.0024466	0.0773682
0602	Бензол	0.321455%	0.000209	0.0066106
0616	Ксилол	0.005869%	0.0000038	0.0001207
0621	Толуол	0.468900%	0.0003049	0.0096427
0627	Этилбензол	0.00000001%	1E-12	2E-11
1702	Бутилмеркаптан	0.004347%	0.0000028	0.0000894
1707	Диметилсульфид	0.000024%	0.00000002	0.0000005
1715	Метилмеркаптан	0.005087%	0.0000033	0.0001046
1720	Пропилмеркаптан	0.011243%	0.0000073	0.0002312
1728	Этилмеркаптан	0.009768%	0.0000064	0.0002009
2754	Углеводороды пр. С12-С19	0.029299%	0.0000191	0.0006025
	Всего по источнику:			2.1277871

№ ИЗА	6583	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ИВ	001	Наименование источника выделения	OPF mex. установка топливного газа. D7-420-VR-004 камера при- ема скребка магистрали ПГ

В состав неорганизованных выбросов входят утечки от неплотностей запорно-регулирующей арматуры и фланцевых соединений, которые определяются по "Протоколу оценки утечек из оборудования", EPA-453/R-95-017, США, 1995 год.

При расчете выбросов 3В учтено число часов работы ИЗА, количество неплотностей ЗРА и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:

Среда		Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных уте- чек,
Газовая			кг/час	ед.	кг/час
		Фланцы	0.00039	22	0.00858
Топливнь	ıŭ roo	Насосы	0.0024	0	0
топливнь	и газ	3PA	0.0000036	11	0.00000396
		Другие	0.0088	3	0.0264
Время ра	Время работы оборудования:		T	8784	ч/год
	Выбросы от неплотностей ЗРА и ФС:				
			Топливный	Максимально-	Ваповые вы-
Код ЗВ	Наименова	ние 3В	газ	разовые вы-	
			% масс.	бросы, г/с	оросы эв, глод

	Всего по источнику:		0.010054703	0.317958
2754	Углеводороды пр. С12-С19	0.029299%	0.0000028	0.00009
1728	Этилмеркаптан	0.009768%	0.0000009	0.00003
1720	Пропилмеркаптан	0.011243%	0.0000011	0.0000345
1715	Метилмеркаптан	0.005087%	0.0000005	0.0000156
1707	Диметилсульфид	0.000024%	0.000000002	0.0000007
1702	Бутилмеркаптан	0.004347%	0.0000004	0.0000134
0627	Этилбензол	0.000000001%	1E-13	3E-12
0621	Толуол	0.468900%	0.0000456	0.0014409
0616	Ксилол	0.005869%	0.0000006	0.000018
0602	Бензол	0.321455%	0.0000312	0.0009878
0416	Углеводороды пр. С6-С10	3.762211%	0.0003656	0.0115612
0415	Углеводороды пр. С1-С5	98.843608%	0.0096054	0.3037455
0370	Углерода сероокись	0.004412%	0.0000004	0.0000136
0334	Сероуглерод	0.000010%	0.00000001	0.0000003
0333	Сероводород	0.002409%	0.0000002	0.0000074

№ ИЗА	6583	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	002	Наименование источника выделения	OPF mex. установка топливного газа. D7-420-VA-002 дренажная емкость

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: П=0.037*(P*V/1011)^{0,8*}√(M_n/T), кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.234113856	кг/час
Давление в аппарате:	Р	3500	гПа
Объём аппарата:	V	7.3	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{нк}	30	°C
Средняя температура в аппарате:	Т	278.15	K
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: Мсек = П/3.6, г/сек	М _{сек}	0.06503	г/сек
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} =П*T/10³, т/год	М _{год}	2.05646	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год

Выбросы 3B от OPF тех. установка топливного газа. D7-420-VA-002

		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы-	бросы ЗВ,
			бросы, г/с	т/год
0333	Сероводород	0.002409%	0.0000016	0.0000495
0334	Сероуглерод	0.000010%	0.0000001	0.0000002
0370	Углерода сероокись	0.004412%	0.0000029	0.0000907
0415	Углеводороды пр. С1-С5	98.843608%	0.0642796	2.0326754
0416	Углеводороды пр. С6-С10	3.762211%	0.0024466	0.0773682
0602	Бензол	0.321455%	0.000209	0.0066106
0616	Ксилол	0.005869%	0.000038	0.0001207
0621	Толуол	0.468900%	0.0003049	0.0096427
0627	Этилбензол	0.00000001%	1E-12	2E-11
1702	Бутилмеркаптан	0.004347%	0.0000028	0.0000894
1707	Диметилсульфид	0.000024%	0.00000002	0.000005
1715	Метилмеркаптан	0.005087%	0.000033	0.0001046
1720	Пропилмеркаптан	0.011243%	0.000073	0.0002312
1728	Этилмеркаптан	0.009768%	0.0000064	0.0002009
2754	Углеводороды пр. С12-С19	0.029299%	0.0000191	0.0006025
	Всего по источнику:			2.1277871

№ ИЗА	6584	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ ИВ	001	Наименование источника выделе- ния	FG-4 Задвижка технологического производства 500 м

При расчете выбросов 3B учтено число часов работы ИЗА, количество неплотностей 3PA и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:				
Среда	Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных уте- чек,
Газовая		кг/час	ед.	кг/час
Топливный газ	Фланцы	0.00039	12	0.00468
	Насосы	0.0024	0	0
	3PA	0.00000036	6	0.00000216
	Другие	0.0088	2	0.0176
Время работы оборудования:		Т	8784	ч/год

Выбросы от неплотностей ЗРА и ФС:

	выоросы от неплотностем эта и ФС.					
		Топливный	Максимально-	Валовые вы-		
Код ЗВ	Наименование ЗВ	газ	разовые вы-	бросы ЗВ, т/год		
		% масс.	бросы, г/с	оросы эв, тод		
0333	Сероводород	0.002409%	0.000001	0.0000047		
0334	Сероуглерод	0.000010%	0.00000001	0.00000002		
0370	Углерода сероокись	0.004412%	0.0000003	0.0000086		
0415	Углеводороды пр. С1-С5	98.843608%	0.0061179	0.1934631		
0416	Углеводороды пр. С6-С10	3.762211%	0.0002329	0.0073636		
0602	Бензол	0.321455%	0.0000199	0.0006292		
0616	Ксилол	0.005869%	0.0000004	0.0000115		
0621	Толуол	0.468900%	0.000029	0.0009178		
0627	Этилбензол	0.00000001%	1E-13	2E-12		
1702	Бутилмеркаптан	0.004347%	0.0000003	0.0000085		
1707	Диметилсульфид	0.000024%	0.00000001	0.0000005		
1715	Метилмеркаптан	0.005087%	0.0000003	0.00001		
1720	Пропилмеркаптан	0.011243%	0.0000007	0.000022		
1728	Этилмеркаптан	0.009768%	0.0000006	0.0000191		
2754	Углеводороды пр. С12-С19	0.029299%	0.0000018	0.0000573		
	Всего по источнику:		0.006404202	0.20251547		

№ ИЗА	6585	Наименование источника загрязнения атмосферы	Установка 420. Система топливного газа
№ 3B	001	Наименование источника выделения	Каплеотбойный сепаратор топливного газа ВД D1-420-VN- 002

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011) $^{0.8*}$ $\sqrt{(M_n/T)}$, кг/час

N/14C				
Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.13759	кг/час	
Давление в аппарате:	Р	7500	гПа	
	•			
Объём аппарата:	V	1.8	M ³	
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M_n	63	г/моль	
Температура начала кипения продукта, загружаемого в аппарат:	t _{HK}	30	°C	
Средняя температура в аппарате:	Т	288.15	K	
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М _{сек} = П/3.6 , г/сек	М _{сек}	0.03822	г/сек	
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} = П*T/10 ³ , т/год	М _{год}	1.20857	т/год	
Фактический годовой фонд времени работы одной единицы оборудования:	T	8784	ч/год	
Выбросы 3В от каплеотбойного сепаратора топливного газа ВД D1-420-VN-002				

 Код 3В
 Наименование 3В
 Топливный газ разовые выбрасы, г/с
 Максимальноразовые выбросы, г/с
 Валовые выбросы 3В, т/год

 0333
 Сероводород
 0.002409%
 0.0000009
 0.0000291

1728 2754	Этилмеркаптан Углеводороды пр. С12-С19	0.009768% 0.029299%	0.0000037 0.0000112	0.000118 0.0003541
1720	Пропилмеркаптан	0.011243%	0.0000043	0.0001359
1715	Метилмеркаптан	0.005087%	0.0000019	0.0000615
1707	Диметилсульфид	0.000024%	0.000000009	0.0000003
1702	Бутилмеркаптан	0.004347%	0.0000017	0.0000525
0627	Этилбензол	0.00000001%	4E-13	1E-11
0621	Толуол	0.468900%	0.0001792	0.005667
0616	Ксилол	0.005869%	0.0000022	0.0000709
0602	Бензол	0.321455%	0.0001229	0.003885
0416	Углеводороды пр. С6-С10	3.762211%	0.0014379	0.045469
0415	Углеводороды пр. С1-С5	98.843608%	0.0377769	1.1945963
0370	Углерода сероокись	0.004412%	0.0000017	0.0000533
0334	Сероуглерод	0.000010%	0.000000004	0.0000001

№ ИЗА	6585	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ ИВ	002	Наименование источника выделе- ния	Установка измерения газа D1-420- ЈМ-001. Установка одорирования топливного газа D1-420-XX-001. Емкость сбора конденсата топ- ливного газа D1-420-VA-002. Не- плотности ЗРА и ФС

При расчете выбросов 3В учтено число часов работы ИЗА, количество неплотностей ЗРА и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:					
Среда	Наименование оборудования	Удельный пока- затель вы- броса,	Кол-во источни- ков выделения,	Расчет неоргани- зованных утечек,	
Газовая		кг/час	ед.	кг/час	
	Фланцы	0.00039	32	0.01248	
Топливный газ	Насосы	0.0024	0	0	
ТОПЛИВНЫЙ ГАЗ	3PA	0.00000036	16	0.00000576	
	Другие	0.0088	3	0.0264	
Время работы оборудования: Т 8784 ч/год					
	DC	× ODA +O-			

Выбросы от неплотностей ЗРА и ФС: Максимально-Топливный газ Валовые выразовые вы-Код ЗВ Наименование ЗВ бросы ЗВ, т/год % масс. бросы, г/с 0.002409% 0.0000082 0333 0.0000003 Сероводород U334 0.0000100/ 0.00000001 0.00000003

	Всего по источнику:	0.011176304	0.35342041	
2754	Углеводороды пр. С12-С19	0.029299%	0.0000032	0.0001001
1728	Этилмеркаптан	0.009768%	0.0000011	0.0000334
1720	Пропилмеркаптан	0.011243%	0.0000012	0.0000384
1715	Метилмеркаптан	0.005087%	0.0000005	0.0000174
1707	Диметилсульфид	0.000024%	0.000000003	0.00000008
1702	Бутилмеркаптан	0.004347%	0.0000005	0.0000148
0627	Этилбензол	0.00000001%	1E-13	3E-12
0621	Толуол	0.468900%	0.0000506	0.0016016
0616	Ксилол	0.005869%	0.0000006	0.00002
0602	Бензол	0.321455%	0.0000347	0.001098
0416	Углеводороды пр. С6-С10	3.762211%	0.0004064	0.0128507
0415	Углеводороды пр. С1-С5	98.843608%	0.0106767	0.3376226
0370	Углерода сероокись	0.004412%	0.0000005	0.0000151
0334	Г Сероуглерод	0.00001070	0.00000001	0.0000000

№ ИЗА	6585	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	003	Наименование источника выделе- ния	Резервуар одорирования топ- ливного газа D1-420-TA-001

