Приложение-2

## 12. Средняя повторяемость направлений ветра и штилей, %:

| С  | CB | В  | ЮВ | Ю | ЮЗ | 3  | C3 | Штиль |
|----|----|----|----|---|----|----|----|-------|
| 10 | 11 | 16 | 18 | 9 | 12 | 13 | 11 | 3     |

## 13. Роза ветров



#### Примечание:

1.Скорость ветра, повторяемость превышения, которой составляет 5%, не предоставляем, так как эти параметры не входят в реестр климатических данных Казгидромета.

2.Данные по испарительной способности не предоставляем – нет в плане наблюдений.

https://seddoc.kazhydromet.kz/v49zh3



Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST) 2022, ТУЛЕНОВ САЛАВАТ, Филиал Республиканского государственного предприятия на праве хозяйственного ведения «Казгидромет» Министерства экологии, геологии и природных ресурсов Республики Казахстан по Атырауской области, BIN120841016202

#### СПРАВКА О ФОНОВЫХ КОНЦЕНТРАЦИЯХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ



ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ

Исполнительному директору ТОО «КАПЭ»

И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ (Росгидромет)

Ф. В. Климову

Ордена Трудового Красного Знамени

федеральное государственное бюджетное учреждение 050012, Республика Казахстан, г. Алматы,

ул Амангельды, д. 70А

«ГЛАВНАЯ ГЕОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ им. А.И. ВОЕЙКОВА»

(ФГБУ «ГГО»)

194021, Санкт-Петербург, ул. Карбышева, д. 7

Тел.: (812) 297-43-90, 297-86-70, 295-02-11

Факс (812) 297-86-61

Ha No

#### Справка о фоновых концентрациях загрязняющих веществ

Фоновые долгопериодные средние концентрации загрязняющих веществ установлены для района расположения наземных объектов месторождения Кашаган на территории Макатского района Атырауской области Республики Казахстан.

Справка выдается ТОО «КАПЭ» в целях проведения работ для объектов, расположенных в районе Западного Ескене: основной технологический комплекс по подготовке нефти и газа (УКПНиГ), вахтовый поселок «Самал», железнодорожный комплекс в Западном Ескене (ЖКЗЕ), железнодорожные станции «Болашак» и «Карабатан», комплекс по обезвоживанию и нейтрализации нефтешлама (КпОиНН), площадка размещения очищенных производственных сточных вод (ПРЖТО).

Фоновые долгопериодные средние концентрации определены с учетом вклада действующих по состоянию на 01.01.2021 г. объектов.

Фоновые долгопериодные средние концентрации установлены в соответствии с Методическими указаниями по определению фонового уровня загрязнения атмосферного воздуха (утвержд. Приказом Минприроды России от 22.11.2019 г. № 794), с РД 52.04.186-89 по данным регулярных наблюдений за период 2016-2020 гг. на станциях СМКВ:

| №    | Наименование, размещение                           | Коорд        | инаты        |
|------|----------------------------------------------------|--------------|--------------|
| СМКВ | тинменование, размещение                           | в.д.         | с.ш.         |
| 101  | ж/д ст. Ескене                                     | 52°37'02.29" | 47°21'35.42" |
| 102  | в/п "Самал"                                        | 52°20'55.93" | 47°15'35.87" |
| 115  | Санитарно-защитная зона (юго-восточная граница)    | 52°31'13.20" | 47°11'05.40" |
| 116  | Санитарно-защитная зона (западная граница)         | 52°22'29.23" | 47°14'13.94" |
| 117  | ж/д ст. Карабатан                                  | 52°18'34.89" | 47°16'17.60" |
| 118  | ж/д ст. Таскескен                                  | 52°28'07.14" | 47°20'01.53" |
| 119  | Санитарно-защитная зона (северо-восточная граница) | 52°33'18.98" | 47°18'19.14" |
| 120  | Санитарно-защитная зона (восточная граница)        | 52°35'03.62" | 47°13'37.25" |

Фоновые долгопериодине средние концентрации, представленные в Приложении №1 (таблица 1), действительным период с 2021 по 2025 гг. (включительно).

Справка используется только в целях ТОО «КАПЭ» для указанных выше объектов и не подлежит передаче другим организациям


Директор

В. М. Катцов

Приложение №1 к исх. № 3605,9/25 от 25.10.2021

Таблица 1 — Значения долгопериодных средних фоновых концентраций (Сфс) сероводорода, диоксид серы, оксида углерода, оксида азота и диоксида азота без детализации по скорости и направлению ветра

| Загрязняющее<br>вещество | Номер СМКВ | Фоновая концентрация<br>Сфс, мг/м <sup>3</sup> |
|--------------------------|------------|------------------------------------------------|
|                          | 101        | 0,0008                                         |
|                          | 102        | 0,0009                                         |
|                          | 115        | 0,0008                                         |
| Cananananan              | 116        | 0,0015                                         |
| Сероводород              | 117        | 0,0008                                         |
|                          | 118        | 0,0010                                         |
|                          | 119        | 0,0011                                         |
|                          | 120        | 0,0009                                         |
|                          | 101        | 0,0012                                         |
|                          | 102        | 0,0014                                         |
|                          | 115        | 0,0018                                         |
| Пиокана сары             | 116        | 0,0015                                         |
| Диоксид серы             | 117        | 0,0018                                         |
|                          | 118        | 0,0015                                         |
|                          | 119        | 0,0020                                         |
|                          | 120        | 0,0021                                         |
|                          | 101        | 0,0015                                         |
|                          | 102        | 0,0008                                         |
|                          | 115        | 0,0008                                         |
| Оксид азота              | 116        | 0,0008                                         |
| Оксид азота              | 117        | 0,0030                                         |
|                          | 118        | 0,0028                                         |
|                          | 119        | 0,0010                                         |
|                          | 120        | 0,0005                                         |
|                          | 101        | 0,0028                                         |
|                          | 102        | 0,0038                                         |
|                          | 115        | 0,0018                                         |
| Диоксид азота            | 116        | 0,0033                                         |
| диоксид азота            | 117        | 0,0054                                         |
|                          | 118        | 0,0033                                         |
|                          | 119        | 0,0025                                         |
|                          | 120        | 0,0024                                         |
|                          | 101        | 0,21                                           |
|                          | 102        | 0,33                                           |
|                          | 115        | 0,31                                           |
| Оксид углерода           | 116        | 0,26                                           |
| оконд углерода           | 117        | 0,21                                           |
|                          | 118        | 0,32                                           |
|                          | 119        | 0,32                                           |
|                          | 120        | 0,29                                           |



| Обустройство месторождения Кашаган. Наращивание производительности до 450 тыс. бар<br>на Наземном комплексе. Отчет о возможных воздействиях на окружающую сред |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                |  |

# ДОПОЛНЕНИЕ В.2

РАСЧЕТЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ

## СОДЕРЖАНИЕ:

| В.2.1 ПЕРИОД СТРОИТЕЛЬНЫХ РАБОТ                            | 3 |
|------------------------------------------------------------|---|
| Дизельные генераторы                                       | 3 |
| Битумные работы                                            |   |
| Битумный котел                                             |   |
| Битумные работы - Разогрев битума                          |   |
| Изоляция битумом                                           |   |
| Хранение и перекачка топлива                               |   |
| Заправка техники и автотранспорта                          |   |
| Перекачка дизтоплива                                       |   |
| Металлообработка                                           |   |
| Механическая обработка                                     |   |
| Деревообработка                                            |   |
| Пыление при выполнении земляных работ и обращении со строи |   |
| инертными материалами                                      |   |
| Пыление от движения техники по площадке                    |   |
| Сварочные работы                                           |   |
| Покрасочные работы                                         |   |
| ДВС спецтехники                                            |   |
| В.2.2 ЭКСПЛУАТАЦИЯ НАЗЕМНОГО КОМПЛЕКСА                     |   |
| Вахтовый поселок Самал (003)                               |   |
| 3ИО ВП Самал (004)                                         |   |
| Ж/д станция и автостанция "Болашак" (006)<br>КОНН (007)    |   |
| Производственная лаборатория (009)                         |   |
| Оборудование для РНР (010)                                 |   |
| Ж/д ст. Карабатан (011)                                    |   |
| Предзаводская зона (020)                                   |   |
| Зона инженерного обеспечения УКПНиГ (021)                  |   |
| Технологическая зона (022)                                 |   |
| Складская зона (023)                                       |   |
| Система трубопроводов (024)                                |   |
| Зона инженерного обеспечения ЖКЗЕ (025)                    |   |
| Погрузочный терминал (026)                                 |   |
| Оборудование для ВР и обучение персонала (032)             |   |
| Сервисные работы (035)                                     |   |
| Факельные установки                                        |   |
| Факельная установка низкоговысокого давления               |   |
| Факельная установка низкого давления                       |   |
|                                                            |   |

## В.2.1 ПЕРИОД СТРОИТЕЛЬНЫХ РАБОТ

#### Дизельные генераторы

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

------

е, - Выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2)

Рэ - Эксплуатационная мощность стационарной дизельной установки:

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:

 $M_{roд}$ = $q_i^*B_{rog}/1000$ ,  $\tau/год$ 

где:

q<sub>i</sub> - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4)

Вгод - Расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки)

| № произ- | Наименова-            | <u>№</u> |                     | установкой за год (берется по отчет  Тип | Расчетная     | Количество | Время            | вки)<br>Расход<br>топлива, | Расход топ-                | Мощность             |             | Удельные<br>выбросы | Код ве- | Наименование             | Выбросы                     | Выбросы, г/с | Выбросы      |
|----------|-----------------------|----------|---------------------|------------------------------------------|---------------|------------|------------------|----------------------------|----------------------------|----------------------|-------------|---------------------|---------|--------------------------|-----------------------------|--------------|--------------|
| водства  | ние производ-<br>ства | ист.     | Наименование        | ТИП                                      | группа<br>СДУ | СДУ , шт.  | работы,<br>ч/год | кг/ч на 1<br>ед.           | лива Вгод,<br>т/год на ед. | двигателя<br>Рэ, кВт | еі, г/кВт ч | qi, г/кг<br>топлива | щества  | вещества                 | Мсек, г/с на<br>1 двигатель | от источника | Мгод , т/год |
| 1        | 2                     | 3        | 4                   | 5                                        | 6             | 7          | 8                | 9                          | 10                         | 11                   | 12          | 13                  | 14      | 15                       | 16                          | 17           | 18           |
| 37       | Строительные          | 2800     | Дизельный генератор | Агрегаты сварочные двухпосто-            | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 9.6         | 40                  | 301     | Азота диоксид            | 0.1685333                   | 0.23594662   | 0.00630714   |
|          | работы                |          |                     | вые для ручной сварки на трак-           | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 9.6         | 40                  | 304     | Азота оксид              | 0.0273867                   | 0.03834138   | 0.00102494   |
|          |                       |          |                     | торе, мощность 79 кВт (108 л.с.)         | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 0.5         | 2                   | 328     | Сажа                     | 0.0109722                   | 0.01536108   | 0.00039424   |
|          |                       |          |                     |                                          | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 1.2         | 5                   | 330     | Серы диоксид             | 0.0263333                   | 0.03686662   | 0.00098546   |
|          |                       |          |                     |                                          | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 6.2         | 26                  | 337     | Углерода оксид           | 0.1360556                   | 0.19047784   | 0.00512456   |
|          |                       |          |                     |                                          | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 0.000012    | 0.000055            | 703     | Бенз(а)пирен             | 0.0000003                   | 0.00000042   | 1.12E-08     |
|          |                       |          |                     |                                          | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 0.12        | 0.5                 | 1325    | Формальдегид             | 0.0026333                   | 0.00368662   | 0.00009856   |
|          |                       |          |                     |                                          | Б             | 1          | 13.537           | 10.4                       | 0.1407848                  | 79                   | 2.9         | 12                  | 2754    | Углеводороды.пр. С12-С19 | 0.0636389                   | 0.08909446   | 0.00236516   |
| 37       | Строительные          | 2801     | Дизельный генератор | Агрегаты сварочные передвиж-             | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 10.3        | 43                  | 301     | Азота диоксид            | 0.0572222                   | 0.08011108   | 0.00182406   |
|          | работы                |          |                     | ные с дизельным двигателем, с            | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 10.3        | 43                  | 304     | Азота оксид              | 0.0092986                   | 0.01301804   | 0.00029638   |
|          |                       |          |                     | номинальным сварочным током<br>250-400 A | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 0.7         | 3                   | 328     | Сажа                     | 0.0048611                   | 0.00680554   | 0.00015904   |
|          |                       |          |                     | 230-400 A                                | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 1.1         | 4.5                 | 330     | Серы диоксид             | 0.0076389                   | 0.01069446   | 0.00023856   |
|          |                       |          |                     |                                          | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 7.2         | 30                  | 337     | Углерода оксид           | 0.05                        | 0.07         | 0.00159082   |
|          |                       |          |                     |                                          | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 0.000013    | 0.000055            | 703     | Бенз(а)пирен             | 0.00000009                  | 0.000000126  | 2.8E-09      |
|          |                       |          |                     |                                          | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 0.15        | 0.6                 | 1325    | Формальдегид             | 0.0010417                   | 0.00145838   | 0.00003178   |
|          |                       |          |                     |                                          | Α             | 1          | 20.811           | 1.82                       | 0.03787602                 | 25                   | 3.6         | 15                  | 2754    | Углеводороды.пр. С12-С19 | 0.025                       | 0.035        | 0.00079534   |
| 37       | Строительные          | 2802     | Дизельный генератор | Агрегаты наполнительно-опрес-            | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 9.6         | 40                  | 301     | Азота диоксид            | 0.6826667                   | 0.95573338   | 0.48598144   |
|          | работы                |          |                     | совочные до 300 м3/ч                     | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 9.6         | 40                  | 304     | Азота оксид              | 0.1109333                   | 0.15530662   | 0.07897204   |
|          |                       |          |                     |                                          | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 0.5         | 2                   | 328     | Сажа                     | 0.0444444                   | 0.06222216   | 0.03037384   |
|          |                       |          |                     |                                          | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 1.2         | 5                   | 330     | Серы диоксид             | 0.1066667                   | 0.14933338   | 0.0759346    |
|          |                       |          |                     |                                          | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 6.2         | 26                  | 337     | Углерода оксид           | 0.5511111                   | 0.77155554   | 0.39485992   |
|          |                       |          |                     |                                          | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 0.000012    | 0.000055            | 703     | Бенз(а)пирен             | 0.000001                    | 0.0000014    | 0.00000084   |
|          |                       |          |                     |                                          | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 0.12        | 0.5                 | 1325    | Формальдегид             | 0.0106667                   | 0.01493338   | 0.00759346   |
|          |                       |          |                     |                                          | Б             | 1          | 409.35           | 26.5                       | 10.8478015                 | 320                  | 2.9         | 12                  | 2754    | Углеводороды.пр. С12-С19 | 0.2577778                   | 0.36088892   | 0.18224304   |
| 37       | Строительные          | 2803     | Компрессор          | Компрессор передвижной                   | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 9.6         | 40                  | 301     | Азота диоксид            | 0.1578667                   | 0.22101338   | 0.053921     |
|          | работы                |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 9.6         | 40                  | 304     | Азота оксид              | 0.0256533                   | 0.03591462   | 0.00876218   |
|          |                       |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 0.5         | 2                   | 328     | Сажа                     | 0.0102778                   | 0.01438892   | 0.00337008   |
|          |                       |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 1.2         | 5                   | 330     | Серы диоксид             | 0.0246667                   | 0.03453338   | 0.0084252    |
|          |                       |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 6.2         | 26                  | 337     | Углерода оксид           | 0.1274444                   | 0.17842216   | 0.04381076   |
|          |                       |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 0.000012    | 0.000055            | 703     | Бенз(а)пирен             | 0.0000002                   | 0.0000028    | 0.000000098  |
|          |                       |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 0.12        | 0.5                 | 1325    | Формальдегид             | 0.0024667                   | 0.00345338   | 0.00084252   |
|          |                       |          |                     |                                          | Б             | 1          | 232.35           | 5.18                       | 1.20359372                 | 74                   | 2.9         | 12                  | 2754    | Углеводороды.пр. С12-С19 | 0.0596111                   | 0.08345554   | 0.02022034   |

#### Битумные работы

#### Битумный котел

| Но-<br>мер<br>ИЗА | Наиме-<br>нование<br>оборудо-<br>вания: | Коли-<br>чество<br>котло-<br>агрега-<br>тов | Тип топлива |        | , топли<br>поагре | ива на кот-<br>гат: | Со-<br>дер-<br>жание<br>серы | Золь-<br>ность<br>топли-<br>ва | гима гоп-            | Вре-  | Количест-<br>во окси-<br>дов азота,<br>образую-<br>щихся на<br>1 ГДж<br>тепла: | Коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений: | учитыва-<br>ющий<br>долю | Доля<br>твердых<br>частиц,<br>улавли-<br>ваемых в<br>золоуло-<br>вителях: | сидов<br>серы,<br>связыва-<br>емых ле-<br>тучей зо- | ваемых в | оксидов углерода на ед. теплоты, вы- | Потери теп-<br>лоты<br>вследствие<br>механиче-<br>ской не-<br>полноты<br>сгорания<br>газа: | ный рас-<br>ход газо-<br>воздуш-<br>ной | Коэффициент, учитывающий характер топлива: | Код<br>3В | Наименование загрязняющего вещества (3B) | Макси-<br>мально-ра-<br>зовый вы-<br>брос, г/с | Валовый<br>выброс,<br>т/год |
|-------------------|-----------------------------------------|---------------------------------------------|-------------|--------|-------------------|---------------------|------------------------------|--------------------------------|----------------------|-------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|----------|--------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-----------|------------------------------------------|------------------------------------------------|-----------------------------|
|                   |                                         |                                             |             | В      |                   | B <sub>r</sub>      | Sr                           | <b>A</b> r                     | $\mathbf{Q}_{i}^{r}$ | Tr    | K <sub>NO2</sub>                                                               | β                                                                                                              | Х                        | η                                                                         | η'                                                  | η"       | Kco                                  | q <sub>4</sub>                                                                             | <b>V</b> <sub>r</sub>                   | К                                          |           |                                          |                                                |                             |
|                   |                                         |                                             |             | г/с    | кг/ч              | т/год               | %                            | %                              | МДж/кг               | ч/год | кг/ГДж                                                                         |                                                                                                                |                          |                                                                           |                                                     |          | кг/ГДж                               | %                                                                                          | м <sup>3</sup> /сек                     |                                            |           |                                          |                                                |                             |
| 1                 | 2                                       | 3                                           | 4           | 5      | 6                 | 7                   | 8                            | 9                              | 10                   | 11    | 12                                                                             | 13                                                                                                             | 14                       | 15                                                                        | 16                                                  | 17       | 18                                   | 19                                                                                         | 20                                      | 21                                         | 22        | 23                                       | 24                                             | 25                          |
| 2804              | Битумо-                                 | 1                                           | Дизельное   | 0.6667 | 2.4               | 0.0873144           | 0.3                          | 0.025                          | 42.75                | 36    | 0.08                                                                           | 0                                                                                                              | 0.01                     | 0                                                                         | 0.02                                                | 0        | 0.32                                 | 0                                                                                          | 0.0175                                  | 0.355                                      | 0301      | Азота диоксид                            | 0.00255374                                     | 0.00033446                  |
|                   | варка                                   |                                             | топливо     |        |                   |                     |                              |                                |                      |       |                                                                                |                                                                                                                |                          |                                                                           |                                                     |          |                                      |                                                                                            |                                         |                                            | 0304      | Азота оксид                              | 0.00041496                                     | 0.00005432                  |
|                   |                                         |                                             |             |        |                   |                     |                              |                                |                      |       |                                                                                |                                                                                                                |                          |                                                                           |                                                     |          |                                      |                                                                                            |                                         |                                            | 0328      | Сажа                                     | 0.00023338                                     | 0.00003052                  |
|                   |                                         |                                             |             |        |                   |                     |                              |                                |                      |       |                                                                                |                                                                                                                |                          |                                                                           |                                                     |          |                                      |                                                                                            |                                         |                                            | 0330      | Сера диоксид                             | 0.00548828                                     | 0.00071876                  |
|                   |                                         |                                             |             |        |                   |                     |                              |                                |                      |       |                                                                                |                                                                                                                |                          |                                                                           |                                                     |          |                                      |                                                                                            |                                         |                                            | 0337      | Углерод оксид                            | 0.0127687                                      | 0.0016723                   |

#### Битумные работы - Разогрев битума

Выбросы от битумных работ определены согласно, "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 6 "Расчет выбросов вредных веществ при работе асфальтобетонных заводов"

| № производ-<br>ства | Наименование<br>производства | № ИЗА | Наименование ИЗА    | Nº<br>ИB | Наименование<br>ИВ | Расход битума,<br>т/год<br>В | Время работы<br>в сут., ч/сут<br>t | Время работы,<br>ч/год<br>Т | Удельный выброс при<br>нагреве битума, кг/т<br>Q | Код ЗВ | Наименование ЗВ               | Выбросы,<br>Мсек, г/с | Выбросы<br>Мгод, т/год |
|---------------------|------------------------------|-------|---------------------|----------|--------------------|------------------------------|------------------------------------|-----------------------------|--------------------------------------------------|--------|-------------------------------|-----------------------|------------------------|
| 1                   | 2                            | 3     | 4                   | 5        | 6                  | 5                            | 6                                  | 8                           | 9                                                | 11     | 12                            | 13                    | 14                     |
| 37                  | Строительные<br>работы       | 7800  | Битумные работы 001 |          | Разогрев битума    | 1.41                         | 2.00                               | 36.381                      | 1                                                | 2754   | Углеводороды пр. С12-С19 (10) | 0.01510278            | 0.00197806             |

#### Изоляция битумом

Выбросы от битумных работ определены согласно, "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 6 "Расчет выбросов вредных веществ при работе асфальтобетонных заводов"

Выброс углеводородов при пропитке бетонных и железобетонных конструкций битумом рассчитываем по формуле 5.45 (применительно). Максимальный выброс углеводородов с поверхности испарения определяется по формуле:  $\Pi_{max} = H * F / 2592$ , г/с

Валовый выброс углеводородов с поверхности испарения определяется по формуле:  $\Pi_{max} = (H_1 + H_2)*6*F / 1000, т/г$ 

| №<br>N3A | Наименование<br>ИЗА   | № ИВ | Наименование ИВ                                        | Площадь<br>покры-<br>тия, м2 | Площадь<br>покрытия<br>в час, м2/ч | Время остыва-<br>ния битума при<br>пропитке, ч | Время работы,<br>ч/год | Норма естественной убыли в осенне-зимний период, кг/м2 в мес. | Норма естественной<br>убыли в весенне-лет-<br>ний период, кг/м2 в<br>мес. | Площадь поверхно-<br>сти испарения при<br>пропитке, м2 | Код ЗВ | Наименование<br>3B               | Выбросы,<br>Мсек, г/с | Выбросы<br>Мгод, т/год |
|----------|-----------------------|------|--------------------------------------------------------|------------------------------|------------------------------------|------------------------------------------------|------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------------------|-----------------------|------------------------|
|          |                       |      |                                                        | S <sub>1</sub>               | S                                  | t                                              | Т                      | H <sub>1</sub>                                                | H <sub>2</sub>                                                            | F                                                      |        |                                  |                       |                        |
| 1        | 2                     | 3    | 4                                                      | 5                            | 6                                  | 7                                              | 8                      | 9                                                             | 10                                                                        | 11                                                     | 12     | 13                               | 14                    | 15                     |
| 7801     | Изоляция биту-<br>мом | 001  | Покрытие битумом бетонных и железобетонных конструкций | 2419.3                       | 21.80                              | 1                                              | 111                    | 2.16                                                          | 2.88                                                                      | 21.795                                                 | 2754   | Углеводороды пр.<br>C12-C19 (10) | 0.033904              | 0.92271886             |

#### Хранение и перекачка топлива

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. Расчетные формулы:

Годовые выбросы загрязняющих веществ в атмосферу, т/год:

 $G = (Y_{o3} * B_{o3} + Y_{BJ} * B_{BJ}) * K_{D}^{MAX} * 10^{-6} + G_{XP} * K_{HII} * N_{D}$ 

Максимально-разовый выброс, г/с: M=C<sub>1</sub>\*K<sub>p</sub><sup>мах\*</sup>V<sub>ч</sub><sup>мах</sup>/3600

| №<br>ИЗА | Наимено-                        | Тип<br>топ-<br>лива  | Объем<br>резер-<br>вуара,<br>м <sup>3</sup> | ип/ Кон-<br>струк-<br>ция | Коли-<br>че-<br>ство,<br>шт. | KOHIJEHTDA- | ложение 8) | V <sub>ч</sub> <sup>тах</sup> объем паровоздушной смеси, вытесняемой из резервуаров во время его закачки, м³/час | жение 12)<br>удельные | удельные | (Прило-<br>жение | К <sub>нп</sub> (Прило-<br>жение 12)<br>опытный<br>коэффици-<br>ент | Закачива-<br>емый<br>объем,<br>т/год | Объем перекачки в осенне-зимний период Воз, т/пер. | качки ве- | Время<br>работы,<br>час/год | Массовое<br>содержа-<br>ние С <sub>і</sub> , %<br>масс | Код<br>3В | Наименование ве-<br>щества | Максимально-<br>разовые вы-<br>бросы, г/с | Валовые вы-<br>бросы, т/год |
|----------|---------------------------------|----------------------|---------------------------------------------|---------------------------|------------------------------|-------------|------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------------------|---------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|-----------|-----------------------------|--------------------------------------------------------|-----------|----------------------------|-------------------------------------------|-----------------------------|
| 1        | 2                               | 3                    | 4                                           | 5                         | 6                            | 7           | 8          | 9                                                                                                                | 10                    | 11       | 12               | 13                                                                  | 14                                   | 15                                                 | 16        | 17                          | 18                                                     | 19        | 20                         | 21                                        | 22                          |
| 2805     | Резервуар<br>с дизтопли-<br>вом | Диз-<br>топ-<br>ливо | 5                                           | Гориз.                    | 2.00                         | 3.92        | 1          | 5                                                                                                                | 2.36                  | 3.15     | 0.27             | 0.0029                                                              | 36.73                                | 18.37                                              | 18.37     | 5040                        | 0.28%                                                  | 333       | Сероводород (518)          | 0.0000427                                 | 0.00000658                  |

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.

Расчетные формулы:

Годовые выбросы загрязняющих веществ в атмосферу, т/год:  $G=(\bigvee_{o_3}*B_{o_3}*Y_{Bn}*B_{Bn})*K_p^{max*}10^{-6}*G_{Xp}*K_{Hn}*N_p$ 

Максимально-разовый выброс, г/с:

 $M=C_1*K_p^{\text{Max}}V_4^{\text{Max}}/3600$ 

| Nº<br>N3A |   | топ- | pesep- | ип/ Кон- | че-<br>ство, | концентра- | ложение 8)<br>опытный<br>коэффи- | V <sub>ч</sub> <sup>max</sup> объем паровоздушной смеси, вытесняемой из резервуаров во время его закачки, м³/час | жение 12)<br>удельные | удельные | (LIDWIO- | К <sub>нп</sub> (Прило-<br>жение 12)<br>опытный<br>коэффици-<br>ент | Закачива-<br>емый<br>объем,<br>т/год | Объем перекачки в осенне-зимний период Воз, т/пер. | качки ве-<br>сенне-лет- | Время | Массовое<br>содержа-<br>ние С <sub>і</sub> , %<br>масс | Код<br>3В | Наименование ве-<br>щества       |            | Валовые вы-<br>бросы, т/год |
|-----------|---|------|--------|----------|--------------|------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|---------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|-------------------------|-------|--------------------------------------------------------|-----------|----------------------------------|------------|-----------------------------|
| 1         | 2 | 3    | 4      | 5        | 6            | 7          | 8                                | 9                                                                                                                | 10                    | 11       | 12       | 13                                                                  | 14                                   | 15                                                 | 16                      | 17    | 18                                                     | 19        | 20                               | 21         | 22                          |
|           |   |      |        |          |              |            |                                  |                                                                                                                  |                       |          |          |                                                                     |                                      |                                                    |                         |       | 99.72%                                                 | 2754      | Углеводороды пр.<br>C12-C19 (10) | 0.01520176 | 0.0023275                   |

#### Заправка техники и автотранспорта

| № ИЗА | Наименова-<br>ние сточ-<br>ника выде-<br>ления | Тип топ-<br>лива | Количест-<br>во, шт. | Renevana |      | Фактический максимальный объем топлива через ТРК, м3/ч |      | Срвл (Приложе-<br>ние 15,17) кон-<br>центрация,<br>г/м4 | Ј едель-<br>ные вы-<br>бросы при<br>проливах,<br>г/м3 | Закачивае- | рекачки в<br>осенне- | Объем перекачки весенне-летний период Ввл, м3/пер. |     | Массовое<br>содержа-<br>ние С <sub>і</sub> , %<br>масс | Код ЗВ | Наименование вещества         | Максимально-<br>разовые вы-<br>бросы, г/с | Валовые<br>выбросы,<br>т/год |
|-------|------------------------------------------------|------------------|----------------------|----------|------|--------------------------------------------------------|------|---------------------------------------------------------|-------------------------------------------------------|------------|----------------------|----------------------------------------------------|-----|--------------------------------------------------------|--------|-------------------------------|-------------------------------------------|------------------------------|
| 1     | 2                                              | 3                | 4                    | 5        | 6    | 7                                                      | 8    | 9                                                       | 10                                                    | 11         | 12                   | 13                                                 | 14  | 15                                                     | 16     | 17                            | 18                                        | 19                           |
| 7823  | Топливоза-<br>правщик                          | Дизтоп-<br>ливо  | 1                    | б. а/м   | 3.92 | 5.00                                                   | 1.98 | 2.66                                                    | 50                                                    | 42.22      | 21.11                | 21.11                                              | 8.4 | 0.28%                                                  | 333    | Сероводород (518)             | 0.00002128                                | 0.00000448                   |
|       |                                                |                  |                      |          |      |                                                        |      |                                                         |                                                       |            |                      |                                                    |     | 99.72%                                                 | 2754   | Углеводороды пр. C12-C19 (10) | 0.00760088                                | 0.00161028                   |

#### Перекачка дизтоплива

| Nº<br>N3A | Наименование<br>сточника вы-<br>деления | Тип насоса                         | Количе-<br>ство насо-<br>сов, шт. | Количе-<br>ство<br>ЗРА, шт. | Количе-<br>ство ФС,<br>шт. | Бремя ра- | Q - Удельное выделение загрязняющих веществ для насосов ДТ (таблица 8.1), кг/ч | потока через одно | ЗРА потерявших | Величина утечки<br>потока через<br>одно уплотнение<br>ФС,<br>днуі, мг/с | ДОЛЯ УПЛОТНЕНИИ | Массовое со-<br>держание С <sub>і</sub> ,<br>% масс | Код<br>3В |                                        | Максимально-ра-<br>зовые выбросы,<br>г/с | Валовые вы-<br>бросы, т/год |
|-----------|-----------------------------------------|------------------------------------|-----------------------------------|-----------------------------|----------------------------|-----------|--------------------------------------------------------------------------------|-------------------|----------------|-------------------------------------------------------------------------|-----------------|-----------------------------------------------------|-----------|----------------------------------------|------------------------------------------|-----------------------------|
| 1         | 2                                       | 3                                  | 4                                 | 5                           | 6                          | 7         | 8                                                                              | 9                 | 10             | 11                                                                      | 12              | 13                                                  | 14        | 15                                     | 16                                       | 17                          |
| 7824      | Насосы для пе-                          | центробежный с                     | 3                                 | 12                          | 24                         | 5040      | 0.04                                                                           | 1.83              | 0.07           | 0.08                                                                    | 0.02            | 0.28%                                               | 333       | Сероводород<br>(518)                   | 0.00013678                               | 0.0024829                   |
|           | рекачки диз-<br>топлива                 | одним торцевым<br>уплотнением вала |                                   |                             |                            |           |                                                                                |                   |                |                                                                         |                 | 99.72%                                              | 2754      | Углеводо-<br>роды пр. С12-<br>С19 (10) | 0.04873568                               | 0.88425988                  |

#### Металлообработка

#### Механическая обработка

Выбросы определены согласно, "Методических указаний по расчету выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год. Выбросы 3В, образующихся при механической обработке металлов, без применения СОЖ, от одной единицы оборудования, определяется по формулам:

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами:  $\mathbf{M}_{\text{сек}} = \mathbf{k}^* \mathbf{Q}$ , г/с

Валовый выброс для источников выделения, не обеспеченных местными отсосами: M<sub>год</sub>=3600\*k\*Q\*T/10<sup>6</sup>, т/год

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола. Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле:  $\mathbf{M}_{\mathsf{cek}} = \mathbf{Q}^* \mathbf{N}$ , г/с Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: М<sub>год</sub>=3600\*Q\*N\*T/10<sup>6</sup>, т/год

| № про-<br>извод-<br>ства | Наименование произ-<br>водства | Nº<br>N3A | Наименование работ              | Наименование работ   |                             |      | Мощность оборудования, кВт | работы | ент грави- | / Упопьные рыпо- | Код<br>3В | Наименование вещества    | Выбросы,<br>г/с | Выбросы,<br>т/год |
|--------------------------|--------------------------------|-----------|---------------------------------|----------------------|-----------------------------|------|----------------------------|--------|------------|------------------|-----------|--------------------------|-----------------|-------------------|
| 1                        | 2                              | 3         | 4                               | 5                    | 6                           | 7    | 8                          | 9      | 10         | 11               | 12        | 13                       | 14              | 15                |
| 37                       | Строительные работы            | 7802      | Механическая мастерская         | Универсальный шлифо- | с охлаждением               | 1.00 | 14                         | 1200   | -          | 0.00000104       | 2868      | Эмульсол (1435*)         | 0.00002044      | 0.00008806        |
|                          |                                |           |                                 | вальный станок       | эмульсолом                  |      | -                          | 1200   | 0.2        | 0.0036           | 2902      | Взвешенные частицы (116) | 0.001008        | 0.00435456        |
|                          |                                |           |                                 |                      |                             |      | -                          | 1200   | 0.2        | 0.0023           | 2930      | Пыль абразивная (1027*)  | 0.000644        | 0.00278208        |
| 37                       | Строительные работы            | 7803      | Механическая обработка металлов | Токарный станок      | с охлаждением<br>эмульсолом | 1.00 | 4                          | 500    | -          | 0.0000005        | 2868      | Эмульсол (1435*)         | 0.0000028       | 0.00000504        |
| 37                       | Строительные работы            | 7804      | Механическая обработка металлов | Сверлильный станок   | без охлаждения              | 1.00 | -                          | 600    | 0.2        | 0.0011           | 2902      | Взвешенные частицы (116) | 0.000308        | 0.00066528        |

Выбросы определены согласно, "Методических указаний по расчету выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов)" РНД 211.2.02.06-2004, МООС РК, Астана, 2005 год. Выбросы 3В, образующихся при механической обработке металлов, без применения СОЖ, от одной единицы оборудования, определяется по формулам:

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами: **М**<sub>сек</sub>=**k**\***Q**, г/с

Валовый выброс для источников выделения, не обеспеченных местными отсосами: M<sub>год</sub>=3600\*k\*Q\*T/10<sup>6</sup>, т/год

Характерной особенностью процессов механической обработки является образование выбросов в атмосферный воздух в виде твердых частиц (промышленной пыли), а в случае применения смазочно-охлаждающих жидкостей (СОЖ) - аэрозолей масла или эмульсола. Максимальный разовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: **М**<sub>сек</sub>=**Q\*N**, г/с

Валовый выброс СОЖ от одной единицы оборудования при обработке металлов рассчитывается по формуле: M<sub>год</sub>=3600\*Q\*N\*T/10<sup>6</sup>, т/год

Применение СОЖ снижает выделение пыли до минимальных значений, однако, в процессах шлифования изделий количество выделяющейся совместно с аэрозолями СОЖ металлоабразивной пыли остается значительным (до 10%).

| № про<br>извод<br>ства | I Наимонование произ- | №<br>N3A | Наименование работ              | Наименование работ        | Тип работы обору-<br>дования |      | Мощность оборудования, кВт | станка І, | Коэффици-<br>ент грави-<br>тационного<br>оседания k | Удельное выделение пыли Q (таб. 4) / Удельные выделения эмульсола (таб. 7), г/с | Код<br>3В | Наименование вещества    | Выбросы,<br>г/с | Выбросы,<br>т/год |
|------------------------|-----------------------|----------|---------------------------------|---------------------------|------------------------------|------|----------------------------|-----------|-----------------------------------------------------|---------------------------------------------------------------------------------|-----------|--------------------------|-----------------|-------------------|
| 1                      | 2                     | 3        | 4                               | 5                         | 6                            | 7    | 8                          | 9         | 10                                                  | 11                                                                              | 12        | 13                       | 14              | 15                |
| 37                     | Строительные работы   | 7805     | Механическая обработка металлов | Заточной станок, d=250 мм | без охлаждения               | 1.00 | -                          | 600       | 0.2                                                 | 0.016                                                                           | 2902      | Взвешенные частицы (116) | 0.00448         | 0.0096768         |
|                        |                       |          |                                 |                           |                              |      | -                          | 600       | 0.2                                                 | 0.011                                                                           | 2930      | Пыль абразивная (1027*)  | 0.00308         | 0.0066528         |

#### Деревообработка

Выбросы определены согласно, "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности" РНД 211.2.02.08-2004, МООС РК, Астана, 2005 год. Выбросы ЗВ от одной единицы оборудования, определяется по формулам:

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами:  $\mathbf{M}_{\mathtt{cex}} = \mathbf{k}^{+} \mathbf{Q}$ , г/с

Валовый выброс для источников выделения, не обеспеченных местными отсосами: Мпериод=3600\*k\*Q\*T/10<sup>6</sup>, т/период

| № ИЗА | Наименование работ | Наименование работ                        | Количество стан-<br>ков, ед. | Время ра-<br>боты станка<br>Т, ч/период | Коэффициент гравита-<br>ционного оседания k | Удельное выделение<br>пыли Q (таб. 4) /<br>Удельные выделения<br>эмульсола (таб. 7), г/с | Код ЗВ | Наименование вещества | Выбросы, г/с | Выбросы, т/пе-<br>риод |
|-------|--------------------|-------------------------------------------|------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|--------|-----------------------|--------------|------------------------|
| 1     | 2                  | 3                                         | 4                            | 5                                       | 6                                           | 7                                                                                        | 8      | 9                     | 10           | 11                     |
| 7806  | Деревообработка    | Универсальный деревообрабатывающий станок | 1                            | 240                                     | 0.2                                         | 1.31                                                                                     | 2936   | Пыль древесная        | 0.3668       | 0.3169152              |

#### Пыление при выполнении земляных работ и обращении со строительными инертными материалами

Расчет выполнен по **"Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. ) Процесс: выделение пыли при пересыпке (перевалке, перемещении) материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле:

Мсек=k₁·k₂·k₃·k₄·k₅·k<sub>7</sub>·k<sub>8</sub>·k₀·k⋅В'·G<sub>час</sub>·10<sup>6</sup>/3600 х (1-η), г/с Валовый выброс рассчитывается по формуле: Мгод=k₁·k₂·k₃·k₄·k₅·k<sub>7</sub>·k<sub>8</sub>·k₀·k⋅В'·G<sub>год</sub> х (1-η), т/год

Процесс: выделение пыли при статическом хранении материала рассчитывается по формулам.

Максимально разовый выброс рассчитывается по формуле:  $\mathbf{Mcek} = (\mathbf{k}_3 \cdot \mathbf{k}_4 \cdot \mathbf{k}_5 \cdot \mathbf{k}_6 \cdot \mathbf{k}_7 \cdot \mathbf{k} \cdot \mathbf{q'} \cdot \mathbf{S}), \ \mathbf{r/c}$ 

Валовый выброс рассчитывается по формуле:
Мгод=0.0864·k<sub>3</sub>·k<sub>4</sub>·k<sub>5</sub>·k<sub>6</sub>·k<sub>7</sub>·k·q'·S·(365-(T<sub>cn</sub>+T<sub>n</sub>)) x (1-n), т/год

| 1011 02  | -0.000-1 K3 K4 K5 K6 K/ K                            | ·q·S·(365-(1 <sub>сп</sub> +1 <sub>д</sub> )) x (1-η), т/год                |                                                            |                                                                          |                                                       |                                                        |                                          |                                                                                                                                     |                                                                               |     |                                                                |                                  | •                                                            |                                                                                                                                                            |
|----------|------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|----------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| №<br>ИЗА | Наименование ИЗА                                     | Наименование операци                                                        | Наименование материала                                     | Весовая доля<br>пылевой<br>фракции в ма-<br>териале (таб-<br>лица 3.1.1) | переходя-<br>щая в аэро-<br>золь (таб-<br>лица 3.1.1) | Коэффициен<br>ющий местн<br>условия (таб<br>с учетом п | ње метео-<br>пица. 3.1.2),<br>ункта 2.6. | Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3) | Коэффициент,<br>учитывающий<br>влажность ма-<br>териала (таб-<br>лица 3.1.4). | -   | Фактическая поверхность материала с учетом рельефа его сечения | Поверхность пыления в плане<br>S | Коэффициент, учитывающий крупность материала (таблица 3.1.5) | Поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1 |
|          | 2                                                    | 2                                                                           | 4                                                          | k <sub>1</sub>                                                           | k <sub>2</sub>                                        | k <sub>3 cp</sub>                                      | k <sub>3 макс</sub>                      | K <sub>4</sub>                                                                                                                      | k <sub>5</sub>                                                                | 1.0 | 5факт<br>12                                                    |                                  |                                                              | κ <sub>8</sub><br>15                                                                                                                                       |
| 1        | 2                                                    | 3                                                                           | 7                                                          | 5                                                                        | ь                                                     | ,                                                      | 8                                        | 9                                                                                                                                   | 10                                                                            | 11  |                                                                | 13                               | 14                                                           | 15                                                                                                                                                         |
| 7807     | Разгрузка, пересыпка и<br>хранение грунта            | Перемешение, разработка, обратная<br>засыпка и временное хранение<br>грунта | Грунт                                                      | 0.05                                                                     | 0.02                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.4                                                                           | 1.3 | 200                                                            | 154                              | 0.5                                                          | 1                                                                                                                                                          |
| 7808     | Разгрузка, пересыпка и<br>хранение щебня 40-<br>80мм | разгрузка, погрузка, хранение                                               | Щебень из осадочных пород крупно-<br>стью от 20 мм и более | 0.04                                                                     | 0.02                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.3 | 100                                                            | 77                               | 0.4                                                          | 1                                                                                                                                                          |
| 7809     | Разгрузка, пересыпка и<br>хранение щебня 20-<br>40мм | разгрузка, погрузка, хранение                                               | Щебень из осадочных пород крупно-<br>стью от 20 мм и более | 0.04                                                                     | 0.02                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.3 | 50                                                             | 38                               | 0.5                                                          | 1                                                                                                                                                          |
| 7810     | Разгрузка, пересыпка и<br>хранение щебня 10-<br>20мм | разгрузка, погрузка, хранение                                               | Щебень из осадочных пород крупно-<br>стью до 20мм          | 0.06                                                                     | 0.03                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.3 | 50                                                             | 38                               | 0.5                                                          | 1                                                                                                                                                          |
| 7811     | Разгрузка, пересыпка и<br>хранение щебня 5-<br>10мм  | разгрузка, погрузка, хранение                                               | Щебень из осадочных пород крупно-<br>стью до 20мм          | 0.06                                                                     | 0.03                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.3 | 50                                                             | 38                               | 0.6                                                          | 1                                                                                                                                                          |
| 7812     | Разгрузка, пересыпка и<br>хранение песка             | разгрузка, погрузка, хранение                                               | Песок                                                      | 0.05                                                                     | 0.03                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.3 | 50                                                             | 38                               | 1                                                            | 1                                                                                                                                                          |
|          | Разгрузка, пересыпка и<br>хранение ПГС               | разгрузка, перегрузка, хранение                                             | ПГС                                                        | 0.03                                                                     | 0.04                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.4 | 50                                                             | 36                               | 0.5                                                          | 1                                                                                                                                                          |
| 7814     | Засыпка типа F6                                      | разгрузка, перегрузка, хранение                                             | ПГС                                                        | 0.03                                                                     | 0.04                                                  | 1.2                                                    | 1.7                                      | 1                                                                                                                                   | 0.6                                                                           | 1.4 | 50                                                             | 36                               | 0.5                                                          | 1                                                                                                                                                          |

Продолжение таблицы

| №<br>N3A | Поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1; | Коэффициент, учитывающий высоту пересыпки (таблица 3.1.7) | Унос пыли с одного квадратного метра фактической поверхности, г/м2·с, в условиях когда k3=1, k5=1 (таблица 3.1.1) | Коэффициент<br>гравитацион-<br>ного осажде-<br>ния частиц | сыпки или<br>количество<br>перерабаты-<br>ваемого ма-<br>териала | количество перерабатываемого материала в течение года | во дней с<br>устойчи-<br>вым снеж-<br>ным по-<br>кровом | Количество<br>дней с осад-<br>ками в виде<br>дождя, рас-<br>считывается<br>по формуле:<br>Тд=2*Тд0/24,<br>дней | Эффектив-<br>ность средств<br>пылеподавле-<br>ния, в долях<br>единицы (таб-<br>лица 3.1.8) | Количество рабочих | Код ЗВ | Наименование ЗВ                 | Выбросы,<br>Мсек, г/с | Выбросы Мгод,<br>т/год |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|--------|---------------------------------|-----------------------|------------------------|
| 40       | K9                                                                                                                                                                                                               |                                                           | q                                                                                                                 | К                                                         | G <sub>час</sub>                                                 | G <sub>год</sub>                                      | Тсп                                                     | Тд                                                                                                             | η                                                                                          | 00                 |        | 20                              |                       | 1 00                   |
| 16       | 17                                                                                                                                                                                                               | 18                                                        | 19                                                                                                                | 20                                                        | 21                                                               | 22                                                    | 23                                                      | 24                                                                                                             | 25                                                                                         | 26                 | 27     | 28                              | 29                    | 30                     |
| 7807     | 1                                                                                                                                                                                                                | 1                                                         | 0.004                                                                                                             | 0.4                                                       | 42                                                               | 9814                                                  |                                                         |                                                                                                                | 0                                                                                          | 150                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 2.37365338            | 2.7124608              |
| 7808     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 8                                                                | 713                                                   |                                                         |                                                                                                                | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 0.45188262            | 0.67720254             |
| 7809     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 8                                                                | 723                                                   |                                                         |                                                                                                                | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 0.53629338            | 0.48246786             |
| 7810     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 8                                                                | 642                                                   |                                                         |                                                                                                                | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 1.17096               | 0.59879694             |
| 7811     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 8                                                                | 650                                                   |                                                         |                                                                                                                | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 1.405152              | 0.7220192              |
| 7812     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 6                                                                | 577                                                   |                                                         |                                                                                                                | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 1.48512               | 1.08065664             |
| 7813     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 8                                                                | 1044                                                  |                                                         |                                                                                                                | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 0.79016               | 0.61824784             |
| 7814     | 1                                                                                                                                                                                                                | 1                                                         | 0.002                                                                                                             | 0.4                                                       | 8                                                                | 992                                                   |                                                         | ·                                                                                                              | 0                                                                                          | 210                | 2908   | Пыль неорг., SiO2: 70-20% (494) | 0.79016               | 0.60574346             |

#### Пыление от движения техники по площадке

Расчет выполнен по **"Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. ) Процесс: выделение пыли при пересыпке (перевалке, перемещении) материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле: Mceκ=(k1·k2·k3·k4·k5·k7·k8·k9·k·B'·Gчac·10<sup>6</sup>)/3600 x (1-η), г/с

Валовый выброс рассчитывается по формуле:

Мгод= $k1\cdot k2\cdot k3\cdot k4\cdot k5\cdot k7\cdot k8\cdot k9\cdot B'\cdot G$ год x  $(1-\eta)$ , т/год

Процесс: выделение пыли при статическом хранении материала рассчитывается по формулам.

Максимально разовый выброс рассчитывается по формуле:

Mcek= $(k3\cdot k4\cdot k5\cdot k6\cdot k7\cdot k\cdot q'\cdot S)$ , r/c

Валовый выброс рассчитывается по формуле:

Мгод=0.0864·k3·k4·k5·k6·k7·q'·S·(365-(Тсп+Тд)) x (1-η), т/год

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.) Движение авто- или железнодорожного транспорта в пределах промплощадки обуславливает выделяется в результате взаимодействия колес с полотном дороги (только для автомобильного транспорта) и сдува её с поверхности материала находящегося в кузове (вагоне).

Процесс: выделение пыли в результате взаимодействия колес автотранспорта с полотном дороги:

Максимальный разовый выброс рассчитывается по формуле:  $M_{\text{сек}} = (C_1 * C_2 * C_3 * k_5 * k * C_7 * N * L * q_1)/3600$ , г/с

Валовый выброс рассчитывается по формуле:  $M_{rog} = 0.0864 * M_{cek} * (365 - (T_{CII} + T_{II}))$ , т/год

Процесс: выделение пыли в результате сдува с поверхности кузова автотранспорта:

Максимальный разовый выброс рассчитывается по формуле: М<sub>год</sub>=C<sub>4</sub>\*C<sub>5</sub>\*k<sub>5</sub>\*q,\*S\*n, г/с Валовый выброс рассчитывается по формуле: М<sub>год</sub>=0.0864\*М<sub>сек</sub>\*(365-(Т<sub>СП</sub>+Т<sub>п</sub>)), т/год

| №<br>N3A | Наименование ИЗА                | Коэффициент,<br>учитывающий<br>среднюю грузо-<br>подъемность<br>транспорта (таб-<br>лица 3.3.1) | Коэффициент,<br>учитывающий<br>среднюю ско-<br>рость передвиже-<br>ния транспорта<br>(таблица 3.3.2) | , , | Среднее расстояние одной ходки в пределах промплощадки, км | Число работающих<br>автомашин, ед. | тывающии состоя-<br>ние дорог (таблица<br>3 3 3) | Коэффициент, учитывающий профиль поверхности материала на платформе и определяемый как соотношение Sфакт/S (значение С4 колеблется в пределах 1.3 ÷ 1.6 в зависимости от крупности материала и степени заполнения платформы) | материала на<br>платформе, | Площадь открытой | учитывающий<br>скорость об-<br>дува (Vоб) ма- | влажность по-         |
|----------|---------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|-----------------------------------------------|-----------------------|
|          |                                 | C <sub>1</sub>                                                                                  | C <sub>2</sub>                                                                                       | N   | L                                                          | n                                  | C₃                                               | C <sub>4</sub>                                                                                                                                                                                                               | Sфакт                      | S                | C <sub>5</sub>                                | <b>k</b> <sub>5</sub> |
| 1        | 2                               | 3                                                                                               | 4                                                                                                    | 5   | 6                                                          | 7                                  | 8                                                | 9                                                                                                                                                                                                                            | 10                         | 11               | 12                                            | 13                    |
| 7815     | Пыление при перемещении техники | 1                                                                                               | 1                                                                                                    | 5   | 1                                                          | 3                                  | 1                                                | 1.3                                                                                                                                                                                                                          | 10                         | 7.7              | 1                                             | 0.8                   |

## Продолжение таблицы

| №<br>ИЗА | долю пыли, уно- | Пылевыделение в | Пылевыделение с единицы фактической поверхности материала на платформе, (таблица 3.1.1), г/м2хс |     | Количество дней с устойчивым снеж- | дождя, рассчиты- | Эффективность<br>средств пылеподав-<br>ления, в долях еди-<br>ницы |     | Код ЗВ | Наименование ЗВ                 | Выбросы,<br>Мсек, г/с | Выбросы Мгод,<br>т/год |
|----------|-----------------|-----------------|-------------------------------------------------------------------------------------------------|-----|------------------------------------|------------------|--------------------------------------------------------------------|-----|--------|---------------------------------|-----------------------|------------------------|
|          | C <sub>7</sub>  | $\mathbf{q}_1$  | q'                                                                                              | k   | Тсп                                | Тд               | η                                                                  |     |        |                                 |                       |                        |
| 14       | 15              | 16              | 17                                                                                              | 18  | 19                                 | 20               | 21                                                                 | 22  | 23     | 24                              | 25                    | 26                     |
| 7815     | 0.01            | 1450            | 0.002                                                                                           | 0.4 |                                    |                  | 0                                                                  | 210 | 2908   | Пыль неорг., SiO2: 70-20% (494) | 0.0762222             | 1.38297488             |

#### Сварочные работы

Выбросы от сварочного участка определены согласно, "Методики расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе сварки выполнен на единицу массы расходуемых материалов.

Максимальный разовый выброс 3B, выбрасываемых в атмосферу в процессе сварки, определяют по формуле:  $\mathbf{M}_{\text{сек}} = ((\mathbf{K}_{\text{m}}^{\mathbf{x}*}\mathbf{B}_{\text{час}})/3600)*(1-\eta)*\mathbf{k}$ , г/с

Валовое количество ЗВ, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле:  $\mathbf{M}_{\text{год}} = ((\mathbf{B}_{\text{год}} * \mathbf{K}_{\text{m}}^{\mathbf{x}})/10^6) * (1-\eta) * \mathbf{k}$ , т/год

Расчет выбросов загрязняющих веществ в воздушный бассейн в процессе резки выполнен на единицу времени работы оборудования.

Максимальный разовый выброс 3B, выбрасываемых в атмосферу в процессе газорезки, определяют по формуле:  $\mathbf{M}_{\mathsf{cek}} = (\mathbf{K}^{\mathsf{x}}_{\mathsf{m}}/3600)^*(1-\eta)^*\mathbf{k}$ , г/с

Валовое количество 3В, выбрасываемых в атмосферу, в процессе газорезки, определяют по формуле:  $\mathbf{M}_{\mathsf{rog}} = (\mathbf{G}^*\mathbf{K}_{\mathsf{m}}^{\mathsf{x}})/10^6)^*(1-\eta)^*\mathbf{k}$ , т/год

| № про-<br>извод-<br>ства | Наименование произ-<br>водства | Nº<br>N3A | Наименование работ    | Тип сварочного материала    | Время работы<br>G, ч/год | Расход<br>Вчас,<br>кг/час | Расход<br>Вгод,<br>кг/год | Толщина разрезаемого материала, мм | Коэффициент гравитационного осаждения частиц | Степень<br>очистки<br>воздуха<br>η, дол. | Удельный<br>показатель<br>выброса<br>Ктх, г/кг,<br>г/ч | Код<br>3В | Наименование вещества           | Выбросы,<br>г/с | Выбросы,<br>т/год |
|--------------------------|--------------------------------|-----------|-----------------------|-----------------------------|--------------------------|---------------------------|---------------------------|------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------------------|-----------|---------------------------------|-----------------|-------------------|
| 1                        | 2                              | 3         | 4                     | 5                           | 6                        | 7                         | 8                         | 9                                  | 10                                           | 11                                       | 12                                                     | 13        | 14                              | 15              | 16                |
| 37                       | Строительные работы            | 7816      | Газовая сварка стали  | Пропан-бутановая смесь      | 783                      | 2                         | 1565.17                   | -                                  | 1                                            | 0                                        | 15                                                     | 301       | Азота диоксид (4)               | 0.01166662      | 0.03286864        |
| 37                       | Строительные работы            | 7817      | Газовая сварка стали  | Авт. сварка под слоем флюса | 156                      | 1                         | 156.11437                 | -                                  | 1                                            | 0                                        | 0.09                                                   | 123       | Железа оксид (274)              | 0.000035        | 0.00001974        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 0.02                                                   | 143       | Марганец и его соединения (327) | 0.00000784      | 0.00000434        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 0.03                                                   | 342       | Фтористый водород (617)         | 0.00001162      | 0.00000658        |
| 37                       | Строительные работы            | 7818      | Газовая сварка стали  | Ацетилен-кислородное пламя  | 4                        | 0.02                      | 0.086876                  | -                                  | 1                                            | 0                                        | 22                                                     | 301       | Азота диоксид (4)               | 0.00017108      | 0.00000266        |
| 37                       | Строительные работы            | 7819      | Газовая резка металла | -                           | 720                      | -                         | -                         | 5                                  | 1                                            | 0                                        | 72.9                                                   | 123       | Железа оксид (274)              | 0.02835         | 0.0734832         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.1                                                    | 143       | Марганец и его соединения (327) | 0.00042784      | 0.0011088         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 39                                                     | 301       | Азота диоксид (4)               | 0.01516662      | 0.039312          |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 49.5                                                   | 337       | Углерод оксид (584)             | 0.01925         | 0.049896          |
|                          |                                |           | Газовая резка металла | -                           | 720                      | -                         | -                         | 10                                 | 1                                            | 0                                        | 129.1                                                  | 123       | Железа оксид (274)              | 0.05020554      | 0.1301328         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.9                                                    | 143       | Марганец и его соединения (327) | 0.00073892      | 0.0019152         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 64.1                                                   | 301       | Азота диоксид (4)               | 0.02492784      | 0.0646128         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 63.4                                                   | 337       | Углерод оксид (584)             | 0.02465554      | 0.0639072         |
|                          |                                |           | Газовая резка металла | -                           | 720                      | -                         | -                         | 20                                 | 1                                            | 0                                        | 197                                                    | 123       | Железа оксид (274)              | 0.07661108      | 0.198576          |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 3                                                      | 143       | Марганец и его соединения (327) | 0.00116662      | 0.003024          |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 53.2                                                   | 301       | Азота диоксид (4)               | 0.02068892      | 0.0536256         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 65                                                     | 337       | Углерод оксид (584)             | 0.02527784      | 0.06552           |
| 37                       | Строительные работы            | 7820      | Сварочные работы      | Электроды АНО-6             | 292                      | 1                         | 292                       | -                                  | 1                                            | 0                                        | 14.9                                                   | 123       | Железа оксид (274)              | 0.00579446      | 0.00608804        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.73                                                   | 143       | Марганец и его соединения (327) | 0.00067284      | 0.00070686        |
|                          |                                |           | Сварочные работы      | Электроды УОНИ 13/55        | 1013                     | 1                         | 1013                      | -                                  | 1                                            | 0                                        | 13.9                                                   | 123       | Железа оксид (274)              | 0.00540554      | 0.01971494        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.09                                                   | 143       | Марганец и его соединения (327) | 0.00042392      | 0.00154602        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 2.7                                                    | 301       | Азота диоксид (4)               | 0.00105         | 0.00382956        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 13.3                                                   | 337       | Углерод оксид (584)             | 0.00517216      | 0.01886388        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 0.93                                                   | 342       | Фтористый водород (617)         | 0.00036162      | 0.00131908        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1                                                      | 344       | Фториды неорганические (615)    | 0.00038892      | 0.00141834        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1                                                      | 2908      | Пыль неорг., SiO2: 70-20% (494) | 0.00038892      | 0.00141834        |
|                          |                                |           | Сварочные работы      | Электроды АНО-4             | 305                      | 1                         | 305                       | -                                  | 1                                            | 0                                        | 15.73                                                  | 123       | Железа оксид (274)              | 0.00611716      | 0.0067214         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.66                                                   | 143       | Марганец и его соединения (327) | 0.00064554      | 0.00070924        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 0.41                                                   | 2908      | Пыль неорг., SiO2: 70-20% (494) | 0.00015946      | 0.00017514        |
|                          |                                |           | Сварочные работы      | Электроды УОНИ 13/45        | 26                       | 1                         | 26                        | -                                  | 1                                            | 0                                        | 10.69                                                  | 123       | Железа оксид (274)              | 0.00415716      | 0.00038906        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 0.92                                                   | 143       | Марганец и его соединения (327) | 0.00035784      | 0.00003346        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.5                                                    | 301       | Азота диоксид (4)               | 0.00058338      | 0.0000546         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 13.3                                                   | 337       | Углерод оксид (584)             | 0.00517216      | 0.00048412        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 0.75                                                   | 342       | Фтористый водород (617)         | 0.00029162      | 0.0000273         |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 3.3                                                    | 344       | Фториды неорганические (615)    | 0.00128338      | 0.00012012        |
|                          |                                |           |                       |                             |                          |                           |                           |                                    | 1                                            | 0                                        | 1.4                                                    | 2908      | Пыль неорг., SiO2: 70-20% (494) | 0.00054446      | 0.00005096        |

| ИЗА      | 7821              | Сварка         | ПЭ труб   |          |              |                     |                      |               |                           |
|----------|-------------------|----------------|-----------|----------|--------------|---------------------|----------------------|---------------|---------------------------|
| Расчет в | выполнен          | по форму       | улам "Мет | одики ра | счета выбро  | сов вредных вещесті | в в атмосфе          | ру при рабо   | те с пластмассовыми мате- |
| риалами  | <b>1".</b> Прило: | жение №5       | к приказу | Министе  | ерства охран | ы окружающей средь  | ı РК от 12.06        | 5.2014 г. № 2 | 21-п.                     |
| Наимен   | ование            | Время<br>работ | Кол-во    | паек     | Загрязня     | нющие вещества      | Уд. по-<br>каз. г/ 1 |               | Выбросы 3В                |
|          |                   | ч/год          | в час     | в год    | Код          | Наименование        | пайка                | г/с           | т/год                     |
| Пайка п  | олиэти-           | 24             | 180       | 4320     | 337          | Углерода оксид      | 0.009                | 0.00063       | 0.000054                  |
| леі      | на                | 24             | 100       | 4320     | 827          | Винил хлористый     | 0.0039               | 0.00027       | 0.000024                  |

#### Покрасочные работы

Расчет выделений (выбросов) загрязняющих веществ (3B) в атмосферу выполнен согласно: РНД 211.2.02.05 - 2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", Астана,

Максимальный разовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле г/с:

 $M_{H,OKD}^a = m_M \times \delta_a \times (100 - f_D) / (10^4 \times 3.6) \times (1 - \eta) * Koc, (\Gamma/C)$ 

Валовый выброс нелетучей (сухой) части аэрозоля краски, образующегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле т/год:

 $M_{H.OKp}^a = m_{\phi} \times \delta_a \times (100 - f_p) / 10^4 \times (1 - \eta) * Koc,$ 

(т/год)

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (г/с):

при окраске:

 $M_{\text{okp}}^{x} = m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}} \times \delta_{\text{x}} / (10^{6} \times 3.6) \times (1 - \eta)$  $M_{cym}^x = m_M x f_p x \delta_p^m x \delta_x / (10^6 x 3.6) x (1 - \eta)$ 

при сушке:

Валовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по форму-

лам (т/год):

при окраске:

 $M_{okp}^{x} = m_{\phi} x f_{p} x \delta'_{p} x \delta_{x} / 10^{6} x (1 - \eta)$  $M_{cym}^x = m_{\phi} x f_p x \delta_p'' x \delta_x / 10^6 x (1 - \eta)$ 

при сушке:

Общий валовый или максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

 $\mathbf{M}^{x}_{oбщ} = \mathbf{M}^{x}_{okp} + \mathbf{M}^{x}_{cym}$ 

| № про-<br>извод-<br>ства | Наименование произ-<br>водства | №<br>ИЗА | Наименование<br>работ | Наименование<br>ЛКМ | Способ<br>окраски | Расход т <sub>м</sub> ,<br>кг/час | Расход<br>m <sub>ф</sub> ,<br>т/год | Доля лету-<br>чей части<br>fp, % мас.<br>(таблица 2) | золя ба %<br>мас. (таб- | Пары растворителя, при окраске δ'р % мас. (таблица 3) | Пары растворителя, при сушке δ"р % мас. (таблица 3) | Содержание компонента, бх % мас. (таблица 2) | η сте-<br>пень<br>очистки | Код<br>3В | Наименование<br>вещества | Выбросы,<br>г/с | Выбросы,<br>т/год |
|--------------------------|--------------------------------|----------|-----------------------|---------------------|-------------------|-----------------------------------|-------------------------------------|------------------------------------------------------|-------------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------------------------|-----------|--------------------------|-----------------|-------------------|
| 1                        | 2                              | 3        | 4                     | 5                   | 6                 | 7                                 | 8                                   | 9                                                    | 10                      | 11                                                    | 12                                                  | 13                                           | 14                        | 15        | 16                       | 17              | 18                |
| 37                       | Строительные работы            | 7822     | Покрасочные работы    | Растворитель Р-4    | кистью, валиком   | 1.5                               | 0.141                               | 100.0%                                               | 0%                      | 28%                                                   | 72%                                                 | 62.00%                                       | 0                         | 0621      | Толуол (558)             | 0.36166662      | 0.12258764        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 12.00%                                       | 0                         | 1210      | Бутилацетат (110)        | 0.07            | 0.02372664        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 26.00%                                       | 0                         | 1401      | Ацетон (470)             | 0.15166662      | 0.05140772        |
|                          |                                |          |                       | Шпатлевка ЭП-0010   | кистью, валиком   | 1.5                               | 0.236                               | 10.0%                                                | 0%                      | 28%                                                   | 72%                                                 | 55.07%                                       | 0                         | 0621      | Толуол (558)             | 0.03212412      | 0.01822338        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 44.93%                                       | 0                         | 1061      | Этиловый спирт (667)     | 0.02620912      | 0.014868          |
|                          |                                |          |                       | Грунтовка ГФ-021    | пневматический    | 5                                 | 0.176                               | 45.0%                                                | 30%                     | 25%                                                   | 75%                                                 | 100.00%                                      | 0                         | 0616      | Ксилол (322)             | 0.875           | 0.111069          |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     |                                              | 0                         | 2902      | Взвешенные вещества      | 0.32083338      | 0.01131256        |
|                          |                                |          |                       | Эмаль ЭП-51         | пневматический    | 5                                 | 0.4729                              | 76.5%                                                | 30%                     | 25%                                                   | 75%                                                 | 43.00%                                       | 0                         | 0621      | Толуол (558)             | 0.639625        | 0.21779296        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 4.00%                                        | 0                         | 1042      | Бутиловый спирт (102)    | 0.0595          | 0.02025982        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 33.00%                                       | 0                         |           | Бутилацетат (110)        | 0.490875        | 0.16714334        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 16.00%                                       | 0                         | 1240      | Этилацетат (674)         | 0.238           | 0.08103928        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 4.00%                                        | 0                         | 1401      | Ацетон (470)             | 0.0595          | 0.02025982        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     |                                              | 0                         |           | Взвешенные вещества      | 0.13708338      | 0.01296582        |
|                          |                                |          |                       | Эмаль ПФ-115        | пневматический    | 5                                 | 0.292                               | 45.0%                                                | 30%                     | 25%                                                   | 75%                                                 | 50.00%                                       | 0                         |           | Ксилол (322)             | 0.4375          | 0.0921312         |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 50.00%                                       | 0                         |           | Уайт-спирит (1294*)      | 0.4375          | 0.0921312         |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     |                                              | 0                         |           | Взвешенные вещества      | 0.32083338      | 0.01876742        |
|                          |                                |          |                       | Эмаль ЭП-140        | пневматический    | 5                                 | 0.7548                              | 53.5%                                                | 30%                     | 25%                                                   | 75%                                                 | 32.78%                                       | 0                         |           | Ксилол (322)             | 0.34100304      | 0.18533074        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 4.86%                                        | 0                         | 0621      | Толуол (558)             | 0.0505575       | 0.02747738        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 28.66%                                       | 0                         | 1119      | Этилцеллозольв (1497*)   | 0.29814358      | 0.16203712        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 33.70%                                       | 0                         |           | Ацетон (470)             | 0.35057358      | 0.19053216        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     |                                              | 0                         |           | Взвешенные вещества      | 0.27125         | 0.04095028        |
|                          |                                |          |                       | Эмаль ХВ-124        | пневматический    | 5                                 | 0.0032                              | 27.0%                                                | 30%                     | 25%                                                   | 75%                                                 | 62.00%                                       | 0                         |           | Толуол (558)             | 0.3255          | 0.00074522        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 12.00%                                       | 0                         |           | Бутилацетат (110)        | 0.063           | 0.0001442         |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 26.00%                                       | 0                         |           | Ацетон (470)             | 0.1365          | 0.00031248        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     |                                              | 0                         | 2902      | Взвешенные вещества      | 0.42583338      | 0.0002709         |
|                          |                                |          |                       | Эмаль ГФ-92         | пневматический    | 5                                 | 0.4791                              | 51.0%                                                | 30%                     | 25%                                                   | 75%                                                 | 90.00%                                       | 0                         |           | Ксилол (322)             | 0.8925          | 0.3078502         |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 2.00%                                        | 0                         |           | Бутиловый спирт (102)    | 0.01983338      | 0.0068411         |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 8.00%                                        | 0                         |           | уайт-спирит              | 0.07933338      | 0.0273644         |
|                          |                                | -        |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     |                                              | 0                         | 2902      | Взвешенные вещества      | 0.28583338      | 0.0273868         |
|                          |                                |          |                       | Лак БТ-99           | кистью, валиком   | 1.5                               | 0.2010                              | 56.00%                                               | 0%                      | 28%                                                   | 72%                                                 | 96.00%                                       | 0                         |           | Ксилол (322)             | 0.3136          | 0.15129492        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 4.00%                                        | 0                         |           | Уайт-спирит (1294*)      | 0.01306662      | 0.00630392        |
|                          |                                |          |                       | Лак КФ-965          | кистью, валиком   | 1.5                               | 0.1920                              | 65.00%                                               | 0%                      | 28%                                                   | 72%                                                 | 100.00%                                      | 0                         |           | Уайт-спирит (1294*)      | 0.37916662      | 0.1747116         |
|                          |                                |          |                       | Лак бакелитовый     | кистью, валиком   | 1.5                               | 0.1180                              | 57.00%                                               | 0%                      | 28%                                                   | 72%                                                 | 94.74%                                       | 0                         | 1061      | Этиловый спирт (667)     | 0.3150105       | 0.08922004        |
|                          |                                |          |                       |                     |                   |                                   |                                     |                                                      |                         |                                                       |                                                     | 5.26%                                        | 0                         | 1071      | Фенол                    | 0.0174895       | 0.00495348        |

## ДВС спецтехники

| ИЗА         | 7825                                 | Спецтехника        |              |                          |                          |
|-------------|--------------------------------------|--------------------|--------------|--------------------------|--------------------------|
| ИВ          | 1                                    |                    |              |                          |                          |
| Расчет выпо | олнен по методике расчета нормативов | выбросов от неорга | анизованных  | источников.              | Приложение № 8 к при-    |
| казу Минист | ра окружающей среды и водных ресурс  | сов Республики Каз | ахстан от 12 | июня 2014 го             | да № 221- <del>О</del> . |
|             |                                      | /Iсходные данные   |              |                          |                          |
|             |                                      |                    | Расход       | топлива                  | Время работы, всего      |
|             | Работа спецтехники на дизельном топ  | ливе               | кг/ч         | В <sub>год</sub> , т/год | ч/год                    |
|             |                                      |                    | 9.69         | 24.41                    | 2520                     |
|             |                                      | 3                  |              |                          |                          |
| Код веще-   | Llauranian anns OD                   | Уд. выбросы        |              | Выброс                   | ы 3В                     |
| ства        | Наименование 3В                      | г/кг, кг/т         | Макс         | :., г/с                  | Валовые, т/год           |
| 301         | Азота диоксид                        | 10                 | 0.0          | 269                      | 0.24                     |
| 328         | Сажа                                 | 15.5               | 0.04         | 417                      | 0.38                     |
| 330         | Серы диоксид                         | 20                 | 0.0          | 538                      | 0.49                     |
| 337         | Углерода оксид                       | 100                | 0.20         | 691                      | 2.44                     |
| 703         | Бенз(а)пирен                         | 0.00032            | 0.000        | 0009                     | 0.0000078                |
| 2754        | Углеводороды                         | 30                 | 0.0          | 807                      | 0.73                     |
|             | ИТОГО                                |                    | 0.4          | 722                      | 4.285                    |

## В.2.2 ЭКСПЛУАТАЦИЯ НАЗЕМНОГО КОМПЛЕКСА

## Вахтовый поселок Самал (003)

| № ИЗА                   | 0008                          | Наименование источн                                                                                              | ника загрязне                                                    | ния атмо-                                  | Выхлопная труба                     | 1                        |
|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|-------------------------------------|--------------------------|
| № ИВ                    | 001                           | Наименование источ                                                                                               | ника выделе                                                      | ния                                        | Генератор FG W                      | ilson P500P1             |
| <b>от стацио</b><br>Мак | онарных <mark>дизе</mark> л   | выполнены согласно, "Ме<br>іьных установок" РНД 2<br>брос і-го вещества стацио<br>М                              | 11.2.02.04-200                                                   | <b>4</b> , MOOC PK, Ас<br>ьной установки с | агрязняющих веще<br>тана 2005 год.  | ств в атмосферу          |
|                         |                               | вещества на единицу пол<br>*ч (таблица 1 или 2):                                                                 | езной работы                                                     | стационарной д                             | изельной установки                  | на режиме номи-          |
|                         |                               | ность стационарной дизе                                                                                          | ельной уста-                                                     | P <sub>9</sub>                             | 400                                 | кВт                      |
| Вал                     | овый выброс і-і               | го вещества за год стацио<br><b>М</b> го                                                                         | нарной дизел<br><sub>д</sub> = <b>q</b> i*В <sub>год</sub> /1000 |                                            | определяется по ф                   | ормуле:                  |
| ной дизел<br>лица 3 ил  | тьной установкі<br>іи 4):     | вещества, г/кг топлива, пр<br>и с учетом совокупности р                                                          | режимов, сост                                                    |                                            |                                     |                          |
| рется по                | отчетным дані                 | арной дизельной установко<br>ным об эксплуатации уст<br>пе: <b>В<sub>год</sub>=b₃*k*P₃*T*10</b> - <sup>6</sup> : |                                                                  | В <sub>год</sub>                           | 5.92                                | т/год                    |
| Расход то               |                               |                                                                                                                  |                                                                  | b                                          | 107.9                               | л/ч                      |
| Расход то               | лілива.                       |                                                                                                                  |                                                                  | b                                          | 93.87                               | кг/ч                     |
|                         | удельный расхо                |                                                                                                                  |                                                                  | b₃                                         | 235                                 | г/кВт.ч                  |
| Плотност                | ь дизельного то               | оплива:                                                                                                          |                                                                  | ρ                                          | 0.87                                | кг/л                     |
| Коэффиц                 | иент использов                | ания:                                                                                                            |                                                                  | k                                          | 1                                   |                          |
| Время ра                | боты:                         |                                                                                                                  |                                                                  | T                                          | 63.1                                | ч/год                    |
|                         |                               | Исходные да                                                                                                      | нные по исто                                                     | чнику выбросо                              | В                                   |                          |
| Количест                | BO:                           |                                                                                                                  |                                                                  | N                                          | 1                                   | ШТ                       |
| Частота в               | ращения вала:                 |                                                                                                                  |                                                                  | n                                          | 1500                                | об/мин                   |
| Группа СД               | ДУ:                           |                                                                                                                  |                                                                  |                                            | Б                                   |                          |
|                         |                               | Расчет расхода                                                                                                   | отработаннь                                                      | их газов и топл                            | ива                                 |                          |
|                         |                               | $G_{OF} = 8.72*10^{-6*}b_{9}*P_{9}$                                                                              |                                                                  | G <sub>or</sub>                            | 0.820                               | кг/с                     |
| Температ                | ура отходящих                 | газов:                                                                                                           |                                                                  | T <sub>or</sub>                            | 450                                 | °C                       |
| Плотност                | ь газов при 0°С:              |                                                                                                                  |                                                                  | γ0 <sub>or</sub>                           | 1.31                                | кг/м <sup>3</sup>        |
| Плотност                | ь газов при Т <sub>ог</sub> ( | K), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)                                                                   |                                                                  | Yor                                        | 0.4948                              | кг/м <sup>3</sup>        |
| Объемны                 |                               | отанных газов, <b>Q</b> ₀г <b>=G</b> ₀г/ <b>γ</b> ₀г                                                             |                                                                  | Q <sub>or</sub>                            | 1.6565                              | м <sup>3</sup> /с        |
|                         | Расчет                        | выбросов вредных веш                                                                                             | еств в атмос                                                     | феру всего от д                            | цизель-генератора:                  |                          |
| Код ЗВ                  | Наиг                          | менование ЗВ                                                                                                     | e <sub>i</sub> ,                                                 | q <sub>i</sub> ,                           | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                         |                               |                                                                                                                  | г/кВт.ч                                                          | г/кг топлива                               | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|                         | A:                            | зота оксиды                                                                                                      | 9.6                                                              | 40                                         | 1.0666667                           | 0.2367792                |
| 0301                    | Aa                            | ота диоксид                                                                                                      |                                                                  |                                            | 0.8533333                           | 0.1894234                |
| 0304                    | Д                             | Азота оксид                                                                                                      |                                                                  |                                            | 0.1386667                           | 0.0307813                |
| 0328                    |                               | Сажа                                                                                                             | 0.5                                                              | 2                                          | 0.055556                            | 0.0118390                |
| 0330                    |                               | ера диоксид                                                                                                      | 1.2                                                              | 5                                          | 0.1333333                           | 0.0295974                |
| 0337                    | Уг                            | лерод оксид                                                                                                      | 6.2                                                              | 26                                         | 0.6888889                           | 0.1539065                |
| 0703                    |                               | енз(а)пирен                                                                                                      | 0.000012                                                         | 0.000055                                   | 0.0000013                           | 0.0000003                |
| 1325                    |                               | ррмальдегид                                                                                                      | 0.12                                                             | 0.5                                        | 0.0133333                           | 0.0029597                |
| 2754                    | Углеводороді                  | ы предельные С12-С19                                                                                             | 2.9                                                              | 12                                         | 0.3222222                           | 0.0710338                |
|                         |                               | Всего по источнику:                                                                                              |                                                                  |                                            | 2.2053346                           | 0.4895414                |

| № ИЗА      | 0009                                                                                                                                                                                                                                                                                       | Наименование источника за-<br>грязнения атмосферы | Дымовая труба к                                       | отельной  |                       |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-----------|-----------------------|--|--|--|
| № ИВ       | 001-004                                                                                                                                                                                                                                                                                    | Наименование источника<br>выделения               | Котёл ASX 1750, при работе на топливном газе /<br>СУГ |           |                       |  |  |  |
| мосферу р  | Выбросы от котла определены согласно, "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 2 "Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час" |                                                   |                                                       |           |                       |  |  |  |
| -          |                                                                                                                                                                                                                                                                                            | Исходные                                          |                                                       |           |                       |  |  |  |
| Номинальн  | ая мощность і                                                                                                                                                                                                                                                                              | котла:                                            | $Q_{\scriptscriptstyle M}$                            | 3000      | кВт                   |  |  |  |
| Фактическа | я мощность ко                                                                                                                                                                                                                                                                              | отла:                                             | $Q_{\scriptscriptstyle{\Phi}}$                        | 2760      | кВт                   |  |  |  |
| Расход топ | лива котлоагр                                                                                                                                                                                                                                                                              | егатом:                                           | В                                                     | 280.46    | н.м <sup>3</sup> /час |  |  |  |
| Расход топ | лива при опре                                                                                                                                                                                                                                                                              | делении валовых выбросов:                         | B <sub>r</sub>                                        | 733297.67 | н.м³/год              |  |  |  |
| Время рабо | ты оборудова                                                                                                                                                                                                                                                                               | ания на топливном газе / СУГ:                     | Т                                                     | 2614.6    | ч/год                 |  |  |  |
| Тип исполь | зуемого топли                                                                                                                                                                                                                                                                              | іва:                                              |                                                       | Топлив    | ный газ               |  |  |  |
| Плотность  | газа:                                                                                                                                                                                                                                                                                      |                                                   | ρ                                                     | 0.92      | кг/н. м <sup>3</sup>  |  |  |  |

| M                      |                                         |                                                      |                                | Or .                                         | 7 0.0047                    |                                 |
|------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------|----------------------------------------------|-----------------------------|---------------------------------|
|                        | содержание се                           |                                                      | IX NODODIAGA:                  | S <sup>r</sup><br>Q, <sup>r</sup>            | 0.0017                      | Macc.%                          |
|                        |                                         | а при нормальні                                      |                                | -1                                           | 44.31<br>0.0948             | МДж/н. м <sup>3</sup><br>кг/ГДж |
|                        | о оксидов азота<br>ие сероводород       |                                                      | я на 1 ГДж тепла:              | Κ <sub>NO2</sub><br>[H <sub>2</sub> S]       | 0.0948                      | масс.%                          |
|                        |                                         | да в топливе.<br>здушной смеси:                      |                                | [П2S]<br>V <sub>г</sub>                      | 2.042                       | масс. %<br>м³/сек               |
|                        | грасход газово<br>ьзуемого топли        |                                                      |                                | V <sub>F</sub>                               |                             | уг<br>Уг                        |
| Плотность              | •                                       | ьа.                                                  |                                | ρ                                            | 2.20                        | кг/н. м <sup>3</sup>            |
|                        | содержание се                           | ры в газе.                                           |                                | S <sup>r</sup>                               | 0.0005                      | масс.%                          |
|                        |                                         | а при нормальні                                      | ых условиях:                   | Q <sub>i</sub> r                             | 104.06                      | МДж/н. м <sup>3</sup>           |
|                        |                                         |                                                      | я на 1 ГДж тепла:              | K <sub>NO2</sub>                             | 0.0948                      | кг/ГДж                          |
|                        | ие сероводород                          |                                                      | ''                             | [H <sub>2</sub> S]                           | 0.000000                    | масс.%                          |
| Объемный               | і расход газово                         | здушной смеси:                                       |                                | Vr                                           | 4.691                       | м <sup>3</sup> /сек             |
|                        |                                         |                                                      | жения выбросов                 |                                              |                             |                                 |
|                        | вота в результа                         | те применения т                                      | гехнических ре-                | β                                            | 0                           |                                 |
| шений:                 |                                         |                                                      | × ×                            | 1                                            | 0                           |                                 |
|                        |                                         | ваемых летуче                                        |                                | ŋ' <sub>SO2</sub>                            | 0                           |                                 |
|                        |                                         | пиваемых в золо                                      | луловителе.<br>плоты, выделяю- | ŋ" <sub>SO2</sub>                            | 1                           |                                 |
| щейся при              |                                         | грода на ед.те                                       | плоты, выделяю-                | K <sub>co</sub>                              | 0.25                        | кг/ГДж                          |
|                        |                                         | вие механическо                                      | рй неполноты сго-              |                                              | _                           |                                 |
| рания газа             |                                         | WC WCXAIWITCOK                                       | W Heliothiothi Cio-            | $q_4$                                        | 0                           | %                               |
| <u></u>                |                                         | оосов вредных                                        | веществ в атмос                | феру при работе н                            | отла на Топливно            | и газе                          |
|                        |                                         |                                                      |                                | 1 1 2 1 1 1 1 1 1                            | Максимально-                |                                 |
| Код ЗВ                 |                                         | ние загрязня-<br>цества (ЗВ)                         | Расчетна                       | я формула                                    | разовый вы-                 | Валовый вы-                     |
|                        | ющего вег                               | цества (эв)                                          |                                |                                              | брос, г/с                   | брос, т/год                     |
|                        | Азота оксидь                            |                                                      |                                | $Q_i^r * K_{NO2} * (1 - \beta)$              | 0.3272808                   | 3.0805309                       |
| 0301                   | Азота диокси                            | Д                                                    |                                | 0.8*Π <sub>NOx</sub>                         | 0.2618246                   | 2.4644247                       |
| 0304                   | Азота оксид                             |                                                      | Π <sub>NO</sub> = 0            | .13*Π <sub>NOx</sub>                         | 0.0425465                   | 0.4004690                       |
| 0330                   | Сера диоксид                            | д.                                                   |                                | *(1 - η')*(1 - η")                           | 0.0024930                   | 0.0234655                       |
|                        | -                                       |                                                      |                                | 0 <sup>-2</sup> * [H <sub>2</sub> S] * B     | 0.0010268                   | 0.0096643                       |
| 0337                   | Углерод окси                            | Д                                                    |                                | (*K <sub>CO</sub> *(1 - q <sub>4</sub> /100) | 0.8630824                   | 8.1237630                       |
|                        |                                         | Итого по ист                                         | гочнику:                       |                                              | 1.1709733                   | 11.0217865                      |
|                        | Pacuo                                   | T BLIGNOCOB BD                                       | ARULIY BAIIIACTE B             | этиосфору при ра                             | боте котла на СУГ           |                                 |
|                        | Facte                                   | т выоросов вр                                        | едных веществ в                | атмосферу при ра                             | Максимально-                |                                 |
| Код ЗВ                 |                                         | ние загрязня-                                        | Расчетна                       | я формула                                    | разовый вы-                 | Валовый вы-                     |
|                        | ющего вег                               | цества (ЗВ)                                          |                                | 4-1                                          | брос, г/с                   | брос, т/год                     |
|                        | Азота оксидь                            | ı                                                    | Π = 0.001*B*                   | Q <sup>r</sup> *K <sub>NO2</sub> *(1 - β)    | 0.7685273                   | 7.2337631                       |
| 0301                   | Азота диокси                            | Д                                                    |                                | 0.8*Π <sub>NOx</sub>                         | 0.6148218                   | 5.7870105                       |
| 0304                   | Азота оксид                             |                                                      |                                | .13*Π <sub>NOx</sub>                         | 0.0999085                   | 0.9403892                       |
| 0330                   | Сера диоксид                            | п                                                    |                                | *(1 - η')*(1 - η")                           | 0.0016056                   | 0.0151127                       |
|                        |                                         |                                                      |                                | 0 <sup>-2</sup> * [H <sub>2</sub> S] * B     | 0                           | 0                               |
| 0337                   | Углерод окси                            |                                                      |                                | *Kco*(1 - q₄/100)                            | 2.0267069                   | 19.0763795                      |
|                        |                                         | Итого по ист                                         | гочнику:                       |                                              | 2.7430428                   | 25.8188919                      |
|                        | 1                                       | Нашионова                                            | ние источника                  | Vomos ACV 171                                | 50, при работе на б         | 31122EL 11214 MAE               |
| № ИВ                   | 001-004                                 |                                                      | ние источника<br>еления        | Kollieji ASA 173                             | о, при раоопіе на с<br>ливе | изельном шоп-                   |
| Выбі                   | росы от котпа с                         |                                                      |                                | методик по расчет                            | гу выбросов вредн           | ых вешеств в ат-                |
|                        |                                         |                                                      |                                |                                              | <b>:п»</b> , Алматы 1996 г. |                                 |
| выбросов               | в вредных веш                           | еств при сжига                                       | нии топлива в ко               | тлах производите.                            | льностью до 30 т/ч          | ac"                             |
|                        |                                         |                                                      | Исходные                       |                                              |                             | 1                               |
|                        | ная мощность к                          |                                                      |                                | Q <sub>M</sub>                               | 3000                        | кВт                             |
| Фактическа             | ая мощность ко                          | тла:                                                 |                                | Q <sub>φ</sub>                               | 2760                        | кВт                             |
| Decree =               |                                         |                                                      |                                | В                                            | 61.14                       | Γ/C                             |
| Расход тог             | тлива на котлоа                         | ы регат:                                             |                                | D                                            | 220.11                      | кг/ч                            |
| Топпиро:               |                                         |                                                      |                                | B <sub>r</sub><br>S <sup>r</sup>             | 27.57                       | т/год<br>%                      |
| Топливо:<br>– дизтопл  | NBO.                                    |                                                      |                                | A <sup>r</sup>                               | 0.3<br>0.025                | %                               |
|                        | иво.<br>орания топлив:                  | a·                                                   |                                | Q <sub>i</sub> r                             | 42.75                       | 70<br>МДж/кг                    |
| Время раб              |                                         | <b>ч.</b>                                            |                                | T <sub>r</sub>                               | 125                         | ч/год                           |
|                        |                                         | а. образующихся                                      | я на 1 ГДж тепла:              | K <sub>NO2</sub>                             | 0.0948                      | кг/ГДж                          |
|                        |                                         |                                                      | жения выбросов                 | 1102                                         |                             |                                 |
|                        |                                         | те применения т                                      |                                | β                                            | 0                           |                                 |
| шений:                 | · •                                     |                                                      | ·                              | •                                            |                             |                                 |
|                        |                                         |                                                      | топлива в уносе:               | Х                                            | 0.01                        |                                 |
|                        |                                         | вливаемых в зо                                       |                                | η                                            | 0                           |                                 |
|                        |                                         | іваемых летуче                                       |                                | η'                                           | 0.02                        |                                 |
|                        |                                         | пиваемых в золо                                      |                                | η"                                           | 0                           |                                 |
|                        |                                         | ерода на ед.те                                       | плоты, выделяю-                | K <sub>co</sub>                              | 0.32                        | кг/ГДж                          |
| щейся при              |                                         |                                                      |                                |                                              | 1                           |                                 |
| LICHEDIA TEL           |                                         | NA MOVOLUME                                          | NĂ HODOSHOW:                   |                                              |                             |                                 |
| •                      | плоты вследств                          | вие механическо                                      | й неполноты сго-               | q <sub>4</sub>                               | 0                           | %                               |
| рания газа             | плоты вследств<br>::                    |                                                      | ой неполноты сго-              | q <sub>4</sub>                               |                             |                                 |
| рания газа<br>Объемный | плоты вследств<br>і:<br>і расход газово | вие механическо<br>здушной смеси:<br>ций характер то |                                |                                              | 0<br>1.6073<br>0.355        | %<br>м³/сек                     |

|        |                                               | еществ в атмосферу при работе ко           |                              | няющих веществ |  |
|--------|-----------------------------------------------|--------------------------------------------|------------------------------|----------------|--|
| Код ЗВ | Наименование загрязняю-<br>щего вещества (3B) | Расчетная формула                          | Максимально-<br>разовый, г/с | Валовый, т/год |  |
|        | Азота оксиды                                  | $\Pi = 0.001*B*Q_i^f*K_{NO2}*(1 - \beta)$  | 0.2477890                    | 0.1117248      |  |
| 0301   | Азота диоксид                                 | $\Pi_{NO2} = 0.8*\Pi_{NOx}$                | 0.1982312                    | 0.0893799      |  |
| 0304   | Азота оксид                                   | $\Pi_{NO} = 0.13 * \Pi_{NOx}$              | 0.0322126                    | 0.0145242      |  |
| 0328   | Сажа                                          | $\Pi = B^*A^{r*}x^*(1 - \eta)$             | 0.0152854                    | 0.0068920      |  |
| 0330   | Сера диоксид                                  | $\Pi = 0.02*B*S'*(1 - \eta')*(1 - \eta'')$ | 0.3595132                    | 0.1620998      |  |
| 0337   | Углерод оксид                                 | $\Pi = 0.001*B*Q_i'*K_{CO}*(1 - q_4/100)$  | 0.8364185                    | 0.3771302      |  |
|        | Всего по ист                                  | 1.4416609                                  | 0.6500261                    |                |  |
|        | Расчет выбросов вре                           | едных веществ в атмосферу от одн           | юго котлоагрегата            |                |  |
|        |                                               |                                            | Выбросы 3В                   |                |  |
| Код ЗВ | наименование загр                             | эязняющего вещества (ЗВ)                   | г/с                          | т/год          |  |
|        | Азота оксиды                                  |                                            | 0.7685273                    | 7.3454880      |  |
| 0301   | Азота диоксид                                 |                                            | 0.6148218                    | 5.8763904      |  |
| 0304   | Азота оксид                                   |                                            | 0.0999085                    | 0.9549134      |  |
| 0328   | Сажа                                          |                                            | 0.0152854                    | 0.0068920      |  |
| 0330   | Сера диоксид                                  |                                            | 0.3595132                    | 0.1952296      |  |
| 0337   | Углерод оксид                                 |                                            | 2.0267069                    | 19.4535097     |  |
|        | Всего по ист                                  | очнику:                                    | 3.1162358                    | 26.4869351     |  |
|        | Занормированные в про                         | ректе нормативов ПДВ выбросы ЗЕ            | 3 от источника №00           | 09             |  |
| Код ЗВ |                                               | язняющего вещества (ЗВ)                    |                              | сы 3В          |  |
| код зв | паименование загр                             | эязняющего вещества (зв)                   | г/с                          | т/год          |  |
| 0301   | Азота диоксид                                 |                                            | 1.8444654                    | 23.5055616     |  |
| 0304   | Азота оксид                                   |                                            | 0.2997255                    | 3.8196536      |  |
| 0328   | Сажа                                          | ·                                          | 0.0458562                    | 0.0275680      |  |
| 0330   | Сера диоксид                                  |                                            | 1.0785396                    | 0.7809184      |  |
| 0337   | Углерод оксид                                 |                                            | 6.0801207                    | 77.8140388     |  |
|        | Всего по ист                                  | очнику:                                    | 9.3487074                    | 105.9477404    |  |

| № ИЗА                       | 0044 -<br>0045 | Наименование ис     | точника загрязнения                        | Дымов            | ая труба                     |                     |
|-----------------------------|----------------|---------------------|--------------------------------------------|------------------|------------------------------|---------------------|
| №ИВ                         | 001            | Наименование ис     | точника выделения                          | Теплоп           | ушка ТЕ 40                   |                     |
|                             |                |                     | но, <b>"Сборника методик п</b>             |                  |                              |                     |
| мосферу р                   | азличными      | производствами",    | МЭБ РК РНПЦЭЭАиЭ «Ка                       | азЭкоэкс         | <b>п»</b> , Алматы 1996 г. I | Раздел 2 "Расчет    |
| выбросов                    | вредных вец    | цеств при сжигани   | и топлива в котлах прои:                   | зводител         | ьностью до 30 т/ча           | ac"                 |
|                             |                |                     | Исходные данные:                           |                  |                              |                     |
| Номинальна                  | ая мощность    | котла:              |                                            | $Q_{M}$          | 46.8                         | кВт                 |
| Фактическая мощность котла: |                |                     |                                            |                  | 43.1                         | кВт                 |
|                             |                |                     | В                                          | 1.64             | кг/ч                         |                     |
| Расход топл                 | тива на 1 котл | поагрегат:          | В                                          | 0.456            | г/с                          |                     |
| ·                           |                |                     |                                            | Br               | 0.1181                       | т/год               |
| Топливо:                    |                |                     |                                            | Sr               | 0.3                          | %                   |
| – дизтопли                  | BO:            |                     |                                            | Α <sup>r</sup>   | 0.025                        | %                   |
| Теплота сго                 | рания топли    | за:                 |                                            | Q <sub>i</sub> r | 42.75                        | МДж/кг              |
| Время рабо                  |                |                     |                                            | T <sub>r</sub>   | 72.0                         | ч/год               |
| Количество                  | оксидов азот   | а, образующихся на  | 1 ГДж тепла:                               | K <sub>NO2</sub> | 0.07                         | кг/ГДж              |
|                             |                |                     | ия выбросов оксидов                        |                  | 0                            | .,                  |
|                             |                | енения технических  | •                                          | β                | 0                            |                     |
| Коэффицие                   | нт, учитываю   | щий долю золы топ   | пива в уносе:                              | Х                | 0.01                         |                     |
| Доля тверді                 | ых частиц, ул  | авливаемых в золоу  | ловителях:                                 | η                | 0                            |                     |
| Доля оксидо                 | ов серы, связ  | ываемых летучей зо  | лой:                                       | η'               | 0.02                         |                     |
| Доля оксидо                 | ов серы, улав  | вливаемых в золоуло | овителе:                                   | η"               | 0                            |                     |
| Количество                  | оксидов угле   | ерода на ед.теплоты | , выделяющейся при го-                     | 16               | 0.20                         | ·/□□···             |
| рении:                      |                |                     | •                                          | K <sub>co</sub>  | 0.32                         | кг/ГДж              |
| Потери тепл                 | тоты вследст   | вие механической не | еполноты сгорания газа:                    | $q_4$            | 0                            | %                   |
| Объемный                    | расход газово  | оздушной смеси:     | •                                          | V <sub>Γ</sub>   | 0.0120                       | м <sup>3</sup> /сек |
| Коэффицие                   | нт, учитываю   | щий характер топли  | ва:                                        | К                | 0.355                        |                     |
|                             |                | Расчет выбросов     | вредных веществ в атмо                     | осферу о         | т установки                  |                     |
|                             | Hamaria        |                     |                                            |                  | Максимально-                 | Валовый вы-         |
| Код ЗВ                      |                | зание загрязняю-    | Расчетная форму.                           | ла               | разовый вы-                  |                     |
|                             | щего в         | вещества (ЗВ)       |                                            |                  | брос, г/с                    | брос, т/год         |
|                             | Азо            | та оксиды           | $\Pi = 0.001*B*Q_i^r*K_{NO2}*($            | 1 - β)           | 0.0013634                    | 0.0003534           |
| 0301                        | Азо            | та диоксид          | $\Pi_{NO2} = 0.8*\Pi_{NOx}$                |                  | 0.0010907                    | 0.0002827           |
| 0304                        | Аз             | ота оксид           | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$             |                  | 0.0001772                    | 0.0000459           |
| 0328                        |                | Сажа                | $\Pi = B^*A^{r*}x^*(1 - \eta)$             |                  | 0.0001139                    | 0.0000295           |
| 0330                        | Cer            | ра диоксид          | $\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta')$ | 1 - η")          | 0.0026789                    | 0.0006943           |
| 0337                        | Угл            | ерод оксид          | $\Pi = 0.001*B*Q_i*K_{CO}*(1 -$            | q4/100)          | 0.0062326                    | 0.0016153           |
|                             |                | Всего по источ      |                                            |                  | 0.0102933                    | 0.0026677           |

| № ИЗА                 | 0010                          |                  | енование источні<br>феры | ика загрязнения            | Дыхательный                                                                          | клапан                                                 |                                                                   |
|-----------------------|-------------------------------|------------------|--------------------------|----------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| №ИВ                   | 001                           |                  | енование источн          | ика выделения              | Резервуар с да                                                                       | изтопливом                                             |                                                                   |
| Расче                 | т выбросов в                  |                  |                          | асно: <b>РНД 211.2.0</b> 2 |                                                                                      |                                                        | ания по опреде-                                                   |
|                       |                               |                  |                          | сферу из резерву           |                                                                                      |                                                        |                                                                   |
|                       |                               |                  | іе данные:               |                            | Pac                                                                                  | четные форм                                            | улы:                                                              |
| Количество<br>ров     | резервуа-                     | N <sub>p</sub>   | 1                        | ШТ                         |                                                                                      |                                                        |                                                                   |
| Объем                 | резервуара<br>ых резерву-     | V <sub>pe3</sub> | 40                       | M <sup>3</sup>             | Годовые выбросы загрязняющих веществ в атмосферу, т/год:                             |                                                        |                                                                   |
| Тип резерву           | /apa                          |                  | Заглублен                | ный                        | G=(Y <sub>0</sub> ,*B <sub>0</sub> ,+Y                                               | <sub>թո∗</sub> B <sub>թո</sub> )*Kո <sup>мах</sup> *1( | 0 <sup>-6</sup> +G <sub>ХР</sub> *К <sub>нП</sub> *N <sub>р</sub> |
| Объем пере            |                               | Вобщ             | 110.51                   | т/год                      | - (-03 -03 -1                                                                        | ыл — ылур                                              | ж,,,,,                                                            |
| Объем пер             | екачки в те-<br>енне-зимнего  | Воз              | 55.25                    | т/год                      | Максимал                                                                             | ьно-разовый в                                          | выброс, г/с:                                                      |
|                       | екачки в те-<br>енне-летнего  | Ввл              | 55.25                    | т/год                      | M=C <sub>1</sub> *K <sub>p</sub> <sup>max</sup> *V <sub>ч</sub> <sup>max</sup> /3600 |                                                        |                                                                   |
|                       |                               |                  | Расч                     | етные показатели           | 1:                                                                                   |                                                        |                                                                   |
| Средние удгода (прило |                               | сы из р          | езервуара в осенн        | е-зимний период            | Уоз                                                                                  | 2.36                                                   | г/т                                                               |
|                       | ельные выбро<br>приложение 12 |                  | езервуара в весен        | не-летний пе-              | У <sub>вл</sub>                                                                      | 3.15                                                   | г/т                                                               |
|                       |                               |                  | кта в резервуаре (       | приложение 12)             | C <sub>1</sub>                                                                       | 3.92                                                   | г/м <sup>3</sup>                                                  |
|                       | эффициент (п                  |                  |                          | ,                          | K <sub>p</sub> <sup>Max</sup>                                                        | 0.8                                                    |                                                                   |
| Максималы             |                               | овозду           | шной смеси, вытес        | сняемой из ре-             | V <sub>q</sub> мах                                                                   | 4                                                      | м <sup>3</sup> /ч                                                 |
|                       | ров нефтепропримение 1        |                  | при хранении дизт        | гоплива в одном            | $G_XP$                                                                               | 0.081                                                  | т/год                                                             |
| Опытный ко            | эффициент (п                  | риложе           | ние 12)                  |                            | К <sub>нп</sub>                                                                      | 0.0029                                                 |                                                                   |
|                       | ,                             | Выбро            | сы паров нефтеп          | родуктов в атмос           | феру из резерву                                                                      | /ара:                                                  |                                                                   |
| Максималы             | ный выброс за                 | грязняю          | ощих веществ в ат        | мосферу                    | M                                                                                    | 0.0036046                                              | г/с                                                               |
| Годовые вы            | бросы загрязн                 | яющих            | веществ в атмосф         | реру                       | G                                                                                    | 0.0004785                                              | т/год                                                             |
|                       |                               |                  |                          | <u> </u>                   | Масс. сод-                                                                           | Количест                                               | во выбросов                                                       |
| Код ЗВ                |                               | H                | аименование ЗВ           |                            | ние С <sub>і</sub> , %<br>масс.                                                      | г/с                                                    | т/год                                                             |
| 0333                  | Сероводоро                    | Д                |                          |                            | 0.28%                                                                                | 0.0000101                                              | 0.0000013                                                         |
| 2754                  | Углеводород                   | цы пред          | ельные С12-С19           |                            | 99.72%                                                                               | 0.0035945                                              | 0.0004771                                                         |
|                       |                               | E                | Всего по источни         | ку:                        |                                                                                      | 0.0036046                                              | 0.0004784                                                         |

| № ИЗА                         | 0053                           | Наимо<br>мосф    | енование источник<br>еры | а загрязнения ат-                         | Топливозапра              | вщик                                                              |                                                                 |
|-------------------------------|--------------------------------|------------------|--------------------------|-------------------------------------------|---------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| № ИВ                          | 001                            | Наим             | енование источни         | ка выделения                              | Закачка и хран            | ение дизтог                                                       | плива                                                           |
|                               |                                | няющи            |                          | сно: РНД 211.2.02.09<br>феру из резервуар | <b>ов"</b> , Астана, 2005 |                                                                   | • • •                                                           |
| Количество<br>ров             | резервуа-                      | N <sub>p</sub>   | 1                        | ШТ                                        | Годовые выбр              |                                                                   |                                                                 |
| Объем<br>(одноцелевы<br>аров) | резервуара<br>ых резерву-      | V <sub>pe3</sub> | 10                       | M <sup>3</sup>                            |                           | гмосферу, т/го                                                    |                                                                 |
| Тип резерву                   | apa .                          |                  | Горизонтальный,          | наземный                                  | $G=(Y_{o3}*B_{o3}+Y_{BI}$ | <sub>1*</sub> В <sub>вл</sub> )*К <sub>р</sub> мах*10             | <sup>-6</sup> +G <sub>хР</sub> *К <sub>нП</sub> *N <sub>р</sub> |
| Объем пере                    | качки                          | Вобщ             | 125.46                   | т/год                                     |                           |                                                                   |                                                                 |
|                               | екачки в те-<br>нне-зимнего    | B <sub>o3</sub>  | 62.73                    | т/год                                     | Максималь                 | но-разовый в                                                      | ыброс, г/с:                                                     |
|                               | екачки в те-<br>енне-летнего   | В <sub>вл</sub>  | 62.73                    | т/год                                     | M=C                       | <sub>1</sub> *K <sub>p</sub> <sup>мах</sup> *Vս <sup>мах</sup> /3 | 600                                                             |
|                               |                                |                  | Расче-                   | тные показатели:                          |                           |                                                                   |                                                                 |
| Средние уде                   |                                | сы из р          | езервуара в осенне-      | зимний период                             | Уоз                       | 2.36                                                              | г/т                                                             |
| Средние уде                   |                                | сы из р          | езервуара в весенне      | е-летний период                           | У <sub>вл</sub>           | 3.15                                                              | г/т                                                             |
| Концентраці                   | ия паров неф                   | тепроду          | кта в резервуаре (пр     | оиложение 12)                             | C <sub>1</sub>            | 3.92                                                              | г/м <sup>3</sup>                                                |
| Опытный ко                    | эффициент (г                   | іриложе          | ние 8)                   |                                           | К <sub>р</sub> мах        | 1                                                                 |                                                                 |
|                               | ный объем пар<br>я его закачки | оовозду          | шной смеси, вытесн       | яемой из резерву-                         | V <sub>ч</sub> мах        | 4                                                                 | м³/ч                                                            |
|                               | ров нефтепро<br>иложение 13)   | одуктов          | при хранении дизто       | плива в одном ре-                         | $G_{XP}$                  | 0.27                                                              | т/год                                                           |
|                               | эффициент (г                   | риложе           | ние 12)                  |                                           | К <sub>НП</sub>           | 0.0029                                                            |                                                                 |
|                               |                                | Выбро            | сы паров нефтепр         | одуктов в атмосфе                         | ру из резервуар           | a:                                                                |                                                                 |
| Максимальн                    | ный выброс за                  | грязняк          | ощих веществ в атм       | осферу                                    | M                         | 0.0045057                                                         | г/с                                                             |

| Годовые вы  | ыбросы загрязі  | няющих             | веществ в атмосфе               | еру                  | G                                                                                            | 0.0011286                              | т/год                                                |  |
|-------------|-----------------|--------------------|---------------------------------|----------------------|----------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--|
| Код ЗВ      |                 |                    | Наименование ЗВ                 |                      | Масс. сод-ние                                                                                |                                        | во выбросов                                          |  |
|             | -               |                    |                                 |                      | С <sub>і</sub> , % масс.                                                                     | г/с                                    | т/год                                                |  |
| 0333        | Сероводоро      |                    | 0.10.0.10                       |                      | 0.28%                                                                                        | 0.0000126                              | 0.0000032                                            |  |
| 2754        | Углеводород     | цы пред            | ельные С12-С19                  |                      | 99.72%                                                                                       | 0.0044931                              | 0.0011255                                            |  |
| № ИВ        | 002             | Наиме              | нование источни                 | ка выделения         | Заправка резе                                                                                | рвуара дизт                            | опливом                                              |  |
| Расче       | ет выбросов в   |                    |                                 | сно: РНД 211.2.02.09 |                                                                                              |                                        |                                                      |  |
|             |                 |                    |                                 | феру из резервуар    |                                                                                              |                                        |                                                      |  |
|             |                 |                    | ые данные:                      |                      |                                                                                              | етные форму                            | /лы:                                                 |  |
| Количество  | резервуа-       | N                  | 1                               | ШТ                   |                                                                                              |                                        |                                                      |  |
| ров         |                 | $N_p$              | ı                               | ші                   | Forest to but for                                                                            | 2011 2055                              | NUMAN DOUGOED                                        |  |
| Объем       | резервуара      |                    |                                 |                      | <ul> <li>Годовые выбросы загрязняющих вещест<br/>в атмосферу, т/год:</li> </ul>              |                                        |                                                      |  |
| (одноцелев  | вых резерву-    | $V_{pe3}$          | 3                               | M <sup>3</sup>       | Ваі                                                                                          | мосферу, тл                            | νд.                                                  |  |
| аров)       |                 |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
| Тип резерв  | yapa            |                    | Наземнь                         | ΙЙ                   | G <sub>p</sub> =G <sub>зак</sub> +G <sub>пр.р.</sub> ;<br><sup>6</sup> ; G <sub>пр.р</sub> = | $G_{3ak} = (C_p^{o3*}Q_{o3}$           | +С <sub>р</sub> вл*Q <sub>вл</sub> )*10 <sup>-</sup> |  |
| Объем пер   | екачки          | $\mathbf{Q}_{oбu}$ | 144.201                         | м <sup>3</sup> /год  | <sup>6</sup> ; G <sub>пр.р</sub> =                                                           | 0,5*J*(Q <sub>03</sub> +Q <sub>E</sub> | <sub>зл</sub> )*10 <sup>-6</sup>                     |  |
| Объем пер   | екачки в те-    |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
| чение ос    | енне-зимнего    | $Q_{o3}$           | 72.101                          | м <sup>3</sup> /год  | Максималь                                                                                    | но-разовый ві                          | ыброс, г/с:                                          |  |
| периода     |                 |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
| Объем пер   | екачки в те-    |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
| чение вес   | енне-летнего    | $Q_{\rm BJ}$       | 72.101                          | м <sup>3</sup> /год  | M                                                                                            | $I_p = (C_p^{\text{мах}} V_{cn})/1$    | t                                                    |  |
| периода     |                 |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
|             |                 |                    | Расче                           | тные показатели:     |                                                                                              |                                        |                                                      |  |
|             |                 |                    | автоцистерны в ре               |                      | V <sub>cл</sub>                                                                              | 3                                      | м <sup>3</sup>                                       |  |
|             |                 |                    | ов нефтепродуктов               |                      | C <sub>p</sub> <sup>мах</sup>                                                                | 2.25                                   | г/м <sup>3</sup>                                     |  |
|             |                 |                    | и резервуаров (при              |                      | O <sub>p</sub>                                                                               | 2.20                                   | 17101                                                |  |
|             |                 |                    | ктов в выбросах пар             |                      |                                                                                              |                                        |                                                      |  |
|             | заполнении ре   | зервуар            | ов в осенне-зимний              | период (приложе-     | C <sub>p</sub> o <sub>3</sub>                                                                | 1.19                                   | г/м <sup>3</sup>                                     |  |
| ние 15, 17) |                 |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
|             |                 |                    | ктов в выбросах пар             |                      |                                                                                              |                                        |                                                      |  |
|             |                 | зервуар            | ов в весенне-летни              | й период (прило-     | $C_p^{B\Pi}$                                                                                 | 1.6                                    | г/м <sup>3</sup>                                     |  |
| жение 15, 1 |                 |                    |                                 |                      |                                                                                              |                                        |                                                      |  |
|             |                 |                    | объема (V <sub>сл</sub> ) нефте | продукта             | t                                                                                            | 2610                                   | сек                                                  |  |
| Удельные в  | зыбросы при п   | роливах            |                                 |                      | J                                                                                            | 50                                     | г/м <sup>3</sup>                                     |  |
|             |                 |                    |                                 | ефтепродуктов в а    |                                                                                              | I                                      |                                                      |  |
|             | ри закачке и хр |                    |                                 |                      | G <sub>зак</sub>                                                                             | 0.0002012                              | т/год                                                |  |
| Выбросы о   | т проливов на   | поверхн            | ость:                           |                      | $G_{np.p.}$                                                                                  | 0.0036050                              | т/год                                                |  |
|             |                 |                    |                                 |                      | T                                                                                            |                                        |                                                      |  |
|             |                 |                    | ЗВ при заполнении               |                      | M                                                                                            | 0.0025862                              | г/с                                                  |  |
| Годовые вы  | ыбросы паров і  | нефтепр            | одуктов от резерву              | аров при закачке     | G                                                                                            | 0.0038062                              | т/год                                                |  |
| Код ЗВ      |                 |                    | Наименование ЗВ                 |                      | Масс. сод-ние                                                                                |                                        | во выбросов                                          |  |
|             |                 |                    | c./imeriebarine OD              |                      | С <sub>і</sub> , % масс.                                                                     | г/с                                    | т/год                                                |  |
| 0333        | Сероводоро      |                    |                                 |                      | 0.28%                                                                                        | 0.0000072                              | 0.0000107                                            |  |
| 2754        | Углеводород     | цы пред            | ельные С12-С19                  |                      | 99.72%                                                                                       | 0.0025790                              | 0.0037955                                            |  |
|             | 1 -             |                    | Всего по источни                | κy:                  |                                                                                              | г/с                                    | т/год                                                |  |
| 0333        | Сероводоро      |                    |                                 |                      |                                                                                              | 0.0000198                              | 0.0000139                                            |  |
| 2754        | Углеводород     | цы пред            | ельные С12-С19                  |                      |                                                                                              | 0.0070721                              | 0.0049210                                            |  |
|             |                 |                    | Итого по источни                | (V:                  |                                                                                              | 0.0070919                              | 0.0049349                                            |  |

| № ИЗА               | 0124                   | Наименование источника загряз                                                                                                                            | нения атмо-            | Выхлопная труба             | 1               |
|---------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|-----------------|
| №ИВ                 | 001-002                | Наименование источника выдел                                                                                                                             | <b>тения</b>           | Резервный генер<br>TJ550 DW | amop Teksan     |
| от стацио           | нарных дизель          | ыполнены согласно, <mark>"Методики расче<br/>ных установок" РНД 211.2.02.04-200</mark><br>ос і-го вещества стационарной дизель                           | <b>4</b> , MOOC PK, Ad | стана 2005 год.             |                 |
| Widik               | oviivianibribivi bbiop | М <sub>сек</sub> =е <sub>і</sub> *Р <sub>3</sub> /3600                                                                                                   |                        | эпределлетол по фо          | piwyrio.        |
| где:                |                        | 331. 1 3                                                                                                                                                 | •                      |                             |                 |
|                     |                        | ещества на единицу полезной работы<br>(таблица 1 или 2):                                                                                                 | стационарной д         | цизельной установки         | на режиме номи- |
| Эксплуата<br>новки: | ционная мощно          | сть стационарной дизельной уста-                                                                                                                         | P <sub>9</sub>         | 440                         | кВт             |
| Вало                | овый выброс і-го       | вещества за год стационарной дизель                                                                                                                      | ной установкой         | і определяется по ф         | ормуле:         |
|                     |                        | $M_{rog} = q_i * B_{rog} / 1000,$                                                                                                                        | т/год                  |                             |                 |
| где:                |                        |                                                                                                                                                          |                        |                             |                 |
|                     | ьной установки (       | нщества, г/кг топлива, приходящегося н<br>с учетом совокупности режимов, соста                                                                           |                        |                             |                 |
| рется по            | отчетным даннь         | ной дизельной установкой за год (бе-<br>ым об эксплуатации установки) или<br>: <b>B<sub>год</sub>=b<sub>3</sub>*k*P<sub>3</sub>*T*10</b> <sup>-6</sup> : | В <sub>год</sub>       | 3.132                       | т/год           |
|                     |                        |                                                                                                                                                          |                        |                             |                 |

