Расчет выбросов загрязняющих веществ при проведении строительно-монтажных работ <u>Организованные источники</u>

<u>Источник загрязнения №0001 – Работа компрессора передвижного с ДВС, 5</u> м3/мин

Выбросы загрязняющих веществ осуществляются при работе компрессора, как установки с дизельным двигателем внутреннего сгорания и рассчитываются согласно РНД 211.2.02.04-2004 Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок.

Максимальный выброс і-ого вещества определяется по формуле:

$$M_{\text{cek}} = (\text{ei} \times \text{P}_{\Theta}) / 3600, \, \Gamma/c$$

где:

еі - выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки в режиме номинальной мощности, г/кВт*ч

Рэ - эксплуатационная мощность стационарной дизельной установки, кВт.

Валовый выброс і-ого вещества определяется по формуле:

$$G_{\text{год}} = (qi \times B) / 1000$$
, тонн

где:

- qi выброс i-го вредного вещества, г/кг топлива, приходящегося на 1 кг дизельного топлива,
- В расход топлива, тонн (рассчитывается исходя из времени работы установки и часового расхода топлива). Часовой расход топлива принят по данным интернет-ресурса для компрессора $19.7~\mathrm{kBr}-3.5~\mathrm{n/vac}$ ($2.94~\mathrm{kr/vac}$).

Расчет выбросов сведен в таблицу 1.

Таблица 1. Расчет выбросов 3В от источника №0001

						1			1
Марка установки	еі, г/кВт*ч	Т, час	Р ₃ , кВт	В, т/год	q i	Загрязняющие вещества	Код	М, г/с	G, тонн/период
Компрессоры	10,3	3766,5761	19,7	11,07	43,0	NO_X		0,0563639	0,4761705
передвижные с двигателем						Азота (IV) диоксид	0301	0,0450911	0,3809364
внутреннего сгорания						Азот (II) оксид	0304	0,0073273	0,0619022
СГОРАНИЯ	0,000013				0,000055	Бенз(а)пирен	0703	0,0000001	0,0000006
	1,1				4,50	Сера диоксид	0330	0,0060194	0,0498318
	7,20				30,00	Углерод оксид	0337	0,0394000	0,3322120
	3,60				15,00	Алканы С12-С19	2754	0,0197000	0,1661060
	0,70				3,00	Углерод	0328	0,0038306	0,0332212
	0,15				0,60	Формальдегид	1325	0,0008208	0,0066442

<u>Источник загрязнения №0002 – Работа компрессора передвижного с ДВС, 11,2</u> м3/мин

Расчет выбросов выполнен аналогично расчету, проведенному по источнику №0001 и сведен в таблицу 2. Часовой расход топлива принят по данным интернет-ресурса для компрессора 26,0 кВт – 7,7 л/час (6,4 кг/час).

Таблина 2. Расчет выбросов от источника №0002

Марка установки	еі, г/кВт*ч	Т, час	Р _э , кВт	В, тонн	qi	Загрязняющие вещества	Код	М, г/с	G, тонн/период
Компрессоры	10,3	658,003	26,0	4,26	43,0	NO_X		0,0743889	0,1830065
передвижные с						Азота (IV)	0301	0,0595111	0,1464052

Марка установки	е _і , г/кВт*ч	Т, час	Р _э , кВт	В,	qi	Загрязняющие вещества	Код	М, г/с	G, тонн/период
двигателем						диоксид			
внутреннего						Азот (II) оксид	0304	0,0096706	0,0237908
сгорания давлением до 686 кПа (7 атм),	0,000013				0,000055	Бенз(а)пирен	0703	0,0000001	0,0000002
производительность	1 1				4,50	Сера диоксид	0330	0,0079444	0,0191518
11,2 м3/мин	7,20				30,00	Углерод оксид	0337	0,0520000	0,1276789
	3,60				15,00	Алканы С12-С19	2754	0,0260000	0,0638395
	0,70				3,00	Углерод	0328	0,0050556	0,0127679
	0,15				0,60	Формальдегид	1325	0,0010833	0,0025536

<u>Источник загрязнения №0003 – Работа компрессора передвижного с ДВС, 16 м3/мин</u>

Расчет выбросов выполнен аналогично расчету, проведенному по источникам №0001- №0002 и сведен в таблицу 3. Часовой расход топлива принят по данным интернет-ресурса для компрессора 63 кВт – 11,2 л/час (9,4 кг/час).