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011)^{0,8*}√(M_n/T), кг/час

	_	Ī	i.	ı
	выбросов газов и паров, выделяющихся из ап-	П	0.01652	кг/час
паратов: Давление в	аппарате:	P	7000	гПа
Объём аппа	,	V	0.1	м ³
	олярная масса паров нефтепродуктов, прини-	V	0.1	IVI
	ависимости от температуры начала кипения	Mn	63	г/моль
	агружаемого в аппарат (таблица 5.2):			1711103112
	ра начала кипения продукта, загружаемого в	,		
аппарат:		t _{HK}	30	°C
Средняя те	мпература в аппарате:	T	278.15	K
	ный (разовый) выброс от одной единицы обо-	N 4	0.00459	г/сек
	рассчитывается по формуле: Мсек = П/3.6, г/сек	М _{сек}	0.00459	1/Cek
Годовые (ва	аловые) выбросы от одной единицы оборудо-	Мгод	0.14510	т/год
	нитываются по формуле: М _{год} =П*Т/10³, т/год	IVI _{ГОД}	0.14310	тлод
	й годовой фонд времени работы одной еди-	Т	8784	ч/год
ницы оборудования:				члод
	Выбросы ЗВ от резервуара одориров			1
		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы-	бросы ЗВ,
		70	бросы, г/с	т/год
0333	Сероводород	0.002409%	бросы, г/с 0.0000001	т/год 0.0000035
0333 0334	Сероводород Сероуглерод	0.002409% 0.000010%	бросы, г/с 0.0000001 4E-10	т/год 0.0000035 0.0000001
0333 0334 0370	Сероводород Сероуглерод Углерода сероокись	0.002409% 0.000010% 0.004412%	бросы, г/с 0.0000001 4E-10 0.0000002	т/год 0.0000035 0.0000001 0.000064
0333 0334 0370 0415	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5	0.002409% 0.000010% 0.004412% 98.843608%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353	т/год 0.0000035 0.00000001 0.0000064 0.1434174
0333 0334 0370 0415 0416	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10	0.002409% 0.000010% 0.004412% 98.843608% 3.762211%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588
0333 0334 0370 0415	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5	0.002409% 0.000010% 0.004412% 98.843608%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353	т/год 0.0000035 0.00000001 0.0000064 0.1434174
0333 0334 0370 0415 0416	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10	0.002409% 0.000010% 0.004412% 98.843608% 3.762211%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588
0333 0334 0370 0415 0416 0602	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол	0.002409% 0.000010% 0.004412% 98.843608% 3.762211% 0.321455%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664
0333 0334 0370 0415 0416 0602 0616	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол	0.002409% 0.000010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085
0333 0334 0370 0415 0416 0602 0616	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол	0.002409% 0.000010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869% 0.468900%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003 0.0000215	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085 0.0006804
0333 0334 0370 0415 0416 0602 0616 0621 0627	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол	0.002409% 0.00010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003 0.0000215 5E-14	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085 0.0006804 1E-12
0333 0334 0370 0415 0416 0602 0616 0621 0627 1702	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан	0.002409% 0.00010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001% 0.004347%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003 0.0000215 5E-14 0.0000002	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085 0.0006804 1E-12 0.0000063
0333 0334 0370 0415 0416 0602 0616 0621 0627 1702	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан Диметилсульфид	0.002409% 0.00010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.00000001% 0.004347% 0.000024%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003 0.0000215 5E-14 0.0000002 0.00000001	7/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085 0.0006804 1E-12 0.0000063 0.00000003
0333 0334 0370 0415 0416 0602 0616 0621 0627 1702 1707 1715	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан Диметилсульфид Метилмеркаптан	0.002409% 0.00010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.00000001% 0.004347% 0.000024% 0.005087%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003 0.0000215 5E-14 0.0000002 0.00000001 0.00000002	T/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085 0.0006804 1E-12 0.0000063 0.0000003 0.0000074
0333 0334 0370 0415 0416 0602 0616 0621 0627 1702 1707 1715 1720	Сероводород Сероуглерод Углерода сероокись Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан Диметилсульфид Метилмеркаптан	0.002409% 0.000010% 0.004412% 98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001% 0.004347% 0.000024% 0.005087% 0.011243%	бросы, г/с 0.0000001 4E-10 0.0000002 0.0045353 0.0001726 0.0000147 0.0000003 0.0000215 5E-14 0.0000002 0.00000001 0.0000002 0.00000005	T/rog 0.0000035 0.00000001 0.0000064 0.1434174 0.0054588 0.0004664 0.0000085 0.0006804 1E-12 0.0000063 0.0000003 0.0000074 0.0000163

№ ИЗА	6585	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	004	Наименование источника выделе- ния	Каплеотбойный сепаратор топ- ливного газа НД D1-420-VN-001

0.004747301

0.15012814

Всего по источнику:

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011) $^{0.8*}$ $\sqrt{(M_n/T)}$, кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.03046	кг/час	
Давление в аппарате:	Р	5500	гПа	
Объём аппарата:	V	0.4	M ³	
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль	
Температура начала кипения продукта, загружаемого в аппарат:	t _{HK}	30	°C	
Средняя температура в аппарате:	Т	293.15	K	
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М сек = П/3.6 , г/сек	М _{сек}	0.00846	г/сек	
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} =П*T/10³, т/год	М _{год}	0.26755	т/год	
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год	
P. (5 p.s.) 2P (27 p.s.) 5 division appearance (27 p.s.) 5 division (27 p.s.) 10 divisi				

Выбросы 3В от каплеотбойного сепаратора топливного газа НД D1-420-VN-001 Топливный газ Максимально-Валовые вы-Код ЗВ Наименование ЗВ разовые выбросы ЗВ, % масс. т/год бросы, г/с 0333 0.002409% 0.0000002 0.0000064 Сероводород 0.0000003 0334 0.000010% 0.00000001 Сероуглерод 0370 Углерода сероокись 0.004412% 0.0000004 0.0000118 0415 Углеводороды пр. С1-С5 98.843608% 0.0083628 0.2644514 0416 Углеводороды пр. С6-С10 3.762211% 0.0003183 0.0100656

0602	Бензол	0.321455%	0.0000272	0.00086
0616	Ксилол	0.005869%	0.000005	0.0000157
0621	Толуол	0.468900%	0.0000397	0.0012545
0627	Этилбензол	0.000000001%	1E-13	3E-12
1702	Бутилмеркаптан	0.004347%	0.0000004	0.0000116
1707	Диметилсульфид	0.000024%	0.000000002	0.00000006
1715	Метилмеркаптан	0.005087%	0.000004	0.0000136
1720	Пропилмеркаптан	0.011243%	0.000001	0.0000301
1728	Этилмеркаптан	0.009768%	0.0000008	0.0000261
2754	Углеводороды пр. С12-С19	0.029299%	0.0000025	0.0000784
	Всего по источнику:	•	0.008754203	0.27682529

№ ИЗА	6586	Наименование источника загрязнения атмосферы	Установка 420. Система топливного газа
№ИВ	001	Наименование источника выделе- ния	Замер топливного газа. Распре- деление топливного газа СД и НД. Неплотности ЗРА и ФС

При расчете выбросов 3В учтено число часов работы ИЗА, количество неплотностей ЗРА и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:

Среда	Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных утечек,	
Газовая		кг/час	ед.	кг/час	
	Фланцы	0.00039	34	0.01326	
Топливный газ	Насосы	0.0024	0	0	
ТОПЛИВНЫЙ ГАЗ	3PA	0.00000036	17	0.00000612	
	Другие	0.0088	3	0.0264	
Время работы оборудования:		T	8784	ч/год	

Выбросы от неплотностей ЗРА и ФС:

	выоросы от неплотностеи ЗРА и ФС:					
		Топливный	Максимально-	Валовые вы-		
Код ЗВ	Наименование ЗВ	газ	разовые вы-	бросы ЗВ,		
		% масс.	бросы, г/с	т/год		
0333	Сероводород	0.002409%	0.0000003	0.0000084		
0334	Сероуглерод	0.000010%	0.00000001	0.00000003		
0370	Углерода сероокись	0.004412%	0.000005	0.0000154		
0415	Углеводороды пр. С1-С5	98.843608%	0.010891	0.344398		
0416	Углеводороды пр. С6-С10	3.762211%	0.0004145	0.0131086		
0602	Бензол	0.321455%	0.0000354	0.00112		
0616	Ксилол	0.005869%	0.0000006	0.0000204		
0621	Толуол	0.468900%	0.0000517	0.0016338		
0627	Этилбензол	0.00000001%	1E-13	3E-12		
1702	Бутилмеркаптан	0.004347%	0.000005	0.0000151		
1707	Диметилсульфид	0.000024%	0.00000003	0.00000008		
1715	Метилмеркаптан	0.005087%	0.0000006	0.0000177		
1720	Пропилмеркаптан	0.011243%	0.0000012	0.0000392		
1728	Этилмеркаптан	0.009768%	0.0000011	0.000034		
2754	Углеводороды пр. С12-С19	0.029299%	0.0000032	0.0001021		
	Всего по источнику:	•	0.011400604	0.36051281		

№ ИЗА	6586	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	002	Наименование источника выделе- ния	Каплеотбойный сепаратор топ- ливного газа СД А1-420-VN-004

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011) $^{0.8*}$ $\sqrt{(M_n/T)}$, кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.38814	кг/час
Давление в аппарате:	Р	23000	гПа
Объём аппарата:	V	2.3	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль

		,	1	•
	Температура начала кипения продукта, загружаемого в		30	°C
аппарат:		t _{HK}	212.15	.,
	ипература в аппарате:	Т	313.15	K
	ный (разовый) выброс от одной единицы обо-	Мсек	0.10782	г/сек
	рассчитывается по формуле: $\mathbf{M}_{\text{сек}} = \mathbf{\Pi}/3.6$, г/сек			
	іловые) выбросы от одной единицы оборудо- итываются по формуле: М _{год} =П*Т/10³, т/год	М _{год}	3.40941	т/год
	и годовой фонд времени работы одной еди-	Т	8784	ч/год
ницы обору,		-		
	Выбросы ЗВ от каплеотбойного сепара			
		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы-	бросы ЗВ,
		// Macc.	бросы, г/с	т/год
0333	Сероводород	0.002409%	0.0000026	0.0000821
0334	Сероуглерод	0.000010%	0.0000001	0.000003
0370	Углерода сероокись	0.004412%	0.000048	0.0001504
0415	Углеводороды пр. С1-С5	98.843608%	0.1065695	3.3699835
0416	Углеводороды пр. С6-С10	3.762211%	0.0040563	0.1282692
0602	Бензол	0.321455%	0.0003466	0.0109597
0616	Ксилол	0.005869%	0.000063	0.0002001
0621	Толуол	0.468900%	0.0005056	0.0159867
0627	Этилбензол	0.000000001%	0.000000000001	0.0000000003
1702	Бутилмеркаптан	0.004347%	0.0000047	0.0001482
1707	1707 Диметилсульфид		0.0000003	0.0000008
1715	Метилмеркаптан	0.005087%	0.0000055	0.0001734
1720	Пропилмеркаптан	0.011243%	0.0000121	0.0003833
1728	Этилмеркаптан	0.009768%	0.0000105	0.000333
2754	Углеводороды пр. С12-С19	0.029299%	0.0000316	0.0009989
	D		0.44455044	0.5070000

№ ИЗА	6586	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	003	Наименование источника выделе- ния	Каплеотбойный сепаратор топ- ливного газа СД A1-420-VN-005

Всего по источнику:

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011)^{0,8*}√(M_n/T), кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.38814	кг/час
Давление в аппарате:	Р	23000	гПа
Объём аппарата:	V	2.3	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{HK}	30	°C
Средняя температура в аппарате:	Т	313.15	K
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М _{сек} = П/3.6 , г/сек	М _{сек}	0.10782	г/сек
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} =П*T/10³, т/год	М _{год}	3.40941	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год
B. (5 20 : 2B 2 : 20 = 20 = 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		OO CH A4 420 VALOO	E

Выбросы 3В от каплеотбойного сепаратора топливного газа СД А1-420-VN-005					
		Топливный газ	Максимально-	Валовые вы-	
Код ЗВ	Наименование ЗВ	% масс.	разовые вы- бросы, г/с	бросы ЗВ, т/год	
0333	Сероводород	0.002409%	0.0000026	0.0000821	
0334	Сероуглерод	0.000010%	0.0000001	0.0000003	
0370	Углерода сероокись	0.004412%	0.0000048	0.0001504	
0415	Углеводороды пр. С1-С5	98.843608%	0.1065695	3.3699835	
0416	Углеводороды пр. С6-С10	3.762211%	0.0040563	0.1282692	
0602	Бензол	0.321455%	0.0003466	0.0109597	
0616	Ксилол	0.005869%	0.000063	0.0002001	
0621	Толуол	0.468900%	0.0005056	0.0159867	
0627	Этилбензол	0.00000001%	0.000000000001	0.0000000003	
1702	Бутилмеркаптан	0.004347%	0.0000047	0.0001482	
1707	Диметилсульфид	0.000024%	0.00000003	0.0000008	
1715	Метилмеркаптан	0.005087%	0.0000055	0.0001734	

3.5276696

0.11155614

	009989
1728 Этилмеркаптан 0.009768% 0.0000105 0.	
	00333
1720 Пропилмеркаптан 0.011243% 0.0000121 0.0	003833

№ ИЗА	6586	Наименование источника загрязнения атмосферы	Установка 420. Система топливного газа
№ 3B	004	Наименование источника выделения	Каплеотбойный сепаратор топливного газа НД A1-420-VN- 006

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: $\Pi=0.037*(P*V/1011)^{0.8*}\sqrt{(M_n/T)}$, кг/час