Расход топлива:

л/ч

кг/ч

100

87.0

| Средний удельный расход топлива:         b <sub>s</sub> 198         г/КВт.ч г/гл           Плотность джельного топлива:         р         0.87         кг/гл           Коэффициент использования:         T         36.0         ч/год           Бремя работы:         T         36.0         ч/год           Количество:         N         1         шт           Частота вращения вала:         n         1500         об/мин           Группа СДУ:         Расчет расхода отработанных газов и топлива         кг/с           Расход отработанных газов, G <sub>w</sub> = 8.72*10**b <sub>x</sub> *P <sub>3</sub> G <sub>w</sub> 0.760         кг/с           Температура отходящих газов:         Т <sub>w</sub> 450         °C           Плотность газов при Т <sub>w</sub> (K), V <sub>0</sub> ,//1+T <sub>w</sub> /273)         Y <sub>0</sub> 1.31         кг/м²           Потность газов при Т <sub>w</sub> (K), V <sub>0</sub> ,//1+T <sub>w</sub> /273)         Y <sub>x</sub> 0.49482         кг/м²           Объемный расход отработанных газов, Q <sub>w</sub> =6,N <sub>w</sub> Q <sub>w</sub> 1.5353         м²/с           Расчет выбросов вредных ваществ в этмосферу всего от дизального генератора:         максимально-разовий вы-брос           001/ 002         От одной (каждой) выхлопной турбы дизальног генератора:           код 38         Наименование ЗВ         e <sub>i</sub> ,         q <sub>i</sub> ,         M <sub>cen</sub> , r/c <td< th=""><th>Cnaguuš v</th><th></th><th></th><th>1 6</th><th>100</th><th>-/vD= ··</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cnaguuš v |                  |                  | 1 6              | 100                    | -/vD= ··                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|------------------|------------------|------------------------|-----------------------------------------------|
| Воефициент использования:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | •                |                  | b <sub>a</sub>   | 198                    | г/кВт.ч                                       |
| Время работы:   Т   36.0   ч/год                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |                  |                  |                        | КГ/Л                                          |
| Мскодные данные по источнику выбросов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |                  |                  |                        |                                               |
| Количество:   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | время рао |                  |                  |                  |                        | ч/год                                         |
| Потность газов при Тс, кр. при потоворов выстонных газов и топлива при потоворов выстонных газов и потоворов выстонных газов при потоворов выстонных газов и потоворов выстонных газов при потоворов выстонных газов потоворов выстонных газов потоворов выстонных газов и потоворов выс                                                                                                   | 16        |                  | ные по исто      |                  |                        | =                                             |
| Группа СДУ:         Расчет расхода отработанных газов и топлива         Б           Расход отработанных газов, Q <sub>sr</sub> = 8.72*10**b <sub>3</sub> ,P <sub>3</sub> G <sub>xr</sub> 0.760         кг/с           Температура отходящих газов:         T <sub>cr</sub> 450         °C           Плотность газов при °C:         УО <sub>зг</sub> 1.31         кг/м³           Плотность газов при °C:         УО <sub>зг</sub> 0.49482         кг/м³           Объемный расход отработанных газов, Q <sub>sr</sub> =G <sub>sr</sub> /Y <sub>gr</sub> O <sub>gr</sub> 1.5353         м²/с           Расчет выбросов вредных веществ в атмосферу всего от дизельного генератора:         Pacчет выбросов вредных веществ в атмосферу всего от дизельного генератора:           Код 3В         Наименование 3В         п'/кВт.ч         п/квт топлива         Валовый выберос           Код 3В         Наименование 3В         п'/квт.ч         п/квт топлива         Валовый выберос           6рос         г/кВт.ч         пива         0.9386667         0.050112           0301         Азота оксиды         9.6         40         1.173333333         0.06264           0328         Сажа         0.5         2         0.061111         0.00312           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Утг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                  |                  | ·                      | <u>— :                                   </u> |
| Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>46</sup> b <sub>3</sub> ·P <sub>3</sub> , G <sub>or</sub> 0.760 кг/с Температура отходящих газов: Т <sub>or</sub> 450 °C Плотность газов при 0°C: У <sub>0</sub> 1.31 кг/м <sup>3</sup> Объемный расход отработанных газов, Q <sub>or</sub> = G <sub>or</sub> Q <sub>or</sub> 1.31 кг/м <sup>3</sup> Объемный расход отработанных газов, Q <sub>or</sub> = G <sub>or</sub> Q <sub>or</sub> 1.5353 м <sup>3</sup> /с  Расчет выбросов вредных веществ в атмосферу всего от дизельного генератора:  101/1002 От одной (каждой) выхлопной трубы дизельного генератора:  10301 Азота диоксиды 9.6 40 1.173333333 0.06264 0301 Азота диоксид 0.9386667 0.050112 0304 Азота оксид 0.152533 0.0081432 0328 Сажа 0.5 2 0.0611111 0.003132 0330 Сера диоксид 1.2 5 0.1466667 0.00783 0337 Углерод оксид 6.2 26 0.7577778 0.040716 0703 Бензајлирен 0.000012 0.000055 0.0000015 8.613€-08 1325 Формальдегид 0.12 0.5 0.0146667 0.000783 2754 Углеводороды пр. С12-С19 2.9 12 0.3544444 0.018792  Всего от дизельного генератора:  10301 Азота оксиды 9.6 40 1.173333333 0.12528 0301 Азота оксиды 9.6 40 1.173333333 0.12528 0301 Азота оксиды 9.6 40 1.173333333 0.012528 0301 Азота оксиды 9.6 40 1.173333333 0.016264 0304 Азота оксиды 9.6 40 1.173333333 0.016264 0305 Азота оксид 0.1525333 0.0162664 0306 Азота оксид 0.1525333 0.0162864 0307 Азота оксид 0.1525333 0.0162864 0308 Сера диоксид 0.1525333 0.0162864 0309 Сера диоксид 0.055 0.000015 0.000002 03030 Сера диоксид 0.055 0.000015 0.000002 03031 Азота оксид 0.055 0.000015 0.000002 03032 Сера диоксид 0.2 26 0.7577778 0.084667 0.0162664 0330 Сера диоксид 0.2 26 0.7577778 0.0846667 0.016666                                                                                                                                                                                                                                                                                             |           |                  |                  | l n              |                        | ОО/МИН                                        |
| Расход отработанных газов, Св. = 8.72*10**b,*P.         Gyr.         0.760         кг/с           Температура отходящих газов:         Тог.         450         °C           Плотность газов при Тог. (К), Уф. (К), Уф                                                                                                                                                                                                                                  | труппа СД |                  |                  |                  | _                      |                                               |
| Температура отходящих газов:         Тог         450         °C           Плотность газов при 0°С:         У0 <sub>ог</sub> 1.31         кг/м³           Плотность газов при 1°С; (к), у0 <sub>ог</sub> /(1+Т <sub>ог</sub> /273)         Уог         0.49482         кг/м³           Объемный расход отработанных газов, Q₀,=G₀, Y₀r         Q₀r         1.5353         м³/с           001 / 002         От одной (каждой) выхлопной трубы дизельного генератора:           Код 3В         Наименование 3В         г/кг топ-лива         Максимально-разовый выборос           0301         Азота оксиды         9.6         40         1.173333333         0.06264           0304         Азота диоксид         0.5         2         0.061111         0.09312           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000015         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.00783           2754         Углеводороды пр. С12-С19         2.9         12         0.35444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _         |                  | отработаннь      |                  |                        | ,                                             |
| Плотность газов при 0°C: Плотность газов при 1°C: Объемный раскод отработанных газов, О <sub>м</sub> =G <sub>m</sub> /у <sub>с</sub> Объемный раскод отработанных газов, О <sub>м</sub> =G <sub>m</sub> /у <sub>с</sub> Объемный раскод отработанных газов, О <sub>м</sub> =G <sub>m</sub> /у <sub>с</sub> От одной (каждой) выхлопной трубы дизельного генератора  Код 3В  Наименование 3В  Валовый выборос  г/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кВТ.Ч П/кВТ.Ч П/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кТ топ-  Лива Потность газов при 1°C: П/кВТ.Ч П/кВТ.Ч П/кТ топ-  Лива Потность газов пись газов при 1°С: П/кВТ.Ч П/кВТ |           |                  |                  |                  |                        |                                               |
| Плотность газов при Т <sub>cr</sub> (К), YQ <sub>or</sub> /(1+T <sub>or</sub> /273)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                  |                  |                        | •                                             |
| Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /у <sub>or</sub> Q <sub>or</sub> 1.5353         м³/с           Расчет выбросое в вредных веществ в атмосферу всего от дизельного генератора           001 / 002         От одной (каждой) выхлопной трубы дизельного генератора           Код 3В         Наименование 3В         e <sub>i</sub> q <sub>i</sub> Максимально-разовый выборос           Код 3В         Наименование 3В         г/квт.ч         г/квт.чплива         Мсект г/с лива         Мгодт г/год           3030         Азота оксиды         9.6         40         1.173333333         0.06264           0301         Азота диоксид         0.9386667         0.050112           0328         Сажа         0.5         2         0.0611111         0.003132           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.00783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792 </td <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  |                  | · ·              |                        |                                               |
| Максимального генератораза                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                  |                  |                  |                        |                                               |
| Код 3В         Наименование 3В         е <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , максимально-разовый выборос         Валовый выборос           Код 3В         Азота оксиды         9.6         40         1.173333333         0.06264           0301         Азота оксиды         9.6         40         1.173333333         0.06264           0304         Азота оксид         0.9386667         0.050112           0328         Сажа         0.5         2         0.0611111         0.003132           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.000015         8.613E-08           1325         Формальдегид         2.9         12         0.3544444         0.018792           Код 3В         Наименование 3В         q <sub>i</sub> ,         Максимально-разовый выборос         въловый выборос         въловый выборос           10301         Азота оксиды         9.6         40         1.1733333333         0.12528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Объемный  |                  |                  | 01               |                        |                                               |
| Код 3В         Наименование 3В         е <sub>ii</sub> q <sub>ii</sub> Максимально-разовый выборос         Валовый выборос           Код 3В         Азота оксиды         9.6         40         1.1733333333         0.06264           0301         Азота диоксид         0.9386667         0.050112           0304         Азота оксид         0.1525333         0.0081432           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Код 3В         Наименование 3В         е <sub>i</sub> q <sub>i</sub> Максимальноразовый выброс         валовый выброс           1030         Азота оксиды         9.6         40         1.17333333         0.12528           0301         Азота оксиды         9.6         40         1.173333333         0.12528           0301<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  |                  |                  |                        | pa:                                           |
| Код 3В         Наименование 3В         е <sub>і</sub> , г/квт.ч г/кг топлива брос         разовый выброс         Валовый выброс           Код 3В         Азота оксиды         9.6         40         1.173333333         0.06264           0301         Азота диоксид         0.9386667         0.050112           0304         Азота оксид         0.1525333         0.0081432           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Код 3В         Наименование 3В         е <sub>і</sub> , q <sub>і</sub> , q <sub>і</sub> , q <sub>і</sub> Максимально-разовый выброс         брос           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Код 3В         Наименование 3В         г/квт.ч         г/квт.ч         Максимального разовый выброс         брос         брос </td <td>001 / 002</td> <td>От одной (каждой</td> <td>і) выхлопной</td> <td>трубы дизель</td> <td>ного генератора</td> <td>T</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 001 / 002 | От одной (каждой | і) выхлопной     | трубы дизель     | ного генератора        | T                                             |
| Валовый вы-   Пива   Месек ГС   Мигод, ТГОД                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Код ЗВ    | Наименование ЗВ  | e <sub>i</sub> , | q <sub>i</sub> , | разовый вы-            |                                               |
| 0301         Азота диоксид         0.9386667         0.050112           0304         Азота оксид         0.1525333         0.0081432           0328         Сажа         0.5         2         0.0611111         0.003132           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Код 38         Наименование 3B         Всего от дизельного генератора:         Максимальноразовый выброс         Валовый выброс         Берос           1         1         1         1         0.1525333         0.12528           2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td></td> <td>г/кВт.ч</td> <td>_</td> <td>М<sub>сек</sub>, г/с</td> <td>М<sub>год</sub>, т/год</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  | г/кВт.ч          | _                | М <sub>сек</sub> , г/с | М <sub>год</sub> , т/год                      |
| 0304         Азота оксид         0.1525333         0.0081432           0328         Сажа         0.5         2         0.0611111         0.003132           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Всего от дизельного генератора:           Всего от дизельного генератора:           Максимально-разовый выброс           брос         Мгод, т/год           Максимально-разовый выброс           брос         Мгод, т/год           Азота оксиды         9.6         40         1.173333333         0.12528           0301         Азота оксид         0.9386667         0.100224           0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5 <td></td> <td>Азота оксиды</td> <td>9.6</td> <td>40</td> <td>1.173333333</td> <td>0.06264</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Азота оксиды     | 9.6              | 40               | 1.173333333            | 0.06264                                       |
| 0328         Сажа         0.5         2         0.0611111         0.003132           0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.00055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Код 3В         Наименование 3В         е <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> Максимально- разовый выброс         брос           Код 3В         Наименование 3В         е <sub>i</sub> , q <sub>i</sub> Максимально- разовый выброс         брос           Код 3В         Наименование 3В         Максимально- разовый выброс         брос         Максимально- разовый выброс         брос           Код 3В         Азота оксиды         9.6         40         1.173333333         0.12528           0301         Азота оксид         9.6         40         1.173333333         0.0162864           0328         Сажа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0301      | Азота диоксид    |                  |                  | 0.9386667              | 0.050112                                      |
| 0330         Сера диоксид         1.2         5         0.1466667         0.00783           0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           Всего от дизельного генератора:           Максимально-разовый выброс           Бенз (а)пирен         1.2         0.3544444         0.018792           Валовый выброс           брос         Максимально-разовый выброс         6рос         Максимально-разовый выброс           6рос         Г/кВТ.ч         П/кв топлива         Максимально-разовый выброс         6рос           Максимально-разовый выброс         6рос         Максимально-разовый выброс         6рос         Максимально-разовый выброс           4         1.173333333         0.12528         0.3544444         0.01224           0301         Азота оксиды         9.6         40         1.173333333         0.12528           0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0304      | Азота оксид      |                  |                  | 0.1525333              | 0.0081432                                     |
| 0337         Углерод оксид         6.2         26         0.7577778         0.040716           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Всего от дизельного генератора:           Максимально-разовый выброс           Г/кВт.ч         Г/кг топлива         Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         1.173333333         0.12528           0301         Азота диоксид         0.9386667         0.100224           0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5         2         0.0611111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0146667         0.001566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0328      | Сажа             | 0.5              | 2                | 0.0611111              | 0.003132                                      |
| 0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Всего от дизельного генератора:           Максимальноразовый выброс           Г/кВт.ч         Максимальноразовый выброс           Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         1.173333333         0.12528           0301         Азота оксид         0.9386667         0.100224           0304         Азота оксид         0.5         2         0.061111         0.006264           0328         Сажа         0.5         2         0.061111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0046667         0.001566           2754         Углеводороды пр. С12-С19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0330      | Сера диоксид     | 1.2              | 5                | 0.1466667              | 0.00783                                       |
| 0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         8.613E-08           1325         Формальдегид         0.12         0.5         0.0146667         0.000783           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.018792           Код 3В         Наименование 3В         е <sub>і</sub> , q <sub>і</sub> , q <sub>і</sub> , максимально-разовый выброс         Максимально-разовый выброс           Код 3В         Азота оксиды         9.6         40         1.173333333         0.12528           0301         Азота оксид         0.9386667         0.100224           0304         Азота оксид         0.5         2         0.061111         0.006264           0328         Сажа         0.5         2         0.061111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0046667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0337      | Углерод оксид    | 6.2              | 26               | 0.7577778              | 0.040716                                      |
| Таза   Формальдегид   О.12   О.5   О.0146667   О.000783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0703      |                  | 0.000012         | 0.000055         | 0.0000015              | 8.613E-08                                     |
| Код 3В         Наименование 3В         е <sub>i</sub> ,         q <sub>i</sub> ,         Максимально-разовый выброс         Валовый выброс           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1325      |                  | 0.12             | 0.5              | 0.0146667              | 0.000783                                      |
| Код 3В         Наименование 3В         е <sub>i</sub> ,         q <sub>i</sub> ,         Максимально-разовый выборос         Валовый выборос           г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         1.173333333         0.12528           0301         Азота диоксид         0.9386667         0.100224           0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5         2         0.0611111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  | 2.9              | 12               |                        |                                               |
| Код 3ВНаименование 3Веі,qі,Максимально-разовый выборосВаловый выборосг/кВт.чг/квт.чг/кг топливаМсек, г/сМгод, т/годАзота оксиды9.6401.1733333330.125280301Азота диоксид0.93866670.1002240304Азота оксид0.15253330.01628640328Сажа0.520.06111110.0062640330Сера диоксид1.250.14666670.015660337Углерод оксид6.2260.75777780.0814320703Бенз(а)пирен0.0000120.0000550.00000150.00000021325Формальдегид0.120.50.01466670.0015662754Углеводороды пр. С12-С192.9120.354444440.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  | дизельного г     | енератора:       |                        |                                               |
| г/кВт.ч         лива         Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         1.1733333333         0.12528           0301         Азота диоксид         0.9386667         0.100224           0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5         2         0.0611111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Код ЗВ    |                  |                  | q <sub>i</sub> , | разовый вы-            |                                               |
| 0301         Азота диоксид         0.9386667         0.100224           0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5         2         0.0611111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                  |                  | лива             |                        |                                               |
| 0304         Азота оксид         0.1525333         0.0162864           0328         Сажа         0.5         2         0.0611111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  | 9.6              | 40               |                        |                                               |
| 0328         Сажа         0.5         2         0.0611111         0.006264           0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                  |                  |                  |                        |                                               |
| 0330         Сера диоксид         1.2         5         0.1466667         0.01566           0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.35444444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | Азота оксид      |                  |                  |                        |                                               |
| 0337         Углерод оксид         6.2         26         0.7577778         0.081432           0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. C12-C19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0328      | Сажа             | 0.5              |                  | 0.0611111              | 0.006264                                      |
| 0703         Бенз(а)пирен         0.000012         0.000055         0.0000015         0.0000002           1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0330      | Сера диоксид     | 1.2              |                  | 0.1466667              | 0.01566                                       |
| 1325         Формальдегид         0.12         0.5         0.0146667         0.001566           2754         Углеводороды пр. С12-С19         2.9         12         0.3544444         0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0337      | Углерод оксид    | 6.2              | 26               | 0.7577778              | 0.081432                                      |
| 2754 Углеводороды пр. С12-С19 2.9 12 0.3544444 0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0703      | Бенз(а)пирен     | 0.000012         | 0.000055         | 0.0000015              | 0.0000002                                     |
| 2754 Углеводороды пр. С12-С19 2.9 12 0.3544444 0.037584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1325      | Формальдегид     | 0.12             | 0.5              | 0.0146667              | 0.001566                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2754      | , ,,,,,,         | 2.9              | 12               |                        |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  | •                | •                |                        |                                               |

| № ИЗА            | 0130                                                                                                                                                                                                                                                                              | Наименование источника загрязне сферы                                                                             | ния атмо-        | Автомойка                             |                   |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-------------------|--|--|--|
| №ИВ              | 001                                                                                                                                                                                                                                                                               | Наименование источника выделе                                                                                     | ния              | Машина для мойк<br>fessional HDS 10/2 |                   |  |  |  |
| от стацио        | Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год. Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: |                                                                                                                   |                  |                                       |                   |  |  |  |
| где:             |                                                                                                                                                                                                                                                                                   | М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600                                                                         | , 1/0            |                                       |                   |  |  |  |
| еі - выбро       |                                                                                                                                                                                                                                                                                   | ещества на единицу полезной работы<br>(таблица 1 или 2):                                                          | стационарной ,   | дизельной установкі                   | и на режиме номи- |  |  |  |
| Эксплуата новки: | ционная мощно                                                                                                                                                                                                                                                                     | ость стационарной дизельной уста-                                                                                 | P <sub>9</sub>   | 83                                    | кВт               |  |  |  |
| Вал              | овый выброс і-го                                                                                                                                                                                                                                                                  | вещества за год стационарной дизель $\mathbf{M}_{\text{rog}} = \mathbf{q}_{i}^{*} \mathbf{B}_{\text{rog}} / 1000$ | •                | определяется по фо                    | ормуле:           |  |  |  |
| где:             |                                                                                                                                                                                                                                                                                   | ,                                                                                                                 |                  |                                       | _                 |  |  |  |
|                  |                                                                                                                                                                                                                                                                                   | щества, г/кг топлива, приходящегося на<br>етом совокупности режимов, составлян                                    |                  |                                       |                   |  |  |  |
| расход то        | плива стационар                                                                                                                                                                                                                                                                   | ной дизельной установкой за год (бе-                                                                              |                  |                                       |                   |  |  |  |
|                  |                                                                                                                                                                                                                                                                                   | ым об эксплуатации установки) или<br>: <b>B<sub>год</sub>=b<sub>3</sub>*k*P<sub>3</sub>*T*10</b> <sup>-6</sup> :  | В <sub>год</sub> | 0.15                                  | т/год             |  |  |  |
| Расход то        | ппира:                                                                                                                                                                                                                                                                            |                                                                                                                   | b                | 7.36                                  | л/ч               |  |  |  |
| т асход то       | плира.                                                                                                                                                                                                                                                                            |                                                                                                                   | b                | 6.4                                   | кг/ч              |  |  |  |

| Средний у                                    | дельный расход топлива:                                                                                       |                                                 | b <sub>a</sub>                                 | l 77 l                                                                                       | г/кВт.ч                                                                                                     |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                              | дизельного топлива:                                                                                           |                                                 | ρ                                              | 0.87                                                                                         | кг/л                                                                                                        |
|                                              | ент использования:                                                                                            |                                                 | k                                              | 1                                                                                            | •                                                                                                           |
| Время раб                                    | оты:                                                                                                          |                                                 | Т                                              | 24                                                                                           | ч/год                                                                                                       |
|                                              |                                                                                                               | анные по исто                                   | очнику выбросс                                 | В                                                                                            |                                                                                                             |
| Количеств                                    |                                                                                                               |                                                 | N                                              | 1                                                                                            | ШТ                                                                                                          |
| Частота вр                                   | ращения вала:                                                                                                 | n                                               | 1500                                           | об/мин                                                                                       |                                                                                                             |
| Группа СД                                    | У:                                                                                                            |                                                 | Б                                              |                                                                                              |                                                                                                             |
|                                              | Расчет расход                                                                                                 | а отработанн                                    | ых газов и топл                                | ива                                                                                          |                                                                                                             |
| Расход отр                                   | работанных газов, <b>G</b> <sub>or</sub> = <b>8.72*10<sup>-6*</sup>b</b> <sub>3</sub> * <b>P</b> <sub>3</sub> | -                                               | G <sub>or</sub>                                | 0.056                                                                                        | кг/с                                                                                                        |
|                                              | ра отходящих газов:                                                                                           |                                                 | Tor                                            | 450                                                                                          | °C                                                                                                          |
| Плотность                                    | газов при 0°С:                                                                                                |                                                 | γ0 <sub>or</sub>                               | 1.31                                                                                         | кг/м <sup>3</sup>                                                                                           |
| Плотность                                    | газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+Т <sub>ог</sub> /273)                              |                                                 | <b>У</b> ог                                    | 0.49482                                                                                      | кг/м <sup>3</sup>                                                                                           |
| Объемный                                     | і расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>ү</b> <sub>ог</sub>         | г                                               | Q <sub>or</sub>                                | 0.1126                                                                                       | м <sup>3</sup> /с                                                                                           |
|                                              | Расчет выбросов вредных ве                                                                                    |                                                 | сферу всего от                                 | дизель-генератора:                                                                           |                                                                                                             |
|                                              |                                                                                                               |                                                 |                                                |                                                                                              |                                                                                                             |
| Код ЗВ                                       | Наименование ЗВ                                                                                               | e <sub>i</sub> ,                                | q <sub>i</sub> ,                               | Максимально-ра-<br>зовый выброс                                                              | Валовый вы-<br>брос                                                                                         |
| Код ЗВ                                       | Наименование ЗВ                                                                                               | е <sub>і</sub> ,                                | q <sub>i</sub> ,                               | •                                                                                            |                                                                                                             |
| Код ЗВ                                       | <b>Наименование ЗВ</b> Азота оксиды                                                                           | ,                                               |                                                | зовый выброс                                                                                 | брос                                                                                                        |
| <b>Код 3В</b> 0301                           |                                                                                                               | г/кВт.ч                                         | г/кг топлива                                   | зовый выброс М <sub>сек</sub> , г/с                                                          | брос<br>М <sub>год</sub> , т/год                                                                            |
|                                              | Азота оксиды                                                                                                  | г/кВт.ч                                         | г/кг топлива                                   | зовый выброс  М <sub>сек</sub> , г/с  0.2213333                                              | <b>брос М</b> <sub>год</sub> , т/год 0.006144                                                               |
| 0301                                         | Азота оксиды<br>Азота диоксид                                                                                 | г/кВт.ч                                         | г/кг топлива                                   | <b>М</b> <sub>сек</sub> , г/с 0.2213333 0.1770667                                            | <b>брос М<sub>год</sub>, т/год</b> 0.006144 0.0049152                                                       |
| 0301<br>0304                                 | Азота оксиды<br>Азота диоксид<br>Азота оксид                                                                  | г/кВт.ч<br>9.6                                  | г/кг топлива<br>40<br>2<br>5                   | <b>М</b> <sub>сек</sub> , г/с 0.2213333 0.1770667 0.0287733                                  | <b>брос М</b> <sub>год</sub> , т/год  0.006144  0.0049152  0.0007987                                        |
| 0301<br>0304<br>0328                         | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа                                                          | г/кВт.ч<br>9.6                                  | г/кг топлива<br>40<br>2                        | М <sub>сек</sub> , г/с 0.2213333 0.1770667 0.0287733 0.0115278                               | <b>брос М</b> <sub>год</sub> , <b>т/год</b> 0.006144  0.0049152  0.0007987  0.0003072                       |
| 0301<br>0304<br>0328<br>0330                 | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид                                          | г/кВт.ч<br>9.6<br>0.5<br>1.2                    | г/кг топлива<br>40<br>2<br>5                   | М <sub>сек</sub> , г/с 0.2213333 0.1770667 0.0287733 0.0115278 0.0276667                     | <b>брос М<sub>год</sub>, т/год</b> 0.006144 0.0049152 0.0007987 0.0003072 0.000768                          |
| 0301<br>0304<br>0328<br>0330<br>0337         | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид<br>Углерод оксид                         | г/кВт.ч<br>9.6<br>0.5<br>1.2<br>6.2             | г/кг топлива<br>40<br>2<br>5<br>26             | М <sub>сек</sub> , г/с 0.2213333 0.1770667 0.0287733 0.0115278 0.0276667 0.1429444           | брос  М <sub>год</sub> , т/год  0.006144  0.0049152  0.0007987  0.0003072  0.000768  0.0039936              |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703 | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид<br>Углерод оксид<br>Бенз(а)пирен         | г/кВт.ч<br>9.6<br>0.5<br>1.2<br>6.2<br>0.000012 | г/кг топлива<br>40<br>2<br>5<br>26<br>0.000055 | М <sub>сек</sub> , г/с 0.2213333 0.1770667 0.0287733 0.0115278 0.0276667 0.1429444 0.0000003 | брос  М <sub>год</sub> , т/год  0.006144  0.0049152  0.0007987  0.0003072  0.000768  0.0039936  0.000000008 |

|               |                | Наименование ис                           | точника загрязнения ат-                                                                               | l                          |                              |                |  |
|---------------|----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|----------------|--|
| № ИЗА         | 0125-0127      | мосферы                                   | •                                                                                                     | Дымовая труба              |                              |                |  |
| №ИВ           | 001            | Наименование ис                           | точника выделения                                                                                     | Котёл.                     | Котел Sicak Su I             | Karsi Basincli |  |
| сферу разл    | ичными прои    | зводствами", МЭБ                          | , "Сборника методик по рас<br>РК РНПЦЭЭАиЭ «КазЭкоэк<br>лива в котлах производите<br>Исходные данные: | <b>сп»</b> , Алм           | аты 1996 г. <b>Разде</b>     |                |  |
| Количество н  | (ОТЛОВ:        |                                           |                                                                                                       | n                          | 1                            | ШТ             |  |
| Номинальна    | я мощность ко  | тла:                                      |                                                                                                       | $Q_{\scriptscriptstyle M}$ | 2442                         | кВт            |  |
| Фактическая   | мощность кот   | ла:                                       |                                                                                                       | Q <sub>d</sub>             | 2247                         | кВт            |  |
|               | •              |                                           |                                                                                                       |                            | 191.4                        | кг/ч           |  |
| Расход топл   | ива на 1 котло | агрегат:                                  |                                                                                                       | В                          | 53.2                         | г/с            |  |
|               |                | •                                         |                                                                                                       | Br                         | 1.9                          | т/год          |  |
| Топливо:      |                |                                           |                                                                                                       |                            | 0.3                          | %              |  |
| – дизтоплив   | 0:             |                                           |                                                                                                       | Ar                         | 0.025                        | %              |  |
| Теплота сгор  | ания топлива   |                                           |                                                                                                       | Q <sub>i</sub> r           | 42.75                        | МДж/кг         |  |
| Время работ   | Ы:             |                                           |                                                                                                       | Τ <sub>Γ</sub>             | 10                           | ч/год          |  |
| Количество о  | оксидов азота, | образующихся на 1                         | ГДж тепла:                                                                                            | K <sub>NO2</sub>           | 0.0944                       | кг/ГДж         |  |
|               |                | от степени снижения<br>хнических решений: | я выбросов оксидов азота в                                                                            | β                          | 0                            |                |  |
|               |                | ий долю золы топли                        |                                                                                                       | Х                          | 0.01                         |                |  |
|               |                | ии долю золы топли<br>зливаемых в золоул  |                                                                                                       | η                          | 0.01                         |                |  |
| • • • • • • • |                | заемых летучей зол                        |                                                                                                       | n'                         | 0.02                         |                |  |
|               |                | иваемых в золоулов                        |                                                                                                       | n"                         | 0                            |                |  |
|               |                |                                           | выделяющейся при горении:                                                                             | K <sub>CO</sub>            | 0.32                         | кг/ГДж         |  |
|               |                |                                           | олноты сгорания газа:                                                                                 | q <sub>4</sub>             | 0                            | %              |  |
| •             |                | душной смеси:                             |                                                                                                       | V <sub>r</sub>             | 1.398                        | м³/сек         |  |
|               |                | ий характер топлива                       | a:                                                                                                    | K                          | 0.355                        | ,              |  |
|               |                |                                           | ых веществ в атмосферу от                                                                             | котельн                    | ой установки                 | JI.            |  |
|               |                |                                           |                                                                                                       |                            | Выбросы загряз               | няющих веществ |  |
| Код ЗВ        |                | ние загрязняющего<br>чества (3B)          | Расчетная формула                                                                                     | a                          | Максимально-<br>разовый, г/с | Валовый, т/год |  |
|               | Азо            | та оксиды                                 | $\Pi = 0.001*B*Q/*K_{NO2}*(1)$                                                                        | - β)                       | 0.2145595                    | 0.0077241      |  |
| 0301          |                | та диоксид                                | $\Pi_{NO2} = 0.8 * \Pi_{NOx}$                                                                         |                            | 0.1716476                    | 0.0061793      |  |
| 0304          |                | ота оксид                                 | $\Pi_{NO} = 0.13 * \Pi_{NOx}$                                                                         |                            | 0.0278927                    | 0.0010041      |  |
| 0328          |                | Сажа                                      | $\Pi = B^*A^{r*}x^*(1 - \eta)$                                                                        |                            | 0.0132917                    | 0.0004785      |  |
| 0330          | Cer            | а диоксид                                 | $\Pi = 0.02*B*S'*(1 - \eta')*(1$                                                                      | - η")                      | 0.3126202                    | 0.0112543      |  |
| 0337          | Угле           | ерод оксид                                | $\Pi = 0.001*B*Qf*Kco*(1 - q)$                                                                        |                            | 0.7273205                    | 0.0261835      |  |
|               |                | Всего по исто                             | чнику:                                                                                                | •                          | 1.2527727                    | 0.0450997      |  |

| № ИЗА                                                                                      | 6007                                                                                                                     | Наименование источника загряз-<br>нения атмосферы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Перекачка дизельного топлива                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| № ИВ                                                                                       | 001                                                                                                                      | Наименование источника выде-<br>ления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Насосы для пер                                                                                                                                                                                                      | екачки дизтопли                                                                                                                                                                                                                                                                                    | ва                                                                                                                                                                              |  |  |
|                                                                                            |                                                                                                                          | атмосферу от средств перекачки выпо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
| ния по опре                                                                                | еделению вы                                                                                                              | бросов загрязняющих веществ в атг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | иосферу из резер                                                                                                                                                                                                    | вуаров", Астана, 2                                                                                                                                                                                                                                                                                 | 2005 г.                                                                                                                                                                         |  |  |
|                                                                                            | Maxim                                                                                                                    | um one-time emission is calculated by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e formula: М <sub>сек ј</sub> =(с                                                                                                                                                                                   | *n <sub>H</sub> *Q)/3.6, g/sec                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |
|                                                                                            | Вал                                                                                                                      | повый выброс рассчитывается по форг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | иуле: <b>М<sub>год ј</sub>=(c</b> j* <b>n</b> н* <b>(</b>                                                                                                                                                           | <b>Q*T)/10</b> ³, т/год                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |  |  |
|                                                                                            |                                                                                                                          | Исходные параг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
|                                                                                            | Харак                                                                                                                    | теристика насоса – центробежный с од                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | тним торцевым упл                                                                                                                                                                                                   | отнением вала.                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |
| Количество                                                                                 | Количество насосов: п <sub>н</sub> 2 шт.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
| Количество                                                                                 | запорно-регул                                                                                                            | ирующей арматуры:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n <sub>spa</sub>                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                  | ШТ.                                                                                                                                                                             |  |  |
|                                                                                            | соединений:                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n <sub>Φ</sub>                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                 | ШТ.                                                                                                                                                                             |  |  |
| Время работ                                                                                | ты насосов, ЗР                                                                                                           | РА и фланцевых соединений:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                   | 8784                                                                                                                                                                                                                                                                                               | ч/год                                                                                                                                                                           |  |  |
| Удельное вы                                                                                | ыделение загр                                                                                                            | язняющих веществ (таблица 8.1):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                               | кг/ч                                                                                                                                                                            |  |  |
| Массовое со                                                                                | одержание сер                                                                                                            | оводорода:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cj                                                                                                                                                                                                                  | 0.28%                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |  |  |
| Массовое со                                                                                | одержание угл                                                                                                            | еводородов предельные С12-С19:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ci                                                                                                                                                                                                                  | 99.72%                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                 |  |  |
| ı                                                                                          | Выбросы пар                                                                                                              | ов нефтепродуктов в атмосферу от                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | нефтеперекачив                                                                                                                                                                                                      | ающего оборудов                                                                                                                                                                                                                                                                                    | ания:                                                                                                                                                                           |  |  |
| Код ЗВ                                                                                     |                                                                                                                          | Наименование ЗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Максимально-<br>разовый вы-<br>брос, г/с<br>Валовый вы<br>брос, т/год                                                                                                                                               |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
| 0333                                                                                       | Сероводород                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | 0.0000622                                                                                                                                                                                                                                                                                          | 0.0019676                                                                                                                                                                       |  |  |
| 2754                                                                                       | Углеводороді                                                                                                             | ы предельные С12-С19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     | 0.0221600                                                                                                                                                                                                                                                                                          | 0.7007524                                                                                                                                                                       |  |  |
| 2104 711050A990A51 1190A51511110 012 010 0.0221000 0.1001024                               |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
|                                                                                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |
| № ИЗА                                                                                      | 6007                                                                                                                     | Наименование источника загряз-<br>нения атмосферы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Перека                                                                                                                                                                                                              | чка дизельного т                                                                                                                                                                                                                                                                                   | оплива                                                                                                                                                                          |  |  |
| №ИВ                                                                                        | 002                                                                                                                      | нения атмосферы<br>Наименование источника выде-<br>ления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Неплотност                                                                                                                                                                                                          | и ЗРА и фланцев <i>ь</i>                                                                                                                                                                                                                                                                           | ых соединений                                                                                                                                                                   |  |  |
| № ИВ Выде определены зованных и БОТКА", 200                                                | 002  вление вреднь  в соответстви  источников на  оо г.  Максимально р                                                   | нения атмосферы Наименование источника выде- ления  к веществ через неплотности запорни с "Методикой расчета выбросов в  фтегазового оборудования". РД 39  азовый выброс рассчитывается по фоовый выброс рассчитывается по форм                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Неплотности<br>по-регулирующей а<br>редных веществ<br>р.142-00, Минэнерг<br>рмуле: М <sub>і</sub> = Y <sub>нуіі</sub> /10<br>пуле: П <sub>і</sub> = (Т*Y <sub>нуіі</sub> )/1                                        | и ЗРА и фланцевы врматуры и фланц в окружающую ср тетики РФ ОАО "Н                                                                                                                                                                                                                                 | ых соединений евых соединений еду от неоргани-<br>ИПИГАЗПЕРЕРА-                                                                                                                 |  |  |
| № ИВ Выде определены зованных и БОТКА", 200                                                | 002  вление вреднь  в соответстви  источников на  оо г.  Максимально р                                                   | нения атмосферы Наименование источника выделения их веществ через неплотности запорни с "Методикой расчета выбросов в фтегазового оборудования". РД 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Неплотности по-регулирующей а редных веществ 0.142-00, Минэнерг рмуле: М <sub>і</sub> = Y <sub>нуіі</sub> /10 пуле: П <sub>і</sub> = (T*Y <sub>нуіі</sub> )/1 метры:                                                | и 3PA и фланцевы<br>арматуры и фланц<br>в окружающую ср<br>тетики РФ ОАО "Н<br>00 = g <sub>нуі</sub> *n <sub>i</sub> *x <sub>нуі</sub> *c <sub>i</sub> /10<br>06*3600 , т/год                                                                                                                      | ых соединений евых соединений еду от неоргани-<br>ИПИГАЗПЕРЕРА-                                                                                                                 |  |  |
| № ИВ Выде определены зованных и БОТКА", 200 М                                              | 002  еление вредны соответстви источников не 00 г. Максимально р Вал                                                     | нения атмосферы Наименование источника выде- ления  к веществ через неплотности запорни с "Методикой расчета выбросов в  фтегазового оборудования". РД 39  азовый выброс рассчитывается по фоовый выброс рассчитывается по форм                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Неплотности<br>по-регулирующей а<br>редных веществ<br>р.142-00, Минэнерг<br>рмуле: М <sub>і</sub> = Y <sub>нуіі</sub> /10<br>пуле: П <sub>і</sub> = (Т*Y <sub>нуіі</sub> )/1                                        | и ЗРА и фланцевы врматуры и фланц в окружающую ср тетики РФ ОАО "Н                                                                                                                                                                                                                                 | ых соединений евых соединений еду от неоргани-<br>ИПИГАЗПЕРЕРА-                                                                                                                 |  |  |
| № ИВ Выде определены зованных и БОТКА", 200 М Тип неподе движного                          | 002 еление вредны в соответстви источников не 00 г. Максимально р Вал                                                    | нения атмосферы Наименование источника выде- ления  и веществ через неплотности запорни с "Методикой расчета выбросов в  фтегазового оборудования". РД 39  азовый выброс рассчитывается по формовый выброс рассчитывается по формовы выброс рассчитывается по формовый выброс рассчит | Неплотности по-регулирующей а редных веществ 1.142-00, Минэнер  муле: М <sub>і</sub> = Y <sub>нуіі</sub> /10 пуле: П <sub>і</sub> = (Т*Y <sub>нуіі</sub> )/1 метры:  Кол-во единиц работающего оборудования,        | и ЗРА и фланцевы в окружающую сретики РФ ОАО "Н  00 = g <sub>нуі</sub> *n <sub>i</sub> *x <sub>нуі</sub> *c <sub>i</sub> /10  06*3600 , т/год  Величина утечки потока через одно уплотнение і-ого типа,                                                                                            | ых соединений евых соединений еду от неоргани-ИПИГАЗПЕРЕРА- 000, г/с  Доля уплотнений і-ого типа потерявших герметичность,                                                      |  |  |
| № ИВ Выде определены зованных и БОТКА", 200 № Тип неподе движного Запорно-ре арм           | 002  еление вредны соответстви источников не 00 г. Максимально р Вал                                                     | нения атмосферы Наименование источника выде- ления  их веществ через неплотности запорн и с "Методикой расчета выбросов в фтегазового оборудования". РД 33  азовый выброс рассчитывается по формовый выброс рассч | Неплотности по-регулирующей а редных веществ р.142-00, Минэнер омуле: М <sub>і</sub> = Y <sub>нуіі</sub> /10 пуле: П <sub>і</sub> = (Т*Y <sub>нуіі</sub> )/1 метры: Кол-во единиц работающего оборудования, пі, шт. | а ЗРА и фланцевы врматуры и фланцевы в окружающую сретики РФ ОАО "Н 00 = g <sub>нуі</sub> *n <sub>i</sub> *x <sub>нуі</sub> *c <sub>i</sub> /10 06*3600 , т/год Величина утечки потока через одно уплотнение і-ого типа, g <sub>нуі</sub> , мг/с                                                   | евых соединений евых соединений еду от неоргани- ИПИГАЗПЕРЕРА- ООО, г/с  Доля уплотнений і-ого типа потерявших герметичность, х <sub>нуі</sub>                                  |  |  |
| № ИВ Выде определены зованных и БОТКА", 200 № Тип неподе движного Запорно-ре арм Фланцевое | 002  еление вредны в соответстви источников на 200 г. Максимально р Вал вижного и посоединения в соединение в соединение | нения атмосферы Наименование источника выде- ления  их веществ через неплотности запорн и с "Методикой расчета выбросов в фтегазового оборудования". РД 33  азовый выброс рассчитывается по форм овый выброс рассчитывается по форм Исходные парав  Вид технологического потока                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Неплотности по-регулирующей а редных веществ 1.142-00, Минэнер  муле: П <sub>і</sub> = (Т*Ү <sub>нуіі</sub> )/1 метры:  Кол-во единиц работающего оборудования, пі, шт.  8 16                                       | а ЗРА и фланцевы врматуры и фланцевы в окружающую сретики РФ ОАО "Н 00 = g <sub>нуі</sub> *n <sub>i</sub> *x <sub>нуі</sub> *c <sub>i</sub> /10 06*3600 , т/год Величина утечки потока через одно уплотнение і-ого типа, g <sub>нуі</sub> , мг/с 1.83 0.08                                         | евых соединений евых соединений еду от неоргани- ИПИГАЗПЕРЕРА- 000, г/с  Доля уплотнений і-ого типа потерявших герметичность, х <sub>нуі</sub> 0.07  0.02                       |  |  |
| № ИВ Выде определены зованных и БОТКА", 200 № Тип неподе движного Запорно-ре арм Фланцевое | 002  еление вредны в соответстви источников на 200 г. Максимально р Вал вижного и посоединения в соединение в соединение | нения атмосферы Наименование источника выделения  их веществ через неплотности запорни с "Методикой расчета выбросов в вефтегазового оборудования". РД 38  азовый выброс рассчитывается по фомовый выброс рассчитывается по формовый выброс рассчитывается по тока  Вид технологического потока  тяжелые углеводороды  тяжелые углеводороды                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Неплотности по-регулирующей а редных веществ 1.142-00, Минэнер  муле: П <sub>і</sub> = (Т*Ү <sub>нуіі</sub> )/1 метры:  Кол-во единиц работающего оборудования, пі, шт.  8 16                                       | а ЗРА и фланцевы врматуры и фланцевы в окружающую сретики РФ ОАО "Н 00 = g <sub>нуі</sub> *n <sub>i</sub> *x <sub>нуі</sub> *c <sub>i</sub> /10 06*3600 , т/год Величина утечки потока через одно уплотнение і-ого типа, g <sub>нуі</sub> , мг/с 1.83 0.08                                         | евых соединений евых соединений еду от неоргани- ИПИГАЗПЕРЕРА- 000, г/с  Доля уплотнений і-ого типа потерявших герметичность, х <sub>нуі</sub> 0.07  0.02                       |  |  |
| № ИВ Выде определены зованных и БОТКА", 200 М Тип неподе движного Запорно-ре арм Фланцевое | 002  еление вредны в соответстви источников на 200 г. Максимально р Вал вижного и посоединения в соединение в соединение | нения атмосферы Наименование источника выделения  их веществ через неплотности запорни с "Методикой расчета выбросов в рефтегазового оборудования". РД 38 разовый выброс рассчитывается по формовый выброс рассчи | Неплотности по-регулирующей а редных веществ 1.142-00, Минэнер  муле: П <sub>і</sub> = (Т*Ү <sub>нуіі</sub> )/1 метры:  Кол-во единиц работающего оборудования, пі, шт.  8 16                                       | а ЗРА и фланцевы врматуры и фланцевы в окружающую сретики РФ ОАО "Н 00 = g <sub>нуі</sub> *n <sub>i</sub> *x <sub>нуі</sub> *c <sub>i</sub> /10 06*3600 , т/год Величина утечки потока через одно уплотнение і-ого типа, g <sub>нуі</sub> , мг/с  1.83  0.08 фланцевых соед Максимальноразовый вы- | евых соединений евых соединений еду от неоргани- ипигазперера- ооо, г/с  Доля уплотнений і-ого типа потерявших герметичность, х <sub>нуі</sub> о.07  о.02 динений:  Валовый вы- |  |  |

| Код ЗВ | Наименование ЗВ                 | Максимально-<br>разовый вы-<br>брос, г/с | Валовый вы-<br>брос, т/год |
|--------|---------------------------------|------------------------------------------|----------------------------|
| 0333   | Сероводород                     | 0.0000652                                | 0.0020606                  |
| 2754   | Углеводороды предельные С12-С19 | 0.0232075                                | 0.7338755                  |
|        | Всего по источнику:             | 0.0232727                                | 0.7359361                  |
| •      |                                 | •                                        | •                          |

| № ИЗА | 6010 | Наименование источника загрязнения атмосферы | Покрасочные работы       |
|-------|------|----------------------------------------------|--------------------------|
| №ИВ   | 001  | Наименование источника выделения             | Покраска и сушка изделий |

Расчет выделений (выбросов) загрязняющих веществ (ЗВ) в атмосферу выполнен согласно: РНД 211.2.02.05 -2004 "Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов", Астана, 2005 г. Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам (г/с):

окраске:  $M^{x}_{\text{окр}} = m_{\text{м}} \times f_{\text{p}} \times \delta_{\text{r}}^{'} \times \delta_{\text{x}}^{'} / (10^{6} \times 3.6) \times (1 - \eta)$  сушке:  $M^{x}_{\text{суш}} = m_{\text{м}} \times f_{\text{p}} \times \delta_{\text{r}}^{'} / (10^{6} \times 3.6) \times (1 - \eta)$  Валовый выброс индивидуальных летучих компонентов  $N^{x}$  метороске:  $N^{x}$  то формулам (т/год): при окраске: при сушке:

 $M_{\text{okp}}^{x} = m_{\phi} \times f_{p} \times \delta'_{p} \times \delta_{x} / 10^{6} \times (1 - \eta)$   $M_{\text{cym}}^{x} = m_{\phi} \times f_{p} \times \delta''_{p} \times \delta_{x} / 10^{6} \times (1 - \eta)$ при окраске: при сушке:

Максимальный разовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле:  $M^a_{\text{н.окр}} = m_M \times \delta_a \times (100 - f_p) / (10^4 \times 3.6) \times (1 - \eta)*Koc, (г/c)$ 

Валовый выброс нелетучей (сухой) части аэрозоля краски, образующегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле:

 $M_{H.OKp}^a = m_{\phi} \times \delta_a \times (100 - f_p) / 10^4 \times (1 - \eta)*Koc, (т/год)$ 

Общий валовый или максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле:

 $M_x^{OQM} = M_x^{OKD} + M_x^{CAM}$ 

|                                                                                               |                                    | исходные да     | нные:                   |                     |              |  |
|-----------------------------------------------------------------------------------------------|------------------------------------|-----------------|-------------------------|---------------------|--------------|--|
| Способ пок                                                                                    | расочных работ                     |                 |                         | кисть,              | валик        |  |
|                                                                                               | Окрасочный маг                     | териал          |                         | Эмаль ПФ-115        | Эмаль ЭП-525 |  |
| Ксилол                                                                                        |                                    |                 | 0616                    | 50                  | 30.44        |  |
| Бутилацета                                                                                    | ат                                 |                 | 1210                    | 0                   | 45.99        |  |
| Ацетон                                                                                        |                                    |                 | 1401                    | 0                   | 23.57        |  |
| Уайт-спири                                                                                    | Т                                  |                 | 2752                    | 50                  | 0            |  |
| Доля летучей части (растворителя) в ЛКМ, (%, мас.), (таблица 2)                               |                                    |                 | f <sub>p</sub>          | 45                  | 29           |  |
| Сухой оста                                                                                    | ток                                |                 | (100-f <sub>p</sub> )   | 55                  | 71           |  |
| Доля раств                                                                                    | орителя, выделяющаяся при окрасі   | ке и сушке      | Dp                      | 100                 | 100          |  |
| Доля краски, потерянной в виде аэрозоля, (% мас.), (таблица 3)                                |                                    |                 | $\delta_a$              | 0                   | 0            |  |
| Коэффици                                                                                      | ент оседания аэрозоля краски, (таб | K <sub>oc</sub> | 0.4                     | 0.4                 |              |  |
| Количество расходуемого материала, (кг/час)                                                   |                                    |                 | m <sub>м</sub>          | 2.0                 | 3.0          |  |
| Количество                                                                                    | р расходуемого материала, (т/год)  |                 | mφ                      | 0.7                 | 1.1          |  |
| Доля растворителя в ЛКМ, выделившегося при нанесении покрытия аэрозоля, (% мас.), (таблица 3) |                                    |                 | δ' <sub>p</sub>         | 28                  | 28           |  |
| Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (% мас.), (таблица 3)              |                                    | и сушке покры-  | δ" <sub>p</sub>         | 72                  | 72           |  |
| Степень очед.)                                                                                | истки воздуха газоочистного оборуд | дования (доли   | η                       | 0                   | 0            |  |
|                                                                                               | Расчет выбросов вредн              | ых веществ в ат | гмосферу при покра      | аске изделия:       |              |  |
| Код ЗВ                                                                                        | Наименование ЗВ                    | Максимально-    | -разовый выброс,<br>г/с | Валовый ві          | ыброс, т/г   |  |
|                                                                                               |                                    | Эмаль ПФ-115    | Эмаль ЭП-525            | Эмаль ПФ-115        | Эмаль ЭП-525 |  |
| 0616                                                                                          | Ксилол                             | 0.0350000       | 0.0205977               | 0.0461160           | 0.0271396    |  |
| 1210                                                                                          | Бутилацетат                        | 0               | 0.0311199               | 0.0000000           | 0.0410036    |  |
| 1401                                                                                          | Ацетон                             | 0               | 0.0159490               | 0.0000000           | 0.0210144    |  |
| 2752                                                                                          | Уайт-спирит                        | 0.0350000       | 0                       | 0.0461160           | 0            |  |
| 2902                                                                                          | Взвешенные вещества                | 0               | 0                       | 0                   | 0            |  |
|                                                                                               | Расчет выбросов вред               |                 |                         | іке изделия:        |              |  |
| Код ЗВ                                                                                        | Наименование ЗВ                    | Максимально-    | -разовый выброс,<br>г/с | Валовый выброс, т/г |              |  |
|                                                                                               |                                    | Эмаль ПФ-115    | Эмаль ЭП-525            | Эмаль ПФ-115        | Эмаль ЭП-525 |  |
| 0616                                                                                          | Ксилол                             | 0.0900000       | 0.0529656               | 0.1185840           | 0.0697875    |  |
| 1010                                                                                          | 1 =                                | _               | 0.000000                | _                   | 0.4054070    |  |

| Взвешенные вещества    |                 |                   |                |
|------------------------|-----------------|-------------------|----------------|
| Итоговый выброс вредны | х веществ в атм | осферу при покрас | очных работах: |

0

0.0900000

0.0800226

0.0410118

0

| Код ЗВ | Наименование ЗВ     | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос |
|--------|---------------------|-------------------------------------|---------------------|
|        |                     | s/c                                 | т/год               |
| 0616   | Ксилол              | 0.1985633                           | 0.2616271           |
| 1210   | Бутилацетат         | 0.1111425                           | 0.1464414           |
| 1401   | Ацетон              | 0.0569608                           | 0.0750515           |
| 2752   | Уайт-спирит         | 0.1250000                           | 0.1647000           |
|        | Всего по источнику: | 0.4916666                           | 0.6478200           |

| № ИЗА | 6015 | Наименование источника загрязнения атмосферы | Мастерская             |
|-------|------|----------------------------------------------|------------------------|
| № ИВ  | 001  | Наименование источника выделения             | Электроды марки ОЗС-12 |
|       |      |                                              |                        |

Выбросы от сварочного участка определены согласно, "Методики расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)" РНД 211.2.02.03-2004, МООС РК, Астана, 2005 год.

#### Исходные данные:

Расходный материал, используемый при сварке - электроды марки ОЗС-12

Расход выбросов загрязняющих веществ в воздушный бассейн в процессе сварки выполнен на единицу массы расходуемых материалов.

Максимальный разовый выброс 3В, выбрасываемых в атмосферу в процессе сварки, определяют по формуле:  $\mathbf{M}_{\text{сек}} = ((\mathbf{K}_{m}^{**}\mathbf{B}_{\text{час}})/3600)^{*}(\mathbf{1}-\mathbf{\eta})^{*}\mathbf{k}$ , г/с

Валовое количество 3В, выбрасываемых в атмосферу, в процессе сварки, определяют по формуле:  $\mathbf{M}_{\mathsf{rog}} = ((\mathbf{B}_{\mathsf{rog}} + \mathbf{K}_{\mathsf{m}}^*) / 10^6) * (1-\eta) * \mathbf{k}$ , т/год

| lide.                                                                                                      |      |     |        |
|------------------------------------------------------------------------------------------------------------|------|-----|--------|
| Время работы сварочного оборудования в год:                                                                | G    | 366 | ч/год  |
| Фактический максимальный расход применяемых сырья и материалов, с учетом дискретности работы оборудования: | Вчас | 2.0 | кг/час |
| Расход применяемого сырья и материалов:                                                                    | Вгод | 732 | кг/год |
| Коэффициент гравитационного осаждения частиц                                                               | k    | 0.4 |        |

Удельный показатель выброса ЗВ "х" на единицу массы расходуемых (приготовляемых) сырья и материалов:

1210

1401

2752

2902

Бутилацетат

Уайт-спирит

Ацетон

0.1054378 0.0540371

0

0

0.1185840

| 0123                                                                   | Железа оксид                                                                                                                                                                                                                                | K <sub>m</sub> <sup>x</sup> | 8.9                     | г/кг                              |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-----------------------------------|
| 0143                                                                   | Марганец и его соединения                                                                                                                                                                                                                   | K <sub>m</sub> <sup>x</sup> | 0.8                     | г/кг                              |
| 0203                                                                   | Хрома (VI) оксид                                                                                                                                                                                                                            | K <sub>m</sub> <sup>x</sup> | 0.5                     | г/кг                              |
| 0344                                                                   |                                                                                                                                                                                                                                             |                             |                         |                                   |
| Степень очистки воздуха в соответствующем аппарате, которым снабжается |                                                                                                                                                                                                                                             |                             | _                       |                                   |
| группа техн                                                            | ологических агрегатов:                                                                                                                                                                                                                      |                             |                         |                                   |
|                                                                        | Расчет выбросов вредных веществ в атмосфе                                                                                                                                                                                                   | py:                         | Mauri                   |                                   |
|                                                                        |                                                                                                                                                                                                                                             |                             | Макси-                  | Валовый                           |
| Код ЗВ                                                                 | Наименование ЗВ                                                                                                                                                                                                                             |                             | мально-ра-<br>зовый вы- | выброс                            |
| код ов                                                                 | Tianimenobanne 3D                                                                                                                                                                                                                           |                             | брос                    | выорос                            |
|                                                                        |                                                                                                                                                                                                                                             |                             | г/с                     | т/год                             |
| 0123                                                                   | Железа оксид                                                                                                                                                                                                                                |                             | 0.0019778               | 0.0026059                         |
| 0143                                                                   | Марганец и его соединения                                                                                                                                                                                                                   |                             | 0.0001778               | 0.0002342                         |
| 0203                                                                   | Хрома (VI) оксид                                                                                                                                                                                                                            |                             | 0.0001111               | 0.0001464                         |
| 0344                                                                   | Фториды неорганические плохо растворимые                                                                                                                                                                                                    |                             | 0.0004000               | 0.0005270                         |
|                                                                        |                                                                                                                                                                                                                                             |                             |                         |                                   |
| № ИЗА                                                                  | 6015 Наименование источника загрязнения атмосфе                                                                                                                                                                                             | ры                          | Масте                   | ерская                            |
| № ИВ                                                                   | 002 Наименование источника выделения осы определены согласно, "Методических указаний по расчету выде                                                                                                                                        |                             |                         | ый станок                         |
| оборудован<br>Максі                                                    | юсы 3В, образующихся при механической обработке металлов, без пр<br>ия, определяется по формулам:<br>имальный разовый выброс для источников выделения, не обеспеченных<br>вый выброс для источников выделения, не обеспеченных местными отс | ( местным                   | и отсосами: <b>N</b>    | <b>//<sub>сек</sub>=k*Q</b> , г/с |
|                                                                        | нт гравитационного оседания (см. п. 5.3.2): для пыли металлической:                                                                                                                                                                         | k                           | 0.2                     |                                   |
|                                                                        | оборудования:                                                                                                                                                                                                                               | n                           | 2                       | шт.                               |
|                                                                        | ыделение металлической пыли технологическим оборудованием (таб-                                                                                                                                                                             | Q                           | 0.0011                  | г/с                               |
|                                                                        | й годовой фонд времени работы одной единицы оборудования в год:                                                                                                                                                                             | Т                           | 366                     | час/год                           |
| ,                                                                      | Расчет выбросов вредных веществ в атмосфе                                                                                                                                                                                                   | py:                         |                         |                                   |
|                                                                        | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                     |                             | Макси-                  |                                   |
|                                                                        |                                                                                                                                                                                                                                             |                             | мально-ра-              | Валовый                           |
| Код ЗВ                                                                 | Наименование ЗВ                                                                                                                                                                                                                             |                             | зовый вы-               | выброс                            |
|                                                                        |                                                                                                                                                                                                                                             |                             | брос                    |                                   |
|                                                                        |                                                                                                                                                                                                                                             |                             | г/с                     | т/год                             |
| 2902                                                                   | Пыль металлическая (взвешенные вещества)                                                                                                                                                                                                    |                             | 0.0004400               | 0.0005797                         |
|                                                                        | Итого по источнику:                                                                                                                                                                                                                         |                             | г/с                     | т/год                             |
| 0123                                                                   | Железа оксид                                                                                                                                                                                                                                |                             | 0.0019778               | 0.0026059                         |
| 0143                                                                   | Марганец и его соединения                                                                                                                                                                                                                   |                             | 0.0001778               | 0.0002342                         |
| 0203                                                                   | Хрома (VI) оксид                                                                                                                                                                                                                            |                             | 0.0001111               | 0.0001464                         |
| 0344<br>2902                                                           | Фториды неорганические плохо растворимые                                                                                                                                                                                                    |                             | 0.0004000<br>0.0004400  | 0.0005270<br>0.0005797            |
| 2902                                                                   | Пыль металлическая (взвешенные вещества)                                                                                                                                                                                                    |                             | 0.0004400               | 0.0005797                         |
|                                                                        | Всего по источнику:                                                                                                                                                                                                                         |                             | 0.0031067               | 0.0040932                         |

## 3ИО ВП Самал (004)

| № ИЗА                                                                  | 0012                                                                               | Наименован атмосферы                                                             | ние источника загрязнения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Дымовая труба котельной  Котёл Vitoplex 100 RLS 100, при работе на топливном газе / СУГ |                                                                                                                                                |                                                                                        |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| №ИВ                                                                    | 001                                                                                |                                                                                  | ние источника выделения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                                                                                |                                                                                        |
|                                                                        |                                                                                    |                                                                                  | согласно, "Сборника методик і                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                                                                                                                                |                                                                                        |
|                                                                        |                                                                                    |                                                                                  | вами", МЭБ РК РНПЦЭЭАиЭ «К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                                                                                                | дел 2 "Расче                                                                           |
| выбросов                                                               | з вредных в                                                                        | еществ при с                                                                     | жигании топлива в котлах прои                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | изводительнос                                                                           | стью до 30 т/час"                                                                                                                              |                                                                                        |
| lorgues                                                                |                                                                                    |                                                                                  | Исходные данные:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         | 905                                                                                                                                            | D=                                                                                     |
|                                                                        | ная мощнос                                                                         |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>M</sub>                                                                          | 895<br>823                                                                                                                                     | кВт                                                                                    |
|                                                                        | ая мощності                                                                        |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>Φ</sub>                                                                          |                                                                                                                                                | кВт                                                                                    |
|                                                                        | плива котло                                                                        |                                                                                  | 7001 W DI 1500001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>B <sub>r</sub>                                                                     | 116<br>258072.40                                                                                                                               | н.м³/час<br>н.м³/год                                                                   |
|                                                                        |                                                                                    |                                                                                  | повых выбросов:<br>ивном газе / СУГ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T Dr                                                                                    | 2224.8                                                                                                                                         | н.м <sup>-</sup> /год                                                                  |
|                                                                        | ьзуемого тог                                                                       |                                                                                  | ивном газе / Сут.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l I                                                                                     | 7224.0                                                                                                                                         |                                                                                        |
| Типт испол<br>Плотность                                                |                                                                                    | пива.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | 0.92                                                                                                                                           | <u>кг/н. м<sup>3</sup></u>                                                             |
|                                                                        |                                                                                    | серы в газе:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ρ<br>S <sup>r</sup>                                                                     | 0.92                                                                                                                                           | Macc.%                                                                                 |
|                                                                        |                                                                                    |                                                                                  | льных условиях:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>i</sub> r                                                                        | 44.31                                                                                                                                          | масс. /6<br>МДж/н. м <sup>3</sup>                                                      |
|                                                                        | о оксилов о                                                                        | ива при норма                                                                    | ихся на 1 ГДж тепла:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K <sub>NO2</sub>                                                                        | 0.0887                                                                                                                                         | кг/ГДж                                                                                 |
|                                                                        |                                                                                    | рода в топлив                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [H <sub>2</sub> S]                                                                      | 0.0008                                                                                                                                         | масс.%                                                                                 |
|                                                                        |                                                                                    | рода в топливо<br>воздушной см                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>r</sub>                                                                          | 0.844                                                                                                                                          | масс. 70<br>м³/сек                                                                     |
|                                                                        | ызуемого тог                                                                       |                                                                                  | еси.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>F</sub>                                                                          | C)                                                                                                                                             |                                                                                        |
| Типт испол<br>Плотность                                                | •                                                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ρ                                                                                       | 2.20                                                                                                                                           | кг/н. м <sup>3</sup>                                                                   |
|                                                                        |                                                                                    | серы в газе:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S <sup>r</sup>                                                                          | 0.0005                                                                                                                                         | Macc.%                                                                                 |
|                                                                        |                                                                                    |                                                                                  | льных условиях:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>i</sub> r                                                                        | 104.06                                                                                                                                         | МДж/н. м <sup>3</sup>                                                                  |
|                                                                        |                                                                                    |                                                                                  | ихся на 1 ГДж тепла:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K <sub>NO2</sub>                                                                        | 0.0887                                                                                                                                         | кг/ГДж                                                                                 |
|                                                                        |                                                                                    | рода в топлив                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [H <sub>2</sub> S]                                                                      | 0.00000                                                                                                                                        | масс.%                                                                                 |
|                                                                        |                                                                                    | рода в тогливо<br>воздушной см                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>r</sub>                                                                          | 1.940                                                                                                                                          | масс. 76<br>м³/сек                                                                     |
|                                                                        |                                                                                    |                                                                                  | еси.<br>по снижения выбросов оксидов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                       | 1.340                                                                                                                                          | IVI / CCK                                                                              |
|                                                                        |                                                                                    |                                                                                  | ических решений:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | β                                                                                       | 0                                                                                                                                              |                                                                                        |
|                                                                        |                                                                                    | язываемых ле                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ŋ' <sub>SO2</sub>                                                                       | 0                                                                                                                                              |                                                                                        |
|                                                                        |                                                                                    |                                                                                  | золоуловителе:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŋ" <sub>SO2</sub>                                                                       | 0                                                                                                                                              |                                                                                        |
|                                                                        |                                                                                    |                                                                                  | еплоты, выделяющейся при го-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ij 802                                                                                  | -                                                                                                                                              |                                                                                        |
| количесть<br>рении:                                                    | о оксидов уг                                                                       | лерода на ед.                                                                    | еплоты, выделяющейся при го-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K <sub>co</sub>                                                                         | 0.25                                                                                                                                           | кг/ГДж                                                                                 |
|                                                                        | ппоты вспел                                                                        | ствие механич                                                                    | еской неполноты сгорания газа:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q <sub>4</sub>                                                                          | 0                                                                                                                                              | %                                                                                      |
| потори то                                                              |                                                                                    |                                                                                  | ных веществ в атмосферу при                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                                                                                |                                                                                        |
|                                                                        |                                                                                    |                                                                                  | пых вещеетв в атмосферу при                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | рассте котла                                                                            | Макси-                                                                                                                                         |                                                                                        |
|                                                                        |                                                                                    | ование за-                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | мально-ра-                                                                                                                                     | Валовый                                                                                |
| Код ЗВ                                                                 |                                                                                    | щего веще-                                                                       | Расчетная форму                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ла                                                                                      | зовый вы-                                                                                                                                      | выброс,                                                                                |
|                                                                        | СТЕ                                                                                | a (3B)                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | брос, г/с                                                                                                                                      | т/год                                                                                  |
|                                                                        | Азота окс                                                                          | 1ДЫ                                                                              | $\Pi = 0.001 *B*Q_i^r *K_{NO2}*($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ′1 - β)                                                                                 | 0.1266532                                                                                                                                      | 1.0143833                                                                              |
| 0301                                                                   | Азота дио                                                                          | • •                                                                              | $\Pi_{NO2}$ = 0.8* $\Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .,                                                                                      | 0.1013226                                                                                                                                      | 0.8115066                                                                              |
| 0304                                                                   | Азота окс                                                                          |                                                                                  | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 0.0164649                                                                                                                                      | 0.1318698                                                                              |
|                                                                        | _                                                                                  |                                                                                  | $\Pi = 0.02*B*S^r*(1 - \eta')*($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 - n")                                                                                 | 0.0010311                                                                                                                                      | 0.0082583                                                                              |
| 0330                                                                   | Сера диок                                                                          | сид                                                                              | $\Pi = 1.88 * 10^{-2} * [H_2S]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | 0.0004247                                                                                                                                      | 0.0034012                                                                              |
| 0337                                                                   | Углерод о                                                                          | ксид                                                                             | $\Pi = 0.001*B*Q/*K_{co}*(1 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         | 0.3569706                                                                                                                                      | 2.8590286                                                                              |
|                                                                        | 1 * * * * * * * * * * * * * * * * * * *                                            |                                                                                  | о по источнику:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                       | 0.4762139                                                                                                                                      | 3.8140645                                                                              |
|                                                                        |                                                                                    |                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                                                                                                                                |                                                                                        |
|                                                                        | Pad                                                                                | чет выбросо                                                                      | в вредных веществ в атмосфе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ру при работе                                                                           | котла на СУГ                                                                                                                                   |                                                                                        |
|                                                                        |                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                       | Макси-                                                                                                                                         | D                                                                                      |
| K 2D                                                                   |                                                                                    | ование за-                                                                       | Danier danie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         | мально-ра-                                                                                                                                     | Валовый                                                                                |
| Код ЗВ                                                                 |                                                                                    | щего веще-                                                                       | Расчетная форму                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jia                                                                                     | зовый вы-                                                                                                                                      | выброс,                                                                                |
|                                                                        | CIE                                                                                | a (3B)                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | брос, г/с                                                                                                                                      | т/год                                                                                  |
|                                                                        | Азота окс                                                                          | 1ДЫ                                                                              | $\Pi = 0.001 *B*Q_i^r *K_{NO2}*($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 - β)                                                                                  | 0.2974094                                                                                                                                      | 2.3819948                                                                              |
|                                                                        |                                                                                    | ксид                                                                             | $\Pi_{NO2} = 0.8 * \Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         | 0.2379275                                                                                                                                      | 1.9055959                                                                              |
| 0301                                                                   | Азота дио                                                                          |                                                                                  | $\Pi_{NO} = 0.13 * \Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         | 0.0386632                                                                                                                                      | 0.3096593                                                                              |
| 0301<br>0304                                                           | Азота дио<br>Азота окси                                                            | 1Д                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - m                                                                                     | 0.0006641                                                                                                                                      | 0.0053187                                                                              |
| 0304                                                                   | Азота окс                                                                          |                                                                                  | $\Pi = 0.02^*B^*S^{r*}(1 - \eta')^*($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>1 - η")                                    </u>                                      | 0.00                                                                                                                                           |                                                                                        |
|                                                                        |                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | 0                                                                                                                                              | 0                                                                                      |
| 0304                                                                   | Азота окс                                                                          | сид                                                                              | $\Pi = 0.02*B*S^r*(1 - \eta')*($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ] * B                                                                                   |                                                                                                                                                | 0<br>6.7136269                                                                         |
| 0304<br>0330                                                           | Азота оксы<br>Сера диок                                                            | сид<br>ксид                                                                      | $\Pi = 0.02^*B^*S'^*(1 - \eta')^*($<br>$\Pi = 1.88^* 10^{-2}^* [H_2S]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] * B                                                                                   | 0                                                                                                                                              | -                                                                                      |
| 0304<br>0330                                                           | Азота оксы<br>Сера диок                                                            | сид<br>ксид                                                                      | $\Pi = 0.02*B*S'*(1 - \eta')*($ $\Pi = 1.88 * 10^{-2} * [H_2S]$ $\Pi = 0.001*B*Q/*K_{CO}*(1 - \eta')*(1 $ | ] * B                                                                                   | 0<br>0.8382453                                                                                                                                 | 6.7136269                                                                              |
| 0304<br>0330<br>0337                                                   | Азота оксы<br>Сера диок<br>Углерод о                                               | сид<br>ксид<br><b>Итог</b>                                                       | $\Pi = 0.02*B*S'*(1 - \eta')*($ $\Pi = 1.88 * 10^2 * [H_2S]$ $\Pi = 0.001*B*Q/*K_{co}*(1 - 0.001*B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] * B<br>q4/100)                                                                        | 0<br>0.8382453                                                                                                                                 | 6.7136269<br><b>8.9342008</b>                                                          |
| 0304<br>0330<br>0337<br>№ ИВ                                           | Азота окси<br>Сера диок<br>Углерод о                                               | сид<br>Ксид<br>Итог<br>Наименов                                                  | П = 0.02*B*S'*(1 - η')*(<br>П = 1.88 * 10 <sup>-2</sup> * [H <sub>2</sub> S<br>П = 0.001*B*Q; <sup>*</sup> *K <sub>co</sub> *(1 -<br>о по источнику:<br>ание источника выделения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ] * В<br>q₄/100)<br>Котел RLS                                                           | 0<br>0.8382453<br>1.1155001<br>100, при работе н<br>топливе                                                                                    | 6.7136269<br><b>8.9342008</b><br>на дизельном                                          |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб                                    | Азота окси Сера диок Углерод о  001 росы от котг                                   | сид  Ксид  Итог  Наименов за определены и производст                             | П = 0.02*В*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К жигании топлива в котлах пром                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>] * В</i>                                                                            | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз                                             | 6.7136269<br>8.9342008<br>на дизельном<br>веществ в ат                                 |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб<br>мосферу<br>выбросов             | Азота окси Сера диок Углерод о  001 росы от котг различным в вредных в             | СИД  КСИД  ИТОГ  Наименов  за определены и производст еществ при с               | П = 0.02*B*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>] * В</i>                                                                            | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз<br>стью до 30 т/час"                        | 6.7136269<br>8.9342008<br>на дизельном<br>веществ в ат<br>дел 2 "Расче                 |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб<br>мосферу<br>выбросов             | Азота окси Сера диок Углерод о  001 росы от котт различным в вредных в             | КСИД  КСИД  ИТОГО  Наименов  на определены и производст веществ при с            | П = 0.02*В*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К жигании топлива в котлах пром                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>] * В</i>                                                                            | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз<br>стью до 30 т/час"                        | 6.7136269<br>8.9342008<br>на дизельном<br>веществ в ат<br>дел 2 "Расче                 |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб<br>мосферу<br>выбросов             | Азота окси Сера диок Углерод о  001 росы от котг различным в вредных в             | КСИД  КСИД  ИТОГО  Наименов  на определены и производст веществ при с            | П = 0.02*В*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К жигании топлива в котлах пром                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>] * В</i>                                                                            | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз<br>стью до 30 т/час"                        | 6.7136269<br>8.9342008<br>на дизельном<br>веществ в ат<br>дел 2 "Расче                 |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб<br>мосферу<br>выбросов             | Азота окси Сера диок Углерод о  001 росы от котт различным в вредных в             | КСИД  КСИД  ИТОГО  Наименов  на определены и производст веществ при с            | П = 0.02*В*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К жигании топлива в котлах пром                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>] * В q₄/100)</i> Котел RLS  по расчету вы казЭкоэксп», А изводительнос              | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз<br>стью до 30 т/час"<br>895<br>823<br>27.50 | 6.7136269<br><b>8.9342008</b> на дизельном веществ в ат<br>дел 2 "Расче  КВТ  КВТ  г/с |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб<br>мосферу<br>выбросов<br>Номиналь | Азота окси Сера диок Углерод о  001 росы от котт различным в вредных в             | КСИД  КСИД  ИТОГО  Наименов  на определены и производст веществ при с  ть котла: | П = 0.02*В*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К жигании топлива в котлах пром                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>] * В</i>                                                                            | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз<br>стью до 30 т/час"                        | 6.7136269<br>8.9342008<br>на дизельном<br>веществ в ат<br>дел 2 "Расче<br>кВт<br>кВт   |
| 0304<br>0330<br>0337<br>№ ИВ<br>Выб<br>мосферу<br>выбросов<br>Номиналь | Азота оксі Сера диок Углерод о  ОО1 росы от котл различным в вредных в ная мощност | КСИД  КСИД  ИТОГО  Наименов  на определены и производст веществ при с  ть котла: | П = 0.02*В*S'*(1 - η')*( П = 1.88 * 10-2 * [H₂S] П = 0.001*В*Q;/*Ксо*(1 - о по источнику:  ание источника выделения  согласно, "Сборника методик в вами", МЭБ РК РНПЦЭЭАиЭ «К жигании топлива в котлах пром                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>] * В q₄/100)</i> Котел RLS  по расчету вы казЭкоэксп», А изводительнос              | 0<br>0.8382453<br>1.1155001<br>100, при работе в<br>топливе<br>бросов вредных<br>лматы 1996 г. Раз<br>стью до 30 т/час"<br>895<br>823<br>27.50 | 6.7136269<br><b>8.9342008</b> на дизельном веществ в ат<br>дел 2 "Расче  КВТ  КВТ  г/с |

|             |                                                        |                                        | 7                                              |                          |                     |  |
|-------------|--------------------------------------------------------|----------------------------------------|------------------------------------------------|--------------------------|---------------------|--|
| – дизтопл   | иво:                                                   |                                        | Ar                                             | 0.025                    | %                   |  |
| Теплота сг  | горания топлива:                                       |                                        | Q <sub>i</sub> <sup>r</sup>                    | 42.75                    | МДж/кг              |  |
| Время раб   | оты:                                                   |                                        | T <sub>r</sub>                                 | 240                      | ч/год               |  |
| Количеств   | Количество оксидов азота, образующихся на 1 ГДж тепла: |                                        |                                                | 0.0887                   | кг/ГДж              |  |
| Коэффици    | іент, зависящий от степени                             | β                                      | 0                                              |                          |                     |  |
| азота в рез | зультате применения техні                              | Р                                      | ·                                              |                          |                     |  |
| Коэффици    | Коэффициент, учитывающий долю золы топлива в уносе:    |                                        |                                                | 0.01                     |                     |  |
|             | дых частиц, улавливаемых                               |                                        | η                                              | 0                        |                     |  |
| Доля оксид  | дов серы, связываемых ле                               | тучей золой:                           | η'                                             | 0.02                     |                     |  |
| Доля оксид  | дов серы, улавливаемых в                               | золоуловителе:                         | η"                                             | 0                        |                     |  |
| Количеств   | о оксидов углерода на ед.т                             | еплоты, выделяющейся при го-           | K <sub>CO</sub>                                | 0.32                     | кг/ГДж              |  |
| рении:      |                                                        |                                        | ICO                                            | 0.32                     | кіл дж              |  |
| Потери тег  | плоты вследствие механич                               | еской неполноты сгорания газа:         | $q_4$                                          | 0                        | %                   |  |
| Объемный    | і́ расход газовоздушной см                             | еси:                                   | V <sub>Γ</sub>                                 | 0.7229                   | м <sup>3</sup> /сек |  |
|             | ент, учитывающий характе                               |                                        | К                                              | 0.355                    |                     |  |
|             | Расчет выбросов вредны                                 | ых веществ в атмосферу при р           | аботе котла на                                 |                          |                     |  |
|             |                                                        |                                        |                                                | Выбросы загрязняющих ве- |                     |  |
|             | Наименование загряз-                                   |                                        |                                                | ществ                    |                     |  |
| Код ЗВ      | няющего вещества                                       | Расчетная формула                      |                                                | Макси-                   | Валовый,            |  |
|             | (3B)                                                   |                                        |                                                | мально-разо-             | т/год               |  |
|             |                                                        |                                        |                                                | вый, г/с                 |                     |  |
|             | Азота оксиды                                           | $\Pi = 0.001*B*Q_i^r*K_{NO2}*($        | ΄1 - β)                                        | 0.1042779                | 0.0900961           |  |
| 0301        | Азота диоксид                                          | $\Pi_{NO2}$ = 0.8* $\Pi_{NOx}$         |                                                | 0.0834223                | 0.0720769           |  |
| 0304        | Азота оксид                                            | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$         |                                                | 0.0135561                | 0.0117125           |  |
| 0328        | Сажа                                                   | $\Pi = B^*A^{r*}x^*(1 - \eta)$         |                                                | 0.0068750                | 0.0059400           |  |
| 0330        | Сера диоксид                                           | $\Pi = 0.02*B*S^r*(1 - \eta')*($       |                                                | 0.1617000                | 0.1397088           |  |
| 0337        | Углерод оксид                                          | $\Pi = 0.001*B*Q_i^{r}*K_{CO}*(1 - 1)$ | q4/100)                                        | 0.3762000                | 0.3250368           |  |
|             | Всего                                                  | о по источнику:                        |                                                | 0.6417534                | 0.5544750           |  |
|             |                                                        |                                        |                                                |                          |                     |  |
|             | Расчет выбр                                            | осов вредных веществ в атмос           | сферу от котло                                 |                          | OD                  |  |
| Код ЗВ      | Наименован                                             | ние загрязняющего вещества (3          | 3B)                                            | Выбро                    |                     |  |
|             | A                                                      | · · · · · · · · · · · · · · · · · · ·  | <u>,                                      </u> | r/c                      | т/год               |  |
| 0004        | Азота оксиды                                           |                                        |                                                | 0.2974094                | 2.4720910           |  |
| 0301        | Азота диоксид                                          |                                        |                                                | 0.2379275                | 1.9776728           |  |
| 0304        | Азота оксид                                            |                                        |                                                | 0.0386632                | 0.3213718           |  |
| 0328        | Сажа                                                   |                                        |                                                | 0.0068750                | 0.0059400           |  |
| 0330        | Сера диоксид                                           |                                        |                                                | 0.1617000                | 0.1513683           |  |
| 0337        | Углерод оксид                                          |                                        |                                                | 0.8382453                | 7.0386637           |  |
| ĺ           | Bcero                                                  | о по источнику:                        |                                                | 1.2834110                | 9.4950166           |  |

| № ИЗА        | 0075 -<br>0076                                                                                     | Наименование источника за-<br>грязнения атмосферы | Дымовая труба котельной     |                    |                       |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|--------------------|-----------------------|--|--|--|
| № ИВ         | 001                                                                                                | Наименование источника вы-                        |                             | 70 RLS 70, при раб | оте на топлив-        |  |  |  |
|              |                                                                                                    | деления                                           | ном газе / СУГ              |                    |                       |  |  |  |
| Выбро        | сы от котла ог                                                                                     | пределены согласно, <b>"Сборника м</b> е          | тодик по расчету            | выбросов вредн     | ых веществ в ат-      |  |  |  |
|              | мосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 2 "Расчет |                                                   |                             |                    |                       |  |  |  |
| выбросов в   | редных веще                                                                                        | еств при сжигании топлива в котл                  |                             | ьностью до 30 т/ча | ıc"                   |  |  |  |
|              |                                                                                                    | Исходные да                                       |                             | 700                | D-                    |  |  |  |
|              | я мощность ко                                                                                      |                                                   | Q <sub>M</sub>              | 720                | кВт                   |  |  |  |
|              | мощность кот                                                                                       |                                                   | $Q_{\phi}$                  | 662                | кВт                   |  |  |  |
|              | ива котлоагре                                                                                      |                                                   | В                           | 81                 | н.м <sup>3</sup> /час |  |  |  |
|              |                                                                                                    | елении валовых выбросов:                          | Br                          | 216172.57          | н.м³/год              |  |  |  |
| Время работ  | ъ оборудован                                                                                       | ия на топливном газе / СУГ:                       | T                           | 2668.8             | ч/год                 |  |  |  |
| Тип использу | уемого топлив                                                                                      | a:                                                |                             | Топливный газ      |                       |  |  |  |
| Плотность га | аза:                                                                                               |                                                   | ρ                           | 0.92               | кг/н. м <sup>3</sup>  |  |  |  |
| Массовое со  | держание сер                                                                                       | ы в газе:                                         | <b>S</b> r                  | 0.0017             | масс.%                |  |  |  |
| Теплота сгор | ания топлива                                                                                       | при нормальных условиях:                          | Q <sub>i</sub> r            | 44.31              | МДж/н. м <sup>3</sup> |  |  |  |
| Количество с | оксидов азота                                                                                      | , образующихся на 1 ГДж тепла:                    | K <sub>NO2</sub>            | 0.0874             | кг/ГДж                |  |  |  |
| Содержание   | сероводорода                                                                                       | а в топливе:                                      | [H <sub>2</sub> S]          | 0.0008             | масс.%                |  |  |  |
| Объемный р   | асход газовоз                                                                                      | душной смеси:                                     | V <sub>Γ</sub>              | 0.590              | м <sup>3</sup> /сек   |  |  |  |
| Тип использу | уемого топлив                                                                                      | a:                                                |                             | СУГ                |                       |  |  |  |
| Плотность га | аза:                                                                                               |                                                   | ρ                           | 2.20               | кг/н. м <sup>3</sup>  |  |  |  |
| Массовое со  | держание сер                                                                                       | ы в газе:                                         | <b>S</b> r                  | 0.0005             | масс.%                |  |  |  |
| Теплота сгор | ания топлива                                                                                       | при нормальных условиях:                          | Q <sub>i</sub> <sup>r</sup> | 104.06             | МДж/н. м <sup>3</sup> |  |  |  |
| Количество о | оксидов азота                                                                                      | , образующихся на 1 ГДж тепла:                    | K <sub>NO2</sub>            | 0.0874             | кг/ГДж                |  |  |  |
| Содержание   | сероводорода                                                                                       | а в топливе:                                      | [H <sub>2</sub> S]          | 0.000000           | масс.%                |  |  |  |
| Объемный р   | Объемный расход газовоздушной смеси:                                                               |                                                   |                             | 1.355              | м <sup>3</sup> /сек   |  |  |  |
| Коэффициен   | т, зависящий                                                                                       | от степени снижения выбросов                      |                             |                    |                       |  |  |  |
| оксидов азот | а в результат                                                                                      | е применения технических реше-                    | β                           | 0                  |                       |  |  |  |
| ний:         |                                                                                                    |                                                   |                             |                    |                       |  |  |  |
| Доля оксидо  | в серы, связы                                                                                      | ваемых летучей золой:                             | ŋ' <sub>so2</sub>           | 0                  |                       |  |  |  |
| Доля оксидо  | в серы, улавл                                                                                      | иваемых в золоуловителе:                          | ŋ" <sub>SO2</sub>           | 0                  |                       |  |  |  |

| при горении:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ы, выделяющейся                                                                                                                                                                                           | Ксо                                                                                                                                                                                                                                                                                                                                                                          | 0.25                                                                                                                                                                                                                | кг/ГДж                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Тотери тепл<br>ния газа:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | неполноты сгора-                                                                                                                                                                                          | q <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                   | %                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Расчет выбро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | осов вредных в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | еществ в атмосф                                                                                                                                                                                           | еру при работе ко                                                                                                                                                                                                                                                                                                                                                            | тла на Топливном                                                                                                                                                                                                    | газе                                                                                                                                          |
| Код ЗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ние загрязня-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Расчетная                                                                                                                                                                                                 | я формула                                                                                                                                                                                                                                                                                                                                                                    | Максимально-<br>разовый вы-                                                                                                                                                                                         | Валовый вы                                                                                                                                    |
| MOH OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ющего ве                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | щества (ЗВ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 40 1011147                                                                                                                                                                                              | · wopyu                                                                                                                                                                                                                                                                                                                                                                      | брос, г/с                                                                                                                                                                                                           | брос, т/год                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | оксиды                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Π = 0.001*P*/                                                                                                                                                                                             | Q <sup>r</sup> *K <sub>NO2</sub> *(1 - β)                                                                                                                                                                                                                                                                                                                                    | 0.0871427                                                                                                                                                                                                           | 0.8372380                                                                                                                                     |
| 0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              | 0.06971427                                                                                                                                                                                                          |                                                                                                                                               |
| 0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           | 0.8*Π <sub>NOx</sub>                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                     | 0.6697904                                                                                                                                     |
| 0304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а оксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           | .13*Π <sub>NOx</sub>                                                                                                                                                                                                                                                                                                                                                         | 0.0113286                                                                                                                                                                                                           | 0.1088409                                                                                                                                     |
| 0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           | *(1 - η')*(1 - η")                                                                                                                                                                                                                                                                                                                                                           | 0.0007200                                                                                                                                                                                                           | 0.0069175                                                                                                                                     |
| 0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Сера                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Pi = 1.88 * 10$                                                                                                                                                                                         | 0 <sup>-2</sup> * [H₂S] * B                                                                                                                                                                                                                                                                                                                                                  | 0.0002965                                                                                                                                                                                                           | 0.002849                                                                                                                                      |
| 0337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | од оксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Pi = 0.001*B*Q/$                                                                                                                                                                                        | *Kco*(1 - q4/100)                                                                                                                                                                                                                                                                                                                                                            | 0.2492639                                                                                                                                                                                                           | 2.3948456                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Итого по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           | , ,                                                                                                                                                                                                                                                                                                                                                                          | 0.3313232                                                                                                                                                                                                           | 3.1832434                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Расчет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | выбросов вред                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ных веществ в ат                                                                                                                                                                                          | гмосферу при раб                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | 1                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Наименова                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ние загрязня-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | Максимально-                                                                                                                                                                                                        | Валовый вы-                                                                                                                                   |
| Код ЗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | щества (ЗВ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Расчетная                                                                                                                                                                                                 | я формула                                                                                                                                                                                                                                                                                                                                                                    | разовый вы-                                                                                                                                                                                                         | брос, т/год                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ющего ве                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | щества (СВ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              | брос, г/с                                                                                                                                                                                                           | орос, глод                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | оксиды                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Pi = 0.001*B*0$                                                                                                                                                                                         | Q/*K <sub>NO2</sub> *(1 - β)                                                                                                                                                                                                                                                                                                                                                 | 0.2046301                                                                                                                                                                                                           | 1.9660188                                                                                                                                     |
| 0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           | D.8*Π <sub>NOx</sub>                                                                                                                                                                                                                                                                                                                                                         | 0.1637041                                                                                                                                                                                                           | 1.5728150                                                                                                                                     |
| 0304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а оксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Pi_{NO} = 0$                                                                                                                                                                                            | .13*Π <sub>NOx</sub>                                                                                                                                                                                                                                                                                                                                                         | 0.0266019                                                                                                                                                                                                           | 0.2555824                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           | *(1 - η')*(1 - η")                                                                                                                                                                                                                                                                                                                                                           | 0.0004637                                                                                                                                                                                                           | 0.0044551                                                                                                                                     |
| 0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cepa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                               |
| 000=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           | 0 <sup>-2</sup> * [H <sub>2</sub> S] * B                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                   | 0                                                                                                                                             |
| 0337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | од оксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           | *Kco*(1 - q4/100)                                                                                                                                                                                                                                                                                                                                                            | 0.5853265                                                                                                                                                                                                           | 5.6236234                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Итого по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | очнику:                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              | 0.7760962                                                                                                                                                                                                           | 7.4564759                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                               |
| № ИВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Наименовани                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | е источника вы-                                                                                                                                                                                           | Vomon DI S 70                                                                                                                                                                                                                                                                                                                                                                | при работе на диз                                                                                                                                                                                                   | 051 11014 11055                                                                                                                               |
| Nº ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | дел                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | пения                                                                                                                                                                                                     | Kollieji KLS 70, i                                                                                                                                                                                                                                                                                                                                                           | три раоопте на оиз                                                                                                                                                                                                  | ельном шоплиє                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Исходные да                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              | ъностью до <b>30</b> т/ча                                                                                                                                                                                           | кВт                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ая мощность ко                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                               |
| <i>р</i> актическая                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | я мощность кот.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IIa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           | $Q_{\Phi}$                                                                                                                                                                                                                                                                                                                                                                   | 662                                                                                                                                                                                                                 | кВт                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                            | 19.17                                                                                                                                                                                                               |                                                                                                                                               |
| Расход топлива на котлоагрегат:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           | I B                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     | г/с                                                                                                                                           |
| асход топл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | іива на котлоаг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | регат:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                                                                                                                                                                  | кг/ч                                                                                                                                          |
| асход топл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ива на котлоаг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | регат:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           | B <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                               | 69<br>16.56                                                                                                                                                                                                         | кг/ч<br>т/год                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | іива на котлоаг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | регат:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              | 69                                                                                                                                                                                                                  | кг/ч<br>т/год<br>%                                                                                                                            |
| Гопливо:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | регат:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           | B <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                               | 69<br>16.56                                                                                                                                                                                                         | кг/ч<br>т/год                                                                                                                                 |
| Гопливо:<br>– дизтоплив                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           | B <sub>r</sub><br>S <sup>r</sup><br>A <sup>r</sup>                                                                                                                                                                                                                                                                                                                           | 69<br>16.56<br>0.3                                                                                                                                                                                                  | кг/ч<br>т/год<br>%                                                                                                                            |
| Гопливо:<br>– дизтоплив<br>Геплота сгој                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | во:<br>рания топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           | B <sub>r</sub><br>S <sup>r</sup>                                                                                                                                                                                                                                                                                                                                             | 69<br>16.56<br>0.3<br>0.025<br>42.75                                                                                                                                                                                | кг/ч<br>т/год<br>%<br>%<br>МДж/кг                                                                                                             |
| Гопливо:<br>– дизтоплив<br>Геплота сгор<br>Зремя работ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | во:<br>рания топлива:<br>ты:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | на 1 ГЛж тепла:                                                                                                                                                                                           | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> T <sub>r</sub>                                                                                                                                                                                                                                                                                                   | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240                                                                                                                                                                         | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:<br>– дизтоплив<br>Геплота сгор<br>Зремя работ<br>Количество                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | во:<br>рания топлива:<br>ты:<br>оксидов азота,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | образующихся н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           | B <sub>r</sub><br>S <sup>r</sup><br>A <sup>r</sup><br>Q <sub>i</sub> <sup>r</sup>                                                                                                                                                                                                                                                                                            | 69<br>16.56<br>0.3<br>0.025<br>42.75                                                                                                                                                                                | кг/ч<br>т/год<br>%<br>%<br>МДж/кг                                                                                                             |
| Гопливо:  — дизтоплив Геплота сгор Время работ Количество Коэффицие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | образующихся н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ения выбросов                                                                                                                                                                                             | B <sub>r</sub><br>S <sup>r</sup><br>A <sup>r</sup><br>Q <sub>i</sub> <sup>r</sup><br>T <sub>r</sub><br>K <sub>NO2</sub>                                                                                                                                                                                                                                                      | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874                                                                                                                                                               | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Время работ Количество Коэффицие вксидов азот                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | образующихся н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> T <sub>r</sub>                                                                                                                                                                                                                                                                                                   | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240                                                                                                                                                                         | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Зремя работ Количество Коэффициею ксидов азот                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | образующихся н<br>от степени сниж<br>э применения те:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ения выбросов<br>хнических реше-                                                                                                                                                                          | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub>                                                                                                                                                                                                                                                                     | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874                                                                                                                                                               | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество Коэффициен Висинский Висинов Соэффициен Соэффициен Соэффициен                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий с<br>та в результате<br>нт, учитывающ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | образующихся в от степени сниже применения тезий долю золы то                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ения выбросов<br>хнических реше-<br>плива в уносе:                                                                                                                                                        | B <sub>r</sub> S' A' Q <sub>i</sub> ' T <sub>r</sub> K <sub>NO2</sub>                                                                                                                                                                                                                                                                                                        | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0                                                                                                                                                          | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество Коэффицие Виси Вазот Ворфицие Ворффицие Ворффицие Вор Вердь В | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | образующихся в от степени сниже применения те: ий долю золы то                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ения выбросов<br>хнических реше-<br>плива в уносе:<br>оуловителях:                                                                                                                                        | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β                                                                                                                                                                                                                                                                   | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0                                                                                                                                                          | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество Останов В В В В В В В В В В В В В В В В В В В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | образующихся в от степени сниже применения тезий долю золы то вливаемых в золю заемых летучей в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:                                                                                                                              | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β  X η                                                                                                                                                                                                                                                                           | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0                                                                                                                                                          | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Зремя работ Соличество Соэффициен Соэффициен Соэффициен Соэффициен Соля твердь Соля оксидо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав<br>ов серы, связые<br>ов серы, улавли                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | образующихся в от степени сниже применения те: ий долю золы то вливаемых в золюзаемых в золоу, изаемых в золоу.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:<br>повителе:                                                                                                                 | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β                                                                                                                                                                                                                                                                   | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0                                                                                                                                                          | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Зремя работ Соличество Соэффициен Соэффициен Соэффициен Соя твердь Соля оксидо Соличество Соличе | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав<br>ов серы, связые<br>ов серы, улавли<br>оксидов углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | образующихся в от степени сниже применения те: ий долю золы то вливаемых в золюзаемых в золоу, изаемых в золоу.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:                                                                                                                              | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η"                                                                                                                                                                                                                                                        | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0<br>0.01<br>0<br>0.02                                                                                                                                     | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год<br>кг/ГДж                                                                                          |
| Гопливо:  — дизтоплив Геплота сгор Время работ Количество коэффициен Доля твердь Доля оксидо Количество Количество Поля оксидо Поля оксидо Поля оксидо Поля оксидо Поля оксидо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав<br>эв серы, связыв<br>эв серы, улавли<br>оксидов углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | образующихся но степени сниже применения тели долю золы то пливаемых в золю заемых летучей заемых в золоу, и на ед.теплоти                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:<br>повителе:<br>ы, выделяющейся                                                                                              | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β  X η                                                                                                                                                                                                                                                                           | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0                                                                                                                                                          | кг/ч<br>т/год<br>%<br>%<br>МДж/кг<br>ч/год                                                                                                    |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество ксидов азот ий Сорфицие Доля твердь Доля оксидо Соличество при горении Потери тепли                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав<br>эв серы, связыв<br>эв серы, улавли<br>оксидов углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | образующихся но степени сниже применения тели долю золы то пливаемых в золю заемых летучей заемых в золоу, и на ед.теплоти                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:<br>повителе:                                                                                                                 | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η" Κ <sub>CO</sub>                                                                                                                                                                                                                                                     | 69<br>16.56<br>0.3<br>0.025<br>42.75<br>240<br>0.0874<br>0<br>0.01<br>0<br>0.02<br>0<br>0.32                                                                                                                        | кг/ч т/год % % МДж/кг ч/год кг/ГДж                                                                                                            |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество ксидов азот ий Сорфицие Доля твердь Доля оксидо Соличество при горении Потери тепли                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | во:<br>рания топлива:<br>ты:<br>оксидов азота,<br>нт, зависящий о<br>та в результате<br>нт, учитывающых частиц, улав<br>эв серы, связыв<br>эв серы, улавли<br>оксидов углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | образующихся но степени сниже применения тели долю золы то пливаемых в золю заемых летучей заемых в золоу, и на ед.теплоти                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:<br>повителе:<br>ы, выделяющейся                                                                                              | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub>                                                                                                                                                                                                                                                     | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32                                                                                                                                                           | кг/ч т/год % % МДж/кг ч/год кг/ГДж                                                                                                            |
| опливо:  дизтопливо:  дизтопливо:  сплота сгоровная работ оборфициента оборфициента оборфициента оборфициента оборфитество оборфитеств | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающих частиц, улав ов серы, связые ов серы, улавли оксидов углеро: поты вследстви расход газовозд                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | образующихся нот степени сниже применения те: ий долю золы то вливаемых в золо ваемых летучей ваемых в золоу, пра на ед.теплоти е механической пришной смеси:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:<br>повителе:<br>ы, выделяющейся<br>неполноты сгора-                                                                          | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η" Κ <sub>CO</sub>                                                                                                                                                                                                                                                     | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.5039                                                                                                                                                   | кг/ч т/год % % МДж/кг ч/год кг/ГДж                                                                                                            |
| Гопливо:  — дизтоплив Геплота сгор Время работ Количество Коэффициен Воля твердь Воля оксидо Воля оксидо Количество Горении Потери теплия газа:  Объемный р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающих частиц, улав ов серы, связые ов серы, улавли оксидов углеро: поты вследстви расход газовозд                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | образующихся но т степени сниже применения телий долю золы то вливаемых в золо заемых летучей наемых в золоу, ида на ед.теплоти е механической                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ения выбросов<br>хнических реше-<br>плива в уносе:<br>руловителях:<br>золой:<br>повителе:<br>ы, выделяющейся<br>неполноты сгора-                                                                          | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub>                                                                                                                                                                                                                                                     | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32                                                                                                                                                           | кг/ч т/год % % МДж/кг ч/год кг/ГДж                                                                                                            |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество кий:  Коэффициен Поля твердь Поля оксидо Соличество при горении Потери теплия газа:  Объемный р Соэффициен Позери по                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающ ых частиц, улав ов серы, улавли оксидов углеро : поты вследстви расход газовозд нт, учитывающ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | образующихся нот степени сниже применения те: ий долю золы то вливаемых в золо ваемых летучей ваемых в золоу ода на ед.теплоти е механической приной смеси: ий характер топл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора-                                                                                               | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>l</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> q <sub>4</sub> V <sub>r</sub> K                                                                                                                                                                                                        | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.5039                                                                                                                                                   | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж                                                                                                     |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество кий:  Коэффициен Поля твердь Поля оксидо Соличество при горении Потери теплия газа:  Объемный р Соэффициен Позери по                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | во: рания топлива: ты: оксидов азота, нт, зависящий ста в результате нт, учитывающых частиц, улав ве серы, связые ве серы, улавли оксидов углеро : поты вследстви расход газовозд нт, учитывающа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | образующихся вот степени сниже применения теливаемых в золодаемых в золодаемых в золода на ед.теплотые механической сушной смеси: ий характер топлов вредных вет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора-                                                                                               | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>l</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> q <sub>4</sub> V <sub>r</sub> K                                                                                                                                                                                                        | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.5039 0.355                                                                                                                                             | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж                                                                                                     |
| Гопливо:  — дизтоплив Геплота сгор Время работ Соличество кий:  Коэффициен Поля твердь Поля оксидо Соличество при горении Потери теплия газа:  Объемный р Соэффициен Позери по                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающых частиц, улавля оксидов углеро поты вследстви расход газовоздит, учитывающасчет выброс Наименован                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | образующихся но тепени сниже применения телимаемых в золоу заемых летучей заемых летучей да на ед.теплоти е механической сушной смеси: ий характер топлов вредных ветиме загрязняю-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора-                                                                                          | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>l</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> q <sub>4</sub> V <sub>r</sub> K                                                                                                                                                                                                        | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.32 0 0.5039 0.355 па на Дизельном то                                                                                                                   | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж                                                                                                       |
| опливо:  дизтопливо:  дизтопливо:  еплота сгоровная работ  соличество  ксидов азот  ий:  соэффициен  доля твердь  доля оксидо  соличество  количество  при горении  дотери теплия газа:  оэффициен  соэффициен  ребрамный ребрамный ребрамный ребрамнициен  ребрамный ребрамнициен  ребрамнициен  ребрамнициен  ребрамнициен  ребрамнициен  ребрамнами ребрамнициен  ребрамнами ребрамнициен  ребрамнами ребрамициен  ребрамнами ребрами ребрами разован  ребрамнами ребрами  | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающых частиц, улавля оксидов углеро поты вследстви расход газовоздит, учитывающасчет выброс Наименован                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | образующихся вот степени сниже применения теливаемых в золодаемых в золодаемых в золода на ед.теплотые механической сушной смеси: ий характер топлов вредных вет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора-                                                                                          | Β <sub>Γ</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>Γ</sub> K <sub>NO2</sub> β  Χ η η' η" Κ <sub>CO</sub> q <sub>4</sub> V <sub>Γ</sub> Κ ν при работе кот                                                                                                                                                                                       | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.32 0 0.5039 0.355 па на Дизельном то Выбросы загрязи                                                                                                   | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж                                                                                                       |
| опливо:  дизтопливо:  дизтопливо:  еплота сгоровная работ  соличество  ксидов азот  ий:  соэффициен  доля твердь  доля оксидо  соличество  количество  при горении  дотери теплия газа:  оэффициен  соэффициен  ребрамный ребрамный ребрамный ребрамнициен  ребрамный ребрамнициен  ребрамнициен  ребрамнициен  ребрамнициен  ребрамнициен  ребрамнами ребрамнициен  ребрамнами ребрамнициен  ребрамнами ребрамициен  ребрамнами ребрами ребрами разован  ребрамнами ребрами  | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающим оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов оксидов оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов оксидов оксидов оксидов оксидов углеро тоты вследстви                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | образующихся но тепени сниже применения телимаемых в золоу заемых летучей заемых летучей да на ед.теплоти е механической сушной смеси: ий характер топлов вредных ветиме загрязняю-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора- пива:  цеств в атмосфер                                                                  | Β <sub>Γ</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>Γ</sub> K <sub>NO2</sub> β  Χ η η' η" Κ <sub>CO</sub> q <sub>4</sub> V <sub>Γ</sub> Κ ν при работе кот                                                                                                                                                                                       | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.32 0 0.5039 0.355 па на Дизельном то Выбросы загрязі Максимально-                                                                                      | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж                                                                                                     |
| опливо:  - дизтопливо:  - дизтопличество  - дизтопливо:  - дизтопливо   | во: рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающим оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов оксидов оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов оксидов оксидов оксидов оксидов углеро тоты вследстви расход газовозд нт, учитывающим оксидов окс | образующихся нот степени сниже применения те: ий долю золы то применения в золю ваемых летучей ваемых в золом ваемых в золом ваемых в золом ваемых в золом ваемых вества сарушной смеси: ий характер топлов вредных веты вагрязняющества (ЗВ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер Расчетная                                                              | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β                                                                                                                                                                                                                                                                   | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.32 0 0.5039 0.355 па на Дизельном то Выбросы загрязі Максимальноразовый, г/с 0.0716135                                                                 | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж м³/сек Валовый, т/го,                                                                               |
| опливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  Время работ  Количество  Коэффициен  Доля оксидо  Доля оксидо  Доля оксидо  Количество  Потери теплия газа:  Объемный р  Коэффициен  Р  Код ЗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | во: рания топлива: ты: оксидов азота, нт, зависящий с та в результате нт, учитывающем связые вы серы, улавли оксидов углеро поты вследстви расход газовозд нт, учитывающем асчет выброс Наименован щего вец Азота Азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | образующихся нот степени сниже применения те: ий долю золы то применения в золю ваемых летучей ваемых в золом ваемых в золом при на ед.теплоти се механической смеси: ий характер топлов вредных вет ий характер топлов в загител и характер топлов в загител в заги | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер Расчетная П = 0.001*8*6                                                | В <sub>г</sub>                                                                                                                                                                                                                                                                                                                                                               | 69 16.56 0.3 0.025 42.75 240 0.0874 0 0.01 0 0.02 0 0.32 0 0.32 0 0.5039 0.355 па на Дизельном то Выбросы загряз Максимальноразовый, г/с 0.0716135 0.0572908                                                        | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж м3/сек  Валовый, т/го, 0.0618740 0.0494992                                                          |
| опливо:  — дизтопливо:  — дизтоплив | рания топлива: ты: оксидов азота, нт, зависящий ста в результате нт, учитывающых частиц, улав в серы, связые в серы, улавли оксидов углеро : поты вследстви расход газовозд нт, учитывающ асчет выброс Наименован щего вец Азота Азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | образующихся вот степени сниже применения телимаемых в золода на ед.теплоты е механической сий характер топлов вредных велие загрязняющества (3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер Расчетная П = 0.001*8*0 П <sub>NO2</sub> = 0                           | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>l</sub> <sup>r</sup> T <sub>r</sub> K <sub>NO2</sub> β                                                                                                                                                                                                                                                                   | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.32  0 0.5039 0.355 па на Дизельном то Выбросы загрязі Максимально-разовый, г/с 0.0716135 0.0572908 0.0093098                                         | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж м³/сек Валовый, т/го, 0.0618740 0.0494992 0.0080436                                                   |
| опливо:  — дизтопливо:  — дизтоплив | рания топлива: ты: оксидов азота, нт, зависящий ста в результате нт, учитывающых частиц, улав в серы, связые в серы, улавли оксидов углеро: поты вследстви расход газовозд нт, учитывающ асчет выброс Наименован щего вец Азота Азота Азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | образующихся вот степени сниже применения телимаемых в золодаемых летучей заваемых в золодаемых в золода на ед.теплотые механической смеси: ий характер топлов вредных велие загрязняющества (3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер                                                                        | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>l</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> 44 V <sub>r</sub> Κ κ ν при работе коти                                                                                                                                                                                                             | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.5039 0.355 па на Дизельном то Выбросы загряз Максимальноразовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917                                         | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж  кг/ГДж м³/сек валовый, т/го, 0.0618740 0.0494992 0.0080436 0.0041400                                 |
| Гопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  Время работ  Соличество оксидов азот  вий:  Соэффициен  Доля оксидо  Доля о | рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающых частиц, улавли оксидов углеро поты вследстви расход газовоздит, учитывающасчет выброс Наименованщего вец Азота Азота С Сера                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | образующихся вот степени сниже применения телимаемых в золоу заемых летучей заемых летучей заемых в золоу заемых летучей заемых в золоу заемых вединой смеси: ий характер топлов вредных ведие загрязняющества (3В) оксиды диоксид а оксид ажа диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора- пива:  ществ в атмосфер  Расчетная  П = 0.001*В*6  Пло= 0.  П = В*А'  П = 0.02*В*S'      | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>r</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> 4  V <sub>r</sub> Κ κ ν πρи работе коти π формула  Q <sub>r</sub> *K <sub>NO2</sub> *(1 - β) 0.8*Π <sub>NOX</sub> 13*Π <sub>NOX</sub> 1*x*(1 - η) *(1 - η')*(1 - η")                                                                                | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.5039 0.355 па на Дизельном то Выбросы загрязи Максимальноразовый, г/с 0.071635 0.0572908 0.0093098 0.0047917 0.1127002                               | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/го, 0.0618740 0.0494992 0.0080436 0.0041400 0.0973728                      |
| опливо:  — дизтопливо:  — дизтоплив | рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающых частиц, улавли оксидов углеро поты вследстви расход газовоздит, учитывающасчет выброс Наименованщего вец Азота Азота С Сера                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | образующихся но тепени сниже применения телимаемых в золоу заемых летучей заемых летучей заемых в золоу заемых летучей заемых в золоу заемых вединой смеси: ий характер топлов вредных ведие загрязняющества (3В) оксиды диоксид а оксид ажа диоксид од оксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер                                                                        | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>l</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> 44 V <sub>r</sub> Κ κ ν при работе коти                                                                                                                                                                                                             | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.5039 0.355 па на Дизельном то Выбросы загразовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917 0.1127002 0.2622005                                    | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/год 0.0618740 0.0494992 0.0080436 0.0041400 0.0973728 0.2265408              |
| Гопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  Время работ  Соличество оксидов азот  вий:  Соэффициен  Доля оксидо  Доля о | рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающых частиц, улавли оксидов углеро поты вследстви расход газовоздит, учитывающасчет выброс Наименованщего вец Азота Азота С Сера                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | образующихся вот степени сниже применения телимаемых в золоу заемых летучей заемых летучей заемых в золоу заемых летучей заемых в золоу заемых вединой смеси: ий характер топлов вредных ведие загрязняющества (3В) оксиды диоксид а оксид ажа диоксид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер                                                                        | B <sub>r</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>r</sub> T <sub>r</sub> K <sub>NO2</sub> β  X η η' η' Κ <sub>CO</sub> 4  V <sub>r</sub> Κ κ ν πρи работе коти π формула  Q <sub>r</sub> *K <sub>NO2</sub> *(1 - β) 0.8*Π <sub>NOX</sub> 13*Π <sub>NOX</sub> 1*x*(1 - η) *(1 - η')*(1 - η")                                                                                | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.5039 0.355 па на Дизельном то Выбросы загрязи Максимальноразовый, г/с 0.071635 0.0572908 0.0093098 0.0047917 0.1127002                               | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/год 0.0494992 0.0080436 0.0041400 0.0973728                                  |
| Гопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  Время работ  Соличество оксидов азот  вий:  Соэффициен  Доля оксидо  Доля о | рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающом частиц, улавном сидов углеро поты вследстви расход газовоздит, учитывающом учитывающом учитывающом сидов углеро Поты вследстви расход газовоздит, учитывающом сидов всером наименованиего веш Азота Азота Азота С Сера Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | образующихся но тепени сниже применения телий долю золы то вливаемых в золоу да на ед.теплоти е механической душной смеси: ий характер топлов вредных велие загрязняющества (ЗВ)  оксиды диоксид а оксид ажа диоксид Всего по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора- пива:  ществ в атмосфер  Расчетная  П = 0.001*8*0  П = 0.001*8*0  П = 0.001*8*Q  Очнику: | В <sub>г</sub> S <sup>r</sup> A <sup>r</sup> Q <sup>r</sup> T <sub>г</sub> K <sub>NO2</sub>                                                                                                                                                                                                                                                                                  | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.322  0 0.5039 0.355  па на Дизельном то разовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917 0.1127002 0.2622005 0.4462930                           | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/год 0.0618740 0.0494992 0.0080436 0.0041400 0.0973728 0.2265408              |
| Гопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  Время работ  Соличество оксидов азот  вий:  Соэффициен  Доля оксидо  Доля о | рания топлива: ты: оксидов азота, нт, зависящий от в результате нт, учитывающом частиц, улавном сидов углеро поты вследстви расход газовоздит, учитывающом учитывающом учитывающом сидов углеро Поты вследстви расход газовоздит, учитывающом сидов всером наименованиего веш Азота Азота Азота С Сера Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | образующихся но тепени сниже применения телий долю золы то вливаемых в золоу да на ед.теплоти е механической душной смеси: ий характер топлов вредных велие загрязняющества (ЗВ)  оксиды диоксид а оксид ажа диоксид Всего по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ения выбросов хнических реше- плива в уносе: оуловителях: золой: повителе: ы, выделяющейся неполноты сгора- пива: цеств в атмосфер                                                                        | В <sub>г</sub> S <sup>r</sup> A <sup>r</sup> Q <sup>r</sup> T <sub>г</sub> K <sub>NO2</sub>                                                                                                                                                                                                                                                                                  | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.322  0 0.5039 0.355  па на Дизельном то разовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917 0.1127002 0.2622005 0.4462930                           | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/год 0.0618740 0.0494992 0.0080436 0.0041400 0.0973728 0.2265408              |
| опливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  — дизтопливо:  Опичество (причество (при горении (при газа:  Объемный раборфицие  — | рания топлива: ты: оксидов азота, нт, зависящий ста в результате нт, учитывающых частиц, улав в серы, связые в серы, улавли оксидов углеро: поты вследстви расход газовозд нт, учитывающ асчет выброс: Наименованщего вец Азота Азота Азота Сера Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | образующихся вот степени сниже применения телимаемых в золодаемых летучей заемых в золодаемых ведетвой смеси:  ий характер топлов вредных ведие загрязняющества (3В)  оксиды диоксид а оксид ажа диоксид в сксид в загрязняюще загрязняющества (3В)  оксиды диоксид в оксид в зака диоксид в зака диоксид в загрязняющества (3В)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора- пива:  ществ в атмосфер                                                                  | В <sub>г</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>г</sub> K <sub>NO2</sub> β  X  η η' η' Κ <sub>CO</sub> 4  V <sub>г</sub> Κ  му при работе коти  ж формула  2/* K <sub>NO2</sub> *(1 - β) 0.8* П <sub>NOX</sub> 13* П <sub>NOX</sub> 13* П <sub>NOX</sub> 13* П <sub>NOX</sub> 14 - η')*(1 - η'') *K <sub>CO</sub> *(1 - q <sub>d</sub> /100) | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.322  0 0.5039 0.355 па на Дизельном то Выбросы загрязі Максимальноразовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917 0.1127002 0.2622005 0.4462930 | кг/ч т/год % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/год 0.0618740 0.0494992 0.0080436 0.0041400 0.0973728 0.2265408              |
| опливо:  - дизтопливо:  - дизтопличество ий:  - доля оксидо  - до | рания топлива: ты: оксидов азота, нт, зависящий ста в результате нт, учитывающых частиц, улав в серы, связые в серы, улавли оксидов углеро: поты вследстви расход газовозд нт, учитывающ асчет выброс: Наименованщего вец Азота Азота Азота Сера Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | образующихся вот степени сниже применения телимаемых в золодаемых летучей заемых в золодаемых ведетвой смеси:  ий характер топлов вредных ведие загрязняющества (3В)  оксиды диоксид а оксид ажа диоксид в сксид в загрязняюще загрязняющества (3В)  оксиды диоксид в оксид в зака диоксид в зака диоксид в загрязняющества (3В)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора- пива:  ществ в атмосфер  Расчетная  П = 0.001*8*0  П = 0.001*8*0  П = 0.001*8*Q  Очнику: | В <sub>г</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>г</sub> K <sub>NO2</sub> β  X  η η' η' Κ <sub>CO</sub> 4  V <sub>г</sub> Κ  му при работе коти  ж формула  2/* K <sub>NO2</sub> *(1 - β) 0.8* П <sub>NOX</sub> 13* П <sub>NOX</sub> 13* П <sub>NOX</sub> 13* П <sub>NOX</sub> 14 - η')*(1 - η'') *K <sub>CO</sub> *(1 - q <sub>d</sub> /100) | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.322  0 0.5039 0.355 па на Дизельном то Выбросы загрязі Максимальноразовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917 0.1127002 0.2622005 0.4462930 | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж % м³/сек Валовый, т/год 0.0494992 0.0080436 0.0041400 0.0973728 0.2265408 0.3855964          |
| Гопливо:  — дизтоплив Геплота сгор Время работ (оличество оксидов азотний:  Доля оксидов образовать обр | рания топлива: ты: оксидов азота, нт, зависящий ста в результате нт, учитывающых частиц, улав в серы, связые в серы, улавли оксидов углеро: поты вследстви расход газовозд нт, учитывающ асчет выброс: Наименованщего вец Азота Азота Азота Сера Углеро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | образующихся нот степени сниже применения те: ий долю золы то применения в золю ваемых летучей заемых летучей заемых летучей заемых петучей заемых в золоу за на ед.теплоти е механической душной смеси: ий характер топлов вредных вети характер топлов вредных вети загрязняющества (ЗВ)  оксиды диоксид ажа диоксид в оксид род оксид в ок | ения выбросов хнических реше- плива в уносе:  оуловителях:  золой:  повителе:  ы, выделяющейся  неполноты сгора- пива:  ществ в атмосфер                                                                  | В <sub>г</sub> S <sup>r</sup> A <sup>r</sup> Q <sub>i</sub> <sup>r</sup> T <sub>г</sub> K <sub>NO2</sub> β  X  η η' η' Κ <sub>CO</sub> 4  V <sub>г</sub> Κ  му при работе коти  ж формула  2/* K <sub>NO2</sub> *(1 - β) 0.8* П <sub>NOX</sub> 13* П <sub>NOX</sub> 13* П <sub>NOX</sub> 13* П <sub>NOX</sub> 14 - η')*(1 - η'') *K <sub>CO</sub> *(1 - q <sub>d</sub> /100) | 69 16.56 0.3 0.025 42.75 240 0.0874  0 0.01 0 0.02 0 0.32  0 0.322  0 0.5039 0.355  па на Дизельном то разовый, г/с 0.0716135 0.0572908 0.0093098 0.0047917 0.1127002 0.2622005 0.4462930                           | кг/ч т/год % % МДж/кг ч/год кг/ГДж кг/ГДж кг/ГДж м³/сек Валовый, т/го, 0.0618740 0.09494992 0.0080436 0.0041400 0.0973728 0.2265408 0.3855964 |

|      |                     | _         |           |
|------|---------------------|-----------|-----------|
| 0304 | Азота оксид         | 0.0266019 | 0.2636260 |
| 0328 | Сажа                | 0.0047917 | 0.0041400 |
| 0330 | Сера диоксид        | 0.1127002 | 0.1071393 |
| 0337 | Углерод оксид       | 0.5853265 | 5.8501642 |
|      | Всего по источнику: | 0.8931244 | 7.8473837 |

| № ИЗА | 0013 | Наименование источника загрязнения атмо-<br>сферы | Выхлопная труба                                 |
|-------|------|---------------------------------------------------|-------------------------------------------------|
| №ИВ   | 001  | Наименование источника выделения                  | Резервный генератор Caterpillar<br>SR-4 HV/2820 |