Таблица 3. Расчет выбросов 3В от источника №0003

таолица э. тасче	יטקטופפ ו	COB JD	UI M	1011	INKA JIYUI	003			
Марка установки	е _і , г/кВт*ч	Т, час	Р _э , кВт	В, тонн	$\mathbf{q_i}$	Загрязняющие вещества	Код	М, г/с	G, тонн/период
Установки	10,3	161,112	63,0	1,52	43,0	NO_X		0,1803644	0,0651773
компрессорные передвижные						Азота (IV) диоксид	0301	0,1442916	0,0521418
давлением 9800 кПа (100 атм),						Азот (II) оксид	0304	0,0234474	0,0084730
производительность	0,000013				0,000055	Бенз(а)пирен	0703	0,0000002	0,0000001
ю 16 м3/мин	1,1				4,50	Сера диоксид	0330	0,0192622	0,0068209
	7,20				30,00	Углерод оксид	0337	0,1260800	0,0454725
	3,60				15,00	Алканы С12- С19	2754	0,0630400	0,0227363
	0,70				3,00	Углерод	0328	0,0122578	0,0045473
	0,15				0,60	Формальдегид	1325	0,0026267	0,0009095

Источник загрязнения №0004 – Работа электростанции с ДВС

Выбросы рассчитываются аналогично расчету, проведенному по источникам №0001- №0003. Расход топлива рассчитывается исходя из времени работы установки и часового расхода топлива. Часовой расход топлива принят по данным интернет-ресурса для электростанции $30~\mathrm{kBt}-14,4~\mathrm{n/vac}$. Расчет выбросов сведен в таблицу 4.

Таблица 4. Расчет выбросов 3В от источника №0004

Марка установки	е _і , г/кВт*ч	Т, час	Р _э , кВт	В, т/год	qi	Загрязняющие вещества	Код	М, г/с	G , тонн
Электро	10,3	1733,96	30,0	20,97	43,0	NO_X		0,0858333	0,9018804
станция,						Азота (IV) диоксид	0301	0,0686667	0,7215043
30 кВ						Азот (II) оксид	0304	0,0111583	0,1172444
	0,000013				0,000055	Бенз(а)пирен	0703	0,0000001	0,0000012
	1,1				4,50	Сера диоксид	0330	0,0091667	0,0943828
	7,20				30,00	Углерод оксид	0337	0,0600000	0,6292189
	3,60				15,00	Алканы С12-С19	2754	0,0300000	0,3146094
	0,70				3,00	Углерод	0328	0,0058333	0,0629219
	0,15				0,60	Формальдегид	1325	0,0012500	0,0125844

Неорганизованные источники

Источник загрязнения №6001 – Земляные работы

Выбросы пыли осуществляются при разработке грунта экскаваторами и при разработке, рыхлении и обратной засыпке грунта бульдозерами.

Количество перерабатываемого грунта:

Наименование работ	Коли гр	Плотность,	
·	м3	тонн	г/см3
Разработка грунта в траншеях с погрузкой на автомобили-самосвалы экскаваторами "обратная лопата", вместимость ковша 0,65 м ³ , группа грунта 2	897,35	1507,548	1,68
Разработка грунта в траншеях в отвал экскаваторами "обратная лопата", вместимость ковша $0.65~{\rm M}^3$, группа грунта 2	9 719,4	16328,59	1,68
Засыпка траншей и котлованов с перемещением грунта до 5 м бульдозерами, мощность 79 кВт (108 л с), группа грунта 2	8 540,6	14348,21	1,68
Разработка грунта в траншеях с погрузкой на автомобили-самосвалы экскаваторами "обратная лопата", вместимость ковша 0,65 м ³ , группа грунта 2	897,35	1507,548	1,68
Разработка грунта в траншеях в отвал экскаваторами "обратная лопата", вместимость ковша 0,65 м ³ , группа грунта 2	9 719,4	16328,59	1,68
Засыпка траншей и котлованов с перемещением грунта до 5 м бульдозерами, мощность 79 кВт (108 л с), группа грунта 2	8 540,6	14348,21	1,68
Разработка грунта в траншеях с погрузкой на автомобили-самосвалы экскаваторами "обратная лопата", вместимость ковша 0,65 м ³ , группа грунта 2	897,35	1507,548	1,68
Разработка грунта в траншеях в отвал экскаваторами "обратная лопата", вместимость ковша 0,65 м ³ , группа грунта 2	9 719,4	16328,59	1,68
Засыпка траншей и котлованов с перемещением грунта до 5 м бульдозерами, мощность 79 кВт (108 л с), группа грунта 2	8 540,6	14348,21	1,68