147 140			
Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.03302	кг/час
Давление в аппарате:	Р	7000	гПа
Объём аппарата:	V	0.3	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{HK}	30	°C
Средняя температура в аппарате:	Т	288.15	K
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М _{сек} = П/3.6, г/сек	М _{сек}	0.00917	г/сек
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} =П*Т/10³, т/год	М _{год}	0.29007	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год
		115 44 400 1/11 00	•

Выбросы 3В от каплеотбойного сепаратора топливного газа НД A1-420-VN-006

		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы- бросы, г/с	бросы ЗВ, т/год
0333	Сероводород	0.002409%	0.0000002	0.000007
0334	Сероуглерод	0.000010%	0.00000001	0.00000003
0370	Углерода сероокись	0.004412%	0.0000004	0.0000128
0415	Углеводороды пр. С1-С5	98.843608%	0.0090669	0.2867175
0416	Углеводороды пр. С6-С10	3.762211%	0.0003451	0.0109131
0602	Бензол	0.321455%	0.0000295	0.0009325
0616	Ксилол	0.005869%	0.000005	0.000017
0621	Толуол	0.468900%	0.000043	0.0013601
0627	Этилбензол	0.00000001%	1E-13	3E-12
1702	Бутилмеркаптан	0.004347%	0.0000004	0.0000126
1707	Диметилсульфид	0.000024%	0.000000002	0.0000007
1715	Метилмеркаптан	0.005087%	0.0000005	0.0000148
1720	Пропилмеркаптан	0.011243%	0.000001	0.0000326
1728	Этилмеркаптан	0.009768%	0.0000009	0.0000283
2754	Углеводороды пр. С12-С19	0.029299%	0.0000027	0.000085
	Всего по источнику:	•	0.009491103	0.3001334

№ ИЗА	6587	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ 3B	001	Наименование источника выделения	Входной каплеотбойный сепаратор топливного газа А1-420- VN-003

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011) $^{0.8*}$ $\sqrt{(M_n/T)}$, кг/час

Количество выбросов газов и паров, выделяющихся из	п	0.31502	кг/час
аппаратов:	11	0.51502	NI/9aC
Давление в аппарате:	Р	8800	гПа
Объём аппарата:	V	4.3	M^3

мается в за	лярная масса паров нефтепродуктов, прини- ависимости от температуры начала кипения агружаемого в аппарат (таблица 5.2):	M _π	63	г/моль
Температур аппарат:	а начала кипения продукта, загружаемого в	t _{HK}	30	°C
-	ипература в аппарате:	Т	283.15	K
Максимальн	ный (разовый) выброс от одной единицы обо- рассчитывается по формуле: М сек = П/3.6 , г/сек	Мсек	0.08751	г/сек
	ловые) выбросы от одной единицы оборудо- итываются по формуле: М _{год} =П*Т/10³, т/год	М _{год}	2.76717	т/год
	Фактический годовой фонд времени работы одной единицы оборудования:		8784	ч/год
	Выбросы 3В от входного каплеотбойного	сепаратора топливн	юго газа А1-420-VN	I-003
		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы- бросы, г/с	бросы ЗВ, т/год
0333	Сероводород	0.002409%	0.0000021	0.0000667
0334	Сероуглерод	0.000010%	0.0000001	0.0000003
0370	Углерода сероокись	0.004412%	0.0000000	0.0001221
	утперода сероокись	0.004412%	0.0000039	0.0001221
0415	Углеводороды пр. С1-С5	98.843608%	0.0864946	2.7351672

0415	Углеводороды пр. С1-С5	98.843608%	0.0864946	2.7351672
0415 0416 0602 0616	Углеводороды пр. C1-C5 Углеводороды пр. C6-C10	98.843608% 3.762211%	0.0864946 0.0032922	2.7351672 0.1041066
0415 0416 0602	Углеводороды пр. C1-C5 Углеводороды пр. C6-C10 Бензол	98.843608% 3.762211% 0.321455%	0.0864946 0.0032922 0.0002813	2.7351672 0.1041066 0.0088952
0415 0416 0602 0616 0621 0627	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол	98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001%	0.0864946 0.0032922 0.0002813 0.0000051	2.7351672 0.1041066 0.0088952 0.0001624
0415 0416 0602 0616 0621	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол	98.843608% 3.762211% 0.321455% 0.005869% 0.468900%	0.0864946 0.0032922 0.0002813 0.0000051 0.0004103	2.7351672 0.1041066 0.0088952 0.0001624 0.0129752
0415 0416 0602 0616 0621 0627	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол	98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001%	0.0864946 0.0032922 0.0002813 0.0000051 0.0004103 9E-13	2.7351672 0.1041066 0.0088952 0.0001624 0.0129752 3E-11
0415 0416 0602 0616 0621 0627 1702	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан	98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001% 0.004347%	0.0864946 0.0032922 0.0002813 0.0000051 0.0004103 9E-13 0.0000038	2.7351672 0.1041066 0.0088952 0.0001624 0.0129752 3E-11 0.0001203
0415 0416 0602 0616 0621 0627 1702	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан Диметилсульфид	98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.00000001% 0.004347% 0.000024%	0.0864946 0.0032922 0.0002813 0.0000051 0.0004103 9E-13 0.0000038 0.00000002	2.7351672 0.1041066 0.0088952 0.0001624 0.0129752 3E-11 0.0001203 0.0000007
0415 0416 0602 0616 0621 0627 1702 1707 1715 1720 1728	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан Диметилсульфид Метилмеркаптан Пропилмеркаптан Этилмеркаптан	98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001% 0.004347% 0.000024% 0.005087% 0.011243% 0.009768%	0.0864946 0.0032922 0.0002813 0.0000051 0.0004103 9E-13 0.0000038 0.00000002 0.0000045 0.0000098 0.0000085	2.7351672 0.1041066 0.0088952 0.0001624 0.0129752 3E-11 0.0001203 0.0000007 0.0001408 0.0003111 0.0002703
0415 0416 0602 0616 0621 0627 1702 1707 1715 1720	Углеводороды пр. С1-С5 Углеводороды пр. С6-С10 Бензол Ксилол Толуол Этилбензол Бутилмеркаптан Диметилсульфид Метилмеркаптан Пропилмеркаптан	98.843608% 3.762211% 0.321455% 0.005869% 0.468900% 0.000000001% 0.004347% 0.000024% 0.005087% 0.011243%	0.0864946 0.0032922 0.0002813 0.0000051 0.0004103 9E-13 0.0000038 0.00000002 0.0000045 0.0000098	2.7351672 0.1041066 0.0088952 0.0001624 0.0129752 3E-11 0.0001203 0.0000007 0.0001408 0.0003111

№ ИЗА	6587	Наименование источника загрязнения атмосферы	Установка 420. Система топлив- ного газа
№ ИВ	002	Наименование источника выделе- ния	Система топливного газа СД. Неплотности ЗРА и ФС

При расчете выбросов 3B учтено число часов работы ИЗА, количество неплотностей 3PA и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:						
Среда	Наименование обо- рудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неорга- низованных утечек,		
Газовая		кг/час	ед.	кг/час		
	Фланцы	0.00039	12	0.00468		
Топливный газ	Насосы	0.0024	0	0		
топливный газ	3PA	0.00000036	6	0.00000216		
	Другие	0.0088	1	0.0088		
Время работы оборудования:	T	8784	ч/год			

Бремя ра	ооты ооорудования.	l l	0704	ч/год				
	Выбросы от неплотно	остей ЗРА и ФС:						
		Топливный	Максимально-	Валовые вы-				
Код ЗВ	Наименование ЗВ	газ	разовые вы-	бросы ЗВ,				
		% масс.	бросы, г/с	т/год				
0333	Сероводород	0.002409%	0.00000009	0.0000029				
0334	Сероуглерод	0.000010%	4E-10	0.0000001				
0370	Углерода сероокись	0.004412%	0.0000002	0.0000052				
0415	Углеводороды пр. С1-С5	98.843608%	0.0037017	0.1170578				
0416	Углеводороды пр. С6-С10	3.762211%	0.0001409	0.0044555				
0602	Бензол	0.321455%	0.000012	0.0003807				
0616	Ксилол	0.005869%	0.0000002	0.000007				
0621	Толуол	0.468900%	0.0000176	0.0005553				
0627	Этилбензол	0.000000001%	4E-14	1E-12				
1702	Бутилмеркаптан	0.004347%	0.0000002	0.0000051				
1707	Диметилсульфид	0.000024%	9E-10	0.00000003				
1715	Метилмеркаптан	0.005087%	0.0000002	0.000006				
1720	Пропилмеркаптан	0.011243%	0.000004	0.0000133				
1728	Этилмеркаптан	0.009768%	0.000004	0.0000116				
2754	Углеводороды пр. С12-С19	0.029299%	0.0000011	0.0000347				
	Всего по источнику:		0.003874991	0.12253514				
	-							

I	№ ИЗА	6587	Наименование источника загрязнения ат- мосферы	Установка 420. Система топ- ливного газа
	№ 3B	003	Наименование источника выделения	Каплеотбойный сепаратор СУГ А1-420-VN-001

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011) $^{0.8*}$ $\sqrt{(M_n/T)}$, кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.51969	кг/час
Давление в аппарате:	Р	6000	гПа
Объём аппарата:	V	12.4	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{hk}	30	°C
Средняя температура в аппарате:	Т	309.15	K
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М _{сек} = П/3.6, г/сек	М _{сек}	0.14436	г/сек
Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: М _{год} = П * T / 10 ³ , т/год	М _{год}	4.56493	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год
D6 2D	5 - ×		

Выбросы 3В от каплеотбойного сепаратора СУГ A1-420-VN-001

	BBIOPOCEI 3B OI KAIIDIEOTOONINOTO CETTAPATOPA COT AT-420-VII-001					
		СУГ	Макси-	Валовые вы-		
Von 2D	Наименование ЗВ		мально-разо-			
Код ЗВ	паименование зв	% масс.	вые вы-	бросы ЗВ,		
			бросы, г/с	т/год		
0333	Сероводород	0.0000560%	0.00000008	0.0000026		
0334	Сероуглерод	0.0011875%	0.0000017	0.0000542		
0370	Углерода сероокись	0.0608005%	0.0000878	0.0027755		
0415	Углеводороды пр. С1-С5	99.9993740%	0.1443566	4.5649032		
0416	Углеводороды пр. С6-С10	0.8075106%	0.0011657	0.0368623		
0602	Бензол	0.1606245%	0.0002319	0.0073324		
0616	Ксилол	0.00000000009%	0	0		
0621	Толуол	0.00000032%	5E-11	0.00000001		
0627	Этилбензол	0.00000000002%	Ф	Ф		
1702	Бутилмеркаптан	0.0007200%	0.000001	0.0000329		
1707	Диметилсульфид	0.0000930%	0.0000001	0.0000042		
1715	Метилмеркаптан	0.0053890%	0.0000078	0.000246		
1720	Пропилмеркаптан	0.0007790%	0.0000011	0.0000356		
1728	Этилмеркаптан	0.0004965%	0.0000007	0.0000227		
2754	Углеводороды пр. С12-С19	0.0000000000000000000041%	0	0		
	Всего по источнику:		0.14585448	4.612271601		

№ ИЗА	6587	Наименование источника загрязне- ния атмосферы	Установка 420. Система топлив- ного газа
№ 3B	004	Наименование источника выделе- ния	Каплеотбойный сепаратор ТГ A1-420-VN-002

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011)^{0,8}* $\sqrt{(M_n/T)}$, кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.15903	кг/час
Давление в аппарате:	Р	8000	гПа
Объём аппарата:	V	2.2	M ³
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M _n	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{HK}	30	°C

Средняя те	мпература в аппарате:	Т	326.15	K
Максималь	ный (разовый) выброс от одной единицы оборассчитывается по формуле: М сек = П/3.6, г/сек	М _{сек}	0.04417	г/сек
	аловые) выбросы от одной единицы оборудо- нитываются по формуле: М _{год} =П*Т/10³, т/год	М _{год}	1.39688	т/год
	й годовой фонд времени работы одной еди-	Т	8784	ч/год
	Выбросы 3В от каплеотбойног	о сепаратора ТГ А1-	-420-VN-002	
		Топливный газ	Максимально-	Валовые вы-
Код ЗВ	Наименование ЗВ	% масс.	разовые вы- бросы, г/с	бросы ЗВ, т/год
0333	Сероводород	0.002409%	0.0000011	0.0000336
0334	Сероуглерод	0.000010%	0.00000004	0.0000001
0370	Углерода сероокись	0.004412%	0.0000019	0.0000616
0415	Углеводороды пр. С1-С5	98.843608%	0.0436628	1.3807225
0416	Углеводороды пр. С6-С10	3.762211%	0.0016619	0.0525534
0602	Бензол	0.321455%	0.000142	0.0044903
0616	Ксилол	0.005869%	0.0000026	0.000082
0621	Толуол	0.468900%	0.0002071	0.00655
0627	Этилбензол	0.00000001%	4E-13	1E-11
1702	Бутилмеркаптан	0.004347%	0.000019	0.0000607
1707	Диметилсульфид	0.000024%	0.0000001	0.0000003
1715	Метилмеркаптан	0.005087%	0.0000022	0.0000711
1720	Пропилмеркаптан	0.011243%	0.000005	0.000157
1728	Этилмеркаптан	0.009768%	0.000043	0.0001364
2754	Углеводороды пр. С12-С19	0.029299%	0.0000129	0.0004093
	Всего по источнику:		0.045705714	1.4453283

№ ИЗА	6591	Наименование источника загряз- нения атмосферы	Установка 420. Система топливного газа. Аварийная задвижка 18" магистрального трубопровода топливного газа
№ ИВ	001	Наименование источника выделе- ния	Аварийные задвижки на TR-7

При расчете выбросов 3B учтено число часов работы ИЗА, количество неплотностей 3PA и ФС, принятое по данным Заказчика.