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

М<sub>сек</sub>=e<sub>i</sub>\*P₃/3600, г/с

расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или

где:

е; - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: P<sub>3</sub> 1640 кВт

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:

#### $M_{rog} = q_i * B_{rog} / 1000, \tau / rog$

где:

q<sub>і</sub> - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):

Вгод

3 57

т/год

|                                                                                                                                            | 194                |         |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------------------|
| определяется по формуле: <b>B</b> <sub>год</sub> = <b>b</b> <sub>3</sub> * <b>k</b> * <b>P</b> <sub>3</sub> * <b>T</b> *10 <sup>-6</sup> : |                    |         |                   |
| Dooyon Tonnung:                                                                                                                            | b                  | 419.54  | л/ч               |
| Расход топлива:                                                                                                                            | b                  | 365     | кг/ч              |
| Средний удельный расход топлива:                                                                                                           | b₃                 | 223     | г/кВт.ч           |
| Плотность дизельного топлива:                                                                                                              | ρ                  | 0.87    | кг/л              |
| Коэффициент использования:                                                                                                                 | k                  | 1       |                   |
| Время работы:                                                                                                                              | Т                  | 9.8     | ч/год             |
| Исходные данные по                                                                                                                         | источнику выброс   | ОВ      |                   |
| Количество:                                                                                                                                | N                  | 1       | ШТ                |
| Частота вращения вала:                                                                                                                     | n                  | 1500    | об/мин            |
| Группа СДУ:                                                                                                                                |                    | Γ       |                   |
| Расчет расхода отрабо                                                                                                                      | танных газов и топ | лива    |                   |
| Расход отработанных газов, <b>G</b> <sub>or</sub> <b>= 8.72*10</b> <sup>-6*</sup> <b>b</b> ₃ <b>*P</b> ₃                                   | Gor                | 3.189   | кг/с              |
| Температура отходящих газов:                                                                                                               | Тог                | 400     | °C                |
| Плотность газов при 0°C:                                                                                                                   | γ0 <sub>or</sub>   | 1.31    | кг/м <sup>3</sup> |
| Плотность газов при $T_{or}$ (K), $\gamma O_{or} / (1 + T_{or} / 273)$                                                                     | <b>У</b> ог        | 0.53157 | кг/м <sup>3</sup> |
| Объемный расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>y</b> <sub>or</sub>                               | Q <sub>or</sub>    | 5.9994  | м <sup>3</sup> /с |
| D                                                                                                                                          |                    |         |                   |

Расчет выбросов вредных веществ в атмосферу всего от дизель-генератора: Максимально-Валовый выразовый вы-Код ei, qi, Наименование ЗВ брос 3B брос M<sub>сек</sub>, г/с г/кВт.ч г/кг топлива  $M_{rog}$ , т/год Азота оксиды 10.8 45 4.92 0.16074207 0301 Азота диоксид 3.936 0.1285937 0304 0.6396 0.0208965 Азота оксид 0328 Сажа 0.6 2.5 0.2733333 0.0089301 0.5466667 0.0178602 0330 Сера диоксид 0.1071614 7.2 30 0337 Углерод оксид 3.28 0703 0.000013 0.000055 0.0000059 0.0000002 Бенз(а)пирен 0.0021432 1325 Формальдегид 0.15 0.0683333 0.6 2754 Углеводороды пр. С12-С19 3.6 15 1.64 0.0535807 Всего по источнику: 10.3839392 0.339166

| №<br>N3A | 0077 - 0078 | Наименование источника загрязнения атмо-<br>сферы | Выхлопная труба                                 |
|----------|-------------|---------------------------------------------------|-------------------------------------------------|
| № ИВ     | 001         | Наименование источника выделения                  | Дизельный генератор насосов<br>Caterpillar 3406 |

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

M<sub>сек</sub>=e<sub>i</sub>\*P<sub>э</sub>/3600, г/с

где:

е<sub>і</sub> - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2):

| Эксплуатац<br>новки: | ционная мощность стационарной д                                                           | P <sub>9</sub>                   | 184.5            | кВт                                 |                          |
|----------------------|-------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------------------------------|--------------------------|
|                      | вый выброс і-го вещества за год стац                                                      | ционарной дизел                  | ьной установкой  | определяется по ф                   | ормуле:                  |
|                      | ·                                                                                         | $M_{rod} = q_i * B_{rod} / 1000$ | , т/год          |                                     |                          |
| где:                 |                                                                                           |                                  |                  |                                     |                          |
|                      | і-го вредного вещества, г/кг топлива,                                                     |                                  |                  |                                     |                          |
| лица 3 или           |                                                                                           | •                                | авляющих экспл   | уатационный цикл,                   | г/кг топлива (таб-       |
| расход топ           | лива стационарной дизельной устано                                                        | вкой за год (бе-                 |                  |                                     |                          |
|                      | отчетным данным об эксплуатации тся по формуле: $B_{rog} = b_3 * k * P_3 * T * 10^{-6}$ : | установки) или                   | В <sub>год</sub> | 1.27                                | т/год                    |
|                      |                                                                                           |                                  | b                | 34.48                               | л/ч                      |
| Расход топ           | лива.                                                                                     |                                  | b                | 30                                  | кг/ч                     |
|                      | дельный расход топлива:                                                                   |                                  | b₃               | 163                                 | г/кВт.ч                  |
|                      | дизельного топлива:                                                                       |                                  | ρ                | 0.87                                | кг/л                     |
|                      | ент использования:                                                                        |                                  | k                | 1                                   |                          |
| Время рабо           | оты:                                                                                      |                                  | T                | 42.3                                | ч/год                    |
|                      | Исходные ,                                                                                | данные по исто                   | чнику выбросо    | В                                   |                          |
| Количество           |                                                                                           |                                  | N                | 1                                   | ШТ                       |
|                      | ащения вала:                                                                              |                                  | n                | 1500                                | об/мин                   |
| Группа СД:           | У:                                                                                        |                                  |                  | Б                                   |                          |
|                      |                                                                                           | да отработаннь                   | іх газов и топлі |                                     |                          |
|                      | работанных газов, <b>G</b> ₀ <mark>г = 8.72*10<sup>-6</sup>*b₃*Р</mark>                   | э                                | Gor              | 0.262                               | кг/с                     |
|                      | ра отходящих газов:                                                                       |                                  | T <sub>or</sub>  | 400                                 | °C                       |
|                      | газов при 0°C:                                                                            |                                  | γ0 <sub>οΓ</sub> | 1.31                                | кг/м <sup>3</sup>        |
|                      | газов при T <sub>ог</sub> (K), <b>у0<sub>or</sub>/(1+T<sub>or</sub>/273)</b>              |                                  | <b>Y</b> ог      | 0.53157                             | кг/м <sup>3</sup>        |
| Объемный             | расход отработанных газов, $\mathbf{Q}_{or}$ = $\mathbf{G}_{or}$ /                        |                                  | Q <sub>or</sub>  | 0.4933                              | M <sup>3</sup> /C        |
|                      | Расчет выбросов вредных в                                                                 | еществ в атмос                   | феру всего от д  | цизель-генератора:                  |                          |
| Код<br>3В            | Наименование ЗВ                                                                           | e <sub>i</sub> ,                 | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                      |                                                                                           | г/кВт.ч                          | г/кг топлива     | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|                      | Азота оксиды                                                                              | 9.6                              | 40               | 0.492                               | 0.05080239               |
| 0301                 | Азота диоксид                                                                             |                                  |                  | 0.3936                              | 0.0406419                |
| 0304                 | Азота оксид                                                                               |                                  |                  | 0.06396                             | 0.0066043                |
| 0328                 | Сажа                                                                                      | 0.5                              | 2                | 0.025625                            | 0.0025401                |
| 0330                 | Сера диоксид                                                                              | 1.2                              | 5                | 0.0615                              | 0.0063503                |
| 0337                 | Углерод оксид                                                                             | 26                               | 0.31775          | 0.0330216                           |                          |
| 0703                 | Бенз(а)пирен                                                                              | 0.000012                         | 0.000055         | 0.0000006                           | 0.00000007               |
| 1325                 | Формальдегид                                                                              | 0.12                             | 0.5              | 0.00615                             | 0.000635                 |
| 2754                 | Углеводороды пр. С12-С19                                                                  | 2.9                              | 12               | 0.148625                            | 0.0152407                |
|                      | Всего по источни                                                                          |                                  | •                | 1.0172106                           | 0.10503397               |

| №<br>ИЗА | 0136 | Наименование источника загрязнения атмо-<br>сферы | Выхлопная труба                                         |
|----------|------|---------------------------------------------------|---------------------------------------------------------|
| №ИВ      | 001  | Наименование источника выделения                  | Резервный дизельный генера-<br>mop Caterpillar 3516B HD |
|          | _    |                                                   | _                                                       |

Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

M<sub>сек</sub>=e<sub>i</sub>\*P<sub>э</sub>/3600, г/с

где:

е<sub>і</sub> - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: P<sub>э</sub> 2000 кВт

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:

М<sub>год</sub>=q<sub>i</sub>\*В<sub>год</sub>/1000, т/год

где:

q<sub>і</sub> - выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):

| расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: <b>B</b> <sub>rog</sub> = <b>b</b> <sub>3</sub> * <b>k</b> * <b>P</b> <sub>3</sub> * <b>T</b> * <b>10</b> <sup>-6</sup> : | В <sub>год</sub> | 10.18 | т/год   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|---------|
| Воруал толлира:                                                                                                                                                                                                                                                       | Ь                | 500   | л/ч     |
| Расход топлива:                                                                                                                                                                                                                                                       | b                | 435.0 | кг/ч    |
| Средний удельный расход топлива:                                                                                                                                                                                                                                      | b₃               | 218   | г/кВт.ч |
| Плотность дизельного топлива:                                                                                                                                                                                                                                         | ρ                | 0.87  | кг/л    |
| Коэффициент использования:                                                                                                                                                                                                                                            | k                | 1     |         |
| Время работы:                                                                                                                                                                                                                                                         | T                | 23.4  | ч/год   |

Исходные данные по источнику выбросов

| Количест  | BO:                                                                                                           | N                | 1                | ШТ                                  |                          |
|-----------|---------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
| Частота   | вращения вала:                                                                                                | n                | 1500             | об/мин                              |                          |
| Группа С  | ДУ:                                                                                                           | Γ                |                  |                                     |                          |
|           | Расчет расхода                                                                                                | отработаннь      | ых газов и топлі | ива                                 |                          |
| Расход о  | тработанных газов, <b>G</b> <sub>or</sub> = <b>8.72*10<sup>-6</sup>*b</b> <sub>3</sub> <b>*P</b> <sub>3</sub> |                  | G <sub>or</sub>  | 3.802                               | кг/с                     |
| Темпера   | тура отходящих газов:                                                                                         |                  | T <sub>or</sub>  | 400                                 | ٥C                       |
| Плотност  | гь газов при 0°С:                                                                                             |                  | $\gamma 0_{or}$  | 1.31                                | кг/м <sup>3</sup>        |
| Плотност  | гь газов при Т <sub>ог</sub> (К), <b>ү0<sub>ог</sub>/(1+Т<sub>ог</sub>/273)</b>                               |                  | <b>У</b> ог      | 0.53157                             | кг/м <sup>3</sup>        |
| Объемнь   | ый расход отработанных газов, $\mathbf{Q}_{or}$ = $\mathbf{G}_{or}$ / $\mathbf{\gamma}_{or}$                  |                  | $Q_{or}$         | 7.1522                              | м <sup>3</sup> /с        |
|           | Расчет выбросов вредных веш                                                                                   | цеств в атмос    | феру всего от д  | цизель-генератора:                  |                          |
| Код<br>3В | Наименование ЗВ                                                                                               | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                                                                               | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды                                                                                                  | 10.8             | 45               | 6                                   | 0.458055                 |
| 0301      | Азота диоксид                                                                                                 |                  |                  | 4.8                                 | 0.366444                 |
| 0304      | Азота оксид                                                                                                   |                  |                  | 0.78                                | 0.0595472                |
| 0328      | Сажа                                                                                                          | 0.6              | 2.5              | 0.3333333                           | 0.0254475                |
| 0330      | Сера диоксид                                                                                                  | 1.2              | 5                | 0.6666667                           | 0.050895                 |
| 0337      | Углерод оксид                                                                                                 | 7.2              | 30               | 4                                   | 0.30537                  |
| 0703      | Бенз(а)пирен                                                                                                  | 0.000013         | 0.000055         | 0.0000072                           | 0.0000006                |
| 1325      | Формальдегид                                                                                                  | 0.15             | 0.6              | 0.0833333                           | 0.0061074                |
| 2754      | Углеводороды пр. С12-С19                                                                                      | 15               | 2                | 0.152685                            |                          |
| _         | Всего по источнику:                                                                                           | 12.6633405       | 0.9664967        |                                     |                          |

| № ИЗА<br><i>№</i> ИВ                                                               | 0014, 0079<br><i>001</i>         | Наименование источника загрязнения<br>атмосферы<br>Наименование источника выделения |                            |                  | Дыхательный<br>Резервуар с б         | й клапан<br>Эизельным топ                                                        | ПППВОМ            |
|------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|----------------------------|------------------|--------------------------------------|----------------------------------------------------------------------------------|-------------------|
|                                                                                    |                                  |                                                                                     | у выполнен соглас          |                  |                                      |                                                                                  |                   |
|                                                                                    |                                  |                                                                                     | веществ в атмосф           |                  |                                      |                                                                                  | по опродо         |
|                                                                                    |                                  |                                                                                     | данные:                    |                  |                                      | счетные форму                                                                    | /лы:              |
| Количество р                                                                       |                                  | N <sub>p</sub>                                                                      | 1                          | ШТ               |                                      |                                                                                  | •                 |
| Объем<br>(одноцелевь                                                               | резервуара<br>іх резервуа-       | V <sub>pe3</sub>                                                                    | 10                         | M <sup>3</sup>   | Годовые выб                          | бросы загрязняю<br>атмосферу, т/го                                               |                   |
| ров)                                                                               | 200                              |                                                                                     | Горизонтолицій і           | 10004411114      | C=(V *P +                            | ·У <sub>вл*</sub> В <sub>вл</sub> )*К <sub>р</sub> мах*10                        | -6+C *K *N        |
| Тип резервуа Объем перен                                                           |                                  | Вобщ                                                                                | Горизонтальный, і<br>28.44 |                  | G-(7 <sub>03</sub> D <sub>03</sub> T | Увл∗Ювл) Кр ТО                                                                   | тохр Кнп Ир       |
|                                                                                    | качки<br>Качки в течение         |                                                                                     |                            | т/год            | Максима                              | ально-разовый в                                                                  | ыброс, г/с:       |
| осенне-зимн                                                                        | его периода                      | Воз                                                                                 | 14.22                      | т/год            |                                      | ·                                                                                | •                 |
|                                                                                    | качки в течение<br>него периода  | Ввл                                                                                 | 14.22                      | т/год            | М                                    | =C <sub>1</sub> *K <sub>p</sub> <sup>Max</sup> *V <sub>ч</sub> <sup>Max</sup> /3 | 600               |
|                                                                                    |                                  | l                                                                                   | Расчет                     | ные показатели   | !<br>:                               |                                                                                  |                   |
| Средние удельные выбросы из резервуара в осенне-зимний период года (приложение 12) |                                  |                                                                                     |                            |                  | Уоз                                  | 2.36                                                                             | г/т               |
| Средние уде года (прилож                                                           |                                  | из резе                                                                             | ервуара в весенне-         | летний период    | У <sub>вл</sub>                      | 3.15                                                                             | г/т               |
|                                                                                    |                                  | родукта                                                                             | в в резервуаре (при        | иложение 12)     | C <sub>1</sub>                       | 3.92                                                                             | г/м³              |
| Опытный коз                                                                        | ффициент (при                    | ложени                                                                              | e 8)                       | •                | К <sub>р</sub> мах                   | 1                                                                                |                   |
|                                                                                    | ый объем паров<br>мя его закачки | оздушн                                                                              | ой смеси, вытесня          | емой из резер-   | V <sub>u</sub> max                   | 8                                                                                | м <sup>3</sup> /ч |
| Выбросы пар                                                                        |                                  | ктов прі                                                                            | и хранении дизтоп          | пива в одном ре- | $G_{XP}$                             | 0.27                                                                             | т/год             |
|                                                                                    | оффициент (при                   | ложени                                                                              | e 12)                      |                  | Кнп                                  | 0.0029                                                                           |                   |
|                                                                                    |                                  |                                                                                     | и паров нефтепро           | одуктов в атмосо |                                      | вуара:                                                                           |                   |
| Максимальні                                                                        | ый выброс загря                  | зняющі                                                                              | их веществ в атмо          | сферу            | M                                    | 0.0087111                                                                        | г/с               |
| Годовые выбросы загрязняющих веществ в атмосферу                                   |                                  |                                                                                     |                            | G                | 0.000861352                          | т/год                                                                            |                   |
|                                                                                    |                                  |                                                                                     |                            | •                | Масс. сод-                           | Количеств                                                                        | о выбросов        |
| Код ЗВ                                                                             |                                  | На                                                                                  | именование ЗВ              |                  | ние С <sub>і</sub> , %<br>масс.      | г/с                                                                              | т/год             |
| 0333                                                                               | Сероводород                      |                                                                                     |                            |                  | 0.28%                                | 0.0000244                                                                        | 0.0000024         |
| 2754                                                                               | Углеводороды                     | предел                                                                              | ьные С12-С19               |                  | 99.72%                               | 0.0086867                                                                        | 0.0008589         |
|                                                                                    |                                  | Bce                                                                                 | его по источнику:          | <u> </u>         |                                      | 0.0087111                                                                        | 0.0008613         |

| № ИЗА            | 0800                                                                             | Наименование источника загрязне-<br>ния атмосферы |   | ıка загрязне <b>-</b> | Дыхательный клапан                          |  |  |
|------------------|----------------------------------------------------------------------------------|---------------------------------------------------|---|-----------------------|---------------------------------------------|--|--|
| № ИВ             | 001                                                                              | Наименование источника выделе-<br>ния             |   | ика выделе-           | Резервуар с дизельным топливом              |  |  |
|                  |                                                                                  |                                                   |   |                       | 2.09-2004 "Методические указания по опреде- |  |  |
| лению выб        | лению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г. |                                                   |   |                       |                                             |  |  |
| Исходные данные: |                                                                                  |                                                   |   | Расчетные формулы:    |                                             |  |  |
| Количество       | резервуаров                                                                      | N <sub>p</sub>                                    | 1 | ШТ                    |                                             |  |  |

| Объем резервуара<br>(одноцелевых резервуа-<br>ров)    | V <sub>pe3</sub> | 10.5               | M <sup>3</sup>  | Годовые выбросы загрязняющих веществ в атмосферу, т/год:                              |                                                         |                                                                   |
|-------------------------------------------------------|------------------|--------------------|-----------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|
| Тип резервуара                                        |                  | Горизонтальный, н  | наземный        | $G=(Y_{03}*B_{03}+Y_{03})$                                                            | ′ <sub>вл*</sub> В <sub>вл</sub> )*К <sub>р</sub> мах*1 | 0 <sup>-6</sup> +G <sub>хР</sub> *К <sub>нП</sub> *N <sub>р</sub> |
| Объем перекачки                                       | Вобщ             | 3.57               | т/год           | Максимально-разовый выброс, г/с:                                                      |                                                         |                                                                   |
| Объем перекачки в течение осенне-зимнего периода      | B <sub>03</sub>  | 1.79               | т/год           |                                                                                       |                                                         |                                                                   |
| Объем перекачки в течение весенне-летнего периода     | Ввл              | 1.79               | т/год           | M=C <sub>1</sub> *K <sub>p</sub> <sup>Max</sup> *V <sub>·l</sub> <sup>Max</sup> /3600 |                                                         |                                                                   |
|                                                       |                  | Расчет             | ные показатели  | :                                                                                     |                                                         |                                                                   |
| Средние удельные выброс года (приложение 12)          | Уоз              | 2.36               | г/т             |                                                                                       |                                                         |                                                                   |
| Средние удельные выброс года (приложение 12)          | У <sub>вл</sub>  | 3.15               | г/т             |                                                                                       |                                                         |                                                                   |
| Концентрация паров нефте                              | продукт          | а в резервуаре (пр | иложение 12)    | C <sub>1</sub>                                                                        | 3.92                                                    | г/м <sup>3</sup>                                                  |
| Опытный коэффициент (пр                               |                  |                    | •               | К <sub>р</sub> мах                                                                    | 1                                                       |                                                                   |
| Максимальный объем паро<br>вуара во время его закачки |                  | ной смеси, вытесня | немой из резер- | $V_{q}^{max}$                                                                         | 8                                                       | м <sup>3</sup> /ч                                                 |
| Выбросы паров нефтепрод резеруаре (приложение 13      | уктов пр         | ои хранении дизтог | ілива в одном   | $G_{XP}$                                                                              | 0.27                                                    | т/год                                                             |
| Опытный коэффициент (пр                               |                  | ие 12)             |                 | Кнп                                                                                   | 0.0029                                                  |                                                                   |
|                                                       |                  | ы паров нефтепро   | дуктов в атмос  | реру из резерву                                                                       | /apa:                                                   |                                                                   |
| Максимальный выброс заг                               | ловнев           | цих веществ в атмо | сферу           | M                                                                                     | 0.0087111                                               | г/с                                                               |
| Годовые выбросы загрязня                              | ющих в           | еществ в атмосфер  | ру              | G                                                                                     | 0.0007928                                               | т/год                                                             |
|                                                       |                  |                    |                 | Масс. сод-                                                                            | Количес                                                 | тво выбросов                                                      |
| Код 3В Наименование 3В                                |                  |                    |                 | ние С <sub>і</sub> , %<br>масс.                                                       | г/с                                                     | т/год                                                             |
| 0333 Сероводород                                      |                  |                    |                 | 0.28%                                                                                 | 0.0000244                                               | 0.0000022                                                         |
| 2754 Углеводороды                                     | ы предел         | льные С12-С19      |                 | 99.72%                                                                                | 0.0086867                                               | 0.0007906                                                         |
| ·                                                     | Вс               | его по источнику:  |                 |                                                                                       | 0.0087111                                               | 0.0007928                                                         |

| № ИЗА               | 0081                              |                 | енование источни<br>тмосферы | ика загрязне-        | Дыхательный клапан                     |                                                                                     |                                                                   |  |  |
|---------------------|-----------------------------------|-----------------|------------------------------|----------------------|----------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| №ИВ                 | 001                               | Наим:<br>ния    | енование источн              | ика выделе-          | Резервуар с д                          | изельным то                                                                         | изельным топливом                                                 |  |  |
|                     |                                   |                 | у выполнен соглас            |                      |                                        |                                                                                     | ания по опреде-                                                   |  |  |
| лению выб           | росов загрязн                     | яющих           | веществ в атмос              | феру из резерву      | <b>аров"</b> , Астана, 2               | 005 г.                                                                              |                                                                   |  |  |
|                     | Ис                                | ходные          | данные:                      |                      | Pac                                    | четные форм                                                                         | іулы:                                                             |  |  |
| Количество          | резервуаров                       | $N_p$           | 1                            | ШТ                   |                                        |                                                                                     |                                                                   |  |  |
| Объем               | резервуара                        |                 |                              |                      | Годовые выбр                           | осы загрязнян                                                                       | ощих веществ в                                                    |  |  |
| (одноцелеві<br>ров) | ых резервуа-                      | $V_{pe3}$       | 40                           | M <sup>3</sup>       | атмосферу, т/год:                      |                                                                                     |                                                                   |  |  |
| Тип резерву         | /apa                              |                 | Горизонтальный, і            | наземный             | G=(Y <sub>03</sub> *B <sub>03</sub> +) | <sup>′<sub>вл∗</sub>В<sub>вл</sub>)*К<sub>р</sub>мах*1</sup>                        | 0 <sup>-6</sup> +G <sub>хР</sub> *К <sub>нП</sub> *N <sub>Р</sub> |  |  |
| Объем пере          | качки                             | Вобщ            | 62.99                        | т/год                | ,                                      |                                                                                     | ·                                                                 |  |  |
| Объем пере          | екачки в тече-<br>зимнего пери-   | B <sub>o3</sub> | 31.50                        | т/год                | Максимально-разовый выброс, г/с:       |                                                                                     |                                                                   |  |  |
|                     | екачки в тече-<br>е-летнего пе-   | Ввл             | 31.50                        | т/год                | NA-                                    | .C *L Max*/\ Max/                                                                   | 2600                                                              |  |  |
| риода               | e-nernero ne-                     | ВВЛ             | 31.30                        | 1/10Д                | 141-                                   | =C <sub>1</sub> *K <sub>p</sub> <sup>max</sup> *V <sub>ч</sub> <sup>max</sup> /3600 |                                                                   |  |  |
| риода               |                                   |                 | Расчет                       | ⊥<br>гные показатели | •                                      |                                                                                     |                                                                   |  |  |
| Средние уд          | епьные выбросі                    | ы из рез        | вервуара в осенне-           |                      |                                        |                                                                                     |                                                                   |  |  |
| года (прило         | •                                 | J. 1.0 p 00     | .op 2 / ap a 2 0 0 0 0       | этин нэртэд          | У <sub>03</sub>                        | 2.36                                                                                | г/т                                                               |  |  |
|                     |                                   | ы из рез        | вервуара в весенне           | е-летний период      | .,                                     | 0.45                                                                                | ,                                                                 |  |  |
| года (прило         |                                   |                 | 1 7 1                        |                      | У <sub>вл</sub>                        | 3.15                                                                                | г/т                                                               |  |  |
| Концентрац          | ия паров нефте                    | продукт         | а в резервуаре (пр           | оиложение 12)        | C <sub>1</sub>                         | 3.92                                                                                | г/м <sup>3</sup>                                                  |  |  |
|                     | эффициент (пр                     |                 |                              | •                    | K <sub>p</sub> max                     | 1                                                                                   |                                                                   |  |  |
|                     | ный объем паро<br>емя его закачки |                 | ной смеси, вытесн            | яемой из резер-      | V <sub>q</sub> max                     | 20                                                                                  | м <sup>3</sup> /ч                                                 |  |  |
|                     | ров нефтепрод<br>приложение 13)   |                 | ои хранении дизтог           | плива в одном        | $G_{XP}$                               | 0.27                                                                                | т/год                                                             |  |  |
|                     | эффициент (пр                     |                 | ие 12)                       |                      | Кнп                                    | 0.0029                                                                              |                                                                   |  |  |
|                     | В                                 | ыбрось          | ы паров нефтепро             | одуктов в атмос      | феру из резерв                         | уара:                                                                               |                                                                   |  |  |
| Максимальн          |                                   |                 | цих веществ в атмо           |                      | M                                      | 0.0217778                                                                           | г/с                                                               |  |  |
| Годовые вы          | бросы загрязня                    | ющих в          | еществ в атмосфе             | ру                   | G                                      | 0.0009565                                                                           | т/год                                                             |  |  |
| <del></del>         |                                   |                 |                              |                      | Масс. сод-                             | Количес                                                                             | гво выбросов                                                      |  |  |
| Код ЗВ              |                                   | На              | именование ЗВ                |                      | ние С <sub>і</sub> , %<br>масс.        | г/с                                                                                 | т/год                                                             |  |  |
| 0333                | Сероводород                       |                 |                              |                      | 0.28%                                  | 0.0000610                                                                           | 0.0000027                                                         |  |  |
| 2754                | Углеводородь                      | і предел        | тьные C12-C19                |                      | 99.72%                                 | 0.0217168                                                                           | 0.0009539                                                         |  |  |
|                     |                                   |                 | его по источнику:            | :                    |                                        | 0.0217778                                                                           | 0.0009566                                                         |  |  |

| № ИЗА           | 0137            |                 | енование источни<br>тмосферы | ıка загрязне <b>-</b>   | Дыхательный клапан            |                                                       |                                                                   |  |
|-----------------|-----------------|-----------------|------------------------------|-------------------------|-------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|--|
| № ИВ            | 001             | Наим<br>ния     | енование источн              | ика выделе-             | Резервуар с д                 | Резервуар с дизельным топливом                        |                                                                   |  |
| Расче           | т выбросов в ат | мосфер          | у выполнен соглас            | но: <b>РНД 211.2.02</b> | .09-2004 "Метод               | ические указ                                          | ания по опреде-                                                   |  |
| лению выб       | росов загрязн   | яющих           | веществ в атмосо             | реру из резерву         | <b>аров"</b> , Астана, 2      | 005 г.                                                |                                                                   |  |
|                 | Ис              | ходные          | е данные:                    |                         | Pac                           | четные форм                                           | иулы:                                                             |  |
| Количество      | резервуаров     | N <sub>D</sub>  | 1                            | ШТ                      |                               |                                                       |                                                                   |  |
| Объем           | резервуара      |                 |                              |                         | Годовые выбр                  | осы загрязня                                          | ющих веществ в                                                    |  |
| (одноцелев ров) | ых резервуа-    | $V_{pe3}$       | 12                           | M <sup>3</sup>          | атмосферу, т/год:             |                                                       | од:                                                               |  |
| Тип резерву     | vana            |                 | горизонтальный, н            | наземный                | G=(V.,*B.,+V                  | ′B)*K <sup>Max</sup> *1                               | 0 <sup>-6</sup> +G <sub>ХР</sub> *К <sub>НП</sub> *N <sub>р</sub> |  |
| Объем пере      |                 | Вобщ            | 10.18                        | т/год                   | 0 (503 203 5                  | вл≔вл <b>, ∴</b> р .                                  | о тодитенитер                                                     |  |
|                 | екачки в тече-  | — оощ           | 10.10                        | ,,,од                   |                               |                                                       |                                                                   |  |
|                 | -зимнего пери-  | B <sub>o3</sub> | 5.09                         | т/год                   | Максимал                      | тьно-разовый                                          | выброс, г/с:                                                      |  |
| ода             |                 | -03             |                              |                         |                               |                                                       |                                                                   |  |
|                 | екачки в тече-  |                 |                              |                         |                               |                                                       |                                                                   |  |
|                 | не-летнего пе-  | Ввл             | 5.09                         | т/год                   | M=                            | C <sub>1</sub> *K <sub>D</sub> Max*V <sub>4</sub> Max | /3600                                                             |  |
| риода           |                 | 5,1             |                              |                         |                               |                                                       |                                                                   |  |
|                 |                 |                 | Расчет                       | ные показатели          |                               |                                                       |                                                                   |  |
| Средние уд      | ельные выброс   | ы из рез        | вервуара в осенне-           | зимний период           | .,                            | 0.00                                                  | ,                                                                 |  |
| года (прило     |                 | •               | . , .                        | •                       | Уоз                           | 2.36                                                  | г/т                                                               |  |
| Средние уд      | ельные выброс   | ы из рез        | вервуара в весенне           | -летний период          |                               | 0.45                                                  | -1-                                                               |  |
| года (прило     |                 | •               | . , .                        |                         | У <sub>вл</sub>               | 3.15                                                  | г/т                                                               |  |
| Концентрац      | ия паров нефте  | продукт         | га в резервуаре (пр          | иложение 12)            | C <sub>1</sub>                | 3.92                                                  | г/м <sup>3</sup>                                                  |  |
| Опытный ко      | эффициент (пр   | иложен          | ие 8)                        | •                       | K <sub>p</sub> <sup>мax</sup> | 1                                                     |                                                                   |  |
|                 |                 |                 | ной смеси, вытесня           | яемой из резер-         | Vumax                         | 0                                                     | м <sup>3</sup> /ч                                                 |  |
| вуара во вр     | емя его закачки | ,               |                              |                         | V <sub>y</sub> max            | 8                                                     | м°/ч                                                              |  |
| Выбросы па      | аров нефтепрод  | уктов п         | ои хранении дизтог           | лива в одном            |                               | 0.27                                                  | T/50.7                                                            |  |
| резеруаре (     | приложение 13)  |                 |                              |                         | $G_{XP}$                      | 0.27                                                  | т/год                                                             |  |
| Опытный ко      | эффициент (пр   | иложен          | ие 12)                       |                         | Кнп                           | 0.0029                                                |                                                                   |  |
|                 | В               | ыбросі          | ы паров нефтепро             | одуктов в атмос         | феру из резерву               | /ара:                                                 |                                                                   |  |
| Максималы       | ный выброс загр | язняюц          | цих веществ в атмо           | сферу                   | М                             | 0.0087111                                             | г/с                                                               |  |
| Годовые вь      | ібросы загрязня | ющих в          | еществ в атмосфер            | ру                      | G                             | 0.0008110                                             | т/год                                                             |  |
|                 |                 | -               |                              |                         | Масс. сод-                    | Количес                                               | тво выбросов                                                      |  |
| Код ЗВ          |                 | Ha              | именование 3В                |                         | ние C <sub>i</sub> , %        | г/с                                                   | т/год                                                             |  |
|                 |                 |                 |                              |                         | масс.                         | ·                                                     |                                                                   |  |
| 0333            | Сероводород     | -               |                              |                         | 0.28%                         | 0.0000244                                             | 0.0000023                                                         |  |
| 2754            | Углеводородь    | і преде.        | пьные С12-С19                |                         | 99.72%                        | 0.0086867                                             | 0.0008088                                                         |  |
|                 |                 | Вс              | его по источнику:            |                         |                               | 0.0087111                                             | 0.0008111                                                         |  |

| № ИЗА                                                                                  | 0082                          |                  | Наименование источника загрязнения<br>атмосферы Топливозаправщик |                           |                                                                                      |                                                         |                                                                   |
|----------------------------------------------------------------------------------------|-------------------------------|------------------|------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|
| № ИВ                                                                                   | 001                           | Наим             | енование источн                                                  | ика выделения             | Закачка и хра                                                                        | нение дизто                                             | плива                                                             |
|                                                                                        |                               |                  | 1 2                                                              | сно: <b>РНД 211.2.02.</b> | • • •                                                                                | •                                                       | ания по опреде-                                                   |
| лению вею                                                                              |                               |                  | свеществ в атмос<br>не данные:                                   | феру из резервуа          |                                                                                      | лоэт.<br><b>четные форм</b>                             | MULI.                                                             |
| Количество р                                                                           |                               | N <sub>D</sub>   | 1                                                                | ШТ                        | ]                                                                                    | четные форм                                             | тулы.                                                             |
| Объем<br>(одноцелевы<br>ров)                                                           | резервуара                    | V <sub>pe3</sub> | 60                                                               | M <sup>3</sup>            | Годовые выбросы загрязняющих веществ в атмосферу, т/год:                             |                                                         |                                                                   |
| Тип резервуа                                                                           | ара                           |                  | Горизонтальный,                                                  | наземный                  | G=(Y <sub>03</sub> *B <sub>03</sub> +Y                                               | ′ <sub>вл∗</sub> В <sub>вл</sub> )*К <sub>р</sub> мах*1 | 0 <sup>-6</sup> +G <sub>хР</sub> *К <sub>нП</sub> *N <sub>Р</sub> |
| Объем перен                                                                            | ачки                          | Вобщ             | 73                                                               | т/год                     |                                                                                      |                                                         |                                                                   |
| Объем перение осенне-<br>риода                                                         |                               | B <sub>o3</sub>  | 37                                                               | т/год                     | Максимально-разовый выброс, г/с:                                                     |                                                         |                                                                   |
| Объем перение весение риода                                                            |                               | Ввл              | 37                                                               | т/год                     | M=C <sub>1</sub> *K <sub>p</sub> <sup>Max</sup> *V <sub>ч</sub> <sup>Max</sup> /3600 |                                                         |                                                                   |
|                                                                                        |                               |                  |                                                                  | тные показатели:          |                                                                                      |                                                         |                                                                   |
| Средние уде<br>года (прилож                                                            | •                             | сы из ре         | зервуара в осенне                                                | -зимний период            | У <sub>03</sub>                                                                      | 2.36                                                    | г/т                                                               |
| Средние уде года (прилож                                                               |                               | сы из ре         | зервуара в весенн                                                | е-летний период           | У <sub>вл</sub>                                                                      | 3.15                                                    | г/т                                                               |
| Концентраци                                                                            | я паров нефт                  | епродун          | та в резервуаре (п                                               | риложение 12)             | C <sub>1</sub>                                                                       | 3.92                                                    | г/м <sup>3</sup>                                                  |
| Опытный коз                                                                            | ффициент (пр                  | риложен          | ние 8)                                                           |                           | K <sub>p</sub> <sup>мax</sup>                                                        | 1                                                       |                                                                   |
|                                                                                        | ый объем пар<br>мя его закачк |                  | лной смеси, вытесн                                               | няемой из резер-          | V <sub>y</sub> max                                                                   | 20                                                      | м <sup>3</sup> /ч                                                 |
| Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) |                               |                  | $G_{XP}$                                                         | 0.27                      | т/год                                                                                |                                                         |                                                                   |
|                                                                                        | ффициент (пр                  |                  | ние 12)                                                          |                           | Кнп                                                                                  | 0.0029                                                  |                                                                   |
|                                                                                        | i i                           | Выброс           | ы паров нефтепр                                                  | одуктов в атмосф          | реру из резерву                                                                      | ара:                                                    |                                                                   |
| Максимальн                                                                             |                               |                  | щих веществ в атм                                                |                           | M                                                                                    | 0.0217778                                               | г/с                                                               |
| Годовые выб                                                                            | росы загрязн                  | яющих і          | веществ в атмосфе                                                | еру                       | G                                                                                    | 0.0009846                                               | т/год                                                             |

|               |                   |                  |                                |                            | Масс. сод-                           | Количест                                | во выбросов                                                                                                          |
|---------------|-------------------|------------------|--------------------------------|----------------------------|--------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Код ЗВ        |                   | F                | Іаименование ЗВ                |                            | ние С <sub>і</sub> , %<br>масс.      | г/с                                     | т/год                                                                                                                |
| 0333          | Сероводоро        | Л                |                                |                            | 0.28%                                | 0.0000610                               | 0.0000028                                                                                                            |
| 2754          |                   | -                | ельные С12-С19                 |                            | 99.72%                               | 0.0217168                               | 0.0009818                                                                                                            |
|               | Топродород        | 15:b oH.         | 57.2.1.2.10                    |                            | 00.1.270                             | 0.0200                                  | 0.00000.0                                                                                                            |
| № ИВ          | 002               |                  | енование источн                |                            | Заправка рез                         |                                         |                                                                                                                      |
|               |                   |                  |                                | асно: <b>РНД 211.2.02.</b> |                                      |                                         | ния по опреде-                                                                                                       |
| лению выб     | бросов загрязі    | няющих           | веществ в атмо                 | сферу из резервуа          | <b>ров"</b> , Астана, 20             | 005 г.                                  |                                                                                                                      |
|               | И                 | сходнь           | іе данные:                     |                            | Pac                                  | четные форм                             | іулы:                                                                                                                |
|               | резервуаров       | N <sub>p</sub>   | 1                              | ШТ                         |                                      |                                         |                                                                                                                      |
| Объем         | резервуара        |                  |                                |                            |                                      | •                                       | ощих веществ в                                                                                                       |
| (одноцелев    | ых резервуа-      | $V_{pe3}$        | 40                             | $M^3$                      | a                                    | тмосферу, т/г                           | од:                                                                                                                  |
| ров)          |                   |                  |                                |                            |                                      |                                         |                                                                                                                      |
| Тип резерву   | yapa              |                  | Наземнь                        | ЫЙ                         | $G_p = G_{3ak} + G_{np.p.}$          | $G_{3a\kappa} = (C_p^{03*}Q_0)$         | <sub>з</sub> +С <sub>р</sub> <sup>вл*</sup> Q <sub>вл</sub> )*10 <sup>-6</sup> ;<br><sub>зл</sub> )*10 <sup>-6</sup> |
| Объем пере    | екачки            | Q <sub>общ</sub> | 84                             | м <sup>3</sup> /год        | G <sub>пр.р</sub>                    | =0,5*J*(Q <sub>03</sub> +Q <sub>i</sub> | <sub>зл</sub> )*10 <sup>-6</sup>                                                                                     |
| Объем пере    | екачки в тече-    |                  |                                |                            |                                      |                                         |                                                                                                                      |
| ние осенне    | е-зимнего пе-     | $Q_{o3}$         | 42                             | м <sup>3</sup> /год        | Максимал                             | тьно-разовый                            | выброс, г/с:                                                                                                         |
| риода         |                   |                  |                                |                            |                                      |                                         |                                                                                                                      |
| Объем пере    | екачки в тече-    |                  |                                |                            |                                      |                                         |                                                                                                                      |
| ние весенн    | е-летнего пе-     | $Q_{B\Pi}$       | 42                             | м <sup>3</sup> /год        |                                      | $M_p = (C_p^{\text{Max}} V_{cn})$       | /t                                                                                                                   |
| риода         |                   |                  |                                |                            |                                      | F . F,                                  |                                                                                                                      |
| •             |                   |                  | Расче                          | етные показатели:          | •                                    |                                         |                                                                                                                      |
| Объем слит    | гого нефтепрод    | іукта из         | автоцистерны в ре              |                            | V <sub>сл</sub>                      | 40                                      | M <sup>3</sup>                                                                                                       |
|               |                   | ••               | в нефтепродуктов               |                            |                                      |                                         |                                                                                                                      |
|               |                   |                  | ии резервуаров (               |                            | C <sub>p</sub> <sup>Max</sup>        | 2.25                                    | г/м <sup>3</sup>                                                                                                     |
| 17)           |                   |                  |                                |                            | -ρ                                   |                                         | .,                                                                                                                   |
|               | ия паров нефт     | епролук          | тов в выбросах па              | ровоздушной                |                                      |                                         |                                                                                                                      |
|               |                   |                  | в в осенне-зимний              |                            | C <sub>p</sub> o <sub>3</sub>        | 1.19                                    | г/м <sup>3</sup>                                                                                                     |
| жение 15, 1   |                   | -p-) -p-         |                                | priod (prii.o              | ο <sub>p</sub>                       |                                         | .,                                                                                                                   |
|               |                   | епролук          | тов в выбросах па              | ровоздушной                |                                      |                                         |                                                                                                                      |
|               |                   |                  | в в весенне-летни              |                            | Срвл                                 | 1.6                                     | г/м <sup>3</sup>                                                                                                     |
| жение 15, 1   |                   | оръучро          | B B Boooning North             | и пориод (прило            | Ор                                   | 1.0                                     | 17141                                                                                                                |
|               |                   | HHOLO U          | бъема (V <sub>сл</sub> ) нефте | пролукта                   | t                                    | 7200                                    | сек                                                                                                                  |
|               | выбросы при пр    |                  | o Bollia (Vall) Hospita        | лродукта                   | i                                    | 50                                      | Γ/M <sup>3</sup>                                                                                                     |
| A MONIDINIO D | .z.spoodi npii np |                  | Выбросы паров н                | нефтепродуктов в           | атмосферу.                           |                                         | 17191                                                                                                                |
| Выбросы п     | ои закачке и хр   |                  |                                |                            | G <sub>зак</sub>                     | 0.0001173                               | т/год                                                                                                                |
|               | г проливов на г   |                  | OCTP.                          |                            | G <sub>пр.р.</sub>                   | 0.0021026                               | т/год                                                                                                                |
| Броросы ОТ    | ו הח פטפוזונטקוז  | оворхи           |                                |                            | Опр.р.                               | 0.0021020                               | тлод                                                                                                                 |
| Максимали     | ший (разорыий)    | กเปรียกกา        | ЗВ при заполнени               | u nocongyanog              | М                                    | 0.0125000                               | г/с                                                                                                                  |
|               |                   |                  |                                |                            | G                                    | 0.0022199                               | т/год                                                                                                                |
| і одовые вы   | торосы паров н    | ефтепр           | одуктов от резерву             | уаров при закачке          |                                      |                                         | тлгод<br>гво выбросов                                                                                                |
| Код ЗВ        |                   | L                | Іаименование ЗВ                |                            | Масс. сод-<br>ние С <sub>і</sub> , % | ОЭРИПОЛ                                 | во выоросов                                                                                                          |
| код зв        |                   | -                | аименование об                 |                            | масс.                                | г/с                                     | т/год                                                                                                                |
| 0333          | Сероводоро        | л                |                                |                            | 0.28%                                | 0.0000350                               | 0.0000062                                                                                                            |
| 2754          |                   |                  | ельные С12-С19                 |                            | 99.72%                               | 0.0124650                               | 0.0000002                                                                                                            |
| 2104          | т этпеводород     |                  | сего по источник               | v.                         | 33.12/0                              | г/с                                     | т/год                                                                                                                |
| USSS          | Concrete          |                  | CETO HO NCTOAHNK               | у.                         |                                      | 0.0000960                               | <u> 1/10д</u><br>0.0000090                                                                                           |
| 0333          | Сероводоро        |                  | 2011110 C12 C12                |                            |                                      |                                         |                                                                                                                      |
| 2754          | углеводород       |                  | ельные С12-С19                 |                            |                                      | 0.0341818                               | 0.0031955                                                                                                            |
|               |                   | И                | того по источник               | y:                         |                                      | 0.0342778                               | 0.0032045                                                                                                            |

| № ИЗА                        | 0083 - 0084                     |                  | нование источн<br>мосферы | ика загрязне-            | Дыхательный клапан                                                                   |                                                        |                                                                    |  |
|------------------------------|---------------------------------|------------------|---------------------------|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--|
| №ИВ                          | 001                             | Наиме<br>ния     | нование источн            | ника выделе-             | Резервуар с д                                                                        | езервуар с дизельным топливом                          |                                                                    |  |
| Расче                        | т выбросов в ат                 | мосфер           | у выполнен согла          | сно: <b>РНД 211.2.02</b> | 09-2004 "Метод                                                                       | цические ука:                                          | вания по опреде-                                                   |  |
| лению выб                    | росов загрязня                  | яющих і          | веществ в атмос           | феру из резерву          | <b>аров"</b> , Астана, 2                                                             | 2005 г.                                                |                                                                    |  |
|                              | Ис                              | ходные           | данные:                   |                          | Расчетные формулы:                                                                   |                                                        |                                                                    |  |
| Количество                   | резервуаров                     | $N_p$            | 1                         | ШТ                       |                                                                                      |                                                        |                                                                    |  |
| Объем<br>(одноцелеві<br>ров) | резервуара<br>ых резервуа-      | V <sub>pe3</sub> | 0.95                      | M <sup>3</sup>           | Годовые выбросы загрязняющих веществ атмосферу, т/год:                               |                                                        | · ·                                                                |  |
| Тип резерву                  | /apa                            |                  | Вертикальный, н           | аземный                  | G=(Y <sub>03</sub> *B <sub>03</sub> +)                                               | / <sub>вл∗</sub> В <sub>вл</sub> )*К <sub>р</sub> мах∗ | 10 <sup>-6</sup> +G <sub>хР</sub> *К <sub>нП</sub> *N <sub>р</sub> |  |
| Объем пере                   | качки                           | Вобщ             | 1.3                       | т/год                    |                                                                                      |                                                        |                                                                    |  |
| •                            | екачки в тече-<br>зимнего пери- | Воз              | 0.6                       | т/год                    | Максимально-разовый выброс, г/с:                                                     |                                                        |                                                                    |  |
| Объем пере                   | екачки в тече-<br>е-летнего пе- | Ввл              | 0.6                       | т/год                    | M=C <sub>1</sub> *K <sub>p</sub> <sup>max</sup> *V <sub>4</sub> <sup>max</sup> /3600 |                                                        | /3600                                                              |  |
|                              |                                 |                  | Расче                     | тные показатели          | l <b>:</b>                                                                           |                                                        |                                                                    |  |
| Средние уд<br>года (прило    |                                 | ы из рез         | ервуара в осенне          | -зимний период           | À <sup>o3</sup>                                                                      | 2.36                                                   | г/т                                                                |  |

|                           | Всего по источнику:                                                      |                                 | 0.00784   | 0.0007861         |
|---------------------------|--------------------------------------------------------------------------|---------------------------------|-----------|-------------------|
| 2754                      | Углеводороды предельные С12-С19                                          | 99.72%                          | 0.007818  | 0.0007839         |
| 0333                      | Сероводород                                                              | 0.28%                           | 0.000022  | 0.0000022         |
| Код ЗВ                    | Наименование 3В                                                          | ние С <sub>і</sub> , %<br>масс. | г/с       | т/год             |
|                           |                                                                          | Масс. сод-                      | Количес   | тво выбросов      |
| Годовые вы                | ыбросы загрязняющих веществ в атмосферу                                  | G                               | 0.0007861 | т/год             |
| Максималь                 | ный выброс загрязняющих веществ в атмосферу                              | M                               | 0.0078400 | г/с               |
|                           | Выбросы паров нефтепродуктов в атмос                                     | реру из резерву                 | /ара:     |                   |
| Опытный к                 | оэффициент (приложение 12)                                               | Кнп                             | 0.0029    |                   |
|                           | аров нефтепродуктов при хранении дизтоплива в одном<br>(приложение 13)   | $G_{XP}$                        | 0.27      | т/год             |
|                           | ный объем паровоздушной смеси, вытесняемой из резер-<br>ремя его закачки | $V_{\rm q}^{\rm Max}$           | 8         | м <sup>3</sup> /ч |
| Опытный к                 | оэффициент (приложение 8)                                                | $K_p^{Max}$                     | 0.9       |                   |
| Концентра                 | ция паров нефтепродукта в резервуаре (приложение 12)                     | C <sub>1</sub>                  | 3.92      | г/м <sup>3</sup>  |
| Средние уд<br>года (прило | дельные выбросы из резервуара в весенне-летний период ожение 12)         | У <sub>вл</sub>                 | 3.15      | г/т               |

| № ИЗА      | 6020                                | Наименование источника загрязнения атмосферы Перекачка дизельного топлива                                                                                                      |                                                                                                                                               |                                                                                                |           |  |
|------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------|--|
| № ИВ       | 001                                 | Наименование источника выде-<br>ления                                                                                                                                          | Насосы для перекачки дизтоплива                                                                                                               |                                                                                                |           |  |
|            | <b>еделению выб</b><br>Махіт<br>Вал | атмосферу от средств перекачки выпо<br>бросов загрязняющих веществ в атм<br>num one-time emission is calculated by th<br>повый выброс рассчитывается по форм<br>Исходные парам | иосферу из резер<br>le formula: М <sub>сек ј</sub> =(с <sub>ј</sub><br>иуле: М <sub>год ј</sub> =(с <sub>ј</sub> *n <sub>н</sub> *0<br>иетры: | <b>вуаров"</b> , Астана, 2<br>* <b>n<sub>н</sub>*Q)/3.6</b> , g/sec<br><b>2*T)/10</b> ³, т/год |           |  |
| Количество |                                     | теристика насоса – центробежный с од                                                                                                                                           | цним торцевым упл                                                                                                                             | отнением вала.<br>3                                                                            | шт.       |  |
|            |                                     | ирующей арматуры:                                                                                                                                                              | n <sub>spa</sub>                                                                                                                              | 12                                                                                             | шт.       |  |
|            | соединений:                         |                                                                                                                                                                                | n <sub>d</sub>                                                                                                                                | 24                                                                                             | шт.       |  |
|            |                                     | РА и фланцевых соединений:                                                                                                                                                     | Ť                                                                                                                                             | 8784                                                                                           | ч/год     |  |
|            |                                     | язняющих веществ (таблица 8.1):                                                                                                                                                | Q                                                                                                                                             | 0.04                                                                                           | кг/ч      |  |
| Массовое с | одержание сер                       | оводорода:                                                                                                                                                                     | Cj                                                                                                                                            | 0.28%                                                                                          |           |  |
| Массовое с | одержание угл                       | еводородов предельные С12-С19:                                                                                                                                                 | C <sub>j</sub>                                                                                                                                | 99.72%                                                                                         |           |  |
|            | Выбросы пар                         | ов нефтепродуктов в атмосферу от                                                                                                                                               | нефтеперекачива                                                                                                                               | ающего оборудов                                                                                | ания:     |  |
| Код ЗВ     |                                     | Наименование ЗВ                                                                                                                                                                |                                                                                                                                               | г/с                                                                                            | т/год     |  |
| 0333       | Сероводород                         |                                                                                                                                                                                |                                                                                                                                               | 0.0000933                                                                                      | 0.0029514 |  |
| 2754       | Углеводородь                        | ы предельные С12-С19                                                                                                                                                           |                                                                                                                                               | 0.0332400                                                                                      | 1.0511286 |  |
| № ИЗА      | 6020                                | Наименование источника загряз-<br>нения атмосферы                                                                                                                              | Перека                                                                                                                                        | чка дизельного т                                                                               | оплива    |  |

Выделение вредных веществ через неплотности запорно-регулирующей арматуры и фланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов". Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п

Неплотности ЗРА и фланцевых соединений

0.0349089

Наименование источника выде-

ления

Всего по источнику:

Максимально разовый выброс рассчитывается по формуле:  $\mathbf{M}_{i} = \mathbf{Y}_{hyij}/1000 = \mathbf{g}_{hyi}^{*}\mathbf{n}_{i}^{*}\mathbf{x}_{hyi}^{*}\mathbf{c}_{j}/1000$ , г/с Валовый выброс рассчитывается по формуле:  $\mathbf{\Pi}_{i} = (\mathbf{T}^{*}\mathbf{Y}_{hyij})/10^{6*}3600$ , т/год

Исходные параметры:

|           | вижного и по-<br>соединения | Вид технологического потока      | Кол-во единиц работающего оборудования, п <sub>і</sub> , шт. | Величина утечки<br>потока через<br>одно уплотнение<br>і-ого типа,<br>g <sub>нуі</sub> , мг/с | Доля уплотнений і-ого типа потерявших герметичность, х <sub>нуі</sub> |
|-----------|-----------------------------|----------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|           | егулирующая<br>атура        | тяжелые углеводороды             | 12                                                           | 1.83                                                                                         | 0.07                                                                  |
| Фланцевое | соединение                  | тяжелые углеводороды             | 24                                                           | 0.08                                                                                         | 0.02                                                                  |
| Выб       | бросы паров                 | нефтепродуктов в атмосферу от не | плотностей ЗРА и                                             | і фланцевых соед                                                                             | цинений:                                                              |
| Код ЗВ    |                             | Наименование ЗВ                  |                                                              | Максимально-<br>разовый вы-<br>брос, г/с                                                     | Валовый вы-<br>брос, т/год                                            |

| 0333   | Сероводород                     | 0.0000044                                | 0.0001395                  |
|--------|---------------------------------|------------------------------------------|----------------------------|
| 2754   | Углеводороды предельные С12-С19 | 0.0015712                                | 0.0496847                  |
|        |                                 |                                          |                            |
| Код ЗВ | Наименование ЗВ                 | Максимально-<br>разовый вы-<br>брос, г/с | Валовый вы-<br>брос, т/год |
| 0333   | Сероводород                     | 0.0000977                                | 0.0030909                  |
| 2754   | Углеводороды предельные С12-С19 | 0.0348112                                | 1.1008133                  |

№ ИВ

002

1.1039042

## Ж/д станция и автостанция "Болашак" (006)

| № ИЗА                                                                                                                                                                                                                          | 0040                                                                                                                                                      | Наименование и мосферы                                                                                                       | сточника загрязнения ат-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Дымо                                                                                                                                                                                                  | вая труба котелы                                                                                                                                                                                                                                                                       | ной                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| №ИВ                                                                                                                                                                                                                            | 001, 003                                                                                                                                                  | Наименование и                                                                                                               | сточника выделения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       | ı марки KBa-233 J                                                                                                                                                                                                                                                                      |                                                                                                                                                       |
| Выбро                                                                                                                                                                                                                          | сы от котела                                                                                                                                              | определены согла                                                                                                             | сно, "Сборника методик по                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | расчет                                                                                                                                                                                                | у выбросов вред                                                                                                                                                                                                                                                                        | іных веществ в                                                                                                                                        |
|                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                              | , МЭБ РК РНПЦЭЭАиЭ «КазЭ<br>и топлива в котлах производ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |
| Количество                                                                                                                                                                                                                     | VOTUOR:                                                                                                                                                   |                                                                                                                              | Исходные данные:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                      | ШТ                                                                                                                                                    |
|                                                                                                                                                                                                                                | я мощность к                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q <sub>M</sub>                                                                                                                                                                                        | 233                                                                                                                                                                                                                                                                                    | кВт                                                                                                                                                   |
|                                                                                                                                                                                                                                | и мощность ко                                                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q <sub>d</sub>                                                                                                                                                                                        | 212.7                                                                                                                                                                                                                                                                                  | кВт                                                                                                                                                   |
|                                                                                                                                                                                                                                | •                                                                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       | 18.705                                                                                                                                                                                                                                                                                 | кг/ч                                                                                                                                                  |
| Расход топл                                                                                                                                                                                                                    | ива на 1 котл                                                                                                                                             | оагрегат:                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                                                                                                                                                                                                     | 5.1958                                                                                                                                                                                                                                                                                 | г/с                                                                                                                                                   |
|                                                                                                                                                                                                                                |                                                                                                                                                           | <u> </u>                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Br                                                                                                                                                                                                    | 28.530                                                                                                                                                                                                                                                                                 | т/год                                                                                                                                                 |
| Топливо:                                                                                                                                                                                                                       |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sr                                                                                                                                                                                                    | 0.3                                                                                                                                                                                                                                                                                    | %                                                                                                                                                     |
| – дизтоплив                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $A^{r}$                                                                                                                                                                                               | 0.025                                                                                                                                                                                                                                                                                  | %                                                                                                                                                     |
|                                                                                                                                                                                                                                | рания топлива                                                                                                                                             | <b>3</b> :                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Q_i^r$                                                                                                                                                                                               | 42.75                                                                                                                                                                                                                                                                                  | МДж/кг                                                                                                                                                |
| Время работ                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T <sub>r</sub>                                                                                                                                                                                        | 1525.3                                                                                                                                                                                                                                                                                 | ч/год                                                                                                                                                 |
|                                                                                                                                                                                                                                |                                                                                                                                                           | а, образующихся на                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K <sub>NO2</sub>                                                                                                                                                                                      | 0.0822                                                                                                                                                                                                                                                                                 | кг/ГДж                                                                                                                                                |
|                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                              | ния выбросов оксидов азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | β                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           | технических решен                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           | ций долю золы топл                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Χ                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           | вливаемых в золоу                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>η</u>                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           | ваемых летучей зо                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | η'<br>""                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           | пиваемых в золоуло                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | η"                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |
|                                                                                                                                                                                                                                | оксидов угле                                                                                                                                              | рода на ед.теплоть                                                                                                           | ы, выделяющейся при горе-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K <sub>co</sub>                                                                                                                                                                                       | 0.32                                                                                                                                                                                                                                                                                   | кг/ГДж                                                                                                                                                |
| НИИ:<br>Потори топп                                                                                                                                                                                                            | IOTI I DODO ZOZZ                                                                                                                                          | MO MOVOLIMICANAN                                                                                                             | еполноты сгорания газа:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                      | %                                                                                                                                                     |
|                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                              | еполноты сторания газа.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | q₄<br>V₅                                                                                                                                                                                              | 0.2732                                                                                                                                                                                                                                                                                 | 76<br>м³/сек                                                                                                                                          |
|                                                                                                                                                                                                                                |                                                                                                                                                           | здушной смеси:<br>ций характер топли                                                                                         | DO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ν <sub>Γ</sub><br>Κ                                                                                                                                                                                   | 0.2732                                                                                                                                                                                                                                                                                 | M <sup>2</sup> /Cek                                                                                                                                   |
| коэффицие                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |
|                                                                                                                                                                                                                                | l Pe                                                                                                                                                      | исчет выоросов вр                                                                                                            | редных веществ в атмосфер                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | у от од                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                        | UGIOLUIAV DOLUGOTD                                                                                                                                    |
| Код ЗВ                                                                                                                                                                                                                         | Наименов                                                                                                                                                  | ание загрязняю-                                                                                                              | Расчетная формула                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       | Выбросы загряз                                                                                                                                                                                                                                                                         | няющих веществ<br>Г                                                                                                                                   |
| код зв                                                                                                                                                                                                                         | щего в                                                                                                                                                    | ещества (ЗВ)                                                                                                                 | гасчетная формула                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       | разовый, г/с                                                                                                                                                                                                                                                                           | Валовый, т/год                                                                                                                                        |
|                                                                                                                                                                                                                                | Δ30                                                                                                                                                       | та оксиды                                                                                                                    | $\Pi = 0.001*B*Q_i^r*K_{NO2}*(1 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R)                                                                                                                                                                                                    | 0.0182584                                                                                                                                                                                                                                                                              | 0.1002558                                                                                                                                             |
| 0301                                                                                                                                                                                                                           |                                                                                                                                                           | га диоксид                                                                                                                   | $\Pi_{NO2} = 0.8*\Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ρ)                                                                                                                                                                                                    | 0.0146067                                                                                                                                                                                                                                                                              | 0.0802047                                                                                                                                             |
| 0304                                                                                                                                                                                                                           |                                                                                                                                                           | ота оксид                                                                                                                    | $\Pi_{NO} = 0.13 * \Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       | 0.0023736                                                                                                                                                                                                                                                                              | 0.0130333                                                                                                                                             |
| 0328                                                                                                                                                                                                                           | 7100                                                                                                                                                      | Сажа                                                                                                                         | $\Pi = B^*A^{r*}\chi^*(1 - \eta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       | 0.0012990                                                                                                                                                                                                                                                                              | 0.0071325                                                                                                                                             |
| 0330                                                                                                                                                                                                                           | Cen                                                                                                                                                       | а диоксид                                                                                                                    | $\Pi = 0.02*B*S'*(1 - \eta')*(1 - \eta')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n")                                                                                                                                                                                                   | 0.0305515                                                                                                                                                                                                                                                                              | 0.1677564                                                                                                                                             |
| 0337                                                                                                                                                                                                                           |                                                                                                                                                           | ерод оксид                                                                                                                   | $\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (100)                                                                                                                                                                                                 | 0.0710790                                                                                                                                                                                                                                                                              | 0.3902904                                                                                                                                             |
|                                                                                                                                                                                                                                |                                                                                                                                                           | Всего по исто                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                     | 0.1199098                                                                                                                                                                                                                                                                              | 0.6584173                                                                                                                                             |
|                                                                                                                                                                                                                                | Расчет                                                                                                                                                    |                                                                                                                              | іх веществ в атмосферу от 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2х котел                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        | няющих веществ                                                                                                                                        |
| Код ЗВ                                                                                                                                                                                                                         |                                                                                                                                                           | ание загрязняю-                                                                                                              | Расчетная формула                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       | Максимально-                                                                                                                                                                                                                                                                           |                                                                                                                                                       |
|                                                                                                                                                                                                                                | щего в                                                                                                                                                    | ещества (ЗВ)                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       | разовый, г/с                                                                                                                                                                                                                                                                           | Валовый, т/год                                                                                                                                        |
|                                                                                                                                                                                                                                | Азо <sup>-</sup>                                                                                                                                          | та оксиды                                                                                                                    | $\Pi = 0.001*B*Q_i^r *K_{NO2}*(1 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | β)                                                                                                                                                                                                    | 0.0365168                                                                                                                                                                                                                                                                              | 0.2005117                                                                                                                                             |
| 0301                                                                                                                                                                                                                           | Азот                                                                                                                                                      | га диоксид                                                                                                                   | $\Pi_{NO2} = 0.8 * \Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       | 0.0292134                                                                                                                                                                                                                                                                              | 0.1604094                                                                                                                                             |
| 0304                                                                                                                                                                                                                           | Δασ                                                                                                                                                       | ота оксид                                                                                                                    | $\Pi_{NO} = 0.13 * \Pi_{NOx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        | 011001001                                                                                                                                             |
|                                                                                                                                                                                                                                | 730                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       | 0.0047472                                                                                                                                                                                                                                                                              | 0.0260666                                                                                                                                             |
| 0304                                                                                                                                                                                                                           | 7.30                                                                                                                                                      | Сажа                                                                                                                         | $\Pi = B^*A^r * \chi * (1 - \eta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       | 0.0025980                                                                                                                                                                                                                                                                              |                                                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                              | $\Pi = B^*A^{r*}\chi^*(1 - \eta)$ $\Pi = 0.02^*B^*S^{r*}(1 - \eta')^*(1 - \eta')^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        | 0.0260666                                                                                                                                             |
| 0328                                                                                                                                                                                                                           | Сер                                                                                                                                                       | Сажа<br>га диоксид<br>ерод оксид                                                                                             | $\Pi = B^*A^{r*}\chi^*(1 - \eta)$ $\Pi = 0.02^*B^*S^{r*}(1 - \eta^t)^*(1 - \eta^t$ |                                                                                                                                                                                                       | 0.0025980<br>0.0611030<br>0.1421580                                                                                                                                                                                                                                                    | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808                                                                                                      |
| 0328<br>0330                                                                                                                                                                                                                   | Сер                                                                                                                                                       | Сажа<br>а диоксид                                                                                                            | $\Pi = B^*A^{r*}\chi^*(1 - \eta)$ $\Pi = 0.02^*B^*S^{r*}(1 - \eta^t)^*(1 - \eta^t$ | (100)                                                                                                                                                                                                 | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b>                                                                                                                                                                                                                                | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br><b>1.3168346</b>                                                                                  |
| 0328<br>0330<br>0337                                                                                                                                                                                                           | Сер<br>Угле                                                                                                                                               | Сажа<br>а диоксид<br>ерод оксид<br>Всего от 2х ко                                                                            | $\Pi = B*A'*\chi*(1 - \eta)$ $\Pi = 0.02*B*S'*(1 - \eta')*(1 - \eta)*(1 - \eta - 0.001*B*Q/*K_{co}*(1 - q_4/0.00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (100)<br><b>Коте</b> л                                                                                                                                                                                | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br>и марки КВа-174 J                                                                                                                                                                                                           | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br><b>1.3168346</b>                                                                                  |
| 0328<br>0330<br>0337<br>№ ИВ                                                                                                                                                                                                   | Сер<br>Угле                                                                                                                                               | Сажа<br>а диоксид<br>ерод оксид<br>Всего от 2х ко<br>Наименование и                                                          | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / этлов:<br>сточника выделения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (100)<br>Котел<br>RD-RG                                                                                                                                                                               | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br>и марки КВа-174 Ј                                                                                                                                                                                                           | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ДЖ/Гн (ВВ-1535                                                                       |
| 0328<br>0330<br>0337<br>№ ИВ                                                                                                                                                                                                   | Сер<br>Угле<br><b>002</b><br>осы от котела                                                                                                                | Сажа а диоксид род оксид Всего от 2х ко Наименование и определены согла                                                      | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов: сточника выделения асно, "Сборника методик по                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (100)<br>Котел<br>RD-RG<br>расчет                                                                                                                                                                     | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><i>марки КВа-174 Л</i><br>в)                                                                                                                                                                                                | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ЛЖ/Гн (ВВ-1535                                                                       |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро                                                                                                                                                                                          | Сер<br>Угле<br>002<br>осы от котела<br>различными                                                                                                         | Сажа а диоксид род оксид Всего от 2х ко Наименование и определены согла                                                      | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q₄/ отлов: сточника выделения псно, "Сборника методик по г, МЭБ РК РНПЦЭЭАиЭ «КазЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (100)<br>Котел<br>RD-RG<br>расчет                                                                                                                                                                     | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><i>марки КВа-174 Л</i><br>в)<br>у выбросов вред<br>р, Алматы 1996 г. F                                                                                                                                                      | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ЛЖ/Гн (ВВ-1535<br>цных веществ в                                                     |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро                                                                                                                                                                                          | Сер<br>Угле<br>002<br>осы от котела<br>различными                                                                                                         | Сажа а диоксид род оксид Всего от 2х ко Наименование и определены согла                                                      | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (100)<br>Котел<br>RD-RG<br>расчет                                                                                                                                                                     | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><i>марки КВа-174 Л</i><br>в)<br>у выбросов вред<br>р, Алматы 1996 г. F                                                                                                                                                      | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ПЖ/Гн (ВВ-1535<br>цных веществ в                                                     |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в                                                                                                                                                               | Сер<br>Угле<br>002<br>осы от котела<br>различными<br>вредных вещ                                                                                          | Сажа а диоксид род оксид Всего от 2х ко Наименование и определены согла                                                      | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q₄/ отлов: сточника выделения псно, "Сборника методик по г, МЭБ РК РНПЦЭЭАиЭ «КазЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Котел<br>RD-RG<br>расчет<br>коэкспя<br>цительн                                                                                                                                                        | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><i>марки КВа-174 Л</i><br>в)<br>у выбросов вред<br>р, Алматы 1996 г. F                                                                                                                                                      | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ПЖ/Гн (ВВ-1535<br>цных веществ в<br>Раздел 2 "Расчет                                 |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в                                                                                                                                                               | Сер<br>Угле<br>002<br>осы от котела<br>различными<br>вредных вещ<br>котлов:                                                                               | Сажа а диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" веств при сжигании                  | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспя<br>цительн                                                                                                                                                        | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><i>имарки КВа-174 Л</i><br>у выбросов вред<br>о, Алматы 1996 г. Р<br>остью до <b>30</b> т/час                                                                                                                               | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ДЖ/Гн (ВВ-1535<br>цных веществ в<br>газдел 2 "Расчет                                 |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна                                                                                                                                   | Сер<br>Угле  002  осы от котела различными вредных вещ  котлов: ня мощность к                                                                             | Сажа а диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" цеств при сжигании                  | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспх<br>цительн                                                                                                                                                        | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><b>1 марки КВа-174 Л</b><br><b>3)</b><br><b>9 выбросов вред</b><br><b>5</b> Алматы 1996 г. <b>F</b><br><b>1 1</b> 174                                                                                                       | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ДЖ/Гн (ВВ-1535<br>дных веществ в<br>газдел 2 "Расчет<br>с".                          |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна                                                                                                                                   | Сер<br>Угле<br>002<br>осы от котела<br>различными<br>вредных вещ<br>котлов:                                                                               | Сажа а диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" цеств при сжигании                  | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспх<br>цительн<br>п<br>Q <sub>м</sub>                                                                                                                                 | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><i>имарки КВа-174 Л</i><br>у выбросов вред<br>о, Алматы 1996 г. Р<br>остью до <b>30</b> т/час                                                                                                                               | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ДЖ/Гн (ВВ-1535<br>цных веществ в<br>газдел 2 "Расчет                                 |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая                                                                                                                    | Сер<br>Угле  002  осы от котела различными вредных вещ  котлов: ня мощность к                                                                             | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла:           | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспх<br>цительн                                                                                                                                                        | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><b>1 марки КВа-174 Л</b><br><b>3)</b><br><b>9 выбросов вред</b><br><b>5</b> , Алматы 1996 г. <b>F</b><br><b>0 остью до 30 т/час</b><br>1<br>174<br>158.9                                                                    | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>ИЖ/Гн (ВВ-1535<br>цных веществ в<br>газдел 2 "Расчет<br>с".                          |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая                                                                                                                    | Сер<br>Угле<br>002<br>осы от котела<br>различными<br>вредных вещ<br>котлов:<br>я мощность ко                                                              | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла:           | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспх<br>цительн<br>п<br>Q <sub>м</sub>                                                                                                                                 | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><b>1 марки КВа-174 Л</b><br><b>3)</b><br><b>9 выбросов вред</b><br><b>4.</b> Алматы 1996 г. <b>F</b><br><b>1</b><br><b>1</b><br><b>174</b><br><b>158.9</b><br><b>16.878</b><br><b>4.6883</b>                                | 0.0260666<br>0.0142650<br>0.3355128<br>0.7805808<br>1.3168346<br>IЖ/Гн (ВВ-1535<br>дных веществ в<br>раздел 2 "Расчет<br>с".  шт<br>кВт<br>кВт<br>кГч |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>фактическая                                                                                                                    | Сер<br>Угле  002  осы от котела различными вредных вещ котлов: я мощность ко                                                                              | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла:           | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэксп»<br>дительн<br>п<br>Q <sub>м</sub><br>Q <sub>ф</sub>                                                                                                               | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><b>1 марки КВа-174 J</b><br><b>9)</b><br><b>9 выбросов вред</b><br><b>10</b><br><b>10</b><br><b>10</b><br><b>11</b><br><b>17</b><br><b>17</b><br><b>15</b><br><b>15</b><br><b>16</b><br><b>17</b><br><b>17</b><br><b>16</b> | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ИЖ/Гн (ВВ-1535 Дных веществ в раздел 2 "Расчетс".  шт кВт кВт кг/ч г/с                              |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая                                                                                                                    | Сер<br>Угле  002  осы от котела различными вредных вещ котлов: я мощность ко ива на 1 котле                                                               | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла:           | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспи<br>дительн<br>п<br>Q <sub>м</sub><br>Q <sub>ф</sub><br>В                                                                                                          | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><b>1 марки КВа-174 Л</b><br><b>1)</b><br><b>9 выбросов вред</b><br><b>1)</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                                                | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ЛЖ/Гн (ВВ-1535 Дных веществ в раздел 2 "Расчетс".  шт кВт кВт кВт кг/ч г/с т/год                    |
| 0328<br>0330<br>0337<br>№ ИВ  Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая<br>Расход топл<br>Топливо:<br>— дизтоплив                                                                            | Сер<br>Угле  002  осы от котела различными вредных вещ котлов: я мощность ко ива на 1 котле                                                               | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла: отла:     | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспи<br>дительн<br>п<br>Q <sub>м</sub><br>Q <sub>ф</sub><br>В                                                                                                          | 0.0025980<br>0.0611030<br>0.1421580<br><b>0.2398196</b><br><b>1 марки КВа-174 Л</b><br><b>3)</b><br><b>9 выбросов вред</b><br><b>4.</b> Алматы 1996 г. <b>F</b><br><b>1</b><br><b>1</b><br><b>174</b><br><b>158.9</b><br><b>16.878</b><br><b>4.6883</b><br><b>28.53</b><br><b>0.3</b>  | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ЛЖ/Гн (ВВ-1535  Дных веществ в ваздел 2 "Расчетс".  шт кВт кВт кВт кГ/ч г/с т/год                   |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая<br>Расход топл<br>Топливо:<br>— дизтоплив<br>Теплота сго                                                           | Сер<br>Угле  002  осы от котела различными вредных вещ котлов: ня мощность ко има на 1 котло                                                              | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла: отла:     | П = B*A'*X*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*K <sub>CO</sub> *(1 - q <sub>4</sub> / отлов:  сточника выделения псно, "Сборника методик по к, МЭБ РК РНПЦЭЭАиЭ «Каззитоплива в котлах производительной производительном производительно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Котел<br>RD-RG<br>расчет<br>коэкспи<br>дительн<br>п<br>Q <sub>ф</sub><br>В<br>Вг<br>Sr<br>Ar                                                                                                          | 0.0025980 0.0611030 0.1421580 0.2398196 имарки КВа-174 Ј  у выбросов вред Алматы 1996 г. F  остью до 30 т/час  1 174 158.9 16.878 4.6883 28.53 0.3 0.025                                                                                                                               | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ПЖ/Гн (ВВ-1535  Дных веществ в раздел 2 "Расчетс".  шт кВт кВт кВт кГ/ч г/с т/год %                 |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая<br>Расход топл<br>Топливо:<br>— дизтоплив<br>Теплота сгор<br>Время работ                                           | Сер<br>Угле  002  осы от котела различными вредных вещ котлов: я мощность ко има на 1 котло во: рания топлива                                             | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла: оагрегат: | П = B*A'*χ*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*Ксо*(1 - q∉ отлов: сточника выделения исно, "Сборника методик по у, МЭБ РК РНПЦЭЭАиЭ «КазЗ и топлива в котлах производ Исходные данные:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Комел<br>RD-RG<br>расчет<br>коэкспи<br>п<br>Q <sub>ф</sub><br>В<br>Вг<br>S'<br>A'<br>Q <sub>i</sub> <sup>r</sup><br>Т <sub>r</sub>                                                                    | 0.0025980 0.0611030 0.1421580 0.2398196 пмарки КВа-174 Л  у выбросов вред Алматы 1996 г. F  остью до 30 т/час  1 174 158.9 16.878 4.6883 28.53 0.3 0.025 42.75                                                                                                                         | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ПЖ/Гн (ВВ-1535  Дных веществ в Раздел 2 "Расчетс".  шт кВт кВт кВт кГ/ч г/с т/год % МДж/кг          |
| 0328<br>0330<br>0337<br>№ ИВ<br>Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая<br>Расход топл<br>Топливо:<br>— дизтоплив<br>Теплота сгор<br>Время работ<br>Количество                             | Сер Угле  002  осы от котела различными вредных вещ котлов: ня мощность ко нива на 1 котло вос: рания топлива гы: оксидов азота                           | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла: оагрегат: | П = B*A'*χ*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/*Ксо*(1 - q∉ отлов: сточника выделения исно, "Сборника методик по у, МЭБ РК РНПЦЭЭАиЭ «КазЗ и топлива в котлах производ Исходные данные:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Котел<br>RD-RG<br>расчет<br>коэксп»<br>дительн<br>п<br>Q <sub>ф</sub><br>В<br>В <sub>г</sub><br>S <sup>r</sup><br>А <sup>r</sup><br>Q <sub>i</sub> <sup>r</sup><br>Т <sub>г</sub><br>К <sub>NO2</sub> | 0.0025980 0.0611030 0.1421580 0.2398196 имарки КВа-174 Л ) у выбросов вред от маты 1996 г. Р остью до 30 т/час  1 174 158.9 16.878 4.6883 28.53 0.3 0.025 42.75 1690.4 0.0806                                                                                                          | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ПЖ/Гн (ВВ-1535  Цных веществ в ваздел 2 "Расчетс".  шт кВт кВт кВт кГч г/с т/год % МДж/кг ч/год     |
| 0328 0330 0337  № ИВ Выброватмосферу выбросов в Количество Номинальна Фактическая Расход топл Топливо: — дизтоплив Теплота сгор Время работ Количество Коэффицие                                                               | Сер Угле  002  сы от котела различными вредных вещ котлов: ня мощность ко нива на 1 котло вос: рания топлива ты: оксидов азота нт, зависящий              | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла: оагрегат: | П = В*А'*х*(1 - η) П = 0.02*В*S'*(1 - η')*(1 - П = 0.001*В*Q/*Ксо*(1 - q#  отлов:  сточника выделения  исно, "Сборника методик по т, МЭБ РК РНПЦЭЭАиЭ «КазЗ  и топлива в котлах производ Исходные данные:  1 ГДж тепла: ния выбросов оксидов азота                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Комел<br>RD-RG<br>расчет<br>коэкспи<br>п<br>Q <sub>ф</sub><br>В<br>Вг<br>S'<br>A'<br>Q <sub>i</sub> <sup>r</sup><br>Т <sub>r</sub>                                                                    | 0.0025980 0.0611030 0.1421580 0.2398196 1 марки КВа-174 Ј  ) у выбросов вред  , Алматы 1996 г. F  остью до 30 т/час  1 174 158.9 16.878 4.6883 28.53 0.3 0.025 42.75 1690.4                                                                                                            | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ПЖ/Гн (ВВ-1535  Цных веществ в ваздел 2 "Расчетс".  шт кВт кВт кВт кГч г/с т/год % МДж/кг ч/год     |
| 0328<br>0330<br>0337<br>№ ИВ  Выбро<br>атмосферу<br>выбросов в<br>Количество<br>Номинальна<br>Фактическая<br>Расход топл<br>Топливо:<br>— дизтоплив<br>Теплота сгор<br>Время работ<br>Количество<br>Коэффициен<br>в результате | Сер Угле  002  сы от котела различными вредных вещ котлов: ня мощность ко нива на 1 котло вос: рания топлива ты: оксидов азота нт, зависящий е применения | Сажа на диоксид врод оксид Всего от 2х ко Наименование и определены согла производствами" неств при сжигании отла: оагрегат: | П = B*A'*x*(1 - η) П = 0.02*B*S'*(1 - η')*(1 - П = 0.001*B*Q/**Kco*(1 - q#) отлов: сточника выделения исно, "Сборника методик по т, МЭБ РК РНПЦЭЭАиЭ «КазЗ и топлива в котлах производ Исходные данные:  1 ГДж тепла: ния выбросов оксидов азота ий:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Котел<br>RD-RG<br>расчет<br>коэксп»<br>дительн<br>п<br>Q <sub>ф</sub><br>В<br>В <sub>г</sub><br>S <sup>r</sup><br>А <sup>r</sup><br>Q <sub>i</sub> <sup>r</sup><br>Т <sub>г</sub><br>К <sub>NO2</sub> | 0.0025980 0.0611030 0.1421580 0.2398196 имарки КВа-174 Л ) у выбросов вред от маты 1996 г. Р остью до 30 т/час  1 174 158.9 16.878 4.6883 28.53 0.3 0.025 42.75 1690.4 0.0806                                                                                                          | 0.0260666 0.0142650 0.3355128 0.7805808 1.3168346 ПЖ/Гн (ВВ-1535  Цных веществ в ваздел 2 "Расчетс".  шт кВт кВт кВт кГч г/с т/год % МДж/кг ч/год     |

| Доля оксидо | рв серы, связываемых летучей зо               | лой:                                       | n'             | 0.02                         |                |
|-------------|-----------------------------------------------|--------------------------------------------|----------------|------------------------------|----------------|
|             | ов серы, улавливаемых в золоуло               |                                            | n"             | 0                            |                |
|             | оксидов углерода на ед.теплоть                |                                            | Ксо            | 0.32                         | кг/ГДж         |
| Потери тепл | оты вследствие механической не                | еполноты сгорания газа:                    | $q_4$          | 0                            | %              |
|             | расход газовоздушной смеси:                   | 1                                          | V <sub>r</sub> | 0.0712                       | м³/сек         |
|             | нт, учитывающий характер топли                | K                                          | 0.355          |                              |                |
|             |                                               | в вредных веществ в атмос                  | феру о         | т котла                      |                |
|             |                                               |                                            |                | няющих веществ               |                |
| Код ЗВ      | Наименование загрязняю-<br>щего вещества (3B) | Расчетная формула                          |                | Максимально-<br>разовый, г/с | Валовый, т/год |
|             | Азота оксиды                                  | $\Pi = 0.001*B*Q_i^r *K_{NO2}*(1 -$        | β)             | 0.0161544                    | 0.0983044      |
| 0301        | Азота диоксид                                 | $\Pi_{NO2}$ = 0.8* $\Pi_{NOx}$             |                | 0.0129235                    | 0.0786435      |
| 0304        | Азота оксид                                   | $\Pi_{NO} = 0.13 * \Pi_{NOx}$              |                | 0.0021001                    | 0.0127796      |
| 0328        | Сажа                                          | $\Pi = B^*A^r * \chi * (1 - \eta)$         |                | 0.0011721                    | 0.0071325      |
| 0330        | Сера диоксид                                  | $\Pi = 0.02*B*S'*(1 - \eta')*(1 - \eta')$  | η")            | 0.0275674                    | 0.1677564      |
| 0337        | Углерод оксид                                 | $\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4)$      | (100)          | 0.0641364                    | 0.3902904      |
|             | Всего от кот                                  | гла:                                       |                | 0.1078995                    | 0.6566024      |
|             | Расчет выбросов вредн                         | ых веществ в атмосферу от                  | котель         | ных установок                |                |
|             | Haussauanausa aarngaugia                      |                                            |                | Выбросы загряз               | няющих веществ |
| Код ЗВ      | Наименование загрязняю-<br>щего вещества (3B) | Расчетная формула                          |                | Максимально-<br>разовый, г/с | Валовый, т/год |
| 0301        | Азота диоксид                                 | $\Pi_{NO2}$ = 0.8* $\Pi_{NOx}$             |                | 0.0421369                    | 0.2390529      |
| 0304        | Азота оксид                                   | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$             |                | 0.0068473                    | 0.0388462      |
| 0328        | Сажа                                          | $\Pi = B^*A^r *\chi * (1 - \eta)$          |                | 0.0037701                    | 0.0213975      |
| 0330        | Сера диоксид                                  | $\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta')$ | η")            | 0.0886704                    | 0.5032692      |
| 0337        | Углерод оксид                                 | $\Pi = 0.001*B*Q_i^f*K_{CO}*(1 - q_{4})$   | (100)          | 0.2062944                    | 1.1708712      |
|             | Всего по исто                                 |                                            |                | 0.3477191                    | 1.9734370      |

| Nº<br>N3A                                                                                                                                                                                                                                                     | 0041 Наименование источника за-<br>грязнения атмосферы |                                                                                         | Выхлопная труба                                       |                                          |                                     |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|-------------------------------------|---------------------------------------|
| № ИВ                                                                                                                                                                                                                                                          | 001                                                    | Наименование ист<br>выделения                                                           | точника                                               | Резервный генератор                      |                                     | AJD 44                                |
| от стаци                                                                                                                                                                                                                                                      | онарных дизель                                         | ыполнены согласно, <b>"М</b><br>ных установок <b>" РНД 2</b><br>ос i-го вещества стацио | <b>211.2.02.04-20</b> 0<br>онарной дизел              | <b>04</b> , МООС РК, А<br>ьной установки | стана 2005 год.                     |                                       |
| где:                                                                                                                                                                                                                                                          |                                                        |                                                                                         | М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600             | υ, <b>г/</b> C                           |                                     |                                       |
| е <sub>і</sub> - выбр                                                                                                                                                                                                                                         |                                                        | ещества на единицу пол<br>н (таблица 1 или 2):                                          | пезной работь                                         | і стационарной                           | дизельной установк                  | и на режиме номи-                     |
| Эксплуатационная мощность стационарной дизельной установки:                                                                                                                                                                                                   |                                                        |                                                                                         |                                                       | P <sub>9</sub>                           | 35                                  | кВт                                   |
| Ва                                                                                                                                                                                                                                                            | ловый выброс і-го                                      | вещества за год стаци                                                                   |                                                       |                                          | й определяется по о                 | формуле:                              |
| где:                                                                                                                                                                                                                                                          |                                                        | IVI <sub>F</sub>                                                                        | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000 | <b>у, тиод</b>                           |                                     |                                       |
| q <sub>i</sub> - выбр                                                                                                                                                                                                                                         | ельной установки                                       | ещества, г/кг топлива, пр<br>с учетом совокупности                                      |                                                       |                                          |                                     |                                       |
| расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: <b>B</b> <sub>rog</sub> = <b>b</b> <sub>3</sub> * <b>k</b> * <b>P</b> <sub>3</sub> * <b>T*10</b> - <sup>6</sup> : |                                                        |                                                                                         |                                                       | В <sub>год</sub>                         | 0.241                               | т/год                                 |
| Расход топлива:                                                                                                                                                                                                                                               |                                                        |                                                                                         |                                                       | b                                        | 7                                   | л/ч                                   |
|                                                                                                                                                                                                                                                               |                                                        |                                                                                         |                                                       | b                                        | 6.09                                | кг/ч                                  |
| Средний удельный расход топлива:                                                                                                                                                                                                                              |                                                        |                                                                                         |                                                       | b₃                                       | 174                                 | г/кВт.ч                               |
| Плотность дизельного топлива:                                                                                                                                                                                                                                 |                                                        |                                                                                         |                                                       | ρ                                        | 0.87                                | кг/л                                  |
| Коэффициент использования:                                                                                                                                                                                                                                    |                                                        |                                                                                         |                                                       | k                                        | 1                                   |                                       |
| Время работы:                                                                                                                                                                                                                                                 |                                                        |                                                                                         |                                                       | Т                                        | 39.6                                | ч/год                                 |
|                                                                                                                                                                                                                                                               |                                                        | Исходные да                                                                             | нные по исто                                          | учнику выброс                            | ОВ                                  |                                       |
| Количество:                                                                                                                                                                                                                                                   |                                                        |                                                                                         |                                                       | N                                        | 1                                   | ШТ                                    |
| Частота вращения вала:                                                                                                                                                                                                                                        |                                                        |                                                                                         |                                                       | n                                        | 1500                                | об/мин                                |
| Группа СДУ:                                                                                                                                                                                                                                                   |                                                        |                                                                                         |                                                       |                                          | Α                                   |                                       |
|                                                                                                                                                                                                                                                               |                                                        | Расчет расхода                                                                          | а отработанні                                         |                                          |                                     | · · · · · · · · · · · · · · · · · · · |
| Расход отработанных газов, <b>G</b> <sub>or</sub> = 8.72*10 <sup>-6*</sup> b <sub>3</sub> * <b>P</b> <sub>3</sub>                                                                                                                                             |                                                        |                                                                                         |                                                       | Gor                                      | 0.053                               | кг/с                                  |
| Температура отходящих газов:                                                                                                                                                                                                                                  |                                                        |                                                                                         |                                                       | Тог                                      | 400                                 | °C                                    |
| Плотность газов при 0°С:                                                                                                                                                                                                                                      |                                                        |                                                                                         |                                                       | γ0 <sub>ог</sub>                         | 1.31                                | кг/м <sup>3</sup>                     |
| Плотность газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>or</sub> /(1+Т <sub>or</sub> /273)                                                                                                                                                                    |                                                        |                                                                                         |                                                       | <b>У</b> ог                              | 0.53157                             | кг/м <sup>3</sup>                     |
| Объемн                                                                                                                                                                                                                                                        |                                                        | ганных газов, <b>Q</b> ₀г <b>=G</b> ₀г/ <b>γ</b> ₀                                      | •                                                     | Q <sub>or</sub>                          | 0.0999                              | м <sup>3</sup> /с                     |
|                                                                                                                                                                                                                                                               | Расчет в                                               | ыбросов вредных вег                                                                     | цеств в атмос                                         | феру всего от                            | дизель-генератор                    | a:<br>'                               |
| Код<br>3В                                                                                                                                                                                                                                                     | Наиме                                                  | нование ЗВ                                                                              | e <sub>i</sub> ,                                      | q <sub>i</sub> ,                         | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос                   |

|      |                          | г/кВт.ч  | г/кг топ-<br>лива | М <sub>сек</sub> , г/с | М <sub>год</sub> , т/год |
|------|--------------------------|----------|-------------------|------------------------|--------------------------|
|      | Азота оксиды             | 10.3     | 43                | 0.1001389              | 0.0103813                |
| 0301 | Азота диоксид            |          |                   | 0.0801111              | 0.0083050                |
| 0304 | Азота оксид              |          |                   | 0.0130181              | 0.0013496                |
| 0328 | Сажа                     | 0.7      | 3                 | 0.0068056              | 0.0007243                |
| 0330 | Сера диоксид             | 1.1      | 4.5               | 0.0106944              | 0.0010864                |
| 0337 | Углерод оксид            | 7.2      | 30                | 0.0700000              | 0.0072428                |
| 0703 | Бенз(а)пирен             | 0.000013 | 0.000055          | 0.0000001              | 0.00000001               |
| 1325 | Формальдегид             | 0.15     | 0.6               | 0.0014583              | 0.0001449                |
| 2754 | Углеводороды пр. С12-С19 | 3.6      | 15                | 0.0350000              | 0.0036214                |
|      | Всего по источник        | y:       |                   | 0.21708760             | 0.02247441               |

| Nº       | 0042                                                                                                                                                                                                 | Наименование ист                                                    | очника за-                                             | Ruynonuag Tr                                 | พร                         |                          |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------|--------------------------|--|--|--|
| ИЗА      | 0042                                                                                                                                                                                                 | грязнения атмосфе                                                   |                                                        | Выхлопная труба  Резервный генератор AJD 132 |                            |                          |  |  |  |
| № ИВ     | 001                                                                                                                                                                                                  | Наименование исп<br>деления                                         |                                                        |                                              |                            |                          |  |  |  |
|          | Расчеты выбросов выполнены согласно, <b>"Методики расчета выбросов загрязняющих веществ в атмосферу</b> от <b>стационарных дизельных установок" РНД 211.2.02.04-2004</b> , МООС РК, Астана 2005 год. |                                                                     |                                                        |                                              |                            |                          |  |  |  |
|          |                                                                                                                                                                                                      |                                                                     |                                                        |                                              |                            |                          |  |  |  |
| IVIa     | ксимальныи выор                                                                                                                                                                                      | ос і-го вещества стаци                                              | онарнои дизел<br><b>М<sub>сек</sub>=е</b> і*Р₃/3600    | •                                            | определяется по фо         | ррмуле:                  |  |  |  |
| где:     |                                                                                                                                                                                                      |                                                                     | INICEK-E! F3/300                                       | U, 17C                                       |                            |                          |  |  |  |
|          | ос і-го впелного ве                                                                                                                                                                                  | ещества на единицу по.                                              | пезной работь                                          | і стапионарной і                             | лизепьной установкі        | и на режиме номи-        |  |  |  |
| нальной  | мошности. г/кВт*ч                                                                                                                                                                                    | (таблица 1 или 2):                                                  | поопол расств                                          | г отационарной д                             | quochbrion yoranobia       | тта режине поми          |  |  |  |
|          |                                                                                                                                                                                                      | сть стационарной диз                                                | ельной уста-                                           | -                                            | 405                        |                          |  |  |  |
| новки:   |                                                                                                                                                                                                      |                                                                     | ,                                                      | P <sub>9</sub>                               | 105                        | кВт                      |  |  |  |
| Ba.      | повый выброс і-го                                                                                                                                                                                    | вещества за год стаци                                               | онарной дизел                                          | тьной установкой                             | и определяется по ф        | ормуле:                  |  |  |  |
|          |                                                                                                                                                                                                      | M                                                                   | <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000 | ), т/год                                     |                            |                          |  |  |  |
| где:     |                                                                                                                                                                                                      |                                                                     |                                                        |                                              |                            |                          |  |  |  |
|          |                                                                                                                                                                                                      | щества, г/кг топлива, пр                                            |                                                        |                                              |                            |                          |  |  |  |
|          | •                                                                                                                                                                                                    | с учетом совокупности                                               | режимов, сост                                          | гавляющих экспл                              | туатационный цикл <u>,</u> | г/кг топлива (таб-       |  |  |  |
| лица 3 и |                                                                                                                                                                                                      |                                                                     |                                                        | I                                            |                            | I                        |  |  |  |
|          |                                                                                                                                                                                                      | оной дизельной устан                                                |                                                        |                                              | 1.010                      | -/                       |  |  |  |
|          |                                                                                                                                                                                                      | ным об эксплуатации ус<br>: <b>В<sub>год</sub>=b₃*k*P₃*T*10</b> -6: | становки) или                                          | В <sub>год</sub>                             | 1.919                      | т/год                    |  |  |  |
| определя | нется по формуле                                                                                                                                                                                     | . D <sub>ГОД</sub> -U <sub>3</sub> K Г <sub>3</sub> I IU .          |                                                        | b                                            | 18.5                       | л/ч                      |  |  |  |
| Расход т | оплива:                                                                                                                                                                                              |                                                                     |                                                        | b                                            | 16.10                      | кг/ч                     |  |  |  |
| Срепций  | удельный расход                                                                                                                                                                                      | TOULINBS.                                                           |                                                        | b <sub>3</sub>                               | 153                        | г/кВт.ч                  |  |  |  |
|          | <u>удельный расход</u><br>гь дизельного топі                                                                                                                                                         |                                                                     |                                                        | ρ                                            | 0.87                       | кг/л                     |  |  |  |
|          | циент использован                                                                                                                                                                                    |                                                                     |                                                        | k                                            | 1                          | 10771                    |  |  |  |
| Время ра | •                                                                                                                                                                                                    | 17171.                                                              |                                                        | T                                            | 119.2                      | ч/год                    |  |  |  |
| Броил ре | , CO 1 DI.                                                                                                                                                                                           | Исходные да                                                         | анные по исто                                          | учнику выбросс                               |                            | у, од                    |  |  |  |
| Количест | TBO:                                                                                                                                                                                                 | толодива до                                                         |                                                        | N                                            | 1                          | ШТ                       |  |  |  |
|          | вращения вала:                                                                                                                                                                                       |                                                                     |                                                        | n                                            | 1500                       | об/мин                   |  |  |  |
| Группа С |                                                                                                                                                                                                      |                                                                     |                                                        |                                              | Б                          |                          |  |  |  |
|          |                                                                                                                                                                                                      | Расчет расход                                                       | а отработанні                                          | ых газов и топл                              | ива                        | •                        |  |  |  |
| Расход с | тработанных газо                                                                                                                                                                                     | B, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$                              | •                                                      | G <sub>or</sub>                              | 0.140                      | кг/с                     |  |  |  |
|          | тура отходящих га                                                                                                                                                                                    |                                                                     |                                                        | Tor                                          | 400                        | °C                       |  |  |  |
| Плотнос  | гь газов при 0°С:                                                                                                                                                                                    |                                                                     |                                                        | γ0 <sub>οΓ</sub>                             | 1.31                       | кг/м <sup>3</sup>        |  |  |  |
| Плотнос  | гь газов при Т <sub>ог</sub> (К)                                                                                                                                                                     | , γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)                        |                                                        | <b>ү</b> ог                                  | 0.53157                    | кг/м <sup>3</sup>        |  |  |  |
| Объемнь  |                                                                                                                                                                                                      | анных газов, $Q_{or}=G_{or}/\gamma_{or}$                            |                                                        | $Q_{or}$                                     | 0.2635                     | м <sup>3</sup> /с        |  |  |  |
|          | Расчет в                                                                                                                                                                                             | ыбросов вредных вег                                                 | ществ в атмос                                          | сферу всего от                               | дизель-генератора          | 1:                       |  |  |  |
|          |                                                                                                                                                                                                      |                                                                     |                                                        |                                              |                            |                          |  |  |  |
| IC       |                                                                                                                                                                                                      |                                                                     | _                                                      | _                                            | Максимально-               | Валовый вы-              |  |  |  |
| Код      | Наиме                                                                                                                                                                                                | нование ЗВ                                                          | e <sub>i</sub> ,                                       | q <sub>i</sub> ,                             | разовый вы-                | брос                     |  |  |  |
| 3B       |                                                                                                                                                                                                      |                                                                     |                                                        |                                              | брос                       |                          |  |  |  |
|          |                                                                                                                                                                                                      |                                                                     | г/кВт.ч                                                | г/кг топлива                                 | M <sub>ceκ</sub> , г/c     | М <sub>год</sub> , т/год |  |  |  |
|          | Азот                                                                                                                                                                                                 | а оксиды                                                            | 9.6                                                    | 40                                           | 0.28                       | 0.0767549                |  |  |  |
| 0301     |                                                                                                                                                                                                      | а диоксид                                                           | 0.0                                                    | .0                                           | 0.224                      | 0.0614039                |  |  |  |
| 0304     |                                                                                                                                                                                                      | та оксид                                                            |                                                        |                                              | 0.0364                     | 0.0099781                |  |  |  |
| 0328     |                                                                                                                                                                                                      | Сажа                                                                | 0.5                                                    | 2                                            | 0.0145833                  | 0.0038377                |  |  |  |
| 0330     |                                                                                                                                                                                                      | а диоксид                                                           | 1.2                                                    | 5                                            | 0.035                      | 0.0095944                |  |  |  |
| 0337     |                                                                                                                                                                                                      | род оксид                                                           | 6.2                                                    | 26                                           | 0.1808333                  | 0.0498907                |  |  |  |
| 0703     |                                                                                                                                                                                                      | в(а)пирен                                                           | 0.000012                                               | 0.000055                                     | 0.0000004                  | 0.0000001                |  |  |  |
| 1325     |                                                                                                                                                                                                      | иальдегид                                                           | 0.12                                                   | 0.5                                          | 0.0035                     | 0.0009594                |  |  |  |
| 2754     |                                                                                                                                                                                                      | оды пр. С12-С19                                                     | 2.9                                                    | 12                                           | 0.0845833                  | 0.0230265                |  |  |  |
|          |                                                                                                                                                                                                      |                                                                     |                                                        |                                              |                            | 0.1586908                |  |  |  |

|   | № ИЗА                                                                                                 | 0043, 0106 | Наименование источника загрязнения<br>атмосферы | Дыхательный клапан      |  |  |  |  |
|---|-------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------|-------------------------|--|--|--|--|
| ſ | <b>№</b> ИВ 001                                                                                       |            | Наименование источника выделения                | Резервуар с дизтопливом |  |  |  |  |
| ſ | Расцет выбласов в этмосферу выпалнен согласно: ВНП 211 2.02 09-2004 "Мотолические указания по опреде- |            |                                                 |                         |  |  |  |  |

Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.

|                                                   | Исходнь          | іе данные:         |                   | Pac                                                                                  | четные форм                                           | улы:                                                              |  |
|---------------------------------------------------|------------------|--------------------|-------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|--|
| Количество резервуа-<br>ров                       | Np               | 1                  | ШТ                |                                                                                      |                                                       |                                                                   |  |
| Объем резервуара (одноцелевых резервуаров)        | V <sub>pe3</sub> | 5                  | M <sup>3</sup>    | <ul> <li>Годовые выбросы загрязняющих веществ в<br/>атмосферу, т/год:</li> </ul>     |                                                       |                                                                   |  |
| Тип резервуара                                    |                  | Заглублен          | ІНЫЙ              | $G=(Y_{03}*B_{03}+Y$                                                                 | <sub>вл*</sub> В <sub>вл</sub> )*К <sub>р</sub> мах*1 | 0 <sup>-6</sup> +G <sub>хР</sub> *К <sub>нП</sub> *N <sub>р</sub> |  |
| Объем перекачки                                   | Вобш             | 42.795             | т/год             | ,                                                                                    | , <b>.</b>                                            | ,                                                                 |  |
| Объем перекачки в течение осенне-зимнего периода  | B <sub>o3</sub>  | 21.398             | т/год             | Максимально-разовый выброс, г/с:                                                     |                                                       |                                                                   |  |
| Объем перекачки в течение весенне-летнего периода | Ввл              | 21.398             | т/год             | M=C <sub>1</sub> *K <sub>p</sub> <sup>max</sup> *V <sub>ч</sub> <sup>max</sup> /3600 |                                                       |                                                                   |  |
|                                                   |                  | Расч               | етные показатели: |                                                                                      |                                                       |                                                                   |  |
| Средние удельные выброгода (приложение 12)        | осы из ре        | зервуара в осенн   | е-зимний период   | Уоз                                                                                  | 2.36                                                  | г/т                                                               |  |
| Средние удельные выброгода (приложение 12)        | осы из ре        | зервуара в весені  | не-летний период  | У <sub>вл</sub>                                                                      | 3.15                                                  | г/т                                                               |  |
| Концентрация паров неф                            | тепродук         | та в резервуаре (г | приложение 12)    | C <sub>1</sub>                                                                       | 3.92                                                  | г/м <sup>3</sup>                                                  |  |
| Опытный коэффициент (г                            | триложен         | ие 8)              |                   | К <sub>р</sub> мах                                                                   | 0.8                                                   |                                                                   |  |
| Максимальный объем па<br>вуара во время его закач |                  | іной смеси, вытес  | няемой из резер-  | $V_{q}^{\text{max}}$                                                                 | 4                                                     | м <sup>3</sup> /ч                                                 |  |
| Выбросы паров нефтепро резеруаре (приложение 1    |                  | ри хранении дизт   | оплива в одном    | G <sub>XP</sub>                                                                      | 0.081                                                 | т/год                                                             |  |
| Опытный коэффициент (г                            | триложен         | ие 12)             |                   | Кнп                                                                                  | 0.0029                                                |                                                                   |  |
|                                                   | Выброс           | ы паров нефтеп     | родуктов в атмосф | реру из резерву                                                                      | ара:                                                  |                                                                   |  |
| Максимальный выброс за                            | грязняю          | щих веществ в ати  | иосферу           | M                                                                                    | 0.0036046                                             | г/с                                                               |  |
| Годовые выбросы загряз                            | няющих і         | веществ в атмосф   | еру               | G                                                                                    | 0.0003292                                             | т/год                                                             |  |
|                                                   |                  |                    |                   | Масс. сод-                                                                           | Количес                                               | тво выбросов                                                      |  |
| Код ЗВ                                            | H                | аименование 3В     |                   | ние C <sub>i,</sub> % г/с т/год                                                      |                                                       | т/год                                                             |  |
| 0333 Сероводород                                  |                  |                    |                   | 0.28%                                                                                | 0.0000101                                             | 0.0000009                                                         |  |
| 2754 Углеводород                                  | ы предел         | ьные С12-С19       | •                 | 99.72%                                                                               | 0.0035945                                             | 0.0003283                                                         |  |
|                                                   | В                | сего по источни    | ку:               |                                                                                      | 0.0036046                                             | 0.0003292                                                         |  |

| № ИЗА                       | 0107-0108                                                |                 | аименование источника загрязнения Дыхательный клапан |                    |                                                                                   |                                           |                                                      |
|-----------------------------|----------------------------------------------------------|-----------------|------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| №ИВ                         | 001                                                      |                 | нование источни                                      |                    | Резервуар с дизтопливом                                                           |                                           |                                                      |
|                             |                                                          |                 |                                                      | сно: РНД 211.2.02. |                                                                                   |                                           | ния по опреде-                                       |
| лению вы                    |                                                          |                 |                                                      | феру из резервуа   |                                                                                   |                                           |                                                      |
|                             |                                                          | Ісходнь         | іе данные:                                           | 1                  | Pacy                                                                              | іетные форм                               | улы:                                                 |
| Количество<br>ров           | резервуа-                                                | N <sub>p</sub>  | 1                                                    | ШТ                 | FOTOBLIA BLIFT                                                                    | ochi satudshak                            | NUMY BAMBOTE B                                       |
| Объем<br>(одноцелев<br>ров) | резервуара<br>вых резервуа-                              | $V_{pe3}$       | 5                                                    | M <sup>3</sup>     | <ul> <li>Годовые выбросы загрязняющих веществ<br/>атмосферу, т/год:</li> </ul>    |                                           |                                                      |
| Тип резерв                  | yapa                                                     |                 | Заглубленн                                           | ный                | $G=(Y_{03}*B_{03}+Y_{B})$                                                         | п*В <sub>вп</sub> )*К <sub>п</sub> мах*10 | )-6+G <sub>XP</sub> *K <sub>HП</sub> *N <sub>p</sub> |
| Объем пер                   | , .                                                      | Вобщ            | 1.08                                                 | т/год              | , 00 00 2                                                                         | 23., p                                    | л р                                                  |
| Объем пер                   | екачки в те-<br>енне-зимнего                             | B <sub>o3</sub> | 0.54                                                 | т/год              | Максимально-разовый выброс, г/с:  М=С₁*К <sub>р</sub> мах*V <sub>ч</sub> мах/3600 |                                           |                                                      |
| Объем пер                   | екачки в те-<br>сенне-летнего                            | Ввл             | 0.54                                                 | т/год              |                                                                                   |                                           |                                                      |
|                             |                                                          |                 | Расче                                                | тные показатели:   |                                                                                   |                                           |                                                      |
| Средние уд<br>года (прило   |                                                          | сы из ре        | зервуара в осенне                                    | -зимний период     | Уоз                                                                               | 2.36                                      | г/т                                                  |
| Средние уд<br>года (прило   |                                                          | сы из ре        | зервуара в весенн                                    | е-летний период    | У <sub>вл</sub>                                                                   | 3.15                                      | г/т                                                  |
|                             |                                                          | гепродуі        | ста в резервуаре (п                                  | риложение 12)      | C <sub>1</sub>                                                                    | 3.92                                      | г/м <sup>3</sup>                                     |
|                             | эффициент (п                                             |                 |                                                      |                    | <b>К</b> <sub>р</sub> мах                                                         | 0.8                                       |                                                      |
|                             | ный объем пар<br>ремя его закачк                         |                 | иной смеси, вытесн                                   | няемой из резер-   | V <sub>ч</sub> мах                                                                | 4                                         | м <sup>3</sup> /ч                                    |
|                             | Выбросы паров нефтепродукто<br>резеруаре (приложение 13) |                 | іри хранении дизто                                   | плива в одном      | $G_{XP}$                                                                          | 0.081                                     | т/год                                                |
|                             | эффициент (п                                             |                 | ние 12)                                              |                    | Кнп                                                                               | 0.0029                                    |                                                      |
|                             |                                                          |                 |                                                      | одуктов в атмосф   | реру из резервуа                                                                  | ара:                                      |                                                      |
| Максималь                   |                                                          |                 | щих веществ в атм                                    |                    | M                                                                                 | 0.003605                                  | г/с                                                  |
|                             |                                                          |                 | веществ в атмосфе                                    |                    | G                                                                                 | 0.000237                                  | т/год                                                |
| Kon OD                      |                                                          |                 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0               |                    | Масс. сод-ние                                                                     | Количест                                  | гво выбросов                                         |
| Код ЗВ                      |                                                          |                 | аименование 3В                                       |                    | С <sub>і</sub> , % масс.                                                          | г/с                                       | т/год                                                |
| 0333                        | Сероводород                                              |                 |                                                      |                    | 0.28%                                                                             | 0.0000101                                 | 0.000007                                             |
| 2754                        | Углеводороді                                             | ы преде         | пьные С12-С19                                        |                    | 99.72%                                                                            | 0.0035945                                 | 0.0002366                                            |