Разработка грунта экскаваторами

Максимальный разовый объем пылевыделений при разработке грунта экскаваторами в отвал рассчитывается по формуле 8 Методики расчета нормативов выбросов от неорганизованных источников (Приложение 8 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 года №221-⊕):

$$Q_{\text{сек}} = \frac{P_1 \times P_2 \times P_3 \times P_4 \times P_5 \times P_6 \times B' \times G \text{\textit{yac}} \times 10^6}{3600}, \text{r/cek}$$

Валовый выброс определяется расчетно-балансовым методом путем перевода г/сек в тонны по формуле:

$$Q_{\text{год}} = Q_{\text{сек}} x \ T \ x \ 3600 \ x \ 10^{\text{-}6}$$
, тонн

где,

Т – время работы экскаватора, час

Расчет выбросов пыли сведен в таблицу 5.

Таблица 5. Расчет выбросов при работе экскаватора (разработка грунта)

Наименование показателя	Обозначение	Величина
доля пылевой фракции в породе (таблица 1)	P1	0,05
доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале (таблица 1)	P2	0,03
коэффициент, учитывающий скорость ветра в зоне работы экскаватора (таблица 2)	Р3	1,2
коэффициент, учитывающий влажность материала (таблица 4)	P4	0,01

Наименование показателя	Обозначение	Величина
коэффициент, учитывающий крупность материала (таблица 5)	P5	0,7
коэффициент, учитывающий местные условия (таблица 3)	P6	1
коэффициент, учитывающий высоту пересыпки (таблица 7)	B'	0,7
производительность узла пересыпки или количество перерабатываемого материала, т/ч	$G_{ ext{vac}}$	66
суммарное количество перерабатываемого материала, тонн	$G_{ m rog}$	53508,4
время работы экскаватора, час	T	815
поправочный коэффициент *)		0,4
Выбросы, г/сек		0,06433983
Выбросы, тонн/период СМР		0,18877771

Обратная засыпка грунта бульдозерами

Расчет выбросов пыли выполнен по формулам Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года №100 - п) и сведен в таблицу 6.

Максимальный разовый объем пылевыделений рассчитывается по формуле 3.1.1:

$$Mce\kappa = \frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times Guac \times 10^6}{3600} \times (1 - \eta), \Gamma/ce\kappa$$

а валовый выброс по формуле 3.1.2:

$$M$$
год = $k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G$ год $\times (1-\eta)$, тонн

Таблица 6. Расчет выбросов при работе бульдозера (обратная засыпка грунта, планировка)

Наименование показателя	Обозначение	Величина
весовая доля пылевой фракции в материале (таблица 3.1.1)	\mathbf{k}_1	0,05
доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1)	k ₂	0,03
коэффициент, учитывающий местные метеоусловия (таблица 3.1.2) определен по среднегодовой скорости		1,2
коэффициент, учитывающий местные метеоусловия (таблица 3.1.2) определен по средним многолетним данным, повторяемость превышения которой составляет 5%	k ₃	1,7
коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3)	k ₄	1
коэффициент, учитывающий влажность материала (таблица 3.1.4)	k_5	0,01
коэффициент, учитывающий крупность материала (таблица 3.1.5)	\mathbf{k}_{7}	0,7
поправочный коэффициент для различных материалов в зависимости от типа грейфера	\mathbf{k}_{8}	1
поправочный коэффициент при мощном залповом сбросе	k 9	1
коэффициент, учитывающий высоту пересыпки (таблица 3.1.7)	B'	0,5
производительность узла пересыпки или количество перерабатываемого материала, т/ч	$G_{ ext{vac}}$	158
суммарное количество перерабатываемого материала, тонн	$G_{ m rog}$	43044,6
время работы бульдозеров, час	T	273,2
поправочный коэффициент *)		0,4
г/сек		0,15625863
тонн		0,10847245

Итого выбросы пыли от источника №6001

Код ЗВ	Наименование ЗВ	Выброс г/с	Выброс тонн
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,1562586	0,2972502

Источник загрязнения №6002 – Транспортные работы

Выбросы пыли осуществляются при перевозке различных грузов (щебень, песок, грунт). Расчет выбросов выполнен согласно Методики расчета нормативов выбросов от неорганизованных источников (Приложение 8 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 года №221-ө) и сведен в таблицу 7.