Исходные данные для расчета выбросов вредных веществ от неплотностей ЗРА и ФС:						
Среда	Наименование оборудования	Удельный по- казатель вы- броса,	Кол-во источни- ков выделения,	Расчет неоргани- зованных утечек,		
Газовая		кг/час	ед.	кг/час		
	Фланцы	0.00039	14	0.00546		
Топливный газ	Насосы	0.0024	0	0		
ТОПЛИВНЫЙ ГАЗ	3PA	0.00000036	7	0.00000252		
	Другие	0.0088	3	0.0264		
Время работы оборудования:		T	8784	ч/год		
	Выбросы от неплот	ностей ЗРА и ФС				

БРСІЛІЛ РЕ	нооты осорудования.	!	0704	ч/тод					
	Выбросы от неплотностей ЗРА и ФС:								
Код ЗВ	Наименование ЗВ	Топливный газ	Максимально- разовые вы-	Валовые вы-					
код зв	паименование ов	% масс.	бросы, г/с	бросы ЗВ, т/год					
0333	Сероводород	0.002409%	0.0000002	0.0000067					
0334	Сероуглерод	0.000010%	0.00000001	0.0000003					
0370	Углерода сероокись	0.004412%	0.000004	0.0000123					
0415	Углеводороды пр. С1-С5	98.843608%	0.0087484	0.2766439					
0416	Углеводороды пр. С6-С10	3.762211%	0.000333	0.0105297					
0602	Бензол	0.321455%	0.0000285	0.0008997					
0616	Ксилол	0.005869%	0.000005	0.0000164					
0621	Толуол	0.468900%	0.0000415	0.0013124					
0627	Этилбензол	0.000000001%	1E-13	3E-12					
1702	Бутилмеркаптан	0.004347%	0.0000004	0.0000122					
1707	Диметилсульфид	0.000024%	0.000000002	0.0000007					
1715	Метилмеркаптан	0.005087%	0.000005	0.0000142					
1720	Пропилмеркаптан	0.011243%	0.000001	0.0000315					
1728	Этилмеркаптан	0.009768%	0.000009	0.0000273					
2754	Углеводороды пр. С12-С19	0.029299%	0.0000026	0.000082					
	Всего по источнику:		0.009157903	0.2895884					

№ ИЗА	0600	Наименование источника загрязнения атмосферы		Дыхательный клапан			
№ИВ	001	Наим ния	енование источ	іника выделе-	Резервуар хранения д/т А1-430-ТА-001		430-TA-001
			выполнен согласн				ия по опреде-
лению выбро	•	-	ществ в атмосф	еру из резервуа	•		
.,			анные:	T	Pac	четные форму	лы:
Количество рез		Np	1	ШТ	Годовые выбр	осы загрязняюц	цих веществ в
Объем (одноцелевых	резервуара резервуаров)	V_{pes}	241	M ³	a	тмосферу, т/год	1:
Тип резервуара	a		Вертикальный, н	аземный	G=(У _{ο3} *B _{ο3} +)	′ _{вл*} В _{вл})*К _р мах*10 ⁻	⁶ +G _{ΧΡ} *Κ _{ΗΠ} *Ν _ρ
Объем перекач	нки	Вобщ	959.20206	т/год			
Объем перека осенне-зимнего		Воз	479.60103	т/год	Максимал	тьно-разовый вы	ыброс, г/с:
Объем перека весенне-летне		Ввл	479.60103	т/год	M=C ₁ *K _p ^{Max} *V _ч ^{Max} /3600		600
			Расчетн	ые показатели:	• •		
	Средние удельные выбросы из резервуара в осенне-зимний период года (Приложение 12)			Уоз	2.36	г/т	
Средние удель года (Приложе		із резер	вуара в весенне-	-летний период	У _{вл}	3.15	г/т
Концентрация	паров нефтепро	одукта в	в резервуаре (При	иложение 12)	C ₁	3.92	г/м ³
	фициент (Прил			•	К _р мах	0.87	
Максимальный вуара во время		здушно	й смеси, вытесня	емой из резер-	V_{q}^{max}	50	м ³ /ч
Выбросы паро резеруаре (при		тов при	хранении дизто	плива в одном	G _{XP}	0.68	т/год
	фициент (прило	жение	12)		Кнп	0.0029	
,			аров нефтепрод	дуктов в атмосф		/ара:	
Максимальный			веществ в атмос		M	0.0473667	г/с
Годовые выбро	осы загрязняюц	их вещ	еств в атмосферу	У	G	0.004271063	т/год
					Масс. сод-	Количеств	о выбросов
Код ЗВ		Hav	аименование 3В		ние С _і , % масс.	г/с	т/год
0333	Сероводород				0.28%	0.0001326	0.000012
2754	Углеводородь	и преде	льные С12-С19		99.72%	0.047234	0.0042591
		Всего	о по источнику:			0.0473666	0.0042711

№ ИЗА	0662-0664	Наименование источника загримосферы	Выхлопная труба А	1-480-FK-022/023/024	
№ ИВ	001	Наименование источника вы	деления	Главный дизельны EC-022/023/024. Cate	
Расч	еты выбросов	выполнены согласно, "Методики	расчета выбр	осов загрязняющих в	еществ в атмосфер
		ьных установок" РНД 211.2.02.0			
Макс	имальный выб	брос і-го вещества стационарной ,		новки определяется по	о формуле:
		М _{сек} =е _і *Р	₃/3600, г/с		
где:			. .		
		вещества на единицу полезной р	аооты стациона	арнои дизельнои устан	овки на режиме номі
	· · · · · · · · · · · · · · · · · · ·	*ч (таблица 1 или 2):		T T	
эксплуатаі установки:	•	юсть стационарной дизельной	P₃	5420	кВт
, , , , , , , , , , , , , , , , , , , ,			пироп ной уста	поркой опрополяются і	no donavno:
Dalio	выи выорос і-і		дизельной уста ₃/1000, т/год	ановкой определяется	по формуле.
тде:		Wгод-Чі Бго,	₁/1000, 1/10Д		
	і-го впелного в	вещества, г/кг топлива, приходящ	ы отин к	г лизепьного топпива г	три работе станионал
		эсщества, г/кг тогильа, приходищ	лоол на один к	i dinocilono i cininda, i	ipri paccic ciagnona
ной лизепн	ьной установки	и с учетом совокупности режимов	составляющи	іх эксппуатационный ц	икп г/кг топпива (таб
		и с учетом совокупности режимов	, составляющи	іх эксплуатационный ц	икл, г/кг топлива (таб
лица 3 или	4):		, составляющи	х эксплуатационный ц	икл, г/кг топлива (таб
лица 3 или расход топ	і 4): ілива стациона	арной дизельной установкой за			·
лица 3 или расход топ год (берето новки) или	(4): плива стациона ся по отчетным		, составляющи В _{год}	х эксплуатационный ц	икл, г/кг топлива (таб
лица 3 или расход топ год (беретс	(4): плива стациона ся по отчетным	арной дизельной установкой за и данным об эксплуатации уста-			·
пица 3 или расход топ год (берето новки) или [§] :	4): ілива стациона ся по отчетным определяется	арной дизельной установкой за и данным об эксплуатации уста-			·
лица 3 или расход топ год (берето новки) или	4): ілива стациона ся по отчетным определяется	арной дизельной установкой за и данным об эксплуатации уста-	Вгод	16.874	т/год
пица 3 или расход топ год (берето новки) или ⁵ : Расход тог Средний у	4): плива стациона ся по отчетным определяется плива: дельный расхо	арной дизельной установкой за и данным об эксплуатации устапо формуле: B _{год} = b ₃ * k * P ₃ * T *10	Вгод	16.874	т/год
лица 3 или расход топ год (берето новки) или 6: Расход тог Средний у	4): плива стациона ся по отчетным определяется плива:	арной дизельной установкой за и данным об эксплуатации устапо формуле: B _{год} = b ₃ * k * P ₃ * T *10	B _{год}	16.874 1323.328168 1110.14	т/год л/ч кг/ч
лица 3 или расход топ год (берето новки) или ⁶ : Расход тог Средний у, Плотность	4): плива стациона ся по отчетным определяется плива: дельный расхо	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} = b ₃ * k * P ₃ * T *1 0 * од топлива:	B _{год} b b b b ₃	16.874 1323.328168 1110.14 205	т/год л/ч кг/ч г/кВт.ч
пица 3 или расход топ год (берето новки) или 5: Расход тог Средний у, Плотность Коэффици	4): плива стациона ся по отчетным определяется плива: дельный расхо дизельного то ент использов	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} = b ₃ * k * P ₃ * T *1 0 * од топлива:	В _{год}	16.874 1323.328168 1110.14 205	т/год л/ч кг/ч г/кВт.ч
пица 3 или расход топ год (берето новки) или 5: Расход тог Средний у, Плотность Коэффици	4): плива стациона ся по отчетным определяется плива: дельный расхо дизельного то ент использов	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} = b ₃ * k * P ₃ * T *1 0 * од топлива:	В _{год}	16.874 1323.328168 1110.14 205 0.8389 1 36	т/год л/ч кг/ч г/кВт.ч кг/л
пица 3 или расход топ год (берето новки) или 5: Расход тог Средний у, Плотность Коэффици Время раб	4): плива стациона определяется плива: плив	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} = b ₃ * k * P ₃ * T *1 0 * од топлива: плива: ания:	В _{год}	16.874 1323.328168 1110.14 205 0.8389 1 36	т/год л/ч кг/ч г/кВт.ч кг/л
пица 3 или расход топ год (берето новки) или 5: Расход тог Средний у, Плотность Коэффици Время раб	4): плива стациона определяется плива: плив	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} = b ₃ * k * P ₃ * T *1 0 * од топлива: плива: ания:	В _{год}	16.874 1323.328168 1110.14 205 0.8389 1 36	т/год л/ч кг/ч г/кВт.ч кг/л
пица 3 или расход топ год (берето новки) или з г Расход тог Средний у Плотность Коэффици Время раб Количество Настота вр	4): плива стациона определяется плива: дельный расхо дизельного то ент использов оты: оты:	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} = b ₃ * k * P ₃ * T *1 0 * од топлива: плива: ания:	В _{год}	16.874 1323.328168 1110.14 205 0.8389 1 36	т/год л/ч кг/ч г/кВт.ч кг/л ч/год
пица 3 или расход топ год (берето новки) или в Расход тог Средний у Плотность Коэффици Время раб Количества Настота вр	14): плива стациона ся по отчетным определяется плива: дельный расхо дизельного то ент использов оты: о: нащения вала: У:	арной дизельной установкой за и данным об эксплуатации уста- по формуле: Вгод=b₃*k*P₃*T*10 од топлива: иллива: исходные данные по	В _{год}	16.874 1323.328168 1110.14 205 0.8389 1 36 1500 Γ	т/год л/ч кг/ч г/кВт.ч кг/л ч/год
лица 3 или расход топ год (берето новки) или в. Расход тог Средний у Плотность Коэффици Время раб Количеств Частота вр	14): плива стациона ся по отчетным определяется плива: дельный расхо дизельного то ент использов оты: о: нащения вала: У:	арной дизельной установкой за и данным об эксплуатации уста- по формуле: B _{год} =b ₃ *k*P ₃ *T*10 ⁻ рд топлива: плива: ания: Исходные данные по	В _{год}	16.874 1323.328168 1110.14 205 0.8389 1 36 1500 Γ	т/год л/ч кг/ч г/кВт.ч кг/л ч/год