Всего по источнику:

0.0036046

| № 84.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  | Наим             | OUODQUIAO IACTOURIS     | aka aarngaunuug     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------------|-------------------------|---------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Рачет выбросов в атмосферу выполнен согласию РНД 211.20.20 9-2004 "Методические указания по определению выбросов заграживномих веществ в атмосферу из резервуаров" (Аскодныю данные: Меходныю д                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | № ИЗА        | 0109             |                  |                         | іка загрязпения     | Топливозапр                                         | авщик                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| лению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.  Количество резервуаров  № 1 1 шт  Содовые выбросы загрязняющих веществ в атмосферу, т/год:  Тип резервуара (диноцелевых резервуарь (диноцелевых резервуарь)  Тип резервуара (диноцелевых резервуарь (динокеленыя (з)))  Максимальный выброс загрязняющих веществ в атмосферу (динокеленыя (з))  Максимальный выброс загрязняющих веществ в атмосферу (динокеленыя (з))  Максимальный выброс загрязняющих веществ в атмосферу (динокеленыя (зиностраный диностраный диностра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Меходиные данные   Меходиные                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ния по опреде-                                                 |
| ОБъем резервуара (одноцелевых резервуара ров)         V <sub>вз</sub> 20         м³         Годовые выбросы загрязняющих веществ в атмосферу, г/год; т/год носение-зимнего перемения течение осение-зимнего перемения течение осение-зимнего перемения течение осение-зимнего перемения течение осение-лимнего перемения течения объем паражающих объем паража                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JICIIVIIO BB |                  |                  |                         | сферу из резерву    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | улы:                                                           |
| ров)  Тип резервуара  Объем перекания  Вест 10 горизонтальный, назамный  Собъем перекания в течение весенне-летние перекания  Вест 143.88 т/год  Объем перекания в течение весенне-летние перекания  Вест 43.88 т/год  Вест 43.88 т/год  Максимально-разовый выброс, г/с:  Максимально-разовый выброс, г/с:  Редченые весенне-летниего периода  Расчетные показатели:  Тердине удельные выбросы из резервуара в осенне-зимний период гора (приложение 12)  Средине удельные выбросы из резервуара в весенне-летний период гора (приложение 12)  Средине удельные выбросы из резервуара в весенне-летний период гора (приложение 12)  Кенцентрация паров нефтепродукта в резервуаре (приложение 12)  Средине удельные выбросы из резервуара в весенне-летний период гора (приложение 12)  Кенцентрация паров нефтепродуктов при хранении дизтоплива в одном уст 11 гора (приложение 12)  Максимальный объем паровоздушной смеси, вытесняемой из резервуаре (приложение 12)  Кил на приложение 13)  Опытный коэффициент (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном уст 11 гора (приложение 13)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном уст 11 гора (приложение 13)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном уст 11 гора (приложение 13)  Выбросы паров нефтепродуктов при хранение дизтоплива в одном уст 11 гора (приложение 13)  Выбросы паров нефтепродуктов при хранение дизтоплива в одном уст 11 гора (приложение 13)  Выбросы паров нефтепродуктов при хранение дизтоплива в одном уст 11 гора (приложение 13)  Выбросы паров нефтепродуктов в атмосферу (приложение 12)  Выбросы паров нефтепродуктов в атмосферу (приложение 14)  Выбросы загражняющих веществ в атмосферу (приложение 15)  Виденна приденна приложение 12)  Выбросы паров нефтепродукта и в атмосферу (приложение 15)  Виденна приложение приложение приложение приложение приложение приложение приложение приложение приложение при дожност при загоние минера (приложение при дожност при загоние и резервуарь в осение-лимний период (приложение при загоние на ре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Количеств    |                  |                  | 1                       | ШТ                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| ров) Тип резервуара Горизонтальный, наземный Объем перекачия Веля В 7.75 Тип резервуара Объем перекачия течение осенне-зимнего периода Объем перекачия течение осенне-зимней период Объем перекачия течение осенне-зимней период Объем перекачия течение осенне-зимний период Объем перекачия течение осенне-зимний период Объем перекачия течение осенне-зимний период Объем перекачия течение за межит Объем перекачия течение за межит Объем перекачия течение за межит Объем перекачия течения объем паров нефтепродукта в разервуара в объем паров нефтепродукта в разервуара объем паров нефтепродукта в разервуара объем паров нефтепродукта в темпосферу Объем перекачия течения объем паров нефтепродукта в темпосферу Объем перекари объем паров перешельные с12 Объем паров перешельные с12 Объем перекари объем перекания течение осенначителе объем перекания объем перекания течение осенначителе объем объем перекания течение осенначителе объем перекания объем объем перекания объем                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  | .,               | 00                      | 3                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Тип реворваураз  Бормонтраньный выброс. 17 г.  Объем перекачии в течение осенен-зиминето периода  Объем перекачии в течение осенен-зиминето периода  Расчетные показатоли:  Средние удельные выбросы из резервуара в осенен-зиминий период года (приложение 12)  Средние удельные выбросы из резервуара в осенен-зиминий период года (приложение 12)  Средние удельные выбросы из резервуара в осенен-зиминий период года (приложение 12)  Средние удельные показатоли:  Средние удельные выбросы из резервуара в осенен-зиминий период года (приложение 12)  Средние удельные выбросы из резервуара в осенен-зиминий период года (приложение 12)  Средние удельные выбросы из резервуара в весенен-летний период года (приложение 12)  Средние удельные показатоли:  Средние удельные выбросы из резервуара в весенен-летний период года (приложение 12)  Средние удельные выбросы из резервуара в весенен-летний период года (приложение 12)  Средние удельные выбросы из резервуара в весенен-летний период года (приложение 12)  Средние удельные выбросы из резервуара в тип удельные показатоли:  Концентрация прое нефтепродукта в разервуара (приложение 12)  Сольтный коэффициент (приложение 12)  Сольтный коэффициент (приложение 12)  Выбросы парав нефтепродуктов в атмосферу и доезрезуара:  Максимальный выброс загряжняющих веществ в атмосферу и  Массильный выброс загряжняющих веществ в атмосферу и  Выбросы парамений в течений в выбросы загряжняющих веществ в атмосферу и  Расчет выбросе в загряжняющих веществ в атмосферу из резервуаров:  Количество резервуара  Пит резервуара Воезмна прое нефтепродукта и выбросах паровоздуш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •            | вых резервуа-    | V <sub>pe3</sub> | 20                      | M°                  |                                                     | атмосферу, т/го                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | д:                                                             |
| Объем перекачих в течение осение-зимнего периода         8 м 43.88         т/год         Максимально-разовый выброс, г/с:           Объем перекачих в течение восение-лимнего периода         Выпа 43.88         т/год         М=C,*K,**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | вуара            |                  | Горизонтальный.         | наземный            | G=(Y <sub>03</sub> *B <sub>03</sub> +)              | У <sub>вп*</sub> В <sub>вп</sub> )*К <sub>п</sub> мах*10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>-6</sup> +G <sub>хР</sub> *Кнп*N <sub>n</sub>             |
| макоминальний выбросы из резервуара в осенне-линий период года (приложение 12)  Средние удельные выбросы из резервуара в осенне-линий период года (приложение 12)  Средние удельные выбросы из резервуара в осенне-линий период года (приложение 12)  Средние удельные выбросы из резервуара в осенне-линий период года (приложение 12)  Средние удельные выбросы из резервуара в осенне-линий период года (приложение 12)  Средние удельные выбросы из резервуара в осенне-линий период года (приложение 12)  Средние удельные выбросы из резервуара (приложение 12)  Сольтный коаффициент (приложение 8)  Максимальный объем паровоздушной смоси, вытесняемой из резервуара (приложение 12)  Сольтный коаффициент (приложение 12)  Кып 0.0029  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резерчуаре (приложение 12)  Кып 0.0029  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резерчуаре (приложение 12)  Кып 0.0029  Выбросы паров нефтепродуктов рак                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  | Вобщ             |                         |                     | - (= 55 - 55                                        | ш, ш, р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - X p                                                          |
| Объем перкачки в течение селенне-лимний период массильные выбросы из резервуара в осенне-зимний период уста (приложение 12) Средние удельные выбросы из резервуара в осенне-зимний период уста (приложение 12) Средние удельные выбросы из резервуара в весенне-летний период уста (приложение 12) Средние удельные выбросы из резервуара в весенне-летний период уста (приложение 12) Средние удельные выбросы из резервуара в весенне-летний период уста (приложение 12) Концентрация паров нефтепродукта в резервуаре (приложение 12) Ста 3.92 г/м³ Концентрация паров нефтепродуктов при хранении дизтоплива в одном разреарера (приложение 13) Спытный коффициент (приложение 14) Кип 0.004575 Кип 0.001024752 Т/год Объем прекамия Спытной комфициент (приложение 14) Спытный коффициент (приложение 14) С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                  |                         |                     | Максима                                             | пьно-разовый в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ыброс г/с:                                                     |
| Объем перекания в тече висение-летиего периода         Выл         43.88         т/год         M=C₁*K₂м²м²√³35600           Средние удельные выбросы из резервуара в осенне-зимний период года (приложение 12)           Средние удельные выбросы из резервуара в весенне-летний период года (приложение 12)         У₂         2.36         г/т           Средние удельные выбросы из резервуара в весенне-летний период года (приложение 12)         С₁         3.92         г/м²           Сонатный коэфициент (приложение 12)         С₁         3.92         г/м²           Концентрация паров нефтепродуктов при хранении дивтоплива в одном кожние года (приложение 12)         К₀***         1           Максимальный бобьем паровоздушной смеси, вытесклемой из резеруаре (приложение 17)         Кунк         4         м³/ч           Максимальный бобьем паровоздушной смеси, вытесклемой из резеруаре (приложение 17)         Кунк         4         м³/ч           Максимальный выброс загрязняющих веществ в атмосферу         Кунг         0.0029         0.27         т/год           Максимальный выбросы загрязняющих веществ в атмосферу         М со. 0.01024752         т/год         масс. сод. ние С., % масс. масс. нас. на                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | е-зимнего пе-    | B <sub>o3</sub>  | 43.88                   | т/год               |                                                     | passess s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0000,                                                        |
| ние весенне-летнего пе- риода  Расчетные показатели:  Расчетные показатели:  Расчетные показатели:  Расчетные выбросы из резервуара в осенне-зимний период ус. 2.36 г/т года (приложение 12) ус. 3.15 г/т года (приложение 12) Ус. 3.92 г/тм² Опытный коэффициент (приложение 8) Концентрация паров нефтепродукта в резервуара в всенне-летний период ус. 1 3.92 г/тм² Опытный коэффициент (приложение 8) Концентрация побем паровозущиной смеси, вытесняемой из резерь ус. 4 м²³ч выбросы паров нефтепродуктов при хранении дизтоплива в одном буг. 1 мг.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | DEKAUKIN B TEUE- |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Риода  Расчетные показатели:  Средние удельные выбросы из резервуара в осенне-зимний период гора (приложение 12)  Средние удельные выбросы из резервуара в весенне-летний период гора (приложение 12)  Средние удельные выбросы из резервуара в весенне-летний период гора (приложение 12)  Концентрация паров нефтепродукта в резервуаре (приложение 12)  Концентрация паров нефтепродукта в резервуаре (приложение 12)  Максимальный объем паровоздушной смеси, вытесняемой из резерзуаре (приложение 13)  Максимальный объем паровоздушной смеси, вытесняемой из резерзуаре (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном дыя резерзуаре (приложение 12)  Выбросы паров нефтепродуктов паров нефтепродуктов в атмосферу из резерзуаре (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном дыя резерзуаре (приложение 12)  Выбросы паров нефтепродуктов в атмосферу из резерзуаре (приложение 12)  Выбросы паров нефтепродуктов в атмосферу из резерзуаре (приложение 12)  Максимальный выброс загрязняющих веществ в атмосферу из резерзуаре (приложение 12)  Максимальный выбросы загрязняющих веществ в атмосферу из резерзуаре (приложение 12)  Максимальный выбросы загрязняющих веществ в атмосферу из резерзуаров из какее об комасс. От количество выбросов загрязняющих веществ из какее об ка                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  | В                | 43.88                   | т/год               | M:                                                  | =C₁*Kոмах*Vuмах/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600                                                            |
| Средние удельные выбросы из резервуара в осение-зимний период года (приложение 12) Средние удельные выбросы из резервуара в весение-летний период года (приложение 12) Средние удельные выбросы из резервуара в весение-летний период года (приложение 12) Соведие удельные выбросы из резервуара в весение-летний период года (приложение 12) Соведие удельные выбросы продукта в резервуаре (приложение 12) Соведие удельные выбросы продукта в резервуаре (приложение 12) Соведие удельные выбросы заграяния паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Сольтный коэффициент (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Сольтный коэффициент (приложение 12)  Выбросы паров нефтепродуктов в атмосферу и м 0.0045057 г/с польтный коэффициент (приложение 12)  Выбросы паров нефтепродуктов в атмосферу и м 0.0045057 г/с польтный коэффициент (приложение 12)  Кып 0.0029  Выбросы парования обрось загрязняющих веществ в атмосферу и масс. сод. Количество выбросов коросов удельные сталеновыбросов и масс. сод. Количество выбросов масс. Сод. Количество выбросов имасс. Сод. Количество выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов в атмосферу выполнение согласно: РНД 211.2.02.09-2004 "Методические указания по определению весенне-зимнего периода. Объем перекачии в течение восенне-зимнего периода. Объем перекачии в течение восенне-зимнего периода. Мура Совем перекачии в течение восенне-зимнего периода. Мура Совем (Совем перекачии в течение восенне-зимнего периода (приложение 15, Суми 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  | - 671            |                         |                     |                                                     | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |
| года (приложение 12) Серание удельные выбросы из резервуара в весенне-летний период устад (приложение 12) Стад (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                  |                         |                     | :                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Средпие удельные выбросы из резервуара в весенне-летний период года (приложение 12) Концентрация паров нефтепродукта в резервуаре (приложение 12) Концентрация паров нефтепродуктов при хранении дизтоплива в одном дизтопривов нефтепродуктов при хранении дизтоплива в одном доложение 13)  Польтный ковофрициент (приложение 12)  Выбросы паров нефтепродуктов в атмосферу (м. п. д.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  | сы из р          | езервуара в осенне      | е-зимний период     | $y_{03}$                                            | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | г/т                                                            |
| года (приложение 12)  Концентрация паров нефтепродукта в резервуаре (приложение 12)  С, 3.9.2 г/м³  Опытный коэффициент (приложение 8)  Максимальный объем паровоздушной смеси, вытесняемой из резервуаре (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 12)  Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 12)  Выбросы паров нефтепродуктов в атмосферу из резервуара:  Максимальный выброс загрязняющих веществ в атмосферу (мистер институтор институтутор институтор институтутор институтор институту                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  | CL L 142 D       | OZODBYJODO B BOCOLII    | о потими пориол     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Концентрация паров нефтепродукта в резервуаре (приложение 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  | сы из р          | езервуара в весен       | не-летний период    | У <sub>вл</sub>                                     | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | г/т                                                            |
| Опытный коэфрициент (приложение 8) Максимальный объем пароваздушной смеси, вытесняемой из резерь вуара во время его закачки Выбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13) Опытный коэфрициент (приложение 12)  Выбросы паров нефтепродуктов в атмосферу из резервуара:  Максимальный выброс загрязняющих веществ в атмосферу  Макси, организации в максимальный выбросы загрязняющих веществ в атмосферу (масс. сод. Ник С. организации)  Код 3В Наименование 3В Макси, организации в максимальный выбросы загрязняющих веществ в атмосферу (масс. сод. Ник С. организации)  Максимальный выбросов выбрасов на правительный серь (масс. организации)  Максимальный выбросов загрязняющих веществ в атмосферу (масс. сод. Ник С. организации)  Макси, организации (масс. сод. Ник С. организации)  Максимальный (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Ник С. организации (масс. сод. Ник С. организации)  Масс. сод. Масс. сод. Ник С. организации (масс. сод. С. организации)  Массимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (масс. сод. на тих С. организации)  Массимальная концентрация паров нефтепродукт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  | гепроду          | кта в резервуаре (г     | приложение 12)      | C <sub>1</sub>                                      | 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | г/м <sup>3</sup>                                               |
| вуара во время его закачки  Быбросы паров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 12)  Польтный коэффициент (приложение 12)  Выбросы паров нефтепродуктов в атмосферу из резервуара:  Максимальный выброс загрязняющих веществ в атмосферу из резервуара:  Подовые выбросы загрязняющих веществ в атмосферу из резервуара:  Кол 3В Наименование объеми деламенование объеми деламенования деламенования объеми деламенования объеми деламенования деламенов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                  |                         |                     | К <sub>р</sub> мах                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |
| вудра во время его закачки в течение выбросы парров нефтепродуктов при хранении дизтоплива в одном резеруаре (приложение 13)  Выбросы паров нефтепродуктов в атмосферу из резервуара:  Выбросы паров нефтепродуктов в атмосферу из резервуара:  Кил 0.0029  Выбросы паров нефтепродуктов в атмосферу из резервуара:  Код ЗВ Наименование 3В Масс. сод Количество выбросов имасс.  Код ЗВ Наименование 3В Наим                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | •                |                  | шной смеси, вытес       | няемой из резер-    | V., Max                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | м <sup>3</sup> /ч                                              |
| резеруаре (приложение 13) Опытный козффициент (приложение 12) Выбросы паров нефтепродуктов в атмосферу из резервуара:  Максимальный выброс загрязняющих веществ в атмосферу им 0.0045057 г/с Годовые выбросы загрязняющих веществ в атмосферу им 0.0045057 г/го Код 3В Наименование 3В ние С. №  1 Наименов нефтепродукта и загуания на оправления и разервуаров и при загоние ние теменов загуания паровый выброс, г/с:  1 Наименования ние осенне-зимието периода магоние 15, г/од маг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , ,          | •                |                  | EDIA VIDOLIGIAMA FIMOTO | OFFILIDO D OFFICIA  | - 4                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Опытный коэффициент (приложение 12)         Кып         0.0029           Выбросы паров нефтепродуктов в атмосферу и лезервуара:         Выбросы паров нефтепродуктов в атмосферу и лезервуара:         Максимальный выброс загрязняющих веществ в атмосферу и лугод и л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                  | при хранении дизт       | оплива в одном      | $G_XP$                                              | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | т/год                                                          |
| Выбросы паров нефтепродуктов в атмосферу из резервуара:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                  | ние 12)                 |                     | Кнп                                                 | 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| Годовые выбросы загрязняющих веществ в атмосферу         G         0.001024752         т/год           Код 3В         Наименование 3В         Масс. содние С., % масс.         г/с         Количество выбросов           0333         Сероводород         0.28%         0.0000126         0.000029           2754         Углеводороды предельные С12-С19         99.72%         0.0044931         0.0010219           № ИВ         002         Наименование источника выделения         Заправка резервуарое доизтопливом           Расчет выбросов ваткосферу выполнен согласно: PHQ 211.2.020.9-2004 "Меточиеские указания по определению выбросо загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.         Расчетные формулы:           Количество резервуаров (Одноцелевых резервуаров (Одноцелевых резервуаров)         № 4         шт         Годовые выбросы загрязняющих веществ в атмосферу, игоды: Подвые выбросы загрязняющих веществ в атмосферу. Подважимально-разовый выброс, г/с: Подвые выбросы при заполнении резервуаров приложение 15, 17)         Максимально-разовый выброс, г/с: Подвые выбросы при заполнении резервуаров приложение 15, 17)         1.88         г/м³           Объем перекачки в течение весенне-эмний период (приложение 15, 17)         1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |                  |                         | родуктов в атмос    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Код 3В         Наименование 3В         Масс. содние Сг., % масс.         Количество выбросов п/г / г/год           0333         Сероводород         0.28%         0.0000126         0.0000029           2754         Углеводороды предельные С12-С19         99.72%         0.048931         0.0010219           № ИВ         002         Наименование источника выбреления         Заправка резервуарое доизтопливом           Расчет выбросов загрязняющих веществ в атмосферу из резервуаров объема резервуаров объема резервуара (одноцелевых резервуара (о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Код 3В         Наименование 3В         ние C <sub>1</sub> , % масс.         г/с         т/год           0333         Сероводороды предельные C12-C19         0.28%         0.0000126         0.0000029           2754         Углеводороды предельные C12-C19         99.72%         0.0044931         0.0010219           № ИВ         002         Наименование истиочника выбеления         3апража разервуаров дизтоплизом           Расчет выбросов в атмосферу выполнен согласно: PHД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Acтана, 2005 г.         Расчетные формулы:           Количество резервуаров (Одноцелевых резервуаров)         N <sub>p</sub> 4         шт         Расчетные формулы:           Количество резервуара (Одноцелевых резервуара (Одноцелевых резервуар)         V <sub>ps3</sub> 5         м³         Годовые выбросы загрязняющих веществ в атмосферу, л/год:           Объем резервуара (Одноцелевых резервуара (Одноцелевых резервуара)         V <sub>ps3</sub> 5         м³         G <sub>p</sub> =G <sub>зак</sub> +G <sub>пp.p</sub> : G <sub>зак</sub> =(C <sub>p</sub> -sa <sub>q</sub> -y-C <sub>p</sub> -n, Q <sub>n</sub> -y-10-6; G <sub>np.p</sub> -0.5*J*(Q <sub>o,2</sub> +C <sub>n</sub> -n)*10-6;         G <sub>p</sub> =G <sub>sak</sub> +G <sub>np.p</sub> : G <sub>sak</sub> =(C <sub>p</sub> -sa <sub>q</sub> -y-C <sub>p</sub> -n, Q <sub>n</sub> -y-10-6; G <sub>np.p</sub> -0.5*J*(Q <sub>o,2</sub> +C <sub>n</sub> -n, y-10-6; G <sub>np.p</sub> -0.5*J*(Q <sub>o,2</sub> +C <sub>n,p</sub> -n, y-10-6;         Mаксимально-разовый выброс, г/с:           Расчетные показатели:           Объем перекачки в течение осерводукта из автоцистерны в резервуара (приложение 15, т)         V <sub>cn</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Годовые в    | ыбросы загрязн   | яющих            | веществ в атмосф        | еру                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Масс.   Г/С   Т/ГОД                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kon OD       |                  | 1.1.             | auraciana anna an       |                     |                                                     | Количест                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | во выбросов                                                    |
| 0.333 Сероводород 2754 Углеводороды предельные С12-С19 99.72% 0.0004931 0.0010219 2754 Углеводороды предельные С12-С19 99.72% 0.00044931 0.0010219  № ИВ 002 Наименование источника выбеления Заправка резервуаров дизтопливом  Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.  Исходные данные:  Количество резервуаров № 4 шт Объем резервуаров № 4 шт Объем резервуара V <sub>рез</sub> 5 м³ год атмосферу, т/год:  Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода Объем перекачки в течение весенне-летнего периода Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в атмосферу: Выбросы при пролива  Выбросы при ролива  Выбросы при ролива на поверхность: Выбросы от проливов на поверхность:  Выбросы от проливов на поверхность:  М 0.0021609 17/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | код зв       |                  | П                | аименование зв          |                     |                                                     | г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | т/год                                                          |
| 2754         Углеводороды предельные C12-C19         99.72%         0.0044931         0.0010219           № ИВ         002         Наименование источника выделения         Заправка резервуаров дагрязов доштоличеом           Расчет выбросов в атмосферу выполнен согласно: PHQ 211.2.02.09-2004 "Методические указания по определению выбосов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.         Устана, 2005 г.           Количество резервуаров № резервуаров (одноцелевых резервуара (одношелевых резервуара (одн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0333         | Сероводород      |                  |                         |                     |                                                     | 0.0000126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000029                                                      |
| Расчет выбросов в атмосферу выполнен согласно: РНД 211.2.02.09-2004 "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.    Исходные данные:   Расчетные формулы:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  | і предел         | тьные C12-C19           |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| пению выбросов загрязняющих веществ в атмосферу из резервуаров", Астана, 2005 г.           Количество резервуаров Объем резервуара (одноцелевых резервуар) Ров)         Ч ит презервуара (одноцелевых резервуара (одноцелеры) (одноцелевых резервуара (одноцелеры) (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры (одноцелеры) (одноцелеры (о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Исходные данные:         Расчетные формулы:           Количество резервуаров Объем резервуара (одноцелевых резервуар ров)         4         шт           Объем резервуара (одноцелевых резервуаров)         V <sub>рез</sub> 5         м³         годовые выбросы загрязняющих веществ в атмосферу, т/год:           Объем перекачки         Q <sub>общ</sub> 100.86         м³/год         G <sub>p</sub> =G <sub>зак</sub> +G <sub>пр.р.</sub> ; G <sub>зак</sub> =(C <sub>p</sub> <sup>∞3k</sup> Q <sub>o,2</sub> +C <sub>p</sub> <sup>вл*Q</sup> Q <sub>o,1</sub> +O <sub>p</sub> <sup>n</sup> )*10 <sup>-6</sup> ;           Объем перекачки в течение осенне-зимнего периода         Q <sub>оз</sub> 50.43         м³/год         Максимально-разовый выброс, г/с:           Расчетные показатели:           Объем перекачки в течение весенне-летнего периода           им рессрыжка и завтоцистерны в резервуар         Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)         Мр=(C <sub>p</sub> маж*V <sub>сп</sub> )/t           Имаксимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)         C <sub>p</sub> <sup>∞3</sup> 1.88         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)         C <sub>p</sub> <sup>∞3</sup> 0.99         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)         C <sub>p</sub> <sup>80</sup> 1.33         г/м³      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ния по опреде-                                                 |
| Количество резервуаров         N <sub>p</sub> 4         шт           Объем резервуара (одноцелевых резервуаров) ров)         V <sub>pe3</sub> 5         м³         Годовые выбросы загрязняющих веществ в атмосферу, т/год: ватмосферу, т/год: ватмосферу; пизамосферу: ватмосферу; пизамосферу: ватмосферу: ва                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | лению вь     |                  |                  |                         | сферу из резерву    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /UPI.                                                          |
| Объем резервуара (одноцелевых резервуар- ров)  Тип резервуара Тип резервуара Объем перекачки Объем перекачки в течение осенне-зимнего периода Объем перекачки в течение весенне-летнего периода  Расчетные показатели: Объем слитого нефтепродукта из автоцистерны в резервуар Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17) Среднее время слива заданного объема (V <sub>cn</sub> ) нефтепродукта в атмосферу:  Выбросы при закачке и хранении:  Выбросы при закачке и хранении:  Выбросы от проливов на поверхность:  Карак Выбросы от проливов на поверхность:  Карак Выбросы от проливов на поверхность:  М 0.0021609 г/с  М 0.0021609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Количеств    |                  |                  |                         | шт                  | ]                                                   | o icilibic фopini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y31Di.                                                         |
| ров) Тип резервуара Заглубленный Объем перекачки Объем перекачки в течение осение-зимнего периода Объем перекачки в течение весенне-летнего периода Объем слитого нефтепродукта из автоцистерны в резервуаро (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаро в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Среднее время слива заданного объема (V <sub>cn</sub> ) нефтепродукта в титом сек удельные выбросы при проливах  Выбросы паров нефтепродуктов в атмосферу: Выбросы от проливов на поверхность:   G <sub>пор.р.</sub> Оло025216 Т/год Максимальный (разовый) выброс 3В при заполнении резервуаров:  М 0.0021609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  |                  |                         |                     | Годовые выб                                         | росы загрязняю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | щих веществ в                                                  |
| Тип резервуара Заглубленный                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •            | вых резервуа-    | $V_{pe3}$        | 5                       | M <sup>3</sup>      |                                                     | атмосферу, т/го                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | д:                                                             |
| Объем перекачки Рема 100.86 м³/год Св_пр_р=0.5*J*(Qо₃+Qъп)*10*6  Объем перекачки в течение осенне-зимнего периода  Объем перекачки в течение весенне-летнего периода  Объем слитого нефтепродукта из автоцистерны в резервуар  Максимально-разовый выброс, г/с:  Расчетные показатели:  Объем слитого нефтепродукта из автоцистерны в резервуар  Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема (V <sub>сп</sub> ) нефтепродукта t 17400 сек Удельные выбросы при проливах J 50 г/м³  Выбросы паров нефтепродуктов в атмосферу:  Выбросы при закачке и хранении:  Выбросы от проливов на поверхность:  Срапь 17/год Максимальный (разовый) выброс ЗВ при заполнении резервуаров:  М 0.0021609 г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |                  | 0                       |                     | 0.0.0                                               | 0 (0.0340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - O BUT 1440 F                                                 |
| Объем перекачки в течение осенне-зимнего периода         Q₀₃         50.43         м³/год         Максимально-разовый выброс, г/с:           Расчетные показатели:           Расчетные показатели:           Объем слитого нефтепродукта из автоцистерны в резервуар         V <sub>сп</sub> 20         м³           Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)         С <sub>р</sub> мах         1.88         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)         С <sub>р</sub> <sup>оз</sup> 0.99         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)         С <sub>р</sub> <sup>вп</sup> 1.33         г/м³           Концентрация паров нефтепродуктов в выбросы при проливах         д         1.33         г/м³           Среднее время слива заданного объема (V <sub>сп</sub> ) нефтепродукта         t         17400         сек           Удельные выбросы при проливах         J         50         г/м³           Выбросы паров нефтепродуктов в атмосферу:           Выбросы от проливов на поверхность:         G <sub>зак</sub> 0.0001170         т/год           Максимальный (разовый) выброс 3В при заполнении резервуаров:         М         0.0021609 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>G<sub>p</sub>=G<sub>зак</sub>+G<sub>пр.р</sub></td> <td><math>G_{3a\kappa} = (C_p^{os} \cdot Q_{os} \cdot Q_{os}</math></td> <td>+С<sub>р</sub>ыхQ<sub>вл</sub>)*10°;<br/>\*10-<sup>6</sup></td> |              |                  | 0                |                         |                     | G <sub>p</sub> =G <sub>зак</sub> +G <sub>пр.р</sub> | $G_{3a\kappa} = (C_p^{os} \cdot Q_{os} \cdot Q_{os}$ | +С <sub>р</sub> ыхQ <sub>вл</sub> )*10°;<br>\*10- <sup>6</sup> |
| ние осенне-зимнего периода Объем перекачки в течение весенне-летнего периода  Расчетные показатели: Объем слитого нефтепродукта из автоцистерны в резервуар Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17) Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17) Среднее время слива заданного объема (V <sub>cn</sub> ) нефтепродуктов в атмосферу: Выбросы при закачке и хранении:  Выбросы от проливов на поверхность:  Быбросы от проливов на поверхность:  Бабросы от проливов на поверхность:  Кмаксимальный (разовый) выброс 3В при заполнении резервуаров:  М 0.0021609  Максимальный (разовый) выброс 3В при заполнении резервуаров:  М 0.0021609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  | <b>Ч</b> общ     | 100.00                  | м лод               | <b>С</b> пр.                                        | -0.5 5 (Q <sub>03</sub> +Q <sub>B)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1) 10                                                          |
| риода         Объем перекачки в течение весенне-летнего периода         Северона         50.43         м³/год         М₂=(С₂мах*Vсₙ)/t         М₂=(С₂мах*Vсₙ)/t         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         №         № <td></td> <td></td> <td><math>Q_{03}</math></td> <td>50.43</td> <td>м<sup>3</sup>/год</td> <td>Максима</td> <td>льно-разовый в</td> <td>ыброс, г/с:</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | $Q_{03}$         | 50.43                   | м <sup>3</sup> /год | Максима                                             | льно-разовый в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ыброс, г/с:                                                    |
| ние весенне-летнего периода    Pacчетные показатели:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                  |                         |                     |                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                              |
| Расчетные показатели:           Объем слитого нефтепродукта из автоцистерны в резервуар         V <sub>сл</sub> 20         м³           Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)         Срмах         1.88         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)         Сроз         0.99         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)         Срвп         1.33         г/м³           Среднее время слива заданного объема (V <sub>сп</sub> ) нефтепродукта         1         17400         сек           Удельные выбросы при проливах         Ј         50         г/м³           Выбросы при закачке и хранении:         G <sub>зак</sub> 0.0001170         т/год           Выбросы от проливов на поверхность:         G <sub>пр.р.</sub> 0.0025216         т/год           Максимальный (разовый) выброс 3В при заполнении резервуаров:         М         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  | _                | -0.40                   | 2,                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Расчетные показатели:           Объем слитого нефтепродукта из автоцистерны в резервуар         V <sub>cn</sub> 20         м³           Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)         С <sub>р</sub> мах         1.88         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)         С <sub>р</sub> оз         0.99         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)         С <sub>р</sub> вп         1.33         г/м³           Среднее время слива заданного объема (V <sub>cn</sub> ) нефтепродукта         t         17400         сек           Удельные выбросы при проливах         J         50         г/м³           Выбросы при закачке и хранении:         G <sub>зак</sub> 0.0001170         т/год           Выбросы от проливов на поверхность:         G <sub>пр.р.</sub> 0.0025216         т/год           Максимальный (разовый) выброс 3В при заполнении резервуаров:         М         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | не-летнего пе-   | Q <sub>вл</sub>  | 50.43                   | м³/год              |                                                     | $\mathbf{M}_{\mathbf{p}} = (\mathbf{C}_{\mathbf{p}}^{Max*} \mathbf{V}_{cn}) /$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t                                                              |
| Объем слитого нефтепродукта из автоцистерны в резервуар         V <sub>cn</sub> 20         м³           Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)         С <sub>р</sub> мах         1.88         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)         С <sub>р</sub> оз         0.99         г/м³           Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)         С <sub>р</sub> вп         1.33         г/м³           Среднее время слива заданного объема (V <sub>сл</sub> ) нефтепродукта         t         17400         сек           Удельные выбросы при проливах         J         50         г/м³           Выбросы при закачке и хранении:         G <sub>зак</sub> 0.0001170         т/год           Выбросы от проливов на поверхность:         G <sub>пр.р.</sub> 0.0025216         т/год           Максимальный (разовый) выброс 3В при заполнении резервуаров:         М         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | риода        |                  |                  | Pacu                    | <br>                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема (V <sub>cn</sub> ) нефтепродукта  Выбросы при проливах  Выбросы паров нефтепродуктов в атмосферу:  Выбросы при закачке и хранении:  Выбросы от проливов на поверхность:  Выбросы от проливов на поверхность:  Максимальный (разовый) выброс 3В при заполнении резервуаров:  М 0.0021609  Г/м³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Объем сли    | итого нефтепрод  | дукта из         |                         |                     |                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M^3$                                                          |
| 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема ( $V_{cn}$ ) нефтепродукта $V_{cn}$ $V_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема ( $V_{cn}$ ) нефтепродукта $t$ 1.33 $r/m^3$ ложение выбросы при проливах $t$ 17400 сек Удельные выбросы при проливах $t$ 17400 сек Выбросы при закачке и хранении: $t$ 1760 $t$ 1760 $t$ 1860 $t$ 1760 $t$ 1860 $t$ 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ровоздушн    | ной смеси приз   | аполне           | нии резервуаров (       | приложение 15,      | $C_p^{\text{max}}$                                  | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | г/м <sup>3</sup>                                               |
| смеси при заполнении резервуаров в осенне-зимний период (приложение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема ( $V_{cn}$ ) нефтепродукта $t$ 1.33 $r/m^3$ Средные выбросы при проливах $t$ 17400 сек удельные выбросы при проливах $t$ 17400 $t$ 17/m <sup>3</sup> Выбросы паров нефтепродуктов в атмосферу:  Выбросы при закачке и хранении: $t$ 17/год $t$ 17/год Выбросы от проливов на поверхность: $t$ 17/год $t$ 17/год Максимальный (разовый) выброс 3В при заполнении резервуаров: $t$ 0.0021609 $t$ 1/год                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |                  |                         |                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| жение 15, 17)  Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема ( $V_{cn}$ ) нефтепродукта $t$ 17400 сек Удельные выбросы при проливах $J$ 50 г/м³  Выбросы паров нефтепродуктов в атмосферу:  Выбросы при закачке и хранении: $G_{3ak}$ 0.0001170 т/год Выбросы от проливов на поверхность: $G_{np.p.}$ 0.0025216 т/год Максимальный (разовый) выброс 3В при заполнении резервуаров: $M$ 0.0021609 г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |                  | •                       |                     | C 03                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r/na3                                                          |
| Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в весенне-летний период (приложение 15, 17)  Среднее время слива заданного объема ( $V_{cn}$ ) нефтепродукта $t$ 17400 сек Удельные выбросы при проливах $J$ 50 г/м³  Выбросы паров нефтепродуктов в атмосферу: Выбросы при закачке и хранении: $G_{3ak}$ 0.0001170 т/год Выбросы от проливов на поверхность: $G_{np.p.}$ 0.0025216 т/год Максимальный (разовый) выброс 3В при заполнении резервуаров: $M$ 0.0021609 г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  | вервуар          | ов в осенне-зимни       | и период (прило-    | $C_p$                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/M                                                            |
| ложение 15, 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  | епроду           | ктов в выбросах па      | ровоздушной         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Среднее время слива заданного объема ( $V_{cn}$ ) нефтепродукта         t         17400         сек           Удельные выбросы при проливах         J         50         г/м³           Выбросы паров нефтепродуктов в атмосферу:           Выбросы при закачке и хранении: $G_{3ak}$ 0.0001170         т/год           Выбросы от проливов на поверхность: $G_{np.p.}$ 0.0025216         т/год           Максимальный (разовый) выброс 3В при заполнении резервуаров:         M         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | смеси при    | заполнении рез   | вервуар          | ов в весенне-летни      | ий период (при-     | $C_p^{\;вл}$                                        | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | г/м <sup>3</sup>                                               |
| Удельные выбросы при проливах         J         50         г/м³           Выбросы паров нефтепродуктов в атмосферу:           Выбросы при закачке и хранении:         G <sub>зак</sub> 0.0001170         т/год           Выбросы от проливов на поверхность:         G <sub>пр.р.</sub> 0.0025216         т/год           Максимальный (разовый) выброс 3В при заполнении резервуаров:         M         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ·                |                  |                         |                     |                                                     | .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |
| Выбросы паров нефтепродуктов в атмосферу:           Выбросы при закачке и хранении:         G <sub>зак</sub> 0.0001170         т/год           Выбросы от проливов на поверхность:         G <sub>пр.р.</sub> 0.0025216         т/год           Максимальный (разовый) выброс ЗВ при заполнении резервуаров:         M         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |                  |                         | епродукта           | t                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Выбросы при закачке и хранении:         Gзак         0.0001170         т/год           Выбросы от проливов на поверхность:         Gпр.р.         0.0025216         т/год           Максимальный (разовый) выброс ЗВ при заполнении резервуаров:         М         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | удельные     | веоросе при пр   | лој іивах        |                         | uomtonnonyyton -    | J                                                   | J 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Γ/M°                                                           |
| Выбросы от проливов на поверхность:         G <sub>пр.р.</sub> 0.0025216         т/год           Максимальный (разовый) выброс ЗВ при заполнении резервуаров:         М         0.0021609         г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Выбросы г    | три закачке и хр | анении           |                         | пефтепродуктов в    |                                                     | 0.0001170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т/гол                                                          |
| Максимальный (разовый) выброс ЗВ при заполнении резервуаров: М 0.0021609 г/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                  |                         |                     | G <sub>пр.р</sub>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Годовые выбросы паров нефтепродуктов от резервуаров при закачке:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |                  |                         | и резервуаров:      | M                                                   | 0.0021609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Годовые в    | ыбросы паров н   | ефтепр           | одуктов от резерву      | аров при закачке:   | G                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | т/год                                                          |

|        |                                 | Масс. сод-                      | Количество выбросов |           |  |
|--------|---------------------------------|---------------------------------|---------------------|-----------|--|
| Код ЗВ | Наименование 3В                 | ние С <sub>і</sub> , %<br>масс. | г/с                 | т/год     |  |
| 0333   | Сероводород                     | 0.28%                           | 0.0000061           | 0.0000074 |  |
| 2754   | Углеводороды предельные С12-С19 | 99.72%                          | 0.0021549           | 0.0026312 |  |
|        | Всего по источнику:             |                                 | г/с                 | т/год     |  |
| 0333   | Сероводород                     |                                 | 0.0000187           | 0.0000103 |  |
| 2754   | Углеводороды предельные С12-С19 |                                 | 0.0066480           | 0.0036531 |  |
|        | Итого по источнику:             |                                 | 0.0066667           | 0.0036634 |  |

| № ИЗА        | 6025                                                                                                   | Наименование источника за-<br>грязнения атмосферы | Перекачка дизельного топлива                       |                                                 |           |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-----------|--|--|--|
| №ИВ          | 001                                                                                                    | Наименование источника вы-<br>деления             | Насосы для перекачки дизтоплива                    |                                                 |           |  |  |  |
| Расчет       | Расчет выбросов в атмосферу от средств перекачки выполнен по РНД 211.2.02.09-2004 "Методические указа- |                                                   |                                                    |                                                 |           |  |  |  |
| ния по опред | делению выбр                                                                                           | осов загрязняющих веществ в а                     | тмосферу из рез                                    | вервуаров", Астана, 20                          | 05 г.     |  |  |  |
|              | Maximur                                                                                                | n one-time emission is calculated by              | the formula: Mcek i=                               | =(c <sub>i</sub> *n <sub>H</sub> *Q)/3.6, g/sec |           |  |  |  |
|              | Валог                                                                                                  | вый выброс рассчитывается по фо                   | рмуле: <b>М<sub>год i</sub>=(c</b> <sub>i</sub> *n | ı <sub>н</sub> * <b>Q*T)/10</b> ³, т/год        |           |  |  |  |
|              |                                                                                                        | Исходные пар                                      |                                                    |                                                 |           |  |  |  |
|              | Характе                                                                                                | ристика насоса – центробежный с                   | одним торцевым                                     | уплотнением вала.                               |           |  |  |  |
| Количество н | асосов:                                                                                                |                                                   | n <sub>H</sub>                                     | 4                                               | ШТ.       |  |  |  |
| Количество з | апорно-регулир                                                                                         | ующей арматуры:                                   | n <sub>spa</sub>                                   | 16                                              | ШТ.       |  |  |  |
| Фланцевых с  | оединений:                                                                                             |                                                   | n <sub>Φ</sub>                                     | 32                                              | ШТ.       |  |  |  |
| Время работь | ы насосов, ЗРА                                                                                         | и фланцевых соединений:                           | T                                                  | 8784                                            | ч/год     |  |  |  |
| Удельное выд | деление загряз                                                                                         | няющих веществ (таблица 8.1):                     | Q                                                  | 0.04                                            | кг/ч      |  |  |  |
| Массовое сод | держание серов                                                                                         | одорода:                                          | C <sub>i</sub>                                     | 0.28%                                           |           |  |  |  |
| Массовое сод | держание углев                                                                                         | одородов предельные С12-С19:                      | Cj                                                 | 99.72%                                          |           |  |  |  |
| В            | ыбросы паров                                                                                           | в нефтепродуктов в атмосферу с                    | от нефтеперекач                                    | ивающего оборудова                              | ния:      |  |  |  |
| Код ЗВ       | Кол 2В Максимально-разо- Валовы                                                                        |                                                   |                                                    |                                                 |           |  |  |  |
| код зв       |                                                                                                        | Наименование ЗВ вый выброс, г/с брос, т/          |                                                    |                                                 |           |  |  |  |
| 0333         | Сероводород                                                                                            |                                                   |                                                    | 0.0001244                                       | 0.0039352 |  |  |  |
| 2754         | 2754 Углеводороды предельные С12-С19 0.0443200 1.4015048                                               |                                                   |                                                    |                                                 | 1.4015048 |  |  |  |

№ ИЗА 6025 Наименование источника загрязнения атмосферы Перекачка дизельного топлива

Неплотности ЗРА и фланцевых соединений деления

Выделение вредных веществ через неплотности запорно-регулирующей арматуры и фланцевых соединений определены в соответствии с "Методическими указаниями расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов". Приказ Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п

Максимально разовый выброс рассчитывается по формуле: М<sub>і</sub> = Y<sub>нуіі</sub>/1000 = g<sub>нуі</sub>\*n<sub>i</sub>\*x<sub>нуі</sub>\*c<sub>i</sub>/1000, г/с Валовый выброс рассчитывается по формуле: П<sub>і</sub> = (T\*Y<sub>нуіі</sub>)/10<sup>6</sup>\*3600, т/год Исходные параметры:

| Тип неподвижного и по-<br>движного соединения | Вид технологического потока     | Кол-во единиц<br>работающего<br>оборудования,<br>n <sub>i</sub> , шт. | Величина утечки потока через одно уплотнение і-ого типа, днуі, мг/с | Доля уплотнений і-ого типа потерявших герметичность, х <sub>нуі</sub> |
|-----------------------------------------------|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|
| Запорно-регулирующая ар-<br>матура            | тяжелые углеводороды            | 16                                                                    | 1.83                                                                | 0.07                                                                  |
| Фланцевое соединение                          | тяжелые углеводороды            | 32                                                                    | 0.08                                                                | 0.02                                                                  |
| Bulanocu I nanon uo                           | MICEROPORTIZAD B STROCTORY OF F | оппотностой ЗВ                                                        | A M COORD IN COORD                                                  | шоний:                                                                |

| Выб    | бросы паров нефтепродуктов в атмосферу от неплотностей ЗР. | А и фланцевых соеди | нений:      |
|--------|------------------------------------------------------------|---------------------|-------------|
| Код ЗВ | Наименование 3В                                            | Максимально-разо-   | Валовый вы- |
| код зв | паименование зв                                            | вый выброс, г/с     | брос, т/год |
| 0333   | Сероводород                                                | 0.0000059           | 0.0001860   |
| 2754   | Углеводороды предельные С12-С19                            | 0.0020949           | 0.0662463   |
|        |                                                            |                     |             |
| Код ЗВ | Наименование 3В                                            | Максимально-разо-   | Валовый вы- |
| код зв | паименование 35                                            | вый выброс, г/с     | брос, т/год |
| 0333   | Сероводород                                                | 0.0001303           | 0.0041212   |
| 2754   | Углеводороды предельные С12-С19                            | 0.0464149           | 1.4677511   |

| № ИЗА | 6028 | Наименование источника загрязнения ат-<br>мосферы | Разгрузка и хранение сыпучих материа-<br>лов |
|-------|------|---------------------------------------------------|----------------------------------------------|
| №ИВ   | 001  | Наименование источника выделения                  | Песок                                        |

Всего по источнику:

Расчет выполнен по **"Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. )

Процесс: выделение пыли при **пересыпке (перевалке, перемещении)** материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле:

1.4718723

#### $Mce\kappa = (k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot B' \cdot G_{yac} \cdot 10^6)/3600 x (1-\eta), \Gamma/C$

Валовый выброс рассчитывается по формуле: **Мгод=\mathbf{k}\_1 \cdot \mathbf{k}\_2 \cdot \mathbf{k}\_3 \cdot \mathbf{k}\_4 \cdot \mathbf{k}\_5 \cdot \mathbf{k}\_7 \cdot \mathbf{k}\_8 \cdot \mathbf{k}\_9 \cdot \mathbf{B}' \cdot \mathbf{G}\_{\text{год}} \mathbf{x} (1-\mathbf{\eta}), т/год** Процесс: выделение пыли при статическом хранении материала рассчитывается по формулам. Максимально разовый выброс рассчитывается по формуле:  $\mathbf{Mcek} = (\mathbf{k}_3 \cdot \mathbf{k}_4 \cdot \mathbf{k}_5 \cdot \mathbf{k}_6 \cdot \mathbf{k}_7 \cdot \mathbf{q}' \cdot \mathbf{S}), \mathbf{r/c}$ Валовый выброс рассчитывается по формуле:

Мгод=0.0864· $k_2$ · $k_4$ · $k_5$ · $k_6$ · $k_7$ ·q·S·(365-( $T_{co}$ + $T_{c}$ )) x (1-n), т/год

|                                            | Мгод=0.0864·k₃·k₄·k₅·k₅·k <sub>7</sub> ·q'·                                                                                                                                  |                                            | )) х (1-η), т/г                 | од                   |                     |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|----------------------|---------------------|
|                                            | Исходные г                                                                                                                                                                   | іараметры:                                 |                                 |                      |                     |
| Весовая до                                 | оля пылевой фракции в материале (таблица 3.1.                                                                                                                                | 1)                                         | k <sub>1</sub>                  | 0.05                 |                     |
| Доля пыли                                  | , переходящая в аэрозоль (таблица 3.1.1)                                                                                                                                     | •                                          | k <sub>2</sub>                  | 0.03                 |                     |
| Коэффици                                   | ент, учитывающий местные метеоусловия (табл                                                                                                                                  | k <sub>3 cp</sub>                          | 1.2                             | при < 2 м/с ≤ 5 м/с  |                     |
| учетом пун                                 |                                                                                                                                                                              | k <sub>3 макс</sub>                        | 1.7                             | при < 7 м/с ≤ 10 м/с |                     |
| Коэффици                                   | ент, учитывающий местные условия, степень за<br>шних воздействий, условия пылеобразования (т:                                                                                | k <sub>4</sub>                             | 1.0                             | ,                    |                     |
| Коэффици                                   | ент, учитывающий влажность материала (таблиц<br>о понимается влажность его пылевой и мел                                                                                     | k₅                                         | 0.6                             |                      |                     |
| териала и пется в препени запол            |                                                                                                                                                                              | ние k <sub>6</sub> колеб-<br>ериала и сте- | k <sub>6</sub>                  | 1.3                  |                     |
|                                            | ая поверхность материала с учетом рельефа его                                                                                                                                | сечения                                    | $S_{факт}$                      | 300                  | M <sup>2</sup>      |
|                                            | ть пыления в плане                                                                                                                                                           |                                            | S                               | 231                  | M <sup>2</sup>      |
|                                            | ент, учитывающий крупность материала (таблиц                                                                                                                                 |                                            | k <sub>7</sub>                  | 1.0                  |                     |
| от типа гре<br>грузочных                   | ый коэффициент для различных материалов в<br>йфера (таблица 3.1.6). При использовании иных<br>устройств k₅=1                                                                 | к типов пере-                              | k <sub>8</sub>                  | 1                    |                     |
| при разгруз                                | ый коэффициент при мощном залповом сброс<br>вке автосамосвала. Принимается k <sub>9</sub> =0,2 при един<br>гериала весом до 10 т, и k <sub>9</sub> =0,1 — свыше 10 т.<br>=1; | $k_9$                                      | 0.2                             |                      |                     |
|                                            | ент, учитывающий высоту пересыпки (таблица 3                                                                                                                                 | .1.7)                                      | B'                              | 0.5                  |                     |
| Унос пыли                                  | с одного квадратного метра фактической поверх когда $k_3$ =1, $k_5$ =1 (таблица 3.1.1)                                                                                       |                                            | q'                              | 0.002                | г/м2·с              |
|                                            | ент гравитационного осаждения частиц                                                                                                                                         |                                            | k                               | 0.4                  |                     |
|                                            | о дней с устойчивым снежным покровом                                                                                                                                         |                                            | T <sub>cn</sub>                 | 31                   | дней                |
| Суммарная ния работ з ных органа вочникам) | я продолжительность осадков в виде дождя в за<br>ва рассматриваемый период (запрашивается в те<br>их Казгидромета, либо определяется по климати                              | ерриториаль-<br>ческим спра-               | T <sub>A</sub> <sup>0</sup>     | 1513                 | часов               |
| Коли                                       | чество дней с осадками в виде дождя, рассчиты                                                                                                                                | вается по фор                              | муле: <b>Т<sub>д</sub>=2*</b> 1 | Γ <sub>д</sub> 0/24  |                     |
| Количество                                 | о дней с осадками в виде дождя                                                                                                                                               |                                            | Тд                              | 126                  | дней                |
| Количество                                 | рабочих дней                                                                                                                                                                 |                                            | T                               | 366                  | дней                |
| Производи мого матер                       | тельность узла пересыпки или количество пер<br>мала                                                                                                                          | ерабатывае-                                | G <sub>час</sub>                | 10                   | т/час               |
|                                            | е количество перерабатываемого материала в те                                                                                                                                | ечение года                                | G <sub>год</sub>                | 10800                | т/год               |
|                                            | ность средств пылеподавления, в долях едини                                                                                                                                  |                                            | η                               | 0                    |                     |
|                                            | ібросов пыли при погрузочно-разгрузочных матері                                                                                                                              |                                            | сыпки и ста                     | атическом            | хранении пылящих    |
| Код ЗВ                                     | Наименование ЗВ                                                                                                                                                              | Максимальн<br>выброс                       |                                 | Валовь               | ій выброс 3B, т/год |
|                                            | Погрузочно-разгрузочные ра                                                                                                                                                   |                                            |                                 | пов                  |                     |
| 2908                                       | Пыль неорганическая: 70-20% SiO <sub>2</sub>                                                                                                                                 | 0.1                                        |                                 |                      | 0.46656             |
| '                                          | Статическое хранение                                                                                                                                                         | пылящих мат                                | ериалов                         |                      |                     |
| 2908                                       | Пыль неорганическая: 70-20% SiO <sub>2</sub>                                                                                                                                 | 0.24                                       |                                 |                      | 3.11910912          |
|                                            | D                                                                                                                                                                            | 0.44                                       |                                 |                      | 0.5050004           |

| № ИЗА    | 6029 | Наименование источника загрязнения ат- | Разгрузка и хранение сыпучих материа- |
|----------|------|----------------------------------------|---------------------------------------|
| INE FISA | 0023 | мосферы                                | лов                                   |
| №ИВ      | 001  | Наименование источника выделения       | Щебень                                |

0.4148

Всего по источнику:

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.)

Процесс: выделение пыли при пересыпке (перевалке, перемещении) материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле:

Mceκ= $(k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot B' \cdot G_{vac} \cdot 10^6)/3600 \times (1-η)$ , г/c

Валовый выброс рассчитывается по формуле:  $\mathbf{Mrog} = \mathbf{k}_1 \cdot \mathbf{k}_2 \cdot \mathbf{k}_3 \cdot \mathbf{k}_4 \cdot \mathbf{k}_5 \cdot \mathbf{k}_7 \cdot \mathbf{k}_8 \cdot \mathbf{k}_9 \cdot \mathbf{B}' \cdot \mathbf{G}_{rog} \mathbf{x}$  (1- $\eta$ ),  $\tau$ /год Процесс: выделение пыли при статическом хранении материала рассчитывается по формулам.

Максимально разовый выброс рассчитывается по формуле:  $\mathbf{Mce} = (\mathbf{k}_3 \cdot \mathbf{k}_4 \cdot \mathbf{k}_5 \cdot \mathbf{k}_6 \cdot \mathbf{k}_7 \cdot \mathbf{q} \cdot \mathbf{S})$ ,  $\mathbf{r/c}$ Валовый выброс рассчитывается по формуле:

Мгод=0.0864· $k_3$ · $k_4$ · $k_5$ · $k_6$ · $k_7$ ·q'·S·(365-( $T_{cn}$ + $T_{d}$ )) x (1- $\eta$ ), т/год

| Исходные параметры:                                      |                |      |  |
|----------------------------------------------------------|----------------|------|--|
| Весовая доля пылевой фракции в материале (таблица 3.1.1) | k <sub>1</sub> | 0.06 |  |
| Лоля пыли, переходящая в аэрозоль (таблица 3.1.1)        | k <sub>o</sub> | 0.03 |  |

| Коэффици                                                              | ент, учитывающий местные метеоусловия (табли                                                    | ua 312) c              | k <sub>3 cp</sub>      | 1.2                 | при < 2 м/с ≤ 5 м/с      |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------|--------------------------|
| учетом пун                                                            |                                                                                                 | ща. О. 1.2), О         | k <sub>3 макс</sub>    | 1.7                 | при < 7 м/с ≤ 10 м/с     |
|                                                                       | а 2.0.<br>ент, учитывающий местные условия, степень зац                                         | шишенности             | k <sub>4</sub>         |                     | 11011 1 11110 2 10 11110 |
|                                                                       | узла от внешних воздействий, условия пылеобразования (таблица 3.1.3)                            |                        |                        | 1.0                 |                          |
|                                                                       | ент, учитывающий влажность материала (таблица                                                   |                        |                        |                     |                          |
|                                                                       | ю понимается влажность его пылевой и мелі                                                       |                        | k <sub>5</sub>         | 0.6                 |                          |
| фракции (с                                                            |                                                                                                 |                        | 1-5                    |                     |                          |
| Коэффици                                                              | ент, учитывающий профиль поверхности склади                                                     | руемого ма-            |                        |                     |                          |
|                                                                       | определяемый как соотношение Sфакт/S (значен                                                    |                        | l.                     | 4.0                 |                          |
|                                                                       | еделах 1,3 ÷ 1,6 в зависимости от крупности мате                                                |                        | k <sub>6</sub>         | 1.3                 |                          |
| пени запол                                                            | пнения)                                                                                         |                        |                        |                     |                          |
| Фактическа                                                            | ая поверхность материала с учетом рельефа его                                                   | сечения                | S <sub>факт</sub>      | 600                 | M <sup>2</sup>           |
|                                                                       | ть пыления в плане                                                                              |                        | S                      | 462                 | $M^2$                    |
| Коэффици                                                              | ент, учитывающий крупность материала (таблица                                                   | 3.1.5)                 | k <sub>7</sub>         | 0.5                 |                          |
|                                                                       | ный коэффициент для различных материалов в з                                                    |                        |                        |                     |                          |
|                                                                       | ейфера (таблица 3.1.6). При использовании иных                                                  | типов пере-            | k <sub>8</sub>         | 1                   |                          |
|                                                                       | устройств k <sub>8</sub> =1                                                                     |                        |                        |                     |                          |
|                                                                       | ный коэффициент при мощном залповом сбросе                                                      |                        |                        |                     |                          |
|                                                                       | зке автосамосвала. Принимается k₀=0,2 при единс                                                 |                        | k <sub>9</sub>         | 0.2                 |                          |
|                                                                       | териала весом до 10 т, и k <sub>9</sub> =0,1 – свыше 10 т. Е                                    | 3 остальных            | 9                      |                     |                          |
| случаях k <sub>9</sub>                                                |                                                                                                 | 4 = 1                  | 6                      | 0.5                 |                          |
|                                                                       | ент, учитывающий высоту пересыпки (таблица 3.                                                   |                        | B'                     | 0.5                 |                          |
| Унос пыли с одного квадратного метра фактической поверхности, г/м²·с, |                                                                                                 |                        | q'                     | 0.002               | г/м2⋅с                   |
|                                                                       | к когда $k_3$ =1, $k_5$ =1 (таблица 3.1.1)  ент гравитационного осаждения частиц                |                        | k                      | 0.4                 |                          |
|                                                                       | о дней с устойчивым снежным покровом                                                            |                        | T <sub>cn</sub>        | 31                  | дней                     |
|                                                                       | о днеи с устоичивым снежным покровом<br>я продолжительность осадков в виде дождя в зо           | UA TROBATA             | Г СП                   | 31                  | днеи                     |
| , ,                                                                   | я продолжительность осадков в виде дождя в зо<br>за рассматриваемый период (запрашивается в теј |                        |                        |                     |                          |
|                                                                       | ах Казгидромета, либо определяется по климатич                                                  |                        | $T_{d}^{\;\;0}$        | 1513                | часов                    |
| вочникам)                                                             | ax recorrapements, mice empodements in its immerini                                             | ookinii onpa           |                        |                     |                          |
|                                                                       | ичество дней с осадками в виде дождя, рассчитыв                                                 | ается по фор           | муле: <b>Т,=2</b> *    | Γ <sub>л</sub> º/24 |                          |
|                                                                       | о дней с осадками в виде дождя                                                                  | •                      | T,                     | 126                 | дней                     |
|                                                                       | о рабочих дней                                                                                  |                        | Ť                      | 366                 | дней                     |
| Производи                                                             | тельность узла пересыпки или количество пере                                                    | ерабатывае-            | 0                      | 10                  | =/                       |
| мого матер                                                            |                                                                                                 |                        | $G_{\text{\tiny Yac}}$ | 10                  | т/час                    |
| Суммарно                                                              | е количество перерабатываемого материала в теч                                                  | чение года             | $G_{rog}$              | 21600               | т/год                    |
| Эффектив                                                              | ность средств пылеподавления, в долях единис                                                    | цы (таблица            | η                      | 0                   |                          |
| 3.1.8)                                                                |                                                                                                 |                        | •                      |                     |                          |
| Расчет вы                                                             | ыбросов пыли при погрузочно-разгрузочных р                                                      |                        | сыпки и ста            | атическом           | хранении пылящих         |
|                                                                       | матери                                                                                          |                        |                        |                     |                          |
| Код ЗВ                                                                | Наименование 3В                                                                                 | Максимальн<br>выброс : |                        | Валовь              | ій выброс 3B, т/год      |
|                                                                       | <br>Погрузочно-разгрузочные раб                                                                 |                        |                        | ΠOR                 |                          |
| 2908                                                                  | Пыль неорганическая: 70-20% SiO <sub>2</sub>                                                    | 0.10                   |                        | ,,,,,               | 0.559872                 |
| 2000                                                                  | Статическое хранение г                                                                          |                        |                        |                     | 3.33007 <u>E</u>         |
| 2908                                                                  | Пыль неорганическая: 70-20% SiO <sub>2</sub>                                                    | 0.24                   |                        |                     | 3.11910912               |
|                                                                       | Всего по источнику:                                                                             | 0.34                   |                        |                     | 3.6789811                |
|                                                                       | •                                                                                               |                        |                        |                     |                          |

| № ИЗА | 6030 | Наименование источника загрязнения ат-<br>мосферы | Разгрузка и хранение сыпучих материа-<br>лов |
|-------|------|---------------------------------------------------|----------------------------------------------|
| №ИВ   | 001  | Наименование источника выделения                  | Грунт                                        |

Расчет выполнен по **"Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. )

Процесс: выделение пыли при **пересыпке (перевалке, перемещении)** материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле:

Mceκ= $(k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot B' \cdot G_{vac} \cdot 10^6)/3600 \times (1-η), Γ/c$ 

Валовый выброс рассчитывается по формуле:  $\mathbf{Mrog} = \mathbf{k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot \mathbf{B' \cdot G_{rog}}}$  х (1- $\eta$ ), т/год Процесс: выделение пыли при **статическом хранении** материала рассчитывается по формулам. Максимально разовый выброс рассчитывается по формуле:  $\mathbf{Mcek} = (\mathbf{k_3 \cdot k_4 \cdot k_5 \cdot k_6 \cdot k_7 \cdot q' \cdot S})$ , г/с Валовый выброс рассчитывается по формуле:

Мгод=0.0864· $k_3$ · $k_4$ · $k_5$ · $k_6$ · $k_7$ ·q·S·(365-( $T_{cn}$ + $T_{n}$ )) x (1-n), т/год

| MI OA 0.0004 K3 K4 K5 K6 K7 4 0 (000 (1 cm · 14)) X (1 1)); 11 OA                                                                                 |                       |      |                      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|----------------------|--|--|--|--|
| Исходные параметры:                                                                                                                               |                       |      |                      |  |  |  |  |
| Весовая доля пылевой фракции в материале (таблица 3.1.1)                                                                                          | k <sub>1</sub>        | 0.05 |                      |  |  |  |  |
| Доля пыли, переходящая в аэрозоль (таблица 3.1.1)                                                                                                 | $k_2$                 | 0.02 |                      |  |  |  |  |
| Коэффициент, учитывающий местные метеоусловия (таблица. 3.1.2), с                                                                                 | k <sub>3 cp</sub>     | 1.2  | при < 2 м/с ≤ 5 м/с  |  |  |  |  |
| учетом пункта 2.6.                                                                                                                                | k <sub>3 макс</sub>   | 1.7  | при < 7 м/с ≤ 10 м/с |  |  |  |  |
| Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3)               | k <sub>4</sub>        | 1.0  |                      |  |  |  |  |
| Коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d ≤ 1 мм) | <b>k</b> <sub>5</sub> | 0.4  |                      |  |  |  |  |

| териала и                                                                                                                                                                                                        | иент, учитывающий профиль поверхности складир<br>определяемый как соотношение Sфакт/S (значени<br>еделах 1,3 ÷ 1,6 в зависимости от крупности матери<br>пнения)                                            | ie k₀ колеб-           | <b>k</b> <sub>6</sub>        | 1.4                 |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|---------------------|--------------------|
| Фактическ                                                                                                                                                                                                        | Фактическая поверхность материала с учетом рельефа его сечения                                                                                                                                             |                        |                              | 500                 | $M^2$              |
|                                                                                                                                                                                                                  | ть пыления в плане                                                                                                                                                                                         |                        | S <sub>факт</sub><br>S       | 357                 | $M^2$              |
|                                                                                                                                                                                                                  | ент, учитывающий крупность материала (таблица                                                                                                                                                              | 3.1.5)                 | k <sub>7</sub>               | 0.5                 |                    |
| Поправочнот типа гре                                                                                                                                                                                             | ный коэффициент для различных материалов в за<br>ейфера (таблица 3.1.6). При использовании иных т<br>устройств k <sub>s</sub> =1                                                                           | ависимости             | k <sub>8</sub>               | 1                   |                    |
| Поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k₀=0,2 при единовременном сбросе материала весом до 10 т, и k₀=0,1 — свыше 10 т. В остальных случаях k₀=1; |                                                                                                                                                                                                            |                        |                              | 0.2                 |                    |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                            | .7)                    | B'                           | 0.5                 |                    |
| Унос пыли                                                                                                                                                                                                        | Унос пыли с одного квадратного метра фактической поверхности, г/м $^2$ ·с, в условиях когда $k_3$ =1, $k_5$ =1 (таблица 3.1.1)                                                                             |                        |                              | 0.004               | г/м2·с             |
| -                                                                                                                                                                                                                | ент гравитационного осаждения частиц                                                                                                                                                                       |                        | k                            | 0.4                 |                    |
|                                                                                                                                                                                                                  | о дней с устойчивым снежным покровом                                                                                                                                                                       |                        | Тсп                          | 31                  | дней               |
| ния работ                                                                                                                                                                                                        | Суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справоциимам) |                        |                              | 1513                | часов              |
| Коли                                                                                                                                                                                                             | ичество дней с осадками в виде дождя, рассчитыва                                                                                                                                                           | ется по фор            | муле: <b>Т</b> " <b>=2</b> * | T <sub>n</sub> º/24 |                    |
|                                                                                                                                                                                                                  | о дней с осадками в виде дождя                                                                                                                                                                             | •                      | T,                           | 126                 | дней               |
| Количеств                                                                                                                                                                                                        | о рабочих дней                                                                                                                                                                                             |                        | Ť                            | 366                 | дней               |
| Производи<br>мого мате                                                                                                                                                                                           | ттельность узла пересыпки или количество перер<br>риала                                                                                                                                                    | рабатывае-             | G <sub>час</sub>             | 40                  | т/час              |
| Суммарно                                                                                                                                                                                                         | е количество перерабатываемого материала в теч                                                                                                                                                             | ение года              | G <sub>год</sub>             | 172800              | т/год              |
| Эффектив<br>3.1.8)                                                                                                                                                                                               | ность средств пылеподавления, в долях единиць                                                                                                                                                              | ы (таблица             | η                            | 0                   |                    |
| Расчет вы                                                                                                                                                                                                        | ыбросов пыли при погрузочно-разгрузочных ра                                                                                                                                                                | ботах, пере            | сыпки и ст                   | атическом >         | кранении пылящих   |
|                                                                                                                                                                                                                  | материа                                                                                                                                                                                                    |                        |                              |                     |                    |
| Код ЗВ                                                                                                                                                                                                           | паименование зв                                                                                                                                                                                            | Максимальн<br>выброс 3 | 3В, г/с                      |                     | й выброс ЗВ, т/год |
|                                                                                                                                                                                                                  | Погрузочно-разгрузочные раб                                                                                                                                                                                | оты пылящ              | их материа                   | лов                 | ·                  |
| 2908                                                                                                                                                                                                             | Пыль неорганическая: 70-20% SiO₂                                                                                                                                                                           | 0.15111                | 1111                         |                     | 1.65888            |
|                                                                                                                                                                                                                  | Статическое хранение п                                                                                                                                                                                     | ылящих мат             | ериалов                      |                     |                    |
| 2908                                                                                                                                                                                                             | Пыль неорганическая: 70-20% SiO <sub>2</sub>                                                                                                                                                               | 0.27                   | 2                            |                     | 3.4656768          |
|                                                                                                                                                                                                                  | Всего по источнику:                                                                                                                                                                                        | 0.4231                 | 111                          |                     | 5.1245568          |

| I | № ИЗА   | 6033 | Наименование источника загрязнения ат- | Разгрузка и хранение сыпучих материа- |
|---|---------|------|----------------------------------------|---------------------------------------|
|   | Nº FIOA | 0033 | мосферы                                | лов                                   |
|   | №ИВ     | 001  | Наименование источника выделения       | Песчанно-гравийная смесь              |
| ı |         |      |                                        |                                       |

Расчет выполнен по **"Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. )

Процесс: выделение пыли при **пересыпке (перевалке, перемещении)** материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле:

Mceκ= $(k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot B' \cdot G_{vac} \cdot 10^6)/3600 \times (1-η), г/с$ 

Валовый выброс рассчитывается по формуле:  $\mathbf{Mrog} = \mathbf{k}_1 \cdot \mathbf{k}_2 \cdot \mathbf{k}_3 \cdot \mathbf{k}_4 \cdot \mathbf{k}_5 \cdot \mathbf{k}_7 \cdot \mathbf{k}_8 \cdot \mathbf{k}_9 \cdot \mathbf{B}' \cdot \mathbf{G}_{\text{год}} \times (\mathbf{1} \cdot \mathbf{\eta})$ , т/год Процесс: выделение пыли при **статическом хранении** материала рассчитывается по формулам. Максимально разовый выброс рассчитывается по формуле:  $\mathbf{Mcek} = (\mathbf{k}_3 \cdot \mathbf{k}_4 \cdot \mathbf{k}_5 \cdot \mathbf{k}_6 \cdot \mathbf{k}_7 \cdot \mathbf{q}' \cdot \mathbf{S})$ , г/с Валовый выброс рассчитывается по формуле:

Мгод=0.0864· $k_3$ · $k_4$ · $k_5$ · $k_6$ · $k_7$ ·q··S·(365-( $T_{cn}$ + $T_{d}$ )) x (1- $\eta$ ), т/год

| Исходные параметры:                                                                                                                                                                                                    |                       |      |                      |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|----------------------|--|--|--|
| Весовая доля пылевой фракции в материале (таблица 3.1.1)                                                                                                                                                               | k <sub>1</sub>        | 0.03 |                      |  |  |  |
| Доля пыли, переходящая в аэрозоль (таблица 3.1.1)                                                                                                                                                                      | $k_2$                 | 0.04 |                      |  |  |  |
| Коэффициент, учитывающий местные метеоусловия (таблица. 3.1.2), с                                                                                                                                                      | k <sub>3 cp</sub>     | 1.2  | при < 2 м/с ≤ 5 м/с  |  |  |  |
| учетом пункта 2.6.                                                                                                                                                                                                     | $k_{3 \text{ Makc}}$  | 1.7  | при < 7 м/с ≤ 10 м/с |  |  |  |
| Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3)                                                                                    | k <sub>4</sub>        | 1.0  |                      |  |  |  |
| Коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d ≤ 1 мм)                                                                      | <b>k</b> <sub>5</sub> | 0.6  |                      |  |  |  |
| Коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение Sфакт/S (значение $k_6$ колеблется в пределах 1,3 ÷ 1,6 в зависимости от крупности материала и степени заполнения) | k <sub>6</sub>        | 1.3  |                      |  |  |  |
| Фактическая поверхность материала с учетом рельефа его сечения                                                                                                                                                         | $S_{факт}$            | 1000 | M <sup>2</sup>       |  |  |  |
| Поверхность пыления в плане                                                                                                                                                                                            | S                     | 769  | M <sup>2</sup>       |  |  |  |
| Коэффициент, учитывающий крупность материала (таблица 3.1.5)                                                                                                                                                           | k <sub>7</sub>        | 0.5  |                      |  |  |  |

| 2908<br>2908                | Наименование 3В  Погрузочно-разгрузочные ра Пыль неорганическая: 70-20% SiO <sub>2</sub> Статическое хранение Пыль неорганическая: 70-20% SiO <sub>2</sub>                                                                    | выброс :<br><b>аботы пылящ</b><br>0.06 | 3В, г/с<br><b>их материа</b><br>68<br>г <b>ериалов</b> |                     | 0.373248<br>5.1985152 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|---------------------|-----------------------|
|                             | Погрузочно-разгрузочные рапыль неорганическая: $70-20\%  \text{SiO}_2$                                                                                                                                                        | выброс :<br><b>аботы пылящ</b><br>0.06 | 3В, г/с<br><b>их материа</b><br>88                     |                     |                       |
|                             | Погрузочно-разгрузочные ра                                                                                                                                                                                                    | выброс :<br>аботы пылящ                | ЗВ, г/с<br>их материа.                                 |                     |                       |
| код ов                      |                                                                                                                                                                                                                               | выброс                                 | 3В, г/с                                                |                     | ій выброс ЗВ, т/год   |
| код об                      | Наименование 3В                                                                                                                                                                                                               |                                        |                                                        | Валовь              | ій выброс ЗВ, т/год   |
| Код ЗВ                      |                                                                                                                                                                                                                               | Максимально-разовы<br>выброс ЗВ, г/с   |                                                        |                     |                       |
| Расчет вы                   | бросов пыли при погрузочно-разгрузочных матері                                                                                                                                                                                |                                        | сыпки и ста                                            | атическом           | хранении пылящих      |
| 3.1.8)                      | юсть средств пылеподавления, в долях едини                                                                                                                                                                                    |                                        | η                                                      | 0                   |                       |
| Суммарное                   | количество перерабатываемого материала в то                                                                                                                                                                                   | ечение года                            | G <sub>год</sub>                                       | 21600               | т/год                 |
| Производит мого матер       | гельность узла пересыпки или количество пер<br>иала                                                                                                                                                                           | рерабатывае-                           | G <sub>час</sub>                                       | 10                  | т/час                 |
| Количество                  | рабочих дней                                                                                                                                                                                                                  |                                        | T                                                      | 366                 | дней                  |
|                             | дней с осадками в виде дождя                                                                                                                                                                                                  |                                        | T <sub>A</sub>                                         | 126                 | дней                  |
|                             | нество дней с осадками в виде дождя, рассчиты                                                                                                                                                                                 | вается по фор                          | муле: <b>Т"=2</b> *1                                   | Γ <sub>n</sub> º/24 |                       |
|                             | ния работ за рассматриваемый период (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справодникам)                                                                                   |                                        | $T_{\mu}^{0}$                                          | 1513                | часов                 |
|                             | продолжительность осадков в виде дождя в з                                                                                                                                                                                    |                                        |                                                        |                     |                       |
| Количество                  | дней с устойчивым снежным покровом                                                                                                                                                                                            |                                        | Тсп                                                    | 31                  | дней                  |
|                             | ент гравитационного осаждения частиц                                                                                                                                                                                          |                                        | k                                                      | 0.4                 |                       |
|                             | с одного квадратного метра фактической поверх<br>когда k₃=1, k₅=1 (таблица 3.1.1)                                                                                                                                             | кности, г/м <sup>2</sup> ·с,           | q'                                                     | 0.002               | г/м2·с                |
| Коэффицие                   | ент, учитывающий высоту пересыпки (таблица 3                                                                                                                                                                                  | 3.1.7)                                 | B'                                                     | 0.5                 |                       |
| при разгруз                 | ке автосамосвала. Принимается k₃=0,2 при един<br>ериала весом до 10 т, и k₃=0,1 – свыше 10 т.                                                                                                                                 | новременном                            | k <sub>9</sub>                                         | 0.2                 |                       |
| от типа греі<br>грузочных у | авочный коэффициент для различных материалов в зависимости<br>па грейфера (таблица 3.1.6). При использовании иных типов пере-<br>чных устройств k <sub>8</sub> =1<br>авочный коэффициент при мощном залповом сбросе материала |                                        |                                                        | 1                   |                       |

| № ИЗА   | 6034 | Наименование источника загрязнения ат- | Разгрузка и хранение сыпучих материа- |
|---------|------|----------------------------------------|---------------------------------------|
| Nº VISA | 6034 | мосферы                                | лов                                   |
| № ИВ    | 001  | Наименование источника выделения       | Гравий                                |

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. )

Процесс: выделение пыли при пересыпке (перевалке, перемещении) материала, погрузке сыпучего строительного материала рассчитывается по следующим формулам:

Максимально разовый выброс рассчитывается по формуле:

Мсек= $(k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot \mathbf{B} \cdot \mathbf{G}_{чac} \cdot 10^6)/3600 \ x \ (1-\eta), г/с$  Валовый выброс рассчитывается по формуле: Мгод= $k_1 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5 \cdot k_7 \cdot k_8 \cdot k_9 \cdot \mathbf{B} \cdot \mathbf{G}_{rog} \ x \ (1-\eta), т/год$ Процесс: выделение пыли при статическом хранении материала рассчитывается по формулам. Максимально разовый выброс рассчитывается по формуле: **Мсек=(k**<sub>3</sub>·**k**<sub>4</sub>·**k**<sub>5</sub>·**k**<sub>6</sub>·**k**<sub>7</sub>·**q**··**S**), г/с

Валовый выброс рассчитывается по формуле: Мгод=0.0864· $\mathbf{k}_3$ · $\mathbf{k}_4$ · $\mathbf{k}_5$ · $\mathbf{k}_6$ · $\mathbf{k}_7$ · $\mathbf{q}$ ··S·(365-( $\mathbf{T}_{cn}$ + $\mathbf{T}_{n}$ )) х (1- $\mathbf{\eta}$ ), т/год

| Исходные параметры:                                                                                                                                                                                                             |                       |       |                      |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|----------------------|--|--|--|
| Весовая доля пылевой фракции в материале (таблица 3.1.1)                                                                                                                                                                        | $k_1$                 | 0.01  |                      |  |  |  |
| Доля пыли, переходящая в аэрозоль (таблица 3.1.1)                                                                                                                                                                               | $k_2$                 | 0.001 |                      |  |  |  |
| Коэффициент, учитывающий местные метеоусловия (таблица. 3.1.2), с                                                                                                                                                               | k <sub>3 cp</sub>     | 1.2   | при < 2 м/с ≤ 5 м/с  |  |  |  |
| учетом пункта 2.6.                                                                                                                                                                                                              | k <sub>3 макс</sub>   | 1.7   | при < 7 м/с ≤ 10 м/с |  |  |  |
| Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3)                                                                                             | k <sub>4</sub>        | 1.0   |                      |  |  |  |
| Коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d ≤ 1 мм)                                                                               | <b>k</b> <sub>5</sub> | 0.6   |                      |  |  |  |
| Коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение Sфакт/S (значение k <sub>6</sub> колеблется в пределах 1,3 ÷ 1,6 в зависимости от крупности материала и степени заполнения) | <b>k</b> <sub>6</sub> | 1.3   |                      |  |  |  |
| Фактическая поверхность материала с учетом рельефа его сечения                                                                                                                                                                  | S <sub>факт</sub>     | 200   | $M^2$                |  |  |  |
| Поверхность пыления в плане                                                                                                                                                                                                     | S                     | 154   | $M^2$                |  |  |  |
| Коэффициент, учитывающий крупность материала (таблица 3.1.5)                                                                                                                                                                    | k <sub>7</sub>        | 0.4   |                      |  |  |  |
| Поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств $k_8$ =1                                                                  | k <sub>8</sub>        | 1     |                      |  |  |  |
| Поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается $k_9$ =0,2 при единовременном сбросе материала весом до 10 т, и $k_9$ =0,1 — свыше 10 т. В остальных случаях $k_9$ =1;    | k <sub>9</sub>        | 0.2   |                      |  |  |  |
| Коэффициент, учитывающий высоту пересыпки (таблица 3.1.7)                                                                                                                                                                       | B'                    | 0.5   |                      |  |  |  |

|                                                                 | , 2                                     |                                             | I                         | 1                |
|-----------------------------------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------|------------------|
| Унос пыли с одного квадратного метра фактической поверхн        | ности, г/м²·с,                          | q'                                          | 0.002                     | г/м2·с           |
| в условиях когда k₃=1, k₅=1 (таблица 3.1.1)                     |                                         |                                             | 0.4                       |                  |
| Коэффициент гравитационного осаждения частиц                    |                                         | k                                           |                           |                  |
| Количество дней с устойчивым снежным покровом                   |                                         | Тсп                                         | 31                        | дней             |
| Суммарная продолжительность осадков в виде дождя в зо           |                                         |                                             |                           |                  |
| ния работ за рассматриваемый период (запрашивается в тер        | рриториаль-                             | $T_{\scriptscriptstyle \mathcal{I}}^{0}$    | 1513                      | часов            |
| ных органах Казгидромета, либо определяется по климатич         | еским спра-                             | 'д                                          | 1313                      | часов            |
| вочникам)                                                       |                                         |                                             |                           |                  |
| Количество дней с осадками в виде дождя, рассчитыв              | ается по фор                            | муле: <b>Т<sub>д</sub>=2</b> * <sup>-</sup> | Т <sub>д</sub> 0/24       |                  |
| Количество дней с осадками в виде дождя                         |                                         | T <sub>A</sub>                              | 126                       | дней             |
| Количество рабочих дней                                         |                                         | T                                           | 366                       | дней             |
| Производительность узла пересыпки или количество перерабатывае- |                                         | Gyac                                        | 10                        | т/час            |
| мого материала                                                  | • • • • • • • • • • • • • • • • • • • • |                                             | 10                        | 1/9a0            |
| Суммарное количество перерабатываемого материала в теч          | чение года                              | $G_{rog}$                                   | 21600                     | т/год            |
| Эффективность средств пылеподавления, в долях единиц 3.1.8)     | цы (таблица                             | η                                           | 0                         |                  |
| Расчет выбросов пыли при погрузочно-разгрузочных р              | аботах, пере                            | сыпки и ста                                 | атическом                 | хранении пылящих |
| материа                                                         | алов:                                   |                                             |                           |                  |
| Код 3В Наименование 3В                                          | Максимальн                              | о-разовый                                   | Dogody i ny faoo 2D 7/507 |                  |
| Код 3В Наименование 3В                                          | выброс 3                                | 3В, г/с                                     | Валовый выброс ЗВ, т/год  |                  |
| Погрузочно-разгрузочные раб                                     | боты пылящ                              | их материа                                  | лов                       |                  |
| 2908 Пыль неорганическая: 70-20% SiO <sub>2</sub>               | 0.00045                                 | 3333                                        |                           | 0.00248832       |
| Статическое хранение г                                          | пылящих мат                             | ериалов                                     |                           |                  |
| 2908 Пыль неорганическая: 70-20% SiO <sub>2</sub>               | 0.065                                   | 28                                          | (                         | ).831762432      |
| Всего по источнику:                                             | 0.0657                                  | 333                                         |                           | 0.8342508        |

| № ИЗА | 6031 | Наименование источника загрязнения атмосферы | Пыление при перемещении техники |
|-------|------|----------------------------------------------|---------------------------------|
| № ИВ  | 001  | Наименование источника выделе-<br>ния        | Погрузчики                      |

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 года №100-п).

Движение авто- или железнодорожного транспорта в пределах промплощадки обуславливает выделение пыли. Пыль выделяется в результате взаимодействия колес с полотном дороги (только для автомобильного транспорта) и сдува её с поверхности материала находящегося в кузове (вагоне).

Процесс: выделение пыли в результате взаимодействия колес автотранспорта с полотном дороги:

Максимальный разовый выброс рассчитывается по формуле:

M<sub>cek</sub>=(C<sub>1</sub>\*C<sub>2</sub>\*C<sub>3</sub>\*k<sub>5</sub>\*k\*C<sub>7</sub>\*N\*L\*q<sub>1</sub>)/3600 + C<sub>4</sub>\*C<sub>5</sub>\*k<sub>5</sub>\*q'\*S\*n, г/с

| Исходные параметры:                                                                                                                                                                                                                                                                                                                                                                                              | (365-(T <sub>cn</sub> +T <sub>,</sub> | <b>,))</b> , т/год         |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|----------------|
| Коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта (таблица 3.3.1)                                                                                                                                                                                                                                                                                                                         | C <sub>1</sub>                        | 1                          |                |
| Коэффициент, учитывающий среднюю скорость передвижения транспорта (таблица 3.3.2)                                                                                                                                                                                                                                                                                                                                | C <sub>2</sub>                        | 0.6                        |                |
| Средняя скорость транспортирования определяется по формуле: V <sub>cc</sub> =N*L/I                                                                                                                                                                                                                                                                                                                               | <b>1</b> , км/час                     |                            |                |
| Средняя скорость транспортирования                                                                                                                                                                                                                                                                                                                                                                               | V <sub>cc</sub>                       | 1.00                       | км/час         |
| Число ходок (туда + обратно) всего транспорта в час                                                                                                                                                                                                                                                                                                                                                              | N                                     | 5                          | раз/час        |
| Средняя продолжительность одной ходки в пределах промплощадки                                                                                                                                                                                                                                                                                                                                                    | L                                     | 1                          | KM             |
| Число автомашин, работающих в карьере                                                                                                                                                                                                                                                                                                                                                                            | n                                     | 5                          | ШТ.            |
| Коэффициент, учитывающий состояние дорог (таблица 3.3.3)                                                                                                                                                                                                                                                                                                                                                         | C <sub>3</sub>                        | 1                          |                |
| Коэффициент, учитывающий профиль поверхности материала на платформе и определяемый как соотношение $S_{\phi a \kappa \tau}/S$ (значение C4 колеблется в пределах 1.3 $\div$ 1.6 в зависимости от крупности материала и степени заполнения платформы)                                                                                                                                                             | $C_4$                                 | 1.3                        |                |
| Фактическая поверхность материала на платформе                                                                                                                                                                                                                                                                                                                                                                   | S <sub>факт</sub>                     | 4                          | M <sup>2</sup> |
| Площадь открытой поверхности транспортируемого материала                                                                                                                                                                                                                                                                                                                                                         | S                                     | 3                          | M <sup>2</sup> |
| Коэффициент, учитывающий скорость обдува (V <sub>об</sub> ) материала (таблица 3.3.4)                                                                                                                                                                                                                                                                                                                            | C <sub>5</sub>                        | 1                          |                |
| Скорость обдува ( $V_{ob}$ ) материала, которая определяется как геометрическа вектора средней скорости движения транспорта по формуле $V_{ob} = \sqrt{(v_1 \cdot v_2/3.6)}$ , м/с                                                                                                                                                                                                                               | , где                                 |                            |                |
| Скорость обдува материала                                                                                                                                                                                                                                                                                                                                                                                        | $V_{o6}$                              | 1.09                       | м/с            |
| Наиболее характерная для данного района скорость ветра                                                                                                                                                                                                                                                                                                                                                           | V <sub>1</sub>                        | 4.3                        |                |
| O.,                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                            | м/с            |
| Средняя скорость движения транспортного средства                                                                                                                                                                                                                                                                                                                                                                 | V <sub>2</sub>                        | 1.00                       | м/с<br>км/час  |
| Средняя скорость движения транспортного средства  Коэффициент, учитывающий влажность поверхностного слоя материала/дороги/ (таблица 3.1.4)                                                                                                                                                                                                                                                                       | k <sub>5</sub>                        | 0.8                        |                |
| Коэффициент, учитывающий влажность поверхностного слоя материала/до-                                                                                                                                                                                                                                                                                                                                             | _                                     |                            |                |
| Коэффициент, учитывающий влажность поверхностного слоя материала/дороги/ (таблица 3.1.4)                                                                                                                                                                                                                                                                                                                         | k <sub>5</sub>                        | 0.8                        |                |
| Коэффициент, учитывающий влажность поверхностного слоя материала/до-<br>роги/ (таблица 3.1.4)<br>Коэффициент гравитационного осаждения частиц                                                                                                                                                                                                                                                                    | k <sub>5</sub>                        | 0.8                        |                |
| Коэффициент, учитывающий влажность поверхностного слоя материала/дороги/ (таблица 3.1.4) Коэффициент гравитационного осаждения частиц Коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный 0,01 Пылевыделение в атмосферу на 1 км пробега при C <sub>1</sub> , C <sub>2</sub> , C <sub>3</sub> = 1, принимается равным 1450 г/км                                                                    | k <sub>5</sub> k C <sub>7</sub>       | 0.8<br>0.4<br>0.01         | км/час         |
| Коэффициент, учитывающий влажность поверхностного слоя материала/дороги/ (таблица 3.1.4) Коэффициент гравитационного осаждения частиц Коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный 0,01 Пылевыделение в атмосферу на 1 км пробега при C <sub>1</sub> , C <sub>2</sub> , C <sub>3</sub> = 1, принимается равным 1450 г/км Пылевыделение с единицы фактической поверхности материала на плат- | k <sub>5</sub> k  C <sub>7</sub>      | 0.8<br>0.4<br>0.01<br>1450 | км/час         |

| Коли                                                                                                                                                                                                                         | чество дней с осадками в виде дождя, рассчитывается                      | я по формуле: <b>Т</b> , | <sub>1</sub> =2*T <sub>д</sub> <sup>0</sup> /24 |       |      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|-------------------------------------------------|-------|------|--|
| Количеств                                                                                                                                                                                                                    | о дней с осадками в виде дождя                                           |                          | T <sub>A</sub>                                  | 126   | дней |  |
| Количеств                                                                                                                                                                                                                    | о рабочих дней                                                           |                          | T                                               | 366   | дней |  |
| *Примечание - при движении машины без загруженности сыпучим строительным материалом или же с полным укрытием такового, коэффициенты С <sub>4</sub> , q', S приравниваются 0.  Расчет выбросов пыли при движении автотехники: |                                                                          |                          |                                                 |       |      |  |
| Код ЗВ                                                                                                                                                                                                                       | Код 3B Наименование 3B Максимально- разовый Валовый выброс 3B, г/с т/год |                          |                                                 |       |      |  |
| 2908                                                                                                                                                                                                                         | Пыль неорганическая: 70-20% SiO <sub>2</sub>                             | 0.03386                  | 667                                             | 0.611 | 3075 |  |
|                                                                                                                                                                                                                              | Всего по источнику:                                                      | 0.03386                  | 667                                             | 0.611 | 3075 |  |

| № ИЗА | 6032 | Наименование источника загрязнения атмосферы | Пыление при перемещении техники |
|-------|------|----------------------------------------------|---------------------------------|
| № ИВ  | 001  | Наименование источника выделе-<br>ния        | Самосвал                        |

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий **по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 года №100-п).

Движение авто- или железнодорожного транспорта в пределах промплощадки обуславливает выделение пыли. Пыль выделяется в результате взаимодействия колес с полотном дороги (только для автомобильного транспорта) и сдува её с поверхности материала находящегося в кузове (вагоне).

Процесс: выделение пыли в результате взаимодействия колес автотранспорта с полотном дороги:

Максимальный разовый выброс рассчитывается по формуле:

 $M_{cek} = (C_1 * C_2 * C_3 * K_5 * K * C_7 * N * L * q_1)/3600 + C_4 * C_5 * K_5 * q * S * n, r/c$ Since paccyuthibaetes no chopmyne:  $M_{col} = 0.0864 * M_{col} * (365-(T_{col} + T_{col}))$  T/FO/J

| Валовый выброс рассчитывается по формуле: М <sub>год</sub> =0.0864*М <sub>сек</sub> ; Исходные параметры:                                                                                                                                    | '(365-(Т <sub>сп</sub> +Т <sub>л</sub> | <b>,))</b> , т/год |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|----------------|
| Коэффициент, учитывающий среднюю грузоподъемность единицы автотранс-<br>порта (таблица 3.3.1)                                                                                                                                                | C <sub>1</sub>                         | 2.5                |                |
| Коэффициент, учитывающий среднюю скорость передвижения транспорта (таблица 3.3.2)                                                                                                                                                            | C <sub>2</sub>                         | 0.6                |                |
| Средняя скорость транспортирования определяется по формуле: V <sub>cc</sub> =N*L/I                                                                                                                                                           | <b>1</b> , км/час                      |                    |                |
| Средняя скорость транспортирования                                                                                                                                                                                                           | $V_{cc}$                               | 0.83               | км/час         |
| Число ходок (туда + обратно) всего транспорта в час                                                                                                                                                                                          | N                                      | 5                  | раз/час        |
| Средняя продолжительность одной ходки в пределах промплощадки                                                                                                                                                                                | L                                      | 1                  | КМ             |
| Число автомашин, работающих в карьере                                                                                                                                                                                                        | n                                      | 6                  | ШТ.            |
| Коэффициент, учитывающий состояние дорог (таблица 3.3.3)                                                                                                                                                                                     | C <sub>3</sub>                         | 1                  |                |
| Коэффициент, учитывающий профиль поверхности материала на платформе и определяемый как соотношение $S_{\phi a \kappa r}/S$ (значение C4 колеблется в пределах 1.3 ÷ 1.6 в зависимости от крупности материала и степени заполнения платформы) | C <sub>4</sub>                         | 1.3                |                |
| Фактическая поверхность материала на платформе                                                                                                                                                                                               | $S_{факт}$                             | 10                 | M <sup>2</sup> |
| Площадь открытой поверхности транспортируемого материала                                                                                                                                                                                     | S                                      | 8                  | $M^2$          |
| Коэффициент, учитывающий скорость обдува (V <sub>об</sub> ) материала (таблица 3.3.4)                                                                                                                                                        | C <sub>5</sub>                         | 1                  |                |
| Скорость обдува ( $V_{o6}$ ) материала, которая определяется как геометрическа вектора средней скорости движения транспорта по формуле $V_{o6} = \sqrt{(\mathbf{v}_1 \cdot \mathbf{v}_2/3.6)}$ , м/с                                         |                                        | рости ветра        | и обратного    |
| Скорость обдува материала                                                                                                                                                                                                                    | V <sub>oб</sub>                        | 1.00               | м/с            |
| Наиболее характерная для данного района скорость ветра                                                                                                                                                                                       | V <sub>1</sub>                         | 4.3                | м/с            |
| Средняя скорость движения транспортного средства                                                                                                                                                                                             | $V_2$                                  | 0.83               | км/час         |
| Коэффициент, учитывающий влажность поверхностного слоя материала/дороги/ (таблица 3.1.4)                                                                                                                                                     | <b>k</b> <sub>5</sub>                  | 0.8                |                |
| Коэффициент гравитационного осаждения частиц                                                                                                                                                                                                 | k                                      | 0.4                |                |
| Коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный 0,01                                                                                                                                                                       | C <sub>7</sub>                         | 0.01               |                |
| Пылевыделение в атмосферу на 1 км пробега при $C_1$ , $C_2$ , $C_3$ = 1, принимается равным 1450 г/км                                                                                                                                        | $q_1$                                  | 1450               | г/км           |
| Пылевыделение с единицы фактической поверхности материала на платформе, (таблица 3.1.1)                                                                                                                                                      | q'                                     | 0.002              | г/м²хс         |
| Количество дней с устойчивым снежным покровом                                                                                                                                                                                                | T <sub>cn</sub>                        | 31                 | дней           |
| Суммарная продолжительность осадков виде дождя в зоне проведения работ                                                                                                                                                                       |                                        |                    |                |
| за рассматриваемый период (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам)                                                                                                            | $T_{A}{}^{0}$                          | 1513               | часов          |
| Количество дней с осадками в виде дождя, рассчитывается по формуле: Т,                                                                                                                                                                       | ,=2*T, <sub>0</sub> /24                | ı                  | 1              |
| Количество дней с осадками в виде дождя                                                                                                                                                                                                      | <u>тд</u>                              | 126                | дней           |
| Количество рабочих дней                                                                                                                                                                                                                      | T T                                    | 366                | дней           |
| *Примечание - при движении машины без загруженности сыпучим строительным                                                                                                                                                                     | материалог                             |                    |                |

тием такового, коэффициенты  $C_4$ , q', S приравниваются 0.

Расчет выбросов пыли при движении автотехники:

| Код ЗВ | Наименование 3B Пыль неорганическая: 70-20% SiO <sub>2</sub> | Максимально- разовый<br>выброс 3B, г/с | Валовый выброс 3B,<br>т/год |  |
|--------|--------------------------------------------------------------|----------------------------------------|-----------------------------|--|
| 2908   | Пыль неорганическая: 70-20% SiO <sub>2</sub>                 | 0.1056667                              | 1.9073262                   |  |
|        | Всего по источнику:                                          | 0.1056667                              | 1.9073262                   |  |

| № ИЗА | 6483 | Наименование источника загрязнения атмосферы | Пыление при транспортировке и погрузке серы                       |
|-------|------|----------------------------------------------|-------------------------------------------------------------------|
| № ИВ  | 001  | Наименование источника выделения             | Пыление при перемещении техники и сдув<br>с поверхности материала |
| _     |      |                                              | - :-                                                              |

Расчет выполнен по **"Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов"** (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.)

Движение авто- или железнодорожного транспорта в пределах промплощадки обуславливает выделение пыли. Пыль выделяется в результате взаимодействия колес с полотном дороги (только для автомобильного транспорта) и сдува её с поверхности материала находящегося в кузове (вагоне).