Максимально-разовые выбросы пыли рассчитываются по формуле:

$$Q_1 = \frac{C_1 \times C_2 \times C_3 \times N \times L \times q_1 \times C_6 \times C_7}{3600} + C_4 \times C_5 \times C_6 \times q' \times F_0 \times n, \Gamma/c,$$

Валовый выброс рассчитывается путем перевода г/сек в тонны по формуле:

$$Q_{\text{год}} = Q_1 \times 3600 \times t \times T \times 10^{-6}$$
, тонн

Таблица 8. Расчет выбросов пыли от источника №6002

Коэф-	П	Вели	чина
фициент	Наименование	песок	грузы
C1	коэффициент, учитывающий среднюю грузоподъемность транспорта	1	1
C2	коэффициент, учитывающий среднюю скорость передвижения транспорта	1	1
C3	коэффициент, учитывающий состояние дорог	1	1
C4	коэффициент, учитывающий профиль поверхности материала на платформе	1,3	0
C5	коэффициент, учитывающий скорость обдува материала	1,2	0
C(6	коэффициент, учитывающий влажность поверхностного слоя материала - песок	0,01	0
C6	коэффициент, учитывающий влажность поверхностного слоя материала-автодорога	0,1	0,1
C7	коэффициент, учитывающий долю пыли, уносимой в атмосферу	0,01	0,01
q1	пылевыделение в атмосферу на 1 км пробега, г	1450	1450
N	число ходок (туда и обратно) всего транспорта в час	1	1
L	среднее расстояние транспортировки в пределах площадки, км	2	2
q'	пылевыделение с единицы фактической поверхности материала на платформе, г/м2	0,05	0
F ₀ , m ²	средняя площадь платформы, м2	1,5	0
n	число автомашин	3	1
t	время работы в день, час	8	8
Т	количество дней на перевозку	9	88
Dryfmar	г/сек	0,0043156	0,0008056
Выброс	тонн	0,0011186	0,0020416

Итого выбросы пыли от источника выделения №6003

Код ЗВ	Наименование ЗВ	Выброс, г/с	Выброс, тонн
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0043156	0,0031602

Источник загрязнения №6003 – Ссыпка инертных материалов

Максимальный разовый объем пылевыделений рассчитывается по формуле 2 Методики расчета нормативов выбросов от неорганизованных источников (Приложение 8 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 года №221-ө):

$$Q_{ce\kappa} = \frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times B' \times G \times 10^6}{3600}, \text{ r/cek}$$

Валовый выброс определяется расчетно-балансовым методом путем перевода г/с в тонны по формуле:

$$Q = Q_{cek} \times T \times 60 \times 10^{-6}$$
, Tohh

где,

T – время пересыпки, определяется исходя из времени одной пересыпки и количества пересыпок, мин.

Расчет выбросов пыли от источника №6003 сведен в таблицу 8.

Таблица 8. Расчет выбросов пыли от источника №6003

т жолици (о. 1 асчет выбросов пыли от источника леобоз	1
Коэф- фициент	Наименование показателей	Величина природный песок
\mathbf{k}_1	весовая доля пылевой фракции в материале (таблица 1)	0,05
k_2	доля пыли (от всей массы пыли), переходящая в аэрозоль (таблица 1)	0,03
k_3	коэффициент, учитывающий местные метеоусловия (таблица 2)	1,2
k_4	коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3)	1
k_5	коэффициент, учитывающий влажность материала (таблица 4)	0,01
\mathbf{k}_7	коэффициент, учитывающий крупность материала (таблица 5)	0,8
B'	коэффициент, учитывающий высоту пересыпки (таблица 7)	0,7
t	время одной пересыпки, мин	3
n	количество пересыпок в период СМР	228,7
T	время пересыпки в период СМР, мин	686,1
$G_{ ext{vac}}$	производительность узла пересыпки или количество перерабатываемого материала, т/ч	30
G _{год}	суммарное количество перерабатываемого материала, т/период СМР	2287,0
Поправочн	ый коэффициент	0,4
Draffma	г/сек	0,0336000
Выброс	тонн	0,0013832

Итого выбросы пыли от источника №6003

Код 3В	Наименование ЗВ	Выброс г/с	Выброс тонн
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0336000	0,0013832