Плотность	газов при 0°С:		γ0 _{οΓ}	1.31	кг/м ³
Плотность	газов при Т _{ог} (К), ү_{ог}=ү0_{ог}/(1+Т_{ог}/	273)	У ог	0.53157	кг/м ³
	расход отработанных газов, Q		Q _{or}	18.2267	м ³ /с
	Расчет выбросов вредн	ых веществ в	з атмосферу все	его от дизель-генер	атора:
Код ЗВ Наименование ЗВ		e _i ,	Максималь q _i , разовый в брос		Валовый выброс
		г/кВт.ч	г/кг топлива	М _{сек} , г/с	М _{год} , т/год
	Оксиды азота	10.8	45	16.26	0.7593345
0301	Азота диоксид			13.008	0.6074676
0304	Азота оксид			2.1138	0.0987135
0328	Сажа	0.6	2.5	0.9033333	0.0421853
0330	Сера диоксид	1.2	5	1.8066667	0.0843705
0337	Углерод оксид	7.2	30	10.84	0.506223
0703	Бенз(а)пирен	0.000013	0.000055	0.0000196	0.000009
1325	Формальдегид	0.15	0.6	0.2258333	0.0101245
2754	Углеводороды пр. C ₁₂ -C ₁₉	3.6	15	5.42	0.2531115
	Всего по источн	ику:		34.3176529	1.6021968

№ ИЗА	0667-0668	ния атмосферы			хательный кла		
№ ИВ	001				уточного запа	ca ∂/m A1-480-	
			ния	DUE 044 0 00	00 0004 1114	TA-001/011	
				сно: РНД 211.2.02 феру из резерву			ния по опреде-
лению выорс	•	-	зеществ в атмос данные:	феру из резерву		2005 г. С четные форму	/B1 11
Количество ре		ОДНЫЕ N _D	<u>даппые.</u> 1	ШТ	rai	счетные форму	JIDI.
Объем	резервуаров	Ι¥p		ШІ	Головио виб	росы загрязняю	IIIIAN BOILLOCTE B
(одноцелевых ров)		V_{pe_3}	25	M ³		атмосферу, т/го	
Тип резервуар	а	Гс	ризонтальный, за	аглубленный	G=(Y ₀₃ *B ₀₃ +)	У _{вл*} В _{вл})*К _р мах*10	⁻⁶ +G _{ХР} *К _{НП} *N _р
Объем перека	чки	Вобщ	308.04408	т/год			
Объем перека ние осенне-зи ода	імнего пери-	B _{o3}	154.02204	т/год	Максима	льно-разовый в	ыброс, г/с:
Объем перек		,	454 00004	,			
ние весенне-л ода	етнего пери-	Ввл	154.02204	т/год	M	=C ₁ *K _p ^{max} *V _ч ^{max} /3	600
944			Расче	тные показатели	:		
Средние удел	ьные выбрось	из рез	ервуара в осенне			0.00	,
года (Приложе			1 7 1		Уоз	2.36	г/т
Средние удел года (Приложе		из рез	ервуара в весенне	е-летний период	$\mathcal{Y}_{\scriptscriptstyle BJI}$	3.15	г/т
Концентрация	паров нефтеп	родукта	а в резервуаре (П	риложение 12)	C ₁	3.92	г/м ³
Опытный коэф					К _р мах	0.8	
Максимальны вуара во врем		оздушн	юй смеси, вытесн	яемой из резер-	V_{q}^{max}	11	м ³ /ч
Выбросы паро		итов пр	ои хранении дизт	оплива в одном	G_{XP}	0.081	т/год
Опытный коэф		ложени	e 12)		Кнп	0.0029	
	Вь	брось	паров нефтепр	одуктов в атмос	реру из резерв	уара:	
Максимальны			их веществ в атм		М	0.0095822	г/с
Годовые выбр	осы загрязняю	щих ве	ществ в атмосфе	ру	G	0.000913829	т/год
					Масс. сод-	Количеств	о выбросов
Код ЗВ		На	именование ЗВ		ние С _і , % масс.	г/с	т/год
0333	Сероводород	1			0.28%	0.0000268	0.0000026
2754	Углеводород	ы пред	ельные С12-С19		99.72%	0.0095554	0.0009113
	Всего по источнику:				0.0095822	0.0009139	

№ ИЗА	0669-0670		енование источн тмосферы	ника загрязне-	Дыхательный клапан
№ ИВ	001	Наим ния	аименование источника выделе- ия		Расходный резервуар д/m A1-480-TA- 022/023
	сов загрязня	ющих і	веществ в атмос		2.09-2004 "Методические указания по опреде- аров", Астана, 2005 г.
	ИСХ		данные:	•	Расчетные формулы:
Количество ре	зервуаров	Np	1	ШТ	
Объем (одноцелевых ров)	резервуара резервуа-	V _{pe3}	27.5	M ³	Годовые выбросы загрязняющих веществ в атмосферу, т/год:
Тип резервуара Горизонтальный, наземный			Горизонтальный,	$G=(Y_{o3}*B_{o3}+Y_{Bn^*}B_{Bn})*K_p^{Max*}10^{-6}+G_{XP}*K_{H\Pi}*N_p$	

Опытный коэффициент (приложение 12) Выбросы паров нефтепродуктов в атмоси					-			
Опытный коэфф					Кнп	0.0029		
Выбросы паров резеруаре (прил		/ктов пр	и хранении дизт	оплива в одном	G_{XP}	0.27	т/год	
Максимальный вуара во время	•	оздушн	ой смеси, вытесн	яемой из резер-	V_{q}^{max}	11	м ³ /ч	
Опытный коэфф			<u> </u>		K _p ^{Max}	1		
года (Приложен Концентрация п		родукта	в резервуаре (П	риложение 12)	C ₁	3.92	г/м ³	
Средние удельн	ные выбросы	из резе	рвуара в весенн	е-летний период	Увл	3.15	г/т	
Средние уделы года (Приложен		і из рез	ервуара в осенне		Уоз	2.36	г/т	
ода			Расче	। тные показатели	l :			
Объем перекач		Ввл	12.6556	т/год	M=C ₁ *K _p ^{Max} *V ₄ ^{Max} /3600			
Объем перекач ние осенне-зим ода		B _{o3}	12.6556	т/год	Максимально-разовый выброс, г/с:			
Объем перекачі	ки	Вобщ	25.3112	т/год				

№ ИЗА	0671		енование источн тмосферы	ника загрязне-	Дыхательный	і клапан	
№ИВ	001	ния	ния			езервуар д∕т А	
				сно: РНД 211.2.02			ния по опреде-
лению выбро				феру из резерву			
	Исходные данные:						/лы:
Количество ре	зервуаров	N _p	1	ШТ			
Объем (одноцелевых ров)	резервуара резервуа-	V_{pe3}	10	м ³		росы загрязняю атмосферу, т/го,	
Тип резервуар	a		Горизонтальный,	наземный	G=(Y ₀₃ *B ₀₃ +)	/ _{вл*} В _{вл})*К _р мах*10	-6+G _{хР} *К _{нП} *N _р
Объем перека	чки	Вобщ	258.07	т/год	,	, ,	· · · · · · · · · · · · · · · · · · ·
Объем перека ние осенне-зи ода		B _{o3}	129.04	т/год	Максима.	пьно-разовый ві	ыброс, г/с:
Объем перека ние весенне-л ода		Ввл	129.04	т/год	M=	=C ₁ *K _p ^{Max} *V _ч ^{Max} /3	600
			Расче	тные показатели	: :		
Средние удел года (Приложе		і из рез	ервуара в осенне	е-зимний период	Уоз	2.36	г/т
Средние удел		из рез	ервуара в весенн	е-летний период	У _{вл}	3.15	г/т
Концентрация	паров нефтеп	родукта	укта в резервуаре (Приложение 12)		C ₁	3.92	г/м ³
Опытный коэф					К _р мах	1	
Максимальный вуара во врем		оздушн	юй смеси, вытесн	яемой из резер-	V _u max	11	м ³ /ч
Выбросы паро		/ктов пр	ои хранении дизт	оплива в одном	G_{XP}	0.27	т/год
Опытный коэф	официент (при	ложени	e 12)		Кнп	0.0029	
				одуктов в атмос	феру из резерв	уара:	
Максимальны	й выброс загря	зняющ	их веществ в атм	осферу	M	0.0119778	г/с
Годовые выбр	осы загрязняк	ощих ве	ществ в атмосфе	ру	G	0.001493992	т/год
			<u>-</u>		Масс. сод-	Количеств	о выбросов
Код ЗВ		На	именование ЗВ		ние С _і , % масс.	г/с	т/год
0333	Сероводород	1			0.28%	0.0000335	0.0000042
2754	Углеводород	ы пред	ельные С12-С19		99.72%	0.0119442	0.0014898
	Всего по источнику:					0.0119777	0.001494