Процесс: выделение пыли в результате взаимодействия колес автотранспорта с полотном дороги:

Максимальный разовый выброс рассчитывается по формуле:  $\mathbf{M}_{\text{сек}} = (\mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \mathbf{C}_3 \cdot \mathbf{k}_5 \cdot \mathbf{C}_7 \cdot \mathbf{N} \cdot \mathbf{L} \cdot \mathbf{k} \cdot \mathbf{q}_1)/3600$ , г/с

Валовый выброс рассчитывается по формуле:  $\mathbf{M}_{\text{год}} = \mathbf{0.0864*M}_{\text{сек}} * (\mathbf{T} - (\mathbf{T}_{\text{СП}} + \mathbf{T}_{\text{Л}}))$ , т/год

Процесс: выделение пыли в результате сдува с поверхности кузова автотранспорта:

Максимальный разовый выброс рассчитывается по формуле:  $\mathbf{M}_{\text{сек}} = \mathbf{C_4}^* \mathbf{C_5}^* \mathbf{k_5}^* \mathbf{q}^* \mathbf{S^*n}$ , г/с

|                                                   | максимальный разовый выорос рассчитывается по формуле: $\mathbf{M}_{cek} = \mathbf{C}_a \cdot \mathbf{C}_b \cdot \mathbf{K}_b \cdot \mathbf{q} \cdot \mathbf{S} \cdot \mathbf{n}_1$ , г/с                       |                       |                 |                           |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------------|
|                                                   | Валовый выброс рассчитывается по формуле: M <sub>год</sub> =0.0864*M <sub>сек</sub> *(T-(T <sub>сп</sub> +T <sub>д</sub> )), т/год                                                                              |                       |                 |                           |
| Koodedianiaoni Milati Iban                        | Исходные параметры:<br>рщий среднюю грузоподъемность транспорта (таблица 3.3.1):                                                                                                                                | C <sub>1</sub>        | 2.5             | >25 - ≤30                 |
|                                                   | рщий среднюю грузоподвемность транспорта (таблица 3.3.1).                                                                                                                                                       | C <sub>2</sub>        | 2.3             | >5 - ≤10                  |
| 11                                                | атно) всего транспорта в час:                                                                                                                                                                                   | N                     | 8               | pas/час                   |
|                                                   | ной ходки в пределах промплощадки:                                                                                                                                                                              | IN I                  | 3               | раз/час<br>КМ             |
| Число работающих авто                             |                                                                                                                                                                                                                 | n L                   | 8               | ШТ.                       |
|                                                   | машин.<br>рщий состояние дорог (таблица 3.3.3):                                                                                                                                                                 | C <sub>3</sub>        | 0.1             | ші.                       |
|                                                   |                                                                                                                                                                                                                 | <b>C</b> <sub>3</sub> | 0.1             |                           |
|                                                   | рщий профиль поверхности материала на платформе и определяемый как соотношение S <sub>факт</sub> /S (значение C <sub>4</sub> колеб-<br>.6 в зависимости от крупности материала и степени заполнения платформы): | C <sub>4</sub>        | 1.3             |                           |
| Фактическая поверхност                            | ь материала на платформе:                                                                                                                                                                                       | $S_{факт}$            | 12              | $M^2$                     |
| Площадь открытой пове                             | рхности транспортируемого материала:                                                                                                                                                                            | S                     | 9.28            | $M^2$                     |
| Коэффициент, учитыван                             | ощий скорость обдува (V₀₅) материала (таблица 3.3.4):                                                                                                                                                           | C <sub>5</sub>        | 1               | ≤2                        |
| Koodiduuquut vuutupa                              | оний реажность пороруностного своя моториона (таблина 2.1.4).                                                                                                                                                   | k <sub>5</sub>        | 0.8             | при передвижении техники  |
| коэффициент, учитыван                             | Коэффициент, учитывающий влажность поверхностного слоя материала (таблица 3.1.4):                                                                                                                               |                       |                 | от кузова автомо-<br>биля |
| Коэффициент, учитыван                             | Коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный:                                                                                                                                              |                       |                 |                           |
| Пылевыделение в атмо                              | Пылевыделение в атмосферу на 1 км пробега, принимается равным:                                                                                                                                                  |                       |                 | г/км                      |
| Пылевыделение с един                              | Пылевыделение с единицы фактической поверхности материала на платформе, (таблица 3.1.1):                                                                                                                        |                       |                 | г/м <sup>2</sup> хс       |
| Коэффициент гравитаци                             | онного осаждения частиц:                                                                                                                                                                                        | k                     | 0.4             |                           |
| Количество дней с устой                           | чивым снежным покровом:                                                                                                                                                                                         | Тсп                   | 31              | сут/год                   |
|                                                   | пьность осадков виде дождя в зоне проведения работ за рассматриваемый период (запрашивается в территори-<br>омета, либо определяется по климатическим справочникам)                                             | T <sub>4</sub> 0      | 1513            | часов                     |
|                                                   | омета, лиоо определяется по климатическим справочникам)<br>с осадками в виде дождя, рассчитывается по формуле: T <sub>л</sub> =2*T <sub>л</sub> <sup>0</sup> /24                                                |                       |                 |                           |
| Количество дней с осад                            |                                                                                                                                                                                                                 | Тл                    | 126             | сут/год                   |
| Количество дней с осад                            | 11 11 11                                                                                                                                                                                                        | <u>'д</u><br>Т        | 366             | сут/год                   |
| Количество рассчих дне                            | Расчет выбросов пыли при движении автотехники:                                                                                                                                                                  | <u> </u>              | 300             | Сутлод                    |
| Код ЗВ                                            | Наименование 3В                                                                                                                                                                                                 |                       | г/с             | т/год                     |
| 2908 Пыль неорганическая: 70-20% SiO <sub>2</sub> |                                                                                                                                                                                                                 |                       | 0.0074597       | 0.1346506                 |
| 2000                                              | Расчет выбросов пыли от кузова автотехники:                                                                                                                                                                     |                       | 0.0014031       | 0.1040000                 |
| Код 3В Наименование 3В                            |                                                                                                                                                                                                                 |                       |                 | т/год                     |
| 0331                                              | Сера элементарная                                                                                                                                                                                               |                       | г/с<br>0.289536 | 5.2262406                 |
|                                                   |                                                                                                                                                                                                                 |                       |                 |                           |
|                                                   |                                                                                                                                                                                                                 |                       |                 |                           |

| № ИВ                                                                             | 002                                                                                 | zpeud                                                                                                                                                                                                                                  |                |                      |                     |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------------|
| Расчет выполнен<br>Приказу Министра охран                                        | по <b>"Методике расчета выб</b><br>ны окружающей среды Респу                        | росов загрязняющих веществ в атмосферу от предприятий по производству ст<br>блики Казахстан от «18» 04 2008 года №100 -п.)                                                                                                             | роительных     | материалов"          | (Приложение №11 к   |
|                                                                                  | Про                                                                                 | цесс: выделение пыли при погрузке серы в вагоны расчитывается по следующим форг                                                                                                                                                        | иулам:         |                      |                     |
|                                                                                  |                                                                                     | зовый выброс расчитывается по формуле: M <sub>сек</sub> =((k <sub>1</sub> *k <sub>2</sub> *k <sub>3</sub> *k <sub>4</sub> *k <sub>5</sub> *k <sub>7</sub> *k <sub>8</sub> *k <sub>9</sub> *k*B'*G <sub>час</sub> *10 <sup>6</sup> )/36 |                |                      |                     |
|                                                                                  | Вало                                                                                | рвый выброс расчитывается по формуле: <b>М<sub>год</sub>=k₁*k₂*k₃*k₄*k₅*k<sub>7</sub>*k₀*k</b> ゅ <b>*k⁵*G<sub>год</sub>*(1-η)</b> , т/год                                                                                              | 1              |                      |                     |
|                                                                                  |                                                                                     | Исходные параметры:                                                                                                                                                                                                                    |                |                      |                     |
| •                                                                                | рракции в материале (табл. 3                                                        | .1.1):                                                                                                                                                                                                                                 | k <sub>1</sub> | 0.04                 |                     |
| Доля пыли, переходящая                                                           | я в аэрозоль (табл. 3.1.1):                                                         |                                                                                                                                                                                                                                        | k <sub>2</sub> | 0.02<br>1.2          |                     |
| Koodediumout villati ibala                                                       | Сооффиционт учит пракциий мости не метеохоперия (табя, 3.1.2), с учетом вущите 2.6: |                                                                                                                                                                                                                                        |                |                      | при < 2 м/с ≤ 5 м/с |
| оэффициент, учитывающий местные метеоусловия (табл. 3.1.2), с учетом пункта 2.6: |                                                                                     | k <sub>3 макс</sub>                                                                                                                                                                                                                    | 1.7            | при < 7 м/с ≤ 10 м/с |                     |
| Коэффициент, учитываю                                                            | щий местные условия, степе                                                          | нь защищенности узла от внешних воздействий, условия пылеобразования (табл. 3.1.3):                                                                                                                                                    | $k_4$          | 0.2                  |                     |
| Коэффициент, учитываю                                                            | щий влажность материала (т                                                          | табл. 3.1.4).:                                                                                                                                                                                                                         | k <sub>5</sub> | 1                    |                     |
| Коэффициент, учитываю                                                            | щий крупность материала (та                                                         | абл. 3.1.5):                                                                                                                                                                                                                           | k <sub>7</sub> | 0.5                  | при < 50 мм ≥ 10 мм |
| Поправочный коэффици перегрузочных устройств                                     |                                                                                     | пов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов                                                                                                                                                       | k <sub>8</sub> | 1                    |                     |
| Поправочный коэффицириала весом до 10 т, и k                                     |                                                                                     | бросе материала при разгрузке (принимается $k_9$ =0.2 при единовременном сбросе мате-                                                                                                                                                  | k <sub>9</sub> | 0.1                  |                     |
| Коэффициент гравитаци                                                            | онного осаждения частиц:                                                            |                                                                                                                                                                                                                                        | k              | 0.4                  |                     |
| Коэффициент, учитываю                                                            | <br>ещий высоту пересыпки (табл                                                     | ı. 3.1.7):                                                                                                                                                                                                                             | B'             | 1                    | при 2-4 м           |
| Производительность узл                                                           | а пересыпки или количество                                                          | перемещаемого материала:                                                                                                                                                                                                               | Gyac           | 157.5                | т/час               |
| Суммарное количество г                                                           | еремещаемого материала в                                                            | течение года:                                                                                                                                                                                                                          | Gron           | 676 000              | т/год               |
| Эффективность применя                                                            | емых средств пылеподавлен                                                           | :RNI                                                                                                                                                                                                                                   | n              | 0                    | доля ед.            |
|                                                                                  |                                                                                     | Расчет выбросов при погрузке серы:                                                                                                                                                                                                     |                | •                    |                     |
| Код ЗВ                                                                           |                                                                                     | Наименование ЗВ                                                                                                                                                                                                                        |                | г/с                  | т/год               |
| 0331                                                                             |                                                                                     | Сера элементарная                                                                                                                                                                                                                      |                | 0.238                | 2.59584             |
|                                                                                  | •                                                                                   | Итого по ИЗА № 6483 (001-002):                                                                                                                                                                                                         |                | •                    |                     |
| Код ЗВ                                                                           |                                                                                     | Наименование ЗВ                                                                                                                                                                                                                        |                | г/с                  | т/год               |
| 0331                                                                             | Сера элементарная                                                                   |                                                                                                                                                                                                                                        |                | 0.527536             | 7.8220806           |
| 2908                                                                             | Пыль неорганическая: 70-2                                                           | 0% SiO <sub>2</sub>                                                                                                                                                                                                                    |                | 0.0074597            | 0.1346506           |
|                                                                                  | <u> </u>                                                                            |                                                                                                                                                                                                                                        |                | 0.5349957            | 7.9567312           |

# **KOHH (007)**

| № ИЗА                | 0114                           | Наименование исто<br>сферы                                                                    | чника загрязі                                              | нения атмо-                            | Выхлопная труба<br>зельного генерат |                          |
|----------------------|--------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------|--------------------------|
| №ИВ                  | 001                            | Наименование ист                                                                              |                                                            |                                        | Teksan TJ550DW                      |                          |
| от стацион           | арных дизельн                  | полнены согласно, <b>"Ме</b><br>ных установок" РНД 21<br>ос i-го вещества стацион             | <b>1.2.02.04-200</b><br>нарной дизель                      | <b>4</b> , МООС РК, А<br>ной установки | стана 2005 год.                     |                          |
|                      |                                | IV                                                                                            | I <sub>сек</sub> =е <sub>і</sub> *Р <sub>э</sub> /3600     | , г/С                                  |                                     |                          |
| нальной мс           | ощности, г/кВт*ч               | щества на единицу пол<br>(таблица 1 или 2):                                                   | <u> </u>                                                   | стационарной д                         | дизельной установки                 | на режиме номи           |
| Эксплуатац<br>новки: | ционная мощнос                 | сть стационарной дизе                                                                         | льной уста-                                                | P₃                                     | 440                                 | кВт                      |
| Вало                 | вый выброс і-го                | вещества за год стацио<br><b>М</b> гог                                                        | нарной дизель<br>_=q <sub>i</sub> *В <sub>год</sub> /1000, |                                        | й определяется по ф                 | ормуле:                  |
| тде:                 |                                | 10,                                                                                           | 1 10 <u>4</u> ,                                            |                                        |                                     |                          |
|                      | ной установки с                | цества, г/кг топлива, при<br>учетом совокупности р                                            |                                                            |                                        |                                     |                          |
| рется по о           | тчетным данны                  | юй дизельной установком об эксплуатации уст<br>В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> : |                                                            | В <sub>год</sub>                       | 0.87                                | т/год                    |
| Расуол топ           | Расход топлива:                |                                                                                               |                                                            | b                                      | 100                                 | л/ч                      |
| г асход топ.         | лива.                          |                                                                                               |                                                            | b                                      | 87                                  | кг/ч                     |
| Средний уд           | цельный расход                 | топлива:                                                                                      |                                                            | b₃                                     | 198                                 | г/кВт.ч                  |
|                      | дизельного топл                |                                                                                               |                                                            | ρ                                      | 0.87                                | кг/л                     |
| <b>Коэффици</b> е    | ент использован                | ия:                                                                                           |                                                            | k                                      | 1                                   |                          |
| Время рабо           | оты:                           |                                                                                               |                                                            |                                        | 10                                  | ч/год                    |
|                      |                                | Исходные дан                                                                                  | ные по исто                                                |                                        |                                     | 1                        |
| Количество           |                                |                                                                                               |                                                            | N                                      | 1                                   | ШТ                       |
|                      | ащения вала:                   |                                                                                               |                                                            | n                                      | 1500                                | об/мин                   |
| Группа СД\           | /:                             |                                                                                               |                                                            |                                        | Б                                   |                          |
| <b>D</b>             |                                | Расчет расхода                                                                                | отработаннь                                                |                                        |                                     |                          |
|                      |                                | $_{3}$ , $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$                                                  |                                                            | G <sub>or</sub>                        | 0.760                               | κг/c                     |
|                      | ра отходящих га                | 3OB:                                                                                          |                                                            | Tor                                    | 450                                 | °С<br>кг/м³              |
|                      | газов при 0°C:                 | 0 (/4.T /072)                                                                                 |                                                            | γ0 <sub>or</sub>                       | 1.31                                |                          |
|                      | газов при Т <sub>ог</sub> (К), |                                                                                               |                                                            | <b>У</b> ог                            | 0.49482                             | кг/м <sup>3</sup>        |
| Ооъемныи             |                                | анных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> /γ <sub>or</sub>                 |                                                            | Q <sub>or</sub>                        | 1.5353                              | м <sup>3</sup> /с        |
| 001 / 002            | Расчет в                       | <u>ыбросов вредных веи</u><br>От одной (каждой                                                |                                                            |                                        |                                     |                          |
| 0017002              |                                | От однои (каждои                                                                              | I) BEIXIIOIIRON                                            | труоы дизель                           | вного генератора                    |                          |
| Код ЗВ               | Наим                           | енование ЗВ                                                                                   | e <sub>i</sub> ,                                           | q <sub>i</sub> ,                       | Максимально-<br>разовый вы-<br>брос | Валовый вы<br>брос       |
|                      |                                |                                                                                               | г/кВт.ч                                                    | г/кг топ-<br>лива                      | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                      |                                | та оксиды                                                                                     | 9.6                                                        | 40                                     | 1.173333333                         | 0.0348                   |
| 0301                 |                                | та диоксид                                                                                    |                                                            |                                        | 0.9386667                           | 0.02784                  |
| 0304                 | Аз                             | ота оксид                                                                                     |                                                            |                                        | 0.1525333                           | 0.004524                 |
| 0328                 |                                | Сажа                                                                                          | 0.5                                                        | 2                                      | 0.0611111                           | 0.00174                  |
| 0330                 |                                | ра диоксид                                                                                    | 1.2                                                        | 5                                      | 0.1466667                           | 0.00435                  |
| 0337                 |                                | ерод оксид                                                                                    | 6.2                                                        | 26                                     | 0.7577778                           | 0.02262                  |
| 0703                 |                                | нз(а)пирен                                                                                    | 0.000012                                                   | 0.000055                               | 0.0000015                           | 0.00000005               |
| 1325                 |                                | мальдегид                                                                                     | 0.12                                                       | 0.5                                    | 0.0146667                           | 0.000435                 |
| 2754                 | Углеводор                      | оды пр. С12-С19                                                                               | 2.9                                                        | 12                                     | 0.3544444                           | 0.01044                  |
|                      |                                | Всего по источнику:                                                                           |                                                            |                                        | 2.4258682                           | 0.07194905               |

| № ИЗА                    | 0116                                                                                    | Наименование источника загрязнения атмо-<br>сферы                                                                                                          |                                 | Выхлопная труба<br>зельного генерат |                 |
|--------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|-----------------|
| № ИВ                     | 001-002                                                                                 | Наименование источника выдел                                                                                                                               | <b>тения</b>                    | Teksan TJ560DW5                     | 5A              |
| <b>от стацио</b><br>Макс | нарных дизельн                                                                          | іполнены согласно, <b>"Методики расче<br/>ных установок" РНД 211.2.02.04-200</b> ю<br>ос і-го вещества стационарной дизель<br>М <sub>сек</sub> =e;*Р₃/3600 | 4, МООС РК, Ас<br>ной установки | стана 2005 год.                     |                 |
|                          |                                                                                         | щества на единицу полезной работы<br>(таблица 1 или 2):                                                                                                    | стационарной д                  | цизельной установки                 | на режиме номи- |
| Эксплуата<br>новки:      | Эксплуатационная мощность стационарной дизельной уста-<br>новки: P <sub>э</sub> 448 кВт |                                                                                                                                                            |                                 |                                     |                 |
| Вало                     | вый выброс і-го                                                                         | вещества за год стационарной дизель<br><b>М</b> <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000,                                                    |                                 | й определяется по ф                 | ормуле:         |

где:

| ной дизель               | i-го вредного вещества, г/кг топлива, при<br>вной установки с учетом совокупности р                                                        |                  |                           |                               |                               |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|-------------------------------|-------------------------------|
| лица 3 или<br>расуол топ | 4):<br>лива стационарной дизельной установко                                                                                               | ой за гоп (бе-   |                           |                               |                               |
|                          | отива стационарной дизельной установко<br>отчетным данным об эксплуатации уст                                                              |                  | Вгод                      | 3.251                         | т/год                         |
|                          | тся по формуле: <b>В</b> <sub>год</sub> = <b>b</b> <sub>э</sub> * <b>k</b> * <b>P</b> <sub>э</sub> * <b>T</b> * <b>10</b> - <sup>6</sup> : |                  | — год                     |                               |                               |
| Расход топ               |                                                                                                                                            |                  | b                         | 103.8                         | л/ч                           |
| Расход топ               | лива.                                                                                                                                      |                  | b                         | 90                            | кг/ч                          |
| Средний уд               | дельный расход топлива:                                                                                                                    |                  | b₃                        | 202                           | г/кВт.ч                       |
|                          | дизельного топлива:                                                                                                                        |                  | ρ                         | 0.87                          | кг/л                          |
|                          | ент использования:                                                                                                                         |                  | <u>k</u>                  | 1                             |                               |
| Время раб                |                                                                                                                                            |                  | T                         | 31.3                          | ч/год                         |
| /OFINIOOTD               | Исходные дан                                                                                                                               | ные по источ     | <u>інику выоросо</u><br>N | <b>ов</b><br>1                |                               |
| Количество<br>Настота вр | э.<br>ащения вала:                                                                                                                         |                  | n N                       | 1500                          | шт<br>об/мин                  |
| тастота вр<br>Группа СД: |                                                                                                                                            |                  |                           | Б                             | ОО/МИН                        |
| руппа Од.                | Расчет расхода                                                                                                                             | отработанны      | х газов и топг            | _                             |                               |
|                          | работанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                          |                  | G <sub>or</sub>           | 0.789                         | кг/с                          |
|                          | ра отходящих газов:                                                                                                                        |                  | T <sub>or</sub>           | 450                           | °C                            |
|                          | газов при 0°C:                                                                                                                             |                  | γ0 <sub>or</sub>          | 1.31                          | кг/м <sup>3</sup>             |
|                          | газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+Т <sub>ог</sub> /273)                                                           |                  | <b>Y</b> or               | 0.49482                       | кг/ <b>м</b> <sup>3</sup>     |
|                          | расход отработанных газов, $\mathbf{Q}_{or}$ = $\mathbf{G}_{or}$ / $\mathbf{\gamma}_{or}$                                                  |                  | Qor                       | 1.5948                        | м <sup>3</sup> /с             |
|                          | Расчет выбросов вредных вец                                                                                                                | цеств в атмос    | феру от дизел             | ъного генератора:             |                               |
| 001 / 002                | От одной (каждой                                                                                                                           | і́) выхлопной    | трубы дизель              | ного генератора               |                               |
|                          |                                                                                                                                            |                  |                           |                               |                               |
|                          |                                                                                                                                            | e <sub>i</sub> , |                           | Максимально-                  | Валовый вы                    |
|                          | Цамионование 2P                                                                                                                            |                  | q <sub>i</sub> ,          | разовый вы-                   | брос                          |
| Код ЗВ                   | Наименование ЗВ                                                                                                                            |                  |                           | брос                          | •                             |
|                          |                                                                                                                                            |                  | г/кг топ-                 |                               |                               |
|                          |                                                                                                                                            | г/кВт.ч          | лива                      | М <sub>сек</sub> , г/с        | М <sub>год</sub> , т/год      |
|                          | Азота оксиды                                                                                                                               | 9.6              | 40                        | 1.1946667                     | 0.0650202                     |
| 0301                     | Азота диоксид                                                                                                                              |                  |                           | 0.9557333                     | 0.0520162                     |
| 0304                     | Азота оксид                                                                                                                                |                  |                           | 0.1553067                     | 0.0084526                     |
| 0328                     | Сажа                                                                                                                                       | 0.5              | 2                         | 0.0622222                     | 0.0032510                     |
| 0330                     | Сера диоксид                                                                                                                               | 1.2              | 5                         | 0.1493333                     | 0.0081275                     |
| 0337                     | Углерод оксид                                                                                                                              | 6.2              | 26                        | 0.7715556                     | 0.0422632                     |
| 0703                     | Бенз(а)пирен                                                                                                                               | 0.000012         | 0.000055                  | 0.0000015                     | 0.0000001                     |
| 1325                     | Формальдегид                                                                                                                               | 0.12             | 0.5                       | 0.0149333                     | 0.0008128                     |
| 2754                     | Углеводороды предельные С12-С19                                                                                                            | 2.9              | 12                        | 0.3608889                     | 0.0195061                     |
|                          | Всего от                                                                                                                                   | дизельного г     | енератора:                | T                             |                               |
|                          |                                                                                                                                            |                  |                           | Максимально-                  |                               |
|                          |                                                                                                                                            |                  |                           | разовый вы-                   | Валовый вы                    |
| Код ЗВ                   | Наименование                                                                                                                               | ∋ 3B             |                           | брос                          | брос                          |
|                          |                                                                                                                                            |                  |                           |                               |                               |
|                          |                                                                                                                                            |                  |                           | М <sub>сек</sub> , г/с        | М <sub>год</sub> , т/год      |
|                          | Азота оксиды                                                                                                                               |                  | <u> </u>                  | 1.1946667                     | 0.1300405                     |
| 0301                     | Азота диокси                                                                                                                               |                  |                           | 0.9557333                     | 0.1040324                     |
| 0304                     | Азота оксид                                                                                                                                | 1                |                           | 0.1553067                     | 0.0169053                     |
| 0328 Сажа                |                                                                                                                                            |                  |                           | 0.0622222                     | 0.0065020                     |
| 0330 Сера диоксид        |                                                                                                                                            |                  |                           | 0.1493333                     | 0.0162551                     |
| 0337                     |                                                                                                                                            |                  |                           | 0.7715556<br>0.0000015        | 0.0845263                     |
| 0703                     |                                                                                                                                            | Бенз(а)пирен     |                           |                               | 0.0000002                     |
| 1325                     | Формальдеги                                                                                                                                |                  |                           | 0.0149333                     | 0.0016255                     |
| 2754                     | Углеводороды пределы                                                                                                                       | ные С12-С19      |                           | 0.3608889<br><b>2.4699748</b> | 0.0390121<br><b>0.2688589</b> |
|                          | Всего по источнику:                                                                                                                        |                  |                           | 7 //KUU / //X                 | 11 7688680                    |

| № ИЗА                                     | иза 0117 - Наименование источника загрязнения атмо-<br>оп118 сферы Дымовая труба                                                                                                                                                                                                           |                                  |                                |                                                 |                      |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|-------------------------------------------------|----------------------|--|--|
| № ИВ                                      | 001                                                                                                                                                                                                                                                                                        | Наименование источника выделения |                                | МЕРИ НОТ ВОХ 310 - Теплопушка-Воз-<br>духодувка |                      |  |  |
| мосферу                                   | Выбросы от котла определены согласно, "Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 2 "Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час" |                                  |                                |                                                 |                      |  |  |
|                                           |                                                                                                                                                                                                                                                                                            | Исходные данные:                 |                                |                                                 |                      |  |  |
| Номиналы                                  | ная мощност                                                                                                                                                                                                                                                                                | ъ котла:                         | $Q_{M}$                        | 310                                             | кВт                  |  |  |
| Фактическ                                 | ая мощность                                                                                                                                                                                                                                                                                | ь котла:                         | $Q_{\scriptscriptstyle{\Phi}}$ | 285                                             | кВт                  |  |  |
| Расход то                                 | тлива котлоа                                                                                                                                                                                                                                                                               | агрегатом:                       | В                              | 31.68                                           | н.м³/час             |  |  |
| Расход тог                                | ллива при ог                                                                                                                                                                                                                                                                               | ределении валовых выбросов:      | Br                             | 316.80                                          | н.м³/год             |  |  |
| Время раб                                 | оты оборудо                                                                                                                                                                                                                                                                                | рвания на топливном газе / СУГ:  | T                              | 10                                              | ч/год                |  |  |
| Тип испол                                 | ьзуемого тог                                                                                                                                                                                                                                                                               | Топлив                           | ный газ                        |                                                 |                      |  |  |
| Плотность газа: р 0.92 кг/                |                                                                                                                                                                                                                                                                                            |                                  |                                |                                                 | кг/н. м <sup>3</sup> |  |  |
| Массовое содержание серы в газе: Sr 0.002 |                                                                                                                                                                                                                                                                                            |                                  |                                |                                                 | масс.%               |  |  |

| Теплота с  | горания топлива при нормал              | ьных условиях:                                                     | Q <sub>i</sub> r   | 44.31                  | МДж/н. м <sup>3</sup> |
|------------|-----------------------------------------|--------------------------------------------------------------------|--------------------|------------------------|-----------------------|
|            | о оксидов азота, образующи              | K <sub>NO2</sub>                                                   | 0.0835             | кг/ГДж                 |                       |
|            | ие сероводорода в топливе:              | 11                                                                 | [H <sub>2</sub> S] | 0.0008                 | масс.%                |
|            | й расход газовоздушной сме              | CM:                                                                | Vr                 | 0.231                  | м³/сек                |
|            | ьзуемого топлива:                       |                                                                    |                    | C:                     | УГ                    |
| Плотность  | ь газа:                                 |                                                                    | ρ                  | 2.20                   | кг/н. м <sup>3</sup>  |
| Массовое   | содержание серы в газе:                 |                                                                    | S <sup>r</sup>     | 0.0005                 | масс.%                |
| Теплота с  | горания топлива при нормал              | ьных условиях:                                                     | Q <sub>i</sub> r   | 104.06                 | МДж/н. м <sup>3</sup> |
| Количеств  | о оксидов азота, образующи              | хся на 1 ГДж тепла:                                                | K <sub>NO2</sub>   | 0.0835                 | кг/ГДж                |
|            | ие сероводорода в топливе:              |                                                                    | [H <sub>2</sub> S] | 0.000000               | масс.%                |
|            | й расход газовоздушной сме              |                                                                    | Vr                 | 0.530                  | м³/сек                |
| Коэффици   | ент, зависящий от степени с             | снижения выбросов оксидов азота                                    | ρ                  | 0                      |                       |
| в результа | эте применения технических              | решений:                                                           | β                  | U                      |                       |
| Доля окси  | дов серы, связываемых лету              | чей золой:                                                         | ŋ' <sub>SO2</sub>  | 0                      |                       |
| Доля окси  | дов серы, улавливаемых в з              | олоуловителе:                                                      | ŋ" <sub>SO2</sub>  | 0                      |                       |
| Количеств  | о оксидов углерода на ед.т              | еплоты, выделяющейся при горе-                                     | K <sub>CO</sub>    | 0.25                   | кг/ГДж                |
| нии:       |                                         |                                                                    | IXCO               | 0.23                   |                       |
| Потери те  |                                         | ской неполноты сгорания газа:                                      | $q_4$              | 0                      | %                     |
|            | Расчет выбросов вредн                   | ых веществ в атмосферу при раб                                     | оте котл           | іа на Топливном і      | газе                  |
|            |                                         |                                                                    |                    |                        |                       |
|            | Наименование загряз-                    |                                                                    |                    | Максимально-           | Валовый вы-           |
| Код ЗВ     | няющего вещества (3В)                   | Расчетная формула                                                  |                    | разовый вы-            | брос, т/год           |
|            | площого вощоства (ов)                   |                                                                    |                    | брос, г/с              | ороо, тод             |
|            | Agoto ovouti                            | Π = 0.001*P*O(*V*/1                                                |                    | 0.0325620              | 0.0011722             |
| 0301       | Азота оксиды                            | $\Pi = 0.001*B*Qf*K_{NO2}*(1 - \beta)$ $\Pi_{NO2} = 0.8*\Pi_{NOx}$ |                    | 0.0323020              | 0.00017722            |
| 0304       | Азота диоксид                           | $\Pi_{NO}=0.6\ \Pi_{NOx}$ $\Pi_{NO}=0.13^*\Pi_{NOx}$               |                    | 0.0260496              | 0.0009378             |
| 0304       | Азота оксид                             | $\Pi = 0.02^*B^*S'^*(1 - \eta')^*(1 - \eta'')$                     |                    | 0.0002816              | 0.0001324             |
| 0330       | Сера диоксид                            | Π = 1.88 * 10 <sup>-2</sup> * [H <sub>2</sub> S] * B               |                    | 0.0002616              | 0.0000101             |
| 0337       | Углерод оксид                           | $\Pi = 0.001*B*Q/*K_{co}*(1 - q_4/10)$                             | 0)                 | 0.097491               | 0.0035097             |
| 0337       |                                         | о источнику:                                                       | 0)                 | 0.1281713              | 0.0035097             |
|            | VII 010 III                             | о источнику.                                                       |                    | 0.1201710              | 0.0070172             |
|            | Расчет выбросов                         | вредных веществ в атмосферу пр                                     | ои работ           | е котла на СУГ         |                       |
|            | •                                       | , , , , , , , , , , , , , , , , , , , ,                            |                    |                        |                       |
|            | Наименование загряз-                    |                                                                    |                    | Максимально-           | Валовый вы-           |
| Код ЗВ     | няющего вещества (3В)                   | Расчетная формула                                                  |                    | разовый вы-            | брос, т/год           |
|            | пяющего вещества (3В)                   |                                                                    |                    | брос, г/с              | орос, глод            |
|            |                                         | F 0.004+D+0/+// +/4 0)                                             |                    | 0.0704007              | 0.0007507             |
| 0204       | Азота оксиды                            | $\Pi = 0.001^*B^*Q_i^{f*}K_{NO2}^*(1 - \beta)$                     |                    | 0.0764627              | 0.0027527             |
| 0301       | Азота диоксид                           | $\Pi_{NO2} = 0.8*\Pi_{NOx}$                                        |                    | 0.0611702              | 0.0022021             |
| 0304       | Азота оксид                             | $\Pi_{NO} = 0.13*\Pi_{NOx}$                                        |                    | 0.0099402<br>0.0001814 | 0.0003578             |
| 0330       | Сера диоксид                            | $\Pi = 0.02^*B^*S'^*(1 - \eta')^*(1 - \eta'')$                     |                    |                        | 0.0000065             |
| 0007       | \/                                      | $\Pi = 1.88 * 10^{-2} * [H_2S] * B$                                | 0)                 | 0                      | 0 0000445             |
| 0337       | Углерод оксид                           | $\Pi = 0.001*B*Q/*K_{CO}*(1 - q_4/10)$                             | <i>u)</i>          | 0.2289303              | 0.0082415             |
|            | итого по                                | о источнику:                                                       |                    | 0.3002221              | 0.0108079             |
|            | Daguer of the con-                      | вредных веществ в атмосферу о                                      |                    | VOTEGREEN              |                       |
|            | гасчет выоросов                         | вредных веществ в атмосферу о                                      | і одного           |                        | осы 3В                |
| Код ЗВ     | Наименование                            | загрязняющего вещества (ЗВ)                                        |                    | г/с                    | 1                     |
|            |                                         | Δ20Τ2 ΟΚΟΜΠΕΙ                                                      |                    | 0.07646274             | т/год<br>0.00275266   |
| 0301       |                                         | Азота оксиды<br>Азота диоксид                                      |                    | 0.07646274             | 0.00275266            |
| 0304       |                                         | Азота диоксид Азота оксид                                          |                    | 0.0011702              | 0.0022021             |
| 0304       |                                         | Сера диоксид                                                       |                    | 0.0099402              | 0.0003378             |
| 0337       |                                         | Углерод оксид                                                      |                    | 0.2289303              | 0.0082415             |
| 0001       | Booro E                                 |                                                                    |                    | 0.2269303              | 0.0108157             |
|            | Всего по источнику: 0.3004383 0.0108157 |                                                                    |                    |                        |                       |

| № ИЗА      | 0119                                                                                                                                                                                                                                                                                       | Наименование источника загрязнения атмо-<br>сферы | Дымовая труба                  |                          |                       |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|--------------------------|-----------------------|--|
| № ИВ       | 001                                                                                                                                                                                                                                                                                        | Наименование источника выделения                  | МЕРИ .<br>духоду               | HOT BOX 310 - Те<br>∕вка | плопушка-Воз-         |  |
| мосферу    | Выбросы от котла определены согласно, "Сборника методик по расчету выбросов вредных веществ в ат мосферу различными производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭкоэксп», Алматы 1996 г. Раздел 2 "Расче выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час" |                                                   |                                |                          |                       |  |
|            |                                                                                                                                                                                                                                                                                            | Исходные данные:                                  |                                |                          |                       |  |
| Номиналь   | ная мощност                                                                                                                                                                                                                                                                                | ъ котла:                                          | $Q_{M}$                        | 310                      | кВт                   |  |
| Фактическ  | ая мощность                                                                                                                                                                                                                                                                                | ь котла:                                          | $Q_{\scriptscriptstyle{\Phi}}$ | 285                      | кВт                   |  |
| Расход тог | плива котлоа                                                                                                                                                                                                                                                                               | агрегатом:                                        | В                              | 31.68                    | н.м³/час              |  |
| Расход тог | ллива при оп                                                                                                                                                                                                                                                                               | ределении валовых выбросов:                       | Br                             | 56559.34                 | н.м³/год              |  |
| Время раб  | оты оборудо                                                                                                                                                                                                                                                                                | рвания на топливном газе / СУГ:                   | Т                              | 1785                     | ч/год                 |  |
| Тип испол  | ьзуемого тог                                                                                                                                                                                                                                                                               | ілива:                                            |                                | Топлив                   | ный газ               |  |
| Плотность  | газа:                                                                                                                                                                                                                                                                                      |                                                   | ρ                              | 0.92                     | кг/н. м <sup>3</sup>  |  |
| Массовое   | содержание                                                                                                                                                                                                                                                                                 | серы в газе:                                      | Sr                             | 0.002                    | масс.%                |  |
| Теплота с  | орания топл                                                                                                                                                                                                                                                                                | ива при нормальных условиях:                      | $Q_i^r$                        | 44.31                    | МДж/н. м <sup>3</sup> |  |
| Количеств  | о оксидов аз                                                                                                                                                                                                                                                                               | ота, образующихся на 1 ГДж тепла:                 | K <sub>NO2</sub>               | 0.0835                   | кг/ГДж                |  |

| Содержан   | ие сероводорода в топливе:                     |                                                      | [H <sub>2</sub> S] | 0.0008                                   | масс.%                     |
|------------|------------------------------------------------|------------------------------------------------------|--------------------|------------------------------------------|----------------------------|
|            | й расход газовоздушной сме                     |                                                      | V <sub>r</sub>     | 0.231                                    | м³/сек                     |
|            | ьзуемого топлива:                              |                                                      |                    | C:                                       | УГ                         |
| Плотность  |                                                |                                                      | ρ                  | 2.20                                     | кг/н. м <sup>3</sup>       |
|            | содержание серы в газе:                        |                                                      | Sr                 | 0.0005                                   | масс.%                     |
|            | горания топлива при нормал                     | ьных условиях:                                       | Q <sub>i</sub> r   | 104.06                                   | МДж/н. м <sup>3</sup>      |
|            | о оксидов азота, образующи                     |                                                      | K <sub>NO2</sub>   | 0.0835                                   | кг/ГДж                     |
|            | ие сероводорода в топливе:                     |                                                      | [H <sub>2</sub> S] | 0.000000                                 | масс.%                     |
| Объемный   | й расход газовоздушной сме                     | си:                                                  | VΓ                 | 0.530                                    | м <sup>3</sup> /сек        |
| Коэффици   | иент, зависящий от степени с                   | снижения выбросов оксидов азота                      | 0                  | 0                                        |                            |
| в результа | ате применения технических                     | решений:                                             | β                  | U                                        |                            |
| Доля оксид | дов серы, связываемых лету                     | чей золой:                                           | ŋ' <sub>SO2</sub>  | 0                                        |                            |
| Доля оксид | дов серы, улавливаемых в з                     | олоуловителе:                                        | ŋ" <sub>SO2</sub>  | 0                                        |                            |
| Количеств  | во оксидов углерода на ед.т                    | еплоты, выделяющейся при горе-                       | K <sub>CO</sub>    | 0.25                                     | кг/ГДж                     |
| нии:       |                                                |                                                      | ICO                | 0.20                                     | * *                        |
| Потери те  |                                                | ской неполноты сгорания газа:                        | $q_4$              | 0                                        | %                          |
|            | Расчет выбросов вредн                          | ых веществ в атмосферу при раб                       | оте котл           | <u>іа на Топливном і</u>                 | газе                       |
| Код ЗВ     | Наименование загряз-<br>няющего вещества (ЗВ)  | Расчетная формула                                    |                    | Максимально-<br>разовый вы-<br>брос, г/с | Валовый вы-<br>брос, т/год |
|            | Азота оксиды                                   | $\Pi = 0.001*B*Q_i^*K_{NO2}*(1 - \beta)$             |                    | 0.0325620                                | 0.2092800                  |
| 0301       | Азота диоксид                                  | $\Pi_{NO2} = 0.8 * \Pi_{NOx}$                        |                    | 0.0260496                                | 0.167424                   |
| 0304       | Азота оксид                                    | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$                       |                    | 0.0042331                                | 0.0272064                  |
| 2222       |                                                | $\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta'')$          |                    | 0.0002816                                | 0.0018099                  |
| 0330       | Сера диоксид                                   | Π = 1.88 * 10 <sup>-2</sup> * [H <sub>2</sub> S] * B |                    | 0.000116                                 | 0.0007454                  |
| 0337       | Углерод оксид                                  | $\Pi = 0.001*B*Q/*K_{CO}*(1 - q_4/10)$               | 0)                 | 0.097491                                 | 0.6265868                  |
|            | Итого по                                       | о источнику:                                         | •                  | 0.1281713                                | 0.8237725                  |
|            |                                                | -                                                    |                    |                                          |                            |
|            | Расчет выбросов                                | вредных веществ в атмосферу п                        | ри работ           | е котла на СУГ                           |                            |
| Код ЗВ     | Наименование загряз-<br>няющего вещества (ЗВ)  | Расчетная формула                                    |                    | Максимально-<br>разовый вы-<br>брос, г/с | Валовый вы-<br>брос, т/год |
|            | Азота оксиды                                   | $\Pi = 0.001 *B*Q_i^r *K_{NO2}*(1 - \beta)$          |                    | 0.0764627                                | 0.4914354                  |
| 0301       | Азота диоксид                                  | $\Pi_{NO2} = 0.8*\Pi_{NOx}$                          |                    | 0.0611702                                | 0.3931483                  |
| 0304       | Азота оксид                                    | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$                       |                    | 0.0099402                                | 0.0638866                  |
| 0330       | Соро пиокомп                                   | $\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta'')$          |                    | 0.0001814                                | 0.0011656                  |
|            | Сера диоксид                                   | Π = 1.88 * 10 <sup>-2</sup> * [H <sub>2</sub> S] * B |                    | 0                                        | 0                          |
| 0337       | Углерод оксид                                  | $\Pi = 0.001*B*Q/*K_{CO}*(1 - q_4/10)$               | 0)                 | 0.2289303                                | 1.4713635                  |
|            | Итого по                                       | о источнику:                                         |                    | 0.3002221                                | 1.929564                   |
|            |                                                |                                                      |                    |                                          |                            |
|            | Расчет выбросов                                | вредных веществ в атмосферу о                        | т одного           |                                          |                            |
| Код ЗВ     | Наименование                                   | загрязняющего вещества (ЗВ)                          |                    |                                          | сы 3В                      |
|            | од 3В Наименование загрязняющего вещества (3В) |                                                      |                    | г/с                                      | т/год                      |
|            |                                                | Азота оксиды                                         |                    | 0.0764627                                | 0.4914354                  |
| 0301       |                                                | Азота диоксид                                        |                    | 0.0611702                                | 0.3931483                  |
| 0304       |                                                | Азота оксид                                          |                    | 0.0099402                                | 0.0638866                  |
| 0330       |                                                | Сера диоксид                                         |                    | 0.0003976                                | 0.0025553                  |
| 0337       | <u> </u>                                       | Углерод оксид                                        |                    | 0.2289303                                | 1.4713635                  |
|            | Всего по                                       | о источнику:                                         |                    | 0.3004383                                | 1.9309537                  |

| № ИЗА                                                                                                                             | 0786-0787      | Наименование источника загрязнения атмо-<br>сферы    | Дымов                          | ая труба          |                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------|--------------------------------|-------------------|-----------------------|--|
| № ИВ                                                                                                                              | 001            | Наименование источника выделения                     | Газовь                         | ий нагреватель    |                       |  |
| Выб                                                                                                                               | росы от котла  | а определены согласно, <b>"Сборника методик по р</b> | асчету в                       | ыбросов вредны    | х веществ в ат-       |  |
|                                                                                                                                   |                | и производствами", МЭБ РК РНПЦЭЭАиЭ «КазЭ            |                                |                   |                       |  |
| выбросо                                                                                                                           | в вредных в    | еществ при сжигании топлива в котлах произво         | дительн                        | остью до 30 т/час | <b>;"</b>             |  |
|                                                                                                                                   |                | Исходные данные:                                     |                                |                   |                       |  |
| Номиналь                                                                                                                          | ная мощності   | ь котла:                                             | $Q_{M}$                        | 754               | кВт                   |  |
| Фактическ                                                                                                                         | ая мощность    | котла:                                               | $Q_{\scriptscriptstyle{\Phi}}$ | 694               | кВт                   |  |
| Время раб                                                                                                                         | боты оборудо   | вания на топливном газе / СУГ:                       | Т                              | 4320              | ч/год                 |  |
| Тип испол                                                                                                                         | ьзуемого топ   | лива:                                                |                                | Топлив            | ивный газ             |  |
| Расход то                                                                                                                         | плива котлоа   | грегатом:                                            | В                              | 70.81             | н.м³/час              |  |
| Расход то                                                                                                                         | плива при опр  | ределении валовых выбросов:                          | Br                             | 180643.54         | н.м³/год              |  |
| Плотность                                                                                                                         | газа:          |                                                      | ρ                              | 0.92              | кг/н. м <sup>3</sup>  |  |
| Массовое                                                                                                                          | содержание (   | серы в газе:                                         | Sr                             | 0.0017            | масс.%                |  |
| Теплота с                                                                                                                         | горания топлі  | ива при нормальных условиях:                         | Q <sub>i</sub> r               | 44.31             | МДж/н. м <sup>3</sup> |  |
| Количеств                                                                                                                         | о оксидов азо  | K <sub>NO2</sub>                                     | 0.0877                         | кг/ГДж            |                       |  |
| Содержан                                                                                                                          | ие сероводор   | [H <sub>2</sub> S]                                   | 0.0008                         | масс.%            |                       |  |
| Объемны                                                                                                                           | і расход газоі | 0.516                                                | м³/сек                         |                   |                       |  |
| Объемный расход газовоздушной смеси:         V <sub>г</sub> 0.516         м³/сен           Тип используемого топлива:         СУГ |                |                                                      |                                |                   | УГ                    |  |

| Расход то    | плива котлоагрегатом:                         |                                                      | В                           | 0                                        | н.м³/час                   |  |
|--------------|-----------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------------------|----------------------------|--|
| Расход то    | плива при определении вало                    | вых выбросов:                                        | Br                          | 0                                        | н.м <sup>3</sup> /год      |  |
| Плотность    | ь газа:                                       |                                                      | ρ                           | 2.20                                     | кг/н. м <sup>3</sup>       |  |
| Массовое     | содержание серы в газе:                       |                                                      | Sr                          | 0.0005                                   | масс.%                     |  |
| Теплота с    | горания топлива при нормал                    | ьных условиях:                                       | Q <sub>i</sub> <sup>r</sup> | 104.06                                   | МДж/н. м <sup>3</sup>      |  |
| Количеств    | во оксидов азота, образующи                   | хся на 1 ГДж тепла:                                  | K <sub>NO2</sub>            | 0.0877                                   | кг/ГДж                     |  |
| Содержан     | ие сероводорода в топливе:                    |                                                      | [H <sub>2</sub> S]          | 0.000000                                 | масс.%                     |  |
| Объемны      | й расход газовоздушной смес                   | CN:                                                  | $V_{r}$                     | 1.185                                    | м <sup>3</sup> /сек        |  |
| Коэффиці     | иент, зависящий от степени с                  | нижения выбросов оксидов азота                       | β                           | 0                                        |                            |  |
| в результа   | ате применения технических                    | решений:                                             | Р                           | •                                        |                            |  |
| Доля окси    | дов серы, связываемых лету                    | чей золой:                                           | ŋ' <sub>SO2</sub>           | 0                                        |                            |  |
|              | дов серы, улавливаемых в зо                   | ,                                                    | ŋ" <sub>SO2</sub>           | 0                                        |                            |  |
|              | во оксидов углерода на ед.т                   | еплоты, выделяющейся при горе-                       | K <sub>CO</sub>             | 0.25                                     | кг/ГДж                     |  |
| нии:         |                                               |                                                      | 1,00                        |                                          |                            |  |
| Потери те    | плоты вследствие механичес                    | ской неполноты сгорания газа:                        | $q_4$                       | 0                                        | %                          |  |
|              | Расчет выбросов вредн                         | ых веществ в атмосферу при раб                       | оте котл                    | а на Топливном і                         | газе                       |  |
| Код ЗВ       | Наименование загряз-<br>няющего вещества (ЗВ) | Расчетная формула                                    |                             | Максимально-<br>разовый вы-<br>брос, г/с | Валовый вы-<br>брос, т/год |  |
|              | Азота оксиды                                  | $\Pi = 0.001^*B^*Q_i^{r*}K_{NO2}^*(1 - \beta)$       |                             | 0.0764467                                | 0.7020353                  |  |
| 0301         | Азота диоксид                                 | $\Pi_{NO2} = 0.8 \times \Pi_{NOx}$                   |                             | 0.0611574                                | 0.5616282                  |  |
| 0304         | Азота оксид                                   | $\Pi_{NO} = 0.13^*\Pi_{NOx}$                         |                             | 0.0099381                                | 0.0912646                  |  |
|              |                                               | $\Pi = 0.02*B*S^r*(1 - \eta')*(1 - \eta'')$          |                             | 0.0006295                                | 0.0057806                  |  |
| 0330         | Сера диоксид                                  | $\Pi = 1.88 * 10^{-2} * [H_2S] * B$                  |                             | 0.0002592                                | 0.0023808                  |  |
| 0337         | Углерод оксид                                 | $\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4/10)$             | 0)                          | 0.2179211                                | 2.0012409                  |  |
|              |                                               | о источнику:                                         | - /                         | 0.2899053                                | 2.6622951                  |  |
|              |                                               | •                                                    |                             |                                          |                            |  |
|              | Расчет выбросов                               | вредных веществ в атмосферу п                        | ои работ                    | е котла на СУГ                           |                            |  |
| Код ЗВ       | Наименование загряз-<br>няющего вещества (ЗВ) | Расчетная формула                                    |                             | Максимально-<br>разовый вы-<br>брос, г/с | Валовый вы-<br>брос, т/год |  |
|              | Азота оксиды                                  | $\Pi = 0.001 *B*Q_i^r *K_{NO2}*(1 - \beta)$          |                             | 0                                        | 0                          |  |
| 0301         | Азота диоксид                                 | $\Pi_{NO2} = 0.8 * \Pi_{NOx}$                        |                             | 0                                        | 0                          |  |
| 0304         | Азота оксид                                   | $\Pi_{NO}$ = 0.13* $\Pi_{NOx}$                       |                             | 0                                        | 0                          |  |
| 0330         | Сера диоксид                                  | $\Pi = 0.02*B*S'*(1 - \eta')*(1 - \eta'')$           | )                           | 0                                        | 0                          |  |
|              |                                               | Π = 1.88 * 10 <sup>-2</sup> * [H <sub>2</sub> S] * B |                             | 0                                        | 0                          |  |
| 0337         | Углерод оксид                                 | $\Pi = 0.001*B*Q_i^*K_{CO}*(1 - q_4/10)$             | 0)                          | 0                                        | 0                          |  |
|              | Итого по                                      | о источнику:                                         |                             | 0                                        | 0                          |  |
|              |                                               |                                                      |                             |                                          |                            |  |
|              | Расчет выбросов                               | вредных веществ в атмосферу о                        | г одного                    | •                                        | OD                         |  |
| Код ЗВ       | Наименование                                  | загрязняющего вещества (ЗВ)                          |                             | •                                        | сы 3В                      |  |
|              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       |                                                      |                             | Γ/C                                      | т/год                      |  |
| 0004         |                                               | Азота оксиды<br>Азота диоксид                        |                             | 0.0764467                                | 0.7020353                  |  |
| 0301         |                                               |                                                      | 0.0611574                   | 0.5616282                                |                            |  |
| 0304         |                                               | Азота оксид                                          |                             | 0.0099381<br>0.0008887                   | 0.0912646                  |  |
| 0330<br>0337 |                                               | Сера диоксид<br>Углерод оксид                        |                             | 0.0008887                                | 0.0081614<br>2.0012409     |  |
| 0331         | Page                                          |                                                      |                             | 0.2179211                                | 2.0012409<br>2.6622951     |  |
|              | Всего по источнику: 0.2899053 2.6622951       |                                                      |                             |                                          |                            |  |

| № ИЗА                                                        | 0782                  | Наименовани<br>атмосферы | е источника :                                                                                                                                                                              | загрязнения                 | Вентиляционная труба                       |                                                          |                                                            |                                                          |                                                          |                                         |
|--------------------------------------------------------------|-----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| № ИВ                                                         | 001-009               |                          | ТС-010 Ёмкость некондиции центрифуг; ТС-007 Шламонакопитель; ТС-00 Наименование источника выделения кость фильтров; ТС-004А/В/С/D Ёмкость отделения нефтесодержащих Ёмкость очищенной воды |                             |                                            |                                                          |                                                            | питель; ТС-005 Р<br>есодержащих фра                      | асходная ем-<br>акций; ТС-008                            |                                         |
| Расчеты выбросов за                                          | агрязняющих в         | еществ в атмос           | феру от очист                                                                                                                                                                              | ных сооружений              | (ОС) выполне                               | ны по: "Охрана с                                         | кружающей сред                                             | ы и природопол                                           | ьзование. Атмос                                          | ферный воздух.                          |
| Выбросы загрязняющих                                         | веществ в аті         | мосферный во             | здух. Правил                                                                                                                                                                               | а расчета выбро             | сов от объек                               | тов очистных со                                          | оружений", П-ОО                                            | C 17.08-01-2012 (                                        | 02120).                                                  | · · · · · · · · · · · · · · · · · · ·   |
|                                                              |                       |                          |                                                                                                                                                                                            |                             |                                            |                                                          | 2.905*F*K <sub>y</sub> *C <sub>i max</sub> *k              |                                                          | -/c                                                      |                                         |
|                                                              | Ba                    | ловые выбросы            | загрязняющи                                                                                                                                                                                |                             | аны по уравне                              | нию: <b>G<sub>i</sub>=6.916*F*I</b>                      | Հ <sub>v</sub> *C <sub>i cp</sub> *K <sub>м</sub> *(280/√m | ı <sub>і</sub> )*Ҭ*10 <sup>-10</sup> , т/год             |                                                          |                                         |
| № ИЗ/                                                        | A (№ ИВ)              |                          | 0782 (001)                                                                                                                                                                                 | 0782 (002)                  | 0782 (003)                                 | 0782 (004)                                               | 0782 (005)                                                 | 0782 (006)                                               | 0782 (007)                                               | 0782 (008)                              |
| Наименование ис                                              | точника выдел         | іения:                   | ТС-010<br>Ёмкость<br>неконди-<br>ции цен-                                                                                                                                                  | ТС-007 Шла-<br>монакопитель | ТС-005<br>Расходная<br>емкость<br>фильтров | ТС-004А Ём-<br>кость отделе-<br>ния нефтесо-<br>держащих | ТС-004В Ём-<br>кость отделе-<br>ния нефтесо-<br>держащих   | ТС-004С Ём-<br>кость отделе-<br>ния нефтесо-<br>держащих | ТС-004D Ём-<br>кость отделе-<br>ния нефтесо-<br>держащих | ТС-008 Ём-<br>кость очищен-<br>ной воды |
| OE: 511 011/20714 11 <sup>3</sup> 1                          |                       | V                        | трифуг                                                                                                                                                                                     | 122                         | 262                                        | фракций                                                  | фракций                                                    | фракций                                                  | фракций                                                  | 122                                     |
| Объём емкости, м <sup>3</sup> :                              | 300011145 053         | V                        | 280                                                                                                                                                                                        | 133                         | 262                                        | 288                                                      | 288                                                        | 288                                                      | 288                                                      | 133                                     |
| Площадь поверхности исгекта ОС, $M^2$ :                      | •                     | F                        | 58                                                                                                                                                                                         | 30                          | 58                                         | 64                                                       | 64                                                         | 64                                                       | 64                                                       | 30                                      |
| Площадь открытой пове екта ОС, м <sup>2</sup> :              | рхности объ-          | F <sub>0</sub>           | 58                                                                                                                                                                                         | 30                          | 58                                         | 64                                                       | 64                                                         | 64                                                       | 64                                                       | 30                                      |
| Коэффициент (степень) верхности объекта ОС:                  | укрытия по-           | K <sub>y</sub>           | 1                                                                                                                                                                                          | 1                           | 1                                          | 1                                                        | 1                                                          | 1                                                        | 1                                                        | 1                                       |
|                                                              |                       | C <sub>H2S max</sub>     | 1.8661                                                                                                                                                                                     | 1.8661                      | 1.8661                                     | 1.8661                                                   | 1.8661                                                     | 1.8661                                                   | 1.8661                                                   | 1.4928                                  |
| Максимальное и среднее з                                     | вначение рав-         | C <sub>H2S cp</sub>      | 0.0350                                                                                                                                                                                     | 0.0350                      | 0.0350                                     | 0.0350                                                   | 0.0350                                                     | 0.0350                                                   | 0.0350                                                   | 0.0423                                  |
| новесных к составу конц                                      | ентраций за-          | C <sub>CH3OH max</sub>   | 24.2595                                                                                                                                                                                    | 24.2595                     | 24.2595                                    | 24.2595                                                  | 24.2595                                                    | 24.2595                                                  | 24.2595                                                  | 24.2595                                 |
| грязняющих веществ ра                                        |                       | Сснзон ср                | 24.2595                                                                                                                                                                                    | 24.2595                     | 24.2595                                    | 24.2595                                                  | 24.2595                                                    | 24.2595                                                  | 24.2595                                                  | 24.2595                                 |
| формуле $C_i=1.0566*P_i*C_{Bi}$ ,                            | мг/н.м <sup>3</sup> : | C <sub>CxHy max</sub>    | 0.0356                                                                                                                                                                                     | 0.0356                      | 0.0356                                     | 0.0356                                                   | 0.0356                                                     | 0.0356                                                   | 0.0356                                                   | 0.0140                                  |
|                                                              |                       | C <sub>CxHy cp</sub>     | 0.0022                                                                                                                                                                                     | 0.0022                      | 0.0022                                     | 0.0022                                                   | 0.0022                                                     | 0.0022                                                   | 0.0022                                                   | 0.0018                                  |
| Константа Генри чистого і-<br>ного вещества при 0°С, мм      | •                     | K <sub>r H2S</sub>       | 203000                                                                                                                                                                                     | 203000                      | 203000                                     | 203000                                                   | 203000                                                     | 203000                                                   | 203000                                                   | 203000                                  |
| Значение рН (показатель н                                    | онцентрации           | $pH_{max}$               | 14                                                                                                                                                                                         | 14                          | 14                                         | 14                                                       | 14                                                         | 14                                                       | 14                                                       | 14                                      |
| ионов водорода в сточной                                     |                       | pH <sub>cp</sub>         | 12                                                                                                                                                                                         | 12                          | 12                                         | 12                                                       | 12                                                         | 12                                                       | 12                                                       | 10                                      |
| Примечание: Соотн                                            |                       |                          | спользуют ра                                                                                                                                                                               | спределительную             | о диаграмму.                               | г помощью котор                                          | ой можно определ                                           | пить состав раст                                         | пвора при известн                                        | ых значениях рН.                        |
| Диаграмма, описывающая                                       |                       |                          |                                                                                                                                                                                            |                             |                                            |                                                          |                                                            |                                                          |                                                          | •                                       |
| Относительное содержани рода, в зависимости от рН            | ие сероводо-          | A <sub>H2S</sub>         | 0.1%                                                                                                                                                                                       | 0.1%                        | 0.1%                                       | 0.1%                                                     | 0.1%                                                       | 0.1%                                                     | 0.1%                                                     | 0.1%                                    |
| Давление насыщенного па<br>го вещества при 0°С, мм.р.        | ара чистого і-        | Рснзон                   | 28                                                                                                                                                                                         | 28                          | 28                                         | 28                                                       | 28                                                         | 28                                                       | 28                                                       | 28                                      |
| Давление насыщенного па ются по уравнению Антуан (В/(C+to))) | ра определя-          | $P_{CxHy}$               | 0.0095                                                                                                                                                                                     | 0.0095                      | 0.0095                                     | 0.0095                                                   | 0.0095                                                     | 0.0095                                                   | 0.0095                                                   | 0.0095                                  |
| Контанты Антуана, завися                                     | ящие от при-          | Α                        | 6.972                                                                                                                                                                                      | 6.972                       | 6.972                                      | 6.972                                                    | 6.972                                                      | 6.972                                                    | 6.972                                                    | 6.972                                   |
| роды вещества, приняты                                       |                       | В                        | 1622                                                                                                                                                                                       | 1622                        | 1622                                       | 1622                                                     | 1622                                                       | 1622                                                     | 1622                                                     | 1622                                    |
| ным данным:                                                  | •                     | С                        | 180.3                                                                                                                                                                                      | 180.3                       | 180.3                                      | 180.3                                                    | 180.3                                                      | 180.3                                                    | 180.3                                                    | 180.3                                   |

Примечание: согласно приложения 14 "Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004, концентрации загрязняющих веществ (% масс.) в парах различных нефтепродуктов, в нашем случае ловушечный продукт, расчет выполняется по углеводородам пр. С₁₂-С₁ҙ, всего ароматические не учитываются в связи с отсутствием ПДК (при необходимости можно условно отнести к углеводородам пр. С₁₂-С₁ҙ).

|                              |                                                                      | C <sub>B H2S max</sub>           | 0.00870                  | 0.00870          | 0.00870                       | 0.00870                      | 0.00870                                                   | 0.00870                                                    | 0.00870                 | 0.00696    |
|------------------------------|----------------------------------------------------------------------|----------------------------------|--------------------------|------------------|-------------------------------|------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------|------------|
|                              |                                                                      | C <sub>B H2S cp</sub>            | 0.000163                 | 0.000163         | 0.000163                      | 0.000163                     | 0.000163                                                  | 0.000163                                                   | 0.000163                | 0.000197   |
|                              | Массовая концентрация загрязняющего                                  |                                  | 0.82                     | 0.82             | 0.82                          | 0.82                         | 0.82                                                      | 0.82                                                       | 0.82                    | 0.82       |
| ·                            | ых водах, поступаю-                                                  | C <sub>B CH3OH max</sub>         | 0.82                     | 0.82             | 0.82                          | 0.82                         | 0.82                                                      | 0.82                                                       | 0.82                    | 0.82       |
| щих на очистку, г/л          | I.                                                                   | C <sub>B CxHy max</sub>          | 3.562                    | 3.562            | 3.562                         | 3.562                        | 3.562                                                     | 3.562                                                      | 3.562                   | 1.397      |
|                              |                                                                      | Св СхНу ср                       | 0.2157                   | 0.2157           | 0.2157                        | 0.2157                       | 0.2157                                                    | 0.2157                                                     | 0.2157                  | 0.1796     |
| Коэффициент, зав             | исящий от типа ОС:                                                   | K <sub>M</sub>                   | 0.05                     | 0.01             | 0.01                          | 0.01                         | 0.01                                                      | 0.01                                                       | 0.01                    | 0.01       |
|                              |                                                                      | m <sub>H2S</sub>                 | 34                       | 34               | 34                            | 34                           | 34                                                        | 34                                                         | 34                      | 34         |
| шего вещества, г/м           | асса і-го загрязняю-                                                 | m <sub>CH3OH</sub>               | 32.04                    | 32.04            | 32.04                         | 32.04                        | 32.04                                                     | 32.04                                                      | 32.04                   | 32.04      |
| . ,                          |                                                                      | m <sub>CxHy</sub>                | 170.34                   | 170.34           | 170.34                        | 170.34                       | 170.34                                                    | 170.34                                                     | 170.34                  | 170.34     |
| Время эксплуатаці            | ии объекта ОС, ч/год:                                                | Ţ                                | 8784                     | 8784             | 8784                          | 8784                         | 8784                                                      | 8784                                                       | 8784                    | 8784       |
| Код ЗВ                       | Наименова                                                            | ние 3В                           |                          | M                | аксимально-р                  | азовые выброс                | ы M <sub>i</sub> =2.905*F*K <sub>v</sub> *(               | C <sub>i max</sub> *K <sub>M</sub> *(290/√m <sub>i</sub> ) | *10 <sup>-7</sup> , г/с |            |
| 0333                         | Сероводород                                                          |                                  | 0.0000781                | 0.0000081        | 0.0000156                     | 0.0000172                    | 0.0000172                                                 | 0.0000172                                                  | 0.0000172               | 0.0000065  |
| 1052                         | Метанол                                                              |                                  | 0.001047                 | 0.0001083        | 0.0002094                     | 0.0002311                    | 0.0002311                                                 | 0.0002311                                                  | 0.0002311               | 0.0001083  |
| 2754                         | Углеводороды пр. С                                                   | C <sub>12</sub> -C <sub>19</sub> | 0.0000007                | 0.0000007        | 0.0000001                     | 0.000001                     | 0.0000001                                                 | 0.000001                                                   | 0.000001                | 0.00000003 |
| Всего п                      | о источнику выделен                                                  | ния:                             | 0.0011258                | 0.00011647       | 0.0002251                     | 0.0002484                    | 0.0002484                                                 | 0.0002484                                                  | 0.0002484               | 0.00011483 |
| Код ЗВ                       | Наименова                                                            | ние 3В                           |                          |                  | Валовые в                     | зыбросы G <sub>i</sub> =6.91 | 6*F*K <sub>y</sub> *C <sub>i cp</sub> *K <sub>M</sub> *(2 | 80/√m <sub>i</sub> )*ፒ*10 <sup>-10</sup> , τ/г             | од                      |            |
| 0333                         | Сероводород                                                          |                                  | 0.0000296                | 0.0000031        | 0.0000059                     | 0.0000065                    | 0.0000065                                                 | 0.0000065                                                  | 0.0000065               | 0.0000037  |
| 1052                         | Метанол                                                              |                                  | 0.0211409                | 0.002187         | 0.0042282                     | 0.0046656                    | 0.0046656                                                 | 0.0046656                                                  | 0.0046656               | 0.002187   |
| 2754                         | Углеводороды пр. С                                                   | C <sub>12</sub> -C <sub>19</sub> | 80000000                 | 0.00000008       | 0.0000002                     | 0.0000002                    | 0.0000002                                                 | 0.0000002                                                  | 0.0000002               | 0.0000007  |
| Всего п                      | о источнику выделен                                                  | ния:                             | 0.0211713                | 0.00219018       | 0.0042343                     | 0.0046723                    | 0.0046723                                                 | 0.0046723                                                  | 0.0046723               | 0.00219077 |
| № ИВ                         | 009                                                                  | Наименовани                      | io uemouuuva             | or igonomia      |                               |                              | Ноппотиости                                               | насосов. ЗРА. Ф                                            | ^                       |            |
|                              | <u> </u>                                                             |                                  |                          |                  | IΔ 1005 гол                   |                              | пенлонносни                                               | насосов, эга, фо                                           | •                       |            |
| гасчет проведен п            | Удельный показа-                                                     | Кол-во ис-                       | ования , сг <i>л-</i> -  | +33/N-93-017, CE | IA, 1995 год.<br>Т            |                              |                                                           |                                                            |                         |            |
| Наименование<br>оборудования | тель выброса,<br>кг/час                                              | точников выделения, ед.          | Время ра-<br>боты, ч/год | Код ЗВ           |                               | Наименование                 | 3B                                                        | % масс.                                                    | г/с                     | т/год      |
| Фланцы                       | 0.0000029                                                            | 12                               |                          | 0333             |                               | Сероводород                  | ı                                                         | 0.000871%                                                  | 0.000000002             | 0.0000007  |
| Насосы                       | 0.000024                                                             | 6                                | 8784                     | 1052             |                               | Метанол                      |                                                           | 2.314615%                                                  | 0.0000062               | 0.0001958  |
| 3PA                          | 0.000098                                                             | 8                                | 0704                     | 2754             | Угл                           | еводороды пр. С              | 12-C19                                                    | 0.356557%                                                  | 0.000001                | 0.0000302  |
| Другие                       | 0.014                                                                | 0                                |                          |                  | Всего по источнику выделения: |                              |                                                           |                                                            | 0.000007202             | 0.00022607 |
|                              |                                                                      |                                  |                          | Итого выбр       | осы по ИЗА 0                  | 782 (001-009)                |                                                           |                                                            |                         |            |
| Код ЗВ                       |                                                                      |                                  |                          | Наименов         | зание ЗВ                      |                              |                                                           |                                                            | г/с                     | т/год      |
| 0333                         | Сероводород                                                          |                                  |                          |                  |                               |                              |                                                           |                                                            | 0.000177102             | 0.00006837 |
| 1052                         | Метанол                                                              |                                  |                          |                  |                               |                              |                                                           |                                                            | 0.0024036               | 0.0486013  |
| 0754                         | VEREBORODORAL RINGE                                                  | ensusie C.a-C.a                  |                          |                  |                               |                              |                                                           | 0.0000023                                                  | 0.00003215              |            |
| 2754                         | 2754 Углеводороды предельные C <sub>12</sub> -C <sub>19</sub> Итого: |                                  |                          |                  |                               | 0.00000                      |                                                           |                                                            |                         |            |

| №№ ИЗА | 0788-0791 | Наименование источника за-<br>грязнения атмосферы | Дыхательная труба                           |
|--------|-----------|---------------------------------------------------|---------------------------------------------|
| №ИВ    | 001       | Наименование источника<br>выделения               | 560-VF-002A/B/C/D - Реакторы-<br>окислители |

"Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров" РНД 211.2.02.09-2004, МООС РК, Астана 2005 год.

Для резервуаров отстоя пластовой воды, при остаточном содержании нефти в воде 50-1000 мг/л и газа в воде - 300 мг/л целесообразно воспользоваться формулами раздела 5.4 (Выбросы паров многокомпонентных жидких смесей известного состава), учитывающих давление насыщенных паров нефти и ее массовую долю в пластовой воде, а также массовую долю газа в воде и константы Генри (по справочникам).

Максимальные выбросы паров многокомпонентных жидких смесей известного состава рассчитываются по формуле:  $\mathbf{M}_i$ =(0.445\* $\mathbf{P}_{t_i}$ <sup>max\*</sup> $\mathbf{X}_i$ \* $\mathbf{K}_p$ <sup>max\*</sup> $\mathbf{K}_B$ \* $\mathbf{V}_v$ <sup>max</sup>/(10²\* $\mathbf{\Sigma}(\mathbf{X}_i/\mathbf{m}_i)$ \*(273+ $\mathbf{t}_w$ <sup>max</sup>)), r/c

Годовые выбросы паров многокомпонентных жидких смесей известного состава рассчитываются по формуле:

| $G_i=(0.16*(P_{ti}^{max}*K_B+P_{ti}^{min})*X_i*K_p^{cp}*K_{Ob}*B*\Sigma(X_i)$                            | ρ <sub>i</sub> ))/(10⁴*Σ(X <sub>i</sub> /m <sub>i</sub> )*( | 546+t <sub>ж</sub> <sup>max</sup> +t <sub>ж</sub> <sup>min</sup> )), τ/Γ |           |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-----------|
| Давления газов над их водными растворами при фактической                                                 | P <sub>t H2S</sub> <sup>min</sup>                           | 2.6                                                                      |           |
| температуре рассчитывается по формуле: $P_{t~H2S}$ =( $K_{\Gamma}_{H2S}$ * $X_{H2S}$ * $18$ )/ $M_{H2S}$ | P <sub>t H2S</sub> <sup>max</sup>                           | 3.6                                                                      | мм.рт.ст. |
| Константа Генри при минимальной и максимальной темпера-                                                  | K <sub>Γ H2S</sub> <sup>min</sup>                           | 566000                                                                   | MM DT CT  |
| турах соответственно:                                                                                    | K <sub>r H2S</sub> max                                      | 782000                                                                   | мм.рт.ст. |
| Давление насыщенных паров і-го компонента (метанола) при                                                 | P <sub>t CH3OH</sub> min                                    | 262.5                                                                    |           |
| минимальной и максимальной температуре жидкости соответственно:                                          | P <sub>t CH3OH</sub> <sup>max</sup>                         | 629.8                                                                    | мм.рт.ст. |
| Давления насыщенных паров при фактической температуре                                                    | P <sub>t CxHy</sub> <sup>min</sup>                          | 0.4067                                                                   | MM DT OT  |
| определяются по уравнениям Антуана: Р <sub>t СхНу</sub> =10 <sup>(A-(B/(C+tж)))</sup>                    | P <sub>t CxHy</sub> max                                     | 1.6676                                                                   | мм.рт.ст. |
| VOLTOUTLA AUTHOUG CORRESPONDE OF FRANCISCO POLICOTRO                                                     | Α                                                           | 6.972                                                                    |           |
| Контанты Антуана, зависящие от природы вещества, при-                                                    | В                                                           | 1622                                                                     |           |
| няты по справочным данным:                                                                               | C                                                           | 180.3                                                                    |           |
|                                                                                                          |                                                             |                                                                          |           |

Примечание: согласно приложения 14 концентрации загрязняющих веществ (% масс.) в парах различных нефтепродуктов, в нашем случае ловушечный продукт, расчет выполняется по углеводородам пр.  $C_{12}$ - $C_{19}$ , всего ароматические не учитываются в связи с отсутствием ПДК (при необходимости можно условно отнести к углеводородам пр.  $C_{12}$ - $C_{19}$ ).

| O 19).               |                                                          |                                                          |                                           |                 |                  |  |  |
|----------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------|------------------|--|--|
|                      | ая и максимальная температур                             | а жидкости в ре-                                         | t <sub>ж</sub> <sup>min</sup>             | 40              | °C               |  |  |
| зервуаре со          | оответственно:                                           |                                                          | t <sub>ж</sub> <sup>max</sup>             | 60              |                  |  |  |
| OULITHING NO         | эффициенты, принимаются по Г                             | Јимпомению 8.                                            | K <sub>p</sub> <sup>cp</sup>              | 0.67            | _                |  |  |
|                      | * * * * * * * * * * * * * * * * * * * *                  | -                                                        | <b>K</b> <sub>p</sub> <sup>max</sup>      | 0.95            | -                |  |  |
|                      | ный объем паровоздушной сме<br>ара во время его закачки: | си, вытесняемой                                          | $V_{\rm q}^{\rm max}$                     | 40              | м³/час           |  |  |
|                      |                                                          |                                                          | $X_{H2O}$                                 | 0.973280        |                  |  |  |
| Массовая д           | оля вещества, в долях единицы                            | (X <sub>i</sub> =C <sub>i</sub> /100, где C <sub>i</sub> | X <sub>H2S</sub>                          | 0.000009        | 9                |  |  |
| - массовая           | доля вещества в %);                                      |                                                          | Хснзон                                    | 0.023146        | масс.доля        |  |  |
|                      |                                                          |                                                          | X <sub>CxHy</sub>                         | 0.003566        |                  |  |  |
|                      |                                                          |                                                          | K <sub>B H2S</sub>                        | 1               |                  |  |  |
| Опытный ко           | эффициент, принимается по прі                            | иложению 9:                                              | K <sub>B CH3OH</sub>                      | 1.38            | -                |  |  |
|                      |                                                          |                                                          | K <sub>B CxHy</sub>                       | 1               | ]                |  |  |
| Количество           | оборачиваемости резервуара:                              |                                                          | n                                         | 3431            | раз              |  |  |
| Коэффицие<br>нию 10: | ент оборачиваемости, принимае                            | тся по приложе-                                          | Коб                                       | 1.35            | -                |  |  |
| Плотность            | жидкости:                                                |                                                          | $\rho_{\scriptscriptstyle{\mathfrak{R}}}$ | 1.173           | T/M <sup>3</sup> |  |  |
| Количество года:     | жидкости, закачиваемое в резе                            | ервуар в течение                                         | В                                         | 36 226          | т/год            |  |  |
|                      | дого резервуара:                                         |                                                          | V <sub>pe3</sub>                          | 25              | M <sup>3</sup>   |  |  |
|                      |                                                          |                                                          | m <sub>H2O</sub>                          | 18              |                  |  |  |
| Молокулары           | 105 Magaza i 50 Magaza 100 Tay                           |                                                          | m <sub>H2S</sub>                          | 34              | г/моль           |  |  |
| молекуляры           | ная масса і-го компонента:                               |                                                          | m <sub>CH3OH</sub>                        | 32.04           | 1/MOJI6          |  |  |
|                      |                                                          |                                                          | m <sub>CxHy</sub>                         | 170.34          | ]                |  |  |
|                      |                                                          |                                                          | ρ <sub>H2O</sub>                          | 1               |                  |  |  |
| Ппотивоти            | -го компонента:                                          |                                                          | $\rho_{\text{H2S}}$                       | 0.0015          | T/M <sup>3</sup> |  |  |
| LINOTHOCIPI          | -то компонента.                                          |                                                          | Рснзон                                    | 0.792           | ] I/M°           |  |  |
|                      |                                                          |                                                          | $ ho_{CxHy}$                              | 0.955           |                  |  |  |
|                      |                                                          | От каждого реа                                           | актора-окисли-                            | От четырех реак | торов-окислите-  |  |  |
| Код ЗВ               | Наименование ЗВ                                          | Te.                                                      | ля                                        | ле              | <u>э</u> й       |  |  |
|                      |                                                          | г/с                                                      | т/год                                     | г/с             | т/год            |  |  |
| 0333                 | Сероводород                                              | 0.0000003                                                | 0.0000008                                 | 0.0000012       | 0.0000032        |  |  |
| 1052                 | Метанол                                                  | 0.1863645                                                | 0.3924171                                 | 0.745458        | 1.5696684        |  |  |
| 2754                 | Углеводороды пр. С12-С19                                 | 0.0000551                                                | 0.0001108                                 | 0.0002204       | 0.0004432        |  |  |
|                      |                                                          | 0.4004400                                                | 0.000=00=                                 | 0 = 4 = 0 = 0 € | 4 4 4 4 4        |  |  |

| № ИЗА       | 6785              | Наименование источника загрязнения<br>атмосферы | Неорганизованный выброс                                |
|-------------|-------------------|-------------------------------------------------|--------------------------------------------------------|
| №ИВ         | 001               | Наименование источника выделения                | Неплотности насосов D1-560-PA-<br>001/002/003, 3PA, ФС |
| Расчет п    | роведен по "Прото | колу оценки утечек из оборудования", ЕРА-       | 453/R-95-017, США, 1995 год.                           |
| Наименовани | ие оборудования   | Удельный показатель выброса, кг/час             | Кол-во источников выделения, ед.                       |
| Ф           | танцы             | 0.0000029                                       | 12                                                     |

0.3925287

0.7456796

0.1864199

Всего по источнику:

| Ha     | асосы                         | 0.00    | 00024     | 3          |            |
|--------|-------------------------------|---------|-----------|------------|------------|
| (      | 3PA                           | 0.00    | 00098     |            | 3          |
| Ді     | ругие                         | 0.014   |           |            | )          |
| Вр     | Время работы оборудования:    |         | T         | 8784       | час/год    |
| Код ЗВ | Наименование ЗВ               |         | % масс.   | г/с        | т/год      |
| 0333   | Серо                          | водород | 0.000871% | 0.00000001 | 0.00000003 |
| 1052   | 1052 Метанол                  |         | 2.314615% | 0.0000026  | 0.0000815  |
| 2754   | 2754 Углеводороды пр. С12-С19 |         | 0.356557% | 0.0000004  | 0.0000126  |
|        | Всего по источнику выделения: |         |           |            | 0.00009413 |

# Производственная лаборатория (009)

| № ИЗА                | 0150 - 0151      | Наименован<br>загрязнения                | ие источника<br>атмосферы                                                                   | Дымовая труба                                                     |                                                                  |                                                           |
|----------------------|------------------|------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| № ИВ                 | 001              | Наименован<br>выделения                  | ие источника                                                                                | источника Водогрейный котёл Vitoplex 200                          |                                                                  |                                                           |
| Выбро                | осы от котла оп  | ределены согл                            | асно, <b>"Сборни</b>                                                                        | ка методик по расч                                                | ету выбросов вредн                                               | ных веществ в ат-                                         |
|                      |                  |                                          |                                                                                             |                                                                   | к <b>сп»</b> , Алматы 1996 г.<br><b>ельностью до 30 т</b> /ч     |                                                           |
| выоросов             | вредпых веще     | ств при сжига                            |                                                                                             | котпах производит<br>ые данные:                                   | ельностью до зо т/ч                                              | iac .                                                     |
| Номинальна           | ая мощность ко   | тпа.                                     | тоходис                                                                                     | Q <sub>M</sub>                                                    | 1300                                                             | кВт                                                       |
|                      | я мощность кот.  |                                          |                                                                                             | Q <sub>d</sub>                                                    | 1196                                                             | кВт                                                       |
| _                    | •                |                                          |                                                                                             |                                                                   | 37.778                                                           | г/с                                                       |
| Расход топл          | пива котлоагрег  | атом:                                    |                                                                                             | В                                                                 | 136                                                              | кг/ч                                                      |
| Расход топл          | пива при опреде  | елении валовы                            | х выбросов:                                                                                 | B <sub>r</sub>                                                    | 297.16                                                           | т/год                                                     |
|                      | ты оборудован    |                                          |                                                                                             | T                                                                 | 2185                                                             | ч/год                                                     |
|                      | зуемого топлива  |                                          |                                                                                             |                                                                   | Топлив                                                           | ный газ                                                   |
| Плотность г          | аза:             |                                          |                                                                                             | ρ                                                                 | 0.81                                                             | кг/н. м <sup>3</sup>                                      |
| Массовое со          | одержание серь   | ы в газе:                                |                                                                                             | Sr                                                                | 0.0020                                                           | масс.%                                                    |
|                      | рания топлива    |                                          | их условиях:                                                                                | Q <sub>i</sub> r                                                  | 38.93                                                            | МДж/н. м <sup>3</sup>                                     |
| Количество           | оксидов азота,   | образующихся                             | ı на 1 ГДж                                                                                  | 1/                                                                | 0.0000                                                           | νε/ΓΠν                                                    |
| тепла:               |                  | . , .                                    | • • • • • • • • • • • • • • • • • • • •                                                     | K <sub>NO2</sub>                                                  | 0.0909                                                           | кг/ГДж                                                    |
| Содержание           | е сероводорода   | в топливе:                               |                                                                                             | [H <sub>2</sub> S]                                                | 0.0009                                                           | масс.%                                                    |
|                      | расход газовозд  |                                          |                                                                                             | V <sub>r</sub>                                                    | 1.085                                                            | м <sup>3</sup> /сек                                       |
| Тип использ          | зуемого топлива  | a:                                       |                                                                                             |                                                                   | C)                                                               |                                                           |
| Плотность г          | аза:             |                                          |                                                                                             | ρ                                                                 | 2.02                                                             | кг/н. м <sup>3</sup>                                      |
| Массовое со          | одержание серь   | ы в газе:                                |                                                                                             | Sr                                                                | 0.0334                                                           | масс.%                                                    |
|                      | рания топлива    |                                          |                                                                                             | Q <sub>i</sub> <sup>r</sup>                                       | 95.87                                                            | МДж/н. м <sup>3</sup>                                     |
| Количество           | оксидов азота,   | образующихся                             | і на 1 ГДж                                                                                  | V                                                                 | 0.0000                                                           | ие/Пли                                                    |
| тепла:               |                  |                                          |                                                                                             | K <sub>NO2</sub>                                                  | 0.0909                                                           | кг/ГДж                                                    |
| Содержание           | е сероводорода   | в топливе:                               |                                                                                             | [H <sub>2</sub> S]                                                | 0                                                                | масс.%                                                    |
| Объемный р           | расход газовозд  | душной смеси:                            |                                                                                             | Vr                                                                | 1.039                                                            | м <sup>3</sup> /сек                                       |
| Коэффицие            | нт, зависящий (  | от степени сни                           | кения выбро-                                                                                |                                                                   |                                                                  |                                                           |
| сов оксидов          | в азота в резуль | тате применен                            | ия техниче-                                                                                 | β                                                                 | 0                                                                |                                                           |
| ских решени          |                  |                                          |                                                                                             |                                                                   |                                                                  |                                                           |
|                      | ов серы, связыв  |                                          |                                                                                             | ŋ' <sub>SO2</sub>                                                 | 0                                                                |                                                           |
|                      | ов серы, улавли  |                                          |                                                                                             | ŋ" <sub>SO2</sub>                                                 | 0                                                                |                                                           |
| Количество           | оксидов углеро   | ода на ед.тепл                           | оты, выделяю-                                                                               | K <sub>CO</sub>                                                   | 0.25                                                             | кг/ГДж                                                    |
| щейся при г          |                  |                                          |                                                                                             | NCO                                                               | 0.25                                                             | кіл дж                                                    |
| •                    | лоты вследств    | ие механичес                             | кой неполноты                                                                               | $q_4$                                                             | 0                                                                | %                                                         |
| сгорания газ         |                  |                                          |                                                                                             | · ·                                                               |                                                                  |                                                           |
|                      | Расчет вы        | бросов вредн                             | ых веществ в а                                                                              | тмосферу при раб                                                  | оте на Топливном га                                              | 136                                                       |
| I/ OD                | Наименован       | ие загрязня-                             | D                                                                                           |                                                                   | Максимально-                                                     | Валовый вы-                                               |
| Код ЗВ               | ющего вец        | цества (ЗВ)                              | Расчетн                                                                                     | ая формула                                                        | разовый вы-                                                      | брос, т/год                                               |
|                      | A                |                                          | T = 0.004*I                                                                                 | D*O(*// */4 0)                                                    | брос, г/с                                                        | 4 205 4052                                                |
| 0204                 |                  | оксиды                                   |                                                                                             | B*Q;*K <sub>NO2</sub> *(1 - β)                                    | 0.1659580                                                        | 1.3054253                                                 |
| 0301                 | <u> </u>         | циоксид                                  |                                                                                             | = 0.8*Π <sub>NOx</sub>                                            | 0.1327664                                                        | 1.0443402                                                 |
| 0304                 | Азота            | оксид                                    |                                                                                             | 0.13*Π <sub>NOx</sub>                                             | 0.0215745                                                        | 0.1697053                                                 |
| 0330                 | Сера д           | иоксид                                   |                                                                                             | S'*(1 - η')*(1 - η")                                              | 0.0015006                                                        | 0.0118040                                                 |
| 0007                 | \/               |                                          |                                                                                             | 10 <sup>-2</sup> * [H <sub>2</sub> S] * B                         | 0.000618                                                         | 0.0048615                                                 |
| 0337                 | углеро,          | д оксид                                  |                                                                                             | Q;*Kco*(1 - q4/100)                                               | 0.4564300                                                        | 3.5902785                                                 |
|                      |                  | Итого по ист                             | очнику:                                                                                     |                                                                   | 0.6128895                                                        | 4.8209895                                                 |
|                      | Da               | IOT DI 155555-                           | DOORLY IV DOWN                                                                              | OTD D 271400#5517                                                 | NA 2250-2 112 CVE                                                |                                                           |
|                      | Pac              | ет выоросов                              | вредных веще                                                                                | ств в атмосферу пр                                                |                                                                  |                                                           |
| Код ЗВ               | Наименован       | ие загрязня-                             | Расиоти                                                                                     | ая формула                                                        | Максимально-<br>разовый вы-                                      | Валовый вы-                                               |
| код зв               | ющего вец        | цества (ЗВ)                              | rachein                                                                                     | ая формула                                                        | брос, г/с                                                        | брос, т/год                                               |
|                      | Δαστα            | ОКСИДЫ                                   | $\Pi = 0.004*I$                                                                             | B*Q; <sup>r</sup> *K <sub>NO2</sub> *(1 - β)                      | 0.1626126                                                        | 1.2791105                                                 |
| 0301                 |                  |                                          |                                                                                             | 3 ''Q; ''K <sub>NO2</sub> ''(1 - β)<br>= 0.8*Π <sub>NOx</sub>     | 0.1626126                                                        | 1.2791105                                                 |
| 0301                 | ·                | циоксид<br>оксид                         |                                                                                             | = 0.8*Π <sub>NOx</sub><br>0.13*Π <sub>NOx</sub>                   | 0.1300901                                                        | 0.1662844                                                 |
| 0304                 | Asula            | олоид                                    |                                                                                             | <u>0.13 Π<sub>ΝΟχ</sub></u><br>S <sup>r</sup> *(1 - η')*(1 - η'') | 0.0211396                                                        | 0.1987636                                                 |
| 0330                 | Сера д           | иоксид                                   |                                                                                             |                                                                   |                                                                  | 0.1987636                                                 |
| 0337                 | \/====           | T OKOKT                                  |                                                                                             | 10 <sup>-2</sup> * [H <sub>2</sub> S] * B                         | 0 4472203                                                        |                                                           |
| 0337                 | углеро,          | Д ОКСИД                                  |                                                                                             | Q;*Kco*(1 - q4/100)                                               | 0.4472293                                                        | 3.5179056                                                 |
|                      |                  | Итого по ист                             | эчнику.                                                                                     |                                                                   | 0.6237277                                                        | 4.9062420                                                 |
|                      |                  |                                          |                                                                                             | 4DOD ППD                                                          | 2B of Potto                                                      | 2                                                         |
|                      | 2011001          | nona                                     | DOOUTO 1105-15-                                                                             |                                                                   | тао от конпоагрегат                                              | a                                                         |
|                      | Занорми          | рованные в п                             | роекте нормати                                                                              | ивов пдо выоросы                                                  |                                                                  |                                                           |
| Код ЗВ               |                  |                                          | роекте нормати<br>язняющего вец                                                             |                                                                   | Выбро                                                            | сы 3В                                                     |
| Код ЗВ               |                  | енование загр                            | язняющего вец                                                                               |                                                                   | Выбро<br>г/с                                                     | сы 3В<br>т/год                                            |
|                      |                  | <b>енование загр</b><br>Азо              | язняющего вец<br>эта оксиды                                                                 |                                                                   | Выбро<br>г/с<br>0.1659580                                        | осы <b>3В</b><br>т/год<br>1.3054253                       |
| 0301                 |                  | <b>енование загр</b><br>Азо<br>Азо       | язняющего вец<br>эта оксиды<br>та диоксид                                                   |                                                                   | Выбро<br>г/с<br>0.1659580<br>0.1327664                           | т/год<br>1.3054253<br>1.0443402                           |
| 0301<br>0304         |                  | <b>енование загр</b><br>Азо<br>Азо<br>Аз | язняющего вец<br>ота оксиды<br>та диоксид<br>ота оксид                                      |                                                                   | Выбро<br>г/с<br>0.1659580<br>0.1327664<br>0.0215745              | т/год<br>1.3054253<br>1.0443402<br>0.1697053              |
| 0301<br>0304<br>0330 |                  | енование загр<br>Азо<br>Азо<br>Се        | язняющего вец<br>эта оксиды<br>та диоксид<br>ота оксид<br>эа диоксид                        |                                                                   | Выбро<br>г/с<br>0.1659580<br>0.1327664<br>0.0215745<br>0.0252687 | т/год<br>1.3054253<br>1.0443402<br>0.1697053<br>0.1987636 |
| 0301<br>0304         |                  | енование загр<br>Азо<br>Азо<br>Се        | язняющего велота оксиды<br>та диоксид<br>ота оксид<br>ота оксид<br>ра диоксид<br>ерод оксид |                                                                   | Выбро<br>г/с<br>0.1659580<br>0.1327664<br>0.0215745              | т/год<br>1.3054253<br>1.0443402<br>0.1697053              |

| № ИЗА | 0152 | Наименование источника загрязнения атмо-<br>сферы | Вент.труба здания химической лаборатории |
|-------|------|---------------------------------------------------|------------------------------------------|
| № ИВ  | 001  | Наименование источ-<br>ника выделения             | Помещение лаборатории исследования воды  |

Расчет выбросов в атмосферу выполнен согласно: **"Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории".** Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Химическая лаборатория предназначена для проведения специальных химических анализов и опытов. Проведение химических анализов осуществляется в вытяжных шкафах, каждый из которых подключен к индивидуальной системе вытяжной вентиляции. Хранение реагентов осуществляется в специальной герметичной посуде, препятствущей утечкам и испарению, в шкафах, которые тоже подключены к системе вентустановки.

#### Расчетные формулы:

Максимальный разовый выброс 3В, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\text{сек}} = \mathbf{Q}_{\text{уд}}$ , г/с Валовое количество 3В, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\text{год}} = \mathbf{M}_{\text{сек}} \mathbf{T}^* \mathbf{k}_3 * 3600/10^6$ ,

| i         |                                                                              |                           | ~~                 |                   |                 |
|-----------|------------------------------------------------------------------------------|---------------------------|--------------------|-------------------|-----------------|
| где:      |                                                                              |                           |                    |                   |                 |
| удельный  | дельный выброс вещества от еденицы оборудования $Q_{y\vartheta}$ таблица 6.1 |                           |                    | г/с               |                 |
| годовой ф | ронд рабочего времен                                                         | и данного оборудования    | T                  | час/год           |                 |
| коэффици  | иент загрузки оборудог                                                       | вания                     | <i>k</i> ₃         |                   |                 |
| фактичес  | кое число часов работ                                                        | ъ с реагентом             | t                  |                   | час/год         |
| Выброс    | ы загрязняющих вег                                                           | цеств в атмосферу от одно | ого источника выд  | еления составят:  |                 |
| Код ЗВ    | Наименование 3В                                                              | удельный выброс ЗВ, г/с   | +                  | Максимально-ра-   | Валовый выброс, |
| код зь    | Паименование об                                                              | удельный выброс ов, т/с   | ι                  | зовый выброс, г/с | т/год           |
| 0126      | Калий хлорид                                                                 | 0.00417                   | 1805               | 0.0041700         | 0.0270956       |
| 0150      | Натрий гидроксид                                                             | 0.0000131                 | 2106               | 0.0000131         | 0.0000993       |
| 0302      | Азотная кислота                                                              | 0.0005                    | 1504               | 0.0005000         | 0.0027074       |
| 0303      | Аммиак                                                                       | 0.0000492                 | 3008               | 0.0000492         | 0.0005328       |
| 0316      | Соляная кислота                                                              | 0.000132                  | 2408               | 0.0001320         | 0.0011443       |
| 0322      | Серная кислота                                                               | 0.0000267                 | 1805               | 0.0000267         | 0.0001735       |
|           | Выбросы загрязн                                                              | яющих веществ в атмосфе   | ру от 6-ти источни | ков выделения сос | тавят:          |
| Von 2D    |                                                                              | Наименование ЗВ           | <del></del>        | Выбро             | сы 3В           |
| Код ЗВ    |                                                                              | паименование эр           |                    | г/с               | т/год           |
| 0126      | Калий хлорид                                                                 |                           |                    | 0.02502           | 0.1625738       |
| 0150      | Натрий гидроксид                                                             |                           |                    | 0.0000786         | 0.0005958       |
| 0302      | Азотная кислота                                                              |                           |                    | 0.003             | 0.0162444       |
| 0303      | Аммиак                                                                       |                           |                    | 0.0002952         | 0.0031969       |
| 0316      | Соляная кислота                                                              |                           |                    | 0.000792          | 0.0068656       |
| 0322      | Серная кислота                                                               |                           |                    | 0.0001602         | 0.0010409       |
|           | Bc                                                                           | его по источнику.         |                    | 0.029346          | 0 1905174       |

| № ИЗА | 0153 | Наименование источника<br>загрязнения атмосферы | Вент.труба здания химической лаборатории    |
|-------|------|-------------------------------------------------|---------------------------------------------|
| №ИВ   | 001  | Наименование источ-<br>ника выделения           | Помещение лаборатории газовой хроматографии |

Расчет выбросов в атмосферу выполнен согласно: **"Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории".** Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Химическая лаборатория предназначена для проведения специальных химических анализов и опытов. Проведение химических анализов осуществляется в вытяжных шкафах, каждый из которых подключен к индивидуальной системе вытяжной вентиляции. Хранение реагентов осуществляется в специальной герметичной посуде, препятствущей утечкам и испарению, в шкафах, которые тоже подключены к системе вентустановки.

#### Расчетные формулы:

Максимальный разовый выброс ЗВ, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\text{сек}} = \mathbf{Q}_{\text{уд}}$ , г/с Валовое количество ЗВ, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\text{год}} = \mathbf{M}_{\text{сек}} + \mathbf{T} + \mathbf{k}_3 + \mathbf{3} + \mathbf{3} + \mathbf{3} + \mathbf{3} + \mathbf{5} +$ 

|           |                       | 1/10                      | A                 |                   |                 |
|-----------|-----------------------|---------------------------|-------------------|-------------------|-----------------|
| где:      |                       |                           |                   |                   |                 |
| удельный  | выброс вещества от    | еденицы оборудования      | $Q_{y\partial}$   | таблица 6.1       | г/с             |
| годовой ф | оонд рабочего времен  | и данного оборудования    | Τ                 | 8784              | час/год         |
| коэффиці  | иент загрузки оборудо | вания                     | k₃                | t/T               |                 |
| фактичес  | кое число часов работ | ы с реагентом             | t                 |                   | час/год         |
| Выброс    | сы загрязняющих вег   | цеств в атмосферу от одно | го источника выде | еления составят:  |                 |
| Код ЗВ    | Наименование ЗВ       | удельный выброс 3В, г/с   | +                 | Максимально-ра-   | Валовый выброс, |
| код зв    | паименование зв       |                           | ι                 | зовый выброс, г/с | т/год           |
| 0155      | Натрий карбонат       | 0.0000556                 | 577               | 0.0000056         | 0.0000115       |
| 0302      | Азотная кислота       | 0.0005                    | 1755              | 0.0005000         | 0.0031586       |
| 0316      | Соляная кислота       | 0.000132                  | 577               | 0.0001320         | 0.0002740       |
| 0616      | Ксилол                | 0.0000597                 | 3314              | 0.0000597         | 0.0007123       |
| 0621      | Толуол                | 0.0000811                 | 1951              | 0.0000811         | 0.0005697       |
| 1401      | Ацетон                | 0.000637                  | 3475              | 0.0006370         | 0.0079700       |
|           | Выбросы загрязня      | нощих веществ в атмосфер  | у от 7-ми источни | ков выделения сос | тавят:          |
| Von 2D    |                       |                           |                   | Выбросы ЗВ        |                 |
| Код ЗВ    | Наименование 3В       |                           |                   | г/с               | т/год           |

| №ИВ  | 002             | Наименование источ-<br>ника выделения | Помещение лаборатории анализа воды |        |           |
|------|-----------------|---------------------------------------|------------------------------------|--------|-----------|
|      |                 | Всего по источнику:                   | 0.0                                | 099075 | 0.0888729 |
| 1401 | Ацетон          |                                       | 0.0                                | 044590 | 0.0557901 |
| 0621 | Толуол          |                                       | 0.0                                | 005677 | 0.0039880 |
| 0616 | Ксилол          |                                       | 0.0                                | 004179 | 0.0049858 |
| 0316 | Соляная кислота |                                       | 0.0                                | 009240 | 0.0019179 |
| 0302 | Азотная кислота |                                       | 0.0                                | 035000 | 0.0221104 |
| 0155 | Натрий карбонат |                                       | 0.0                                | 000389 | 0.0000807 |

Расчет выбросов в атмосферу выполнен согласно: **"Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории".** Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Химическая лаборатория предназначена для проведения специальных химических анализов и опытов. Проведение химических анализов осуществляется в вытяжных шкафах, каждый из которых подключен к индивидуальной системе вытяжной вентиляции. Хранение реагентов осуществляется в специальной герметичной посуде, препятствущей утечкам и испарению, в шкафах, которые тоже подключены к системе вентустановки.

#### Расчетные формулы:

Максимальный разовый выброс 3В, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\text{сек}} = \mathbf{Q}_{\mathsf{уд}}$ , г/с Валовое количество 3В, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\text{год}} = \mathbf{M}_{\text{сек}} + \mathbf{T} + \mathbf{k}_3 + \mathbf{3} + \mathbf{6} + \mathbf{0} + \mathbf{0}$ 

|           | Валовос количество                                                         | ов, выорасываемых в атмосф<br>т/го, |                    | о формуло. Мгод – М | Cek I K3 JOOU/IV, |
|-----------|----------------------------------------------------------------------------|-------------------------------------|--------------------|---------------------|-------------------|
| где:      |                                                                            |                                     |                    |                     |                   |
| удельный  | ельный выброс вещества от еденицы оборудования $Q_{y\partial}$ таблица 6.1 |                                     |                    |                     |                   |
| годовой ф | оонд рабочего времен                                                       | и данного оборудования              | T                  | 8784                | час/год           |
| коэффиці  | иент загрузки оборудо                                                      | вания                               | k₃                 | t/T                 |                   |
| фактичес  | кое число часов работ                                                      | ы с реагентом                       | t                  |                     | час/год           |
| Выбро     | сы загрязняющих вег                                                        | цеств в атмосферу от одно           | го источника выде  | еления составят:    |                   |
| Код ЗВ    | Наименование ЗВ                                                            | удельный выброс 3В, г/с             | t                  | Максимально-ра-     | Валовый выброс,   |
|           |                                                                            | , ,                                 |                    | зовый выброс, г/с   | т/год             |
| 0126      | Калий хлорид                                                               | 0.00417                             | 1805               | 0.0041700           | 0.0270956         |
| 0150      | Натрий гидроксид                                                           | 0.0000131                           | 2106               | 0.0000131           | 0.0000993         |
| 0302      | Азотная кислота                                                            | 0.0005                              | 1504               | 0.0005000           | 0.0027074         |
| 0303      | Аммиак                                                                     | 0.0000492                           | 3008               | 0.0000492           | 0.0005328         |
| 0316      | Соляная кислота                                                            | 0.000132                            | 2408               | 0.0001320           | 0.0011443         |
| 0322      | Серная кислота                                                             | 0.0000267                           | 1805               | 0.0000267           | 0.0001735         |
|           | Выбросы загряз                                                             | няющих веществ в атмосфе            | еру от 4 источнико |                     |                   |
| Код ЗВ    |                                                                            | Наименование ЗВ                     |                    | Выбросы 3В          |                   |
|           |                                                                            | паименование зв                     |                    | г/с                 | т/год             |
| 0126      | Калий хлорид                                                               |                                     |                    | 0.0166800           | 0.1083825         |
| 0150      | Натрий гидроксид                                                           |                                     |                    | 0.0000524           | 0.0003972         |
| 0302      | Азотная кислота                                                            |                                     |                    | 0.0020000           | 0.0108296         |
| 0303      | Аммиак                                                                     |                                     |                    | 0.0001968           | 0.0021313         |
| 0316      | Соляная кислота                                                            |                                     |                    | 0.0005280           | 0.0045771         |
| 0322      | Серная кислота                                                             |                                     |                    | 0.0001068           | 0.0006940         |
|           | Во                                                                         | его по источнику:                   |                    | 0.0195640           | 0.1270117         |
|           | Выбросы загря                                                              | зняющих веществ в атмосф            | реру от источника  | загрязнения соста   | вят:              |
| Код ЗВ    |                                                                            | Наименование ЗВ                     |                    |                     | сы 3В             |
| • •       |                                                                            | Паименование 3В                     |                    | г/с                 | т/год             |
| 0126      | Калий хлорид                                                               |                                     |                    | 0.01668             | 0.1083825         |
| 0150      | Натрий гидроксид                                                           |                                     |                    | 0.0000524           | 0.0003972         |
| 0155      | Натрий карбонат                                                            |                                     |                    | 0.0000389           | 0.0000807         |
| 0302      | Азотная кислота                                                            |                                     |                    | 0.0055              | 0.03294           |
| 0303      | Аммиак                                                                     |                                     |                    | 0.0001968           | 0.0021313         |
| 0316      | Соляная кислота                                                            |                                     |                    | 0.001452            | 0.006495          |
| 0322      | Серная кислота                                                             |                                     |                    | 0.0001068           | 0.000694          |
| 0616      | Ксилол                                                                     |                                     |                    | 0.0004179           | 0.0049858         |
| 0621      | Толуол                                                                     |                                     |                    | 0.0005677           | 0.003988          |
| 1401      | Ацетон                                                                     |                                     |                    | 0.004459            | 0.0557901         |
|           | Вс                                                                         | его по источнику:                   |                    | 0.0294715           | 0.2158846         |

| № ИЗА | 0154 | Наименование источника загрязнения атмо-<br>сферы | Вент.труба здания химической лаборатории                  |
|-------|------|---------------------------------------------------|-----------------------------------------------------------|
| № ИВ  | 001  | Наименование источ-<br>ника выделения             | Помещение лаборатории коррозии и специальных исследований |

Расчет выбросов в атмосферу выполнен согласно: **"Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории".** Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Химическая лаборатория предназначена для проведения специальных химических анализов и опытов. Проведение химических анализов осуществляется в вытяжных шкафах, каждый из которых подключен к индивидуальной системе вытяжной вентиляции. Хранение реагентов осуществляется в специальной герметичной посуде, препятствущей утечкам и испарению, в шкафах, которые тоже подключены к системе вентустановки.

#### Расчетные формулы:

Максимальный разовый выброс 3B, выбрасываемых в атмосферу, определяют по формуле:  $\mathbf{M}_{\mathsf{cex}} = \mathbf{Q}_{\mathsf{yq}}$ , г/с

|           | Валовое количество 3          | В, выбрасываемых в атмосфе<br>т/год | еру, определяют   | по формуле: <b>М</b> <sub>год</sub> = <b>М</b> | <sub>сек</sub> *Т* k <sub>3</sub> *3600/10 <sup>6</sup> , |
|-----------|-------------------------------|-------------------------------------|-------------------|------------------------------------------------|-----------------------------------------------------------|
| где:      |                               | тод                                 |                   |                                                |                                                           |
| удельный  | і выброс вещества от е,       | деницы оборудования                 | $Q_{y\partial}$   | таблица 6.1                                    | г/с                                                       |
| годовой с | ронд рабочего времени         | данного оборудования                | Ť                 | 8784                                           | час/год                                                   |
| коэффиц   | иент загрузки оборудов        | ания                                | k₃                | t/T                                            |                                                           |
| фактичес  | кое число часов работь        | і с реагентом                       | t                 |                                                | час/год                                                   |
| Выбро     | сы загрязняющих веш           | еств в атмосферу от одного          | о источника выд   | деления составят:                              |                                                           |
| Код ЗВ    | Наименование 3В               | удельный выброс ЗВ, г/с             | t                 | Максимально-ра-<br>зовый выброс, г/с           | Валовый выброс<br>т/год                                   |
| 0126      | Калий хлорид                  | 0.004170                            | 241               | 0.0041700                                      | 0.0036128                                                 |
| 0150      | Натрий гидроксид              | 0.00000556                          | 228               | 0.0000006                                      | 0.0000005                                                 |
| 0152      | Натрий хлорид                 | 0.004300                            | 241               | 0.0043000                                      | 0.0037254                                                 |
| 0302      | Азотная кислота               | 0.0000833                           | 1229              | 0.0000083                                      | 0.0000369                                                 |
| 0316      | Соляная кислота               | 0.000025                            | 1229              | 0.0000250                                      | 0.0001106                                                 |
| 0616      | Ксилол                        |                                     |                   | 0.0000597                                      | 0.0000313                                                 |
| 0621      | Толуол                        | 0.0000811                           | 811 140 0.0000811 |                                                | 0.0000409                                                 |
| 1061      | Этанол                        | 0.00167                             | 152               | 0.0016700                                      | 0.0009163                                                 |
| 1401      | Ацетон                        | 0.000637                            | 814               | 0.0006370                                      | 0.0018672                                                 |
| 2735      | Масло минеральное<br>нефтяное | 0.0125                              | 77                | 0.0125000                                      | 0.0034745                                                 |
|           | Выбросы загрязня              | ощих веществ в атмосферу            | от 8-ми источн    | иков выделения сос                             | тавят:                                                    |
| Код ЗВ    |                               | Наименование ЗВ                     |                   | Выбро                                          | осы 3В                                                    |
| код зв    |                               | паименование 36                     |                   | г/с                                            | т/год                                                     |
| 0126      | Калий хлорид                  |                                     |                   | 0.0333600                                      | 0.0289020                                                 |
| 0150      | Натрий гидроксид              |                                     |                   | 0.0000044                                      | 0.0000036                                                 |
| 0152      | Натрий хлорид                 |                                     |                   | 0.0344000                                      | 0.0298030                                                 |
| 0302      | Азотная кислота               |                                     |                   | 0.0000666                                      | 0.0002948                                                 |
| 0316      | Соляная кислота               |                                     |                   | 0.0002000                                      | 0.0008851                                                 |
| 0616      | Ксилол                        |                                     |                   | 0.0004776                                      | 0.0002504                                                 |
| 0621      | 621 Толуол                    |                                     |                   | 0.0006488                                      | 0.0003273                                                 |
| 1061      | Этанол                        |                                     |                   | 0.0133600                                      | 0.0073306                                                 |
| 1401      | Ацетон                        |                                     |                   | 0.0050960                                      | 0.0149374                                                 |
| 2735      | Масло минеральное н           | ефтяное                             |                   | 0.1000000                                      | 0.0277959                                                 |
|           | Bce                           | его по источнику:                   |                   | 0.1876134                                      | 0.1105301                                                 |

| № ИЗА | 0155 | Наименование источника загрязнения ат-<br>мосферы | Вент.труба здания химической лаборатории |
|-------|------|---------------------------------------------------|------------------------------------------|
| №ИВ   | 001  | Наименование источника выделения                  | Помещение лаборатории исследования нефти |

Расчет выбросов в атмосферу выполнен согласно: **"Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории".** Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Химическая лаборатория предназначена для проведения специальных химических анализов и опытов. Проведение химических анализов осуществляется в вытяжных шкафах, каждый из которых подключен к индивидуальной системе вытяжной вентиляции. Хранение реагентов осуществляется в специальной герметичной посуде, препятствущей утечкам и испарению, в шкафах, которые тоже подключены к системе вентустановки.

### Расчетные формулы:

Максимальный разовый выброс ЗВ, выбрасываемых в атмосферу, определяют по формуле:

 $\mathbf{M}_{\mathsf{cek}} = \mathbf{Q}_{\mathsf{yд}}, \ \mathsf{\Gamma/C}$ 

Валовое количество ЗВ, выбрасываемых в атмосферу, определяют по формуле:

|           | Dailob                           |                  | $S_{cod} = M_{cek} * T * k_3 *$ |                       | у, определяют по фо | рімуле.      |
|-----------|----------------------------------|------------------|---------------------------------|-----------------------|---------------------|--------------|
| где:      |                                  |                  |                                 | ,                     |                     |              |
| удельный  | й выброс вещества о <sup>-</sup> | т еденицы обору  | /дования                        | $Q_{y\partial}$       | таблица 6.1         | г/с          |
| годовой ( | ронд рабочего време              | ни данного обор  | оудования                       | T                     | 8784                | час/год      |
| коэффиц   | иент загрузки оборуд             | ования           |                                 | kз                    | t/T                 |              |
| фактичес  | кое число часов рабо             | оты с реагентом  |                                 | t                     |                     | час/год      |
|           | Выбросы загрязн                  | яющих вещест     | в в атмосферу                   | у от одного ист       | очника выделения (  | оставят:     |
| Код ЗВ    | Наименование ЗВ                  | удельный вы-     | +                               | <b>k</b> <sub>3</sub> | Выбр                | oc 3B        |
| код зв    | паименование зв                  | брос ЗВ, г/с     | ı                               | к3                    | г/с                 | т/г          |
| 0150      | Натрий гидроксид                 | 0.0000131        | 40                              | 0.00457               | 0.0000131           | 0.0000019    |
| 0316      | Соляная кислота                  | 0.000132         | 3                               | 0.00034               | 0.0001320           | 0.0000014    |
| 0616      | Ксилол                           | 0.0000597        | 67                              | 0.00765               | 0.0000597           | 0.0000144    |
| 0621      | Толуол                           | 0.0000811        | 608                             | 0.06918               | 0.0000811           | 0.0001774    |
| 1061      | Этанол                           | 0.00167          | 60                              | 0.00685               | 0.0016700           | 0.0003617    |
| 1401      | Ацетон                           | 0.000637         | 107                             | 0.01221               | 0.0006370           | 0.0002460    |
| 1555      | Уксусная кислота                 | 0.000192         | 6                               | 0.00068               | 0.0001920           | 0.0000042    |
|           | Выбросы загрязняю                | щих веществ в    | атмосферу от                    | г тринадцати и        | сточников выделені  | ия составят: |
| Код ЗВ    |                                  | Наименова        | 1140 3B                         |                       | Выбр                | oc 3B        |
| код зв    |                                  | паименова        | пие зв                          |                       | г/с                 | т/г          |
| 0150      | Натрий гидроксид                 | Натрий гидроксид |                                 |                       | 0.0001703           | 0.0000246    |
| 0316      | Соляная кислота                  | •                |                                 | •                     | 0.0017160           | 0.0000186    |
| 0616      | Ксилол                           | •                | 0.0007761                       | 0.0001877             |                     |              |

Толуол

0621

0.0010543

|                                | 0031986 |
|--------------------------------|---------|
| 1401   Ацетон   0.0082810   0. | 0031986 |
|                                |         |
| 1061 Этанол 0.0217100 0.       | 0047022 |

| № ИЗА | 0156 | · ·                              | Вент.труба здания химической лаборатории  |
|-------|------|----------------------------------|-------------------------------------------|
| №ИВ   | 001  | Наименование источника выделения | Помещение экологическиой лабора-<br>тории |

Расчет выбросов в атмосферу выполнен согласно: "Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории". Приложение № 7 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Химическая лаборатория предназначена для проведения специальных химических анализов и опытов. Проведение химических анализов осуществляется в вытяжных шкафах, каждый из которых подключен к индивидуальной системе вытяжной вентиляции. Хранение реагентов осуществляется в специальной герметичной посуде, препятствущей утечкам и испарению, в шкафах, которые тоже подключены к системе вентустановки.