Источник загрязнения №6004 – Хранение инертных материалов

Максимальный разовый выброс пыли, поступающий в атмосферу, рассчитывается по формуле 3.2.3:

$$Mceκ = k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S$$
, Γ/c,

Валовый выброс твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле 3.2.5:

$$M$$
го $\partial = 0,0864 \times k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S \times [365 - (Tcn + T\partial))] \times (1 - \eta)$, т/год,

где,

k₃ – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2);

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4);

 k_6 — коэффициент, учитывающий профиль поверхности складируемого материала, значение k_6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

k₇ – коэффициент, учитывающий крупность материала (таблица 3.1.5);

n - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

 ${\bf q'}$ - унос пыли с одного квадратного метра фактической поверхности, ${\bf r/m^2*c}$ (таблица 3.1.1).

S – поверхность пыления, M^2 ;

Тсп – количество дней с устойчивым снежным покровом;

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T\partial = \frac{2 \times T_{\partial}^{0}}{24}$$
, дней,

где,

 $T^{\,0}_{\,\delta}\,$ - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час.

Расчет выбросов от источника №6004 сведен в таблицу 9.

Таблица 9. Расчет выбросов ЗВ от источника №6004

Процесс	К3	К4	К5	К6	К7	q, г/м ² *с	S, m2	n	Тсп	Тд	М, г/с	G, т/год
Хранение песка	1,2	1	0,01	1,3	0,8	0,004	10	0	0	2,5	0,0004992	0,0156349

Источник загрязнения №6005 – Механическая обработка металлов

При проведении строительно-монтажных работ используется машина шлифовальная.

Выбросы загрязняющих веществ, образующихся при механической обработке металлов, определяется по формулам РНД 211.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов), Астана 2005г. Расчеты выбросов 3В от источника №6005 сведены в таблицу 10.

Валовый выброс рассчитывается по формуле:

$$M_{\text{rod}} = \frac{3600 \times k \times Q \times T}{10^6}$$
, т/год

где,

k - коэффициент гравитационного оседания (п.5.3.2);

Q - удельное выделение пыли технологическим оборудованием, г/с;

Т - фонд времени работы оборудования, час.

Максимальный разовый выброс рассчитывается по формуле:

$$M_{cek} = k \times Q_{, \Gamma/c}$$

Таблица 10. Расчет выбросов 3В при механической обработке металлов

Код ЗВ	Наименование загрязняющего вещества	Q, г/с	k	Т, час	г/с	тонн					
	при работе шлифовальных машин										
2902	Взвешенные частицы	0,02	0,2	0,8	0,0040000	0,0000118					
2930	Пыль абразивная	0,013	0,2	0,8	0,0026000	0,0000077					

Источник загрязнения №6006 – Сварочные работы штучными электродами

Сварочные работы проводятся электродуговой ручной сваркой электродами:

- Э38 (марка АНО-4) в количестве 5,3 кг,
- Э46 (марка МР-3) в количестве 18,8 кг.

Валовое количество загрязняющих веществ в процессе сварки определяют по формуле 5.1 РНД 211.2.02.03-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов):

$$M_{\text{год}} = \frac{B_{\text{год}} \times K_{\text{T}}^{X}}{10^{6}} \times (1 - \eta)$$
, тонн

где,

Вгод- расход применяемого сырья и материалов, кг;

 $K_{\rm T}^{\rm x}$ - удельный показатель выброса загрязняющего вещества «х» на единицу массы расходуемых материалов, г/кг (табл.1);

 η - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Максимально разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессах сварки, определяются по формуле 5.2:

$$M_{\text{cek}} = \frac{K_T^x \times B_{\text{vac}}}{3600} \times (1 - \eta), \Gamma/c$$

где,

 $B_{\rm vac}$ – фактический максимальный расход применяемых материалов, кг/час.

Расчет выбросов выполнен с помощью ПК «ЭРА» по соответствующей методике. Результаты расчета сведены в таблицу 11.