Расчет выбросов а татмосферу от средств перекачки выполнен по РНД 211.20.209-2004 "Методические ния по определению выбросов загрязянющих веществ в атмосферу". Астана, 2005 г. Максимально разовый выброс расчитывается по формуле: М _{ист} (*C,*n**, *Q**)7.6, г/с Валовый выброс расчитывается по формуле: М _{ист} (*C,*n**, *Q**)7.0, г/с Валовый выброс расчитывается по формуле: М _{ист} (*C,*n**, *Q**)7.0, г/с Валовый выброс расчитывается по формуле: М _{ист} (*C,*n**, *Q**)7.0, г/с Валовый выброс расчитывается по формуле: М _{ист} (*C,*n**, *Q**)7.0, г/с Валовый выброс расчитывается по формуле: М _{ист} (*C,*n**, *Q**)7.0, г/с Валовые выбросы атмосферу от нефтеперекачивающего оборудования Количество запорно-регупирующей арматуры: Количество запорно-регупирующей арматуры: Количество запорно-регупирующей арматуры: Пана 4 шит образовается (*G**) пана 4 ч/го запорно-регупирующей арматуры: Пана 5 к (*G**) пана 4 ч/го запорно-регупирующей арматуры: Выбросы паров нефтепродуктов в атмосферу от нефтеперекачивающего оборудования Код 3В Наименование 3В Максимально-разования Код 3В Наименование за максимально-разования пределены в состветствия с "Мотодическими указаниями расчета выбросов от гратий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и гил неподвижного и подвижного и подвижного и подвижного и подвижного и подвижного и подвижного оборудования и пределены в состветствия с "Мотодическими указаниями расчета выбросо вот гратий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и гил неподвижного и подвижного и подвижного соединения пределеннов распрасновать по формуле: М, = Гуну/100•* 3600 1/год вырастающей выброс расчитывается по формуле: М, = Гуну/100•* 3600 1/год вырастающей выброс расчитывается по формуле: М, = Гуну/100•* 3600 1/год вырастающей выброс расчитывается по формуле: М, = Гуну/100•* 3600 1/год вырастающей выброс расчитывается по формуле: М, = Гуну/100•* 3600 1/год вырастающей выброс в тере у подволяющей выброс в тере у подволяющей	№ ИЗА	6660-6661	Наименование источника загрязнения атмосферы	Насос РДГ А1-4	80-PC-001/011		
ния по определению выбросов загрязняющих веществ в атмосферу". Астана, 2005 г. Валовый выброс расчитывается по формуле: М _{мед} = (c,*n,*Q*17)/10 ² , т/год Исходные параметры: Количество насосов: Количество насосов: Количество запорно-регулирующей арматуры: П _и	№ ИВ	001	Наименование источника выделе- ния	Насос для перекачки дизтоплива			
Максимально разовый выброс расчитывается по формуле: Мыс, Ге(-гіп, °Q)'3,6, г/с Валовый выброс расчитывается по формуле: Мыс, Ге(-гіп, °Q'1)/10°, г/год Исходные параметры: Характеристика насосоа — центробежный с одним торцевым уплотнением вала. Количество запорно-регулирующей арматуры: Пыс Т						дические указа	
Валовый выброс расчитывается по формуле: Мисят (с,*n,*Q*T)/40³, т/год Исходные параметры: Характеристика насоса – центробежный с одним торцевым уплотнением вала. Количество запорно-регулирующей арматуры: Опичество запорно-регулирующей арматий, осущество загора опическими указаниями расчета выбросс и тих, осуществляющих харанение и реализацию нефтепроруктов соединений определены в соответствии с "Мегодическими указаниями расчета выброссов и прикамально-разовый выброс расчитывается по формуле: П, шт. оборудования иникомально-разовый выброс расчитывается по формуле: П, шт. оборудования и оборудованы окружающей среды Республики Казахстан от 29 мюля 2011 года № 196-п Исходные параметры: Код зв инистра охраны окружающей среды Республики Казахстан от 29 мюля 2011 года № 196-п Максимальнор разовый выброс расчитывается по формуле: П, шт. оборудования утечки потока оборудования претим утечки потока оборудования от готока оборущей от готока оборудования от готока оборущей от	ния по опре						
Масховаренные преднения велования в положения в по							
Количество насосов: Количество насосов: Количество запорно-регулирующей арматуры: Поверы насосов: Количество запорно-регулирующей арматуры: Толичество запорно-регулирующей арматуры: Толичество запорно-регулирующей арматуры: Количество запорно-регулирующей арматуры: Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматуры: Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматуры: Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматуры: Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматуры: Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматуры: Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматуры: Количество обруждения расоматуры: Выделение вредных веществ (углеводороды нефти) через неплотности и уплотнение і ототила дум'ти, "кум" супорно, гіс нефтебазы, АЗС) и других жидкостей и толина уплотнение і ототила дум'ти, "кум" супорно, гіс нефтебазы, АЗС) и других жидкостей и толина уплотнение і ототила дум'ти, "кум" супорно, гіс нефтебазы, АЗС) и других жидкостей и толина уплотнение і ототила дум'ти, "кум" супорно, гіс нефтебазы, АЗС) и других жидкостей и толина дум'ти, "кум" супорном через одно уплотнение і ототила дум'ти, "кум" супорном через одно уплотнение і ототила дум'ти, "кум" супорном через одно		Ба			лю, тод		
Соизчество насосов:		Xanak			нением вапа		
Оличество запорно-регулирующей арматуры:	Копичество		тористика насеса дентресежный с едіт		1	IIIT	
рланцевых соединений:			ирующей арматуры:		4		
Время работы насосов, ЗРА и фланцевых соединений: Т 8784 ч/го /дельное выделение загрязняющих веществ (Таблица 8.1) Q 0.04 кт/ массовое содержание углеводорода с, 0.28% Массовое содержание углеводородов пр. С12-С19 Выбросы паров нефтепродуктов в атмосферу от нефтеперекачивающего оборудования Код 3В Наименование ЗВ Максимально- разовый выброс, т/го 0333 Сероводород 2754 Углеводороды пр. С12-С19 Выбрасы паров нефтепродуктов в атмосферу от нефтеперекачивающего оборудования Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей армат рланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросов от пр титий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и з Прикам Минкитра охраны окружающей среды Республики Казахства от 29 июля 2011 годя и 196-п Максимально разовый выброс расчитывается по формуле: П₁ = (Т*Y _{гиу})/10³*3600 , т/год Исходные параметры: Бид технологического потока Вид технологического потока В			ирующей арматуры.				
/дельное выделение загрязняющих веществ (Таблица 8.1) Q 0.04 кг/массовое содержание сероводорода с, 0.28% массовое содержание углеводородов пр. С12-С19 с, 99.72% массовое содержание углеводородов пр. С12-С19 с, 99.72% массовое содержание углеводородов пр. С12-С19 с, 99.72% массовое содержание углеводородов пр. С12-С19 с) массовое содержание углеводороды пр. С12-С19 (0.0000311 0.0000311 0.000032 0.0000311 0.0000333 Сероводород пр. С12-С19 (0.0000311 0.0000311 0.0000333 Сероводород пр. С12-С19 (0.0000311 0.0000311 0.0000333 Сероводород пр. С12-С19 (0.0000311 0.0000333 Сероводород пр. С12-С19 (0.0000311 0.0000331 0.0000331 0.000035037 0.0000331 0.0000333 0.0000331 0.0000331 0.0000331 0.0000331 0.0000331 0.0000333 0.0000331 0.0000333 0.0000331 0.00003331 0.0000331 0.0000331 0.0000331 0.0000331 0.0000331 0.00003331 0.0000331 0.0000331 0.0000331 0.0000331 0.0000331 0.0000331 0.			од и физипевих соединений.			ч/год	
Массовое содержание сероводорода Массовое содержание углеводородов пр. С12-С19 Выбросы паров нефтепродуктов в атмосферу от нефтеперекачивающего оборудования Код ЗВ Наименование ЗВ Максимально разовый выброс, г/с Олозозза Сероводород Ригина пределеныя верей в пределеныя в соответствии с "Методическими указаниями расчета выбросов от претий, осуществляющих хранение и реализацию нефтеперодуктов (нефтебазы, АзС) и других жидкостей и трика минитора оборудования Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматий, осуществляющих хранение и реализацию нефтеперодуктов (нефтебазы, АзС) и других жидкостей и трика Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п Максимально разовый выброс расчитывается по формуле: П, = (Т*Y туну)/10°3 збоо, т/с исходные параметры: Балорно-регулирующая делей и трика министра охраны потоки подвижного соединения Балорно-регулирующая делей и трика министра охраны окружающей среды (потоки) Тазовые потоки Выбросы паров нефтепродунков да и трика министра охраны потока на пределены в оборудования пл, шт. Газовые потоки Валорно-регулирующая делей углеводороды, двухфазные среды (потоки) Тяжелые углеводороды, двухфазные о заба и фланцевых соединений: Выбросы паров нефтепродуктов в атмосферу от неплотностей ЗРА и фланцевых соединений: Код ЗВ Наименование ЗВ Максимально-разовый выбросы в атмосферу от нефтеперекачивающего оборудования парогазовые выбрось в атмосферу от нефтеперекачивающего оборудования Код ЗВ Наименование ЗВ Максимально-разовый выбросы в атмосферу от нефтеперекачивающего оборудования Код ЗВ Наименование ЗВ Максимально-разовый выбросы в атмосферу от нефтеперекачивающего оборудования Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Максимально-разовый выброс, г/с одолозования выбрось оборудования Максимально-разовый выброс, г/с одолозования выброс, г/с одолозования выбрось в оборудования Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Итоговые выбросы							
Массовое содержание углеводородов пр. С12-С19 с. 99.72% Выбросы паров нефтепродуктов в атмосферу от нефтеперекачивающего оборудования Код 3В Наименование 3B Максимальноразовый вывыборс, т/с 0.333 Сероводород 0.0000311 0.00098 2754 Углеводороды пр. С12-С19 0.0000311 0.00098 № ИВ 002 Наименование источника выделения Неплотности запорно-регулирующей арматрланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросов от патими, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АSC) и других жидкостей и гориказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п Максимально разовый выброс расчитывается по формуле. Пј. = (Т**Y-wpl)/10°*3600 , т/год Валовый выброс расчитывается по формуле. Пј. = (Т**Y-wpl)/10°*3600 , т/год Величина текни потока истотичено оборудования лечки потока потока потока правотающего оборудования премети потока правотающего оборудования премети потока правотающего оборудования и потока правотающего оборудования премети потоки потока правотающего оборудования выброс, г/с Величина техни потока правотающего оборудования выброс, г/с Валовы брос, г/с Валовы брос, г/с Валовы брос, г/с						INI/ I	
Выбросы паров нефтепродуктов в атмосферу от нефтеперекачивающего оборудования Максимальновования вы							
Код 3В Наименование 3В Максимально-разовый выброс, г/с Валовый брос, г/с Валовый брос, г/с 6000, г/с 0.0000311 0.00003031 0.00003						21110	
Код 3В Наименование 3В разовый выборос, г/с оброс,		Т поросы пар	ов нефтепродуктов в атмосферу от н	ефтеперекачивак		апия	
№ ИВ О02 Наименование источника выделения Неплотности ЗРА и фланцевых соедин Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматрланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросо от пратий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и 17 приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п Максимально разовый выброс расчитывается по формуле: Мј = Y _{пуй} /1000 = g _{пу} * n ₁ * x _{пу} * c ₂ /1000, г/с Валовый выброс расчитывается по формуле: Мј = Y _{пуй} /1000 = g _{пу} * n ₁ * x _{пу} * c ₂ /1000, г/с Исходные параметры: Тип неподвижного соединения Вид технологического потока Кол-во единиц работающего оборудования потоки поток п	Код ЗВ		Наименование ЗВ		разовый вы-	Валовый вы- брос, т/год	
№ ИВ 002 Наименование источника выделения Неплотности ЗРА и фланцевых соединения Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматфланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросо в от прятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и г. Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п Максимально разовый выброс расчитывается по формуле: Мј = Y _{пур} 1000 = g _{пур} *n,*a,*a,*c,f1000, г/с Валовый выброс расчитывается по формуле: Мј = Y _{пур} 1000 = g _{пур} *n,*a,*a,*c,f1000, г/с Исходные параметры: Тип неподвижного и подвижного соединения Вид технологического потока Кол-во единиц работающего оборудования преметиченого оборудования выброс, г/с 0 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.	0333	Сероводород	ļ		0.0000311	0.000983808	
№ ИВ 002 ния Неплотностии зара и фланцевых соеринение вердных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматфланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросов от преятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и г.Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п Максимально разовый выброс расчитывается по формуле: М, = Укунув)/100° з 3600 , т/год Величина утечки потока через одно и подвижного соединения Величина утечки потока через одно уплотнение і ого типа деуі, міг/с Доля улу ний і-ого потеря геремети зараматура Доля улу нечемети зараматура Доля зараматура Доля зараматура <th< td=""><td>2754</td><td>Углеводород</td><td>ы пр. С12-С19</td><td></td><td>0.0110800</td><td>0.350376192</td></th<>	2754	Углеводород	ы пр. С12-С19		0.0110800	0.350376192	
Выделение вредных веществ (углеводороды нефти) через неплотности запорно-регулирующей арматрианцевых соединений определены в соответствии с "Методическими указаниями расчета выбросов от при дечета выбросов	№ ИВ	002		Неплотности	ЗРА и фланцеві	ых соединений	
Тип неподвижного и подвижного соединения Вид технологического потока Пазовые потоки Пазовые потоки Пазовые потоки Пазовые потоки Пазовые потоки Пазовые потоки Парогазовые потоки Парогазовый выброс, т/с Пасогатами, Парогазовые потоки Парогазовый выброс, т/с Пасогатами, Пасогат		Da.			•		
Газовые потоки 0 5.83 0.29			Вид технологического потока	работающего оборудования	утечки потока через одно уплотнение і- ого типа д _{нуі} ,	Доля уплотне ний і-ого типа потерявших герметичност х _{нуі}	
Запорно-регулирующая арматура ———————————————————————————————————			газовые потоки	0		0.293	
тяжелые углеводороды 4 1.83 0.00 парогазовые потоки 0 0.2 0.03 легкие углеводороды, двухфазные среды (потоки) тяжелые углеводороды 8 0.08 0.09 Выбросы паров нефтепродуктов в атмосферу от неплотностей ЗРА и фланцевых соединений: Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0333 Сероводород 0.0000015 0.000001 Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0.0000237 0.0165 Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0000326 0.0010 0333 Сероводород 0.0000326 0.0010		улирующая	легкие углеводороды, двухфазные			0.365	
Фланцевое соединение парогазовые потоки 0 0.2 0.00 легкие углеводороды, двухфазные среды (потоки) тяжелые углеводороды 8 0.08 0.02 Выбросы паров нефтепродуктов в атмосферу от неплотностей ЗРА и фланцевых соединений: Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0.0000015 0.0000015 0.0000015 0.0000015 0.0005237 0.0165 Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0.0005237 0.0165 0.00000 0.0000015 0.000000015 0.00000000015 0.0000000000	арматура		1 /	1	1 02	0.07	
рланцевое соединение преткие углеводороды, двухфазные среды (потоки) тяжелые углеводороды 8 0.08 0.05 Выбросы паров нефтепродуктов в атмосферу от неплотностей ЗРА и фланцевых соединений: Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0.0000015 0.00000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.00000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.00000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.00000015 0.000000015 0.0000000015 0.0000000000							
Среды (потоки) Тяжелые углеводороды 8 0.08 0.00 Выбросы паров нефтепродуктов в атмосферу от неплотностей ЗРА и фланцевых соединений: Код ЗВ	Фланцевое (соединение	легкие углеводороды, двухфазные			0.05	
Выбросы паров нефтепродуктов в атмосферу от неплотностей ЗРА и фланцевых соединений: Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с 0333 Сероводород 0.0000015 0.0000 2754 Углеводороды пр. С12-С19 0.0005237 0.0165 Код ЗВ Наименование ЗВ Максимальноразовый выброс, г/с Валовы брос, г/с 0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0116037 0.3669		• •	1 1 1 1				
Код 3ВНаименование 3ВМаксимальноразовый выброс, г/с0333Сероводород0.00000150.00002754Углеводороды пр. С12-С190.00052370.0165Итоговые выбросы в атмосферу от нефтеперекачивающего оборудованияКод 3ВНаименование 3ВМаксимальноразовый выброс, г/с0333Сероводород0.00003260.00102754Углеводороды пр. С12-С190.01160370.3669						0.02	
Код 3В Наименование 3В разовый выброс, г/с брос, г/с Валовы брос, г/с 0333 Сероводород 0.0000015 0.0000 2754 Углеводороды пр. С12-С19 0.0005237 0.0165 Код 3В Код 3В Наименование 3В Максимальноразовый выброс, г/с разовый выброс, г/с Валовы брос, г/с 0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0116037 0.3669	Вы	оросы паров	нефтепродуктов в атмосферу от непл	отностей ЗРА и ф		инении:	
0333 Сероводород 0.0000015 0.0000 2754 Углеводороды пр. С12-С19 0.0005237 0.0165 Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Код 3B Максимальноразовый выброс, г/с Валовы брос, г/с 0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0116037 0.3669	Код ЗВ		Наименование ЗВ		разовый вы-	Валовый вы брос, т/год	
2754 Углеводороды пр. С12-С19 0.005237 0.0165 Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Код 3В Максимальноразовый выброс, г/с 0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0116037 0.3669	0333	Сероводород				0.0000465	
Итоговые выбросы в атмосферу от нефтеперекачивающего оборудования Код 3В Наименование 3В Максимальноразовый выброс, г/с Валовы брос, г/с 0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0116037 0.3669					1	0.0165616	
Код 3BНаименование 3BМаксимально- разовый вы- брос, г/сВаловы брос, г0333Сероводород0.00003260.00102754Углеводороды пр. С12-С190.01160370.3669				ерекачивающего с			
0333 Сероводород 0.0000326 0.0010 2754 Углеводороды пр. С12-С19 0.0116037 0.3669	Код ЗВ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Максимально- разовый вы-	Валовый вы брос, т/год	
2754 Углеводороды пр. С12-С19 0.0116037 0.3669	0333	Сеповолорог	1			0.0010303	
						0.3669378	
рево по источнику. U.0110303 U.30/3	2134	Тэтлеводород				0.3679681	
			всего по источнику.		0.0110303	0.3073001	