#### Расчетные формулы:

Максимальный разовый выброс 3В, выбрасываемых в атмосферу, определяют по формуле:

 $\mathbf{M}_{cek} = \mathbf{Q}_{yg}, \Gamma/C$ 

Валовое количество ЗВ, выбрасываемых в атмосферу, определяют по формуле:

 $M_{zod} = M_{ce\kappa} * T * k_3 * 3600/10^6$ , т/год

| ľ | Į | ιе | : |   |
|---|---|----|---|---|
|   |   |    |   | _ |

| тдо.      | 140.                                                                             |                 |                |                 |                     |           |  |  |
|-----------|----------------------------------------------------------------------------------|-----------------|----------------|-----------------|---------------------|-----------|--|--|
| удельный  | удельный выброс вещества от еденицы оборудования                                 |                 |                |                 | таблица 6.1         | г/с       |  |  |
| годовой с | годовой фонд рабочего времени данного оборудования                               |                 |                |                 | 8784                | час/год   |  |  |
| коэффиц   | иент загрузки оборуд                                                             | цования         | -              | kз              | t/T                 |           |  |  |
| фактичес  | кое число часов раб                                                              | оты с реагентом |                | t               |                     | час/год   |  |  |
|           | Выбросы загрязняющих веществ в атмосферу от одного источника выделения составят: |                 |                |                 |                     |           |  |  |
| Kon OD    | Hausanana 2D                                                                     | удельный вы-    |                | l.              | Выбр                | poc 3B    |  |  |
| Код ЗВ    | Наименование ЗВ                                                                  | брос ЗВ, г/с    | ι              | k <sub>3</sub>  | г/с                 | т/г       |  |  |
| 0150      | Натрий гидроксид                                                                 | 0.00000194      | 301            | 0.03425         | 0.0000019           | 0.0000021 |  |  |
| 0155      | Натрий карбонат                                                                  | 0.00000556      | 120            | 0.01370         | 0.0000056           | 0.0000024 |  |  |
| 0302      | Азотная кислота                                                                  | 0.0000167       | 60             | 0.00685         | 0.0000167           | 0.0000036 |  |  |
| 0316      | Соляная кислота                                                                  | 0.0000361       | 180            | 0.02055         | 0.0000361           | 0.0000235 |  |  |
| 0322      | Серная кислота                                                                   | 0.00000139      | 361            | 0.04110         | 0.0000014           | 0.0000018 |  |  |
|           | Brignochi satus                                                                  |                 | остр в атмосфа | INV OT 8 MCTOUL | NAUD BFILLDHAMM COU | Tapat.    |  |  |

Выбросы загрязняющих веществ в атмосферу от 8 источников выделения составят

| Код ЗВ | Наименование ЗВ    | Выбр      | oc 3B     |
|--------|--------------------|-----------|-----------|
| код зв | паименование 36    | г/с       | т/г       |
| 0150   | Натрий гидроксид   | 0.0000155 | 0.0000168 |
| 0155   | Натрий карбонат    | 0.0000445 | 0.0000193 |
| 0302   | Азотная кислота    | 0.0001336 | 0.0000289 |
| 0316   | Соляная кислота    | 0.0002888 | 0.0001877 |
| 0322   | Серная кислота     | 0.0000111 | 0.0000144 |
|        | Всего по источнику | 0.0004935 | 0.0002671 |

# Оборудование для РНР (010)

| № ИЗА                        | 1000                            | Наименование источ<br>грязнения атмосфер                                    | Ы                                                     | Выхлопная труба          |                        |                          |  |
|------------------------------|---------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------------|--|
| № ИВ                         | 001                             | Наименование исто<br>деления                                                | чника вы-                                             | Дизельный ге             | PD75                   |                          |  |
|                              |                                 | ыполнены согласно, <b>"М</b>                                                |                                                       |                          |                        | тв в атмосфер            |  |
|                              |                                 | ных установок" РНД 2                                                        |                                                       |                          |                        |                          |  |
| Ma                           | ксимальный выбр                 | оос і-го вещества стацис                                                    |                                                       |                          | пределяется по фор     | муле:                    |  |
|                              |                                 | I                                                                           | М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600             | 0, г/с                   |                        |                          |  |
| де:                          |                                 |                                                                             | , <u>,</u>                                            | ,                        | ,                      |                          |  |
|                              |                                 | ещества на единицу пол                                                      | пезнои раооть                                         | і стационарнои д         | изельнои установки     | на режиме номі           |  |
|                              |                                 | н (таблица 1 или 2):<br>ость стационарной дизе                              |                                                       |                          |                        | ı                        |  |
| Эксплуат<br>НОВКИ:           | ационная мощно                  | сть стационарной диз                                                        | ельной уста-                                          | P <sub>9</sub>           | 2                      | кВт                      |  |
|                              | повый выброс і-го               | вещества за год стаци                                                       | онарной лизег                                         | ІРНОЙ АСТАНОВКО <u>Й</u> | і определяется по фо   | JUMNUE.                  |  |
| Da                           | повый выорос 1-10               |                                                                             | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000 |                          | гопродоляется по фо    | эрмулс.                  |  |
| де:                          |                                 | · · · · ·                                                                   | од Чі Біоді 1000                                      | ,, тод                   |                        |                          |  |
|                              | ос і-го вредного ве             | ещества, г/кг топлива, пр                                                   | оиходящегося                                          | на один кг дизел         | ьного топлива, при ра  | аботе стационаг          |  |
|                              |                                 | с учетом совокупности                                                       |                                                       |                          |                        |                          |  |
| лица 3 ил                    | •                               | ,                                                                           | ,                                                     | •                        | , , , ,                | •                        |  |
|                              |                                 | рной дизельной устан                                                        | овкой за год                                          |                          |                        |                          |  |
|                              |                                 | ным об эксплуатации ус                                                      |                                                       | Вгод                     | 0.0104                 | т/год                    |  |
| ` .<br>определя              | яется по формуле                | e: B <sub>год</sub> =b <sub>э</sub> *k*P <sub>э</sub> *T*10 <sup>-6</sup> : | ,                                                     | 1-4                      |                        |                          |  |
| Расход т                     |                                 |                                                                             |                                                       | b                        | 1                      | л/ч                      |  |
| Расход Г                     | оплива.                         |                                                                             |                                                       | b                        | 0.87                   | кг/ч                     |  |
| Средний                      | удельный расход                 | ц топлива:                                                                  |                                                       | b₃                       | 435                    | г/кВт.ч                  |  |
| Плотност                     | гь дизельного топ               | лива:                                                                       |                                                       | ρ                        | 0.87                   | кг/л                     |  |
|                              | циент использова                |                                                                             |                                                       | k                        | 1                      |                          |  |
| Время ра                     | аботы:                          |                                                                             |                                                       | Т                        | 12                     | ч/год                    |  |
|                              |                                 | Исходные да                                                                 | нные по исто                                          | чнику выбросо            | В                      |                          |  |
| Количест                     | BO:                             |                                                                             |                                                       | N                        | 1                      | ШТ                       |  |
| Частота                      | вращения вала:                  |                                                                             |                                                       | n                        | 1500                   | об/мин                   |  |
| Группа С                     | ДУ:                             |                                                                             |                                                       |                          | Α                      |                          |  |
|                              |                                 | Расчет расхода                                                              | а отработанні                                         | ых газов и топл          | ива                    |                          |  |
| Расход о                     | тработанных газо                | $_{\rm OB}$ , $G_{\rm or} = 8.72*10^{-6*}b_{\rm o}*P_{\rm o}$               |                                                       | G <sub>or</sub>          | 0.008                  | кг/с                     |  |
| Темпера                      | тура отходящих г                | азов:                                                                       |                                                       | Tor                      | 450                    | °C                       |  |
| Плотност                     | гь газов при 0°C:               |                                                                             |                                                       | $\gamma 0_{or}$          | 1.31                   | кг/м <sup>3</sup>        |  |
| Плотност                     | гь газов при Т <sub>ог</sub> (К | ), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)                               |                                                       | <b>У</b> ог              | 0.49482                | кг/м <sup>3</sup>        |  |
| Объемнь                      | ый расход отрабо <sup>.</sup>   | ганных газов, <b>Q</b> ₀г <b>=G</b> ₀г/γ₀                                   | )r                                                    | Q <sub>or</sub>          | 0.0153                 | м <sup>3</sup> /с        |  |
|                              | Расчет выб                      | росов вредных вещес                                                         | тв в атмосфе                                          | ру от одного д           | изельного генерато     | ра:                      |  |
| -                            |                                 |                                                                             |                                                       |                          |                        |                          |  |
|                              |                                 |                                                                             | _                                                     |                          | Максимально-           | Валовый вы               |  |
| Код                          | Наиме                           | енование ЗВ                                                                 | e <sub>i</sub> ,                                      | q <sub>i</sub> ,         | разовый вы-            | брос                     |  |
| 3B                           |                                 |                                                                             |                                                       |                          | брос                   |                          |  |
|                              |                                 |                                                                             | г/кВт.ч                                               | г/кг топлива             | М <sub>сек</sub> , г/с | М <sub>год</sub> , т/год |  |
|                              | Δ20                             | TA OVCUTLI                                                                  | 10.3                                                  | 43                       | 0.0057222              | 0.0004472                |  |
| 0301                         |                                 | та оксиды<br>га диоксид                                                     | 10.0                                                  | 70                       | 0.0037222              | 0.0003578                |  |
| 0001                         |                                 | ота оксид                                                                   |                                                       |                          | 0.0043776              | 0.0000581                |  |
| 0304                         | 73                              | Сажа                                                                        | 0.7                                                   | 3                        | 0.0007439              | 0.0000331                |  |
| 0304                         |                                 | ~~/\U                                                                       |                                                       |                          | 0.0003009              | 0.0000312                |  |
| 0328                         | Car                             |                                                                             | 1 1 1                                                 | 4 2                      |                        | 0.0000                   |  |
| 0328<br>0330                 |                                 | а диоксид                                                                   | 1.1<br>7.2                                            | 4.5                      |                        |                          |  |
| 0328<br>0330<br>0337         | Угле                            | а диоксид<br>ерод оксид                                                     | 7.2                                                   | 30                       | 0.004                  | 0.000312                 |  |
| 0328<br>0330<br>0337<br>0703 | Угле<br>Бен                     | а диоксид<br>ерод оксид<br>из(а)пирен                                       | 7.2<br>0.000013                                       | 30<br>0.000055           | 0.004<br>0.00000007    | 0.000312<br>6E-10        |  |
| 0328<br>0330<br>0337         | Угле<br>Бен<br>Фор              | а диоксид<br>ерод оксид                                                     | 7.2                                                   | 30                       | 0.004                  | 0.000312                 |  |

| № ИЗА                                                                                                                                                                                                                                                                              | 1001                                                                                                                                                             | Наименование источника за-<br>грязнения атмосферы                                              | Выхлопная труба                      |                     |         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|---------|--|
| №ИВ                                                                                                                                                                                                                                                                                | 001                                                                                                                                                              | Наименование источника<br>выделения                                                            | Дизельный генератор насо-<br>сов 75C |                     |         |  |
| Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.  Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: |                                                                                                                                                                  |                                                                                                |                                      |                     |         |  |
| где:                                                                                                                                                                                                                                                                               |                                                                                                                                                                  | M <sub>ceκ</sub> =e <sub>i</sub> *P <sub>3</sub> /3600                                         | ), г/с                               |                     |         |  |
| еі - выбро                                                                                                                                                                                                                                                                         | тде.<br>e₁- выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности. г/кВт*ч (таблица 1 или 2): |                                                                                                |                                      |                     |         |  |
| Эксплуатационная мощность стационарной дизельной установки: P <sub>3</sub> 2 кВт                                                                                                                                                                                                   |                                                                                                                                                                  |                                                                                                |                                      |                     |         |  |
| Вал                                                                                                                                                                                                                                                                                | повый выброс і-го ве                                                                                                                                             | ещества за год стационарной дизел<br><b>М<sub>год</sub>=q</b> i* <b>B</b> <sub>год</sub> /1000 | •                                    | й определяется по ф | ормуле: |  |

где:

| Плотност                                     | /дельный расход топлива:<br>- дизельного топлива:<br>иент использования:                              | b <sub>э</sub><br>ρ<br>k      | 435<br>0.87<br>1                                 | г/кВт.ч<br>кг/л                                                                                                        |                                                                                                        |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Время ра                                     |                                                                                                       |                               | T                                                | 12                                                                                                                     | ч/год                                                                                                  |
| Бреми ра                                     |                                                                                                       | данные по исто                | чнику выбросо                                    |                                                                                                                        | ілод                                                                                                   |
| Количест                                     |                                                                                                       |                               | N DETOPOOL                                       | 1                                                                                                                      | ШТ                                                                                                     |
| Частота в                                    | ращения вала:                                                                                         | n                             | 1500                                             | об/мин                                                                                                                 |                                                                                                        |
| Группа СД                                    | ју:                                                                                                   |                               |                                                  | A                                                                                                                      |                                                                                                        |
|                                              | Расчет расхо                                                                                          | да отработаннь                |                                                  | ива                                                                                                                    |                                                                                                        |
| Расход от                                    | работанных газов, <b>G<sub>ог</sub> = 8.72*10<sup>-6</sup>*b</b> ₃ <b>*</b> Р                         | 3                             | G <sub>or</sub>                                  | 0.008                                                                                                                  | кг/с                                                                                                   |
|                                              | Температура отходящих газов:                                                                          |                               |                                                  | 450                                                                                                                    | °C                                                                                                     |
|                                              | ь газов при 0°C:                                                                                      |                               | $\gamma 0_{ m or}$                               | 1.31                                                                                                                   | кг/м <sup>3</sup>                                                                                      |
|                                              | ь газов при Т <sub>ог</sub> (K), γ0 <sub>ог</sub> /(1+T <sub>ог</sub> /273)                           |                               | <b>У</b> ог                                      | 0.49482                                                                                                                | кг/м <sup>3</sup>                                                                                      |
| Объемны                                      | й расход отработанных газов, <b>Q</b> or <b>=G</b> or                                                 |                               | $Q_{or}$                                         | 0.0153                                                                                                                 | м <sup>3</sup> /с                                                                                      |
|                                              | Расчет выбросов вредных вещ                                                                           | еств в атмосфе                | ру от одного ді                                  | изельного генерато                                                                                                     | ppa:                                                                                                   |
|                                              |                                                                                                       |                               |                                                  |                                                                                                                        |                                                                                                        |
| Код ЗВ                                       | Наименование ЗВ                                                                                       | e <sub>i</sub> ,              | q <sub>i</sub> ,                                 | Максимально-<br>разовый вы-<br>брос                                                                                    | Валовый вы<br>брос                                                                                     |
| Код ЗВ                                       |                                                                                                       | г/кВт.ч                       | г/кг топлива                                     | разовый вы-<br>брос<br>М <sub>сек</sub> , г/с                                                                          | брос<br>М <sub>год</sub> , т/год                                                                       |
|                                              | Азота оксиды                                                                                          |                               | -                                                | разовый вы-<br>брос<br>М <sub>сек</sub> , г/с<br>0.0057222                                                             | <b>брос М</b> <sub>год</sub> , т/год 0.0004472                                                         |
| 0301                                         | Азота оксиды<br>Азота диоксид                                                                         | г/кВт.ч                       | г/кг топлива                                     | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778                                                      | <b>М</b> <sub>год</sub> , т/год 0.0004472 0.0003578                                                    |
| 0301                                         | Азота оксиды<br>Азота диоксид<br>Азота оксид                                                          | г/кВт.ч<br>10.3               | г/кг топлива<br>43                               | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778  0.0007439                                           | <b>М</b> <sub>год</sub> , т/год<br>0.0004472<br>0.0003578<br>0.0000581                                 |
| 0301<br>0304<br>0328                         | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа                                                  | г/кВт.ч<br>10.3               | г/кг топлива<br>43                               | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778  0.0007439  0.0003889                                | <b>М</b> <sub>год</sub> , т/год<br>0.0004472<br>0.0003578<br>0.0000581<br>0.0000312                    |
| 0301<br>0304<br>0328<br>0330                 | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид                                  | <b>r/kBt.4</b> 10.3  0.7 1.1  | г/кг топлива<br>43<br>3<br>4.5                   | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778  0.0007439  0.0003889  0.0006111                     | брос  М <sub>год</sub> , т/год  0.0004472  0.0003578  0.0000581  0.0000312  0.0000468                  |
| 0301<br>0304<br>0328<br>0330<br>0337         | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид<br>Углерод оксид                 | 0.7<br>1.1<br>7.2             | г/кг топлива<br>43<br>3<br>4.5<br>30             | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778  0.0007439  0.0003889  0.0006111  0.004              | брос  М <sub>год</sub> , т/год  0.0004472  0.0003578  0.0000581  0.0000312  0.0000468  0.000312        |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703 | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид<br>Углерод оксид<br>Бенз(а)пирен | 0.7<br>1.1<br>7.2<br>0.000013 | 7/кг топлива<br>43<br>3<br>4.5<br>30<br>0.000055 | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778  0.0007439  0.0003889  0.0006111  0.004  0.000000007 | брос  М <sub>год</sub> , т/год  0.0004472  0.0003578  0.0000581  0.0000312  0.0000468  0.000312  6E-10 |
| 0301<br>0304<br>0328<br>0330<br>0337         | Азота оксиды<br>Азота диоксид<br>Азота оксид<br>Сажа<br>Сера диоксид<br>Углерод оксид                 | 0.7<br>1.1<br>7.2             | г/кг топлива<br>43<br>3<br>4.5<br>30             | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0057222  0.0045778  0.0007439  0.0003889  0.0006111  0.004              | брос  М <sub>год</sub> , т/год  0.0004472  0.0003578  0.0000581  0.0000312  0.0000468  0.000312        |

| № ИЗА      | 1002             | Наименование источника за-<br>грязнения атмосферы                          | Выхлопная т     | труба               |                   |  |
|------------|------------------|----------------------------------------------------------------------------|-----------------|---------------------|-------------------|--|
| № ИВ       | 001              | Наименование источника                                                     | Дизельный г     | енератор насо-      | PD75              |  |
| Nº ND      | 001              | выделения                                                                  | COB             |                     | PDIS              |  |
|            |                  | ыполнены согласно, <b>"Методики расч</b> е                                 |                 |                     | ств в атмосферу   |  |
|            |                  | ных установок" РНД 211.2.02.04-200                                         |                 |                     |                   |  |
| Мак        | симальный выбр   | ос і-го вещества стационарной дизел                                        |                 | определяется по фо  | рмуле:            |  |
|            |                  | М <sub>сек</sub> =е <sub>і</sub> *Р <sub>э</sub> /3600                     | ), г/с          |                     |                   |  |
| где:       |                  |                                                                            | ų.              | ,                   |                   |  |
|            |                  | ещества на единицу полезной работы                                         | стационарной д  | цизельной установки | і на режиме номи- |  |
|            |                  | (таблица 1 или 2):                                                         | T               |                     |                   |  |
| ,          | ционная мощно    | сть стационарной дизельной уста-                                           | P <sub>a</sub>  | 2.3                 | кВт               |  |
| новки:     |                  |                                                                            | -               | ,                   |                   |  |
| Вало       | овый выброс і-го | вещества за год стационарной дизел                                         | •               | й определяется по ф | ормуле:           |  |
|            |                  | М <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000                   | , т/год         |                     |                   |  |
| где:       | . :              |                                                                            |                 |                     |                   |  |
|            |                  | щества, г/кг топлива, приходящегося і                                      |                 |                     |                   |  |
| нои дизел  |                  | с учетом совокупности режимов, сост                                        | авляющих эксп.  | пуатационный цикл,  | г/кг топлива (тао |  |
|            |                  | рной дизельной установкой за год                                           |                 |                     |                   |  |
|            |                  | рной дизельной установкой за тод<br>ным об эксплуатации установки) или     | Вгол            | 0.0351              | т/год             |  |
|            |                  | : В <sub>год</sub> =b <sub>э</sub> *k*P <sub>э</sub> *T*10 <sup>-6</sup> : | <b>Б</b> год    | 0.0331              | 1/10Д             |  |
| определяе  | этся по формуле  | . D <sub>год</sub> -D <sub>3</sub> K F <sub>3</sub> I IV .                 | b               | 0.7                 | л/ч               |  |
| Расход то  | плива:           |                                                                            | b               | 0.61                | кг/ч              |  |
| Средний у  | дельный расход   | TOULINBS:                                                                  | b <sub>3</sub>  | 265                 | г/кВт.ч           |  |
|            | дизельного топ   |                                                                            | ρ               | 0.87                | кг/л              |  |
|            | лент использован |                                                                            | k               | 1                   | 10731             |  |
| Время раб  |                  |                                                                            | T               | 57.6                | ч/год             |  |
| Бреми рас  | оты.             | Исходные данные по исто                                                    | HNKA BPIQUUCA   |                     | , под             |  |
| Количеств  | ıu.              | ноходные данные по исто                                                    | N               | 8                   | шт                |  |
|            | ращения вала:    |                                                                            | n               | 1500                | об/мин            |  |
| Группа СД  |                  |                                                                            |                 | A                   | 33/10/11/1        |  |
| · pyrma Op | 1~ ·             | Расчет расхода отработанны                                                 | их газов и топп |                     |                   |  |
|            |                  | в, G <sub>or</sub> = 8.72*10 <sup>-6</sup> *b <sub>3</sub> *P <sub>3</sub> | G <sub>or</sub> | 0.005               | кг/с              |  |

| Томпоротур | а отходящих газов:                                                                       |                  | T <sub>or</sub>  | 450                                 | l ∘c                     |
|------------|------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
|            | а отходящих газов.<br>азов при 0°C:                                                      |                  | ν0 <sub>οΓ</sub> | 1.31                                | кг/м <sup>3</sup>        |
|            |                                                                                          |                  |                  | 0.49482                             | KI/M³                    |
|            | газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+ <b>Т</b> <sub>ог</sub> /273) |                  | <b>У</b> ог      | 0.49462                             | M <sup>3</sup> /C        |
| Ооъемный   | расход отработанных газов, $\mathbf{Q}_{or} = \mathbf{G}_{or} / \mathbf{\gamma}_{or}$    |                  | Q <sub>or</sub>  |                                     |                          |
|            | Расчет выбросов вредных вещес                                                            | тв в атмосфе     | еру от одного ді | изельного генерато                  | рра:                     |
| Код ЗВ     | Наименование ЗВ                                                                          | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|            |                                                                                          | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|            | Азота оксиды                                                                             | 10.3             | 43               | 0.0065806                           | 0.0015093                |
| 0301       | Азота диоксид                                                                            |                  |                  | 0.0052644                           | 0.0012074                |
| 0304       | Азота оксид                                                                              |                  |                  | 0.0008555                           | 0.0001962                |
| 0328       | Сажа                                                                                     | 0.7              | 3                | 0.0004472                           | 0.0001053                |
| 0330       | Сера диоксид                                                                             | 1.1              | 4.5              | 0.0007028                           | 0.0001580                |
| 0337       | Углерод оксид                                                                            | 7.2              | 30               | 0.0046                              | 0.0010530                |
| 0703       | Бенз(а)пирен                                                                             | 0.000013         | 0.000055         | 0.000000008                         | 0.0000000019             |
| 1325       | Формальдегид                                                                             | 0.15             | 0.6              | 0.0000958                           | 0.0000211                |
| 2754       | Углеводороды пр. С12-С19                                                                 | 3.6              | 15               | 0.0023                              | 0.0005265                |
|            | Всего по источнику:                                                                      |                  | '                | 0.014265708                         | 0.003267461              |
|            | Расчет выбросов вредных веще                                                             | ств в атмосф     | еру от 8-ми диз  | ельных генератор                    | OB:                      |
| Код ЗВ     | Наименование                                                                             | 9 3B             |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|            |                                                                                          |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|            | Азота оксиді                                                                             | Ы                |                  | 0.0526444                           | 0.0120744                |
| 0301       | Азота диокси                                                                             |                  |                  | 0.0421152                           | 0.0096595                |
| 0304       | Азота оксид                                                                              | l                |                  | 0.006844                            | 0.0015697                |
| 0328       | Сажа                                                                                     | -                |                  | 0.0035776                           | 0.0008424                |
| 0330       | Сера диокси                                                                              | Д                |                  | 0.0056224                           | 0.0012636                |
| 0337       | Углерод окси                                                                             | ıд               |                  | 0.0368                              | 0.008424                 |
| 0703       | Бенз(а)пире                                                                              | Н                |                  | 0.00000006                          | 0.00000002               |
| 1325       | Формальдеги                                                                              | 1Д               |                  | 0.0007664                           | 0.0001685                |
| 2754       | Углеводороды пр. (                                                                       | C12-C19          |                  | 0.0184                              | 0.004212                 |
|            | Всего по источнику:                                                                      |                  |                  | 0.11412566                          | 0.02613972               |

| №<br>ИЗА            | 1003                      | Наименование источника за-<br>грязнения атмосферы                         | Выхлопная труба                 |                      |                   |  |
|---------------------|---------------------------|---------------------------------------------------------------------------|---------------------------------|----------------------|-------------------|--|
| № ИВ                | 001                       | Наименование источника вы-<br>деления                                     | Дизельный генератор насосов 75С |                      |                   |  |
| Pa                  | счеты выбросов            | выполнены согласно, "Методики расче                                       | та выбросов за                  | агрязняющих вещес    | тв в атмосферу    |  |
|                     |                           | ьных установок" РНД 211.2.02.04-200                                       |                                 |                      |                   |  |
| Ma                  | ксимальный вы             | брос і-го вещества стационарной дизель                                    | ьной установки с                | пределяется по фор   | муле:             |  |
|                     |                           | M <sub>ceκ</sub> =e <sub>i</sub> *P <sub>э</sub> /3600                    | , г/с                           |                      |                   |  |
| где:                |                           |                                                                           |                                 |                      |                   |  |
|                     |                           | вещества на единицу полезной работы                                       | стационарной д                  | изельной установки і | на режиме номи-   |  |
|                     |                           | *ч (таблица 1 или 2):                                                     | 1                               |                      | 1                 |  |
| •                   | ационная мощі             | ность стационарной дизельной уста-                                        | P <sub>a</sub>                  | 2.8                  | кВт               |  |
| новки:              |                           |                                                                           | · ·                             |                      |                   |  |
| Ba                  | повый выброс і-           | го вещества за год стационарной дизел                                     | •                               | определяется по фо   | рмуле:            |  |
|                     |                           | $\mathbf{M}_{\text{rog}} = \mathbf{q}_{i} \mathbf{B}_{\text{rog}} / 1000$ | , т/год                         |                      |                   |  |
| где:                |                           |                                                                           |                                 |                      | c                 |  |
|                     |                           | вещества, г/кг топлива, приходящегося н                                   |                                 |                      |                   |  |
| лица 3 ил           |                           | и с учетом совокупности режимов, сост                                     | авляющих экспл                  | уатационный цикл, г  | /кі топлива (тао- |  |
|                     |                           | рной дизельной установкой за год (бе-                                     |                                 |                      |                   |  |
|                     |                           | ным об эксплуатации установки) или                                        | В <sub>год</sub>                | 0.0104               | т/год             |  |
|                     |                           | не: $B_{rod} = b_3 * k * P_3 * T * 10^{-6}$ :                             | <b>Б</b> год                    | 0.0104               | тлод              |  |
| определи            | четей по формуз           | IC. Droд—D3 K 1 3 1 10 .                                                  | b                               | 1                    | л/ч               |  |
| Расход т            | оплива:                   |                                                                           | b                               | 0.87                 | кг/ч              |  |
| Средний             | удельный расхо            | од топпива:                                                               | b <sub>a</sub>                  | 311                  | г/кВт.ч           |  |
|                     | гь дизельного то          |                                                                           | ρ                               | 0.87                 | кг/л              |  |
|                     |                           |                                                                           | k                               | 1                    | 13771             |  |
| Коэффиі             |                           |                                                                           |                                 |                      |                   |  |
| Коэффиц<br>Время ра | циент использов<br>аботы: | апия.                                                                     | Ť                               | 12                   | ч/год             |  |

Количество:

Группа СДУ:

Частота вращения вала:

Температура отходящих газов:

 Расчет расхода отработанных газов и топлива

 Расход отработанных газов,  $G_{or}$  = 8.72\*10-6\*b<sub>3</sub>\*P<sub>3</sub>
  $G_{or}$ 

Ν

5

1500

Α

0.008

450

ШТ

об/мин

кг/с <sup>0</sup>С

|           | ь газов при 0°C:                                                                                     | $\gamma 0_{or}$  | 1.31             | кг/м <sup>3</sup>                   |                          |
|-----------|------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
| Плотность | ь газов при Т <sub>ог</sub> (К), <b>ү0<sub>ог</sub>/(1+Т<sub>ог</sub>/273)</b>                       |                  | <b>У</b> ог      | 0.49482                             | кг/м <sup>3</sup>        |
| Объемный  | й расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>ү</b> <sub>о</sub> | г                | $Q_{or}$         | 0.0153                              | м <sup>3</sup> /с        |
|           | Расчет выбросов вредных веществ в атмосферу от одного ди:                                            |                  |                  |                                     | ра:                      |
| Код<br>3В | Наименование ЗВ                                                                                      | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                                                                      | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды                                                                                         | 10.3             | 43               | 0.0080111                           | 0.0004472                |
| 0301      | Азота диоксид                                                                                        |                  |                  | 0.0064089                           | 0.0003578                |
| 0304      | Азота оксид                                                                                          |                  |                  | 0.0010414                           | 0.0000581                |
| 0328      | Сажа                                                                                                 | 0.7              | 3                | 0.0005444                           | 0.0000312                |
| 0330      | Сера диоксид                                                                                         | 1.1              | 4.5              | 0.0008556                           | 0.0000468                |
| 0337      | Углерод оксид                                                                                        | 7.2              | 30               | 0.0056                              | 0.0003120                |
| 0703      | Бенз(а)пирен                                                                                         | 0.000013         | 0.000055         | 0.0000001                           | 0.0000000000             |
| 1325      | Формальдегид                                                                                         | 0.15             | 0.6              | 0.0001167                           | 0.0000062                |
| 2754      | Углеводороды пр. С12-С19                                                                             | 3.6              | 15               | 0.0028                              | 0.0001560                |
| •         | Всего по источнику:                                                                                  |                  |                  | 0.01736701                          | 0.000968137              |
|           | Расчет выбросов вредных веще                                                                         | ств в атмосф     | еру от 5-ти дизе | льных генераторо                    | B:                       |
| Код<br>3В | Код Наименование 3В                                                                                  |                  |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы<br>брос       |
|           |                                                                                                      |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксид                                                                                          |                  |                  | 0.0400556                           | 0.002236                 |
| 0301      | Азота диокси                                                                                         | 1Д               |                  | 0.0320445                           | 0.0017888                |
| 0304      | Азота оксид                                                                                          | 1                |                  | 0.005207                            | 0.0002907                |
| 0328      | Сажа                                                                                                 |                  |                  | 0.002722                            | 0.000156                 |
| 0330      | Сера диокси                                                                                          | Д                |                  | 0.004278                            | 0.000234                 |
| 0337      | Углерод окси                                                                                         | 1Д               |                  | 0.028                               | 0.00156                  |
| 0703      | Бенз(а)пире                                                                                          |                  |                  | 0.0000005                           | 0.000000003              |
| 1325      | Формальдег                                                                                           | 1Д               |                  | 0.0005835                           | 0.0000312                |
| 2754      | Углеводороды пр. (                                                                                   | C12-C19          |                  | 0.014                               | 0.00078                  |
|           | Всего по источнику:                                                                                  |                  |                  | 0.08683505                          | 0.004840703              |

| № ИЗА              | 1004                                                                                                                                                                                                                                                                               | Наименование источника за-<br>грязнения атмосферы                              | Выхлопная труба    |                     |                    |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|---------------------|--------------------|--|--|--|--|
| № ИВ               | 001                                                                                                                                                                                                                                                                                | Наименование источника<br>выделения                                            | Дизельный г<br>сов | PD75                |                    |  |  |  |  |
| от стаци           | Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.  Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: |                                                                                |                    |                     |                    |  |  |  |  |
| iviai              | ксимальный выоро                                                                                                                                                                                                                                                                   | ст-го вещества стационарной дизел<br>М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600 |                    | определяется по фо  | ррмуле.            |  |  |  |  |
| где:               |                                                                                                                                                                                                                                                                                    |                                                                                |                    |                     |                    |  |  |  |  |
|                    | ос і-го вредного вец<br>мощности, г/кВт*ч (                                                                                                                                                                                                                                        | цества на единицу полезной работы<br>(таблица 1 или 2):                        | стационарной ,     | дизельной установки | и на режиме номи-  |  |  |  |  |
| Эксплуат<br>новки: | ационная мощнос                                                                                                                                                                                                                                                                    | ть стационарной дизельной уста-                                                | P₃                 | 3.1                 | кВт                |  |  |  |  |
| Вал                | товый выброс і-го в                                                                                                                                                                                                                                                                | вещества за год стационарной дизег                                             | •                  | й определяется по ф | оормуле:           |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | $\mathbf{M}_{\text{rod}} = \mathbf{q}_{i} \mathbf{B}_{\text{rod}} / 1000$      | ), т/год           |                     |                    |  |  |  |  |
| где:               |                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                          |                    |                     |                    |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | цества, г/кг топлива, приходящегося                                            |                    |                     |                    |  |  |  |  |
| нои дизел          | •                                                                                                                                                                                                                                                                                  | учетом совокупности режимов, сост                                              | авляющих эксп      | луатационныи цикл,  | г/кг топлива (тао- |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | ной дизельной установкой за год                                                |                    |                     |                    |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | ым об эксплуатации установки) или                                              | Вгол               | 0.024               | т/год              |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | B <sub>ron</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :       | юд                 |                     |                    |  |  |  |  |
| Воохол т           | DEFINE.                                                                                                                                                                                                                                                                            |                                                                                | b                  | 1                   | л/ч                |  |  |  |  |
| Расход то          | лілива.                                                                                                                                                                                                                                                                            |                                                                                | b                  | 0.87                | кг/ч               |  |  |  |  |
| Средний            | удельный расход т                                                                                                                                                                                                                                                                  | гоплива:                                                                       | b₃                 | 281                 | г/кВт.ч            |  |  |  |  |
| Плотност           | ъ дизельного топл                                                                                                                                                                                                                                                                  | ива:                                                                           | ρ                  | 0.87                | кг/л               |  |  |  |  |
| Коэффиц            | иент использовани                                                                                                                                                                                                                                                                  | 1Я:                                                                            | k                  | 1                   |                    |  |  |  |  |
| Время ра           | боты:                                                                                                                                                                                                                                                                              |                                                                                | T                  | 58                  | ч/год              |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | Исходные данные по исто                                                        | чнику выброс       |                     |                    |  |  |  |  |
| Количест           | ВО:                                                                                                                                                                                                                                                                                |                                                                                | N                  | 36                  | ШТ                 |  |  |  |  |
| Частота в          | вращения вала:                                                                                                                                                                                                                                                                     |                                                                                | n                  | 1500                | об/мин             |  |  |  |  |
| Группа С           | ДУ:                                                                                                                                                                                                                                                                                |                                                                                |                    | A                   |                    |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                    | Расчет расхода отработанны                                                     | ых газов и топл    | <b>тива</b>         |                    |  |  |  |  |
| Расход о           | тработанных газов                                                                                                                                                                                                                                                                  | $_{,}$ G <sub>or</sub> = 8.72*10 <sup>-6</sup> *b <sub>3</sub> *P <sub>3</sub> | G <sub>or</sub>    | 0.008               | кг/с               |  |  |  |  |
|                    | гура отходящих газ                                                                                                                                                                                                                                                                 | BOB:                                                                           | T <sub>or</sub>    | 450                 | °C                 |  |  |  |  |
| Плотност           | ъ газов при 0°С:                                                                                                                                                                                                                                                                   |                                                                                | $\gamma 0_{or}$    | 1.31                | кг/м <sup>3</sup>  |  |  |  |  |

| Плотность газов при T <sub>or</sub> (K), <b>у0</b> <sub>or</sub> /(1+T <sub>or</sub> /273) |                                                                              |                  | <b>Y</b> ог      | 0.49482                             | кг/м <sup>3</sup>        |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
|                                                                                            | расход отработанных газов, <b>Q<sub>or</sub>=G</b> or <mark>/</mark> γ       | <b>1</b> ог      | Q <sub>or</sub>  | 0.0154                              | м <sup>3</sup> /с        |
|                                                                                            | Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора: |                  |                  | pa:                                 |                          |
| Код ЗВ                                                                                     | Наименование ЗВ                                                              | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                            |                                                                              | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                            | Азота оксиды                                                                 | 10.3             | 43               | 0.0088694                           | 0.0010288                |
| 0301                                                                                       | Азота диоксид                                                                | 1,010            |                  | 0.0070956                           | 0.0008230                |
| 0304                                                                                       | Азота оксид                                                                  |                  |                  | 0.001153                            | 0.0001337                |
| 0328                                                                                       | Сажа                                                                         | 0.7              | 3                | 0.0006028                           | 0.0000718                |
| 0330                                                                                       | Сера диоксид                                                                 | 1.1              | 4.5              | 0.0009472                           | 0.0001077                |
| 0337                                                                                       | Углерод оксид                                                                | 7.2              | 30               | 0.0062                              | 0.0007178                |
| 0703                                                                                       | Бенз(а)пирен                                                                 | 0.000013         | 0.000055         | 0.0000001                           | 0.000000013              |
| 1325                                                                                       | Формальдегид                                                                 | 0.15             | 0.6              | 0.0001292                           | 0.0000144                |
| 2754                                                                                       | Углеводороды пр. С12-С19                                                     | 3.6              | 15               | 0.0031                              | 0.0003589                |
| •                                                                                          | Всего по источнику                                                           | <i>j</i> :       | •                | 0.01922781                          | 0.00222718               |
|                                                                                            | Расчет выбросов вредных веще                                                 | еств в атмосф    | еру от 36-ти диз | ельных генератор                    | OB:                      |
| Код ЗВ                                                                                     | Наименовані                                                                  | 1e 3B            |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                            |                                                                              |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                            | Азота окси,                                                                  | ДЫ               |                  | 0.3193                              | 0.0370359                |
| 0301                                                                                       | Азота диоко                                                                  | •                |                  | 0.2554416                           | 0.0296287                |
| 0304                                                                                       | Азота окси                                                                   | 1Д               |                  | 0.041508                            | 0.0048147                |
| 0328                                                                                       | Сажа                                                                         |                  |                  | 0.0217008                           | 0.0025839                |
| 0330                                                                                       | Сера диоко                                                                   | ид               |                  | 0.0340992                           | 0.0038759                |
| 0337                                                                                       | Углерод ок                                                                   | • •              |                  | 0.2232                              | 0.025839                 |
| 0703                                                                                       | Бенз(а)пир                                                                   | ен               |                  | 0.0000004                           | 0.00000005               |
| 1325                                                                                       | Формальде                                                                    | гид              |                  | 0.0046512                           | 0.0005168                |
| 2754                                                                                       | Углеводороды пр                                                              | C12-C19          |                  | 0.1116                              | 0.0129195                |
| •                                                                                          | Всего по источнику                                                           |                  |                  | 0.6922012                           | 0.08017855               |

| №<br>ИЗА                                                        | № 1005 Наименование источника за-<br>иЗА Выхлопная труба       |                                                                                                                                                                                              |                                             |                                            |                                          |
|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|
| № ИВ                                                            | 001                                                            | Наименование источника вы-<br>деления                                                                                                                                                        | Дизельный генератор                         |                                            | Yanmar YDG<br>2700E                      |
| от стаци                                                        | онарных дизел                                                  | выполнены согласно, <b>"Методики расч</b> ю<br><b>ьных установок" РНД 211.2.02.04-200</b><br>брос і-го вещества стационарной дизел<br>М <sub>сек</sub> =е <sub>'</sub> *P <sub>э</sub> /3600 | <b>)4</b> , MOOC PK, Ac<br>ьной установки о | тана 2005 год.                             |                                          |
|                                                                 |                                                                | вещества на единицу полезной работы<br>*ч (таблица 1 или 2):                                                                                                                                 | стационарной д                              | изельной установ                           | ки на режиме ном                         |
|                                                                 |                                                                | ость стационарной дизельной уста-                                                                                                                                                            | P <sub>9</sub>                              | 3.1                                        | кВт                                      |
| лица 3 и<br>расход<br>(берется                                  | ли 4):<br>гоплива стацион<br>⊧по отчетным да                   | о с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>нным об эксплуатации установки) или                                                                            | В <sub>год</sub>                            | 0.0078                                     | т/год                                    |
| определ                                                         | яется по формул                                                | e: В <sub>год</sub> =b <sub>э</sub> *k*Р <sub>э</sub> *Т*10 <sup>-6</sup> :                                                                                                                  | b                                           | 1                                          | л/ч                                      |
| Расход т                                                        | оплива:                                                        |                                                                                                                                                                                              | b                                           | 0.87                                       | 11/9                                     |
|                                                                 | удельный расхо                                                 |                                                                                                                                                                                              |                                             | 281                                        | кг/ч                                     |
| Средний                                                         | Средний удельный расход топлива: Плотность дизельного топлива: |                                                                                                                                                                                              | b <sub>a</sub>                              | Z0 I                                       | кг/ч<br>г/кВт.ч                          |
|                                                                 | ть дизельного то                                               | • •                                                                                                                                                                                          | b <sub>3</sub><br>ρ                         | 0.87                                       |                                          |
| Плотнос                                                         | ть дизельного то<br>циент использов                            | плива:                                                                                                                                                                                       |                                             |                                            | г/кВт.ч                                  |
| Плотнос<br>Коэффи                                               | циент использов                                                | плива:<br>ания:                                                                                                                                                                              | ρ<br>k<br>T                                 | 0.87<br>1<br>57.6                          | г/кВт.ч                                  |
| Плотнос<br>Коэффи<br>Время ра                                   | циент использов<br>аботы:                                      | плива:                                                                                                                                                                                       | р<br>k<br>T<br><b>чнику выбросо</b>         | 0.87<br>1<br>57.6                          | г/кВт.ч<br>кг/л                          |
| Плотнос<br>Коэффи<br>Время ра<br>Количес                        | циент использов<br>аботы:<br>гво:                              | плива:<br>ания:                                                                                                                                                                              | ρ<br>k<br>T                                 | 0.87<br>1<br>57.6<br><b>B</b>              | г/кВт.ч<br>кг/л<br>ч/год<br>шт           |
| Плотнос<br>Коэффи<br>Время ра<br>Количес<br>Частота             | циент использов<br>аботы:<br>тво:<br>вращения вала:            | плива:<br>ания:                                                                                                                                                                              | р<br>k<br>T<br><b>чнику выбросо</b>         | 0.87<br>1<br>57.6<br><b>B</b><br>8<br>1500 | г/кВт.ч<br>кг/л<br>ч/год                 |
| Плотнос<br>Коэффи<br>Время ра<br>Количес<br>Частота             | циент использов<br>аботы:<br>тво:<br>вращения вала:            | плива:<br>ания:<br>Исходные данные по исто                                                                                                                                                   | р<br>k<br>T<br>рчнику выбросо<br>N<br>n     | 0.87<br>1<br>57.6<br>B<br>8<br>1500<br>A   | г/кВт.ч<br>кг/л<br>ч/год<br>шт           |
| Плотнос<br>Коэффи<br>Время ра<br>Количес<br>Частота<br>Группа С | циент использов<br>аботы:<br>тво:<br>вращения вала:<br>СДУ:    | плива: ания: Исходные данные по исто Расчет расхода отработанные                                                                                                                             | р<br>k<br>T<br>рчнику выбросо<br>N<br>n     | 0.87<br>1<br>57.6<br>B<br>8<br>1500<br>A   | г/кВт.ч<br>кг/л<br>ч/год<br>шт<br>об/мин |
| Плотнос<br>Коэффи<br>Время р<br>Количес<br>Частота<br>Группа С  | циент использов<br>аботы:<br>тво:<br>вращения вала:<br>СДУ:    | плива: ания:  Исходные данные по исто  Расчет расхода отработанны ов, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                        | р<br>k<br>T<br>рчнику выбросо<br>N<br>n     | 0.87<br>1<br>57.6<br>B<br>8<br>1500<br>A   | г/кВт.ч<br>кг/л<br>ч/год                 |

Температура отходящих газов:

Плотность газов при  $T_{or}$  (K),  $\gamma 0_{or} / (1+T_{or}/273)$ 

Плотность газов при 0°C:

γ0。

Yor

кг/с <sup>0</sup>С

кг/м<sup>3</sup>

кг/м<sup>3</sup>

450

1.31

| Объемный  | и́ расход отработанных газов, <b>Q</b> or <b>=G</b> or/γo | DΓ               | $Q_{or}$         | 0.0154                              | м <sup>3</sup> /с        |
|-----------|-----------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
|           | Расчет выбросов вредных вещес                             | ств в атмосф     | еру от одного д  | изельного генерато                  | pa:                      |
| Код<br>3В | Наименование ЗВ                                           | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                           | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды                                              | 10.3             | 43               | 0.0088694                           | 0.0003367                |
| 0301      | Азота диоксид                                             |                  |                  | 0.0070956                           | 0.0002694                |
| 0304      | Азота оксид                                               |                  |                  | 0.001153                            | 0.0000438                |
| 0328      | Сажа                                                      | 0.7              | 3                | 0.0006028                           | 0.0000235                |
| 0330      | Сера диоксид                                              | 1.1              | 4.5              | 0.0009472                           | 0.0000352                |
| 0337      | Углерод оксид                                             | 7.2              | 30               | 0.0062                              | 0.0002349                |
| 0703      | Бенз(а)пирен                                              | 0.000013         | 0.000055         | 0.0000001                           | 0.0000000004             |
| 1325      | Формальдегид                                              | 0.15             | 0.6              | 0.0001292                           | 0.0000047                |
| 2754      | Углеводороды пр. С12-С19                                  | 3.6              | 15               | 0.0031                              | 0.0001175                |
|           | Всего по источнику                                        | :                |                  | 0.01922781                          | 0.000728895              |
|           | Расчет выбросов вредных веще                              | ств в атмосф     | еру от 8-ми диз  | ельных генераторо                   | B:                       |
| Код<br>3В | Наименовани                                               | e 3B             |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                           |                  |                  | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|           | Азота оксид                                               | ļЫ               |                  | 0.0709556                           | 0.0026935                |
| 0301      | Азота диоксі                                              | ид               | _                | 0.0567648                           | 0.0021548                |
| 0304      | Азота оксид                                               | Д                |                  | 0.009224                            | 0.0003502                |
| 0328      | Сажа                                                      |                  |                  | 0.0048224                           | 0.0001879                |
| 0330      | Сера диокси                                               | 4Д               |                  | 0.0075776                           | 0.0002819                |
| 0337      | Углерод окс                                               | ид               |                  | 0.0496                              | 0.0018792                |
| 0703      | Бенз(а)пире                                               | ен               |                  | 0.00000008                          | 0.00000003               |
| 1325      | Формальдег                                                | ид               |                  | 0.0010336                           | 0.0000376                |
| 2754      | Углеводороды пр.                                          | C12-C19          |                  | 0.0248                              | 0.0009396                |
|           | Всего по источнику                                        | :                |                  | 0.15382248                          | 0.005831203              |

| № ИЗА                                                                                                                       | 1006                                                                                                                                                                                                                          | Наименование источника за-<br>грязнения атмосферы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Выхлопная труба                                                            |                                                                                            |                                         |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|
| № ИВ                                                                                                                        | 001                                                                                                                                                                                                                           | Наименование источника вы-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Дизельный генератор вакуум-                                                |                                                                                            | Ro-Mop                                  |
|                                                                                                                             |                                                                                                                                                                                                                               | деления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ной установки                                                              | OM140                                                                                      |                                         |
|                                                                                                                             |                                                                                                                                                                                                                               | в выполнены согласно, "Методики расче                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                                                            | ств в атмосфер                          |
|                                                                                                                             |                                                                                                                                                                                                                               | <b>пьных установок" РНД 211.2.02.04-200</b><br>брос і-го вещества стационарной дизель                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                                                            | MAVEO:                                  |
| ivia                                                                                                                        | ксимальный вы                                                                                                                                                                                                                 | орос i-то вещества стационарной дизелю<br>М <sub>сек</sub> =e <sub>i</sub> *P <sub>3</sub> /3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            | іределяется по фор                                                                         | лиуле.                                  |
| где:                                                                                                                        |                                                                                                                                                                                                                               | meek of 1 3/0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                          |                                                                                            |                                         |
|                                                                                                                             | ос і-го вредного                                                                                                                                                                                                              | вещества на единицу полезной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | стационарной ди                                                            | ізельной установки                                                                         | на режиме номи                          |
|                                                                                                                             |                                                                                                                                                                                                                               | г*ч (таблица 1 или 2):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | ,                                                                                          |                                         |
|                                                                                                                             |                                                                                                                                                                                                                               | ность стационарной дизельной уста-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Б                                                                          | 2.4                                                                                        | D-                                      |
| новки:                                                                                                                      |                                                                                                                                                                                                                               | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P <sub>9</sub>                                                             | 3.4                                                                                        | кВт                                     |
| где:                                                                                                                        | повый выорос і-                                                                                                                                                                                                               | -го вещества за год стационарной дизел<br><b>М<sub>год</sub>=q</b> i*B <sub>год</sub> /1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                          | определяется по ф                                                                          | ормуле.                                 |
|                                                                                                                             | 00 i 50 DD0511050                                                                                                                                                                                                             | вещества, г/кг топлива, приходящегося н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IO O DIVILI VE DIVOO DI                                                    | LIOTO TOTTUNO TOU                                                                          | ofoto otolijanjor                       |
|                                                                                                                             |                                                                                                                                                                                                                               | вещества, г/кг топлива, приходящегося н<br>и с учетом совокупности режимов, сост                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                            |                                         |
| нои дизе.<br>пица 3 ил                                                                                                      |                                                                                                                                                                                                                               | и с учетом совокупности режимов, сост                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | авляющих эксплу                                                            | /атационный цикл,                                                                          | ואו וטווווטום (ומנ                      |
|                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                                                                            |                                         |
| пасуол т                                                                                                                    | оппива станио                                                                                                                                                                                                                 | нарной лизепьной установкой за гол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                                                                                            |                                         |
|                                                                                                                             |                                                                                                                                                                                                                               | нарной дизельной установкой за год                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bron                                                                       | 0.0104                                                                                     | т/год                                   |
| ,<br>(берется                                                                                                               | по отчетным да                                                                                                                                                                                                                | анным об эксплуатации установки) или                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В <sub>год</sub>                                                           | 0.0104                                                                                     | т/год                                   |
| берется<br>определя                                                                                                         | по отчетным да<br>нется по форму                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B <sub>год</sub>                                                           | 0.0104                                                                                     | т/год                                   |
| ,<br>(берется                                                                                                               | по отчетным да<br>нется по форму                                                                                                                                                                                              | анным об эксплуатации установки) или                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                                            |                                         |
| (берется<br>определя<br>Расход то                                                                                           | по отчетным да<br>нется по форму                                                                                                                                                                                              | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b                                                                          | 1                                                                                          | л/ч                                     |
| берется<br>определя<br>Расход то<br>Средний                                                                                 | по отчетным да<br>яется по форму<br>оплива:                                                                                                                                                                                   | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b<br>b                                                                     | 1<br>0.87                                                                                  | л/ч<br>кг/ч                             |
| (берется<br>определя<br>Расход то<br>Средний<br>Плотност                                                                    | по отчетным да<br>нется по форму<br>оплива:<br>удельный расх                                                                                                                                                                  | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:<br>оплива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b<br>b<br>b <sub>3</sub>                                                   | 1<br>0.87<br>256                                                                           | л/ч<br>кг/ч<br>г/кВт.ч                  |
| берется определя Расход то Средний Плотност Коэффиц                                                                         | по отчетным да<br>яется по форму<br>оплива:<br>удельный расх<br>гь дизельного то<br>циент использов                                                                                                                           | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:<br>оплива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b b b <sub>3</sub> ρ                                                       | 1<br>0.87<br>256<br>0.87                                                                   | л/ч<br>кг/ч<br>г/кВт.ч                  |
| (берется определя Расход то Средний Плотност Коэффил                                                                        | по отчетным да<br>яется по форму<br>оплива:<br>удельный расх<br>гь дизельного то<br>циент использов                                                                                                                           | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:<br>оплива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b<br>b<br>b <sub>3</sub><br>ρ<br>k                                         | 1<br>0.87<br>256<br>0.87<br>1                                                              | л/ч<br>кг/ч<br>г/кВт.ч<br>кг/л          |
| (берется определя определя определя то середний плотност Коэффиь Время ра                                                   | по отчетным да<br>яется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использов<br>аботы:                                                                                                                 | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:<br>оплива:<br>вания:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b<br>b<br>b <sub>3</sub><br>ρ<br>k                                         | 1<br>0.87<br>256<br>0.87<br>1                                                              | л/ч<br>кг/ч<br>г/кВт.ч<br>кг/л          |
| берется определя определя то Средний Плотност Коэффил Время ра Соличест Настота и                                           | по отчетным да<br>вется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использов<br>аботы:<br>гво:<br>вращения вала:                                                                                       | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:<br>оплива:<br>зания:<br>Исходные данные по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b<br>b<br>b₃<br>ρ<br>k<br>Т                                                | 1<br>0.87<br>256<br>0.87<br>1<br>12                                                        | л/ч<br>кг/ч<br>г/кВт.ч<br>кг/л<br>ч/год |
| берется определя Расход то Средний Плотност Коэффиь Время ра Количест Частота и                                             | по отчетным да<br>вется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использов<br>аботы:<br>гво:<br>вращения вала:                                                                                       | анным об эксплуатации установки) или<br>ле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :<br>од топлива:<br>оплива:<br>зания:<br>Исходные данные по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b<br>b<br>b <sub>9</sub><br>р<br>k<br>T<br>чнику выбросов                  | 1<br>0.87<br>256<br>0.87<br>1<br>12<br>3                                                   | л/ч<br>кг/ч<br>г/кВт.ч<br>кг/л<br>ч/год |
| берется определя определя то Средний Плотност Коэффиь Время ра Соличест Настота и Бруппа С                                  | по отчетным да<br>вется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использов<br>аботы:<br>гво:<br>вращения вала:<br>Ду:                                                                                | анным об эксплуатации установки) или ле: В <sub>год</sub> =b₃*k*P₃*T*10- <sup>6</sup> : од топлива: оплива: вания: Исходные данные по исто                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b<br>b<br>b <sub>3</sub><br>ρ<br>k<br>T<br><b>чнику выбросов</b><br>N      | 1<br>0.87<br>256<br>0.87<br>1<br>12<br>8<br>20<br>1500<br>A                                | л/ч<br>кг/ч<br>г/кВт.ч<br>кг/л<br>ч/год |
| берется определя Расход то Средний Плотност Коэффиь Время ра Настота в Группа С                                             | по отчетным да<br>вется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использова<br>аботы:<br>гво:<br>вращения вала:<br>сДУ:                                                                              | анным об эксплуатации установки) или ле: $B_{rog}$ = $b_3$ * $k$ * $P_3$ * $T$ *10- $6$ :  од топлива: оплива: о | b<br>b<br>b <sub>3</sub><br>р<br>к<br>Т<br><b>чнику выбросов</b><br>N<br>п | 1<br>0.87<br>256<br>0.87<br>1<br>12<br>3<br>20<br>1500<br>A                                | л/ч кг/ч г/кВт.ч кг/л ч/год шт об/мин   |
| берется определя Расход то Средний Плотност Коэффиь Время ра Количест Настота и Группа С Расход о Темпера                   | по отчетным да<br>яется по форму<br>оплива:<br>удельный расх<br>гь дизельного то<br>диент использов<br>аботы:<br>гво:<br>вращения вала:<br>ДУ:<br>отработанных га<br>тура отходящих                                           | анным об эксплуатации установки) или ле: $B_{rog}$ = $b_3$ * $k$ * $P_3$ * $T$ *10-6:  од топлива:  одлива:  ания:  Исходные данные по исто  Расчет расхода отработанны зов, $G_{or}$ = 8.72*10-6* $b_3$ * $P_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b<br>b<br>b <sub>3</sub><br>ρ<br>k<br>T<br><b>чнику выбросов</b><br>N<br>n | 1<br>0.87<br>256<br>0.87<br>1<br>12<br>3<br>20<br>1500<br>A                                | л/ч кг/ч г/кВт.ч кг/л ч/год шт об/мин   |
| берется определя Расход то Средний Плотност Коэффиь Время ра Количест Настота и Группа С Расход о Темпера                   | по отчетным да<br>вется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использова<br>аботы:<br>гво:<br>вращения вала:<br>сДУ:                                                                              | анным об эксплуатации установки) или ле: $B_{rog}$ = $b_3$ * $k$ * $P_3$ * $T$ *10-6:  од топлива:  одлива:  ания:  Исходные данные по исто  Расчет расхода отработанны зов, $G_{or}$ = 8.72*10-6* $b_3$ * $P_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b<br>b<br>b <sub>3</sub><br>р<br>к<br>Т<br><b>чнику выбросов</b><br>N<br>п | 1<br>0.87<br>256<br>0.87<br>1<br>12<br>3<br>20<br>1500<br>A<br>188<br>0.008<br>450<br>1.31 | л/ч кг/ч г/кВт.ч кг/л ч/год шт об/мин   |
| берется определя Расход то Средний Плотност Коэффиь Время ра Количест Частота в Группа С Расход о Темпера Плотност Плотност | по отчетным да<br>вется по форму<br>оплива:<br>удельный расх<br>ть дизельного то<br>циент использова<br>аботы:<br>гво:<br>вращения вала:<br>сДУ:<br>отработанных га<br>тура отходящих<br>ть газов при 0°С<br>ть газов при Тог | анным об эксплуатации установки) или ле: $B_{rog}$ = $b_3$ * $k$ * $P_3$ * $T$ *10-6:  од топлива:  одлива:  ания:  Исходные данные по исто  Расчет расхода отработанны зов, $G_{or}$ = 8.72*10-6* $b_3$ * $P_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b b b p p k T чнику выбросов N п сых газов и топли G or T or               | 1<br>0.87<br>256<br>0.87<br>1<br>12<br>3<br>20<br>1500<br>A                                | л/ч кг/ч г/кВт.ч кг/л ч/год шт об/мин   |

| Код<br>3В | Наименование ЗВ              | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос             |
|-----------|------------------------------|------------------|------------------|-------------------------------------|---------------------------------|
|           |                              | г/кВт.ч          | г/кг топлива     | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год        |
|           | Азота оксиды                 | 10.3             | 43               | 0.0097278                           | 0.0004472                       |
| 0301      | Азота диоксид                |                  |                  | 0.0077822                           | 0.0003578                       |
| 0304      | Азота оксид                  |                  |                  | 0.0012646                           | 0.0000581                       |
| 0328      | Сажа                         | 0.7              | 3                | 0.0006611                           | 0.0000312                       |
| 0330      | Сера диоксид                 | 1.1              | 4.5              | 0.0010389                           | 0.0000468                       |
| 0337      | Углерод оксид                | 7.2              | 30               | 0.0068                              | 0.0003120                       |
| 0703      | Бенз(а)пирен                 | 0.000013         | 0.000055         | 0.0000001                           | 0.0000000006                    |
| 1325      | Формальдегид                 | 0.15             | 0.6              | 0.0001417                           | 0.0000062                       |
| 2754      | Углеводороды пр. С12-С19     | 3.6              | 15               | 0.0034                              | 0.0001560                       |
|           | Всего по источнику:          |                  |                  | 0.02108851                          | 0.000968137                     |
|           | Расчет выбросов вредных веще | ств в атмосф     | еру от 20-ти диз | ельных генераторо                   | B:                              |
| Код<br>3В | Наименование                 | e 3B             |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос             |
|           |                              |                  |                  | М <sub>сек</sub> , г/с              | <b>М</b> <sub>год</sub> , т/год |
|           | Азота оксид                  | Ы                |                  | 0.1945556                           | 0.008944                        |
| 0301      | Азота диокси                 | 1Д               |                  | 0.155644                            | 0.0071552                       |
| 0304      | Азота оксид                  | 1                |                  | 0.025292                            | 0.0011627                       |
| 0328      | Сажа                         |                  |                  | 0.013222                            | 0.000624                        |
| 0330      | Сера диокси                  | <u></u>          |                  | 0.020778                            | 0.000936                        |
| 0337      | Углерод оксы                 |                  | ·                | 0.136                               | 0.00624                         |
| 0703      | Бенз(а)пире                  | Н                |                  | 0.0000002                           | 0.00000001                      |
| 1325      | Формальдег                   | <b>и</b> д       |                  | 0.002834                            | 0.0001248                       |
| 2754      | Углеводороды пр.             | C12-C19          |                  | 0.068                               | 0.00312                         |
|           | Всего по источнику:          |                  |                  | 0.4217702                           | 0.01936271                      |

| №<br>ИЗА              | 1007                     | Наименование источника за-<br>грязнения атмосферы                                                                                                                     | Выхлопная труба                           |                     |                 |  |
|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-----------------|--|
| №ИВ                   | 001                      | Наименование источника вы-<br>деления                                                                                                                                 | Дизельный г                               | D75                 |                 |  |
| <b>от стаци</b><br>Ма | онарных дизел            | выполнены согласно, <b>"Методики расч<br/>ъных установок" РНД 211.2.02.04-20</b><br>брос і-го вещества стационарной дизег<br>М <sub>сек</sub> =е <sub>і</sub> *Р₃/360 | <b>04</b> , МООС РК, А<br>іьной установки | стана 2005 год.     |                 |  |
|                       |                          | вещества на единицу полезной работь                                                                                                                                   | ы стационарной                            | дизельной установки | на режиме номи- |  |
| Эксплуат новки:       | ационная мощі            | ность стационарной дизельной уста-                                                                                                                                    | P <sub>s</sub>                            | 4                   | кВт             |  |
| ной дизе<br>лица 3 ил | льной установк<br>ıи 4): | вещества, г/кг топлива, приходящегося<br>и с учетом совокупности режимов, сос-<br>нарной дизельной установкой за год                                                  |                                           |                     |                 |  |
| (берется              | по отчетным да           | нарной дизельной установкой за тод<br>нным об эксплуатации установки) или<br>пе: B <sub>roд</sub> =b <sub>э</sub> *k*P <sub>э</sub> *T*10 <sup>-6</sup> :             | Вгод                                      | 0.0501              | т/год           |  |
|                       |                          | ло. 2 год 23 к г з г г с                                                                                                                                              | b                                         | 1                   | л/ч             |  |
| Расход т              | оплива:                  |                                                                                                                                                                       | b                                         | 0.87                | кг/ч            |  |
| Средний               | удельный расх            | од топлива:                                                                                                                                                           | b₃                                        | 218                 | г/кВт.ч         |  |
| Плотност              | ъ дизельного то          | оплива:                                                                                                                                                               | ρ                                         | 0.87                | кг/л            |  |
| Коэффиь               | циент использов          | зания:                                                                                                                                                                | k                                         | 1                   |                 |  |
| Время ра              | іботы:                   |                                                                                                                                                                       | Т                                         | 57.6                | ч/год           |  |
|                       |                          | Исходные данные по ист                                                                                                                                                | очнику выброс                             |                     |                 |  |
| Количест              |                          |                                                                                                                                                                       | N                                         | 8                   | ШТ              |  |
|                       | зращения вала:           |                                                                                                                                                                       | n                                         | 1500                | об/мин          |  |
| Группа С              | ДУ:                      |                                                                                                                                                                       |                                           | A                   |                 |  |
| _                     |                          | Расчет расхода отработанн                                                                                                                                             |                                           |                     | , ,             |  |
|                       |                          | 30B, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                                                                  | Gor                                       | 0.008               | кг/с            |  |
| темпера               | гура отходящих           | газов:                                                                                                                                                                | Tor                                       | 450                 | °C              |  |

Плотность газов при 0°C:

Плотность газов при  $T_{or}$  (K),  $\gamma 0_{or} / (1+T_{or}/273)$ 

Объемный расход отработанных газов,  $\mathbf{Q}_{or}$ = $\mathbf{G}_{or}/\mathbf{\gamma}_{or}$   $\mathbf{Q}_{or}$  0.0154

Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:

 $\gamma 0_{\text{or}}$ 

Yor

кг/м<sup>3</sup>

кг/м<sup>3</sup>

 $M^3/C$ 

1.31

| Код<br>3В | Наименование ЗВ              |               | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос                 |                          |
|-----------|------------------------------|---------------|-------------------------------------|-------------------------------------|--------------------------|
|           |                              | г/кВт.ч       | г/кг топлива                        | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды                 | 10.3          | 43                                  | 0.0114444                           | 0.0021543                |
| 0301      | Азота диоксид                |               |                                     | 0.0091556                           | 0.0017234                |
| 0304      | Азота оксид                  |               |                                     | 0.0014878                           | 0.0002801                |
| 0328      | Сажа                         | 0.7           | 3                                   | 0.0007778                           | 0.0001503                |
| 0330      | Сера диоксид                 | 1.1           | 4.5                                 | 0.0012222                           | 0.0002255                |
| 0337      | Углерод оксид                | 7.2           | 30                                  | 0.008                               | 0.0015030                |
| 0703      | Бенз(а)пирен                 | 0.000013      | 0.000055                            | 0.0000001                           | 0.0000000028             |
| 1325      | Формальдегид                 | 0.15          | 0.6                                 | 0.0001667                           | 0.0000301                |
| 2754      | Углеводороды пр. С12-С19     | 3.6           | 15                                  | 0.004                               | 0.0007515                |
|           | Всего по источнику           | :             |                                     | 0.02481011                          | 0.004663812              |
|           | Расчет выбросов вредных веще | ств в атмосф  | реру от 8-ми диз                    | вельных генераторо                  | B:                       |
| Код<br>3В | Наименовани                  | e 3B          |                                     | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                              |               |                                     | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|           | Азота оксид                  | Ы             |                                     | 0.0915556                           | 0.0172344                |
| 0301      | Азота диоксі                 | ИД            |                                     | 0.0732448                           | 0.0137875                |
| 0304      | Азота оксид                  | Д             |                                     | 0.0119024                           | 0.0022405                |
| 0328      | Сажа                         |               |                                     | 0.0062224                           | 0.0012024                |
| 0330      | Сера диокси                  | <u></u><br>1Д |                                     | 0.0097776                           | 0.0018036                |
| 0337      | Углерод окс                  | ид            |                                     | 0.064                               | 0.012024                 |
| 0703      | Бенз(а)пире                  | eH            |                                     | 0.00000008                          | 0.00000002               |
| 1325      | Формальдег                   | ид            |                                     | 0.0013336                           | 0.0002405                |
| 2754      | Углеводороды пр.             | C12-C19       |                                     | 0.032                               | 0.006012                 |
|           | Всего по источнику           | :             |                                     | 0.19848088                          | 0.03731052               |

|                                           |                                                                                                                | всего по источнику.                                                                                                                                                                 |                                           | 0.19040000          | 0.03731032      |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-----------------|--|--|
|                                           |                                                                                                                |                                                                                                                                                                                     |                                           |                     |                 |  |  |
| № ИЗА                                     | <ul> <li>2 ИЗА</li> <li>Наименование источника за-<br/>грязнения атмосферы</li> <li>Выхлопная труба</li> </ul> |                                                                                                                                                                                     |                                           |                     |                 |  |  |
| № ИВ                                      | 001                                                                                                            | Наименование источника вы-<br>деления                                                                                                                                               | Дизельный генератор насосов 75SA          |                     |                 |  |  |
| <b>от стаци</b><br>Ма                     | онарных дизе                                                                                                   | в выполнены согласно, <b>"Методики расч</b> «<br><b>льных установок" РНД 211.2.02.04-20</b> 0<br>брос і-го вещества стационарной дизел<br>М <sub>сек</sub> =e <sub>i</sub> *P₃/3600 | <b>)4</b> , MOOC PK, Ao<br>ьной установки | стана 2005 год.     |                 |  |  |
|                                           |                                                                                                                | вещества на единицу полезной работы<br>т*ч (таблица 1 или 2):                                                                                                                       | стационарной д                            | дизельной установки | на режиме номи- |  |  |
|                                           |                                                                                                                | ность стационарной дизельной уста-                                                                                                                                                  | P <sub>9</sub>                            | 4                   | кВт             |  |  |
| ной дизелица 3 ил<br>расход т<br>(берется | пьной установк<br><u>пи 4):</u><br>оплива стацио<br>по отчетным да                                             | вещества, г/кг топлива, приходящегося ки с учетом совокупности режимов, состоянной дизельной установкой за год анным об эксплуатации установки) или                                 |                                           |                     |                 |  |  |
|                                           |                                                                                                                | ле: В <sub>год</sub> =b <sub>э</sub> *k*P <sub>э</sub> *T*10 <sup>-6</sup> :                                                                                                        | b                                         | 1                   | л/ч             |  |  |
| Расход т                                  | оплива:                                                                                                        |                                                                                                                                                                                     | b                                         | 0.87                | кг/ч            |  |  |
| Средний                                   | удельный расх                                                                                                  | од топлива:                                                                                                                                                                         | b₃                                        | 218                 | г/кВт.ч         |  |  |
| Плотност                                  | ь дизельного т                                                                                                 | оплива:                                                                                                                                                                             | ρ                                         | 0.87                | кг/л            |  |  |
| Коэффиь                                   | иент использов                                                                                                 | вания:                                                                                                                                                                              | k                                         | 1                   |                 |  |  |
| Время ра                                  | іботы:                                                                                                         |                                                                                                                                                                                     | T                                         | 12                  | ч/год           |  |  |
|                                           |                                                                                                                | Исходные данные по исто                                                                                                                                                             | чнику выбросс                             | )B                  |                 |  |  |
| Количест                                  | BO:                                                                                                            |                                                                                                                                                                                     | N                                         | 1                   | ШТ              |  |  |
| Частота і                                 | вращения вала                                                                                                  | •                                                                                                                                                                                   | n                                         | 1500                | об/мин          |  |  |
| Группа С                                  | ДУ:                                                                                                            |                                                                                                                                                                                     |                                           | Α                   |                 |  |  |
|                                           |                                                                                                                | Расчет расхода отработанны                                                                                                                                                          |                                           | <b>шва</b>          |                 |  |  |
| Расход о                                  | тработанных га                                                                                                 | азов, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                                                                               | Gor                                       | 0.008               | кг/с            |  |  |
| _                                         |                                                                                                                |                                                                                                                                                                                     | _                                         | 450                 | 00              |  |  |

Температура отходящих газов:

Плотность газов при Т<sub>ог</sub> (K), **у0**<sub>ог</sub>/(1+T<sub>ог</sub>/273)

Объемный расход отработанных газов, Q<sub>ог</sub>=G<sub>ог</sub>/у<sub>ог</sub>

Плотность газов при 0°C:

Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:

 $\gamma 0_{\text{or}}$ 

Yor

 $Q_{or}$ 

кг/с <sup>0</sup>С

кг/м<sup>3</sup>

кг/м<sup>3</sup>

 $M^3/C$ 

450

1.31

0.49482

| Код ЗВ | Наименование ЗВ          | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|--------|--------------------------|------------------|------------------|-------------------------------------|--------------------------|
|        |                          | г/кВт.ч          | г/кг топлива     | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|        | Азота оксиды             | 10.3             | 43               | 0.0114444                           | 0.0004472                |
| 0301   | Азота диоксид            |                  |                  | 0.0091556                           | 0.0003578                |
| 0304   | Азота оксид              |                  |                  | 0.0014878                           | 0.0000581                |
| 0328   | Сажа                     | 0.7              | 3                | 0.0007778                           | 0.0000312                |
| 0330   | Сера диоксид             | 1.1              | 4.5              | 0.0012222                           | 0.0000468                |
| 0337   | Углерод оксид            | 7.2              | 30               | 0.008                               | 0.000312                 |
| 0703   | Бенз(а)пирен             | 0.000013         | 0.000055         | 0.0000001                           | 6E-10                    |
| 1325   | Формальдегид             | 0.15             | 0.6              | 0.0001667                           | 0.0000062                |
| 2754   | Углеводороды пр. С12-С19 | 3.6              | 15               | 0.004                               | 0.000156                 |
|        | Всего по источник        | y:               | •                | 0.02481011                          | 0.000968101              |

|                                    |                                                | Всего по источнику:                                                                                                        | <u> </u>                                                                                  |                                                               | 0.02481011                             | 0.000968101              |  |  |
|------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|--------------------------|--|--|
|                                    |                                                |                                                                                                                            |                                                                                           |                                                               |                                        |                          |  |  |
| № ИЗА                              | 1009                                           | Наименование истрязнения атмосф                                                                                            |                                                                                           | Выхлопная т                                                   | я труба                                |                          |  |  |
| № ИВ                               | 001                                            | Наименование исп<br>выделения                                                                                              | точника                                                                                   | Дизельный го<br>ной установі                                  | Skimmer<br>Desmi Mini-Vac<br>Vacuum    |                          |  |  |
| <b>от стаци</b> Маг                | онарных дизельн<br>ксимальный выбро            |                                                                                                                            | 211.2.02.04-200<br>онарной дизел<br>М <sub>сек</sub> =е <sub>і</sub> *Р <sub>э</sub> /360 | <b>04</b> , MOOC PK, Ad<br>іьной установки о<br><b>0, г/с</b> | стана 2005 год.<br>определяется по фор | рмуле:                   |  |  |
| нальной і                          | мощности, г/кВт*ч                              | щества на единицу пол<br>(таблица 1 или 2):                                                                                |                                                                                           | і стационарной д                                              | цизельной установки                    | на режиме номи-          |  |  |
| Эксплуат новки:                    | ационная мощнос                                | сть стационарной диз                                                                                                       | ельной уста-                                                                              | P <sub>9</sub>                                                | 4.6                                    | кВт                      |  |  |
| где:<br>q <sub>i</sub> - выбро     | ос і-го вредного веі                           | вещества за год стацию <b>М</b> г<br>щества, г/кг топлива, пр<br>учетом совокупности                                       | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000<br>риходящегося                     | <b>), т/год</b><br>на один кг дизел                           | ьного топлива, при р                   | работе стационар-        |  |  |
| лица 3 ил<br>расход то<br>(берется | ıи 4):<br>оплива стационар<br>по отчетным данн | оной дизельной устано<br>ым об эксплуатации ус<br>В <sub>год</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> : | овкой за год                                                                              | Вгод                                                          | 0.0146                                 | т/год                    |  |  |
| Расуол т                           | OUDIADO:                                       |                                                                                                                            |                                                                                           | b                                                             | 1.4                                    | л/ч                      |  |  |
| Расход то                          | лілива.                                        |                                                                                                                            |                                                                                           | b                                                             | 1.22                                   | кг/ч                     |  |  |
| Средний                            | удельный расход                                | топлива:                                                                                                                   |                                                                                           | b₃                                                            | 265                                    | г/кВт.ч                  |  |  |
|                                    | ъ дизельного топл                              |                                                                                                                            |                                                                                           | ρ                                                             | 0.87                                   | кг/л                     |  |  |
|                                    | иент использован                               | ия:                                                                                                                        |                                                                                           | k                                                             | 1                                      |                          |  |  |
| Время ра                           | боты:                                          |                                                                                                                            |                                                                                           | T                                                             | 12                                     | ч/год                    |  |  |
|                                    |                                                | Исходные да                                                                                                                | нные по исто                                                                              | учнику выбросс                                                |                                        |                          |  |  |
| Количест                           |                                                |                                                                                                                            |                                                                                           | N                                                             | 2                                      | ШТ                       |  |  |
|                                    | вращения вала:                                 |                                                                                                                            |                                                                                           | n                                                             | 1500                                   | об/мин                   |  |  |
| Группа С                           | ДУ:                                            |                                                                                                                            |                                                                                           |                                                               | Α                                      |                          |  |  |
|                                    |                                                |                                                                                                                            | а отработанн                                                                              | ых газов и топл                                               |                                        | 1                        |  |  |
| Расход о                           | тработанных газов                              | $_{3}$ , $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$                                                                               |                                                                                           | Gor                                                           | 0.011                                  | кг/с                     |  |  |
|                                    | гура отходящих га                              | 30B:                                                                                                                       |                                                                                           | T <sub>or</sub>                                               | 450                                    | °C                       |  |  |
|                                    | ь газов при 0°C:                               |                                                                                                                            |                                                                                           | γ0 <sub>or</sub>                                              | 1.31                                   | кг/м <sup>3</sup>        |  |  |
|                                    | ъ газов при Т <sub>ог</sub> (К).               |                                                                                                                            |                                                                                           | <b>У</b> ог                                                   | 0.49482                                | кг/м <sup>3</sup>        |  |  |
| Ооъемнь                            |                                                | анных газов, <b>Q</b> <sub>or</sub> =G <sub>or</sub> /γ <sub>o</sub><br>росов вредных вещес                                |                                                                                           | Q <sub>or</sub>                                               | 0.0215                                 | M <sup>3</sup> /C        |  |  |
|                                    | Расчет выор                                    | осов вредных вещес                                                                                                         | тв в атмосфе                                                                              | эру от одного д                                               | изельного генерато                     | ρμα.<br>                 |  |  |
| Код ЗВ                             | Наиме                                          | нование ЗВ                                                                                                                 | e <sub>i</sub> ,                                                                          | q <sub>i</sub> ,                                              | Максимально-<br>разовый вы-<br>брос    | Валовый вы-<br>брос      |  |  |
|                                    |                                                |                                                                                                                            | г/кВт.ч                                                                                   | г/кг топлива                                                  | М <sub>сек</sub> , г/с                 | М <sub>год</sub> , т/год |  |  |
|                                    |                                                | а оксиды                                                                                                                   | 10.3                                                                                      | 43                                                            | 0.0131611                              | 0.0006278                |  |  |
| 0301                               |                                                | а диоксид                                                                                                                  |                                                                                           |                                                               | 0.0105289                              | 0.0005022                |  |  |
| 0304                               |                                                | та оксид                                                                                                                   | 0.7                                                                                       | _                                                             | 0.0017109                              | 0.0000816                |  |  |
| 0328                               |                                                | Сажа                                                                                                                       | 0.7                                                                                       | 3                                                             | 0.0008944                              | 0.0000438                |  |  |
| 0330                               |                                                | а диоксид                                                                                                                  | 1.1                                                                                       | 4.5                                                           | 0.0014056                              | 0.0000657                |  |  |
| 0337                               |                                                | род оксид                                                                                                                  | 7.2                                                                                       | 30                                                            | 0.0092                                 | 0.0004380                |  |  |
| 0703                               |                                                | в(а)пирен                                                                                                                  | 0.000013                                                                                  | 0.000055                                                      | 0.00000002                             | 0.000000008              |  |  |
| 1325                               |                                                | иальдегид                                                                                                                  | 0.15                                                                                      | 0.6                                                           | 0.0001917                              | 0.0000088                |  |  |
| 2754                               | углеводоро                                     | оды пр. С12-С19                                                                                                            | 3.6                                                                                       | 15                                                            | 0.0046                                 | 0.0002190                |  |  |

Всего по источнику:

Расчет выбросов вредных веществ в атмосферу от 2-х дизельных генераторов:

0.001359115

| Код ЗВ | Наименование ЗВ          | Максимально-<br>разовый вы-<br>брос       | Валовый вы-<br>брос      |
|--------|--------------------------|-------------------------------------------|--------------------------|
|        |                          | М <sub>сек</sub> , г/с М <sub>год</sub> , | М <sub>год</sub> , т/год |
|        | Азота оксиды             | 0.0263222                                 | 0.0012556                |
| 0301   | Азота диоксид            | 0.0210578                                 | 0.0010045                |
| 0304   | Азота оксид              | 0.0034218                                 | 0.0001632                |
| 0328   | Сажа                     | 0.0017888                                 | 0.0000876                |
| 0330   | Сера диоксид             | 0.0028112                                 | 0.0001314                |
| 0337   | Углерод оксид            | 0.0184                                    | 0.000876                 |
| 0703   | Бенз(а)пирен             | 0.00000004                                | 0.000000002              |
| 1325   | Формальдегид             | 0.0003834                                 | 0.0000175                |
| 2754   | Углеводороды пр. С12-С19 | 0.0092                                    | 0.000438                 |
|        | Всего по источнику:      | 0.05706304                                | 0.002718202              |

| Deero no nero many.                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                                                        |                  |                  |                                     | 0.002710202              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| № ИЗА                                                                                                                                                                                                                                                                                                                                                          | 1010 Наименование источника за-<br>грязнения атмосферы                                                                          |                                                                        |                  | Выхлопная труба  |                                     |                          |
| № ИВ                                                                                                                                                                                                                                                                                                                                                           | 001                                                                                                                             | Наименование ист                                                       | точника          |                  | енератор вакуум-                    | Skimmer Ro-              |
|                                                                                                                                                                                                                                                                                                                                                                | выделения                                                                                                                       |                                                                        |                  | ной установки    |                                     | Mop OM 260D              |
| Расчеты выбросов выполнены согласно, <b>"Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004</b> , МООС РК, Астана 2005 год. Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: $\mathbf{M}_{\text{сек}} = \mathbf{e_i}^* \mathbf{P_s} / 3600$ , г/с |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| где:<br>e <sub>i</sub> - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи-<br>нальной мощности, г/кВт*ч (таблица 1 или 2):                                                                                                                                                                             |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| Эксплуатационная мощность стационарной дизельной установки:                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                        |                  | P <sub>s</sub>   | 4.6                                 | кВт                      |
| Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| М <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000, т/год                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| где:                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| q <sub>i</sub> - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):                                                                                                      |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| расход топлива стационарной дизельной установкой за год                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| (берется по отчетным данным об эксплуатации установки) или                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                                                                        |                  | В <sub>год</sub> | 0.0146                              | т/год                    |
| определя                                                                                                                                                                                                                                                                                                                                                       | ется по формуле: Е                                                                                                              | <sub>год</sub> =b <sub>э</sub> *k*P <sub>э</sub> *Т*10 <sup>-6</sup> : |                  |                  |                                     |                          |
| Расход топлива:                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                        |                  | <u>b</u>         | 1.4                                 | л/ч                      |
| 0                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                        |                  | b                | 1.22                                | кг/ч                     |
|                                                                                                                                                                                                                                                                                                                                                                | удельный расход то                                                                                                              |                                                                        |                  | b₃               | 265                                 | г/кВт.ч                  |
|                                                                                                                                                                                                                                                                                                                                                                | ъ дизельного топли                                                                                                              |                                                                        |                  | ρ<br>k           | 0.87                                | кг/л                     |
|                                                                                                                                                                                                                                                                                                                                                                | Коэффициент использования:                                                                                                      |                                                                        |                  |                  | 1                                   | ,                        |
| Время работы: Т 12 ч/год                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| Исходные данные по источнику выбросов Количество:  N 1 шт                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                | Количество:                                                                                                                     |                                                                        |                  |                  | 1                                   | ШТ                       |
| Частота вращения вала:                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                        |                  | n                | 1500                                | об/мин                   |
| Группа СДУ:                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b₃*P₃         G <sub>or</sub> 0.011         кг/с                                                                                                                                                                                     |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                | Расход отработанных газов, <b>G</b> <sub>or</sub> = <b>8.72*10</b> <sup>-6*</sup> <b>b</b> <sub>3</sub> * <b>P</b> <sub>3</sub> |                                                                        |                  |                  | 0.011                               | кг/с                     |
| Температура отходящих газов:                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                        |                  | Тог              | 450                                 | °C                       |
| Плотность газов при 0°С:                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |                                                                        |                  | γ0 <sub>or</sub> | 1.31                                | кг/м <sup>3</sup>        |
| Плотность газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+ <b>T</b> <sub>ог</sub> /273)                                                                                                                                                                                                                                                             |                                                                                                                                 |                                                                        |                  | <b>У</b> ог      | 0.49482                             | кг/м <sup>3</sup>        |
| Объемный расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>γ</b> <sub>or</sub>                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                        |                  | Q <sub>or</sub>  | 0.0215                              | м <sup>3</sup> /с        |
| Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                        |                  |                  |                                     |                          |
| Код ЗВ                                                                                                                                                                                                                                                                                                                                                         | Наимено                                                                                                                         | ование ЗВ                                                              | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                        | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 | оксиды                                                                 | 10.3             | 43               | 0.0131611                           | 0.0006278                |
| 0301                                                                                                                                                                                                                                                                                                                                                           | Азота диоксид                                                                                                                   |                                                                        |                  |                  | 0.0105289                           | 0.0005022                |
| 0304                                                                                                                                                                                                                                                                                                                                                           | Азота оксид                                                                                                                     |                                                                        |                  | 0.0017109        | 0.0000816                           |                          |
| 0328                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                                                        | 0.7              | 3                | 0.0008944                           | 0.0000438                |
| 0330                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                                                        | 1.1              | 4.5              | 0.0014056                           | 0.0000657                |
| 0337                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                               |                                                                        | 7.2              | 30               | 0.0092                              | 0.000438                 |
| 0703                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 | а)пирен                                                                | 0.000013         | 0.000055         | 0.00000002                          | 8E-10                    |
| 1325                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 | льдегид                                                                | 0.15             | 0.6              | 0.0001917                           | 0.0000088                |
| 2754 Углеводороды пр. С12-С19 3.6                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                        |                  | 15               | 0.0046                              | 0.000219                 |
| Всего по источнику:                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                                                        |                  |                  | 0.02853152                          | 0.001359101              |

| № ИЗА                                                    | 1011                                                          | Наименование истрязнения атмосф                                                                          |                                                                               | Выхлопная т                                                  | руба                                   |                                |
|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------|
| № ИВ                                                     | 001 Наименование источника Дизельный генератор вакуум- Vil    |                                                                                                          |                                                                               |                                                              |                                        | Skimmer<br>Vikoma Mini-<br>vac |
| <b>от стаци</b><br>Маг<br>где:<br>е <sub>і</sub> - выбро | онарных дизельнь<br>ксимальный выброс<br>ос i-го вредного вещ | ества на единицу пол                                                                                     | 211.2.02.04-200<br>онарной дизел<br>М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600 | <b>)4</b> , МООС РК, Ао<br>ьной установки о<br><b>), г/с</b> | стана 2005 год.<br>определяется по фој | эмуле:                         |
| Эксплуат                                                 | мощности, г/кВт*ч (т<br>ационная мощності                     | аблица 1 или 2):<br>ь стационарной диз                                                                   | ельной уста-                                                                  | P₃                                                           | 4.9                                    | кВт                            |
| где:<br>q <sub>i</sub> - выбро<br>ной дизе.              | ос і-го вредного веще<br>пьной установки с у                  | ещества за год стацию<br><b>М</b> г<br>ества, г/кг топлива, пр<br>четом совокупности                     | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000<br>риходящегося         | ) <b>, т/год</b><br>на один кг дизел                         | ьного топлива, при р                   | аботе стационар-               |
| (берется                                                 | оплива стационарн                                             | ой дизельной устаном об эксплуатации ус<br>м об эксплуатации ус                                          |                                                                               | Вгод                                                         | 0.0157                                 | т/год                          |
| Расход то                                                |                                                               | .vm                                                                                                      |                                                                               | b                                                            | 1.5                                    | л/ч                            |
|                                                          |                                                               |                                                                                                          |                                                                               | b                                                            | 1.31                                   | кг/ч                           |
|                                                          | удельный расход то                                            |                                                                                                          |                                                                               | b₃                                                           | 266                                    | г/кВт.ч                        |
|                                                          | <u>ъ дизельного топли</u><br>циент использования              |                                                                                                          |                                                                               | ρ<br>k                                                       | 0.87<br>1                              | кг/л                           |
| Время ра                                                 |                                                               | 1.                                                                                                       |                                                                               | T K                                                          | 12                                     | ч/год                          |
| Брсілія ра                                               | тооты.                                                        | Исходные да                                                                                              | нные по исто                                                                  | и по                     |                                        | члод                           |
| Количест                                                 | BO:                                                           | тискодполо да                                                                                            |                                                                               | N                                                            | 2                                      | ШТ                             |
| Частота в                                                | вращения вала:                                                |                                                                                                          |                                                                               | n                                                            | 1500                                   | об/мин                         |
| Группа С                                                 | ДУ:                                                           |                                                                                                          |                                                                               |                                                              | A                                      |                                |
|                                                          |                                                               | Расчет расхода                                                                                           | а отработанні                                                                 |                                                              |                                        | T                              |
|                                                          |                                                               | $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                          |                                                                               | Gor                                                          | 0.011                                  | кг/с                           |
|                                                          | гура отходящих газо                                           | B:                                                                                                       |                                                                               | T <sub>or</sub>                                              | 450                                    | °C                             |
|                                                          | ъ газов при 0°C:                                              | 0 //4·T (0T0)                                                                                            |                                                                               | ү0ог                                                         | 1.31                                   | кг/м <sup>3</sup>              |
|                                                          | ъ газов при Т <sub>ог</sub> (К), <b>ү</b>                     |                                                                                                          |                                                                               | <b>У</b> ог                                                  | 0.49482                                | кг/м <sup>3</sup>              |
| Ооъемнь                                                  |                                                               | іных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> /γ <sub>о</sub><br><b>сов вредных веще</b> с |                                                                               | Q <sub>or</sub>                                              | 0.0230                                 | M <sup>3</sup> /C              |
| Код ЗВ                                                   |                                                               | ование ЗВ                                                                                                | e <sub>i</sub> ,                                                              | q <sub>i</sub> ,                                             | Максимально-<br>разовый вы-<br>брос    | валовый вы-<br>брос            |
|                                                          |                                                               |                                                                                                          | г/кВт.ч                                                                       | г/кг топлива                                                 | М <sub>сек</sub> , г/с                 | М <sub>год</sub> , т/год       |
|                                                          | Азота                                                         | оксиды                                                                                                   | 10.3                                                                          | 43                                                           | 0.0140194                              | 0.0006751                      |
| 0301                                                     |                                                               | диоксид                                                                                                  |                                                                               |                                                              | 0.0112156                              | 0.0005401                      |
| 0304                                                     |                                                               | оксид                                                                                                    |                                                                               |                                                              | 0.0018225                              | 0.0000878                      |
| 0328                                                     |                                                               | ажа                                                                                                      | 0.7                                                                           | 3                                                            | 0.0009528                              | 0.0000471                      |
| 0330<br>0337                                             |                                                               | циоксид<br>од оксид                                                                                      | 1.1<br>7.2                                                                    | 4.5<br>30                                                    | 0.0014972<br>0.0098                    | 0.0000707<br>0.0004710         |
| 0703                                                     |                                                               | а)пирен                                                                                                  | 0.000013                                                                      | 0.000055                                                     | 0.0000002                              | 0.0000000009                   |
| 1325                                                     |                                                               | льдегид                                                                                                  | 0.15                                                                          | 0.6                                                          | 0.0002042                              | 0.00000000                     |
| 2754                                                     | Углеводород                                                   | ы пр. С12-С19                                                                                            | 3.6                                                                           | 15                                                           | 0.0049                                 | 0.0002355                      |
|                                                          |                                                               | Всего по источнику:                                                                                      |                                                                               |                                                              | 0.03039232                             | 0.001461514                    |
|                                                          | Расчет выбр                                                   | осов вредных веще                                                                                        | еств в атмосо                                                                 | реру от 2-х диз                                              | ельных генераторо                      | в:                             |
| Код ЗВ                                                   | Наименование ЗВ                                               |                                                                                                          | Максимально-<br>разовый вы-<br>брос                                           | Валовый вы-<br>брос                                          |                                        |                                |
|                                                          |                                                               |                                                                                                          |                                                                               |                                                              | М <sub>сек</sub> , г/с                 | М <sub>год</sub> , т/год       |
| 0004                                                     |                                                               | Азота оксид                                                                                              |                                                                               |                                                              | 0.0280389                              | 0.0013502                      |
| 0301                                                     |                                                               | Азота диоксі                                                                                             | • •                                                                           |                                                              | 0.0224312                              | 0.0010802                      |
| 0304                                                     |                                                               | Азота оксид<br>Сажа                                                                                      | 4                                                                             |                                                              | 0.003645                               | 0.0001755                      |
| 0328<br>0330                                             |                                                               | Сажа<br>Сера диокси                                                                                      | 10                                                                            |                                                              | 0.0019056<br>0.0029944                 | 0.0000942<br>0.0001413         |
| 0337                                                     |                                                               | Углерод окс                                                                                              |                                                                               |                                                              | 0.0029944                              | 0.0001413                      |
| 0703                                                     |                                                               | Бенз(а)пире                                                                                              | • •                                                                           |                                                              | 0.00000004                             | 0.00000000                     |
| 1325                                                     |                                                               | Формальдег                                                                                               |                                                                               |                                                              | 0.0004084                              | 0.0000188                      |
| 2754                                                     |                                                               | Углеводороды пр.                                                                                         |                                                                               |                                                              | 0.0098                                 | 0.000471                       |
| -                                                        |                                                               | Всего по источнику:                                                                                      | !<br>                                                                         |                                                              | 0.06078464                             | 0.002923002                    |

|                                                                                                                      | 1012                                                                                     | Наименование истрязнения атмосф                                                                                                                                                                                                  |                                                                                            | выхлопная труба                                              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| №ИВ                                                                                                                  | 001                                                                                      | Наименование исп<br>выделения                                                                                                                                                                                                    | точника                                                                                    | Вспомогател<br>генератор                                     | льный дизельный                                                                                                                                                                                                                                                                                               | Air Blowers<br>Hydraulic<br>Vikoma                                                                                                                                                                                                                                                                                                                                  |  |
| от стацие<br>Ман                                                                                                     | онарных дизельнь<br>ксимальный выброс                                                    | олнены согласно, "М<br>их установок" РНД 2<br>i-го вещества стацис<br>ества на единицу пол                                                                                                                                       | 211.2.02.04-200<br>онарной дизел<br>М <sub>сек</sub> =е <sub>і</sub> *Р <sub>э</sub> /3600 | <b>)4</b> , MOOC PK, Ad<br>ьной установки d<br><b>), г/с</b> | стана 2005 год.<br>определяется по фор                                                                                                                                                                                                                                                                        | рмуле:                                                                                                                                                                                                                                                                                                                                                              |  |
| нальной и                                                                                                            | иощности, г/кВт*ч (т                                                                     |                                                                                                                                                                                                                                  |                                                                                            |                                                              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |  |
| новки:                                                                                                               |                                                                                          | ещества за год стаци                                                                                                                                                                                                             | ,                                                                                          | Р₃<br>іьной установкої                                       | 4.9<br>й определяется по ф                                                                                                                                                                                                                                                                                    | кВт<br>ормуле:                                                                                                                                                                                                                                                                                                                                                      |  |
| ной дизел<br>лица 3 ил<br>расход то                                                                                  | пьной установки с у<br>ıи 4):<br>оплива стационарн                                       | ества, г/кг топлива, пр<br>четом совокупности<br>ой дизельной устан                                                                                                                                                              | режимов, сост                                                                              | на один кг дизел                                             |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                      | по отчетным данны<br>вется по формуле: <b>В</b>                                          | м об эксплуатации ус<br><sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :                                                                                                                                                             | становки) или                                                                              | В <sub>год</sub>                                             | 0.0157                                                                                                                                                                                                                                                                                                        | т/год                                                                                                                                                                                                                                                                                                                                                               |  |
| Расход то                                                                                                            | оплива:                                                                                  |                                                                                                                                                                                                                                  |                                                                                            | b                                                            | 1.5                                                                                                                                                                                                                                                                                                           | л/ч                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                      |                                                                                          |                                                                                                                                                                                                                                  |                                                                                            | b                                                            | 1.305                                                                                                                                                                                                                                                                                                         | KF/4                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                      | удельный расход то<br>ъ дизельного топлив                                                |                                                                                                                                                                                                                                  |                                                                                            | b₃<br>ρ                                                      | 266<br>0.87                                                                                                                                                                                                                                                                                                   | г/кВт.ч<br>кг/л                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                      | ь дизельного топлиц<br>иент использования                                                |                                                                                                                                                                                                                                  |                                                                                            | k                                                            | 1                                                                                                                                                                                                                                                                                                             | KI/JI                                                                                                                                                                                                                                                                                                                                                               |  |
| Время ра                                                                                                             |                                                                                          | 1.                                                                                                                                                                                                                               |                                                                                            | T                                                            | 12                                                                                                                                                                                                                                                                                                            | ч/год                                                                                                                                                                                                                                                                                                                                                               |  |
| Броліл ра                                                                                                            |                                                                                          | Исходные да                                                                                                                                                                                                                      | нные по исто                                                                               | чнику выбросс                                                |                                                                                                                                                                                                                                                                                                               | лод                                                                                                                                                                                                                                                                                                                                                                 |  |
| Количест                                                                                                             | BO:                                                                                      | тиментые на                                                                                                                                                                                                                      |                                                                                            | N                                                            | 6                                                                                                                                                                                                                                                                                                             | ШТ                                                                                                                                                                                                                                                                                                                                                                  |  |
| Частота в                                                                                                            | вращения вала:                                                                           |                                                                                                                                                                                                                                  |                                                                                            | n                                                            | 1500                                                                                                                                                                                                                                                                                                          | об/мин                                                                                                                                                                                                                                                                                                                                                              |  |
| Группа С                                                                                                             | ДУ:                                                                                      |                                                                                                                                                                                                                                  |                                                                                            |                                                              | Α                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                      |                                                                                          | Расчет расхода                                                                                                                                                                                                                   | а отработаннь                                                                              | ых газов и топл                                              | ива                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                      | тработанных газов,                                                                       |                                                                                                                                                                                                                                  |                                                                                            | G <sub>or</sub>                                              | 0.011                                                                                                                                                                                                                                                                                                         | кг/с                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                      | гура отходящих газо                                                                      | В:                                                                                                                                                                                                                               |                                                                                            | T <sub>or</sub>                                              | 450                                                                                                                                                                                                                                                                                                           | °C                                                                                                                                                                                                                                                                                                                                                                  |  |
| Плотность газов при 0°C:                                                                                             |                                                                                          |                                                                                                                                                                                                                                  | у0ог                                                                                       | 1.31                                                         | кг/м <sup>3</sup>                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                      | ъ газов при Т <sub>ог</sub> (К), <b>ү</b>                                                |                                                                                                                                                                                                                                  |                                                                                            | Yor                                                          | 0.49482                                                                                                                                                                                                                                                                                                       | кг/м <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                   |  |
| Объемны                                                                                                              |                                                                                          | ных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>γ</b> <sub>o</sub>                                                                                                                                               |                                                                                            | Q <sub>or</sub>                                              | 0.0230                                                                                                                                                                                                                                                                                                        | м <sup>3</sup> /с                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                      | Расчет выоро                                                                             | сов вредных вещес                                                                                                                                                                                                                | тв в атмосфе                                                                               | ру от одного д                                               | изельного генерато                                                                                                                                                                                                                                                                                            | pa:                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                      |                                                                                          |                                                                                                                                                                                                                                  |                                                                                            |                                                              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |  |
| Код ЗВ                                                                                                               | Наимено                                                                                  | вание ЗВ                                                                                                                                                                                                                         | e <sub>i</sub> ,                                                                           | q <sub>i</sub> ,                                             | Максимально-<br>разовый вы-<br>брос                                                                                                                                                                                                                                                                           | Валовый вы-<br>брос                                                                                                                                                                                                                                                                                                                                                 |  |
| Код ЗВ                                                                                                               | Наимено                                                                                  | вание ЗВ                                                                                                                                                                                                                         | г/кВт.ч                                                                                    | г/кг топлива                                                 | разовый вы-<br>брос<br>М <sub>сек</sub> , г/с                                                                                                                                                                                                                                                                 | брос<br>М <sub>год</sub> , т/год                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                      | Азота                                                                                    | оксиды                                                                                                                                                                                                                           |                                                                                            | -                                                            | разовый вы-<br>брос<br>М <sub>сек</sub> , г/с<br>0.0140194                                                                                                                                                                                                                                                    | <b>брос М</b> <sub>год</sub> , т/год 0.0006751                                                                                                                                                                                                                                                                                                                      |  |
| 0301                                                                                                                 | Азота<br>Азота ,                                                                         | оксиды<br>диоксид                                                                                                                                                                                                                | г/кВт.ч                                                                                    | г/кг топлива                                                 | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156                                                                                                                                                                                                                                             | <b>брос М</b> <sub>год</sub> , т/год 0.0006751 0.0005401                                                                                                                                                                                                                                                                                                            |  |
| 0301<br>0304                                                                                                         | Азота<br>Азота<br>Азота                                                                  | оксиды<br>диоксид<br>гоксид                                                                                                                                                                                                      | г/кВт.ч<br>10.3                                                                            | г/кг топлива<br>43                                           | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225                                                                                                                                                                                                                                  | <b>брос М</b> <sub>год</sub> , т/год  0.0006751  0.0005401  0.0000878                                                                                                                                                                                                                                                                                               |  |
| 0301<br>0304<br>0328                                                                                                 | Азота<br>Азота ,<br>Азота<br>Са                                                          | оксиды<br>диоксид<br>г оксид<br>ажа                                                                                                                                                                                              | г/кВт.ч<br>10.3                                                                            | г/кг топлива<br>43                                           | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528                                                                                                                                                                                                                       | <b>брос М</b> <sub>год</sub> , т/год  0.0006751  0.0005401  0.0000878  0.0000471                                                                                                                                                                                                                                                                                    |  |
| 0301<br>0304<br>0328<br>0330                                                                                         | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д                                              | оксиды<br>диоксид<br>оксид<br>ажа<br>диоксид                                                                                                                                                                                     | г/кВт.ч<br>10.3<br>0.7<br>1.1                                                              | г/кг топлива<br>43<br>3<br>4.5                               | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972                                                                                                                                                                                                            | брос  М <sub>год</sub> , т/год  0.0006751  0.0005401  0.0000878  0.0000471  0.0000707                                                                                                                                                                                                                                                                               |  |
| 0301<br>0304<br>0328<br>0330<br>0337                                                                                 | Азота<br>Азота <i>ј</i><br>Азота <i>ј</i><br>Са<br>Сера <i>ј</i><br>Углеро               | оксиды<br>диоксид<br>оксид<br>ажа<br>диоксид<br>д оксид                                                                                                                                                                          | г/кВт.ч<br>10.3<br>0.7<br>1.1<br>7.2                                                       | <b>г/кг топлива</b> 43 3 4.5 30                              | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098                                                                                                                                                                                                    | брос  М <sub>год</sub> , т/год  0.0006751  0.0005401  0.0000878  0.0000471  0.0000707                                                                                                                                                                                                                                                                               |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703                                                                         | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а                          | оксиды<br>диоксид<br>оксид<br>ажа<br>диоксид<br>д оксид<br>а)пирен                                                                                                                                                               | г/кВт.ч<br>10.3<br>0.7<br>1.1<br>7.2<br>0.000013                                           | 3<br>4.5<br>30<br>0.000055                                   | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002                                                                                                                                                                                        | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.00000000009                                                                                                                                                                                                                                                                  |  |
| 0301<br>0304<br>0328<br>0330<br>0337                                                                                 | Азота<br>Азота д<br>Азота с<br>Са<br>Сера д<br>Углеро<br>Бенз (а<br>Форма.               | оксиды<br>диоксид<br>і оксид<br>ажа<br>циоксид<br>д оксид<br>а)пирен<br>пьдегид                                                                                                                                                  | г/кВт.ч<br>10.3<br>0.7<br>1.1<br>7.2                                                       | <b>г/кг топлива</b> 43 3 4.5 30                              | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098                                                                                                                                                                                                    | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707                                                                                                                                                                                                                                                                                          |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325                                                                 | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды<br>диоксид<br>оксид<br>ажа<br>диоксид<br>д оксид<br>а)пирен                                                                                                                                                               | 0.7<br>1.1<br>7.2<br>0.000013<br>0.15<br>3.6                                               | 3<br>4.5<br>30<br>0.000055<br>0.6                            | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042                                                                                                                                                                             | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.000000009                                                                                                                                                                                                                                                                    |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325                                                                 | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды<br>диоксид<br>поксид<br>жжа<br>циоксид<br>д оксид<br>а)пирен<br>пьдегид<br>ы пр. С12-С19                                                                                                                                  | 0.7<br>1.1<br>7.2<br>0.000013<br>0.15<br>3.6                                               | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  M <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232                                                                                                                                                         | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.000000009 0.000094 0.0002355 0.001461514                                                                                                                                                                                                                                     |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325                                                                 | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды<br>диоксид<br>оксид<br>эжа<br>диоксид<br>д оксид<br>а)пирен<br>пьдегид<br>ы пр. С12-С19<br>Зсего по источнику:                                                                                                            | 0.7<br>1.1<br>7.2<br>0.000013<br>0.15<br>3.6                                               | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  M <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232                                                                                                                                                         | М <sub>год.</sub> т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.000000009 0.000094 0.0002355 0.001461514                                                                                                                                                                                                                                      |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754                                                         | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды<br>диоксид<br>оксид<br>ажа<br>диоксид<br>д оксид<br>а)пирен<br>пъдегид<br>ы пр. С12-С19<br>Всего по источнику:<br>росов вредных вец                                                                                       | 0.7<br>1.1<br>7.2<br>0.000013<br>0.15<br>3.6                                               | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232 пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с                                                                          | брос           M <sub>год</sub> , т/год           0.0006751           0.0005401           0.0000878           0.0000471           0.0004710           0.000000009           0.00002355           0.001461514           ::           Валовый выброс           М <sub>год</sub> , т/год                                                                               |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754                                                         | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды<br>диоксид<br>о оксид<br>ажа<br>диоксид<br>д оксид<br>а)пирен<br>пъдегид<br>ы пр. С12-С19<br>Всего по источнику:<br>росов вредных вец<br>Наименования                                                                     | г/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6 деств в атмос                                   | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232 пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167                                                               | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.000878 0.0000471 0.0000707 0.0004710 0.000000094 0.0002355 0.001461514 :: Валовый выброс М <sub>год</sub> , т/год 0.0040506                                                                                                                                                                                          |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ                                               | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды<br>диоксид<br>оксид<br>ажа<br>диоксид<br>д оксид<br>а)пирен<br>пъдегид<br>ы пр. С12-С19<br>Всего по источнику:<br>росов вредных вец<br>Наименования<br>Азота оксид                                                        | 7/кВт.ч 10.3  0.7 1.1 7.2 0.000013 0.15 3.6  деств в атмос                                 | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  M <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232 пьных генераторов  Максимально-<br>разовый вы-<br>брос  M <sub>сек</sub> , г/с  0.0841167  0.0672936                                                    | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.00000094 0.0002355 0.001461514 :: Валовый выброс М <sub>год</sub> , т/год 0.0040506 0.0032405                                                                                                                                                                                |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ                                               | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды диоксид оксид ажа диоксид а оксид а)пирен пьдегид ы пр. С12-С19 Всего по источнику: росов вредных вец Наименования Азота оксид Азота оксид                                                                                | 7/кВт.ч 10.3  0.7 1.1 7.2 0.000013 0.15 3.6  деств в атмос                                 | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.0000002  0.0002042  0.0049  0.03039232 пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167  0.0672936  0.010935                                           | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0000878 0.0000471 0.0000707 0.0004710 0.00000094 0.0002355 0.001461514 :: Валовый выброс М <sub>год</sub> , т/год 0.0040506 0.0032405 0.0005266                                                                                                                                                                      |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ                                               | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды диоксид токсид токсид жа диоксид д оксид а)пирен пьдегид ы пр. С12-С19 Всего по источнику: росов вредных вец Наименования Азота оксид Азота оксид Азота оксид Сажа                                                        | 7/кВт.ч 10.3  0.7 1.1 7.2 0.000013 0.15 3.6  деств в атмос                                 | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232  пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167  0.0672936  0.010935  0.0057168                              | брос           М <sub>год</sub> , т/год           0.0006751           0.0005401           0.000878           0.0000471           0.0004710           0.000000009           0.0002355           0.001461514           ::           Валовый выброс           М <sub>год</sub> , т/год           0.0040506           0.0032405           0.0005266           0.0002826 |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ                                               | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды диоксид оксид оксид акка диоксид доксид а)пирен пьдегид ы пр. С12-С19 Всего по источнику: росов вредных вец Наименование Азота оксид Азота оксид Азота оксид Сажа Сера диокси                                             | г/кВт.ч 10.3  0.7 1.1 7.2 0.000013 0.15 3.6  деств в атмос                                 | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.0000002  0.0002042  0.0049  0.03039232  пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167  0.0672936  0.010935  0.0057168  0.0089832                    | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.0005401 0.0000471 0.0000707 0.0004710 0.000000009 0.000094 0.0002355 0.001461514 ::  Валовый выброс М <sub>год</sub> , т/год 0.0040506 0.0032405 0.0005266 0.0002826 0.0004239                                                                                                                                       |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ                                               | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды диоксид токсид токсид жа диоксид д оксид а)пирен пьдегид ы пр. С12-С19 Всего по источнику: росов вредных вец Наименования Азота оксид Азота оксид Азота оксид Сажа Сера диокси                                            | г/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6 деств в атмос                                   | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.0000002  0.0002042  0.0049  0.03039232  пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167  0.0672936  0.010935  0.0057168  0.0089832  0.0588            | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.000878 0.0000471 0.0000707 0.0004710 0.000000094 0.0002355 0.001461514 :  Валовый выброс М <sub>год</sub> , т/год 0.0040506 0.0032405 0.0005266 0.0002826 0.0004239 0.002826                                                                                                                                         |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ  0301<br>0304<br>0328<br>0330<br>0337<br>0703 | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды диоксид токсид токсид жа диоксид доксид доксид доксид доксид доксид доксид доксид а)пирен пьдегид ы пр. С12-С19 Всего по источнику: росов вредных вец  Наименования Азота оксид Азота оксид Сажа Сера диокси Углерод окси | 7/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6  цеств в атмос                                  | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.001825  0.0009528  0.0014972  0.0098  0.00000002  0.0002042  0.0049  0.03039232  пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167  0.0672936  0.010935  0.0057168  0.0089832  0.0588  0.0000001 | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.000878 0.0000471 0.0000707 0.0004710 0.000000009 0.000094 0.0002355 0.001461514 ::  Валовый выброс М <sub>год</sub> , т/год 0.0040506 0.0032405 0.0005266 0.0002826 0.0004239 0.002826 0.000000005                                                                                                                   |  |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703<br>1325<br>2754<br>Код ЗВ                                               | Азота<br>Азота д<br>Азота д<br>Са<br>Сера д<br>Углеро<br>Бенз(а<br>Форма.<br>Углеводород | оксиды диоксид токсид токсид жа диоксид д оксид а)пирен пьдегид ы пр. С12-С19 Всего по источнику: росов вредных вец Наименования Азота оксид Азота оксид Азота оксид Сажа Сера диокси                                            | 7/кВт.ч 10.3 0.7 1.1 7.2 0.000013 0.15 3.6  цеств в атмос                                  | 3<br>4.5<br>30<br>0.000055<br>0.6<br>15                      | разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0140194  0.0112156  0.0018225  0.0009528  0.0014972  0.0098  0.0000002  0.0002042  0.0049  0.03039232  пьных генераторов  Максимально-<br>разовый вы-<br>брос  М <sub>сек</sub> , г/с  0.0841167  0.0672936  0.010935  0.0057168  0.0089832  0.0588            | М <sub>год</sub> , т/год 0.0006751 0.0005401 0.000878 0.0000471 0.0000707 0.0004710 0.000000094 0.0002355 0.001461514 :  Валовый выброс М <sub>год</sub> , т/год 0.0040506 0.0032405 0.0005266 0.0002826 0.0004239 0.002826                                                                                                                                         |  |

| № ИЗА                                 | 1013                                                                                                                                                                                                                                                                                                                           | Наименование источ<br>грязнения атмосфер                                                                                      |                                                                      | Выхлопная труба                      |                                         |                                        |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------|--|--|
| №ИВ                                   | 001                                                                                                                                                                                                                                                                                                                            | Наименование исто<br>деления                                                                                                  |                                                                      |                                      |                                         | Skimmer<br>Desmi Mini-<br>Vac Vacuum   |  |  |
| от стаци                              | Расчеты выбросов выполнены согласно, <b>"Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004</b> , МООС РК, Астана 2005 год. Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле:  • М <sub>сек</sub> =е,*Р₃/3600, г/с |                                                                                                                               |                                                                      |                                      |                                         |                                        |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                | ещества на единицу пол<br>і (таблица 1 или 2):                                                                                |                                                                      | ,                                    | изельной установки                      | на режиме номи-                        |  |  |
| Эксплуат новки:                       | ационная мощно                                                                                                                                                                                                                                                                                                                 | сть стационарной дизе                                                                                                         | ельной уста-                                                         | P <sub>3</sub>                       | 5                                       | кВт                                    |  |  |
| Вал<br>где:<br>q <sub>i</sub> - выбро | ос і-го вредного ве                                                                                                                                                                                                                                                                                                            | вещества за год стацис<br><b>М</b> г<br>ещества, г/кг топлива, пр<br>с учетом совокупности                                    | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000<br>иходящегося | ) <b>, т/год</b><br>на один кг дизел | ьного топлива, при ра                   | аботе стационар-                       |  |  |
| (берется                              | оплива стациона<br>по отчетным дан                                                                                                                                                                                                                                                                                             | рной дизельной устано<br>ным об эксплуатации ус<br>: В <sub>год</sub> =b <sub>э</sub> *k*P <sub>э</sub> *T*10 <sup>-6</sup> : |                                                                      | В <sub>год</sub>                     | 0.0180                                  | т/год                                  |  |  |
| Расход т                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                      | b                                    | 1.72                                    | л/ч                                    |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                      | b                                    | 1.50                                    | кг/ч                                   |  |  |
|                                       | удельный расход                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                      | b₃                                   | 299                                     | г/кВт.ч                                |  |  |
|                                       | ъ дизельного топ                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                      | ρ                                    | 0.87                                    | кг/л                                   |  |  |
|                                       | иент использова                                                                                                                                                                                                                                                                                                                | ния:                                                                                                                          |                                                                      | k                                    | 11                                      |                                        |  |  |
| Время ра                              | іботы:                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                      | T                                    | 12                                      | ч/год                                  |  |  |
| 16                                    |                                                                                                                                                                                                                                                                                                                                | Исходные да                                                                                                                   | нные по исто                                                         | чнику выбросо                        |                                         |                                        |  |  |
| Количест                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                      | N                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ШТ                                     |  |  |
|                                       | вращения вала:                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                      | n                                    | 1500                                    | об/мин                                 |  |  |
| Группа С                              | ДУ:                                                                                                                                                                                                                                                                                                                            | B                                                                                                                             |                                                                      |                                      | Α                                       |                                        |  |  |
| D                                     |                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | і отраоотанні                                                        | ых газов и топл                      |                                         | /-                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                | B, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                            |                                                                      | G <sub>or</sub>                      | 0.013                                   | кг/с<br>°С                             |  |  |
|                                       | тура отходящих га                                                                                                                                                                                                                                                                                                              | 330B:                                                                                                                         |                                                                      | T <sub>or</sub>                      | 450                                     |                                        |  |  |
|                                       | ъ газов при 0°С:                                                                                                                                                                                                                                                                                                               | \                                                                                                                             |                                                                      | γ0 <sub>or</sub>                     | 1.31<br>0.49482                         | КГ/М <sup>3</sup>                      |  |  |
|                                       | ть газов при Т₀г (К                                                                                                                                                                                                                                                                                                            | <u>), γυ₀г/(1+1₀г/273)</u><br>⁻анных газов, <b>Q</b> ₀г= <b>G</b> ₀г/γ₀                                                       |                                                                      | Yor<br>Qor                           | 0.49462                                 | кг/м <sup>3</sup><br>м <sup>3</sup> /с |  |  |
| OOBCINING                             |                                                                                                                                                                                                                                                                                                                                | росов вредных вещес                                                                                                           |                                                                      | -01                                  |                                         |                                        |  |  |
| Код ЗВ                                |                                                                                                                                                                                                                                                                                                                                | нование ЗВ                                                                                                                    | e <sub>i</sub> ,                                                     | q <sub>i</sub> ,                     | Максимально-<br>разовый вы-<br>брос     | Валовый вы-<br>брос                    |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | г/кВт.ч                                                              | г/кг топлива                         | М <sub>сек</sub> , г/с                  | M <sub>год</sub> , т/год               |  |  |
|                                       | Азо                                                                                                                                                                                                                                                                                                                            | та оксиды                                                                                                                     | 10.3                                                                 | 43                                   | 0.01430556                              | 0.00077400                             |  |  |
| 0301                                  |                                                                                                                                                                                                                                                                                                                                | а диоксид                                                                                                                     |                                                                      |                                      | 0.0114444                               | 0.0006192                              |  |  |
| 0304                                  | Азо                                                                                                                                                                                                                                                                                                                            | ота оксид                                                                                                                     |                                                                      |                                      | 0.0018597                               | 0.0001006                              |  |  |
| 0328                                  |                                                                                                                                                                                                                                                                                                                                | Сажа                                                                                                                          | 0.7                                                                  | 3                                    | 0.0009722                               | 0.000054                               |  |  |
| 0330                                  | Сер                                                                                                                                                                                                                                                                                                                            | а диоксид                                                                                                                     | 1.1                                                                  | 4.5                                  | 0.0015278                               | 0.000081                               |  |  |
| 0337                                  | Угле                                                                                                                                                                                                                                                                                                                           | род оксид                                                                                                                     | 7.2                                                                  | 30                                   | 0.01                                    | 0.00054                                |  |  |
| 0703                                  | Бен                                                                                                                                                                                                                                                                                                                            | з(а)пирен                                                                                                                     | 0.000013                                                             | 0.000055                             | 0.00000002                              | 0.000000001                            |  |  |
| 1325                                  |                                                                                                                                                                                                                                                                                                                                | мальдегид                                                                                                                     | 0.15                                                                 | 0.6                                  | 0.0002083                               | 0.0000108                              |  |  |
| 2754                                  | Углеводор                                                                                                                                                                                                                                                                                                                      | оды пр. С12-С19                                                                                                               | 3.6                                                                  | 15                                   | 0.005                                   | 0.00027                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                | Всего по источнику:                                                                                                           |                                                                      |                                      | 0.03101242                              | 0.001675601                            |  |  |

| № ИЗА | 1014                                                                                             | Наименование источника за-<br>грязнения атмосферы | Выхлопная труба     |                     |  |  |
|-------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|---------------------|--|--|
| № ИВ  | 001                                                                                              | Наименование источника вы-<br>деления             | Дизельный генератор | Power Pack<br>Desmi |  |  |
| Pad   | Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу |                                                   |                     |                     |  |  |

расчеты выоросов выполнены согласно, "методики расчета выоросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.

Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:

М<sub>сек</sub>=е<sub>і</sub>\*Р<sub>э</sub>/3600, г/с

е<sub>і</sub> - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: P<sub>э</sub> 5.6 кВт

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:  $\mathbf{M}_{\text{год}} = \mathbf{q}_i ^* \mathbf{B}_{\text{год}} / 1000$ ,  $\mathbf{\tau} / \text{год}$ 

|                              | с і-го вредного вещества, г/кг топлива, прі<br>пьной установки с учетом совокупности р<br>и 4)·                                                                                            |                  |                    |                                     |                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-------------------------------------|--------------------------|
| расход то<br>рется по        | и ч).<br>плива стационарной дизельной установк<br>отчетным данным об эксплуатации уст<br>ется по формуле: <b>В</b> <sub>год</sub> = <b>b</b> ₃* <b>k*P</b> ₃* <b>T*10</b> - <sup>6</sup> : | В <sub>год</sub> | 0.0188             | т/год                               |                          |
| Расход то                    | оппива:                                                                                                                                                                                    |                  | b                  | 1.8                                 | л/ч                      |
|                              |                                                                                                                                                                                            |                  | b                  | 1.566                               | кг/ч                     |
|                              | удельный расход топлива:                                                                                                                                                                   |                  | b <sub>9</sub>     | 280                                 | г/кВт.ч                  |
|                              | ь дизельного топлива:                                                                                                                                                                      |                  | ρ                  | 0.87                                | кг/л                     |
| Время ра                     | иент использования:                                                                                                                                                                        |                  | k<br>T             | <u> </u>                            | 11/505                   |
| время рас                    |                                                                                                                                                                                            | JULIA DA MCTAL   | <br>нику выбросов  |                                     | ч/год                    |
| Количест                     |                                                                                                                                                                                            | THERE ITO MCTO   | лику выоросов<br>N | 10                                  | шт                       |
|                              | ращения вала:                                                                                                                                                                              |                  | n                  | 1500                                | об/мин                   |
| Группа СД                    |                                                                                                                                                                                            |                  | 11                 | A                                   | OO/WIVIT1                |
| r pyrma oz                   | Расчет расхода                                                                                                                                                                             | отработанны      | х газов и топли    |                                     | ı                        |
| Расход от                    | гработанных газов, <b>G</b> <sub>or</sub> = <b>8.72*10</b> <sup>-6*</sup> <b>b</b> <sub>3</sub> * <b>P</b> <sub>3</sub>                                                                    |                  | G <sub>or</sub>    | 0.014                               | кг/с                     |
|                              | ура отходящих газов:                                                                                                                                                                       |                  | Tor                | 450                                 | °C                       |
|                              | ь газов при 0°С:                                                                                                                                                                           |                  | γ0 <sub>or</sub>   | 1.31                                | кг/м <sup>3</sup>        |
|                              | ь газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+Т <sub>ог</sub> /273)                                                                                                         |                  | <b>У</b> ог        | 0.49482                             | кг/м <sup>3</sup>        |
|                              | й расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>y</b> <sub>or</sub>                                                                                      |                  | Q <sub>or</sub>    | 0.0276                              | м <sup>3</sup> /с        |
|                              | Расчет выбросов вредных вещест                                                                                                                                                             |                  | ру от одного ди    | зельного генератор                  | oa:                      |
| Код ЗВ                       | Наименование ЗВ                                                                                                                                                                            | e <sub>i</sub> , | q <sub>i</sub> ,   | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                              |                                                                                                                                                                                            | г/кВт.ч          | г/кг топлива       | Мсек, г/с                           | М <sub>год</sub> , т/год |
|                              | Азота оксиды                                                                                                                                                                               | 10.3             | 43                 | 0.0160222                           | 0.0008084                |
| 0301                         | Азота диоксид                                                                                                                                                                              |                  |                    | 0.0128178                           | 0.0006467                |
| 0304                         | Азота оксид                                                                                                                                                                                |                  |                    | 0.0020829                           | 0.0001051                |
| 0328                         | Сажа                                                                                                                                                                                       | 0.7              | 3                  | 0.0010889                           | 0.0000564                |
| 0330                         | Сера диоксид                                                                                                                                                                               | 1.1              | 4.5                | 0.0017111                           | 0.0000846                |
| 0337                         | Углерод оксид                                                                                                                                                                              | 7.2              | 30                 | 0.0112                              | 0.0005640                |
| 0703                         | Бенз(а)пирен                                                                                                                                                                               | 0.000013         | 0.000055           | 0.00000002                          | 0.0000000010             |
| 1325                         | Формальдегид                                                                                                                                                                               | 0.15             | 0.6                | 0.0002333                           | 0.0000113                |
| 2754                         | Углеводороды пр. С12-С19                                                                                                                                                                   | 3.6              | 15                 | 0.0056                              | 0.0002820                |
|                              | Всего по источнику:<br>Расчет выбросов вредных вещес                                                                                                                                       | тв в атмосфа     | nv от 10-ти пиза   | 0.03473402                          | 0.001750093              |
| Код ЗВ                       | Наименование                                                                                                                                                                               | •                | ру от то-ти дизс   | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                              |                                                                                                                                                                                            |                  |                    | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                              | Азота оксидь                                                                                                                                                                               | ol               |                    | 0.1602222                           | 0.008084                 |
| 0301                         | Азота диокси                                                                                                                                                                               |                  |                    | 0.128178                            | 0.0064672                |
|                              |                                                                                                                                                                                            |                  |                    | 0.020829                            | 0.0010509                |
| 0304                         |                                                                                                                                                                                            |                  |                    | 0.010889                            | 0.000564                 |
| 0328                         |                                                                                                                                                                                            |                  |                    |                                     |                          |
| 0328<br>0330                 | Сера диокси                                                                                                                                                                                |                  |                    | 0.017111                            | 0.000846                 |
| 0328<br>0330<br>0337         | Сера диокси<br>Углерод окси                                                                                                                                                                | ІД               |                    | 0.112                               | 0.00564                  |
| 0328<br>0330<br>0337<br>0703 | Сера диокси<br>Углерод окси<br>Бенз(а)пире                                                                                                                                                 | IД<br>Н          |                    | 0.112<br>0.0000002                  | 0.00564<br>0.00000001    |
| 0328<br>0330<br>0337         | Сера диокси<br>Углерод окси                                                                                                                                                                | IД<br>Н<br>IД    |                    | 0.112                               | 0.00564                  |

| №<br>ИЗА | 1015                                                                                 | Наименование источника за-<br>грязнения атмосферы | Выхлопная труба                           |                |  |  |  |
|----------|--------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------|--|--|--|
| №ИВ      | 001                                                                                  | Наименование источника вы-<br>деления             | Дизельный генератор Yanmar YDG<br>5500E-E |                |  |  |  |
|          |                                                                                      | ыполнены согласно, <b>"Методики расч</b> е        |                                           | тв в атмосферу |  |  |  |
| от стаци | от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год. |                                                   |                                           |                |  |  |  |
| Ma       | ксимальный выбр                                                                      | ос і-го вещества стационарной дизель              | ьной установки определяется по фор        | муле:          |  |  |  |

М<sub>сек</sub>=e<sub>i</sub>\*P<sub>э</sub>/3600, г/с

е<sub>і</sub> - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки:

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: М<sub>год</sub>=q<sub>i</sub>\*B<sub>год</sub>/1000, т/год

|           | ос і-го вредного вещества, г/кг топлива, пр                                                                                                            |                       |                  |                                     |                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------|--------------------------|
|           | льной установки с учетом совокупности                                                                                                                  | режимов, сост         | авляющих экспл   | уатационный цикл, г                 | /кг топлива (таб-        |
| лица 3 ил |                                                                                                                                                        |                       | 1                |                                     | 1                        |
| рется по  | оплива стационарной дизельной установк<br>отчетным данным об эксплуатации ус<br>нется по формуле: <b>В<sub>год</sub>=b₃*k*P₃*T*10</b> - <sup>6</sup> : | В <sub>год</sub>      | 0.0287           | т/год                               |                          |
|           |                                                                                                                                                        |                       | b                | 2                                   | л/ч                      |
| Расход то | оплива:                                                                                                                                                |                       | b                | 1.74                                | кг/ч                     |
| Средний   | удельный расход топлива:                                                                                                                               |                       | b₃               | 268                                 | г/кВт.ч                  |
| Плотност  | гь дизельного топлива:                                                                                                                                 |                       | ρ                | 0.87                                | кг/л                     |
|           | циент использования:                                                                                                                                   |                       | k                | 1                                   |                          |
| Время ра  | аботы:                                                                                                                                                 |                       | T                | 57.6                                | ч/год                    |
|           | Исходные да                                                                                                                                            | нные по исто          | чнику выбросо    |                                     |                          |
| Количест  | BO:                                                                                                                                                    |                       | N                | 4                                   | ШТ                       |
|           | вращения вала:                                                                                                                                         |                       | n                | 1500                                | об/мин                   |
| Группа С  |                                                                                                                                                        |                       |                  | Α                                   |                          |
|           | Расчет расхода                                                                                                                                         | я отработанн <u>ь</u> |                  |                                     | T                        |
|           | тработанных газов, <b>G</b> <sub>or</sub> = 8.72*10 <sup>-6</sup> * <b>b</b> <sub>3</sub> * <b>P</b> <sub>3</sub>                                      |                       | G <sub>or</sub>  | 0.015                               | кг/с                     |
|           | тура отходящих газов:                                                                                                                                  |                       | Тог              | 450                                 | °C                       |
|           | гь газов при 0°С:                                                                                                                                      |                       | γ0 <sub>or</sub> | 1.31                                | кг/м <sup>3</sup>        |
|           | ть газов при Т <sub>ог</sub> (K), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)                                                                           |                       | <b>У</b> ог      | 0.49482                             | кг/м <sup>3</sup>        |
| Объемнь   | ый расход отработанных газов, <b>Q</b> ₀г <b>=G</b> ₀г <b>/γ</b> ₀г                                                                                    |                       | Q <sub>or</sub>  | 0.0307                              | м <sup>3</sup> /с        |
|           | Расчет выбросов вредных вещес                                                                                                                          | <u>тв в атмосфе</u>   | ру от одного ди  | зельного генерато                   | pa:                      |
| Код<br>3В | Наименование ЗВ                                                                                                                                        | e <sub>i</sub> ,      | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                                                                                                                        | г/кВт.ч               | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды                                                                                                                                           | 10.3                  | 43               | 0.0185972                           | 0.0012345                |
| 0301      | Азота диоксид                                                                                                                                          |                       |                  | 0.0148778                           | 0.0009876                |
| 0304      | Азота оксид                                                                                                                                            |                       |                  | 0.0024176                           | 0.0001605                |
| 0328      | Сажа                                                                                                                                                   | 0.7                   | 3                | 0.0012639                           | 0.0000861                |
| 0330      | Сера диоксид                                                                                                                                           | 1.1                   | 4.5              | 0.0019861                           | 0.0001292                |
| 0337      | Углерод оксид                                                                                                                                          | 7.2                   | 30               | 0.013                               | 0.0008613                |
| 0703      | Бенз(а)пирен                                                                                                                                           | 0.000013              | 0.000055         | 0.00000002                          | 0.0000000016             |
| 1325      | Формальдегид                                                                                                                                           | 0.15                  | 0.6              | 0.0002708                           | 0.0000172                |
| 2754      | Углеводороды пр. С12-С19                                                                                                                               | 3.6                   | 15               | 0.0065                              | 0.0004307                |
|           | Всего по источнику:                                                                                                                                    |                       |                  | 0.04031622                          | 0.002672615              |
| -         | Расчет выбросов вредных веще                                                                                                                           | еств в атмосф         | еру от 4-х дизе  | льных генераторов                   | 1                        |
| Код<br>3В | Наименование                                                                                                                                           | e 3B                  |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                                                                                                                        |                       |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиді                                                                                                                                           | Ы                     |                  | 0.0743889                           | 0.0049381                |
| 0301      | Азота диокси                                                                                                                                           | 1Д                    | •                | 0.0595112                           | 0.0039505                |
| 0304      |                                                                                                                                                        |                       |                  | 0.0096704                           | 0.000642                 |
| 0328      | Сажа                                                                                                                                                   |                       |                  | 0.0050556                           | 0.0003445                |
| 0330      | Сера диокси                                                                                                                                            |                       |                  | 0.0079444                           | 0.0005168                |
| 0337      | 1                                                                                                                                                      |                       |                  | 0.052                               | 0.0034452                |
| 0703      | Бенз(а)пире                                                                                                                                            |                       |                  | 0.00000008                          | 0.000000006              |
| 1325      | Формальдеги                                                                                                                                            | • •                   |                  | 0.0010832                           | 0.0000689                |
| 2754      | Углеводороды пр. (                                                                                                                                     |                       |                  | 0.026                               | 0.0017226                |
|           | Всего по источнику:                                                                                                                                    | •                     |                  | 0.16126488                          | 0.010690506              |

| №<br>ИЗА        | 1016                                                                                                                                                                                                                                                                                                                                           | Наименование источника за-<br>грязнения атмосферы        | Выхлопная труба                         |                     |                 |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|---------------------|-----------------|--|--|--|
| №ИВ             | 001                                                                                                                                                                                                                                                                                                                                            | Наименование источника вы-<br>деления                    | Дизельный генератор Power Pack<br>Desmi |                     |                 |  |  |  |
| от стаци        | Расчеты выбросов выполнены согласно, <b>"Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004</b> , МООС РК, Астана 2005 год. Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: $M_{cek}$ =e <sub>i</sub> *P <sub>3</sub> /3600, г/с |                                                          |                                         |                     |                 |  |  |  |
| еі - выбр       |                                                                                                                                                                                                                                                                                                                                                | ещества на единицу полезной работь<br>(таблица 1 или 2): | і стационарной ,                        | дизельной установки | на режиме номи- |  |  |  |
| Эксплуат новки: | Эксплуатационная мощность стационарной дизельной уста-                                                                                                                                                                                                                                                                                         |                                                          |                                         |                     |                 |  |  |  |
| Ва.             | Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:<br>М <sub>год</sub> =q;*В <sub>год</sub> /1000, т/год                                                                                                                                                                                           |                                                          |                                         |                     |                 |  |  |  |

| лица 3 ил            | льной установки с учетом совокупности<br>пи 4):                                                                                               | режимов, сос     | тавляющих экспл  | іуатационный цикл,                  | г/кг топлива (тас        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
| расход т<br>(берется | оплива стационарной дизельной устан по отчетным данным об эксплуатации услется по формуле: <b>В</b> год= <b>b₃*k*P₃*T*10</b> - <sup>6</sup> : | В <sub>год</sub> | 0.1002           | т/год                               |                          |
| Расход т             |                                                                                                                                               |                  | b                | 2                                   | л/ч                      |
| гасход п             | оплива.                                                                                                                                       |                  | b                | 1.74                                | кг/ч                     |
|                      | удельный расход топлива:                                                                                                                      |                  | b₃               | 256                                 | г/кВт.ч                  |
|                      | гь дизельного топлива:                                                                                                                        |                  | ρ                | 0.87                                | кг/л                     |
|                      | циент использования:                                                                                                                          |                  | k                | 1                                   |                          |
| Время ра             |                                                                                                                                               |                  | <u> </u>         | 57.6                                | ч/год                    |
|                      |                                                                                                                                               | анные по исто    | очнику выбросс   |                                     | 1                        |
| Количест             |                                                                                                                                               |                  | N                | 21                                  | ШТ                       |
|                      | вращения вала:                                                                                                                                |                  | n                | 1500                                | об/мин                   |
| Группа С             | •                                                                                                                                             |                  |                  | A                                   |                          |
|                      |                                                                                                                                               | а отработанн     | ых газов и топл  |                                     | ,                        |
|                      | тработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                            |                  | G <sub>or</sub>  | 0.015                               | кг/с                     |
|                      | тура отходящих газов:                                                                                                                         |                  | T <sub>or</sub>  | 450                                 | <sup>0</sup> C           |
|                      | гь газов при 0°С:                                                                                                                             |                  | γ0 <sub>or</sub> | 1.31                                | кг/м <sup>3</sup>        |
|                      | гь газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+Т <sub>ог</sub> /273)                                                           |                  | <b>У</b> ог      | 0.49482                             | кг/м <sup>3</sup>        |
| Ооъемнь              | ый расход отработанных газов, <b>Q</b> ог <b>=G</b> ог/ <b>ү</b>                                                                              |                  | Q <sub>or</sub>  | 0.0307                              | м <sup>3</sup> /с        |
| 1                    | Расчет выбросов вредных веще                                                                                                                  | ств в атмосфо    | еру от одного ді | изельного генерато                  | pa:                      |
| Код<br>3В            | Наименование ЗВ                                                                                                                               | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы<br>брос       |
|                      |                                                                                                                                               | - , _            | ,                |                                     |                          |
|                      | A                                                                                                                                             | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с<br>0.0194556 | М <sub>год</sub> , т/год |
| 0301                 | Азота оксиды                                                                                                                                  | 10.3             | 43               | 0.0155644                           | 0.0043086<br>0.0034469   |
| 0301                 | Азота диоксид                                                                                                                                 |                  |                  |                                     | 0.0034469                |
| 0304                 | Азота оксид<br>Сажа                                                                                                                           | 0.7              | 3                | 0.0025292<br>0.0013222              | 0.0003001                |
| 0320                 | Сажа Сера диоксид                                                                                                                             | 1.1              | 4.5              | 0.0013222                           | 0.0003000                |
| 0337                 | Углерод оксид                                                                                                                                 | 7.2              | 30               | 0.0020778                           | 0.0030060                |
| 0703                 | Уперод оксид<br>Бенз(а)пирен                                                                                                                  | 0.000013         | 0.000055         | 0.0000002                           | 0.0000000055             |
| 1325                 | <u> </u>                                                                                                                                      | 0.000013         | 0.000055         | 0.0000002                           | 0.000000055              |
| 2754                 | Углеводороды пр. С12-С19                                                                                                                      | 3.6              | 15               | 0.0002833                           | 0.0015030                |
| 2134                 | Утлеводороды пр. Ст2-Ст9<br>Всего по источнику                                                                                                |                  | 13               | 0.04217692                          | 0.0013030                |
|                      |                                                                                                                                               |                  | ODY OT 21 TO THE |                                     |                          |
| Код<br>3В            | Расчет выбросов вредных веществ в атмосферу от 21-го диз<br>Наименование 3В                                                                   |                  |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы<br>брос       |
|                      |                                                                                                                                               |                  | ļ                | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|                      | Азота оксид                                                                                                                                   | Ы                |                  | 0.4085667                           | 0.0904806                |
| 0301                 | Азота диоксі                                                                                                                                  |                  |                  | 0.3268524                           | 0.0723845                |
| 0304                 | Азота оксид                                                                                                                                   | 0.0531132        | 0.0117625        |                                     |                          |
| 0328                 | Сажа                                                                                                                                          |                  |                  | 0.0277662                           | 0.0063126                |
| 0330                 | Сера диокси                                                                                                                                   |                  |                  | 0.0436338                           | 0.0094689                |
| 0337                 | Углерод окс                                                                                                                                   | ид               |                  | 0.2856                              | 0.063126                 |
| 0703                 | Бенз(а)пире                                                                                                                                   |                  |                  | 0.0000004                           | 0.000001                 |
| 1325                 | Формальдег                                                                                                                                    |                  |                  | 0.0059493                           | 0.0012625                |
|                      | Углеводороды пр.                                                                                                                              | C12-C19          |                  | 0.1428                              | 0.031563                 |
| 2754                 | этпеводороды пр.                                                                                                                              | 012 010          | l.               |                                     |                          |

| № ИЗА    | 1017                                                                                 | Наименование источника за-<br>грязнения атмосферы | Выхлопная труба                    |                       |  |  |
|----------|--------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|-----------------------|--|--|
| №ИВ      | 001                                                                                  | Наименование источника вы-<br>деления             | Дизельный генератор                | Karcher HDS<br>1000DE |  |  |
| Pa       | счеты выбросов ві                                                                    | ыполнены согласно, <b>"Методики расч</b> е        | ета выбросов загрязняющих вещес    | тв в атмосферу        |  |  |
| от стаци | от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год. |                                                   |                                    |                       |  |  |
| Ma       | ксимальный выбр                                                                      | ос і-го вещества стационарной дизелі              | ьной установки определяется по фор | муле:                 |  |  |

М<sub>сек</sub>=e<sub>i</sub>\*Р₃/3600, г/с

е<sub>і</sub> - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт\*ч (таблица 1 или 2):

Эксплуатационная мощность стационарной дизельной установки: P<sub>э</sub> 7 кВт

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: М<sub>год</sub>=q<sub>i</sub>\*B<sub>год</sub>/1000, т/год

|                                      | ос i-го вредного вещества, г/кг топлива, пр<br>пъной установки с учетом совокупности                                                                    |                           |                                      |                                                                                     |                                                                                          |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| лица 3 ил                            |                                                                                                                                                         | режимов, сост             | авляющих эксп                        | туатационный цикл,                                                                  | I/KI TOTIJIVIBA (TAO-                                                                    |
| расход т<br>(берется                 | ).<br>гоплива стационарной дизельной устан<br>по отчетным данным об эксплуатации ус<br>яется по формуле: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> : | В <sub>год</sub>          | 0.0209                               | т/год                                                                               |                                                                                          |
| Расход т                             | оппива:                                                                                                                                                 |                           | b                                    | 2                                                                                   | л/ч                                                                                      |
|                                      |                                                                                                                                                         |                           | b                                    | 1.74                                                                                | кг/ч                                                                                     |
|                                      | удельный расход топлива:                                                                                                                                |                           | b₃                                   | 249                                                                                 | г/кВт.ч                                                                                  |
|                                      | гь дизельного топлива:                                                                                                                                  |                           | ρ                                    | 0.87                                                                                | кг/л                                                                                     |
|                                      | циент использования:                                                                                                                                    |                           | k                                    | 1                                                                                   |                                                                                          |
| Время ра                             |                                                                                                                                                         |                           |                                      | 12                                                                                  | ч/год                                                                                    |
| 1/                                   |                                                                                                                                                         | нные по исто              | чнику выбросо                        |                                                                                     |                                                                                          |
| Количест                             |                                                                                                                                                         |                           | N                                    | 6                                                                                   | ШТ                                                                                       |
|                                      | вращения вала:                                                                                                                                          |                           | n                                    | 1500                                                                                | об/мин                                                                                   |
| Группа С                             | • •                                                                                                                                                     |                           |                                      | A                                                                                   |                                                                                          |
| Dooyer :                             |                                                                                                                                                         | а отраоотанні             | ых газов и топл                      |                                                                                     | 1570                                                                                     |
|                                      | тработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                                                      |                           | G <sub>or</sub>                      | 0.015                                                                               | кг/с                                                                                     |
|                                      | тура отходящих газов:                                                                                                                                   |                           | T <sub>or</sub>                      | 450                                                                                 | <sup>0</sup> C                                                                           |
|                                      | гь газов при 0°С:                                                                                                                                       |                           | γ0 <sub>or</sub>                     | 1.31                                                                                | кг/м <sup>3</sup>                                                                        |
|                                      | ть газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+Т <sub>ог</sub> /273)                                                                     |                           | <b>У</b> ог                          | 0.49482                                                                             | кг/м <sup>3</sup>                                                                        |
| Ооъемнь                              | ый расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> /γ <sub>o</sub>                                                           |                           | Q <sub>or</sub>                      | 0.0307                                                                              | м <sup>3</sup> /с                                                                        |
| Код                                  | Расчет выбросов вредных вещес                                                                                                                           | е <sub>і</sub> ,          | еру от одного да<br>q <sub>i</sub> , | Максимально-<br>разовый вы-                                                         | Валовый вы-                                                                              |
| 3B                                   | Наименование ЗВ                                                                                                                                         | 01,                       | 41,                                  | брос                                                                                | брос                                                                                     |
|                                      |                                                                                                                                                         | г/кВт.ч                   | г/кг топлива                         | М <sub>сек</sub> , г/с                                                              | М <sub>год</sub> , т/год                                                                 |
|                                      | Азота оксиды                                                                                                                                            | 10.3                      | 43                                   | 0.0200278                                                                           | 0.0008987                                                                                |
| 0301                                 | Азота диоксид                                                                                                                                           |                           |                                      | 0.0160222                                                                           | 0.0007190                                                                                |
| 0304                                 | Азота оксид                                                                                                                                             |                           |                                      | 0.0026036                                                                           | 0.0001168                                                                                |
| 0328                                 | Сажа                                                                                                                                                    | 0.7                       | 3                                    | 0.0013611                                                                           | 0.0000627                                                                                |
| 0330                                 | Сера диоксид                                                                                                                                            | 1.1                       | 4.5                                  | 0.0021389                                                                           | 0.0000941                                                                                |
| 0337                                 | Углерод оксид                                                                                                                                           | 7.2                       | 30                                   | 0.014                                                                               | 0.0006270                                                                                |
| 0703                                 | Бенз(а)пирен                                                                                                                                            | 0.000013                  | 0.000055                             | 0.0000003                                                                           | 0.000000011                                                                              |
| 1325                                 | Формальдегид                                                                                                                                            | 0.15                      | 0.6                                  | 0.0002917                                                                           | 0.0000125                                                                                |
| 2754                                 | Углеводороды пр. С12-С19                                                                                                                                | 3.6                       | 15                                   | 0.007                                                                               | 0.0003135                                                                                |
|                                      | Всего по источнику:                                                                                                                                     | :                         |                                      | 0.04341753                                                                          | 0.001945582                                                                              |
|                                      | Расчет выбросов вредных веще                                                                                                                            | ств в атмосф              | еру от 6-ти диз                      | ельных генераторо                                                                   | в:                                                                                       |
| Код<br>3В                            | Наименование 3В                                                                                                                                         |                           |                                      | Максимально-<br>разовый вы-<br>брос                                                 | Валовый вы-<br>брос                                                                      |
|                                      |                                                                                                                                                         |                           |                                      | NA -/-                                                                              | M T/505                                                                                  |
|                                      |                                                                                                                                                         |                           |                                      | M <sub>сек</sub> , г/с                                                              | М <sub>год</sub> , т/год                                                                 |
|                                      | Азота оксид                                                                                                                                             | Ы                         |                                      | М <sub>сек</sub> , г/с<br>0.1201667                                                 | 0.0053922                                                                                |
| 0301                                 | Азота оксид<br>Азота диокси                                                                                                                             |                           |                                      | М <sub>сек</sub> , г/с<br>0.1201667<br>0.0961332                                    | 0.0053922<br>0.0043138                                                                   |
| 0301<br>0304                         |                                                                                                                                                         | ид                        |                                      | 0.1201667                                                                           | 0.0053922                                                                                |
|                                      | Азота диокс                                                                                                                                             | ид                        |                                      | 0.1201667<br>0.0961332                                                              | 0.0053922<br>0.0043138                                                                   |
| 0304                                 | Азота диокси<br>Азота оксид                                                                                                                             | <u>ид</u><br>Ц            |                                      | 0.1201667<br>0.0961332<br>0.0156216                                                 | 0.0053922<br>0.0043138<br>0.000701                                                       |
| 0304<br>0328                         | Азота диокси<br>Азота оксид<br>Сажа<br>Сера диокси<br>Углерод окси                                                                                      | ИД<br><u>Д</u><br>ИД      |                                      | 0.1201667<br>0.0961332<br>0.0156216<br>0.0081666                                    | 0.0053922<br>0.0043138<br>0.000701<br>0.0003762                                          |
| 0304<br>0328<br>0330                 | Азота диоксі<br>Азота оксид<br>Сажа<br>Сера диокси                                                                                                      | ИД<br><u>Д</u><br>ИД      |                                      | 0.1201667<br>0.0961332<br>0.0156216<br>0.0081666<br>0.0128334                       | 0.0053922<br>0.0043138<br>0.000701<br>0.0003762<br>0.0005643                             |
| 0304<br>0328<br>0330<br>0337         | Азота диокси<br>Азота оксид<br>Сажа<br>Сера диокси<br>Углерод окси                                                                                      | ИД<br>Ц<br>ИД<br>ИД       |                                      | 0.1201667<br>0.0961332<br>0.0156216<br>0.0081666<br>0.0128334<br>0.084              | 0.0053922<br>0.0043138<br>0.000701<br>0.0003762<br>0.0005643<br>0.003762                 |
| 0304<br>0328<br>0330<br>0337<br>0703 | Азота диоксі<br>Азота оксид<br>Сажа<br>Сера диокси<br>Углерод оксі<br>Бенз(а)пире                                                                       | ИД<br>Д<br>ИД<br>ИД<br>ВН |                                      | 0.1201667<br>0.0961332<br>0.0156216<br>0.0081666<br>0.0128334<br>0.084<br>0.0000002 | 0.0053922<br>0.0043138<br>0.000701<br>0.0003762<br>0.0005643<br>0.003762<br>0.0000000007 |

| № ИЗА                  | 1018                                                                                           | Наименование источника за-<br>грязнения атмосферы      | Выхлопная т                                              | руба                |                         |  |
|------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------|-------------------------|--|
| №ИВ                    | 001                                                                                            | Наименование источника<br>выделения                    | Дизельный генератор осве-<br>тительной мачты Towers LT6K |                     | Lighting<br>Towers LT6K |  |
| Pac                    | четы выбросов выг                                                                              | олнены согласно, "Методики расч                        | ета выбросов з                                           | агрязняющих веще    | ств в атмосферу         |  |
| от стацио              | онарных дизельні                                                                               | ых установок" РНД 211.2.02.04-200                      | <b>)4</b> , MOOC PK, Ad                                  | тана 2005 год.      |                         |  |
|                        |                                                                                                | с і-го вещества стационарной дизел                     |                                                          |                     | рмуле:                  |  |
|                        | •                                                                                              | M <sub>cek</sub> =e <sub>i</sub> *P <sub>3</sub> /3600 |                                                          |                     | ,                       |  |
| где:                   |                                                                                                |                                                        |                                                          |                     |                         |  |
| e <sub>i</sub> - выбро | с і-го вредного вец                                                                            | цества на единицу полезной работь                      | стационарной д                                           | цизельной установки | на режиме номи-         |  |
| нальной м              | мощности, г/кВт*ч ( <sup>-</sup>                                                               | габлица 1 или 2):                                      |                                                          | -                   |                         |  |
| Эксплуата              | Эксплуатационная мощность стационарной дизельной уста-                                         |                                                        |                                                          |                     |                         |  |
| новки:                 | P <sub>2</sub> 1 704 1 KBT                                                                     |                                                        |                                                          |                     |                         |  |
| Ваг                    | Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: |                                                        |                                                          |                     |                         |  |
|                        | М <sub>гол</sub> =q,*В <sub>гол</sub> /1000, т/год                                             |                                                        |                                                          |                     |                         |  |

| ной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, лица 3 или 4):  расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: Вгод=b₃*k*P₃*T*10-6:  Расход топлива:  □ b 4 □ b 3.48 □ b 3.48 □ cредний удельный расход топлива: □ b 3.48 □ cредний удельный расход топлива: □ c 0.87 □ c 0.030 □ c 0.0613 □ c | т/год л/ч кг/ч г/кВт.ч кг/л ч/год шт об/мин кг/с °С кг/м³ кг/м³ кг/м³      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: Вгод=Вэ*k*Pэ*T*10*6:  Расход топлива:  В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | л/ч кг/ч г/кВт.ч кг/л ч/год шт об/мин  кг/с °С кг/м³ кг/м³ кг/м³ м³/с рра: |
| Расход топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | кг/ч г/кВт.ч кг/л ч/год шт об/мин кг/с °С кг/м³ кг/м³ м³/с                 |
| В 3.48  Средний удельный расход топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Г/кВт.ч кг/л ч/год шт об/мин кг/с °С кг/м³ кг/м³ м³/с                      |
| Плотность дизельного топлива:         ρ         0.87           Коэффициент использования:         k         1           Время работы:         Т         12           Исходные данные по источнику выбросов           Количество:         N         6           Частота вращения вала:         n         1500           Группа СДУ:         A           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов;         Т <sub>or</sub> 450           Плотность газов при 0°C:         γ0 <sub>or</sub> 1.31           Плотность газов при T <sub>or</sub> (K), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)         γ <sub>or</sub> 0.49482           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /γ <sub>or</sub> Q <sub>or</sub> 0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           Код 3В         Наименование 3В         e <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , Mаксимально-разовый выброс           Код 3В         Наименование 3В         e <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , Mаксимально-разовый выброс           Код 3В         Наименование 3В         e <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , Mаксимально-разовый выброс           Код 3В         Наименование 3В         e <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> Максимально-разовый выброс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | кг/л ч/год ШТ об/мин  кг/с °С кг/м³ кг/м³ кг/м³                            |
| Коэффициент использования:         k         1           Исходные данные по источнику выбросов           Количество:         N         6           Частота вращения вала:         n         1500           Ресчет расхода отработанных газов и топлива           Расчет расхода отработанных газов и топлива           Расход отработанных газов, Gor = 8.72*10 <sup>-6*</sup> b₃*P₃         Gor         0.030           Температура отходящих газов:         Tor         450           Плотность газов при 0°C:         y0₀r         1.31           Плотность газов при 0°C:         y0₀r         0.49482           Объемный расход отработанных газов, Qor=Gor/Yor         Qor         0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           Код 3В         Наименование 3В         ei,         qi,         Максимальноразовый выброс           код 3В         Наименование 3В         ei,         qi,         Максимального генерато           Код 3В         Наименование 3В         ei,         qi,         Максимального генерато           Код 3В         Наименование 3В         ei,         qi,         п/квт.ч топлива           Код 3В         Наименование 3В         ei,         qi,         п/квт.ч топ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ч/год  шт об/мин  кг/с °С кг/м³ кг/м³ м³/с                                 |
| Исходные данные по источнику выбросов           Количество:         N         6           Частота вращения вала:         n         1500           Группа СДУ:         A           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         Т <sub>or</sub> 450           Плотность газов при 0°C:         y0₀r         1.31           Плотность газов при T₀r (К), y0₀r/(1+T₀r/273)         y₀r         0.49482           Объемный расход отработанных газов, Q₀r=G₀r/y₀r         Q₀r         0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           код 3В         Наименование 3В         ei,         qi,         Максимально-разовый выборос           Г/кВт.ч         г/кг топлива         Мосек, г/с           Азота оксиды         10.3         43         0.0201422           0301         Азота оксиды         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | шт об/мин кг/с °C кг/м³ кг/м³ м³/с                                         |
| Исходные данные по источнику выбросов           Количество:         N         6           Частота вращения вала:         n         1500           Группа СДУ:         A           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         T <sub>or</sub> 450           Плотность газов при 0°C:         y0₀r         1.31           Плотность газов при T₀r (K), y0₀r/(1+T₀r/273)         y₀r         0.49482           Объемный расход отработанных газов, Q₀r=G₀r/y₀r         Q₀r         0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           код 3В         Наименование 3В         ei,         qi,         Максимально-разовый выборос           код 3В         Наименование 3В         на укт топлива         Мосек, г/с           Вазовый выборос         г/кВт.ч         г/кг топлива         мосек, г/с           Вазовый выборос         по топлива         по топлива         по топлива           Вазовый выборос         по топлива         по топлива         по топлива           Вазовый выборос         по топлива         по топлива         по топлива                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | шт об/мин кг/с °C кг/м³ кг/м³ м³/с                                         |
| Количество:         N         6           Частота вращения вала:         n         1500           Группа СДУ:         A           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         T <sub>or</sub> 450           Плотность газов при 0°C:         γ0₀r         1.31           Плотность газов при Т₀r (K), γ0₀r/(1+T₀r/273)         γ₀r         0.49482           Объемный расход отработанных газов, Q₀r=G₀r/γ₀r         Q₀r         0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           код 3В         Наименование 3В         ei,         qi,         Максимальноразовый выброс           Код 3В         Наименование 3В         ei,         qi,         Максимальноразовый выброс           брос         Г/кВт.ч         г/кг топлива         Мсек, г/с           0301         Азота оксиды         10.3         43         0.0201422           0301         Азота оксиды         0.0026185         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | об/мин  кг/с  °С  кг/м³  кг/м³  кг/м³  м³/с  ра:                           |
| Частота вращения вала:         n         1500           Группа СДУ:         Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         T <sub>or</sub> 450           Плотность газов при 0°C:         уО <sub>or</sub> 1.31           Плотность газов при Т <sub>or</sub> (К), γ0₀r/(1+T₀r/273)         γor         0.49482           Объемный расход отработанных газов, Q₀r=G₀r/γ₀r         Q₀r         0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           код 3В         Наименование 3В         e₁,         qi,         Максимальноразовый выброс           Код 3В         Наименование 3В         о.0201422         О.0161138           О301         Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0161138         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | об/мин  кг/с  °С  кг/м³  кг/м³  кг/м³  м³/с  ра:                           |
| Группа СДУ:         А           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         Тог         450           Плотность газов при 0°C:         γ0₀г         0.49482           Объемный расход отработанных газов, Q₀-=G₀-/γ₀-         Q₀r         0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато дизельного генерато разовый выброс           Код 3В         Наименование 3В         ei,         Чикт топлива         Максимальноразовый выброс           Код 3В         Наименование 3В         еі,         Чикт топлива         Максимальноразовый выброс           брос         Г/кВт.ч         Г/кг топлива         Мсек, г/с           Озот одина дамента дамент                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | кг/с  °C  кг/м³  кг/м³  кг/м³  образительной вы-                           |
| Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         T <sub>or</sub> 450           Плотность газов при 0°C:         у0 <sub>or</sub> 1.31           Плотность газов при Т <sub>or</sub> (K), у0 <sub>or</sub> /(1+T <sub>or</sub> /273)         у <sub>or</sub> 0.49482           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /у <sub>or</sub> Q <sub>or</sub> 0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато разовый выброс           Код 3В         Наименование 3В         e <sub>i</sub> ,         q <sub>i</sub> ,         Максимальноразовый выброс           код 3В         Наименование 3В         10.3         43         0.0201422           0301         Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0026185         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | °С<br>кг/м³<br>кг/м³<br>м³/с<br>рра:                                       |
| Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b₃*P₃         G <sub>or</sub> 0.030           Температура отходящих газов:         T <sub>or</sub> 450           Плотность газов при 0°C:         γ0 <sub>or</sub> 1.31           Плотность газов при Т <sub>or</sub> (K), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)         γ <sub>or</sub> 0.49482           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /γ <sub>or</sub> Q <sub>or</sub> 0.0613           Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато разовый выброс           код 3В         Наименование 3В         e <sub>i</sub> ,         q <sub>i</sub> ,         Максимальноразовый выброс           код 3В         Наименование 3В         10.3         43         0.0201422           3001         Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °С<br>кг/м³<br>кг/м³<br>м³/с<br>рра:                                       |
| Температура отходящих газов:         Тог         450           Плотность газов при 0°С:         γ0₀г         1.31           Плотность газов при Т₀г (К), γ0₀г/(1+Т₀г/273)         γ₀г         0.49482           Объемный расход отработанных газов, Q₀г=G₀г/γ₀г         Q₀г         0.0613           Код 3В         Наименование 3В         e₁,         q₁,         Максимального генерато дазовый выборос           г/кВт.ч         г/кВт.ч         г/кг топлива         Мсок, г/с           Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °С<br>кг/м³<br>кг/м³<br>м³/с<br>рра:                                       |
| Плотность газов при 0°С: Плотность газов при 0°С: Плотность газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>ог</sub> /(1+ <b>Т</b> <sub>ог</sub> /273) Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>у</b> ог Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>у</b> ог Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>у</b> ог Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>у</b> ог Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>у</b> ог Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>у</b> ог Объемный расход отработанных газов, <b>Q</b> <sub>ог</sub> 0.0613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | кг/м <sup>3</sup><br>кг/м <sup>3</sup><br>м <sup>3</sup> /с<br>рра:        |
| Плотность газов при T <sub>or</sub> (K), <b>у0</b> <sub>or</sub> /(1+ <b>T</b> <sub>or</sub> /273)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | кг/м <sup>3</sup><br>м <sup>3</sup> /с<br>рра:<br>Валовый вы-              |
| Код 3В         Наименование 3В         е <sub>i</sub> ,         q <sub>i</sub> ,         Максимально-разовый выброс           Код 3В         Наименование 3В         10.3         43         0.0201422           3001         Азота оксиды         10.3         43         0.0201422           0304         Азота оксид         0.0161138           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | м³/с<br>ppa:<br>Валовый вы-                                                |
| Код 3В         Расчет выбросов вредных веществ в атмосферу от одного дизельного генерато           код 3В         Наименование 3В         еі,         qі,         Максимальноразовый выборос           г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с           Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ра:<br>Валовый вы-                                                         |
| Код 3В         Наименование 3В         еі,         qі,         Максимально-<br>разовый вы-<br>брос           г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с           Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Валовый вы-                                                                |
| Код 3В         Наименование 3В         еі,         qі,         разовый выборос           г/кВт.ч         г/кг топлива         Мсек, г/с           Азота оксиды         10.3         43         0.0201422           0301         Азота диоксид         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |
| Азота оксиды     10.3     43     0.0201422       0301     Азота диоксид     0.0161138       0304     Азота оксид     0.0026185       0328     Сажа     0.7     3     0.0013689       0330     Сера диоксид     1.1     4.5     0.0021511       0337     Углерод оксид     7.2     30     0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |
| 0301         Азота диоксид         0.0161138           0304         Азота оксид         0.0026185           0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | М <sub>год</sub> , т/год                                                   |
| 0304     Азота оксид     0.0026185       0328     Сажа     0.7     3     0.0013689       0330     Сера диоксид     1.1     4.5     0.0021511       0337     Углерод оксид     7.2     30     0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017974                                                                  |
| 0328         Сажа         0.7         3         0.0013689           0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0014379                                                                  |
| 0330         Сера диоксид         1.1         4.5         0.0021511           0337         Углерод оксид         7.2         30         0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0002337                                                                  |
| 0337 Углерод оксид 7.2 30 0.01408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0001254                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0001881                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0012540                                                                  |
| 0703 Бенз(а)пирен 0.000013 0.000055 0.00000003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000000023                                                               |
| 1325 Формальдегид 0.15 0.6 0.0002933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000251                                                                  |
| 2754 Углеводороды пр. С12-С19 3.6 15 0.00704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0006270                                                                  |
| Всего по источнику: 0.04366563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003891164                                                                |
| Расчет выбросов вредных веществ в атмосферу от 6-ти дизельных генераторо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B:                                                                         |
| Код 3B Наименование 3B Максимально-<br>разовый вы-<br>брос                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Валовый вы-<br>брос                                                        |
| M <sub>cek</sub> , r/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | М <sub>год</sub> , т/год                                                   |
| Азота оксиды 0.1208533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0107844                                                                  |
| 0301 Азота диоксид 0.0966828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0086275                                                                  |
| 0304 Азота оксид 0.015711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001402                                                                   |
| 0328         Сажа         0.0082134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0007524                                                                  |
| 0330 Сера диоксид 0.0129066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0011286                                                                  |
| 0337 Углерод оксид 0.08448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.007524                                                                   |
| 0703 Бенз(а)пирен 0.0000002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000001                                                                  |
| 1325 Формальдегид 0.0017598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000001                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000001                                                                  |
| 2754 Углеводороды пр. C12-C19 0.04224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |

| №<br>ИЗА                                                                                                                                                                                                                                                                                                                          | 1019 RELYDORUSE TOVAS                                                                                                                                                 |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| №ИВ                                                                                                                                                                                                                                                                                                                               | № ИВ 001 Наименование источника вы-<br>деления Дизельный генератор Power Pack<br>Vikoma GP-10                                                                         |  |  |  |  |  |  |
| Расчеты выбросов выполнены согласно, <b>"Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004</b> , МООС РК, Астана 2005 год. Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле: $M_{cek}$ =e,*P <sub>3</sub> /3600, r/c |                                                                                                                                                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                   | е <sub>і</sub> - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВт*ч (таблица 1 или 2): |  |  |  |  |  |  |
| Эксплуат новки:                                                                                                                                                                                                                                                                                                                   | Эксплуатационная мощность стационарной дизельной уста-                                                                                                                |  |  |  |  |  |  |
| Ва                                                                                                                                                                                                                                                                                                                                | Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:                                                                        |  |  |  |  |  |  |

М<sub>год</sub>=q<sub>i</sub>\*B<sub>год</sub>/1000, т/год

|                                                                             | оплива стацион       |                                                                                    |                    | B                                         | 0.0209                   | т/год                         |
|-----------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------|--------------------|-------------------------------------------|--------------------------|-------------------------------|
|                                                                             |                      |                                                                                    | Tanobian, visia    |                                           |                          |                               |
| Расход то                                                                   | плива:               | р топлива:                                                                         | л/ч                |                                           |                          |                               |
| Средний удельный расход топлива: $b_3$ Плотность дизельного топлива: $\rho$ |                      |                                                                                    |                    |                                           | кг/ч<br>г/кВт.ч          |                               |
|                                                                             |                      |                                                                                    |                    | _                                         |                          | т/квт.ч<br>кг/л               |
|                                                                             | • •                  |                                                                                    |                    |                                           |                          | KI/JI                         |
| Время ра                                                                    |                      |                                                                                    |                    | T                                         | 12                       | ч/год                         |
|                                                                             |                      | Исходные да                                                                        | анные по исто      |                                           |                          | 1                             |
| Количест                                                                    |                      |                                                                                    |                    |                                           |                          | ШТ                            |
| частота в<br>Группа С <i>І</i>                                              | ращения вала:<br>п∨· |                                                                                    |                    | n                                         |                          | об/мин                        |
| руппа Сд                                                                    | 49.                  | Расчет расход                                                                      | а отработанн       | ых газов и топп                           |                          |                               |
| Расход от                                                                   | гработанных газ      |                                                                                    | u orpaoora         |                                           |                          | кг/с                          |
|                                                                             | ура отходящих        |                                                                                    |                    |                                           | 450                      | °C                            |
|                                                                             | ь газов при 0°С:     |                                                                                    |                    | $\gamma 0_{or}$                           | кг/м <sup>3</sup>        |                               |
| 6.77 6.7 6.7                                                                |                      |                                                                                    |                    |                                           |                          | кг/м <sup>3</sup>             |
| Объемны                                                                     |                      |                                                                                    |                    |                                           |                          | м <sup>3</sup> /с             |
|                                                                             | Расчет вы            | оросов вредных веще                                                                | ств в атмосфе<br>І | еру от одного д                           | изельного генерато       | ppa:                          |
| Код<br>3В                                                                   | Наим                 | енование ЗВ                                                                        | e <sub>i</sub> ,   | q <sub>i</sub> ,                          | разовый вы-              | Валовый вы<br>брос            |
|                                                                             |                      |                                                                                    |                    | М <sub>сек</sub> , г/с                    | М <sub>год</sub> , т/год |                               |
|                                                                             | Аз                   | ота оксиды                                                                         | 10.3               | 43                                        | 0.0211722                | 0.0008987                     |
| 0301                                                                        |                      |                                                                                    |                    |                                           |                          | 0.0007190                     |
| 0304                                                                        | A                    |                                                                                    | 0.7                | 2                                         |                          | 0.0001168                     |
| 0328                                                                        | Ce                   |                                                                                    |                    |                                           |                          | 0.0000627<br>0.0000941        |
| 0337                                                                        |                      |                                                                                    |                    |                                           |                          | 0.0006270                     |
| 0703                                                                        |                      |                                                                                    |                    |                                           |                          | 0.0000000011                  |
| 1325                                                                        |                      |                                                                                    |                    |                                           | 0.0003083                | 0.0000125                     |
| 2754                                                                        | Углеводо             |                                                                                    | l                  | 15                                        |                          | 0.0003135                     |
|                                                                             | Paguar Di            |                                                                                    |                    | ODY OF 10 TH TH                           |                          | 0.001945582                   |
|                                                                             | Расчет вы            | юросов вредных веще                                                                | ствватмосф         | еру от то-ти ди.                          | зельных генератор        | ов.<br>                       |
| Код<br>3В                                                                   |                      | Наименовани                                                                        | e 3B               |                                           | разовый вы-              | Валовый вы<br>брос            |
|                                                                             |                      |                                                                                    |                    |                                           | M <sub>сек</sub> , г/с   | M <sub>год</sub> , т/год      |
|                                                                             |                      | Азота оксид                                                                        | Ы                  |                                           |                          | 0.008987                      |
| 0301                                                                        |                      |                                                                                    |                    |                                           |                          | 0.0071896                     |
| 0304                                                                        |                      |                                                                                    | Д                  |                                           |                          | 0.0011683                     |
| 0328<br>0330                                                                |                      | Сажа<br>Сера диокси                                                                | <b>4</b> П         |                                           | 0.014389<br>0.022611     | 0.000627<br>0.0009405         |
| 0337                                                                        |                      | Углерод оксі                                                                       |                    |                                           | 0.022011                 | 0.0009403                     |
| 0703                                                                        |                      | Бенз(а)пире                                                                        | • •                |                                           | 0.0000003                | 0.0000001                     |
| 1325                                                                        |                      | Формальдег                                                                         |                    |                                           | 0.003083                 | 0.0001254                     |
| 2754                                                                        |                      | Углеводороды пр.                                                                   |                    |                                           | 0.074                    | 0.003135                      |
|                                                                             |                      | Всего по источнику                                                                 | :                  |                                           | 0.4589853                | 0.01945581                    |
|                                                                             |                      |                                                                                    |                    |                                           |                          |                               |
| №<br>ИЗА                                                                    | 1020                 | Наименование исто<br>грязнения атмосфе                                             |                    | Выхлопная т                               | руба                     |                               |
| №ИВ                                                                         | 001                  | Наименование ист<br>деления                                                        | очника вы-         | Дизельный г<br>ной установ                | енератор вакуум-<br>ки   | Skimmer<br>Desmi Ro-Va<br>MK2 |
| от стацио                                                                   | онарных дизел        | выполнены согласно, "М<br>в <b>ьных установок" РНД</b><br>брос i-го вещества стаци | 211.2.02.04-20     | <b>04</b> , МООС РК, Ас<br>ьной установки | стана 2005 год.          |                               |

Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле: М<sub>год</sub>=q<sub>i</sub>\*B<sub>год</sub>/1000, т/год

Эксплуатационная мощность стационарной дизельной установки:

где:

кВт

|                                                                                                              | ос і-го вредного вещества, г/кг топлива, пр                                                                                                                                                                                                                                    |                  |                  |                                     |                                 |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|---------------------------------|
|                                                                                                              | льной установки с учетом совокупности                                                                                                                                                                                                                                          | режимов, сост    | авляющих экспл   | уатационныи цикл, г                 | 7кг топлива (таб                |
| лица 3 ил                                                                                                    |                                                                                                                                                                                                                                                                                |                  | 1                |                                     | 1                               |
| рется по                                                                                                     | расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или В <sub>год</sub> определяется по формуле: <b>B</b> <sub>год</sub> = <b>b</b> <sub>3</sub> * <b>k</b> * <b>P</b> <sub>3</sub> * <b>T</b> *10 <sup>-6</sup> : |                  |                  |                                     | т/год                           |
| Расход то                                                                                                    |                                                                                                                                                                                                                                                                                |                  | b                | 3.08                                | л/ч                             |
| гасход п                                                                                                     | лілива.                                                                                                                                                                                                                                                                        |                  | b                | 2.68                                | кг/ч                            |
| Средний                                                                                                      | удельный расход топлива:                                                                                                                                                                                                                                                       |                  | b₃               | 279                                 | г/кВт.ч                         |
| Плотност                                                                                                     | ъ дизельного топлива:                                                                                                                                                                                                                                                          |                  | ρ                | 0.87                                | кг/л                            |
|                                                                                                              | циент использования:                                                                                                                                                                                                                                                           |                  | k                | 1                                   |                                 |
| Время ра                                                                                                     |                                                                                                                                                                                                                                                                                |                  | Т                | 12                                  | ч/год                           |
|                                                                                                              |                                                                                                                                                                                                                                                                                | нные по исто     | чнику выбросо    |                                     | 1                               |
| <u>Количест</u>                                                                                              |                                                                                                                                                                                                                                                                                |                  | N                | 10                                  | ШТ                              |
| Частота вращения вала: n                                                                                     |                                                                                                                                                                                                                                                                                |                  |                  | 1500                                | об/мин                          |
| Группа СДУ: Расчет расхода отработанных газов и топлі                                                        |                                                                                                                                                                                                                                                                                |                  |                  | Α                                   |                                 |
| _                                                                                                            |                                                                                                                                                                                                                                                                                | а отработаннь    |                  |                                     |                                 |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$ $G_{or}$                                          |                                                                                                                                                                                                                                                                                |                  |                  | 0.023                               | кг/с                            |
| Температура отходящих газов: T <sub>ог</sub>                                                                 |                                                                                                                                                                                                                                                                                |                  |                  | 450                                 | <sup>0</sup> C                  |
| Плотность газов при 0°С:                                                                                     |                                                                                                                                                                                                                                                                                |                  |                  | 1.31                                | кг/м <sup>3</sup>               |
| Плотность газов при Т <sub>ог</sub> (K), <b>у0</b> <sub>or</sub> /(1+T <sub>or</sub> /273)                   |                                                                                                                                                                                                                                                                                |                  |                  | 0.49482                             | кг/м <sup>3</sup>               |
| Объемный расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>y</b> <sub>or</sub> |                                                                                                                                                                                                                                                                                |                  |                  | 0.0472                              | м <sup>3</sup> /с               |
| 1                                                                                                            | Расчет выбросов вредных вещес                                                                                                                                                                                                                                                  | тв в атмосфе     | ру от одного ди  | зельного генерато                   | pa:                             |
| Код<br>3В                                                                                                    | Наименование ЗВ                                                                                                                                                                                                                                                                | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы<br>брос              |
|                                                                                                              |                                                                                                                                                                                                                                                                                | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | <b>М</b> <sub>год</sub> , т/год |
|                                                                                                              | Азота оксиды                                                                                                                                                                                                                                                                   | 10.3             | 43               | 0.0274667                           | 0.0013846                       |
| 0301                                                                                                         | Азота диоксид                                                                                                                                                                                                                                                                  |                  |                  | 0.0219733                           | 0.0011077                       |
| 0304                                                                                                         | Азота оксид                                                                                                                                                                                                                                                                    |                  |                  | 0.0035707                           | 0.0001800                       |
| 0328                                                                                                         | Сажа                                                                                                                                                                                                                                                                           | 0.7              | 3                | 0.0018667                           | 0.0000966                       |
| 0330                                                                                                         | Сера диоксид                                                                                                                                                                                                                                                                   | 1.1              | 4.5              | 0.0029333                           | 0.0001449                       |
| 0337                                                                                                         | Углерод оксид                                                                                                                                                                                                                                                                  | 7.2              | 30               | 0.0192                              | 0.0009660                       |
| 0703                                                                                                         | Бенз(а)пирен                                                                                                                                                                                                                                                                   | 0.000013         | 0.000055         | 0.0000003                           | 0.000000018                     |
| 1325                                                                                                         | Формальдегид                                                                                                                                                                                                                                                                   | 0.15             | 0.6              | 0.0004                              | 0.0000193                       |
| 2754                                                                                                         | Углеводороды пр. С12-С19                                                                                                                                                                                                                                                       | 3.6              | 15               | 0.0096                              | 0.0004830                       |
|                                                                                                              | Всего по источнику:                                                                                                                                                                                                                                                            |                  |                  | 0.05954403                          | 0.0029975                       |
|                                                                                                              | Расчет выбросов вредных вещес                                                                                                                                                                                                                                                  | тв в атмосфе     | ру от 10-ти диз  | ельных генераторо                   | B:                              |
| Код<br>3В                                                                                                    | Наименование                                                                                                                                                                                                                                                                   | e 3B             |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы<br>брос              |
|                                                                                                              |                                                                                                                                                                                                                                                                                |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год        |
|                                                                                                              | Азота оксид                                                                                                                                                                                                                                                                    | Ы                |                  | 0.2746667                           | 0.013846                        |
| 0301                                                                                                         | Азота диокси                                                                                                                                                                                                                                                                   | 1Д               |                  | 0.219733                            | 0.0110768                       |
| 0304                                                                                                         | Азота оксид                                                                                                                                                                                                                                                                    | 1                |                  | 0.035707                            | 0.0018                          |
| 0328                                                                                                         | Сажа                                                                                                                                                                                                                                                                           |                  |                  | 0.018667                            | 0.000966                        |
| 0330                                                                                                         | Сера диокси                                                                                                                                                                                                                                                                    |                  |                  | 0.029333                            | 0.001449                        |
| 0337                                                                                                         | Углерод окси                                                                                                                                                                                                                                                                   | • •              |                  | 0.192                               | 0.00966                         |
| 0703                                                                                                         | Бенз(а)пире                                                                                                                                                                                                                                                                    |                  |                  | 0.0000003                           | 0.00000002                      |
| 1325                                                                                                         | Формальдеги                                                                                                                                                                                                                                                                    |                  |                  | 0.004                               | 0.0001932                       |
| 2754                                                                                                         | Углеводороды пр. (                                                                                                                                                                                                                                                             |                  |                  | 0.096                               | 0.00483                         |
|                                                                                                              | Всего по источнику:                                                                                                                                                                                                                                                            |                  |                  | 0.5954403                           | 0.02997502                      |

| №<br>ИЗА | 1021                                                                                                                                                                                                                                                                                                                                                         | Наименование источника за-<br>грязнения атмосферы            | Выхлопная т                          | руба               |                 |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|--------------------|-----------------|--|--|--|
| №ИВ      | 001                                                                                                                                                                                                                                                                                                                                                          | Наименование источника вы-<br>деления                        | Дизельный генератор Power Pack Desmi |                    |                 |  |  |  |
| от стаци | Расчеты выбросов выполнены согласно, <b>"Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2.02.04-2004</b> , МООС РК, Астана 2005 год. Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле: <b>М</b> <sub>сек</sub> =e <sub>i</sub> *P <sub>3</sub> /3600, г/с |                                                              |                                      |                    |                 |  |  |  |
| нальной  | мощности, г/кВт                                                                                                                                                                                                                                                                                                                                              | вещества на единицу полезной работы<br>*ч (таблица 1 или 2): | стационарной д                       | изельной установки | на режиме номи- |  |  |  |
| Эксплуат | ационная мощі                                                                                                                                                                                                                                                                                                                                                | ность стационарной дизельной уста-                           | P₃                                   | 10.1               | кВт             |  |  |  |

Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: М<sub>год</sub>=q<sub>i</sub>\*В<sub>год</sub>/1000, т/год

где:

новки:

| ной дизе.<br>лица 3 ил                                                                                                                                         |                                                                                                                                                                                                                      | режимов, сост                               |                    |                                                                                           |                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| рется по                                                                                                                                                       | расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> : |                                             |                    |                                                                                           | т/год                                                                                                                |
| Расход то                                                                                                                                                      |                                                                                                                                                                                                                      |                                             | b                  | 3.25                                                                                      | л/ч                                                                                                                  |
|                                                                                                                                                                |                                                                                                                                                                                                                      |                                             | b                  | 2.828                                                                                     | кг/ч                                                                                                                 |
|                                                                                                                                                                | удельный расход топлива:                                                                                                                                                                                             |                                             | b₃                 | 280                                                                                       | г/кВт.ч                                                                                                              |
|                                                                                                                                                                |                                                                                                                                                                                                                      |                                             | ρ                  | 0.87                                                                                      | кг/л                                                                                                                 |
|                                                                                                                                                                | циент использования:                                                                                                                                                                                                 |                                             | k                  | 1                                                                                         |                                                                                                                      |
| Время ра                                                                                                                                                       |                                                                                                                                                                                                                      |                                             |                    | 12                                                                                        | ч/год                                                                                                                |
| V о пино от                                                                                                                                                    |                                                                                                                                                                                                                      | нные по исто                                | чнику выбросо<br>N | <u>в</u><br>3                                                                             |                                                                                                                      |
| Количест                                                                                                                                                       |                                                                                                                                                                                                                      |                                             |                    | <u>3</u><br>1500                                                                          | ШТ                                                                                                                   |
| Частота вращения вала: n<br>Группа СДУ:                                                                                                                        |                                                                                                                                                                                                                      |                                             |                    | A                                                                                         | об/мин                                                                                                               |
| труппа С                                                                                                                                                       | ду.<br>Расчет расхода                                                                                                                                                                                                | отпаботации                                 | IV F220D M TORRI   |                                                                                           |                                                                                                                      |
| Расуол о                                                                                                                                                       |                                                                                                                                                                                                                      | Ограсотанны                                 | G <sub>or</sub>    | 0.025                                                                                     | кг/с                                                                                                                 |
|                                                                                                                                                                |                                                                                                                                                                                                                      |                                             |                    | 450                                                                                       | °C                                                                                                                   |
|                                                                                                                                                                | тура отходящих газов.<br>гь газов при 0°C:                                                                                                                                                                           | T <sub>or</sub><br>y0 <sub>or</sub>         | 1.31               | кг/м <sup>3</sup>                                                                         |                                                                                                                      |
|                                                                                                                                                                | ть газов при 0 С.<br>гь газов при Т <sub>ог</sub> (К), <b>у0</b> <sub>or</sub> /(1+T <sub>or</sub> /273)                                                                                                             |                                             | 0.49482            | KI/M³                                                                                     |                                                                                                                      |
|                                                                                                                                                                |                                                                                                                                                                                                                      | <b>У</b> ог<br>О                            | 0.49462            | M <sup>3</sup> /C                                                                         |                                                                                                                      |
| Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /γ <sub>or</sub> Q <sub>or</sub> Расчет выбросов вредных веществ в атмосферу от одного ди |                                                                                                                                                                                                                      |                                             |                    |                                                                                           |                                                                                                                      |
| Код<br>3В                                                                                                                                                      | Наименование ЗВ                                                                                                                                                                                                      | e <sub>i</sub> ,                            | q <sub>i</sub> ,   | Максимально-<br>разовый вы-<br>брос                                                       | Валовый вы-<br>брос                                                                                                  |
|                                                                                                                                                                |                                                                                                                                                                                                                      | г/кВт.ч                                     | г/кг топлива       | М <sub>сек</sub> , г/с                                                                    | M <sub>год</sub> , т/год                                                                                             |
|                                                                                                                                                                | Азота оксиды                                                                                                                                                                                                         | 10.3                                        | 43                 | 0.0288972                                                                                 | 0.0014577                                                                                                            |
| 0301                                                                                                                                                           | Азота диоксид                                                                                                                                                                                                        |                                             |                    | 0.0231178                                                                                 | 0.0011662                                                                                                            |
| 0304                                                                                                                                                           | Азота оксид                                                                                                                                                                                                          |                                             |                    | 0.0037566                                                                                 | 0.0001895                                                                                                            |
| 0328                                                                                                                                                           | Сажа                                                                                                                                                                                                                 | 0.7                                         | 3                  | 0.0019639                                                                                 | 0.0001017                                                                                                            |
| 0330                                                                                                                                                           | Сера диоксид                                                                                                                                                                                                         | 1.1                                         | 4.5                | 0.0030861                                                                                 | 0.0001526                                                                                                            |
| 0337                                                                                                                                                           | Углерод оксид                                                                                                                                                                                                        | 7.2                                         | 30                 | 0.0202                                                                                    | 0.0010170                                                                                                            |
| 0703                                                                                                                                                           | Бенз(а)пирен                                                                                                                                                                                                         | 0.000013                                    | 0.000055           | 0.0000004                                                                                 | 0.0000000019                                                                                                         |
| 1325                                                                                                                                                           | Формальдегид                                                                                                                                                                                                         | 0.15                                        | 0.6                | 0.0004208                                                                                 | 0.0000203                                                                                                            |
| 2754                                                                                                                                                           | Углеводороды пр. С12-С19                                                                                                                                                                                             | 3.6                                         | 15                 | 0.0101                                                                                    | 0.0005085                                                                                                            |
|                                                                                                                                                                | Всего по источнику:                                                                                                                                                                                                  |                                             |                    | 0.06264524                                                                                | 0.003155753                                                                                                          |
| Код                                                                                                                                                            | Расчет выбросов вредных веществ в атмосферу от 3-х дизе  Наименование 3В                                                                                                                                             |                                             |                    | льных генераторов Максимально- разовый вы-                                                | :<br>Валовый вы-<br>брос                                                                                             |
| 3B                                                                                                                                                             | Наименование                                                                                                                                                                                                         | e 3B                                        |                    | брос                                                                                      | -                                                                                                                    |
|                                                                                                                                                                |                                                                                                                                                                                                                      |                                             |                    | брос<br>М <sub>сек</sub> , г/с                                                            | М <sub>год</sub> , т/год                                                                                             |
| 3B                                                                                                                                                             | Азота оксиді                                                                                                                                                                                                         | ы                                           |                    | брос М <sub>сек</sub> , г/с 0.0866917                                                     | М <sub>год</sub> , т/год<br>0.0043731                                                                                |
| 3B 0301                                                                                                                                                        | Азота оксиді<br>Азота диокси                                                                                                                                                                                         | ы<br>1Д                                     |                    | <b>М<sub>сек</sub>, г/с</b> 0.0866917 0.0693534                                           | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985                                                                   |
| 0301<br>0304                                                                                                                                                   | Азота оксиді<br>Азота диокси<br>Азота оксид                                                                                                                                                                          | ы<br>1Д                                     |                    | М <sub>сек</sub> , г/с 0.0866917 0.0693534 0.0112698                                      | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985<br>0.0005685                                                      |
| 0301<br>0304<br>0328                                                                                                                                           | Азота оксиді<br>Азота диокси<br>Азота оксид<br>Сажа                                                                                                                                                                  | ы<br>1Д                                     |                    | М <sub>сек</sub> , г/с 0.0866917 0.0693534 0.0112698 0.0058917                            | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985<br>0.0005685<br>0.0003051                                         |
| 0301<br>0304<br>0328<br>0330                                                                                                                                   | Азота оксиді<br>Азота диокси<br>Азота окси <u>р</u><br>Сажа<br>Сера диокси                                                                                                                                           | ы<br>ид<br>ц                                |                    | М <sub>сек</sub> , г/с 0.0866917 0.0693534 0.0112698 0.0058917 0.0092583                  | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985<br>0.0005685<br>0.0003051<br>0.0004577                            |
| 0301<br>0304<br>0328<br>0330<br>0337                                                                                                                           | Азота оксиді<br>Азота диокси<br>Азота оксид<br>Сажа<br>Сера диокси<br>Углерод окси                                                                                                                                   | ы<br>1 <u>д</u><br>1<br>1 <u>д</u>          |                    | М <sub>сек</sub> , г/с 0.0866917 0.0693534 0.0112698 0.0058917 0.0092583 0.0606           | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985<br>0.0005685<br>0.0003051<br>0.0004577<br>0.003051                |
| 0301<br>0304<br>0328<br>0330<br>0337<br>0703                                                                                                                   | Азота оксиді<br>Азота диокси<br>Азота оксид<br>Сажа<br>Сера диокси<br>Углерод окси<br>Бенз(а)пире                                                                                                                    | ы<br>1 <u>Д</u><br>1 <u>Д</u><br>1 <u>Д</u> |                    | М <sub>сек</sub> , г/с 0.0866917 0.0693534 0.0112698 0.0058917 0.0092583 0.0606 0.0000001 | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985<br>0.0005685<br>0.0003051<br>0.0004577<br>0.003051<br>0.000000006 |
| 0301<br>0304<br>0328<br>0330<br>0337                                                                                                                           | Азота оксиді<br>Азота диокси<br>Азота оксид<br>Сажа<br>Сера диокси<br>Углерод окси                                                                                                                                   | ы<br>1д<br>1д<br>1д<br>1д<br>н              |                    | М <sub>сек</sub> , г/с 0.0866917 0.0693534 0.0112698 0.0058917 0.0092583 0.0606           | М <sub>год</sub> , т/год<br>0.0043731<br>0.0034985<br>0.0005685<br>0.0003051<br>0.0004577<br>0.003051                |

| № ИЗА                                                                                                          | IЗА 1022 Наименование источника за-<br>грязнения атмосферы Выхлопная труба                     |                                 |                |    |     |  |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|----------------|----|-----|--|--|
| №ИВ                                                                                                            | № ИВ 001 Наименование источника выделения Дизельный генератор Vikoma                           |                                 |                |    |     |  |  |
| Расчеты выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу               |                                                                                                |                                 |                |    |     |  |  |
| от стационарных дизельных установок" РНД 211.2.02.04-2004, MOOC PK, Астана 2005 год.                           |                                                                                                |                                 |                |    |     |  |  |
| Mai                                                                                                            | Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:    |                                 |                |    |     |  |  |
| M <sub>ceκ</sub> =e <sub>i</sub> *P <sub>3</sub> /3600, г/c                                                    |                                                                                                |                                 |                |    |     |  |  |
| где:                                                                                                           |                                                                                                |                                 |                |    |     |  |  |
| е, - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи- |                                                                                                |                                 |                |    |     |  |  |
| нальной г                                                                                                      | нальной мощности, г/кВт*ч (таблица 1 или 2):                                                   |                                 |                |    |     |  |  |
| Эксплуат                                                                                                       | ационная мощност                                                                               | гь стационарной дизельной уста- | 5              | 12 | кВт |  |  |
| новки:                                                                                                         |                                                                                                |                                 | P <sub>s</sub> | 12 | KDI |  |  |
| Вал                                                                                                            | Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле: |                                 |                |    |     |  |  |

| q <sub>i</sub> - выбро<br>ной дизел<br>лица 3 ил                    | ос і-го вредного вещества, г/кг топлива, пр<br>пьной установки с учетом совокупности р<br>пи 4):                                                                              | иходящегося прежимов, сост | на один кг дизел<br>авляющих экспл | ьного топлива, при р<br>пуатационный цикл, | аботе стационар-<br>г/кг топлива (таб- |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|--------------------------------------------|----------------------------------------|--|
| (берется                                                            | оплива стационарной дизельной устанс<br>по отчетным данным об эксплуатации ус<br>вется по формуле: <b>В<sub>год</sub>=b<sub>э</sub>*k*P<sub>э</sub>*T*10</b> - <sup>6</sup> : |                            | В <sub>год</sub>                   | 0.0313                                     | т/год                                  |  |
| Расход топлива:                                                     |                                                                                                                                                                               |                            | b<br>b                             | <u>3</u><br>2.61                           | л/ч<br>кг/ч                            |  |
| Спельий                                                             | удельный расход топлива:                                                                                                                                                      |                            | b <sub>a</sub>                     | 2.01                                       | кі/ч<br>г/кВт.ч                        |  |
|                                                                     | ъ дизельного топлива:                                                                                                                                                         |                            | , and the second                   | ρ 0.87 κг/s                                |                                        |  |
|                                                                     | Коэффициент использования:                                                                                                                                                    |                            |                                    | 1                                          | 10771                                  |  |
| Время ра                                                            |                                                                                                                                                                               |                            | k<br>T                             | 12                                         | ч/год                                  |  |
| Вроил ра                                                            |                                                                                                                                                                               | нные по исто               | чнику выбросс                      |                                            | лод                                    |  |
| Количество:                                                         |                                                                                                                                                                               |                            |                                    |                                            | шт                                     |  |
| Частота вращения вала:                                              |                                                                                                                                                                               |                            | n                                  | 1500                                       | об/мин                                 |  |
| Группа СДУ:                                                         |                                                                                                                                                                               |                            |                                    | A                                          |                                        |  |
|                                                                     | Расчет расхода                                                                                                                                                                | отработанны                | ых газов и топл                    | ива                                        |                                        |  |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$ $G_{or}$ |                                                                                                                                                                               |                            |                                    | 0.023                                      | кг/с                                   |  |
| Температура отходящих газов:                                        |                                                                                                                                                                               |                            | Тог                                | 450                                        | °C                                     |  |
| Плотность газов при 0°C:                                            |                                                                                                                                                                               |                            | γ0 <sub>οΓ</sub>                   | 1.31                                       | кг/м <sup>3</sup>                      |  |
| Плотност                                                            | ь газов при Т <sub>ог</sub> (К), <b>ү0</b> <sub>ог</sub> /( <b>1+Т</b> <sub>ог</sub> / <b>273</b> )                                                                           |                            | Y <sub>ог</sub> 0.49482 к          |                                            |                                        |  |
|                                                                     | ій расход отработанных газов, <b>Q</b> ₀г <b>=G</b> ₀г/ <b>γ</b> ₀г                                                                                                           | -                          | Q <sub>or</sub>                    | Q <sub>ог</sub> 0.0461 м³/с                |                                        |  |
| Расчет выбросов вредных веществ в атмосферу от одног                |                                                                                                                                                                               |                            |                                    | изельного генерато                         | pa:                                    |  |
| Код ЗВ                                                              | Наименование ЗВ                                                                                                                                                               | e <sub>i</sub> ,           | q <sub>i</sub> ,                   | Максимально-<br>разовый вы-<br>брос        | Валовый вы-<br>брос                    |  |
|                                                                     |                                                                                                                                                                               | г/кВт.ч                    | г/кг топлива                       | М <sub>сек</sub> , г/с                     | М <sub>год</sub> , т/год               |  |
|                                                                     | Азота оксиды                                                                                                                                                                  | 10.3                       | 43                                 | 0.0343333                                  | 0.0013459                              |  |
| 0301                                                                | Азота диоксид                                                                                                                                                                 |                            |                                    | 0.0274667                                  | 0.0010767                              |  |
| 0304                                                                | Азота оксид                                                                                                                                                                   |                            |                                    | 0.0044633                                  | 0.000175                               |  |
| 0328                                                                | Сажа                                                                                                                                                                          | 0.7                        | 3                                  | 0.0023333                                  | 0.0000939                              |  |
| 0330                                                                | Сера диоксид                                                                                                                                                                  | 1.1                        | 4.5                                | 0.0036667                                  | 0.0001409                              |  |
| 0337                                                                | Углерод оксид                                                                                                                                                                 | 7.2                        | 30                                 | 0.024                                      | 0.000939                               |  |
| 0703                                                                | Бенз(а)пирен                                                                                                                                                                  | 0.000013                   | 0.000055                           | 0.0000004                                  | 0.000000002                            |  |
| 1325                                                                | Формальдегид                                                                                                                                                                  | 0.15                       | 0.6                                | 0.0005                                     | 0.0000188                              |  |
| 2754                                                                | Углеводороды пр. С12-С19                                                                                                                                                      | 3.6                        | 15                                 | 0.012                                      | 0.0004695                              |  |
|                                                                     | Всего по источнику:                                                                                                                                                           |                            |                                    | 0.07443004                                 | 0.002913802                            |  |

|                 |                                                                  | всего по источнику.                                                                                                                                       |                  | 0.07443004           | 0.002913002                         |
|-----------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-------------------------------------|
|                 |                                                                  |                                                                                                                                                           |                  |                      |                                     |
| № ИЗА           | 1023                                                             | Наименование источника за-<br>грязнения атмосферы                                                                                                         | Выхлопная т      | руба                 |                                     |
| № ИВ            | ИВ 001 Наименование источника вы-<br>деления Дизельный генератор |                                                                                                                                                           |                  |                      | Powerpac<br>Westac Power<br>Limited |
| от стаци        | онарных дизель                                                   | выполнены согласно, <b>"Методики расче</b><br>ь <b>ных установок" РНД 211.2.02.04-200</b><br>рос і-го вещества стационарной дизелі                        | 14, MOOC PK, A   | тана 2005 год.       |                                     |
|                 | ·                                                                | М <sub>сек</sub> =e <sub>i</sub> *P <sub>э</sub> /3600                                                                                                    |                  |                      | ,                                   |
| где:            |                                                                  |                                                                                                                                                           |                  |                      |                                     |
|                 |                                                                  | ещества на единицу полезной работы<br>ч (таблица 1 или 2):                                                                                                | стационарной д   | дизельной установки  | і на режиме номи-                   |
| Эксплуат новки: | ационная мощн                                                    | ость стационарной дизельной уста-                                                                                                                         | P₃               | 12                   | кВт                                 |
| Baı             | товый выброс і-го                                                | о вещества за год стационарной дизел<br><b>М<sub>гол</sub>=q</b> i*В <sub>гол</sub> /1000                                                                 |                  | й определяется по ф  | ормуле:                             |
| где:            |                                                                  | тод чт =1од-1000                                                                                                                                          | , • 🗖            |                      |                                     |
|                 | с і-го вредного в                                                | ещества, г/кг топлива, приходящегося і                                                                                                                    | на один кг дизел | ьного топлива, при р | аботе стационар-                    |
|                 | пьной установки                                                  | с учетом совокупности режимов, сост                                                                                                                       |                  |                      |                                     |
| рется по        | отчетным данн                                                    | оной дизельной установкой за год (бе-<br>ым об эксплуатации установки) или<br>э: В <sub>год</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> : | В <sub>год</sub> | 0.0313               | т/год                               |
| Dooyon          |                                                                  |                                                                                                                                                           | b                | 3                    | л/ч                                 |
| Расход т        | лілива.                                                          |                                                                                                                                                           | b                | 2.61                 | кг/ч                                |
| Средний         | удельный расход                                                  | д топлива:                                                                                                                                                | b₃               | 218                  | г/кВт.ч                             |
| Плотност        | ъ дизельного тог                                                 | лива:                                                                                                                                                     | ρ                | 0.87                 | кг/л                                |
| Коэффиь         | иент использова                                                  | ния:                                                                                                                                                      | k                | 1                    |                                     |
| Время ра        | боты:                                                            |                                                                                                                                                           | T                | 12                   | ч/год                               |
|                 |                                                                  | Исходные данные по исто                                                                                                                                   | чнику выбросс    | В                    |                                     |
| Количест        | BO:                                                              |                                                                                                                                                           | N                | 5                    | ШТ                                  |
| 11              |                                                                  |                                                                                                                                                           | •                | 4500                 | Ĭ                                   |

Группа СДУ:

Частота вращения вала:

Расчет расхода отработанных газов и топлива

об/мин

1500

| Расуол о                                                                                                                        | тпаботациых газов G = 8 72*10-6*h *P                                                                         |                  | G                 | 0.023                               | кг/с                     |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------------------------|--------------------------|
| Расход отработанных газов, <b>G</b> <sub>or</sub> = <b>8.72*10</b> <sup>-6*</sup> <b>b</b> <sub>3</sub> * <b>P</b> <sub>3</sub> |                                                                                                              |                  |                   | 450                                 | °C                       |
| Температура отходящих газов: Тог Плотность газов при 0°C: у0 <sub>ог</sub>                                                      |                                                                                                              |                  |                   | 1.31                                | кг/м <sup>3</sup>        |
|                                                                                                                                 | гь газов при Со. (К), <b>у0</b> <sub>ог</sub> /( <b>1+T</b> <sub>ог</sub> / <b>273</b> )                     | 0.49482          | кг/м <sup>3</sup> |                                     |                          |
|                                                                                                                                 |                                                                                                              | 0.0461           | M <sup>3</sup> /C |                                     |                          |
| COBCINITE                                                                                                                       | Объемный расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>у</b> <sub>or</sub> |                  |                   |                                     | ,-                       |
|                                                                                                                                 | т асчет выоросов вредных вещес                                                                               | твватмосфе       | ру от одного дл   | iscribitoro refleparo               | ра.<br>                  |
| Код<br>3В                                                                                                                       | Наименование ЗВ                                                                                              | e <sub>i</sub> , | q <sub>i</sub> ,  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                                                                 |                                                                                                              | г/кВт.ч          | г/кг топлива      | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|                                                                                                                                 | Азота оксиды                                                                                                 | 10.3             | 43                | 0.0343333                           | 0.0013459                |
| 0301                                                                                                                            | Азота диоксид                                                                                                |                  |                   | 0.0274667                           | 0.0010767                |
| 0304                                                                                                                            | Азота оксид                                                                                                  | Азота оксид      |                   |                                     | 0.0001750                |
| 0328                                                                                                                            | Сажа                                                                                                         | 0.7              | 3                 | 0.0023333                           | 0.0000939                |
| 0330                                                                                                                            | Сера диоксид 1.1 4.5                                                                                         |                  |                   | 0.0036667                           | 0.0001409                |
| 0337                                                                                                                            | Углерод оксид 7.2 30                                                                                         |                  |                   | 0.024                               | 0.0009390                |
| 0703                                                                                                                            | Бенз(а)пирен                                                                                                 | 0.000013         | 0.000055          | 0.0000004                           | 0.0000000017             |
| 1325                                                                                                                            | Формальдегид                                                                                                 | 0.15             | 0.6               | 0.0005                              | 0.0000188                |
| 2754                                                                                                                            | Углеводороды пр. С12-С19                                                                                     |                  |                   |                                     | 0.0004695                |
|                                                                                                                                 | Всего по источнику:                                                                                          | •                | 0.07443004        | 0.002913719                         |                          |
|                                                                                                                                 | Расчет выбросов вредных веще                                                                                 | ств в атмосф     | еру от 5-ти дизе  | ельных генераторо                   | в:                       |
| Код<br>3В                                                                                                                       | Код Наимонование ЗВ                                                                                          |                  |                   |                                     | Валовый вы-<br>брос      |
|                                                                                                                                 |                                                                                                              |                  |                   | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                                                                 | Азота оксиді                                                                                                 | Ы                |                   | 0.1716667                           | 0.0067295                |
| 0301                                                                                                                            | Азота диокси                                                                                                 | ід               |                   | 0.1373335                           | 0.0053836                |
| 0304                                                                                                                            | Азота оксид                                                                                                  | ļ                |                   | 0.0223165                           | 0.0008748                |
| 0328                                                                                                                            | Сажа                                                                                                         |                  |                   | 0.0116665                           | 0.0004695                |
| 0330                                                                                                                            | Сера диокси                                                                                                  | Д                |                   | 0.0183335                           | 0.0007043                |
| 0337                                                                                                                            | Углерод окси                                                                                                 | 1Д               |                   | 0.12                                | 0.004695                 |
| 0703                                                                                                                            | Бенз(а)пире                                                                                                  | Н                |                   | 0.000002                            | 0.000000009              |
| 1325                                                                                                                            | Формальдеги                                                                                                  | 1Д               |                   | 0.0025                              | 0.0000939                |
| 2754                                                                                                                            | Углеводороды пр. (                                                                                           | C12-C19          |                   | 0.06                                | 0.0023475                |
|                                                                                                                                 | Всего по источнику:                                                                                          |                  |                   | 0.3721502                           | 0.014568609              |

| № ИЗА                                                                                                                                                        | № ИЗА 1024 Наименование источника за-<br>грязнения атмосферы Выхлопная труба |                                                          |                |                     |                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|----------------|---------------------|--------------------|--|--|
| № ИВ                                                                                                                                                         | выделения П                                                                  |                                                          |                |                     |                    |  |  |
|                                                                                                                                                              |                                                                              | олнены согласно, <b>"Методики расч</b>                   |                |                     | ств в атмосферу    |  |  |
|                                                                                                                                                              |                                                                              | ых установок" РНД 211.2.02.04-200                        |                |                     |                    |  |  |
| Максимальный выброс i-го вещества стационарной дизельной установки определяется по формуле:                                                                  |                                                                              |                                                          |                |                     |                    |  |  |
| $M_{cek}=e_i*P_3/3600$ , $\Gamma/C$                                                                                                                          |                                                                              |                                                          |                |                     |                    |  |  |
| где:<br>e <sub>i</sub> - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи-                           |                                                                              |                                                          |                |                     |                    |  |  |
| е; • выбростно вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи-<br>нальной мощности, г/кВт*ч (таблица 1 или 2): |                                                                              |                                                          |                |                     |                    |  |  |
| Produvatalimorpha mollipocty ctalimoraphom miserbuom vota-                                                                                                   |                                                                              |                                                          |                |                     |                    |  |  |
| новки:                                                                                                                                                       |                                                                              |                                                          |                |                     | кВт                |  |  |
| Вал                                                                                                                                                          | повый выброс і-го в                                                          | ещества за год стационарной дизел                        | •              | й определяется по ф | ормуле:            |  |  |
|                                                                                                                                                              |                                                                              | М <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000 | ), т/год       |                     |                    |  |  |
| где:                                                                                                                                                         |                                                                              |                                                          |                |                     |                    |  |  |
|                                                                                                                                                              |                                                                              | ества, г/кг топлива, приходящегося                       |                |                     |                    |  |  |
| нои дизел<br>лица 3 ил                                                                                                                                       |                                                                              | четом совокупности режимов, сост                         | авляющих эксп. | пуатационный цикл,  | г/кг топлива (тао- |  |  |
|                                                                                                                                                              |                                                                              | юй дизельной установкой за год                           |                |                     |                    |  |  |
|                                                                                                                                                              |                                                                              | м об эксплуатации установки) или                         | Вгод           | 0.3508              | т/год              |  |  |
|                                                                                                                                                              | но отчетным данны<br>нется по формуле: <b>Е</b>                              |                                                          | <b>О</b> год   | 0.5500              | тлод               |  |  |
|                                                                                                                                                              |                                                                              | год 23 к. г. з. г. с.                                    | b              | 7                   | л/ч                |  |  |
| Расход то                                                                                                                                                    | оплива:                                                                      |                                                          | b              | 6.09                | кг/ч               |  |  |
| Средний                                                                                                                                                      | удельный расход то                                                           | оплива:                                                  | b <sub>o</sub> | 251                 | г/кВт.ч            |  |  |
|                                                                                                                                                              | ъ дизельного топли                                                           |                                                          | ρ              | 0.87                | кг/л               |  |  |
| I/ a a ala al · · · ·                                                                                                                                        |                                                                              |                                                          | i.             | 4                   |                    |  |  |

Время работы:

Количество:

Группа СДУ:

Коэффициент использования:

Частота вращения вала:

 Расчет расхода отработанных газов и топлива

 Расход отработанных газов,  $G_{or}$  = 8.72\*10<sup>-6\*</sup> $b_3$ \* $P_3$   $G_{or}$ 

Исходные данные по источнику выбросов

k

Ν

n

1 57.6

15

1500

Α

0.053

ч/год

ШΤ

об/мин

кг/с

| Температура отходящих газов: T <sub>ог</sub>                                                                     |                                |                  | 450              | °C                                  |                          |
|------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|------------------|-------------------------------------|--------------------------|
| Температура отходящих газов: $T_{or}$ Плотность газов при 0°C: $\gamma 0_{or}$                                   |                                |                  |                  | 1.31                                | кг/м <sup>3</sup>        |
| Плотность газов при $T_{or}$ (K), $\gamma 0_{or}/(1+T_{or}/273)$ $\gamma_{or}$                                   |                                |                  |                  | 0.49482                             | кг/м <sup>3</sup>        |
| Объемный расход отработанных газов, $\mathbf{Q}_{or} = \mathbf{G}_{or} / \mathbf{\gamma}_{or}$ $\mathbf{Q}_{or}$ |                                |                  |                  | 0.1075                              | м <sup>3</sup> /с        |
| Расчет выбросов вредных веществ в атмосферу от одного ди:                                                        |                                |                  |                  | изельного генерато                  | ра:                      |
| Код ЗВ                                                                                                           | Наименование ЗВ                | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                                                  |                                | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|                                                                                                                  | Азота оксиды                   | 10.3             | 43               | 0.0695250                           | 0.0150844                |
| 0301                                                                                                             | Азота диоксид                  |                  |                  |                                     | 0.0120675                |
| 0304                                                                                                             | Азота оксид                    | ***              |                  |                                     | 0.0019610                |
| 0328                                                                                                             | Сажа                           |                  |                  |                                     | 0.0010524                |
| 0330                                                                                                             | Сера диоксид 1.1 4.5           |                  |                  | 0.007425                            | 0.0015786                |
| 0337                                                                                                             | Углерод оксид                  |                  |                  |                                     | 0.0105240                |
| 0703                                                                                                             | Бенз(а)пирен 0.000013 0.000055 |                  |                  | 0.00000009                          | 0.000000193              |
| 1325                                                                                                             | Формальдегид                   | 0.15             | 0.6              | 0.0010125                           | 0.0002105                |
| 2754                                                                                                             | Углеводороды пр. С12-С19       |                  |                  |                                     |                          |
| Всего по источнику:                                                                                              |                                |                  |                  | 0.15072089                          | 0.032655991              |
|                                                                                                                  | Расчет выбросов вредных вещес  | ств в атмосф     | еру от 15-ти диз | ельных генератор                    | OB:                      |
| Код ЗВ                                                                                                           | Наименование                   | e 3B             |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                                                  |                                |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                                                  | Азота оксид                    | Ы                |                  | 1.042875                            | 0.226266                 |
| 0301                                                                                                             | Азота диокси                   | 1Д               |                  | 0.8343                              | 0.1810128                |
| 0304                                                                                                             | Азота оксид                    | 1                |                  | 0.1355745                           | 0.0294146                |
| 0328                                                                                                             | Сажа                           |                  |                  | 0.070875                            | 0.015786                 |
| 0330                                                                                                             | Сера диокси                    | ІД               |                  | 0.111375                            | 0.023679                 |
| 0337                                                                                                             | Углерод окси                   | 1Д               |                  | 0.729                               | 0.15786                  |
| 0703                                                                                                             | Бенз(а)пире                    | Н                |                  | 0.0000014                           | 0.0000003                |
| 1325                                                                                                             | Формальдеги                    | 4Д               |                  | 0.0151875                           | 0.0031572                |
| 2754                                                                                                             | Углеводороды пр. (             | C12-C19          |                  | 0.3645                              | 0.07893                  |
|                                                                                                                  | Всего по источнику:            |                  |                  | 2.2608134                           | 0.4898399                |

| № ИЗА                                                                                                                                             | 1025                                                                                                                                                | Наименование источника за-<br>грязнения атмосферы                                                                                                                                                                                                      | ва- Выхлопная труба                                    |                                                                      |                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--|
| № ИВ                                                                                                                                              | 001                                                                                                                                                 | Наименование источника<br>выделения                                                                                                                                                                                                                    | Дизельный генератор насо-<br>сов                       |                                                                      | SKD26                                                          |  |
| Pac                                                                                                                                               | четы выбросов в                                                                                                                                     | выполнены согласно, "Методики расч                                                                                                                                                                                                                     | ета выбросов за                                        | агрязняющих вещ                                                      | еств в атмосфер                                                |  |
|                                                                                                                                                   |                                                                                                                                                     | ьных установок" РНД 211.2.02.04-200<br>рос і-го вещества стационарной дизел                                                                                                                                                                            |                                                        |                                                                      | ррмуле:                                                        |  |
|                                                                                                                                                   | ·                                                                                                                                                   | M <sub>ceκ</sub> =e <sub>i</sub> *P <sub>э</sub> /3600                                                                                                                                                                                                 | ), г/с ้                                               |                                                                      |                                                                |  |
| где:                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                        |                                                                      |                                                                |  |
| е <sub>і</sub> - выбро                                                                                                                            | с і-го вредного в                                                                                                                                   | ещества на единицу полезной работы                                                                                                                                                                                                                     | стационарной д                                         | изельной установк                                                    | и на режиме номи                                               |  |
| нальной м                                                                                                                                         | иощности, г/кВт* <mark>ч</mark>                                                                                                                     | ч (таблица 1 или 2):                                                                                                                                                                                                                                   |                                                        |                                                                      |                                                                |  |
| Эксплуата                                                                                                                                         | ационная мощно                                                                                                                                      | ость стационарной дизельной уста-                                                                                                                                                                                                                      | P <sub>a</sub>                                         | 2.1                                                                  | кВт                                                            |  |
| новки:                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                                        | Ü                                                      |                                                                      |                                                                |  |
| вал                                                                                                                                               | овыи выорос і-го                                                                                                                                    | вещества за год стационарной дизел<br>М <sub>год</sub> =q,*B <sub>год</sub> /1000                                                                                                                                                                      |                                                        | определяется по с                                                    | рормуле:                                                       |  |
| где:                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                        |                                                                      |                                                                |  |
|                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                        |                                                                      |                                                                |  |
| q <sub>і</sub> - выбро                                                                                                                            | с і-го вредного в                                                                                                                                   | ещества, г/кг топлива, приходящегося                                                                                                                                                                                                                   | на один кг дизель                                      | ьного топлива, при                                                   | работе стационар                                               |  |
|                                                                                                                                                   |                                                                                                                                                     | ещества, г/кг топлива, приходящегося<br>с учетом совокупности режимов, сост                                                                                                                                                                            |                                                        |                                                                      |                                                                |  |
| ной дизел                                                                                                                                         | тьной установки                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                        |                                                                      |                                                                |  |
| ной дизел<br>лица 3 ил<br>расход то                                                                                                               | іьной установки<br>и 4):<br>эплива стациона                                                                                                         | с учетом совокупности режимов, сост<br>арной дизельной установкой за год                                                                                                                                                                               | авляющих экспл                                         | уатационный цикл                                                     | , г/кг топлива (таб                                            |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется і                                                                                                 | льной установки<br>и 4):<br>оплива стациона<br>по отчетным дан                                                                                      | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или                                                                                                                                         |                                                        |                                                                      |                                                                |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется і                                                                                                 | льной установки<br>и 4):<br>оплива стациона<br>по отчетным дан                                                                                      | с учетом совокупности режимов, сост<br>арной дизельной установкой за год                                                                                                                                                                               | авляющих экспл<br>В <sub>год</sub>                     | уатационный цикл                                                     | , г/кг топлива (таб                                            |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя                                                                                     | пьной установки<br>и 4):<br>оплива стациона<br>по отчетным дан<br>ется по формуле                                                                   | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или                                                                                                                                         | авляющих экспл<br>В <sub>год</sub><br>b                | уатационный цикл<br>0.0067<br>0.68                                   | , г/кг топлива (таб<br>т/год<br>л/ч                            |  |
| ной дизеллица 3 ил расход то (берется и определя Расход то                                                                                        | пьной установки<br>и 4):<br>оплива стациона<br>по отчетным дан<br>ется по формуле                                                                   | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>э: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :                                                          | авляющих экспл<br>В <sub>год</sub><br>b                | уатационный цикл<br>0.0067<br>0.68<br>0.59                           | , г/кг топлива (таб<br>т/год<br>л/ч<br>кг/ч                    |  |
| ной дизеллица 3 ил расход то (берется вопределя Расход то Средний у                                                                               | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива:                                                                          | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br><u>e: B<sub>rog</sub>=b<sub>3</sub>*k*P<sub>3</sub>*T*10<sup>-6</sup>:</u><br><u>д топлива:</u>                                      | авляющих экспл  В <sub>год</sub> b  b  b               | уатационный цикл<br>0.0067<br>0.68<br>0.59<br>280                    | , г/кг топлива (таб<br>т/год<br>л/ч<br>кг/ч<br>г/кВт.ч         |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотності                                              | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива: удельный расход в дизельного тог                                         | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>э: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>плива:                                  | В <sub>год</sub> В b  В р р                            | уатационный цикл<br>0.0067<br>0.68<br>0.59<br>280<br>0.87            | , г/кг топлива (таб<br>т/год<br>л/ч<br>кг/ч                    |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц                                   | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива: удельный расход в дизельного тогиент использова                          | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>э: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>плива:                                  | авляющих экспл  В <sub>год</sub> b  b  b               | уатационный цикл<br>0.0067<br>0.68<br>0.59<br>280<br>0.87<br>1       | л/ч<br>кг/ч<br>кг/л                                            |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц                                   | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива: удельный расход в дизельного тогиент использова                          | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>э: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>плива:                                  | В <sub>год</sub> В b  В р р                            | уатационный цикл<br>0.0067<br>0.68<br>0.59<br>280<br>0.87            | , г/кг топлива (таб<br>т/год<br>л/ч<br>кг/ч<br>г/кВт.ч         |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц                                   | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива: удельный расход в дизельного тогиент использова                          | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>э: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>плива:                                  | В <sub>год</sub> В в в в в в в в в в в в в в в в в в в | уатационный цикл<br>0.0067<br>0.68<br>0.59<br>280<br>0.87<br>1<br>58 | л/ч<br>кг/ч<br>кг/л                                            |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц<br>Время ра                       | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива: удельный расход в дизельного тогиент использова боты:                    | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>е: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>ния:                                    | В <sub>год</sub> В в в в в в в в в в в в в в в в в в в | уатационный цикл<br>0.0067<br>0.68<br>0.59<br>280<br>0.87<br>1<br>58 | л/ч<br>кг/ч<br>кг/л                                            |  |
| ной дизел<br>лица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц<br>Время ра                       | пьной установки и 4): оплива стациона отчетным дан ется по формуле оплива: удельный расход в дизельного тогиент использова боты:                    | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>е: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>ния:                                    | В <sub>год</sub> В в в в в в в в в в в в в в в в в в в | 0.0067  0.68  0.59  280  0.87  1  58                                 | , г/кг топлива (таб<br>т/год<br>л/ч<br>кг/ч<br>г/кВт.ч<br>кг/л |  |
| ной дизеллица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц<br>Время ра<br>Количести<br>Частота в | пьной установки и 4): оплива стациона по отчетным данется по формулемплива: удельный расходь дизельного тогиент использова боты: во: ращения вала:  | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>е: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>ния:                                    | В <sub>год</sub> В в в в в в в в в в в в в в в в в в в | уатационный цикл  0.0067  0.68  0.59  280  0.87  1  58  В            | т/год  л/ч кг/ч г/кВт.ч кг/л  ч/год                            |  |
| ной дизеллица 3 ил<br>расход то<br>(берется и<br>определя<br>Расход то<br>Средний у<br>Плотности<br>Коэффиц<br>Время ра<br>Количести<br>Частота в | пьной установки и 4): оплива стациона по отчетным данется по формулемплива: удельный расходь дизельного тогиент использова боты: во: ращения вала:  | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>е: B <sub>rog</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>ния:                                    | В <sub>год</sub> В в в в в в в в в в в в в в в в в в в | уатационный цикл  0.0067  0.68 0.59 280 0.87 1 58  в 5 1500 A        | т/год  л/ч кг/ч г/кВт.ч кг/л  ч/год                            |  |
| ной дизеллица 3 ил расход то (берется и определя Расход то Средний у Плотности Коэффиц Время рак Количести Частота в Группа СД                    | пьной установки и 4): оплива стациона по отчетным данется по формуле оплива: удельный расходы дизельного тогиент использова боты: ращения вала: ду: | с учетом совокупности режимов, сост<br>арной дизельной установкой за год<br>ным об эксплуатации установки) или<br>э: B <sub>год</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> :<br>д топлива:<br>плива:<br>ния:  Исходные данные по исто | В <sub>год</sub> В в в в в в в в в в в в в в в в в в в | уатационный цикл  0.0067  0.68 0.59 280 0.87 1 58  в 5 1500 A        | т/год  л/ч кг/ч г/кВт.ч кг/л  ч/год                            |  |

| Плотность і | газов при 0°C:                                                               | $\gamma 0_{or}$  | 1.31             | кг/ <b>м</b> <sup>3</sup>           |                          |
|-------------|------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
| Плотность і | газов при Т <sub>ог</sub> (К), <b>ү0<sub>ог</sub>/(1+Т<sub>ог</sub>/273)</b> | <b>У</b> ог      | 0.49482          | кг/м <sup>3</sup>                   |                          |
| Объемный    | расход отработанных газов, $Q_{or} = G_{or} / \gamma$                        | Q <sub>or</sub>  | 0.0104           | м <sup>3</sup> /с                   |                          |
|             | Расчет выбросов вредных веще                                                 | ств в атмосф     | еру от одного ді | изельного генерато                  | ра:                      |
| Код ЗВ      | Наименование ЗВ                                                              | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|             |                                                                              | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|             | Азота оксиды                                                                 | 10.3             | 43               | 0.0060083                           | 0.0002862                |
| 0301        | Азота диоксид                                                                |                  |                  | 0.0048067                           | 0.0002289                |
| 0304        | Азота оксид                                                                  |                  |                  | 0.0007811                           | 0.0000372                |
| 0328        | Сажа                                                                         | 0.7              | 3                | 0.0004083                           | 0.0000200                |
| 0330        | Сера диоксид                                                                 | 1.1              | 4.5              | 0.0006417                           | 0.0000299                |
| 0337        | Углерод оксид                                                                | 7.2              | 30               | 0.0042                              | 0.0001997                |
| 0703        | Бенз(а)пирен                                                                 | 0.000013         | 0.000055         | 0.000000008                         | 0.0000000004             |
| 1325        | Формальдегид                                                                 | 0.15             | 0.6              | 0.0000875                           | 0.0000040                |
| 2754        | Углеводороды пр. С12-С19                                                     | 3.6              | 15               | 0.0021                              | 0.0000998                |
|             | Всего по источнику                                                           | <u>':</u>        |                  | 0.013025308                         | 0.000619561              |
|             | Расчет выбросов вредных вещ                                                  | еств в атмосф    | реру от 5-ти диз | ельных генераторо                   | DB:                      |
| Код ЗВ      | Наименовани                                                                  | 1e 3B            |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|             |                                                                              |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|             | Азота оксид                                                                  | ДЫ               |                  | 0.0300417                           | 0.0014309                |
| 0301        | Азота диоко                                                                  | сид              |                  | 0.0240335                           | 0.0011447                |
| 0304        | Азота окси                                                                   | ІД               |                  | 0.0039055                           | 0.000186                 |
| 0328        | Сажа                                                                         | ·                |                  | 0.0020415                           | 0.0000998                |
| 0330        | Сера диокс                                                                   |                  |                  | 0.0032085                           | 0.0001497                |
| 0337        | Углерод окс                                                                  | сид              |                  | 0.021                               | 0.0009983                |
| 0703        | Бенз(а)пир                                                                   | ен               |                  | 0.00000004                          | 0.000000002              |
| 1325        | Формальде                                                                    | гид              |                  | 0.0004375                           | 0.00002                  |
| 2754        | Углеводороды пр.                                                             | C12-C19          |                  | 0.0105                              | 0.0004992                |
|             | Всего по источнику                                                           | ,.               |                  | 0.06512654                          | 0.003097702              |

| №<br>ИЗА                         | 1026                   | Наименование источника за-<br>грязнения атмосферы                                                                                                                    | Выхлопная труба                     |                  |                           |  |
|----------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|---------------------------|--|
| №ИВ                              | 001                    | Наименование источника вы-<br>деления                                                                                                                                | Дизельный генератор                 |                  | Power Pack<br>Foilex DH20 |  |
| от стаци                         | онарных дизел          | выполнены согласно, <b>"Методики расчє<br/>ьных установок" РНД 211.2.02.04-200</b><br>рос і-го вещества стационарной дизель<br>М <sub>сек</sub> = <b>e</b> ,*Р₃/3600 | 4, МООС РК, Аст<br>ьной установки о | гана 2005 год.   |                           |  |
|                                  |                        | зещества на единицу полезной работы<br>ч (таблица 1 или 2):                                                                                                          | стационарной ді                     | изельной установ | ки на режиме номі         |  |
| Эксплуа новки:                   | тационная мощн         | ость стационарной дизельной уста-                                                                                                                                    | P₃                                  | 27.1             | кВт                       |  |
| лица 3 и<br>расход т<br>рется по | <u>ли 4):</u>          | с учетом совокупности режимов, соста<br>рной дизельной установкой за год (бе-<br>ым об эксплуатации установки) или                                                   | выяющих эксплу                      | уатационный цию  | т/год                     |  |
| определ                          | яется по формул        | e: <b>B<sub>год</sub>=b<sub>э</sub>*k*P<sub>э</sub>*Т*10</b> <sup>-6</sup> :                                                                                         | b                                   | 7                | л/ч                       |  |
| Расход т                         | оплива:                |                                                                                                                                                                      | b                                   | 6.09             | л/ч<br>кг/ч               |  |
| Средний                          | удельный расхо         | д топлива:                                                                                                                                                           | b <sub>a</sub>                      | 225              | г/кВт.ч                   |  |
|                                  | ть дизельного то       |                                                                                                                                                                      | ρ                                   | 0.87             | кг/л                      |  |
|                                  | циент использова       |                                                                                                                                                                      | k                                   | 1                | ,.                        |  |
|                                  |                        |                                                                                                                                                                      | Т                                   | 12               |                           |  |
| Время р                          |                        |                                                                                                                                                                      |                                     |                  | ч/год                     |  |
| Время р                          |                        | Исходные данные по исто                                                                                                                                              | чнику выбросог                      | 3                | ч/год                     |  |
|                                  | тво:                   | Исходные данные по исто                                                                                                                                              | чнику выбросоі<br>N                 | з<br>4           | ч/год<br>шт               |  |
| Количес<br>Частота               | вращения вала:         | Исходные данные по исто                                                                                                                                              |                                     |                  |                           |  |
| Количес<br>Частота               | вращения вала:         |                                                                                                                                                                      | N<br>n                              | 4<br>1500<br>A   | шт                        |  |
| Количес<br>Частота<br>Группа (   | вращения вала:<br>СДУ: | Расчет расхода отработаннь                                                                                                                                           | N<br>n<br>ых газов и топли          | 4<br>1500<br>A   | шт об/мин                 |  |
| Группа (                         | вращения вала:<br>СДУ: |                                                                                                                                                                      | N<br>n                              | 4<br>1500<br>A   | шт                        |  |

Температура отходящих газов: Плотность газов при 0°С:

 $\gamma 0_{or}$ 

٥С

кг/м<sup>3</sup>

450

| Плотность                                                                                          | ь газов при Т <sub>ог</sub> (K), <b>у0</b> <sub>ог</sub> /( <b>1+Т</b> <sub>ог</sub> / <b>273</b> ) |                   | <b>У</b> ог      | 0.49482                             | кг/м <sup>3</sup>        |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------------------------|--------------------------|
| Объемный расход отработанных газов, $\mathbf{Q}_{or}$ = $\mathbf{G}_{or}$ / $\mathbf{\gamma}_{or}$ |                                                                                                     |                   |                  | 0.1075                              | м <sup>3</sup> /с        |
|                                                                                                    | Расчет выбросов вредных вещес                                                                       | зельного генерато | pa:              |                                     |                          |
| Код<br>3В                                                                                          | Наименование ЗВ                                                                                     | e <sub>i</sub> ,  | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                                    |                                                                                                     | г/кВт.ч           | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                                    | Азота оксиды                                                                                        | 10.3              | 43               | 0.0775361                           | 0.0031433                |
| 0301                                                                                               | Азота диоксид                                                                                       |                   |                  | 0.0620289                           | 0.0025146                |
| 0304                                                                                               | Азота оксид                                                                                         |                   |                  | 0.0100797                           | 0.0004086                |
| 0328                                                                                               | Сажа                                                                                                | 0.7               | 3                | 0.0052694                           | 0.0002193                |
| 0330                                                                                               | Сера диоксид                                                                                        | 1.1               | 4.5              | 0.0082806                           | 0.0003290                |
| 0337                                                                                               | Углерод оксид                                                                                       | 7.2               | 30               | 0.0542                              | 0.0021930                |
| 0703                                                                                               | Бенз(а)пирен                                                                                        | 0.000013          | 0.000055         | 0.000001                            | 0.0000000040             |
| 1325                                                                                               | Формальдегид                                                                                        | 0.15              | 0.6              | 0.0011292                           | 0.0000439                |
| 2754                                                                                               | Углеводороды пр. С12-С19                                                                            | 3.6               | 15               | 0.0271                              | 0.0010965                |
|                                                                                                    | Всего по источнику                                                                                  | :                 |                  | 0.1680879                           | 0.006804883              |
|                                                                                                    | Расчет выбросов вредных вещ                                                                         | еств в атмосо     | реру от 4-х дизе | пьных генераторов                   | 3:                       |
| Код<br>3В                                                                                          | Наименовани                                                                                         | e 3B              |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                                                                                                    |                                                                                                     |                   |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                                                                                                    | Азота оксид                                                                                         | Ы                 |                  | 0.3101444                           | 0.0125732                |
| 0301                                                                                               | Азота диокс                                                                                         |                   |                  | 0.2481156                           | 0.0100586                |
| 0304                                                                                               | Азота окси                                                                                          |                   |                  | 0.0403188                           | 0.0016345                |
| 0328                                                                                               | Сажа                                                                                                |                   |                  | 0.0210776                           | 0.0008772                |
| 0330                                                                                               | Сера диоксі                                                                                         | Сера диоксид      |                  | 0.0331224                           | 0.0013158                |
| 0337                                                                                               | Углерод окс                                                                                         | ид                |                  | 0.2168                              | 0.008772                 |
| 0703                                                                                               | Бенз(а)пире                                                                                         |                   |                  | 0.000004                            | 0.00000002               |
| 1325                                                                                               | Формальдег                                                                                          | ид                |                  | 0.0045168                           | 0.0001754                |
| 2754                                                                                               | Углеводороды пр.                                                                                    |                   | _                | 0.1084                              | 0.004386                 |
|                                                                                                    | Всего по источнику                                                                                  | :                 |                  | 0.6723516                           | 0.02721952               |

| № ИЗА              | 1027                                       | Наименование источника за-<br>грязнения атмосферы                                                  | Выхлопная труба             |                    |                    |
|--------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|--------------------|--------------------|
| №ИВ                | 001                                        | Наименование источника вы-<br>деления                                                              | Дизельный генератор насосов |                    | SELWOOD<br>S100    |
|                    |                                            | ыполнены согласно, <b>"Методики расч</b> е                                                         |                             |                    | ств в атмосферу    |
|                    |                                            | ьных установок" РНД 211.2.02.04-200                                                                |                             |                    |                    |
| Ма                 | ксимальный выбр                            | оос і-го вещества стационарной дизелі<br><b>М<sub>сек</sub>=e</b> ; <b>*P</b> <sub>3</sub> /3600   |                             | пределяется по фор | омуле:             |
| где:               |                                            | 33%                                                                                                | ,                           |                    |                    |
| еі - выбро         | с і-го вредного в                          | ещества на единицу полезной работы                                                                 | стационарной д              | изельной установки | на режиме номи-    |
| нальной            | мощности, г/кВт*                           | н (таблица 1 или 2):                                                                               |                             |                    |                    |
| Эксплуат<br>новки: | ационная мощн                              | ость стационарной дизельной уста-                                                                  | P₃                          | 29.3               | кВт                |
| Bai                | повый выброс і-го                          | вещества за год стационарной дизел                                                                 | ьной установкой             | определяется по ф  | ормуле:            |
|                    | ·                                          | М <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000                                           |                             |                    |                    |
| где:               |                                            |                                                                                                    |                             |                    |                    |
|                    |                                            | ещества, г/кг топлива, приходящегося і                                                             |                             |                    |                    |
|                    | •                                          | с учетом совокупности режимов, сост                                                                | авляющих экспл              | уатационный цикл,  | г/кг топлива (таб- |
| лица 3 ил          |                                            |                                                                                                    | ı                           |                    | 1                  |
|                    |                                            | арной дизельной установкой за год                                                                  |                             | 0.0005             | -/                 |
| \ .                |                                            | ным об эксплуатации установки) или                                                                 | В <sub>год</sub>            | 0.0835             | т/год              |
| определя           | ется по формуле                            | e: B <sub>год</sub> =b₃*k*P₃*Т*10 <sup>-6</sup> :                                                  | h                           | 8                  | =/                 |
| Расход т           | оплива:                                    |                                                                                                    | b<br>b                      | o<br>6.96          | л/ч<br>кг/ч        |
| Сропций            | удельный расход                            | TODDIADO:                                                                                          | b <sub>3</sub>              | 238                | кі/ч<br>г/кВт.ч    |
|                    | <u>удельный расход</u><br>ъ дизельного тог |                                                                                                    | ρ                           | 0.87               | кг/л               |
|                    | иент использова                            |                                                                                                    | k k                         | 1                  | III/II             |
| Время ра           |                                            | TIVIA.                                                                                             | T                           | 12                 | ч/год              |
| Броми ре           |                                            | Исходные данные по исто                                                                            |                             | ·                  | лод                |
| Количест           | BO:                                        |                                                                                                    | N                           | 3                  | ШТ                 |
| Частота            | зращения вала:                             |                                                                                                    | n                           | 1500               | об/мин             |
| Группа С           | ДУ:                                        |                                                                                                    |                             | Α                  |                    |
|                    |                                            | Расчет расхода отработанны                                                                         | ых газов и топл             | ива                |                    |
| Расход о           | тработанных газо                           | ов, <b>G</b> <sub>or</sub> = 8.72*10 <sup>-6</sup> * <b>b</b> <sub>э</sub> * <b>P</b> <sub>э</sub> | G <sub>or</sub>             | 0.061              | кг/с               |
|                    | гура отходящих г                           | азов:                                                                                              | T <sub>or</sub>             | 450                | ٥C                 |
| Плотност           | ъ газов при 0°С:                           |                                                                                                    | γ0 <sub>ог</sub>            | 1.31               | кг/м <sup>3</sup>  |
| Плотност           | ъ газов при Т <sub>ог</sub> (К             | i), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)                                                     | Yor                         | 0.49482            | кг/м <sup>3</sup>  |

| Объемный  | расход отработанных газов, Q <sub>ог</sub> =G <sub>ог</sub> /ус | ог               | Q <sub>or</sub>  | 0.1229                              | м <sup>3</sup> /с        |
|-----------|-----------------------------------------------------------------|------------------|------------------|-------------------------------------|--------------------------|
|           | Расчет выбросов вредных вещес                                   | ств в атмосфо    | эру от одного ди | изельного генерато                  | ра:                      |
| Код<br>3В | Наименование ЗВ                                                 | e <sub>i</sub> , | q <sub>i</sub> , | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                                 | г/кВт.ч          | г/кг топлива     | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды                                                    | 10.3             | 43               | 0.0838306                           | 0.0035905                |
| 0301      | Азота диоксид                                                   |                  |                  | 0.0670644                           | 0.0028724                |
| 0304      | Азота оксид                                                     |                  |                  | 0.010898                            | 0.0004668                |
| 0328      | Сажа                                                            | 0.7              | 3                | 0.0056972                           | 0.0002505                |
| 0330      | Сера диоксид                                                    | 1.1              | 4.5              | 0.0089528                           | 0.0003758                |
| 0337      | Углерод оксид                                                   | 7.2              | 30               | 0.0586                              | 0.0025050                |
| 0703      | Бенз(а)пирен                                                    | 0.000013         | 0.000055         | 0.0000011                           | 0.0000000046             |
| 1325      | Формальдегид                                                    | 0.15             | 0.6              | 0.0012208                           | 0.0000501                |
| 2754      | Углеводороды пр. С12-С19                                        | 3.6              | 15               | 0.0293                              | 0.0012525                |
|           | Всего по источнику                                              |                  |                  | 0.18173331                          | 0.00777302               |
|           | Расчет выбросов вредных вещ                                     |                  | реру от 3-х дизе | льных генераторог                   | в:                       |
| Код<br>3В | Наименовани                                                     | e 3B             |                  | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|           |                                                                 |                  |                  | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксид                                                     | ĮЫ               |                  | 0.2514917                           | 0.0107715                |
| 0301      | Азота диокс                                                     | ид               |                  | 0.2011932                           | 0.0086172                |
| 0304      | Азота окси,                                                     | Д                |                  | 0.032694                            | 0.0014003                |
| 0328      | Сажа                                                            |                  |                  | 0.0170916                           | 0.0007515                |
| 0330      | Сера диоксі                                                     | ид               |                  | 0.0268584                           | 0.0011273                |
| 0337      | Углерод оксид                                                   |                  | 0.1758           | 0.007515                            |                          |
| 0703      | Бенз(а)пире                                                     | ЭН               |                  | 0.0000003                           | 0.0000001                |
| 1325      | Формальдег                                                      | ид               |                  | 0.0036624                           | 0.0001503                |
| 2754      | Углеводороды пр.                                                | C12-C19          |                  | 0.0879                              | 0.0037575                |
|           | Всего по источнику                                              | ·-               |                  | 0.5451999                           | 0.02331911               |

| 1028 Наименование источника за-<br>грязнения атмосферы                                                                        | Выхлопная труба                                                                     |                                                                                                                                                                                      |                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 001 Наименование источника выде-<br>ления                                                                                     | Дизельный ге                                                                        | Power Pack<br>Desmi                                                                                                                                                                  |                                                                          |
| выбросов выполнены согласно, "Методики расче                                                                                  |                                                                                     |                                                                                                                                                                                      | ств в атмосферу                                                          |
| ных дизельных установок" РНД 211.2.02.04-200                                                                                  |                                                                                     |                                                                                                                                                                                      |                                                                          |
| льный выброс і-го вещества стационарной дизель                                                                                |                                                                                     | пределяется по фор                                                                                                                                                                   | омуле:                                                                   |
| М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600                                                                                     | , г/с                                                                               |                                                                                                                                                                                      |                                                                          |
|                                                                                                                               | etellialianilaŭ El                                                                  | 400 EL LIQŬ VOTOLIO DIGI                                                                                                                                                             |                                                                          |
| вредного вещества на единицу полезной работы ости, г/кВт*ч (таблица 1 или 2):                                                 | стационарной ді                                                                     | изельной установки                                                                                                                                                                   | на режиме номи-                                                          |
|                                                                                                                               |                                                                                     |                                                                                                                                                                                      | 1                                                                        |
| нная мощность стационарной дизельной уста-                                                                                    | P₃                                                                                  | 48.1                                                                                                                                                                                 | кВт                                                                      |
| і выброс і-го вещества за год стационарной дизел                                                                              | шой установкой                                                                      | опропопастся по ф                                                                                                                                                                    | ODMVEO:                                                                  |
| н выорос 1-то вещества за год стационарной дизет<br>М <sub>год</sub> =q <sub>i</sub> *В <sub>год</sub> /1000                  |                                                                                     | определяется по ф                                                                                                                                                                    | ормуле.                                                                  |
| W <sub>год</sub> -q <sub>i</sub> В <sub>год</sub> / 1000                                                                      | , тлод                                                                              |                                                                                                                                                                                      |                                                                          |
| вредного вещества, г/кг топлива, приходящегося н                                                                              | на олин кг лизель                                                                   | ного топпива при р                                                                                                                                                                   | аботе стационар                                                          |
| і установки с учетом совокупности режимов, сост                                                                               |                                                                                     |                                                                                                                                                                                      |                                                                          |
| r yeranozkir e y lerem eezekynneem penkimez, eeer                                                                             | авлинощих околи                                                                     | уатационный цинот,                                                                                                                                                                   | ima rensinba (rae                                                        |
| а стационарной дизельной установкой за год (бе-                                                                               |                                                                                     |                                                                                                                                                                                      |                                                                          |
| тным данным об эксплуатации установки) или                                                                                    | Вгол                                                                                | 0.1357                                                                                                                                                                               | т/год                                                                    |
| по формуле: <b>B</b> <sub>год</sub> = <b>b</b> <sub>э</sub> * <b>k</b> * <b>P</b> <sub>э</sub> * <b>T</b> *10 <sup>-6</sup> : | 194                                                                                 |                                                                                                                                                                                      |                                                                          |
|                                                                                                                               | b                                                                                   | 13                                                                                                                                                                                   | л/ч                                                                      |
| a:                                                                                                                            | b                                                                                   | 11.31                                                                                                                                                                                | кг/ч                                                                     |
| ьный расход топлива:                                                                                                          | b₃                                                                                  | 235                                                                                                                                                                                  | г/кВт.ч                                                                  |
| ельного топлива:                                                                                                              | ρ                                                                                   | 0.87                                                                                                                                                                                 | кг/л                                                                     |
| использования:                                                                                                                | k                                                                                   | 1                                                                                                                                                                                    |                                                                          |
| :                                                                                                                             | T                                                                                   | 12                                                                                                                                                                                   | ч/год                                                                    |
| Исходные данные по исто                                                                                                       | чнику выбросоі                                                                      | 3                                                                                                                                                                                    |                                                                          |
|                                                                                                                               | N                                                                                   | 1                                                                                                                                                                                    | ШТ                                                                       |
| ения вала:                                                                                                                    | n                                                                                   | 1500                                                                                                                                                                                 | об/мин                                                                   |
|                                                                                                                               |                                                                                     | Α                                                                                                                                                                                    |                                                                          |
| Расчет расхода отработанны                                                                                                    | іх газов и топли                                                                    | іва                                                                                                                                                                                  |                                                                          |
| танных газов, <b>G</b> <sub>ог</sub> = <b>8.72*10<sup>-6</sup>*b</b> <sub>э</sub> <b>*P</b> <sub>э</sub>                      | G <sub>or</sub>                                                                     | 0.099                                                                                                                                                                                | кг/с                                                                     |
| тходящих газов:                                                                                                               | T <sub>or</sub>                                                                     | 450                                                                                                                                                                                  | °C                                                                       |
| ов при 0°C:                                                                                                                   | γ0 <sub>ог</sub>                                                                    | 1.31                                                                                                                                                                                 | кг/м <sup>3</sup>                                                        |
| ов при T <sub>or</sub> (K), <b>γ0<sub>or</sub>/(1+T<sub>or</sub>/273)</b>                                                     | <b>У</b> ог                                                                         | 0.49482                                                                                                                                                                              | кг/м <sup>3</sup>                                                        |
| ход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> /γ <sub>or</sub>                                      | Q <sub>or</sub>                                                                     | 0.1992                                                                                                                                                                               | м <sup>3</sup> /с                                                        |
| ов при Т <sub>ог</sub> (К), <b>ү</b><br>ход отработан                                                                         | ных газов, <b>Q</b> <sub>ог</sub> = <b>G</b> <sub>ог</sub> / <b>ү</b> <sub>ог</sub> | $0_{\rm or}$ /(1+ $\mathbf{T}_{\rm or}$ /273) $\mathbf{\gamma}_{\rm or}$ Ных газов, $\mathbf{Q}_{\rm or}$ = $\mathbf{G}_{\rm or}$ / $\mathbf{\gamma}_{\rm or}$ $\mathbf{Q}_{\rm or}$ | <b>0</b> <sub>or</sub> /(1+T <sub>or</sub> /273) γ <sub>or</sub> 0.49482 |

| Код<br>3В | Наименование ЗВ          | е <sub>і</sub> , | q <sub>і</sub> , | Максимально-<br>разовый вы-<br>брос<br>М <sub>сек</sub> , г/с | Валовый выброс М <sub>гол</sub> , т/год              |
|-----------|--------------------------|------------------|------------------|---------------------------------------------------------------|------------------------------------------------------|
|           | Acord Ovolatil           | 10.3             | 43               | исек, 17C<br>0.1376194                                        | <b>М</b> <sub>год</sub> , 1/1 <b>ОД</b><br>0.0058351 |
|           | Азота оксиды             | 10.3             | 43               |                                                               |                                                      |
| 0301      | Азота диоксид            |                  |                  | 0.1100956                                                     | 0.0046681                                            |
| 0304      | Азота оксид              |                  |                  | 0.0178905                                                     | 0.0007586                                            |
| 0328      | Сажа                     | 0.7              | 3                | 0.0093528                                                     | 0.0004071                                            |
| 0330      | Сера диоксид             | 1.1              | 4.5              | 0.0146972                                                     | 0.0006107                                            |
| 0337      | Углерод оксид            | 7.2              | 30               | 0.0962                                                        | 0.004071                                             |
| 0703      | Бенз(а)пирен             | 0.000013         | 0.000055         | 0.0000002                                                     | 0.000000007                                          |
| 1325      | Формальдегид             | 0.15             | 0.6              | 0.0020042                                                     | 0.0000814                                            |
| 2754      | Углеводороды пр. С12-С19 | 3.6              | 15               | 0.0481                                                        | 0.0020355                                            |
|           | Всего по источнику       | :                |                  | 0.2983405                                                     | 0.012632407                                          |

|                    |                                                      | Всего по источнику:                                                                                                        |                                                                        |                                          | 0.2983405                           | 0.012632407              |
|--------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|-------------------------------------|--------------------------|
|                    |                                                      |                                                                                                                            |                                                                        |                                          |                                     |                          |
| № ИЗА              | 1029                                                 | Наименование ист                                                                                                           |                                                                        | Выхлопная т                              | руба                                |                          |
| № ИВ               | 001                                                  | Наименование исп<br>выделения                                                                                              | точника                                                                | Дизельный генератор Power Pack<br>Vikoma |                                     |                          |
| от стаци           | онарных дизельн                                      | полнены согласно, "Монька установок" РНД 2                                                                                 | 11.2.02.04-200                                                         | <b>)4</b> , MOOC PK, Ad                  | стана 2005 год.                     |                          |
|                    | ксимальный выбро                                     | ос і-го вещества стацис<br>І                                                                                               | онарной дизел<br>М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600             |                                          | определяется по фор                 | рмуле:                   |
|                    |                                                      | щества на единицу пол<br>(таблица 1 или 2):                                                                                | пезной работы                                                          | стационарной д                           | цизельной установки                 | на режиме номи-          |
| Эксплуат<br>новки: | ационная мощнос                                      | сть стационарной дизе                                                                                                      | ельной уста-                                                           | P <sub>9</sub>                           | 50                                  | кВт                      |
| Вал                | повый выброс і-го                                    | вещества за год стацио<br><b>М</b> г                                                                                       | онарной дизел<br><sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000 |                                          | й определяется по ф                 | ормуле:                  |
| где:               |                                                      |                                                                                                                            |                                                                        |                                          |                                     |                          |
| ной дизе           | пьной установки с                                    | цества, г/кг топлива, пр<br>учетом совокупности                                                                            |                                                                        |                                          |                                     |                          |
| (берется           | оплива стационар<br>по отчетным данн                 | оной дизельной устано<br>ым об эксплуатации ус<br>В <sub>год</sub> =b <sub>э</sub> *k*P <sub>3</sub> *T*10 <sup>-6</sup> : |                                                                        | В <sub>год</sub>                         | 0.1462                              | т/год                    |
|                    |                                                      |                                                                                                                            |                                                                        | b                                        | 14                                  | л/ч                      |
| Расход то          | лілива.                                              |                                                                                                                            |                                                                        | b                                        | 12.18                               | кг/ч                     |
|                    | удельный расход                                      |                                                                                                                            |                                                                        | b₃                                       | 244                                 | г/кВт.ч                  |
|                    | ъ дизельного топл                                    |                                                                                                                            |                                                                        | ρ                                        | 0.87                                | кг/л                     |
|                    | иент использован                                     | ия:                                                                                                                        |                                                                        | k                                        | 1                                   |                          |
| Время ра           | іботы:                                               |                                                                                                                            |                                                                        | Т                                        | 12                                  | ч/год                    |
|                    |                                                      | Исходные да                                                                                                                | нные по исто                                                           | чнику выбросс                            |                                     | T                        |
| Количест           |                                                      |                                                                                                                            |                                                                        | N                                        | 4                                   | ШТ                       |
|                    | вращения вала:                                       |                                                                                                                            |                                                                        | n                                        | 1500                                | об/мин                   |
| Группа С           | ДУ:                                                  | Decuse peeve                                                                                                               |                                                                        |                                          | A                                   |                          |
| Расуол о           | TDOFOTOLIULIX FOOD                                   | Расчет расхода<br>в, G <sub>or</sub> = 8.72*10 <sup>-6</sup> *b <sub>э</sub> *Р <sub>э</sub>                               | а отраоотанні                                                          | G <sub>or</sub>                          | <b>ива</b><br>0.106                 | кг/с                     |
|                    | граоотанных газов<br>гура отходящих га:              |                                                                                                                            |                                                                        | T <sub>or</sub>                          | 450                                 | 0C                       |
|                    | гура отходящих га:<br>ъ газов при 0°С:               | оов.                                                                                                                       |                                                                        | γ0 <sub>or</sub>                         | 1.31                                | кг/м <sup>3</sup>        |
|                    | ъ газов при С о.<br>ъ газов при Т <sub>ог</sub> (К), | v0/(1+T/273)                                                                                                               |                                                                        | <b>У</b> Ог                              | 0.49482                             | KΓ/M <sup>3</sup>        |
|                    |                                                      | анных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>y</b> <sub>o</sub>                                       |                                                                        | Qor                                      | 0.2150                              | M <sup>3</sup> /C        |
| 0000               |                                                      | осов вредных вещес                                                                                                         |                                                                        |                                          |                                     |                          |
|                    | •                                                    |                                                                                                                            | •                                                                      |                                          | •                                   |                          |
| Код ЗВ             | Наиме                                                | нование ЗВ                                                                                                                 | e <sub>i</sub> ,                                                       | q <sub>i</sub> ,                         | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|                    |                                                      |                                                                                                                            | г/кВт.ч                                                                | г/кг топлива                             | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|                    |                                                      | а оксиды                                                                                                                   | 10.3                                                                   | 43                                       | 0.1430556                           | 0.0062866                |
| 0301               |                                                      | а диоксид                                                                                                                  |                                                                        |                                          | 0.1144444                           | 0.0050293                |
| 0304               |                                                      | та оксид                                                                                                                   | 0 -                                                                    |                                          | 0.0185972                           | 0.0008173                |
| 0328               |                                                      | Сажа                                                                                                                       | 0.7                                                                    | 3                                        | 0.0097222                           | 0.0004386                |
| 0330               |                                                      | а диоксид                                                                                                                  | 1.1                                                                    | 4.5                                      | 0.0152778                           | 0.0006579                |
| 0337               |                                                      | оод оксид                                                                                                                  | 7.2                                                                    | 30                                       | 0.1                                 | 0.0043860                |
| 0703<br>1325       |                                                      | в(а)пирен                                                                                                                  | 0.000013                                                               | 0.000055                                 | 0.0000002                           | 0.000000080              |
|                    |                                                      | альдегид                                                                                                                   | 0.15                                                                   | 0.6                                      | 0.0020833                           | 0.0000877                |
| 2754               | утлеводорс                                           | рды пр. С12-С19                                                                                                            | 3.6                                                                    | 15                                       | 0.05                                | 0.0021930                |