Расчет выбросов загрязняющих веществ от сварки металлов штучными электродами

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): АНО-4

Расход сварочных материалов, $\kappa \Gamma / \Gamma \text{од}$, B = 5.3

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma$ /час, BMAX = 1.5

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 17.8, в том числе:

Примесь: 0123 Железо (II, III) оксиды

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 15.73

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 15.73 \cdot 5.3 / 10^6 = 0.00008337$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX / 3600 = 15.73 \cdot 1.5 / 3600 = 0.00655417$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.66

Валовый выброс, т/год (5.1), $M_{-} = GIS \cdot B / 10^{6} = 1.66 \cdot 5.3 / 10^{6} = 0.0000088$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1.66 \cdot 1.5 / 3600 = 0.00069167$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 0.41

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 0.41 \cdot 5.3 / 10^6 = 0.00000217$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX / 3600 = 0.41 \cdot 1.5 / 3600 = 0.00017083$

Электрод (сварочный материал): МР-3

Расход сварочных материалов, $\kappa \Gamma / \Gamma \text{од}$, B = 18.8

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma/\nu$ час, BMAX=1.5

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 11.5, в том числе:

Примесь: 0123 Железо (II, III) оксиды

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 9.77

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 9.77 \cdot 18.8 / 10^6 = 0.00018368$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 9.77 \cdot 1.5 / 3600 = 0.00407083$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.73

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 1.73 \cdot 18.8 / 10^6 = 0.00003252$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX / 3600 = 1.73 \cdot 1.5 / 3600 = 0.00072083$

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 0.4

Валовый выброс, т/год (5.1), $M = GIS \cdot B / 10^6 = 0.4 \cdot 18.8 / 10^6 = 0.00000752$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 0.4 \cdot 1.5 / 3600 = 0.00016667$

Таблица 11. Результаты расчета выбросов от источника №6006

Код	Наименование ЗВ	Выброс г/с	Выброс т/период
0123	Железо (II, III) оксиды (в пересчете на железо)	0.00655417	0.00026705
	(диЖелезо триоксид, Железа оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца	0.00072083	0.00004132
	(IV) оксид) (327)		
0342	Фтористые газообразные соединения /в пересчете на	0.00016667	0.00000752
	фтор/ (617)		
2908	Пыль неорганическая, содержащая двуокись кремния	0.00017083	0.00000217
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения №6007 – Газовая сварка с использованием пропан-бутана

В период СМР применяется газовая сварка с использованием пропан-бутановой смеси в количестве 11,3 кг. Время работы установки для газовой сварки и резки — 4,5 часа. Расчет выбросов выполнен с помощью программного комплекса ЭРА, результаты расчета сведены в таблицу 12.

Расчет выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферупри сварочных работах (по величинам удельныхвыбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

Расход сварочных материалов, $\kappa \Gamma / \Gamma O J$, B = 11.3

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 2.5

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $M = KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 15 \cdot 11.3 / 10^6 = 0.0001356$

Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 15 \cdot 2.5 / 3600 = 0.00833333$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO\cdot GIS\cdot B\ /\ 10^6=0.13\cdot 15\cdot 11.3\ /\ 10^6=0.00002204$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO\cdot GIS\cdot BMAX\ /\ 3600=0.13\cdot 15\cdot 2.5\ /\ 3600=0.00135417$

Таблица 12. Результаты расчета выбросов от источника №6007

Код	Наименование ЗВ	Выброс г/с	Выброс т/период
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00833333	0.0001356
0304	Азот (II) оксид (Азота оксид) (6)	0.00135417	0.00002204

Источник загрязнения №6008 – Лакокрасочные работы

В период проведения строительно-монтажных работ применяются следующие виды лакокрасочных материалов:

- Грунтовка глифталевая ГФ-021 0,00374 тонн;
- Уайт-спирит 0,00058 тонн;
- Эмаль $\Pi\Phi$ -115 0,00374 тонн;
- Ксилол нефтяной марки А (в расчет принят расчет Р10) 0,00062 тонн.

Валовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле 1 РНД 211.2.02.05-2004. Методика расчета выбросов ЗВ в атмосферу при нанесении лакокрасочных материалов:

$$M_{_{\mathrm{H. OKP}}}^{\mathrm{a}} = \frac{m_{_{\varphi}} \times \delta_{_{\mathrm{a}}} \times (100 - f_{_{\mathrm{p}}})}{10^4} \times (1 - \eta),$$
 т/год

где,

m_ф - фактический годовой расход ЛКМ (т);

 δ_a - доля краски, потерянной в виде аэрозоля (% мас.), табл. 3;

f_p - доля летучей части (растворителя) в ЛКМ, (%, мас.), табл. 2;

η - степень очистки воздуха газоочистным оборудованием (в долях единицы).