№ ИЗА	№ ИЗА 6662-6663 Наименование источника загрязнения атмосферы Насос д/т котельной А1-480-РС-002А/В / 005А/В						
№ ИВ	001	Наименование источника выделения	Насос для перекачки дизтоплива				
Расче	ет выбросов в	атмосферу от средств перекачки выпол	нен по РНД 211.	2.02.09-2004 "Мет	одические указа-		
ния по опре	еделению вы	бросов загрязняющих веществ в атмо	осферу", Астана	, 2005 г.	•		
	Макси	иально разовый выброс расчитывается г	то формуле: М сек	, ;=(c;*n,,*Q)/3,6, г/с			
		ловый выброс расчитывается по форму					
		Исходные параме		. , ,			
	Харан	теристика насоса – центробежный с одн	іим торцевым упі	тотнением вала.			
Количество	Количество насосов: п _н 2 шт.						
Количество	Количество запорно-регулирующей арматуры: n _{зра} 6 шт.						
Фланцевых	соединений:		n _Φ	16	ШТ.		

D		24 ·· ±==·····	1 -	0704	
		РА и фланцевых соединений:	T	8784	ч/год
		язняющих веществ (Таблица 8.1)	Q	0.04	кг/ч
	одержание сер		C _i	0.28%	
Массовое с	одержание угл	еводородов пр. С12-С19	C _j	99.72%	
	выоросы пар	оов нефтепродуктов в атмосферу от н	нефтеперекачив		зания
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
0333	Сероводород			0.0000622	0.001967616
2754		ы пр. С12-С19		0.0221600	0.700752384
		-			
№ИВ	002	Наименование источника выделе- ния	Неплотност	и ЗРА и фланцев	ых соединений
ятий, осущ Приказ Мин	е ствляющих х истра охраны Максимально _І	пределены в соответствии с "Методиче кранение и реализацию нефтепродукт окружающей среды Республики Казахст разовый выброс расчитывается по формул повый выброс расчитывается по формул Исходные параме	:ов (нефтебазы, ан от 29 июля 20 уле: M _j = Y _{нуіj} /100 іе: П _j = (Т*Y _{нуіj})/10	АЗС) и других ж и, 11 года № 196-п 00 = g_{нуі}*n_і*х_{нуі}*c_і/10	дкостей и газов".
Тип неподва движного со	ижного и по- рединения	Вид технологического потока	Кол-во единиц работающего оборудования n _i , шт.	Величина утечки потока через одно уплотнение i-ого типа g _{нуі} , мг/с	Доля уплотнений і-ого типа потерявших герметичность х _{нуі}
		газовые потоки	0	5.83	0.293
Запорно-рег арматура	гулирующая	легкие углеводороды, двухфазные среды (потоки)	0	3.61	0.365
		тяжелые углеводороды	6	1.83	0.07
		парогазовые потоки	0	0.2	0.03
Фланцевое	соединение	легкие углеводороды, двухфазные среды (потоки)	0	0.11	0.05
		тяжелые углеводороды	16	0.08	0.02
Вы	бросы паров	нефтепродуктов в атмосферу от непл	потностей ЗРА и	и фланцевых соед	динений:
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
0333	Сероводород			0.0000022	0.0000703
2754	Углеводород	ы пр. С12-С19		0.0007920	0.0250442
		вые выбросы в атмосферу от нефтеп	ерекачивающег	о оборудования	
Код ЗВ		Наименование ЗВ		Максимально- разовый вы- брос, г/с	Валовый вы- брос, т/год
0333	Сероводород			0.0000644	0.0020379
2754		ы пр. C12-C19		0.0229520	0.7257966
		0.0230164	0.7278345		
		Всего по источнику:			

№ ИЗА	6669, 6671, 6673	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	Наименование источ- ника выделения	Радиатор ГДГ A1-480-HC-022A/B / 023A/B / 024A/B

Выбросы паров нефтепродуктов от теплообменных аппаратов и средств перекачки, выполнен согласно: 1. "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004. Астана 2005. Раздел 8. 2. "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов паров нефтепродуктов в атмосферу из теплообменных аппаратов и средств перекачки определяется в зависимости от типа оборудования, вида продукта, количества оборудования и времени его работы.

Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: **М**_{сек} = **n*****Q**/3.6, г/сек

Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: M_{год}=n*Q*T/10 ³, т/го							
Количество охлаждающих радиаторов дизельгенератора:	n	2	ШТ.				
Максимальный (разовый) выброс от одной единицы оборудования:	M_{cek}	0.03889	г/сек				
Удельное выделение загрязняющих веществ, которое можно определить по таблице 8.1. РНД 211.2.02.09-2004 или по таблице 5.4. Сборника «КазЭкоэксп»:	Q	0.07	кг/час				
Годовой (валовый) выброс от одной единицы оборудования:	М _{год}	1.22976	т/год				
мактический годовой фонд времени работы одной еди- ницы оборудования:							
Выбросы 3В от	радиатора ГДГ:						

Код ЗВ	Наименование ЗВ	[%] мас.	Максимально-ра- зовый выброс, г/с	Валовый вы- брос, т/год
1078	Этиленгликоль	57.93%	0.0225283	0.7124000
	Всего по источнику:		0.0225283	0.7124000

№ ИЗА	6670, 6672, 6674	Наименование источника загрязнения атмо- сферы	Неорганизованный выброс
№ ИВ	001	Наименование источ-	Охладитель д/т ГДГ А1-480-НС-122/123/124

Выбросы паров нефтепродуктов от теплообменных аппаратов и средств перекачки, выполнен согласно: 1. "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004. Астана 2005. Раздел 8. 2. "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов паров нефтепродуктов в атмосферу из теплообменных аппаратов и средств перекачки определяется в зависимости от типа оборудования, вида продукта, количества оборудования и времени его работы.

Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: Mcek = n*Q/3.6, г/сек

Годовые (валовые) выбросы от одной единицы оборудования рассчитываются по формуле: M_{год}=n*Q*T/10³, т/год Количество охлаждающих радиаторов дизельгенератора: ШТ. Максимальный (разовый) выброс от одной единицы обору-Мсек 0.01944 г/сек дования: Удельное выделение загрязняющих веществ, которое можно определить по таблице 8.1. РНД 211.2.02.09-2004 Q 0.07 кг/час или по таблице 5.4. Сборника «КазЭкоэксп»: Годовой (валовый) выброс от одной единицы оборудова-0.61488 M_{rod} т/год Фактический годовой фонд времени работы одной еди-8784 ч/год ницы оборудования: Выбросы ЗВ от охладителя д/т ГДГ:

Код ЗВ	Наименование ЗВ	[%] мас.	Максимально-ра- зовый выброс, г/с	Валовый вы- брос, т/год
0333	Сероводород	0.28%	0.0000544	0.0017217
2754	Углеводороды пр. С12-С19	99.72%	0.0193900	0.6131583
	Всего по источнику:		0.0194444	0.6148800

№ ИЗА	0640 - 0645	Наименование источника загрязнения атмосферы	Дымовая труба 470-FK- 011/021/031/041/051/061
№ИВ	001	Наименование источника выделения	Газовая турбина 470-XX- 011/021/031/041/051/061, модель GE 6581

Расчеты выполнены согласно, "Методики определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных" Приложение № 3 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Суммарное количество оксидов азота М_{NOx}, поступающих в атмосферу с отработавшими газами газотурбинных установок, вычисляют по соотношению $\mathbf{M}_{Nox} = \mathbf{c}_{Nox} * \mathbf{V}_{c.r} * \mathbf{B}_{p} * \mathbf{k}_{n}$, г/сек и т/год соответственно;

Суммарное количество оксидов серы M_{SO2} , выбрасываемых в атмосферу с дымовыми газами паровых котлов вычисляют по формуле: \mathbf{M}_{SO2} =0.02* \mathbf{B}_{p} *S'*(1- $\mathbf{\eta}$ '_{SO2})*(1- $\mathbf{\eta}$ ''_{SO2})*(1- $\mathbf{\eta}$ ''_{SO2}* \mathbf{n}_{0} / \mathbf{n}_{k}), г/сек и т/год соответственно;

Суммарное количество оксида углерода M_{CO} , поступающих в атмосферу с отработавшими газами газотурбинных установок, вычисляют по соотношению M_{CO} =18.75*(I_{CO} /(21-O₂))*V_{c.r}*B_p*k_n, г/сек и т/год соответственно;

Суммарное количество несгоревших углеводородов М_{Сн.} поступающих в атмосферу с отработавшими газами газотурбинных установок, вычисляют по соотношению $\mathbf{M}_{\mathsf{CH}} = \mathbf{c}_{\mathsf{CH}} * \mathbf{V}_{\mathsf{c.r}} * \mathbf{B}_{\mathsf{p}} * \mathbf{k}_{\mathsf{n}}$, г/сек и т/год соответственно

ИСХООНЫЕ ОАННЫЕ:					
Все объемы продуктов сгорания рассчитываются на 1 м³ сухого газообразного топлива при нормальных усло-					
виях. Расчетный расход топлива В₀ определяется по соотношению В₀=(1-q₄/100)*В, тыс. н.м³/час, тыс. н.м³/год					
Расход топлива при определении валовых выбросов:	Br	99604.8	т/год		
Расход топлива ГТУ:	Bp	3343.9	г/сек		
Время работы ГТУ:	n _k	8784	ч/год		
Тип используемого топлива:		Топливный газ	СУГ		
Плотность сжигаемой смеси, кг/н. м³:	ρ	0.81	2.02		
Объем дымовых газов за турбиной, вычисляемый по фор-	V _{c.r}	13.3548	32.1499		
муле V _{с.г} =(V ° _г - V ° _{H2O})+(α-1)* V °, н.м³/н.м³ топлива	$V_{\scriptscriptstyle B.\Gamma}$	15.6269	36.6424		
Теоретический объем газов:	V°г	11.5171	26.8734		
Теоретический объем водяных паров:	V° _{H2O}	2.2721	4.4925		
Теоретически необходимый объем воздуха:	V°	10.2745	24.4224		
Содержание серы в топливе на рабочую массу, %:	Sr	0.0028	0.0334		
Доля оксидов серы, связываемых летучей золой в котле:	ŋ' _{so2}	0			
Доля оксидов серы, улавливаемых в мокром золоуловителе	n"	0			
попутно с твердыми частицами:	ŋ" _{SO2}	U			
Доля оксидов серы, улавливаемых в сероулавливающей уста-	η ^c so2	0			
новке:	ני SO2	J			