Расчет выбросов вредных веществ в атмосферу от 4-х дизельных генераторов:

Всего по источнику:

0.013609766

| Код ЗВ | Наименование ЗВ          | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|--------|--------------------------|-------------------------------------|--------------------------|
|        |                          | М <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|        | Азота оксиды             | 0.5722222                           | 0.0251464                |
| 0301   | Азота диоксид            | 0.4577776                           | 0.0201171                |
| 0304   | Азота оксид              | 0.0743888                           | 0.003269                 |
| 0328   | Сажа                     | 0.0388888                           | 0.0017544                |
| 0330   | Сера диоксид             | 0.0611112                           | 0.0026316                |
| 0337   | Углерод оксид            | 0.4                                 | 0.017544                 |
| 0703   | Бенз(а)пирен             | 0.000008                            | 0.00000003               |
| 1325   | Формальдегид             | 0.0083332                           | 0.0003509                |
| 2754   | Углеводороды пр. С12-С19 | 0.2                                 | 0.008772                 |
| •      | Всего по источнику:      | 1.2405004                           | 0.05443903               |

|           |                    | Всего по источнику:                                                      | :                                                            |                    | 1.2405004              | 0.05443903                         |
|-----------|--------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|------------------------|------------------------------------|
|           |                    |                                                                          |                                                              |                    |                        |                                    |
| № ИЗА     | 1030               | Наименование источ                                                       |                                                              | Выхлопная т        | руба                   |                                    |
| № ИВ      | 001                | Наименование исто<br>деления                                             | очника вы-                                                   | мера               | енератор ским-         | Skimmer<br>Desmi RO-<br>MOP OM 140 |
|           |                    | выполнены согласно, <b>"М</b>                                            |                                                              |                    |                        | ств в атмосферу                    |
|           |                    | ьных установок" РНД 2                                                    |                                                              |                    |                        |                                    |
| Ma        | ксимальныи выб     | рос і-го вещества стацио                                                 | онарнои дизел<br><b>М<sub>сек</sub>=е</b> і* <b>Р</b> ₃/3600 |                    | определяется по фо     | рмуле:                             |
| где:      |                    |                                                                          | IVI <sub>cek</sub> =e <sub>i</sub> "P <sub>3</sub> /3600     | J, 1/C             |                        |                                    |
| еі - выбр |                    | вещества на единицу пол                                                  | пезной работы                                                | стационарной д     | цизельной установки    | на режиме номи-                    |
|           |                    | ч (таблица 1 или 2):                                                     | ·                                                            |                    |                        | ·                                  |
| Эксплуат  | гационная мощн     | ость стационарной диз                                                    | ельной уста-                                                 | P <sub>a</sub>     | 3.4                    | кВт                                |
| новки:    |                    |                                                                          |                                                              | -                  |                        |                                    |
| Ba.       | ловый выброс і-г   | о вещества за год стаци                                                  |                                                              |                    | и определяется по ф    | ормуле:                            |
| FEO:      |                    | IVI <sub>r</sub>                                                         | <sub>од</sub> =q <sub>і</sub> *В <sub>год</sub> /1000        | , т/год            |                        |                                    |
| где:      | oc i-ro poenhoro p | ещества, г/кг топлива, пр                                                | ONVOUGULECOCO                                                | N3 OUNT AL UNSOU   | LUOTO TOTTUPA TOU P    | заботе станионал-                  |
|           |                    | с учетом совокупности                                                    |                                                              |                    |                        |                                    |
| лица 3 и  |                    | o y lorom cobokylinocivi                                                 | рожинов, ссот                                                | авлиощих околь     | туатационный цинот,    | THE TOTALIDA (TAO                  |
|           |                    | арной дизельной устан                                                    | овкой за год                                                 |                    |                        |                                    |
| (берется  | по отчетным дан    | іным об эксплуатации ус                                                  | становки) или                                                | Вгод               | 0.0104                 | т/год                              |
| определя  | яется по формул    | e: <b>B<sub>год</sub>=b<sub>э</sub>*k*P<sub>э</sub>*T*10</b> -6:         |                                                              |                    |                        |                                    |
| Расход т  | оппива.            |                                                                          |                                                              | b                  | 1                      | л/ч                                |
|           |                    |                                                                          |                                                              | b                  | 0.87                   | кг/ч                               |
|           | удельный расхо,    | •                                                                        |                                                              | b₃                 | 256                    | г/кВт.ч                            |
|           | ть дизельного тог  |                                                                          |                                                              | ρ                  | 0.87                   | кг/л                               |
|           | циент использова   | : RNH                                                                    |                                                              | k                  | 1 12                   | /===                               |
| Время ра  | аооты:             | Иохопи ю по                                                              | 10 50 4050                                                   |                    | ·=                     | ч/год                              |
| Количест  | rno:               | исходные да                                                              | інные по исто                                                | чнику выбросс<br>N | 6<br>6                 | шт                                 |
|           | вращения вала:     |                                                                          |                                                              | n                  | 1500                   | шт<br>об/мин                       |
| Группа С  |                    |                                                                          |                                                              |                    | A                      | ОО/МИН                             |
| т руппа С | <u>д</u> у.        | Расчет пасхол:                                                           | а отпаботанні                                                | ых газов и топл    |                        |                                    |
| Расхол о  | тработанных газ    | ов, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                      | и отрасотання                                                | G <sub>or</sub>    | 0.008                  | кг/с                               |
|           | тура отходящих і   |                                                                          |                                                              | Tor                | 450                    | °C                                 |
|           | ть газов при 0°C:  | <u> </u>                                                                 |                                                              | γ0 <sub>or</sub>   | 1.31                   | кг/м <sup>3</sup>                  |
|           |                    | (), γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)                           |                                                              | Yor                | 0.49482                | кг/м <sup>3</sup>                  |
|           |                    | танных газов, $\mathbf{Q}_{or} = \mathbf{G}_{or} / \mathbf{\gamma}_{or}$ | or .                                                         | Q <sub>or</sub>    | 0.0153                 | м <sup>3</sup> /с                  |
|           | Расчет вы          | бросов вредных вещес                                                     | тв в атмосфе                                                 | ру от одного д     | изельного генерато     | ра:                                |
|           |                    |                                                                          |                                                              |                    |                        |                                    |
|           |                    |                                                                          | _                                                            |                    | Максимально-           | Валовый вы-                        |
| Код       | Наим               | енование ЗВ                                                              | e <sub>i</sub> ,                                             | q <sub>i</sub> ,   | разовый вы-            | брос                               |
| 3B        |                    |                                                                          |                                                              |                    | брос                   |                                    |
|           |                    |                                                                          | г/кВт.ч                                                      | г/кг топлива       | М <sub>сек</sub> , г/с | М <sub>год</sub> , т/год           |
|           | Азо                | ота оксиды                                                               | 10.3                                                         | 43                 | 0.0097278              | 0.0004472                          |
| 0301      |                    | та диоксид                                                               |                                                              |                    | 0.0077822              | 0.0003578                          |
| 0304      |                    | ота оксид                                                                |                                                              |                    | 0.0012646              | 0.0000581                          |
| 0328      |                    | Сажа                                                                     | 0.7                                                          | 3                  | 0.0006611              | 0.0000312                          |
| 0330      |                    | ра диоксид                                                               | 1.1                                                          | 4.5                | 0.0010389              | 0.0000468                          |
| 0337      |                    | ерод оксид                                                               | 7.2                                                          | 30                 | 0.0068                 | 0.0003120                          |
| 0703      | Бе                 | нз(а)пирен                                                               | 0.000013                                                     | 0.000055           | 0.0000001              | 0.0000000006                       |

Дополнение В.2

Формальдегид

Углеводороды пр. С12-С19

Всего по источнику:

1325 2754

Расчет выбросов вредных веществ в атмосферу от 6-ти дизельных генераторов:

0.15

3.6

0.6

15

0.0001417

0.0034

0.02108851

0.0000062

0.0001560

| Код<br>3В | Наименование ЗВ          | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|-----------|--------------------------|-------------------------------------|--------------------------|
|           |                          | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды             | 0.0583667                           | 0.0026832                |
| 0301      | Азота диоксид            | 0.0466932                           | 0.0021466                |
| 0304      | Азота оксид              | 0.0075876                           | 0.0003488                |
| 0328      | Сажа                     | 0.0039666                           | 0.0001872                |
| 0330      | Сера диоксид             | 0.0062334                           | 0.0002808                |
| 0337      | Углерод оксид            | 0.0408                              | 0.001872                 |
| 0703      | Бенз(а)пирен             | 0.0000006                           | 0.000000003              |
| 1325      | Формальдегид             | 0.0008502                           | 0.0000374                |
| 2754      | Углеводороды пр. С12-С19 | 0.0204                              | 0.000936                 |
|           | Всего по источнику:      | 0.12653106                          | 0.005808803              |

|                               | Всего по источнику:                        |                                                                                                          |                                                                              |                                                    | 0.12653106                           | 0.005808803              |
|-------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------|
|                               |                                            |                                                                                                          |                                                                              |                                                    |                                      |                          |
| Nº<br>N3A                     | 1031                                       | Наименование источ                                                                                       |                                                                              | Выхлопная т                                        | руба                                 |                          |
| № ИВ                          | 001                                        | Наименование исто<br>деления                                                                             | чника вы-                                                                    | Дизельный г                                        | енератор                             | Power Pack<br>Desmi      |
| <b>от стаци</b><br>Ма<br>где: | <b>чонарных дизель</b><br>аксимальный выбр | ыполнены согласно, "Ме<br>ных установок" РНД 2<br>ос і-го вещества стацио<br>І<br>ещества на единицу пол | 11.2.02.04-200<br>нарной дизель<br>М <sub>сек</sub> =е <sub>і</sub> *Р₃/3600 | 4, МООС РК, Ас<br>ьной установки с<br>, <b>г/с</b> | тана 2005 год.<br>пределяется по фор | муле:                    |
| нальной                       | мощности, г/кВт*ч                          | і (таблица 1 или 2):<br>ость стационарной дизе                                                           |                                                                              | ·<br>                                              | <u> </u>                             |                          |
| новки:                        |                                            |                                                                                                          |                                                                              | P₃                                                 | 53.1                                 | кВт                      |
| где:<br>q <sub>i</sub> - выбр | ос i-го вредного ве<br>ельной установки    | вещества за год стацио<br>М <sub>го</sub><br>вщества, г/кг топлива, пр<br>с учетом совокупности р        | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000<br>иходящегося і       | , <b>т/год</b><br>на один кг дизел                 | ьного топлива, при ра                | аботе стационар-         |
| расход т                      | оплива стационар<br>о отчетным данны       | ной дизельной установк<br>ым об эксплуатации ус<br>:: В <sub>год</sub> =b₃*k*P₃*T*10 <sup>-6</sup> :     |                                                                              | В <sub>год</sub>                                   | 0.1670                               | т/год                    |
| Расход т                      | оппива.                                    |                                                                                                          |                                                                              | b                                                  | 16                                   | л/ч                      |
| - ''                          |                                            |                                                                                                          |                                                                              | b                                                  | 13.92                                | кг/ч                     |
|                               | і удельный расход                          |                                                                                                          |                                                                              | b₃                                                 | 262                                  | г/кВт.ч                  |
|                               | ть дизельного топ                          |                                                                                                          |                                                                              | ρ                                                  | 0.87                                 | кг/л                     |
|                               | циент использова                           | ния:                                                                                                     |                                                                              | k                                                  | 1                                    |                          |
| Время ра                      | аботы:                                     |                                                                                                          |                                                                              | T                                                  | 12                                   | ч/год                    |
|                               |                                            | Исходные да                                                                                              | нные по исто                                                                 | чнику выбросо                                      |                                      | 1                        |
| Количес                       |                                            |                                                                                                          |                                                                              | N                                                  | 2                                    | ШТ                       |
|                               | вращения вала:                             |                                                                                                          |                                                                              | n                                                  | 1500                                 | об/мин                   |
| Группа С                      | <u> СДУ:</u>                               |                                                                                                          |                                                                              |                                                    | A                                    |                          |
|                               |                                            | Расчет расхода                                                                                           | ı отработанн <u>ь</u>                                                        |                                                    |                                      |                          |
|                               | •                                          | B, $G_{or} = 8.72*10^{-6*}b_3*P_3$                                                                       |                                                                              | G <sub>or</sub>                                    | 0.121                                | кг/с                     |
|                               | тура отходящих га                          | 330B:                                                                                                    |                                                                              | T <sub>or</sub>                                    | 450                                  | °C                       |
|                               | ть газов при 0°C:                          |                                                                                                          |                                                                              | γ0 <sub>ог</sub>                                   | 1.31                                 | кг/м <sup>3</sup>        |
|                               | ть газов при Т <sub>ог</sub> (К            |                                                                                                          |                                                                              | <b>У</b> ог                                        | 0.49482                              | кг/м <sup>3</sup>        |
| Объемн                        |                                            | ганных газов, <b>Q</b> ₀г <b>=G</b> ₀г/ <b>γ</b> ₀г                                                      |                                                                              | Q <sub>or</sub>                                    | 0.2452                               | м <sup>3</sup> /с        |
|                               | Расчет выб                                 | росов вредных вещес                                                                                      | тв в атмосфе<br>Г                                                            | ру от одного ді                                    | изельного генерато <sub>!</sub>      | pa:                      |
| Код<br>3В                     | Наиме                                      | нование ЗВ                                                                                               | e <sub>i</sub> ,                                                             | q <sub>i</sub> ,                                   | Максимально-<br>разовый вы-<br>брос  | Валовый вы-<br>брос      |
|                               |                                            |                                                                                                          | г/кВт.ч                                                                      | г/кг топлива                                       | М <sub>сек</sub> , г/с               | М <sub>год</sub> , т/год |
| 0004                          |                                            | та оксиды                                                                                                | 10.3                                                                         | 43                                                 | 0.1519250                            | 0.0071810                |
| 0301                          |                                            | га диоксид                                                                                               |                                                                              |                                                    | 0.12154                              | 0.0057448                |
| 0304                          | Азо                                        | ота оксид                                                                                                | 0.7                                                                          |                                                    | 0.0197503                            | 0.0009335                |
| 0328                          | _                                          | Сажа                                                                                                     | 0.7                                                                          | 3                                                  | 0.010325                             | 0.0005010                |
| 0330                          |                                            | а диоксид                                                                                                | 1.1                                                                          | 4.5                                                | 0.016225                             | 0.0007515                |
| 0337                          |                                            | ерод оксид                                                                                               | 7.2                                                                          | 30                                                 | 0.1062                               | 0.0050100                |
| 0703                          |                                            | з(а)пирен                                                                                                | 0.000013                                                                     | 0.000055                                           | 0.0000002                            | 0.0000000092             |
| 1325                          |                                            | мальдегид                                                                                                | 0.15                                                                         | 0.6                                                | 0.0022125                            | 0.0001002                |
| 2154                          | 2754 Углеводороды пр. С12-С19 3.6          |                                                                                                          |                                                                              | 15                                                 | 0.0531                               | 0.0025050                |

Расчет выбросов вредных веществ в атмосферу от 2-х дизельных генераторов:

Всего по источнику:

0.015546039

| Код<br>3В | Наименование ЗВ          | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|-----------|--------------------------|-------------------------------------|--------------------------|
|           |                          | M <sub>сек</sub> , г/с              | М <sub>год</sub> , т/год |
|           | Азота оксиды             | 0.30385                             | 0.014362                 |
| 0301      | Азота диоксид            | 0.24308                             | 0.0114896                |
| 0304      | Азота оксид              | 0.0395006                           | 0.0018671                |
| 0328      | Сажа                     | 0.02065                             | 0.001002                 |
| 0330      | Сера диоксид             | 0.03245                             | 0.001503                 |
| 0337      | Углерод оксид            | 0.2124                              | 0.01002                  |
| 0703      | Бенз(а)пирен             | 0.000004                            | 0.00000002               |
| 1325      | Формальдегид             | 0.004425                            | 0.0002004                |
| 2754      | Углеводороды пр. С12-С19 | 0.1062                              | 0.00501                  |
| ·         | Всего по источнику:      | 0.658706                            | 0.03109212               |

| № ИЗА         1032         Наименование источника загрязнения атмосфоры         Выхлопная труба           № ИВ         001         Наименование источника дыменьный генератор         Ромет Раск ромен расмены выбросов выполнены согласно, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установких установких установких установких установких установких установких установких установких мустановких определяется по формуле: Массимальный выброс і-го вещества на единицу полезной работы стационарной дизельной установки определяется по формуле: Массимальный мощносты, г/яВтч (таблица 1 или 2):         ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | Всего по источнику:  |                                                          |                                                       |                  | 0.658706               | 0.03109212         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|----------------------------------------------------------|-------------------------------------------------------|------------------|------------------------|--------------------|--|
| № ИВ         1032         грязнения атмосферы выклопная труов         Выхлопная труов         Power Pack Desmi           Расчеты выбросов выполнены согласию, "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установом" РНД 211.20.04-2004, МООС РК, Астана 2005 год.         Максимальный выброс і-го вещества стационарной дизельной установих определяется по формуле: Максимальный выброс і-го вещества на единицу полезной работы стационарной дизельной установки поределяется по формуле: Максимальной мощности, г/квт-"ч (тайслица 1 или 2):         Валовый выброс і-го вещества на единицу полезной работы стационарной дизельной установки на режиме номи нальной мощности, г/квт-"ч (тайслица 1 или 2):         Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле: Максача 1 или 2 в                                                                                                                                                                                                                                                         |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| № ив         О01         Наименование источника выбросов выполнены согласно. "Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок" РНД 211.2 Q.04.2004, МОС РК. Астана 2005 год. Максимальный выброс i-то вещества стационарной дизельной установки определяется по формуле: Мыск-е-, Р., 2500, г/с         Дизельный расмостационарной дизельной установки определяется по формуле: Мыск-е-, Р., 2600, г/с           где: е, выброс i-го вещества на единицу полозной работы стационарной дизельной установки определяется по формуле: Мыск-е-, Р., 2600, г/с         № 8         кВт           где: е, выброс i-го вещества на единицу полозной работы стационарной дизельной установкой определяется по формуле: Мыск-е-, Р., 2600, г/с         № 8         кВт           Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле: Мыск-е-, 1600, г/год         Р., 86         кВт           где: е, выброс I-го вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установкой определяется по формуле: Мыск-е-, 1600, г/год         1600, г/год           где: ед. выброс I-го вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установкой) или определяется по формуле: Выпатационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установкой) или определяется по формуле: Выпатационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установкой) или определяется по формуле: Выпатационарной дизельной установкой дагама, практичества выскатационарной дизельной топлива (берется на станарной дизельной топлива).         Вагоматац                                                                                                                                                                                                                                                                                                                                                                                                    | № ИЗА                                                                      | 1032                 |                                                          |                                                       | Выхлопная т      | руба                   |                    |  |
| от стационарных дизельных установок" РНД 211.2.02.04-2004, МООС РК, Астана 2005 год.  Максимальный выброс і-го вещества стационарной дизельной установки определяется по формуле:  Меж-е,*Р,/3600, г/с  где:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                      | Наименование исп<br>выделения                            | точника                                               | • •              | Desmi                  |                    |  |
| Максимальный выброс i-го вещества а стационарной дизельной установки определяется по формуле:  где:  с, - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи нальной мощности, г/кВт⁴ч (таблица 1 или 2):  Эксплуятационная мощность стационарной дизельной установкой определяется по формуле:  Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле:  Мосята Валовый выброс i-го вещества, г/кг топлива, прижодящегося на один кг дизельного топлива, при работе стационарной дизельной установкой определяется по формуле:  Мосята Валовый выброс i-го вещества, г/кг топлива, прижодящегося на один кг дизельного топлива, при работе стационарной дизельной установкой установкой за год (верется по отчетным данным об эксплуатации установкой за год (берется по отчетным данным об эксплуатации установкой за год (берется по отчетным данным об эксплуатации установкой упи определяется по формуле: Вгода Въздът Валова В                                                                                                                                        |                                                                            |                      |                                                          |                                                       |                  |                        | ств в атмосферу    |  |
| М <sub>ске</sub> -е, Р <sub>9</sub> /3600, г/с гр.е. е, - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи нальной мощности, г/кВт*ч (таблица 1 или 2):  Эксплуатационная мощность стационарной дизельной установкой определяется по формуле:  М <sub>ске</sub> -q*18-к <sub>м</sub> /1000, г/год  где:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| е, - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номи нальной мощности, г/квт-тү (таблица 1 или 2):  Зксллуатационная мощность стационарной дизельной установкой определяется по формуле:  Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле:  "Мага-q" Втому 1000, т/год  где:  q, - выброс i-го вредного вещества, г/кг топлива, приходящегося на один кт дизельного топлива, при работе стационарной дизельной установкой зопределяется по формуле:  под дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таб лица 3 или 4):  расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или  вределяется по формуле: В <sub>гоа</sub> =b₂*k*P₃*T*10*:  Расход топлива:  □ b 24.5 л/ч  расход топлива: □ b 24.5 л/ч  В 21.315 кг/ч  Плотность дизельный расход топлива: □ b 21.315 кг/ч  Плотность дизельного топлива: □ p 0.87 кг/л  Коэффициент использования: □ r 12 ч/год  Количество:  Исходные данные по источнику выбросов  Количество: □ V 0, 1.31 кг/м  Частота вращения вала: □ n 1500 об/мин  Группа СДУ:  Расход отработанных газов (да = 8.72*10*b₂*P₃ Св₂  Плотность газов при П∞ (К), уФы/(1+Ты/273)  Объемный расход отработанных газов, Qa = 8.72*10*b₂*P₃  Расчет выбросов вредных веществ в атмосферу от одного дизельног генератора:  Код 3В Наименование 3В  Валовый выбросов водных веществ в атмосферу от одного дизельног генератора:  Код 3В Наименование 3В  Валовый выбросов водных веществ в атмосферу от одного дизельног генератора:  Код 3В Наименование 3В  Валовый выбросов водных веществ в атмосферу от одного дизельног генератора:  Код 3В Наименование 3В  Валовый выбросов водных веществ в атмосферу от одного дизельног генератора:  Код 3В Наименование 3В Осера диоком 1 1.2 5 0.0286667 0.0031836  Отоз Беля(а) пирен 0.000012 0.000055 0.000003 0.0000000111  1000000000000000000000000                                                                                                                                                                                                                 | Мак                                                                        | симальный выбро      |                                                          |                                                       |                  | определяется по фор    | омуле:             |  |
| нальной мощности, г/кВт*ч (таблица 1 или 2):  ———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                      |                                                          | _                                                     |                  |                        |                    |  |
| Зксплуатационная мощность стационарной дизельной установкий   Валовый выброс I-го вещества за год стационарной дизельной установкой определяется по формуле:    Валовый выброс I-го вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или расход топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                      |                                                          | тезной работы                                         | стационарной д   | цизельной установки    | на режиме номи-    |  |
| Валовый выброс і-го вещества за год стационарной дизельной установкой определяется по формуле:    Ми <sub>па</sub> = q <sup>1</sup> В <sub>год</sub> / 1000, т/год / год;   q. выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 лил 4):   расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: Вгод=въу*к*Ръ*Т*10**.   Расход топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                      |                                                          |                                                       | I                |                        |                    |  |
| Потность дизельной установия вала:   Потность дизельного топлива при работы:   Потность дизельной установки тазов, Су- 2 В- 2-10 б- 2-10 до                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                          |                      |                                                          |                                                       |                  | 86                     | кВт                |  |
| где:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Вал                                                                        | овый выброс і-го в   |                                                          |                                                       |                  | и́ определяется по ф   | ормуле:            |  |
| q выброс і-го вредного вещества, г/кг топлива, приходящегося на один кг дизельного топлива, при работе стационар- ной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таб- лица 3 или 4): расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: В <sub>гов</sub> =b₂*k*P₂*T*10*:  Расход топлива:  В 24.5 л/ч  В 24.5 л/ч  Средний удельный расход топлива:  В 24.5 л/ч  В 24.5 л/ч  Средний удельный расход топлива:  В 24.5 л/ч  Средний удельный расход топлива:  В 24.5 л/ч  Средний удельный расход топлива:  В 24.5 л/ч  Коэффициент использования:  Время работь:  Исходные данные по источнику выбросов  Количество:  Количество:  Количество:  Количество:  Количество:  Расход отработанных газов, G₀с = 8.72*10*b₃*P₂  В 5 л/г  В 1500 об/мин  Группа СДУ:  В 6 л/г  Плотность дазов при 0°C:  Плотность газов при 0°C:  Плотность газов при 0°C:  Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:  Код 3В Наименование 3В  Валовый выброс  Г/кВт.ч г/кг топлива  Код 3В Наименование 3В  Валовый выброс  Валовый выброс  Валовый выброс  Валовый выброс  Объемный расход отработанных газов, Q₀с Q₀г  Озото Озазовый выброс  Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:  Расход Отработанных газов, Q₀с Озазовай выброс  Валовый выброс  Объемный расход отработанных газов, Q₀с Озазовай выброс  Озото Азота оксид  Озото Азота оксид  Озото Азота оксид  Озото Озабот Озабота осица  Озото Озабота осица  Озото Озабота осица  Озото Валовой выбосто одного дизельного генератора:  Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:  Озото Азота оксид  Озото Озабота осица  Озото Озабота осица  Озото Озабото Озабота осица  Озото Озабото Озабото Озабото Озабото Озабото  Озото Озабото Оза                                                                                                                                |                                                                            |                      | Mr                                                       | <sub>од</sub> =q <sub>i</sub> *В <sub>год</sub> /1000 | ), т/год         |                        |                    |  |
| ной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива (таблица 3 или 4):  лица 3 или 4):  деятеля от отчетным данным об эксплуатации установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: Вгоа в за клуч установки) или определяется по формуле: Вгоа в за клуч установки) или определяется по формуле: Вгоа в за клуч установки) или определяется по формуле: Вгоа в за клуч установки) или определяется по формуле: Вгоа в за клуч установки) или определяется по формуле: В за клуч установки) или определяется по формуле: В за клуч установки или определяется по формуле: В за клуч установки или определяется по формуле: В за клуч установки или определяется по так установки и поточнителя в разворящими газов. Обекти об установки и поточнителя в так установки и поточнителя установки и поточнителя в так установки и поточнителя в та                                                                                                                                       |                                                                            |                      |                                                          |                                                       |                  |                        | _                  |  |
| лица 3 или 4): расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: Вгов=b <sub>3</sub> *K*P <sub>3</sub> *T*10 <sup>-6</sup> :  Расход топлива:  В В 24.5 Л/Ч  Расход топлива:  В В 24.5 Л/Ч  В 24.5 Л/Ч  В 21.315 Кг/Ч  Средний удельный расход топлива:  Р О 0.87 Кг/п  Коэффициент использования:  Коэффициент использования:  Количество:  Исходные данные по источнику выборосов  Копичество:  Копичество:  Копичество:  Количество:  Расчет расход отработанных газов и топлива  Группа СДУ:  Расчет расхода отработанных газов и топлива  Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6</sup> *b <sub>3</sub> *P <sub>3</sub> Объемный расход отработанных газов, Q <sub>or</sub> = G <sub>or</sub> /V <sub>or</sub> Осъемный расход отработанных газов, Q <sub>or</sub> = G <sub>or</sub> /V <sub>or</sub> Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:  Код 3В Наименование 3В  Код 3В Наименование 3В  Валовый выбросов оброс  Г/КВТ.Ч Г/КТ топлива  Валовый выбросов оброс  Количество одного дизельного генератора:  Код 3В Наименование 3В  Валовый выбросов оброс  Количество одного дизельного генератора:  Код 3В Наименование 3В  Валовый выбросов орас одного дизельного генератора:  Код 3В Наименование 3В  Валовый выбросов орас одного дизельного генератора:  Код 3В Наименование 3В  Валовый выброс одного дизельного генератора:  Код 3В Наименование 3В  Валовый выброс одного дизельного генератора:  Валовый выброс одного дизельного сенератора:  Валовый выброс одного дизельного дизельного сенератора:  Валовый выброс одного дизельного дизельного сенератора:  В |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| расход топлива стационарной дизельной установкой за год (берется по отчетным данным об эксплуатации установки) или определяется по формуле: Вгод=b₂*K*P₂*T*10*:  Расход топлива:  Средний удельный расход топлива:  Коэффициент использования:  Время работы:  Исходные данные по источнику выборсов  Исходные данные по источнику выборсов  Количество:  Расчет расхода отработанных газов и топлива  Расход отработанных газов, Сод за 8.72*10**b₃*P₂  Верход отработанных газов, Сод за 8.72*10**b₃*P₂  Расчет расхода отработанных газов и топлива  Расход отработанных газов, Сод за 8.72*10**b₃*P₂  Расчет расхода отработанных газов и топлива  Расход отработанных газов, Сод за 8.72*10**b₃*P₂  Вод об об иг/с  Тот отность газов при 0°C:  Плотность газов при пли при при 0°С                                                                                                                                                                                                                                          |                                                                            |                      | учетом совокупности                                      | режимов, сост                                         | авляющих экспл   | туатационный цикл,     | г/кг топлива (таб- |  |
| (берется по отчетным данным об эксплуатации установки) или определяется по формуле: В <sub>год</sub> =b <sub>3</sub> *k*P <sub>3</sub> *T*10-6:         В 0.24.5         л/ч           Расход топлива:         b 24.5         л/ч           Средний удельный расход топлива:         b 3, 248         г/кВт.ч           Плотность дизельного топлива:         ρ 0.87         кг/л           Коэффициент использования:         k 1         1           Время работы:         Исходные данные по источнику выбросов           Количество:         N 7         шт           Частота вращения вала:         n 1500         об/мин           Группа СДУ:         Б         1           Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b <sub>3</sub> *P <sub>3</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         Т <sub>or</sub> 450         °C           Плотность газов при Тос (K), VQ <sub>or</sub> /(1+T <sub>or</sub> /273)         У <sub>or</sub> 0.49482         кг/м³           Плотность газов при Тос (K), VQ <sub>or</sub> /(1+T <sub>or</sub> /273)         У <sub>or</sub> 0.49482         кг/м³           Объемный расход отработанных веществ в атмосферу от одного дизельного генератора:         Валовый выброс           Код ЗВ         Наименование ЗВ         e <sub>ii</sub> q <sub>ii</sub> Максимальноразовый выброс           брос         г/кВт.ч         г/квт.ч         г/кг топлива                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                      |                                                          |                                                       | 1                |                        |                    |  |
| определяется по формуле: В <sub>год</sub> =b <sub>3</sub> -k*P <sub>3</sub> -*T*10 <sup>-6</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                      |                                                          |                                                       | В                | 0.0550                 | 7/50.5             |  |
| Расход топлива:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                      |                                                          | пановки) или                                          | D <sub>год</sub> | 0.2006                 | 1/10Д              |  |
| Расход топлива:  Средний удельный расход топлива:  Средний удельный расход топлива:  Скаффициент использования:  Количество:  Количество:  Количество:  Расчет расхода отработанных газов и топлива  Расход отработанных газов, G <sub>or</sub> = 8.72*10*6*b <sub>3</sub> *P <sub>3</sub> Стазов при 0°C:  Плотность газов при 0°C:  Плотность газов при 0°C:  Плотность газов при 0°C:  Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:  Код 3В  Наименование 3В  Наименование 3В  Валовый выбросо  Количество:  Расчет расхода отработанных газов и топлива  Расход отработанных газов, G <sub>or</sub> = 8.72*10*6*b <sub>3</sub> *P <sub>3</sub> Сог 0.186 кг/с  Температура отходящих газов:  Тог 450 °C  Плотность газов при 0°C:  Плотность                                                                            | определя                                                                   | ется по формуле.     | D <sub>ГОД</sub> -U <sub>3</sub> K P <sub>3</sub> I IU . |                                                       | h                | 24.5                   | 5/11               |  |
| Средний удельный расход топлива:         b₂         248         г/кВт.ч           Плотность дизельного топлива:         р         0.87         кг/л           Коэффициент использования:         к         1           Время работы:         T         12         ч/год           Исходные данные по источнику выбросов           Количество:         N         7         шт           Частота вращения вала:         n         1500         об/мин           Группа СДУ:         Б         в         в           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G₂ = 8.72*10*6*b₂*P₂         G₂₀r         0.186         кг/с           Температура отходящих газов;         Т₂₀r         450         °C           Плотность газов при Т₀₀r (К), Y0₀/(1+Т₀₀/273)         У₀₀r         1.31         кг/м³           Плотность газов при Т₀₀r (К), Y0₀/(1+Т₀₀/273)         У₀₀r         0.49482         кг/м³           Объемный расход отработанных газов, Q₀₀r=G₀₀/у₀₀r         Q₀₀r         0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код Зв         Наименование Зв         eᵢ₀         qᵢ₀         Максимальноразовый выброс         брос <td>Расход то</td> <td>плива:</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Расход то                                                                  | плива:               |                                                          |                                                       |                  |                        |                    |  |
| Плотность дизельного топлива:         ρ         0.87         кг/л           Козффициент использования:         к         1         1           Время работы:         Т         12         ч/год           Количество:         N         7         шт           Частота вращения вала:         n         1500         об/мин           Руппа СДУ:         Б           Расчет расхода отработанных газов и топлива           Расчет расхода отработанных газов и топлива           Расчет расхода отработанных газов и топлива           Расчет расхода отработанных газов, G <sub>or</sub> = 8.72*10*6*b <sub>5</sub> *P <sub>3</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         T <sub>or</sub> 450         °C           Плотность газов при 0°C:         Y0 <sub>or</sub> 1.31         кг/м³           Плотность газов при 0°C:         Y0 <sub>or</sub> 0.49482         кг/м³           Плотность газов при Т <sub>or</sub> (K), Y0 <sub>or</sub> /(1+T <sub>or</sub> /273)         Yor         0.49482         кг/м³           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /γ <sub>or</sub> Q <sub>or</sub> 0.3759         м³/c           Код за на кобросов вредных веществ в атмосферу от одного дизельного генератора:         Валовый выберос         Валовый выберос           код за на кобросов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Спапций                                                                    | VIDERLINI DOCVOR I   | TOULINDS:                                                |                                                       |                  |                        |                    |  |
| Коэффициент использования:         k         1           Время работы:         T         12         ч/год           Исходные данные по источнику выбросов           Количество:         N         7         шт           Частота вращения вала:         n         1500         об/мин           Расчет расхода отработанных газов и топлива           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10**b <sub>s</sub> *P <sub>s</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         T <sub>or</sub> 450         °C           Плотность газов при 0°C:         y0or         1.31         кг/м³           Плотность газов при Т <sub>or</sub> (k), y0or/(1+T <sub>or</sub> /273)         Yor         0.49482         кг/м³           Объемный расход отработанных газов, Qor=Gor/yor         Qor         0.3759         м³/c           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         e <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , q <sub>i</sub> , mack mack mack mack mack mack mack mack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                      |                                                          |                                                       | _                |                        |                    |  |
| Мсходные данные по источнику выбросов           Количество:         N         7         шт           Частота вращения вала:         n         1500         об/мин           Группа СДУ:         Б         в           Рассчет расхода отработанных газов и толива         Расчет расхода отработанных газов и толива         кг/с           Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b₃*P₃         G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         T <sub>or</sub> 450         °C           Плотность газов при 0°C:         y0₀r         1.31         кг/м³           Плотность газов при T₀r (к), y0₀r/(1+T₀r/273)         Yor         0.49482         кг/м³           Объемный расход отработанных газов, Q₀r=G₀r/y₀r         Q₀r         0.3759         м³/с           Код 3в         Наименование 3в         ei,         qi,         факсимально-разовый выброс         валовый выброс           брос         г/кВт.ч         r/кВт.ч         r/кг топлива         масимально-разовый выброс           брос         кг/кВт.ч         г/кг топлива         масимально-разовый выброс           брос         г/кВт.ч         г/кг топлива         масимально-разовый выброс           брос         г/квт.ч         г/кг топлива         масим                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                      |                                                          |                                                       |                  |                        | VI/JI              |  |
| Исходные данные по источнику выбросов           Количество:         N         7         шт           Частота вращения вала:         n         1500         об/мин           Расчет расхода отработанных газов и топлива           Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10- <sup>6</sup> *b <sub>3</sub> *P <sub>3</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         Т <sub>or</sub> 450         °C           Плотность газов при T <sub>or</sub> (K), Y0 <sub>or</sub> /(1+T <sub>or</sub> /273)         Y <sub>or</sub> 0.49482         кг/м³           Плотность газов при T <sub>or</sub> (K), Y0 <sub>or</sub> /(1+T <sub>or</sub> /273)         Y <sub>or</sub> 0.49482         кг/м³           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /y <sub>or</sub> Q <sub>or</sub> 0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         e <sub>i</sub> ,         q <sub>i</sub> ,         Максимально-разовый выброс           брос         г/кВт.ч.         г/кг топлива         М <sub>сект</sub> г/с         М <sub>говт</sub> г/год           код 3В         Наименование 3В         e <sub>i</sub> ,         q <sub>i</sub> ,         Максимально-разовый выброс           брос         г/кВт.ч.         г/к Вт.ч.         г/к Ткт топлива         М <sub>сект</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                      | ил.                                                      |                                                       | T                |                        | и/гол              |  |
| Количество:         N         7         шт           Частота вращения вала:         n         1500         об/мин           Растота вращения вала:         Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10-6*b <sub>3</sub> *P <sub>3</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         Т <sub>or</sub> 450         °C           Плотность газов при 0°C:         γ0 <sub>or</sub> 1.31         кг/м³           Плотность газов при Тог (К), γ0 <sub>or</sub> /(1+Т <sub>or</sub> /273)         γ <sub>or</sub> 0.49482         кг/м³           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /γ <sub>or</sub> Q <sub>or</sub> 0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Максимальноразовый выброс           код 3В         Наименование 3В         в т/квт.ч         г/квт.ч         г/кг топлива         Масек, г/с         Мгод, т/год           код 3В         Наименование 3В         в нименование 3В         максимальноразовый выброс         в нименование 3В         валовый выброс           код 3В         Наименование 3В         в нименование 3В         максимальноразовый выброс         в нименование 3В         в нименование 3В         в нименование 3В         максимальноразовый выброс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Брсіміл ра                                                                 | 001Ы.                | Исходные да                                              | нные по исто                                          | чнику выбросс    |                        | члод               |  |
| Частота вращения вала:         п         1500         об/мин           Группа СДУ:         Б         Б           Расчет расхода отработанных газов и топлива           Расчет расхода отработанных газов и топлива           Расчет расход отработанных газов, Gor = 8.72*10*6*b₃*P₃         Gor         0.186         кг/с           Тог 450         °C           Плотность газов при 0°C:         Y0₀r         1.31         кг/м³           Плотность газов при T₀r (К), Y0₀r/(1+T₀r/273)         Y₀r         0.49482         кг/м³           Расчет выбросов вредных газов, Q₀r=G₀r/у₀r         Q₀r         0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         ei,         qi,         Максимальноразовый выброс           брос         Г/кВт.ч         г/кг топлива         Мсект г/с         Мгод. т/год           Код 3В         Наименование 3В         ei,         qi,         Максимальноразовый выброс           брос         Г/кВт.ч         г/кг топлива         Мсект г/с         Мгод. т/год.           Код 3В         Кг топлива                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Количест                                                                   | 30:                  | Transplanta Ha                                           |                                                       |                  |                        | ШТ                 |  |
| Группа СДУ:         Расчет расхода отработанных газов и топлива           Расход отработанных газов, G <sub>or</sub> = 8.72*10.6*b₃*P₃         G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         Тог         450         °C           Плотность газов при 0°C:         у0 <sub>or</sub> 0.49482         кг/м³           Плотность газов при Тог (К), у0₀r/(1+T₀r/273)         Уог         0.49482         кг/м³           Плотность газов при Тог (К), у0₀r/(1+T₀r/273)         Уог         0.49482         кг/м³           Плотность газов при Тог (К), у0₀r/(1+T₀r/273)         Уог         0.49482         кг/м³           Плотность газов при Тог (К), у0₀r/(1+T₀r/273)         Уг/м³         О.49482         кг/м³           Плотность газов при Гог (К), у0₀r/(1+T₀r/273)         Уг/м³         О.49482         кг/м³           Максимально-разовый выберос         Максимально-разовый выберос         Максимально-разовый выберос         Максимально-разовый выберос         Максимально-разовый выберос         О.0003333 <th colspa<="" td=""><td></td><td></td><td></td><td></td><td>n</td><td>1500</td><td></td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <td></td> <td></td> <td></td> <td></td> <td>n</td> <td>1500</td> <td></td> |                      |                                                          |                                                       |                  | n                      | 1500               |  |
| Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b <sub>3</sub> *P <sub>3</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         T <sub>or</sub> 450         °C           Плотность газов при 0°C:         Y0 <sub>or</sub> 1.31         кг/м³           Плотность газов при Т <sub>or</sub> (К), Y0 <sub>or</sub> /(1+T <sub>or</sub> /273)         Yor         0.49482         кг/м³           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /y <sub>or</sub> Q <sub>or</sub> 0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         еі,         Максимально-разовый выброс         Валовый выброс           код 3В         Наименование 3В         Реі,         r/к топлива         М <sub>секо</sub> г/с         М <sub>год</sub> , т/год           3001         Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.5         2         0.0119444         0.005116           0328         Сажа         0.5         2         0.0119444         0.005116           0330         Сера диоксид         1.2         5         0.0286667 <t< td=""><td>Группа СД</td><td>ју:</td><td></td><td></td><td>•</td><td>Б</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Группа СД                                                                  | ју:                  |                                                          |                                                       | •                | Б                      |                    |  |
| Расход отработанных газов, G <sub>or</sub> = 8.72*10 <sup>-6*</sup> b <sub>3</sub> *P <sub>3</sub> G <sub>or</sub> 0.186         кг/с           Температура отходящих газов:         T <sub>or</sub> 450         °C           Плотность газов при 0°C:         Y0 <sub>or</sub> 1.31         кг/м³           Плотность газов при Т <sub>or</sub> (К), Y0 <sub>or</sub> /(1+T <sub>or</sub> /273)         Yor         0.49482         кг/м³           Объемный расход отработанных газов, Q <sub>or</sub> =G <sub>or</sub> /y <sub>or</sub> Q <sub>or</sub> 0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         еі,         Максимально-разовый выброс         Валовый выброс           код 3В         Наименование 3В         Реі,         r/к топлива         М <sub>секо</sub> г/с         М <sub>год</sub> , т/год           3001         Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.5         2         0.0119444         0.005116           0328         Сажа         0.5         2         0.0119444         0.005116           0330         Сера диоксид         1.2         5         0.0286667 <t< td=""><td></td><td>•</td><td>Расчет расхода</td><td>а отработанні</td><td>ых газов и топл</td><td>ива</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | •                    | Расчет расхода                                           | а отработанні                                         | ых газов и топл  | ива                    |                    |  |
| Температура отходящих газов:         Тог         450         °C           Плотность газов при 0°C:         γ0₀г         1.31         кг/м³           Плотность газов при Т₀г (K), γ0₀г/(1+Т₀г/273)         γ₀г         0.49482         кг/м³           Объемный расход отработанных газов, Q₀г=G₀г/γ₀г         Q₀г         0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Максимально-разовый выброс           г/кВт.ч         г/кг топлива         Мосок, г/с         Мгод, т/год           Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.028667         0.001279           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19 <td< td=""><td>Расход от</td><td>работанных газов</td><td></td><td></td><td></td><td></td><td>кг/с</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Расход от                                                                  | работанных газов     |                                                          |                                                       |                  |                        | кг/с               |  |
| Плотность газов при 0°С:         γ0₀г         1.31         кг/м³           Плотность газов при Т₀г (К), γ0₀г/(1+Т₀г/273)         γ₀г         0.49482         кг/м³           Объемный расход отработанных газов, Q₀r=G₀г/γ₀г         Q₀r         0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Максимально-разовый выброс           код 3В         Наименование 3В         ei,         qi,         Максимально-разовый выброс         Валовый выброс           6рос         г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с         Мгод, т/год           301         Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота оксид         9.6         40         0.2293333         0.0102320           0304         Азота оксид         0.1834667         0.0081856           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.001279           0337         Углерод оксид         6.2         26         0.1481111         0.0065508           0703         Бенз(а)пирен                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                      |                                                          |                                                       | Tor              | 450                    | °C                 |  |
| Объемный расход отработанных газов, Q₀r=G₀r/γ₀r         Q₀r         0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         еi,         qi,         Максимально-разовый выброс         Валовый выброс           г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                      |                                                          |                                                       | _                | 1.31                   | кг/м <sup>3</sup>  |  |
| Объемный расход отработанных газов, Q₀r=G₀r/γ₀r         Q₀r         0.3759         м³/с           Расчет выбросов вредных веществ в атмосферу от одного дизельного генератора:           Код 3В         Наименование 3В         еi,         qi,         Максимально-разовый выброс         Валовый выброс           г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Плотност                                                                   | ь газов при Тог (К), | γ0 <sub>or</sub> /(1+T <sub>or</sub> /273)               |                                                       | <b>У</b> ог      | 0.49482                | кг/м <sup>3</sup>  |  |
| Код 3ВНаименование 3Веі,qі,Максимально-разовый выбросВаловый выбросг/кВт.чг/кВт.чг/кг топливаМсек, г/сМгод, т/годАзота оксиды9.6400.22933330.01023200301Азота диоксид0.18346670.00818560304Азота оксид0.02981330.00133020328Сажа0.520.01194440.00051160330Сера диоксид1.250.02866670.00127900337Углерод оксид6.2260.14811110.00665080703Бенз(а)пирен0.0000120.0000550.00000030.00000001411325Формальдегид0.120.50.00286670.00012792754Углеводороды пр. С12-С192.9120.06927780.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                      |                                                          | г                                                     |                  | 0.3759                 | м <sup>3</sup> /с  |  |
| Код 3ВНаименование 3Веі,qі,разовый выборосВаловый выборосг/кВт.чг/кВт.чг/кг топливаМ <sub>сек,</sub> г/сМ <sub>год,</sub> т/годАзота оксиды9.6400.22933330.01023200301Азота диоксид0.18346670.00818560304Азота оксид0.02981330.00133020328Сажа0.520.01194440.00051160330Сера диоксид1.250.02866670.00127900337Углерод оксид6.2260.14811110.00665080703Бенз(а)пирен0.0000120.0000550.00000030.0000001411325Формальдегид0.120.50.00286670.00012792754Углеводороды пр. С12-С192.9120.06927780.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            | Расчет выбр          | осов вредных вещес                                       | тв в атмосфе                                          | ру от одного д   | изельного генерато     | ра:                |  |
| Код 3ВНаименование 3Веі,qі,разовый выборосВаловый выборосг/кВт.чг/кВт.чг/кг топливаМ <sub>сек,</sub> г/сМ <sub>год,</sub> т/годАзота оксиды9.6400.22933330.01023200301Азота диоксид0.18346670.00818560304Азота оксид0.02981330.00133020328Сажа0.520.01194440.00051160330Сера диоксид1.250.02866670.00127900337Углерод оксид6.2260.14811110.00665080703Бенз(а)пирен0.0000120.0000550.00000030.0000001411325Формальдегид0.120.50.00286670.00012792754Углеводороды пр. С12-С192.9120.06927780.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| код зв         наименование зв         брос         орос           озота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                      |                                                          | _                                                     | -                |                        | Валовый вы-        |  |
| г/кВт.ч         г/кВт.ч         г/кг топлива         Мсек, г/с         Мгод, т/год           Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Код ЗВ                                                                     | Наимен               | ювание ЗВ                                                | e <sub>i</sub> ,                                      | q <sub>i</sub> , | •                      | брос               |  |
| Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                      |                                                          |                                                       |                  | орос                   | •                  |  |
| Азота оксиды         9.6         40         0.2293333         0.0102320           0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                      |                                                          | г/кВт.ч                                               | г/кг топпива     | M <sub>cov</sub> . r/c | Мгол. т/год        |  |
| 0301         Азота диоксид         0.1834667         0.0081856           0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | Азота                | а оксиды                                                 |                                                       |                  |                        |                    |  |
| 0304         Азота оксид         0.0298133         0.0013302           0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0301                                                                       |                      |                                                          |                                                       |                  |                        |                    |  |
| 0328         Сажа         0.5         2         0.0119444         0.0005116           0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| 0330         Сера диоксид         1.2         5         0.0286667         0.0012790           0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                      | • • • • • • • • • • • • • • • • • • • •                  | 0.5                                                   | 2                |                        |                    |  |
| 0337         Углерод оксид         6.2         26         0.1481111         0.0066508           0703         Бенз(а)пирен         0.000012         0.000055         0.0000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| 0703         Бенз(а)пирен         0.000012         0.000055         0.000003         0.000000141           1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| 1325         Формальдегид         0.12         0.5         0.0028667         0.0001279           2754         Углеводороды пр. С12-С19         2.9         12         0.0692778         0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| 2754 Углеводороды пр. С12-С19 2.9 12 0.0692778 0.0030696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                      |                                                          |                                                       |                  |                        |                    |  |
| DUGIO IIO MICIOTOMAY.   U.4/414/   U.UZ11340/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | 11252                | Всего по источнику:                                      |                                                       |                  | 0.474147               | 0.021154674        |  |

Расчет выбросов вредных веществ в атмосферу от 7 дизельных генераторов:

| Код ЗВ | Наименование ЗВ          | Максимально-<br>разовый вы-<br>брос | Валовый вы-<br>брос      |
|--------|--------------------------|-------------------------------------|--------------------------|
|        |                          | M <sub>сек</sub> , г/с              | M <sub>год</sub> , т/год |
|        | Азота оксиды             | 1.6053333                           | 0.071624                 |
| 0301   | Азота диоксид            | 1.2842669                           | 0.0572992                |
| 0304   | Азота оксид              | 0.2086931                           | 0.0093111                |
| 0328   | Сажа                     | 0.0836108                           | 0.0035812                |
| 0330   | Сера диоксид             | 0.2006669                           | 0.008953                 |
| 0337   | Углерод оксид            | 1.0367777                           | 0.0465556                |
| 0703   | Бенз(а)пирен             | 0.0000021                           | 0.000001                 |
| 1325   | Формальдегид             | 0.0200669                           | 0.0008953                |
| 2754   | Углеводороды пр. С12-С19 | 0.4849446                           | 0.0214872                |
|        | Всего по источнику:      | 3.319029                            | 0.1480827                |

| № ИЗА | 1033 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                                        |  |
|-------|------|-------------------------------------------------|--------------------------------------------------------|--|
| № ИВ  | 001  | Наименование источника<br>выделения             | Вспомогательный бензи-<br>новый генератор Echo PB-46LN |  |

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

Исходные данные:

| Количество:                                       | N              | 6    | ШТ.    |  |  |
|---------------------------------------------------|----------------|------|--------|--|--|
| Частота вращения вала:                            | n              | 1500 | об/мин |  |  |
| Эксплуатационная мощность бензинового генератора: | P <sub>9</sub> | 2    | кВт    |  |  |
| M                                                 |                |      |        |  |  |

Максимальный разовый выброс і-го вещества рассчитывается по формуле:  $\mathbf{M}_{\text{секі}} = (m_{\text{Lik}} \times \mathbf{L1}) \times \mathbf{L1} \times$ 

| где:                                                                                                            |                     |           |         |                   |
|-----------------------------------------------------------------------------------------------------------------|---------------------|-----------|---------|-------------------|
|                                                                                                                 |                     | лето      | 0.035   | г/км              |
|                                                                                                                 | m <sub>LNOk</sub>   | зима      | 0.035   | г/км              |
| D. G                                                                                                            |                     | лето      | 0.009   | г/км              |
| Выброс от бензинового генератора равен 0.25 от ве-                                                              | m <sub>LSO2k</sub>  | зима      | 0.011   | г/км              |
| личины выброса легкового карбюраторного автомобиля с объемом двигателя до 1.2 л: м <sub>ик</sub> (таблица 3.5): |                     | лето      | 1.875   | г/км              |
| оиля с оо вемом двигателя до 1.2 л. підік (таолица 5.5).                                                        | m <sub>LCOk</sub>   | зима      | 2.325   | г/км              |
|                                                                                                                 |                     | лето      | 0.25    | г/км              |
|                                                                                                                 | m <sub>LCxHyk</sub> | зима      | 0.375   | г/км              |
| Пробег автомобиля в день без нагрузки по территории предприятия:                                                |                     | 1         | 25      | км/день           |
| Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята:                 | v                   |           | 5       | км/час            |
| Provid nefert i felicinapara solianazana                                                                        | t                   |           | 5       | ч/день            |
| Время работы бензинового генератора:                                                                            | T                   |           | 12      | ч/год             |
| Количество рабочих дней в расчетном периоде:                                                                    | Dn                  |           | 2       | дней/год          |
| Расчет расхода отр                                                                                              | аботанны            | х газов и | топлива |                   |
| Расход бензина за год:                                                                                          | B                   | год       | 0.0088  | т/год             |
| Часовой расход бензина:                                                                                         | b                   |           | 0.73    | кг/ч              |
| Средний удельный расход бензина:                                                                                | b                   | э         | 365     | г/кВт.ч           |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$                                                  |                     | ог        | 0.006   | кг/с              |
| Температура отходящих газов:                                                                                    |                     | OF        | 450     | °C                |
| Плотность газов при 0°C:                                                                                        |                     | ог        | 1.31    | кг/м <sup>3</sup> |
| Плотность газов при $T_{or}$ (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$                            | γ                   |           | 0.49465 | кг/м <sup>3</sup> |
| Объемный расход отработанных газов. $\mathbf{Q}_{or} = \mathbf{G}_{or}/\mathbf{v}_{or}$                         |                     | OF.       | 0.0129  | м <sup>3</sup> /с |

расход отработанных газов,  $\mathbf{Q}_{or} = \mathbf{G}_{or} / \mathbf{\gamma}_{or}$ Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора: Максимально-разо-Валовый вы-Код ЗВ вый выброс Наименование ЗВ брос M<sub>сек</sub>, г/с М<sub>год</sub>, т/год Азота оксиды (NO<sub>x</sub>) 0.0000486 0.0000021 0301 Азота диокси<u>д</u> (NO<sub>2</sub>) 0.0000389 0.0000017 0304 Азота оксид (NO) 0.0000063 0.000003 0330 Сера диоксид (SO<sub>2</sub>) 0.0000156 0.0000007 0337 Углерод оксид (СО) 0.0032292 0.0001395 Бензин (С<sub>х</sub>Н<sub>у</sub>) 2704 0.0005208 0.0000225 0.0001646 Всего по источнику: 0.0038108

Всего по источнику: 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

| Код ЗВ | Наименование ЗВ                         | Максимально-разо-<br>вый выброс | Валовый вы-<br>брос      |  |
|--------|-----------------------------------------|---------------------------------|--------------------------|--|
|        |                                         | М <sub>сек</sub> , г/с          | М <sub>год</sub> , т/год |  |
|        | Азота оксиды (NO <sub>x</sub> )         | 0.0002917                       | 0.0000126                |  |
| 0301   | Азота диоксид (NO₂)                     | 0.0002334                       | 0.0000101                |  |
| 0304   | Азота оксид (NO)                        | 0.0000378                       | 0.0000016                |  |
| 0330   | Сера диоксид (SO <sub>2</sub> )         | 0.0000936                       | 0.0000041                |  |
| 0337   | Углерод оксид (СО)                      | 0.0193752                       | 0.000837                 |  |
| 2704   | Бензин (С <sub>х</sub> Н <sub>у</sub> ) | 0.0031248                       | 0.000135                 |  |
|        | Всего по источнику:                     | 0.0228648                       | 0.0009878                |  |

| № ИЗА | 1034 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                           |                            |
|-------|------|-------------------------------------------------|-------------------------------------------|----------------------------|
| № ИВ  | 001  | Наименование источника<br>выделения             | Вспомогательный бензи-<br>новый генератор | Air Blowers<br>STIHL BR420 |

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

| исходные данные:                                  |                |      |        |  |  |
|---------------------------------------------------|----------------|------|--------|--|--|
| Количество:                                       | N              | 5    | ШТ.    |  |  |
| Частота вращения вала:                            | n              | 1500 | об/мин |  |  |
| Эксплуатационная мощность бензинового генератора: | P <sub>9</sub> | 2.6  | кВт    |  |  |

Максимальный разовый выброс і-го вещества рассчитывается по формуле:  $\mathbf{M}_{\text{секi}} = (m_{\text{Lik}} + \mathbf{L} 1) / t / 3600$ , г/с Валовый выброс і-го вещества рассчитывается по формуле:  $\mathbf{M}_{\text{годi}} = (m_{\text{Lik}} + \mathbf{L} 1) \cdot \mathbf{D} \mathbf{n} \cdot \mathbf{10}^{-6}$ , т/год

 $m_{LNOk}$ 

m<sub>LSO2k</sub>

 $m_{LCOk}$ 

лето

зима

лето

зима

лето

зима

0.035

0.035

0.009

0.011

1.875

2.325

1 31

г/км

г/км

г/км

г/км

г/км

г/км

кг/м<sup>3</sup>

| Выброс от бензинового генератора равен 0.25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1.2 л: $m_{L/k}$ (таблица 3.5): |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                            |  |
| Пробег автомобиля в день без нагрузки по территории                                                                                                        |  |

|                                                                                                 | m                   | лето      | 0.25    | Г/КМ     |
|-------------------------------------------------------------------------------------------------|---------------------|-----------|---------|----------|
|                                                                                                 | m <sub>LCxHyk</sub> | зима      | 0.375   | г/км     |
| Пробег автомобиля в день без нагрузки по территории предприятия:                                | L1                  |           | 25      | км/день  |
| Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята: | V                   | ,         | 5       | км/час   |
| Provid nafoti i foliamianora raugnatana:                                                        | t                   |           | 5       | ч/день   |
| Время работы бензинового генератора:                                                            | T                   |           | 12      | ч/год    |
| Количество рабочих дней в расчетном периоде:                                                    | Dn                  |           | 2       | дней/год |
| Расчет расхода отра                                                                             | аботанны            | х газов и | топлива |          |
| Расход бензина за год:                                                                          | B                   | од        | 0.0066  | т/год    |
| Часовой расход бензина:                                                                         | b                   | )         | 0.55    | кг/ч     |
| Средний удельный расход бензина:                                                                |                     | 9         | 211     | г/кВт.ч  |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$                                  | G <sub>or</sub>     |           | 0.005   | кг/с     |
| Температура отходящих газов:                                                                    | T,                  | or        | 450     | °C       |
|                                                                                                 |                     |           |         |          |

 $\gamma 0_{\text{or}}$ 

Плотность газов при  $T_{or}$  (K),  $\gamma_{or}$ = $\gamma 0_{or}$ /(1+ $T_{or}$ /273)  $\gamma_{or}$  0.49465 Кг/м $^{\circ}$  Объемный расход отработанных газов,  $Q_{or}$ = $G_{or}$ / $V_{or}$   $Q_{or}$  0.0097  $M^{3}$ /с Расчет выбросов вредных веществ в атмосферу всего от одного бензинового генератора:

| Код ЗВ | Наименование ЗВ                         | Максимально-разо-<br>вый выброс | Валовый вы-<br>брос      |
|--------|-----------------------------------------|---------------------------------|--------------------------|
|        |                                         | М <sub>сек</sub> , г/с          | M <sub>год</sub> , т/год |
|        | Азота оксиды (NO <sub>x</sub> )         | 0.0000486                       | 0.0000021                |
| 0301   | Азота диоксид (NO <sub>2</sub> )        | 0.0000389                       | 0.0000017                |
| 0304   | Азота оксид (NO)                        | 0.000063                        | 0.0000003                |
| 0330   | Сера диоксид (SO₂)                      | 0.0000156                       | 0.0000007                |
| 0337   | Углерод оксид (СО)                      | 0.0032292                       | 0.0001395                |
| 2704   | Бензин (C <sub>х</sub> H <sub>у</sub> ) | 0.0005208                       | 0.0000225                |
|        | Всего по источнику:                     | 0.0038108                       | 0.000164628              |

Расчет выбросов вредных веществ в атмосферу всего от 5-ти бензиновых генераторов:

Максимально-разоВаловый вы-

| Код ЗВ | Наименование ЗВ                 | вый выброс             | брос                     |
|--------|---------------------------------|------------------------|--------------------------|
|        |                                 | М <sub>сек</sub> , г/с | M <sub>год</sub> , т/год |
|        | Азота оксиды (NO <sub>x</sub> ) | 0.0002431              | 0.0000105                |
| 0301   | Азота диоксид (NO₂)             | 0.0001945              | 0.0000084                |
| 0304   | Азота оксид (NO)                | 0.0000315              | 0.0000014                |
|        |                                 |                        |                          |

Плотность газов при 0°C:

| Всего по источнику: |                                         | 0.019054 | 0.0008232 |
|---------------------|-----------------------------------------|----------|-----------|
| 2704                | Бензин (C <sub>х</sub> H <sub>v</sub> ) | 0.002604 | 0.0001125 |
| 0337                | Углерод оксид (СО)                      | 0.016146 | 0.0006975 |
| 0330                | Сера диоксид (SO <sub>2</sub> )         | 0.000078 | 0.0000034 |

| № ИЗ  | A | 1035 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                 |                                    |
|-------|---|------|-------------------------------------------------|---------------------------------|------------------------------------|
| Nº NI | 3 | 001  | Наименование источника<br>выделения             | Бензиновый генератор<br>насосов | Honda WMP20X<br>DXE2 Water<br>Pump |

В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций (генераторов). В связи с этим, до выхода соответствующей методики ОАО "НИИ Атмосфера" рекомендуется выполнять расчет выбросов от бензиновых электростанций (генераторов) мощностью до 10 кВт по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", принимая за выброс от такой электростанции - 0,25 от величины выброса легкового карбюраторного автомобиля с объемом двигателя до 1,2 л при движении по территории со скоростью 5 км/час.

| Исходные данные:                                  |                |      |        |  |
|---------------------------------------------------|----------------|------|--------|--|
| Количество:                                       | N              | 17   | ШТ.    |  |
| Частота вращения вала:                            | n              | 1500 | об/мин |  |
| Эксплуатационная мощность бензинового генератора: | P <sub>9</sub> | 2.9  | кВт    |  |

Максимальный разовый выброс і-го вещества рассчитывается по формуле:  $\mathbf{M}_{\mathrm{секi}} = (m_{\mathit{Lik}} \times \mathbf{L1}) / t / 3600$ , г/с Валовый выброс і-го вещества рассчитывается по формуле:  $\mathbf{M}_{\mathrm{годi}} = (m_{\mathit{Lik}} \times \mathbf{L1}) \times \mathbf{Dn} \times \mathbf{10}^{-6}$ , т/год

| где:                                                                                                             | bao rom no v        | форшуло.  | mroдi (mLik = 1) эн то , | 04                |
|------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------------------|-------------------|
| ··                                                                                                               |                     | лето      | 0.035                    | г/км              |
|                                                                                                                  | m <sub>LNOk</sub>   | зима      | 0.035                    | г/км              |
| D. 5 5 0.05                                                                                                      | 100                 | лето      | 0.009                    | г/км              |
| Выброс от бензинового генератора равен 0.25 от ве-                                                               | m <sub>LSO2k</sub>  | зима      | 0.011                    | г/км              |
| личины выброса легкового карбюраторного автомобиля с объемом двигателя до 1.2 л: m <sub>Lik</sub> (таблица 3.5): |                     | лето      | 1.875                    | г/км              |
|                                                                                                                  |                     | зима      | 2.325                    | г/км              |
|                                                                                                                  |                     | лето      | 0.25                     | г/км              |
|                                                                                                                  | m <sub>LCxHyk</sub> | зима      | 0.375                    | г/км              |
| Пробег автомобиля в день без нагрузки по территории предприятия:                                                 |                     | 1         | 25                       | км/день           |
| Согласно рекомендациям ОАО "НИИ Атмосфера" скорость движения по территории должна быть принята:                  | V                   | ,         | 5                        | км/час            |
| D                                                                                                                | t                   |           | 5                        | ч/день            |
| Время работы бензинового генератора:                                                                             | Т                   |           | 57.6                     | ч/год             |
| Количество рабочих дней в расчетном периоде:                                                                     | Dn                  |           | 12                       | дней/год          |
| Расчет расхода отра                                                                                              | аботанны            | х газов и | топлива                  |                   |
| Расход бензина за год:                                                                                           | B                   | од        | 0.0420                   | т/год             |
| Часовой расход бензина:                                                                                          | b                   | )         | 0.73                     | кг/ч              |
| Средний удельный расход бензина:                                                                                 | b                   | 9         | 252                      | г/кВт.ч           |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$                                                   | G                   | ог        | 0.006                    | кг/с              |
| Температура отходящих газов:                                                                                     | T,                  | DΓ        | 450                      | ٥C                |
| Плотность газов при 0°C:                                                                                         | γ0                  | ог        | 1.31                     | кг/м <sup>3</sup> |
| Плотность газов при $T_{or}$ (K), $\gamma_{or} = \gamma 0_{or} / (1 + T_{or} / 273)$                             | γ                   | ог        | 0.49465                  | кг/м <sup>3</sup> |
| Объемный расход отработанных газов Q <sub>сс</sub> =G <sub>cc</sub> /v <sub>cc</sub>                             | C                   | 0.5       | 0.0129                   | м <sup>3</sup> /с |

| F      | асчет выбросов вредных веществ в атмосферу всего от од                            | дного бензинового гене          | ератора:                 |  |  |
|--------|-----------------------------------------------------------------------------------|---------------------------------|--------------------------|--|--|
| Код ЗВ | Наименование ЗВ                                                                   | Максимально-разо-<br>вый выброс | Валовый вы-<br>брос      |  |  |
|        |                                                                                   | М <sub>сек</sub> , г/с          | M <sub>год</sub> , т/год |  |  |
|        | Азота оксиды (NO <sub>x</sub> )                                                   | 0.0000486                       | 0.0000101                |  |  |
| 0301   | Азота диоксид (NO <sub>2</sub> )                                                  | 0.0000389                       | 0.0000081                |  |  |
| 0304   | Азота оксид (NO)                                                                  | 0.0000063                       | 0.000013                 |  |  |
| 0330   | Сера диоксид (SO <sub>2</sub> )                                                   | 0.0000156                       | 0.0000032                |  |  |
| 0337   | Углерод оксид (СО)                                                                | 0.0032292                       | 0.0006696                |  |  |
| 2704   | Бензин (C <sub>х</sub> H <sub>у</sub> )                                           | 0.0005208                       | 0.0001080                |  |  |
|        | Всего по источнику:                                                               | 0.0038108                       | 0.000790214              |  |  |
|        | Расчет выблосов вредных вешеств в атмосферу всего от 17-ти бензиновых генераторов |                                 |                          |  |  |

|          | всего по источнику:                     | 0.0038108                       | 0.000790214              |
|----------|-----------------------------------------|---------------------------------|--------------------------|
| Расчет в | выбросов вредных веществ в атмосферу і  | всего от 17-ти бензиновых генер | аторов:                  |
| Код ЗВ   | Наименование ЗВ                         | Максимально-разо-<br>вый выброс | Валовый вы-<br>брос      |
|          |                                         | М <sub>сек</sub> , г/с          | M <sub>год</sub> , т/год |
|          | Азота оксиды (NO <sub>x</sub> )         | 0.0008264                       | 0.0001714                |
| 0301     | Азота диоксид (NO₂)                     | 0.0006613                       | 0.0001371                |
| 0304     | Азота оксид (NO)                        | 0.0001071                       | 0.0000223                |
| 0330     | Сера диоксид (SO <sub>2</sub> )         | 0.0002652                       | 0.0000551                |
| 0337     | Углерод оксид (СО)                      | 0.0548964                       | 0.0113832                |
| 2704     | Бензин (C <sub>x</sub> H <sub>y</sub> ) | 0.0088536                       | 0.001836                 |
| ,        | Всего по источнику:                     | 0.0647836                       | 0.0134337                |

| № ИЗА | 1036 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                           |                                           |
|-------|------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|
| №ИВ   | 001  | Наименование источника<br>выделения             | Вспомогательный бензи-<br>новый генератор | Ice Equipment<br>Ice Auger STIHL<br>BT360 |

Выбросы от бензинового генератора определены согласно, Приложения №3 к приказу Министра ООС РК от 18.04.2008 года № 100-п **"Методики расчета выбросов загрязняющих веществ от автотранспортных предприятий"**, МООС РК, Астана 2008 год.
В настоящее время отсутствует методика расчета выбросов вредных веществ от бензиновых электростанций

|             | тоящее время отсутствует методика расче                                                                               |                     |              |                                                                    |                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|--------------|--------------------------------------------------------------------|--------------------------|
|             | ов). В связи с этим, до выхода соответствую выбросов от бензиновых электростанций (                                   |                     |              |                                                                    |                          |
|             | рязняющих веществ от автотранспортны                                                                                  |                     |              |                                                                    |                          |
|             | 0,25 от величины выброса легкового ка                                                                                 |                     |              |                                                                    |                          |
|             | кении по территории со скоростью 5 кг                                                                                 |                     |              |                                                                    | ,                        |
| -           |                                                                                                                       | цные данн           | ые:          |                                                                    |                          |
| Количество  | :                                                                                                                     | N                   | 1            | 2                                                                  | шт.                      |
| Частота вра | ащения вала:                                                                                                          | r                   | 1            | 1500                                                               | об/мин                   |
|             | ионная мощность бензинового генера-                                                                                   | P                   | ,            | 3                                                                  | кВт                      |
| тора:       |                                                                                                                       |                     |              | _                                                                  |                          |
| Ma          | ксимальный разовый выброс і-го вещества                                                                               |                     |              |                                                                    |                          |
| FEG.:       | Валовый выброс і-го вещества рассчиты                                                                                 | вается по           | формуле      | $ \mathbf{M}_{rodi}  = (\mathbf{M}_{Lik}   L1)   DN   10^{\circ},$ | т/год                    |
| где:        |                                                                                                                       |                     | пато         | 0.035                                                              | г/км                     |
|             |                                                                                                                       | $m_{LNOk}$          | лето         | 0.035                                                              | г/км                     |
|             |                                                                                                                       |                     | зима         | 0.009                                                              | г/км                     |
| Выброс от   | бензинового генератора равен 0.25 от ве-                                                                              | m <sub>LSO2k</sub>  | лето         | 0.009                                                              | г/км                     |
| личины вы   | броса легкового карбюраторного автомо-                                                                                |                     | зима         | 1.875                                                              | ·                        |
| биля с объе | мом двигателя до 1.2 л: m <sub>Lik</sub> (таблица 3.5):                                                               | m <sub>LCOk</sub>   | лето         |                                                                    | г/км                     |
|             |                                                                                                                       |                     | зима         | 2.325                                                              | г/км                     |
|             |                                                                                                                       | m <sub>LCxHyk</sub> | лето<br>зима | 0.25<br>0.375                                                      | г/км<br>г/км             |
| Проболовт   | омобиля в день без нагрузки по территории                                                                             |                     | зима         | 0.375                                                              | 1/KM                     |
|             |                                                                                                                       | L                   | 1            | 25                                                                 | км/день                  |
| предприяти  | <sub>.я.</sub><br>екомендациям ОАО "НИИ Атмосфера" ско-                                                               |                     |              |                                                                    |                          |
|             | рость движения по территории должна быть принята:                                                                     |                     | <i>'</i>     | 5                                                                  | км/час                   |
| рость движ  | спия по территории должна овтв принята.                                                                               | 1                   |              | 5                                                                  | ч/день                   |
| Время рабо  | ты бензинового генератора:                                                                                            | ,                   |              | 12                                                                 | ч/год                    |
| Копичество  | рабочих дней в расчетном периоде:                                                                                     | Dn                  |              | 2                                                                  | дней/год                 |
| Количество  | Расчет расхода отр                                                                                                    |                     |              | l l                                                                | днеи/год                 |
| Расуол бен  | зина за год:                                                                                                          | В                   | A TOSUB F    | 0.0024                                                             | т/год                    |
|             | сход бензина:                                                                                                         | k                   |              | 0.20                                                               | кг/ч                     |
|             | ельный расход бензина:                                                                                                | b <sub>a</sub>      |              | 67                                                                 | г/кВт.ч                  |
|             | аботанных газов, <b>G</b> <sub>or</sub> = <b>8.72*10</b> <sup>-6*</sup> <b>b</b> <sub>3</sub> * <b>P</b> <sub>3</sub> | G <sub>or</sub>     |              | 0.002                                                              | кг/с                     |
|             | ра отходящих газов:                                                                                                   | T <sub>or</sub>     |              | 450                                                                | <sup>0</sup> C           |
|             | газов при 0°C:                                                                                                        |                     |              | 1.31                                                               | кг/м <sup>3</sup>        |
|             | тазов при T <sub>or</sub> (K), <b>у</b> <sub>or</sub> = <b>у0</b> <sub>or</sub> /(1+ <b>T</b> <sub>or</sub> /273)     | γ or<br>Yor         |              | 0.49465                                                            | кг/м <sup>3</sup>        |
|             | расход отработанных газов, <b>Q</b> <sub>or</sub> = <b>G</b> <sub>or</sub> / <b>y</b> <sub>or</sub>                   | Q                   |              | 0.0035                                                             | M <sup>3</sup> /C        |
|             | асчет выбросов вредных веществ в атм                                                                                  |                     |              |                                                                    |                          |
| ·           | истет выоросов вредных веществ в атм                                                                                  | осферу Б            | 0010 01 0    | Максимально-разо-                                                  | Валовый вы-              |
| Код ЗВ      | Наименование ЗВ                                                                                                       |                     |              | вый выброс                                                         | брос                     |
| Nog ob      | Transiono Barrio GB                                                                                                   |                     |              | М <sub>сек</sub> , г/с                                             | М <sub>год</sub> , т/год |
|             | Азота оксиды (NO <sub>x</sub> )                                                                                       |                     |              | 0.0000486                                                          | 0.0000021                |
| 0301        | Азота диоксид (NO <sub>2</sub> )                                                                                      |                     |              | 0.0000389                                                          | 0.0000017                |
| 0304        | Азота оксид (NO)                                                                                                      |                     |              | 0.0000063                                                          | 0.0000003                |
| 0330        | Сера диоксид (SO <sub>2</sub> )                                                                                       |                     |              | 0.0000156                                                          | 0.0000007                |
| 0337        | Углерод оксид (СО)                                                                                                    |                     |              | 0.0032292                                                          | 0.0001395                |
| 2704        | Бензин (С <sub>х</sub> Н <sub>у</sub> )                                                                               |                     |              | 0.0005208                                                          | 0.0000225                |
| 2.01        | Всего по источнику:                                                                                                   |                     |              | 0.0038108                                                          | 0.000164628              |
|             | Расчет выбросов вредных веществ в ат                                                                                  | мосферу             | всего от     |                                                                    |                          |
|             | portion                                                                                                               |                     |              | Максимально-разо-                                                  | Валовый вы-              |
| Код ЗВ      | Наименование ЗВ                                                                                                       |                     |              | вый выброс                                                         | брос                     |
|             |                                                                                                                       |                     |              | М <sub>сек</sub> , г/с                                             | M <sub>год</sub> , т/год |
|             | Азота оксиды (NO <sub>x</sub> )                                                                                       |                     |              | 0.0000972                                                          | 0.0000042                |
| 0301        | Азота диоксид (NO <sub>2</sub> )                                                                                      |                     |              | 0.0000778                                                          | 0.0000034                |
| 0304        | Азота оксид (NO)                                                                                                      |                     |              | 0.0000126                                                          | 0.0000005                |
| 0330        | Сера диоксид (SO <sub>2</sub> )                                                                                       |                     |              | 0.0000312                                                          | 0.0000014                |
| 0337        | Углерод оксид (СО)                                                                                                    |                     |              | 0.0064584                                                          | 0.000279                 |
| 2704        | Бензин (С <sub>х</sub> Н <sub>у</sub> )                                                                               |                     |              | 0.0010416                                                          | 0.000045                 |
| -           | Всего по источнику:                                                                                                   |                     |              | 0.0076216                                                          | 0.0003293                |
|             | =                                                                                                                     |                     |              |                                                                    |                          |

| № ИЗА | 1037 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                           |              |
|-------|------|-------------------------------------------------|-------------------------------------------|--------------|
| № ИВ  | 001  | Наименование источника<br>выделения             | Вспомогательный бензи-<br>новый генератор | 100HD Dumper |

|                              | стоящее время отсутствует методика расче                                                                                                                                                    | та выброс                             | ов вредн  | ых веществ от бензинов                                                                                                    | ых электростанций                                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                              | ов). В связи с этим, до выхода соответствун                                                                                                                                                 |                                       |           |                                                                                                                           |                                                                                      |
|                              | г выбросов от бензиновых электростанций (                                                                                                                                                   |                                       |           |                                                                                                                           |                                                                                      |
|                              | рязняющих веществ от автотранспортны                                                                                                                                                        |                                       |           |                                                                                                                           |                                                                                      |
|                              | 0,25 от величины выброса легкового ка                                                                                                                                                       |                                       | рного а   | зтомобиля с объемом                                                                                                       | овигателя оо 1,2                                                                     |
| л при овиж                   | кении по территории со скоростью 5 кг                                                                                                                                                       | и/час.<br>Іные данн                   | LIO.      |                                                                                                                           |                                                                                      |
| Количество                   |                                                                                                                                                                                             | пые дапп<br>М                         |           | 2                                                                                                                         | шт.                                                                                  |
|                              | ащения вала:                                                                                                                                                                                | r                                     |           | 1500                                                                                                                      | об/мин                                                                               |
|                              | ционная мощность бензинового генера-                                                                                                                                                        |                                       |           |                                                                                                                           |                                                                                      |
| тора:                        | promise medicers constitueers remapa                                                                                                                                                        | Р                                     | э         | 3                                                                                                                         | кВт                                                                                  |
|                              | ксимальный разовый выброс і-го вещества                                                                                                                                                     | рассчитыв                             | ается по  | формуле: <b>М</b> <sub>секі</sub> =( <b>m</b> <sub>Lik</sub> *L1)                                                         | /t/3600, r/c                                                                         |
|                              | Валовый выброс і-го вещества рассчиты                                                                                                                                                       |                                       |           |                                                                                                                           |                                                                                      |
| где:                         |                                                                                                                                                                                             |                                       |           |                                                                                                                           |                                                                                      |
|                              |                                                                                                                                                                                             | m <sub>LNOk</sub>                     | лето      | 0.035                                                                                                                     | г/км                                                                                 |
|                              |                                                                                                                                                                                             | IIILIVOX                              | зима      | 0.035                                                                                                                     | г/км                                                                                 |
| Выброс от                    | бензинового генератора равен 0.25 от ве-                                                                                                                                                    | m <sub>LSO2k</sub>                    | лето      | 0.009                                                                                                                     | г/км                                                                                 |
|                              | броса легкового карбюраторного автомо-                                                                                                                                                      | 1112002K                              | зима      | 0.011                                                                                                                     | г/км                                                                                 |
|                              | емом двигателя до 1.2 л: m <sub>Lik</sub> (таблица 3.5):                                                                                                                                    | m <sub>LCOk</sub>                     | лето      | 1.875                                                                                                                     | г/км                                                                                 |
|                              | ( 1                                                                                                                                                                                         |                                       | зима      | 2.325                                                                                                                     | г/км                                                                                 |
|                              |                                                                                                                                                                                             | m <sub>LCxHyk</sub>                   | лето      | 0.25                                                                                                                      | г/км                                                                                 |
|                              |                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · | зима      | 0.375                                                                                                                     | г/км                                                                                 |
| •                            | омобиля в день без нагрузки по территории                                                                                                                                                   | L                                     | 1         | 25                                                                                                                        | км/день                                                                              |
| предприяти                   |                                                                                                                                                                                             |                                       | -         |                                                                                                                           |                                                                                      |
|                              | Согласно рекомендациям ОАО "НИИ Атмосфера" ско-                                                                                                                                             |                                       | ,         | 5                                                                                                                         | км/час                                                                               |
| рость движе                  | рость движения по территории должна быть принята:                                                                                                                                           |                                       |           |                                                                                                                           |                                                                                      |
| Время рабо                   | оты бензинового генератора:                                                                                                                                                                 | t                                     |           | 5<br>12                                                                                                                   | ч/день<br>ч/год                                                                      |
| Иолиноство                   | nofolius puos programas popularios                                                                                                                                                          | Dn                                    |           | 2                                                                                                                         | - 11                                                                                 |
| количество                   | рабочих дней в расчетном периоде:                                                                                                                                                           |                                       |           |                                                                                                                           | дней/год                                                                             |
| Вооход бол                   | Расчет расхода отра                                                                                                                                                                         |                                       |           | 0.0088                                                                                                                    | T/50.5                                                                               |
|                              | зина за год:<br>сход бензина:                                                                                                                                                               | B <sub>i</sub>                        |           | 0.0066                                                                                                                    | т/год<br>кг/ч                                                                        |
|                              |                                                                                                                                                                                             | b                                     |           | 243                                                                                                                       | кг/ч<br>г/кВт.ч                                                                      |
|                              | цельный расход бензина:<br>аботанных газов, <b>G</b> ₀r <b>= 8.72*10<sup>-6</sup>*b₃*P₃</b>                                                                                                 |                                       |           | 0.006                                                                                                                     | Kr/c                                                                                 |
|                              | аоотанных газов, <b>G</b> <sub>or</sub> <b>– 6.72 то б</b> э <b>F</b> э                                                                                                                     | G <sub>or</sub><br>T <sub>or</sub>    |           | 450                                                                                                                       | 0C                                                                                   |
|                              | газов при 0°C:                                                                                                                                                                              | γ0 <sub>or</sub>                      |           | 1.31                                                                                                                      | КГ/М <sup>3</sup>                                                                    |
|                              | газов при С С.<br>газов при Т <sub>ог</sub> (К), <b>у</b> <sub>ог</sub> = <b>у0</b> <sub>ог</sub> /(1+ <b>T</b> <sub>ог</sub> /273)                                                         | <b>У</b> ог                           |           | 0.49465                                                                                                                   | KΓ/M <sup>3</sup>                                                                    |
|                              | расход отработанных газов, $Q_{or} = G_{or}/\gamma_{or}$                                                                                                                                    | Q                                     |           | 0.0129                                                                                                                    | M <sup>3</sup> /C                                                                    |
|                              | Расчет выбросов вредных веществ в атм                                                                                                                                                       |                                       |           |                                                                                                                           |                                                                                      |
| •                            | истельноросов вредных вещееть в итм                                                                                                                                                         | оофору в                              | 0010 01 0 | Максимально-разо-                                                                                                         | Валовый вы-                                                                          |
| Код ЗВ                       | Наименование ЗВ                                                                                                                                                                             |                                       |           | вый выброс                                                                                                                | брос                                                                                 |
| ,                            |                                                                                                                                                                                             |                                       |           | М <sub>сек</sub> , г/с                                                                                                    | M <sub>год</sub> , т/год                                                             |
|                              | Азота оксиды (NO <sub>x</sub> )                                                                                                                                                             |                                       |           | 0.0000486                                                                                                                 | 0.0000021                                                                            |
| 0301                         | Азота диоксид (NO <sub>2</sub> )                                                                                                                                                            |                                       |           | 0.0000389                                                                                                                 | 0.0000017                                                                            |
| 0304                         | Азота оксид (NO)                                                                                                                                                                            |                                       |           | 0.000063                                                                                                                  | 0.0000003                                                                            |
| 0330                         | Сера диоксид (SO <sub>2</sub> )                                                                                                                                                             |                                       |           | 0.0000156                                                                                                                 | 0.000007                                                                             |
| 0337                         | Углерод оксид (СО)                                                                                                                                                                          |                                       |           | 0.0032292                                                                                                                 | 0.0001395                                                                            |
| 2704                         | Бензин (С <sub>х</sub> Н <sub>у</sub> )                                                                                                                                                     |                                       |           | 0.0005208                                                                                                                 | 0.0000225                                                                            |
| \ ^ 1/                       |                                                                                                                                                                                             |                                       |           |                                                                                                                           | 0.000404000                                                                          |
|                              | Всего по источнику:                                                                                                                                                                         |                                       |           | 0.0038108                                                                                                                 | 0.000164628                                                                          |
|                              | Всего по источнику:<br>Расчет выбросов вредных веществ в ат                                                                                                                                 | мосферу                               | всего от  |                                                                                                                           |                                                                                      |
|                              |                                                                                                                                                                                             | мосферу                               | всего от  |                                                                                                                           |                                                                                      |
| Код ЗВ                       |                                                                                                                                                                                             | мосферу                               | всего от  | 2-х бензиновых генера<br>Максимально-разо-<br>вый выброс                                                                  | торов:<br>Валовый вы-<br>брос                                                        |
| Код ЗВ                       | Расчет выбросов вредных веществ в ат                                                                                                                                                        | мосферу                               | всего от  | 2-х бензиновых генера Максимально-разо-                                                                                   | торов:<br>Валовый вы-<br>брос<br>М <sub>год</sub> , т/год                            |
| Код ЗВ                       | Расчет выбросов вредных веществ в ат  Наименование ЗВ  Азота оксиды (NO <sub>x</sub> )                                                                                                      | мосферу                               | всего от  | 2-х бензиновых генера Максимально-разо- вый выброс М <sub>сек</sub> , г/с 0.0000972                                       | торов:<br>Валовый вы-<br>брос<br>М <sub>год</sub> , т/год<br>0.0000042               |
| 0301                         | Расчет выбросов вредных веществ в ат  Наименование ЗВ  Азота оксиды (NO <sub>x</sub> ) Азота диоксид (NO <sub>2</sub> )                                                                     | мосферу                               | всего от  | 2-х бензиновых генера<br>Максимально-разо-<br>вый выброс<br>М <sub>сек</sub> , г/с                                        | торов:<br>Валовый вы-<br>брос<br>М <sub>год</sub> , т/год                            |
| 0301<br>0304                 | Расчет выбросов вредных веществ в ат  Наименование ЗВ  Азота оксиды (NO <sub>x</sub> )  Азота диоксид (NO <sub>2</sub> )  Азота оксид (NO)                                                  | мосферу                               | всего от  | 2-х бензиновых генера Максимально-разо- вый выброс М <sub>сек</sub> , г/с 0.0000972                                       | торов:<br>Валовый вы-<br>брос<br>М <sub>год</sub> , т/год<br>0.0000042               |
| 0301<br>0304<br>0330         | Расчет выбросов вредных веществ в ат  Наименование ЗВ  Азота оксиды (NO <sub>x</sub> )  Азота диоксид (NO <sub>2</sub> )  Азота оксид (NO) Сера диоксид (SO <sub>2</sub> )                  | мосферу                               | всего от  | 2-х бензиновых генера Максимально-разовый выброс М <sub>сек</sub> , г/с 0.0000972 0.0000778 0.0000126 0.0000312           | торов:  Валовый выброс  Мгод, т/год 0.0000042 0.0000034 0.0000005 0.0000014          |
| 0301<br>0304<br>0330<br>0337 | Расчет выбросов вредных веществ в ат  Наименование ЗВ  Азота оксиды (NO <sub>x</sub> ) Азота диоксид (NO <sub>2</sub> ) Азота оксид (NO) Сера диоксид (SO <sub>2</sub> ) Углерод оксид (CO) | мосферу                               | всего от  | 2-х бензиновых генера Максимально-разовый выброс М <sub>сек</sub> , г/с 0.0000972 0.0000778 0.0000126 0.0000312 0.0064584 | торов:  Валовый выброс  Мгод, т/год 0.0000042 0.0000034 0.0000005 0.0000014 0.000279 |
| 0301<br>0304<br>0330         | Расчет выбросов вредных веществ в ат  Наименование ЗВ  Азота оксиды (NO <sub>x</sub> )  Азота диоксид (NO <sub>2</sub> )  Азота оксид (NO) Сера диоксид (SO <sub>2</sub> )                  | мосферу                               | всего от  | 2-х бензиновых генера Максимально-разовый выброс М <sub>сек</sub> , г/с 0.0000972 0.0000778 0.0000126 0.0000312           | торов:  Валовый выброс  Мгод, т/год 0.0000042 0.0000034 0.0000005 0.0000014          |

|  | № ИЗА | 1038 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                 |                                 |  |
|--|-------|------|-------------------------------------------------|---------------------------------|---------------------------------|--|
|  | № ИВ  | 001  | Наименование источника<br>выделения             | Бензиновый генератор<br>насосов | Honda<br>WMP20XE1<br>Water Pump |  |

|                                                                | С РК, Астана 2008 год.                                                            | 50                  |                   |                                                               | . IV ADAKTRAATALII III   |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|-------------------|---------------------------------------------------------------|--------------------------|
|                                                                | стоящее время отсутствует методика расче                                          |                     |                   |                                                               |                          |
|                                                                | ов). В связи с этим, до выхода соответствую                                       |                     |                   |                                                               |                          |
|                                                                | г выбросов от бензиновых электростанций (и                                        |                     |                   |                                                               |                          |
|                                                                | рязняющих веществ от автотранспортнь                                              |                     |                   |                                                               |                          |
|                                                                | 0,25 от величины выброса легкового ка                                             |                     | ррного а          | втомооиля с ооъемом                                           | овиганиеля оо 1,2        |
| л при ових                                                     | кении по территории со скоростью 5 км                                             |                     |                   |                                                               |                          |
| <b>Уолиностро</b>                                              |                                                                                   | ные данн            |                   | 22                                                            |                          |
| Количество                                                     |                                                                                   |                     | <u> </u>          |                                                               | ШТ.                      |
| Частота вращения вала:                                         |                                                                                   |                     | 1                 | 1500                                                          | об/мин                   |
| ,                                                              | ционная мощность бензинового генера-                                              | F                   | )<br>3            | 4                                                             | кВт                      |
| тора:                                                          | ксимальный разовый выброс і-го вещества                                           | DOGGLIJATI, IF      | 200700 00         | donavigo: M =(m *1.4)                                         | 1412600 -10              |
| IVIA                                                           | ксимальный разовый выорос i-го вещества<br>Валовый выброс i-го вещества рассчитыі | рассчитые           | donava            | формуле. М <sub>секі</sub> —( <i>III<sub>Lik</sub></i> L I)   | 7//3000, 1/C             |
| LUO.                                                           | валовый выорос і-го вещества рассчиты                                             | вается по           | формуле           | . М <sub>годі</sub> —( <i>III<sub>Lik</sub></i> L I) DII 10°, | тлод                     |
| где:                                                           |                                                                                   |                     | пото              | 0.035                                                         | г/км                     |
|                                                                |                                                                                   | $m_{LNOk}$          | лето              | 0.035                                                         | г/км                     |
|                                                                |                                                                                   |                     | зима              | 0.009                                                         | г/км                     |
| Выброс от                                                      | бензинового генератора равен 0.25 от ве-                                          | m <sub>LSO2k</sub>  | лето              | 0.009                                                         |                          |
| личины вы                                                      | броса легкового карбюраторного автомо-                                            |                     | зима              | 1.875                                                         | г/км                     |
| биля с объе                                                    | емом двигателя до 1.2 л: m <sub>Lik</sub> (таблица 3.5):                          | m <sub>LCOk</sub>   | лето              |                                                               | г/км                     |
|                                                                |                                                                                   |                     | зима              | 2.325                                                         | г/км                     |
|                                                                |                                                                                   | m <sub>LCxHyk</sub> | лето              | 0.25                                                          | г/км                     |
|                                                                |                                                                                   |                     | зима              | 0.375                                                         | г/км                     |
|                                                                | омобиля в день без нагрузки по территории                                         | L                   | 1                 | 25                                                            | км/день                  |
|                                                                | предприятия:                                                                      |                     |                   | _                                                             |                          |
|                                                                | Согласно рекомендациям ОАО "НИИ Атмосфера" ско-                                   |                     | /                 | 5                                                             | км/час                   |
| рость движ                                                     | ения по территории должна быть принята:                                           |                     |                   |                                                               |                          |
| Время рабо                                                     | Время работы бензинового генератора:                                              |                     | <u> </u>          | 5                                                             | ч/день                   |
|                                                                |                                                                                   |                     |                   | 12                                                            | ч/год                    |
| Количество                                                     | рабочих дней в расчетном периоде:                                                 |                     | n                 | 2                                                             | дней/год                 |
|                                                                | Расчет расхода отра                                                               |                     |                   |                                                               |                          |
|                                                                | зина за год:                                                                      | В <sub>год</sub>    |                   | 0.0088                                                        | т/год                    |
|                                                                | Часовой расход бензина:                                                           |                     | )                 | 0.73                                                          | кг/ч                     |
|                                                                | Средний удельный расход бензина:                                                  |                     | )9                | 183                                                           | г/кВт.ч                  |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_{3}*P_{3}$ |                                                                                   | G <sub>or</sub>     |                   | 0.006                                                         | кг/с                     |
| Температур                                                     | T <sub>or</sub>                                                                   |                     | 450               | °C                                                            |                          |
| Плотность                                                      | $\gamma 0_{ m or}$                                                                |                     | 1.31              | кг/м <sup>3</sup>                                             |                          |
| Плотность                                                      | Yor<br>Qor                                                                        |                     | 0.49465           | кг/м <sup>3</sup>                                             |                          |
| Объемный                                                       |                                                                                   |                     | 0.0129            | м <sup>3</sup> /с                                             |                          |
| F                                                              | асчет выбросов вредных веществ в атм                                              | осферу в            | сего от о         |                                                               | •                        |
|                                                                |                                                                                   |                     | Максимально-разо- | Валовый вы-                                                   |                          |
| Код ЗВ                                                         | Код 3В Наименование 3В                                                            |                     |                   | вый выброс                                                    | брос                     |
|                                                                |                                                                                   |                     |                   | М <sub>сек</sub> , г/с                                        | М <sub>год</sub> , т/год |
|                                                                |                                                                                   |                     | 0.0000486         | 0.0000021                                                     |                          |
| 0301                                                           |                                                                                   |                     | 0.0000389         | 0.0000017                                                     |                          |
| 0304                                                           | 11( 1)                                                                            |                     |                   | 0.000063                                                      | 0.0000003                |
| 0330                                                           |                                                                                   |                     |                   | 0.0000156                                                     | 0.0000007                |
| 0337                                                           | 0337 Углерод оксид (СО)                                                           |                     |                   | 0.0032292                                                     | 0.0001395                |
| 2704                                                           |                                                                                   |                     | 0.0005208         | 0.0000225                                                     |                          |
|                                                                |                                                                                   |                     | 0.0038108         | 0.000164628                                                   |                          |
|                                                                | Расчет выбросов вредных веществ в атм                                             | иосферу і           | всего от          | 22-х бензиновых генера                                        | аторов:                  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        |                                                                                   |                     |                   | Максимально-разо-                                             | Валовый вы-              |
| Код ЗВ                                                         | 3В Наименование 3В                                                                |                     |                   | вый выброс                                                    | брос                     |
| Азота оксиды (NO <sub>x</sub> )                                |                                                                                   |                     |                   | М <sub>сек</sub> , г/с                                        | М <sub>год</sub> , т/год |
|                                                                |                                                                                   |                     |                   | 0.0010694                                                     | 0.0000462                |
| 0301                                                           |                                                                                   |                     | 0.0008558         | 0.000037                                                      |                          |
| 0304                                                           |                                                                                   |                     | 0.0001386         | 0.000006                                                      |                          |
| 0330                                                           |                                                                                   |                     | 0.0003432         | 0.0000149                                                     |                          |
| 0337                                                           | Сера диоксид (SO <sub>2</sub> )<br>Углерод оксид (CO)                             |                     |                   | 0.0710424                                                     | 0.003069                 |
| 2704                                                           | Бензин (С <sub>х</sub> Н <sub>у</sub> )                                           |                     |                   | 0.0114576                                                     | 0.000495                 |
|                                                                | Всего по источнику:                                                               |                     |                   | 0.0838376                                                     | 0.0036219                |
| всего по источнику:                                            |                                                                                   |                     |                   |                                                               |                          |

| № ИЗА | 1039 | Наименование источника<br>загрязнения атмосферы | Выхлопная труба                           |                                           |  |
|-------|------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| №ИВ   | 001  | Наименование источника<br>выделения             | Вспомогательный бензи-<br>новый генератор | Ice Equipment<br>Chain Saw STIHL<br>MS460 |  |

| В нас<br>(генераторо<br>нять расчет<br>бросов заг<br>станции - | стти, дегана 2000 год.<br>стоящее время отсутствует методика расче<br>ов). В связи с этим, до выхода соответствую<br>т выбросов от бензиновых электростанций (и<br>грязняющих веществ от автотранспортнь<br>0,25 от величины выброса легкового ка<br>кении по территории со скоростью 5 км | ощей мето<br>генераторо<br>ых предпр<br>арбюрато | одики ОА(<br>ов) мощно<br>м <b>ятий"</b> , <i>I</i> | О "НИИ Атмосфера" рек<br>остью до 10 кВт по <b>"Мет</b> о<br><b>принимая за выброс ог</b> | омендуется выполодике расчета вы-<br>т такой электро- |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|
| •                                                              |                                                                                                                                                                                                                                                                                            | цные данн                                        | ые:                                                 |                                                                                           |                                                       |
| Количество                                                     |                                                                                                                                                                                                                                                                                            | N                                                | 1                                                   | 10                                                                                        | шт.                                                   |
| Частота вра                                                    | ащения вала:                                                                                                                                                                                                                                                                               | r                                                | 1                                                   | 1500                                                                                      | об/мин                                                |
| тора:                                                          | ционная мощность бензинового генера-                                                                                                                                                                                                                                                       | P <sub>9</sub>                                   |                                                     | 4.4                                                                                       | кВт                                                   |
| Ма                                                             | аксимальный разовый выброс i-го вещества<br>Валовый выброс i-го вещества рассчиты                                                                                                                                                                                                          |                                                  |                                                     |                                                                                           |                                                       |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  | лето                                                | 0.035                                                                                     | г/км                                                  |
|                                                                |                                                                                                                                                                                                                                                                                            | m <sub>LNOk</sub>                                | зима                                                | 0.035                                                                                     | г/км                                                  |
| D. 6                                                           | 5                                                                                                                                                                                                                                                                                          | m <sub>LSO2k</sub>                               | лето                                                | 0.009                                                                                     | г/км                                                  |
|                                                                | бензинового генератора равен 0.25 от ве-                                                                                                                                                                                                                                                   |                                                  | зима                                                | 0.011                                                                                     | г/км                                                  |
|                                                                | броса легкового карбюраторного автомо-<br>емом двигателя до 1.2 л: m <sub>Lik</sub> (таблица 3.5):                                                                                                                                                                                         |                                                  | лето                                                | 1.875                                                                                     | г/км                                                  |
| оиля с ооъе                                                    | емом двигателя до 1.2 л. $m_{Lik}$ (таолица 3.3).                                                                                                                                                                                                                                          | m <sub>LCOk</sub>                                | зима                                                | 2.325                                                                                     | г/км                                                  |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  | лето                                                | 0.25                                                                                      | г/км                                                  |
|                                                                |                                                                                                                                                                                                                                                                                            | m <sub>LCxHyk</sub>                              | зима                                                | 0.375                                                                                     | г/км                                                  |
| Пробег авто предприяти                                         | омобиля в день без нагрузки по территории<br>ия:                                                                                                                                                                                                                                           | L                                                | 1                                                   | 25                                                                                        | км/день                                               |
| Согласно ре                                                    | V                                                                                                                                                                                                                                                                                          |                                                  | 5                                                   | км/час                                                                                    |                                                       |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | 5                                                                                         | ч/день                                                |
| время рабо                                                     | оты бензинового генератора:                                                                                                                                                                                                                                                                | 1                                                | -                                                   | 12                                                                                        | ч/год                                                 |
| Количество                                                     | Количество рабочих дней в расчетном периоде:                                                                                                                                                                                                                                               |                                                  | n                                                   | 2                                                                                         | дней/год                                              |
|                                                                | Расчет расхода отра                                                                                                                                                                                                                                                                        | аботанны                                         | х газов и                                           | топлива                                                                                   |                                                       |
| Расход бензина за год:                                         |                                                                                                                                                                                                                                                                                            | В <sub>год</sub>                                 |                                                     | 0.0018                                                                                    | т/год                                                 |
| Часовой ра                                                     | b                                                                                                                                                                                                                                                                                          |                                                  | 0.15                                                | кг/ч                                                                                      |                                                       |
| Средний уд                                                     | b₃                                                                                                                                                                                                                                                                                         |                                                  | 33                                                  | г/кВт.ч                                                                                   |                                                       |
| Расход отработанных газов, $G_{or} = 8.72*10^{-6*}b_3*P_3$     |                                                                                                                                                                                                                                                                                            | G <sub>or</sub>                                  |                                                     | 0.001                                                                                     | кг/с                                                  |
| Температур                                                     | T <sub>or</sub>                                                                                                                                                                                                                                                                            |                                                  | 450                                                 | °C                                                                                        |                                                       |
| Плотность г                                                    | γ0 <sub>or</sub>                                                                                                                                                                                                                                                                           |                                                  | 1.31                                                | кг/м <sup>3</sup>                                                                         |                                                       |
| Плотность г                                                    | Yor<br>Q <sub>or</sub>                                                                                                                                                                                                                                                                     |                                                  | 0.49465                                             | кг/м <sup>3</sup>                                                                         |                                                       |
| Объемный                                                       |                                                                                                                                                                                                                                                                                            |                                                  | 0.0026                                              | м <sup>3</sup> /с                                                                         |                                                       |
|                                                                | Расчет выбросов вредных веществ в атм                                                                                                                                                                                                                                                      | осферу в                                         | сего от о                                           | дного бензинового ген                                                                     | ератора:                                              |
| Код ЗВ                                                         |                                                                                                                                                                                                                                                                                            |                                                  | Максимально-разо-<br>вый выброс                     | Валовый вы-<br>брос                                                                       |                                                       |
| Азота оксиды (NO <sub>x</sub> )                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | М <sub>сек</sub> , г/с                                                                    | M <sub>год</sub> , т/год                              |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | 0.0000486                                                                                 | 0.0000021                                             |
| 0301                                                           |                                                                                                                                                                                                                                                                                            |                                                  | 0.0000389                                           | 0.0000017                                                                                 |                                                       |
| 0304                                                           |                                                                                                                                                                                                                                                                                            |                                                  | 0.0000063                                           | 0.0000003                                                                                 |                                                       |
| 0330                                                           |                                                                                                                                                                                                                                                                                            |                                                  | 0.0000156                                           | 0.0000007                                                                                 |                                                       |
| 0337                                                           |                                                                                                                                                                                                                                                                                            |                                                  | 0.0032292                                           | 0.0001395                                                                                 |                                                       |
| 2704                                                           |                                                                                                                                                                                                                                                                                            |                                                  | 0.0005208                                           | 0.0000225                                                                                 |                                                       |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  | 0.0038108                                           | 0.000164628                                                                               |                                                       |
| F                                                              | Расчет выбросов вредных веществ в атм                                                                                                                                                                                                                                                      | осферу в                                         | сего от 1                                           |                                                                                           |                                                       |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | Максимально-разо-                                                                         | Валовый вы-                                           |
| Код 3В Наименование 3В                                         |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | вый выброс                                                                                | брос                                                  |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | M <sub>сек</sub> , г/с                                                                    | М <sub>год</sub> , т/год                              |
| Азота оксиды (NO <sub>x</sub> )                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     | 0.0004861                                                                                 | 0.000021                                              |
|                                                                |                                                                                                                                                                                                                                                                                            |                                                  |                                                     |                                                                                           |                                                       |
| 0301                                                           | Азота диоксид (NO <sub>2</sub> )                                                                                                                                                                                                                                                           |                                                  |                                                     | 0.000389                                                                                  | 0.0000168                                             |
| 0304                                                           | Азота диоксид (NO <sub>2</sub> )<br>Азота оксид (NO)                                                                                                                                                                                                                                       |                                                  |                                                     | 0.000063                                                                                  | 0.0000027                                             |
| 0304<br>0330                                                   | Азота диоксид (NO <sub>2</sub> )<br>Азота оксид (NO)<br>Сера диоксид (SO <sub>2</sub> )                                                                                                                                                                                                    |                                                  |                                                     | 0.000063<br>0.000156                                                                      | 0.0000027<br>0.0000068                                |
| 0304<br>0330<br>0337                                           | Азота диоксид (NO₂) Азота оксид (NO) Сера диоксид (SO₂) Углерод оксид (CO)                                                                                                                                                                                                                 |                                                  |                                                     | 0.000063<br>0.000156<br>0.032292                                                          | 0.0000027<br>0.0000068<br>0.001395                    |
| 0304<br>0330                                                   | Азота диоксид (NO <sub>2</sub> )<br>Азота оксид (NO)<br>Сера диоксид (SO <sub>2</sub> )                                                                                                                                                                                                    |                                                  |                                                     | 0.000063<br>0.000156                                                                      | 0.0000027<br>0.0000068                                |