Максимальный разовый выброс нелетучей (сухой) части аэрозоля краски, образующийся при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле 2:

$$M_{_{H.OKP}}^{a} = \frac{m_{_{M}} \times \delta_{_{a}} \times (100 - f_{_{p}})}{10^{4} \times 3.6} \times (1 - \eta),$$

где,

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования (кг/час). При отсутствии этих данных допускается использовать максимальную паспортную производительность.

Валовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам:

а) при окраске:

где,

 δ'_p - доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, мас.), табл. 3;

 δ_x - содержание компонента «х» в летучей части ЛКМ, (%, мас.), табл. 2 б) при сушке:

$$M_{\text{суш}}^{\text{x}} = \frac{m_{\phi} \times f_{p} \times \delta_{p}^{"} \times \delta_{x}}{10^{6}} \times (1 - \eta),$$
 т/год

где,

 δ''_p - доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, мас.), табл. 3.

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам:

а) при окраске:

$$M_{\text{okp}}^{x} = \frac{m_{M} \times f_{p} \times \delta_{p}^{'} \times \delta_{x}}{10^{6} \times 3.6} \times (1 - \eta), \quad \Gamma/C$$

где,

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования (кг/час). При отсутствии этих данных допускается использовать максимальную паспортную производительность;

б) при сушке:

$$M_{\text{суш}}^{x} = \frac{m_{\text{M}} \times f_{\text{p}} \times \delta_{\text{p}}^{''} \times \delta_{\text{x}}}{10^{6} \times 3.6} \times (1 - \eta),$$

где:

 $m_{\mbox{\tiny M}}$ - фактический максимальный часовой расход ЛКМ, с учетом времени сушки (кг/час). Время сушки берется согласно технологических или справочных данных на данный вид ЛКМ.

Общий валовый или максимальный разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формуле 7:

$$M_{06\text{\tiny{IM}}}^{x} \quad = \quad M_{0\text{\tiny{KP}}}^{x} \quad + \quad M_{cy\text{\tiny{IM}}}^{x}$$

Расчет выбросов загрязняющих веществ проводился с использованием программного комплекса «Эра» по соответствующей методике. Результаты расчета выбросов сведены в

таблицу 13.

Расчет выбросов при проведении лакокрасочных работ

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005.

Технологический процесс: окраска и сушка

Марка ЛКМ: Грунтовка ГФ-021

Фактический годовой расход ЛКМ, тонн, MS = 0.00374

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 1

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00374 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.001683$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.125$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2902 Взвешенные частицы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс ЗВ (1), т/год, $_M_=KOC \cdot MS \cdot (100\text{-}F2) \cdot DK \cdot 10^{\text{-}4} = 1 \cdot 0.00374 \cdot (100\text{-}45) \cdot 30 \cdot 10^{\text{-}4} = 0.0006171$

Максимальный из разовых выброс 3В (2), г/с, $_G_ = KOC \cdot MS1 \cdot (100\text{-}F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 1 \cdot (100\text{-}45) \cdot 30 / (3.6 \cdot 10^4) = 0.04583333$

Марка ЛКМ: Растворитель Уайт-спирит

Фактический годовой расход ЛКМ, тонн, MS = 0.00058

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.5

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00058 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.00058$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.5 \cdot 100 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.13888889$

Марка ЛКМ: Эмаль ПФ-115

Фактический годовой расход ЛКМ, тонн, MS = 0.00374

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 1.0

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00374 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0008415$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0625$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00374 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0008415$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0625$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2902 Взвешенные частицы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс 3В (1), т/год, $_M_ = KOC \cdot MS \cdot (100\text{-}F2) \cdot DK \cdot 10^{-4} = 1 \cdot 0.00374 \cdot (100\text{-}45) \cdot 30 \cdot 10^{-4} = 0.0006171$

Максимальный из разовых выброс 3В (2), г/с, $_G_=KOC \cdot MS1 \cdot (100\text{-}F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 1 \cdot (100\text{-}45) \cdot 30 / (3.6 \cdot 10^4) = 0.04583333$

Марка ЛКМ: Растворитель Р-10

Фактический годовой расход ЛКМ, тонн, MS = 0.00062

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.5

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 15

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00062 \cdot 100 \cdot 15 \cdot 100 \cdot 10^{-6} = 0.000093$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.5 \cdot 100 \cdot 15 \cdot 100 / (3.6 \cdot 10^6) = 0.02083333$

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 85

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100 Валовый выброс 3В (3-4), т/год, $\underline{M} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00062 \cdot 100 \cdot 85 \cdot 100 \cdot 10^{-6} = 0.000527$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.5 \cdot 100 \cdot 85 \cdot 100 / (3.6 \cdot 10^6) = 0.11805556$