0330				
	Диоксид серы		2.2366519	66.6234055
0304	Азота оксид		0.9240638	27.5031915
0301	Азота диоксид		5.6865465	169.2504090
	Оксиды азота		7.1081831	211.5630113
Код ЗВ	Наименование 3В		разовые вы- бросы, г/с	бросы, т/год
Ka= 2D	U 2D		Максимально-	Валовые вы-
	Итоговый расчет выбросов вредных в	веществ в атм		
	Всего по источнику:		11.8193981	351.8375894
0415	Углеводороды пр. С1-С5		0.7589615	22.5892028
0337	Углерода оксид		2.4911871	74.1459574
0330	Диоксид серы		2.2366519	66.6234055
0304	Азота оксид		0.8852018	26.3465302
0301	Азота диоксид	<u> </u>	5.4473958	162.1324935
·	Оксиды азота		6.8092447	202.6656169
			бросы, г/с	бросы, т/год
Код ЗВ	Наименование ЗВ		разовые вы-	Валовые вы-
		,	Максимально-	D
	Расчет выбросов загрязняющих вещест	в от ГТУ. рабо		222.3 100000
0.10	Всего по источнику:		10.2120879	303.9499339
0415	Углеводороды пр. С1-С5		0.8134135	24.2098722
0337	Углерода оксид		2.6005548	77.4011017
0304	Диоксид серы		0.1875093	5.5853595
0304	Азота диоксид		0.9240638	27.5031915
0301	Оксиды азота Азота диоксид		5.6865465	169.2504090
Код ЗВ	Наименование ЗВ		Максимально- разовые вы- бросы, г/с 7.1081831	Валовые вы бросы, т/год 211.5630113
	Расчет выбросов загрязняющих веществ от Г	і ў, работаюш		136:
Ізмеренная к ымовых газо		O ₂	15	%об.
(оэффициент биной:	избытка воздуха в отработавших газах за тур-	α	3.5	
	циент избытка воздуха с достаточной степенью то ле α=21/(21-О₂)	очности может	г быть найден по при	іближенной кисл
	коэффициент избытка воздуха:	α_0	1.4	
	асываемых в атмосферу дымовых газов ГТУ:	$ ho_{CH}$	0.716	кг/н.м ³
	ода и несгоревших углеводородов, содержа-	$ ho_{ ext{co}}$	1.25	кг/н.м ³
	льной массы оксидов азота в пересчете на NO ₂ ,	ρ _{ΝΟχ}	2.05	кг/н.м ³
ценных к 15%		I _{CH}	7	ppm
	в в миллионных долях по сухому объему, приве-	I _{CO}	15	ppm
Сонцентрация	оксидов азота, оксида углерода и несгоревших	I _{NOx}	25	ppm
глеводородо	в в отработавших газах:	C _{CH}	12.53	мг/н.м ³
	оксидов азота, оксида углерода и несгоревших	C _{NOx}	46.875	мг/н.м ³
ю соотношен	ию c ¡= I _i * ρ _i *α/α ₀ , мг/н.м ³	C	128.125	мг/н.м ³
При исп	ользовании приборов, измеряющих объемную кон	центрацию I _і м		
Коэффициент	пересчета, при определении выбросов в:	0.00001	т/год	
отери тепла	от механической неполноты сгорания гоплива.	q_4	0.000278	
lotopu toppo	сероулавливающей установки: от механической неполноты сгорания топлива:	n ₀	0	%

№ ИЗА	0646	Наименование источника загрязнения атмо- сферы	Свеча
№ ИВ	001	Наименование источника выделения	Свеча холодной продувки А1-470-FK- 001

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Расчет выбросов топливного газа						
Количество газа, при опорожнении технологического	VΓ	7500	CT.M ³			
оборудования в атмосферу:	m	6431	КГ			
Плотность газа:	ρ	0.86	кг/ст.м ³			
Прополукитоли ности пролуки:	т	720	час			
Продолжительность продувки:	'	2592000	сек.			

Максимал	ьный (разовый) выброс:	Всек	2.48090	г/сек
Годовые (валовые) выбросы:	В _{год}	6.43050	т/один сброс
Выбросы 3В от FG1, Cold vent for line from FG2 till SU D7-4200_AG-036-2"-С58				
Код ЗВ	Наименование ЗВ	Топливный газ	Выбро	сы 3В
код зв	паименование зв	% масс.	г/с	т/год
0333	Сероводород	0.002409%	0.0000598	0.0001549
0334	Сероуглерод	0.000010%	0.0000002	0.0000006
0370	Углерода сероокись	0.004412%	0.0001095	0.0002837
0415	Углеводороды пр. С1-С5	98.843608%	2.4522138	6.3561382
0416	Углеводороды пр. С6-С10	3.762211%	0.0933368	0.241929
0602	Бензол	0.321455%	0.007975	0.0206712
0616	Ксилол	0.005869%	0.0001456	0.0003774
0621	Толуол	0.468900%	0.011633	0.0301526
0627	Этилбензол	0.00000001%	2E-11	6E-11
1702	Бутилмеркаптан	0.004347%	0.0001078	0.0002795
1707	Диметилсульфид	0.000024%	0.0000006	0.0000015
1715	Метилмеркаптан	0.005087%	0.0001262	0.0003271
1720	Пропилмеркаптан	0.011243%	0.0002789	0.000723
1728	Этилмеркаптан	0.009768%	0.0002423	0.0006281
2754	Углеводороды пр. С12-С19	0.029299%	0.0007269	0.0018841
·	Всего по источнику:		2.5669564	6.6535509

№	0647 -	Наименование источника загрязнения ат-	Свечи
ИЗА	0652	мосферы	
№ 3B	001-002	Наименование источника выделения	Установка вентиляционного клапана. А1- 470-XY-013/023/033/043/053/063

Расчет выбросов природного газа при опорожнении технологического оборудования

Планово-предупредительный ремонт и другие работы по нормальной эксплуатации технологического оборудования (освидетельствование аппаратов, сосудов, работающих под давлением; осмотр диафрагмы; проверка работы редуктора, опорожнение пылеуловителей, замерных линий, линий редуцирования, участков газопроводов, импульсных линий, линий подводящих газопроводов) сопровождаются залповыми выбросами газа в атмосферу.

Установка вентиляционного клапана	(001) / (002)		ед.измерения	
Количество газа, при опорожнении технологического оборудования в атмосферу:		12		ст.м³/сброс
Продолжительность продувки:		0.01 36		час сек.
Количество сбросов на свечу: n			12	раз
Тип сбрасываемого топлива:		Топливный газ	СУГ	
Плотность газа:	ρ	0.8574	2.0457	кг/ст.м ³
Количество газа, при опорожнении технологического оборудования в атмосферу:	VΓ	10.29	24.55	кг/сброс
Максимальный (разовый) выброс:	Bp	285.8000	681.9000	г/сек
Годовые (валовые) выбросы:	B _r	0.0103	0.0245	тонн/один сброс
		0.1235	0.2946	т/гол

Выбросы 3В от установки вентиляционного клапана А1-470-ХҮ-013/023/033/043/053/063

		Топливный газ	СУГ	Макси-	Валовые выб	росы ЗВ, т/год
Код 3В	Наименование ЗВ	[%] мас.	[%] мас.	мально-ра- зовые вы- бросы, г/с	001	002
0333	Сероводород	0.002409%	0.000056%	0.0068845	0.000003	0.000003
0334	Сероуглерод	0.000010%	0.001188%	0.0080976	0.0000035	0.0000035
0370	Углерода серо- окись	0.004412%	0.060801%	0.4145988	0.0001791	0.0001791
0415	Углеводороды пр. С1-С5	98.843608%	99.999374%	681.8957312	0.294579	0.294579
0416	Углеводороды пр. C6-C10	3.762211%	0.807511%	10.7523979	0.004645	0.004645
0602	Бензол	0.321455%	0.160624%	1.0952982	0.0004732	0.0004732
0616	Ксилол	0.005869%	0.0000000001%	0.0167734	0.0000072	0.0000072
0621	Толуол	0.468900%	0.0000003%	1.3401168	0.0005789	0.0005789
0627	Этилбензол	0.000000001%	0.000000000002%	0.000000003	0.000000000001	0.000000000001
1702	Бутилмеркаптан	0.004347%	0.000720%	0.0124224	0.0000054	0.0000054
1707	Диметилсульфид	0.000024%	0.000093%	0.0006343	0.00000027	0.0000027
1715	Метилмеркаптан	0.005087%	0.005389%	0.0367475	0.0000159	0.0000159
1720	Пропилмеркаптан	0.011243%	0.000779%	0.0321321	0.0000139	0.0000139
1728	Этилмеркаптан	0.009768%	0.000496%	0.0279159	0.0000121	0.0000121
2754	Углеводороды пр. C12-C19	0.029299%	0.000000000000000000004%	0.0837356	0.0000362	0.0000362
	-	Всего по источник	y:	695.7234862	0.30055267	0.30055267
	Итоговые выбросы ЗВ от установки вентиляционного клапана А1-470-ХҮ-013/023/033/043/053/063					

итоговые выбросы 3В от установки вентиляционного клапана А1-470-XY-013/023/033/043/053/063
Наименование ЗВ Выбросы ЗВ

Код 3В		г/с	т/год
0333	Сероводород	0.013769	0.000006
0334	Сероуглерод	0.0161952	0.000007
0370	Углерода сероокись	0.8291976	0.0003582
0415	Углеводороды пр. С1-С5	1363.791462	0.589158
0416	Углеводороды пр. С6-С10	21.5047958	0.00929
0602	Бензол	2.1905964	0.0009464
0616	Ксилол	0.0335468	0.0000144
0621	Толуол	2.6802336	0.0011578
0627	Этилбензол	0.000000006	2E-12
1702	Бутилмеркаптан	0.0248448	0.0000108
1707	Диметилсульфид	0.0012686	0.0000054
1715	Метилмеркаптан	0.073495	0.0000318
1720	Пропилмеркаптан	0.0642642	0.0000278
1728	Этилмеркаптан	0.0558318	0.0000242
2754	Углеводороды пр. С12-С19	0.1674712	0.0000724
	Итого по источнику:	1391.446972	0.60110534

№ ИЗА	6640 - 6645	Наименование ис- точника загрязнения атмосферы	Неорганизованный источник
№ 3B	001 Наименование ис- точника выделения Сборная емкость дренажа А1-470-VA- 014/024/034/044/054/064		

Расчеты выбросов от газов и паров выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном в парогазовой фазе, выполнен согласно: "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 5 "Расчет выбросов вредных веществ при производстве нефтепродуктов", п. 5.2. Неорганизованные источники.

Количество выбросов газов и паров, выделяющихся из аппаратов, колонн, реакторов и др. ёмкостей, в которых вещества находятся, в основном, в парогазовой фазе, рассчитывается по формуле: Π =0.037*(P*V/1011)^{0,8*}√(M_n /T), кг/час

Количество выбросов газов и паров, выделяющихся из аппаратов:	П	0.02382	кг/час
Давление в аппарате:	Р	3500	гПа
Объём аппарата: V=S*h	V	0.5	M ³
Площадь основания емкости: S=π*R ²	S	0.45	M^2
Диаметр основания емкости:	d	0.76	M
Длина между отбортовками днищ:	h	1.5	М
Средняя молярная масса паров нефтепродуктов, принимается в зависимости от температуры начала кипения продукта, загружаемого в аппарат (таблица 5.2):	M_n	63	г/моль
Температура начала кипения продукта, загружаемого в аппарат:	t _{HK}	30	°C
Средняя температура в аппарате:	Т	312.65	K
Максимальный (разовый) выброс от одной единицы оборудования рассчитывается по формуле: М _{сек} = П/3.6 , г/сек:	М _{сек}	0.00662	г/сек
Годовой (валовый) выброс от одной единицы оборудования рассчитываются по формуле: М _{год} = П*Т/10 ³, т/год:	М _{год}	0.20926	т/год
Фактический годовой фонд времени работы одной единицы оборудования:	Т	8784	ч/год

Выбросы 3B от сборной емкости дренажа A1-470-VA-014/024/034/044/054/064

		Топливный газ	СУГ	Макси-	Радовия
Код 3В	Наименование ЗВ	[%] мас.	[%] мас.	мально-ра- зовые вы- бросы, г/с	Валовые выбросы 3В, т/год
0333	Сероводород	0.002409%	0.000056%	0.0000002	0.000005
0334	Сероуглерод	0.000010%	0.0011875%	0.00000008	0.0000025
0370	Углерода сероокись	0.004412%	0.0608005%	0.000004	0.0001272
0415	Углеводороды пр. С1-С5	98.843608%	99.9993740%	0.0066174	0.2092586
0416	Углеводороды пр. C6-C10	3.762211%	0.8075106%	0.000249	0.0078728
0602	Бензол	0.321455%	0.1606245%	0.0000213	0.0006727
0616	Ксилол	0.005869%	0.00000000009%	0.0000004	0.0000123
0621	Толуол	0.468900%	0.00000032%	0.000031	0.0009812
0627	Этилбензол	0.00000001%	0.000000000002%	1E-13	2E-12
1702	Бутилмеркаптан	0.004347%	0.0007200487%	0.0000003	0.0000091
1707	Диметилсульфид	0.000024%	0.0000930%	0.000000006	0.0000002
1715	Метилмеркаптан	0.005087%	0.0053890%	0.0000004	0.0000113
1720	Пропилмеркаптан	0.011243%	0.0007790%	0.0000007	0.0000235
1728	Этилмеркаптан	0.009768%	0.0004965%	0.0000006	0.0000204