Таблица 13. Результаты расчета выбросов по источнику №6008

Код	Наим	ленование ЗВ		Выброс г/с	Выброс т/период
0616	Диметилбензол (смес	ь о-, м-, п- изс	омеров) (203)	0.125	0.0030515
1401	Пропан-2-он (Ацетон) (470)		0.02083333	0.000093
2752	Уайт-спирит (1294*)			0.13888889	0.0014215
2902	Взвешенные частицы	(116)		0.04583333	0.0012342

Источник загрязнения №6009 – Сварка ПВХ материалов

Расчет выбросов загрязняющих веществ выполнен по формуле Методики расчета выбросов вредных веществ в атмосферу при работе с пластмассовыми материалами. (Приложение №5 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 года №221-ө):

 $M = q \times N$, т/период СМР

где,

q - удельное выделение загрязняющего вещества, на 1 сварку

N- количество сварок (принимаем 1632 сварки/период СМР, т.е. 1 сварка в час).

$$Q = M \times 10^6 / T \times 3600$$
,

где,

Т – время работы оборудования, час.

Расчет выброс по источнику №6009 сведен в таблицу 14.

Таблица 14. Расчет выбросов от источника №6009

Процесс	Т, час	N, раз	g, г/сварку	Загрязняющее вещество	Код	М, г/с	G , т/год
Сварка полипропиленовых и	1632,4	1632,4	0,009	Углерод оксид	0337	0,0000025	0,0000147
ПВХ труб и материалов			0,0039	Хлорэтилен	0827	0,0000011	0,0000064

Источник загрязнения №6010 - Работа двигателей автотехники

Перечень используемой в период СМР автотехники представлен в таблице 15.

Таблица 15. Перечень автотехники

№ п/п	Наименование	Маш/час
1	Автопогрузчики, до 5 т	54,34
2	Автомобили бортовые, до 5 т	7,09
3	Краны-манипуляторы, грузоподъёмность 1,6 т	1230,04
4	Краны, 10 т	4,92
5	Краны, 25 т	1205,90
6	Трубоукладчики грузоподъёмность 6,3 т	340,80

Выбросы рассчитываются согласно Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий (Приложение № 3 к приказу МООС РК от 18 апреля 2008 года № 100-п).

Выброс загрязняющих веществ одним автомобилем в день при работе на территории промплощадки рассчитывается по формуле (3.17):

$$M_1 = M_1 \times L_1 + 1.3 \times M_1 \times L_{1n} + M_{xx} \times T_{xs}$$
, Γ

где,

M1 — пробеговый выброс вещества автомобилем при движении по территории предприятия, г/км (определен по таблице 3.8);

 L_1 – пробег автомобиля без нагрузки по территории предприятия, км/день;

1,3 – коэффициент увеличения выбросов при движении с нагрузкой;

 L_{1n} – пробег автомобиля с нагрузкой по территории предприятия, км/день;

 M_{xx} – удельный выброс при работе двигателя на холостом ходу, г/мин;

 T_{xs} – суммарное время работы двигателя на холостом ходу в день, мин;

Максимальный разовый выброс от 1 автомобиля рассчитывается по формуле (3.18):

$$M_2 = M_1 \times L_2 + 1,3 \times M_1 \times L_{2n} + M_{xx} \times T_{xm}$$
, г/30 мин

где,

L₂ – максимальный пробег автомобиля без нагрузки за 30 мин, км;

 L_{2n} — максимальный пробег автомобиля с нагрузкой за 30 мин, км;

Т_{хт} – максимальное время работы на холостом ходу за 30мин, мин;

Валовый выброс загрязняющих веществ автомобилями рассчитывается раздельно для каждого периода по формуле (3.19):

$$M = A \times M_1 \times N_k \times D_n \times 10^{-6}$$
, т/год

где,

А – коэффициент выпуска (выезда);

 N_k – общее количество автомобилей данной группы;

D_n – количество рабочих дней в расчетном периоде (теплый, переходный, холодный);

Для определения общего валового выброса валовые выбросы одноименных веществ от разных расчетных периодов года суммируются.

Максимальный разовый выброс от автомобилей данной группы рассчитывается по формуле (3.20):

$$G = M_2 \times N_{k1} / 1800$$
, Γ / cek

где,

 N_{k1} — наибольшее количество машин данной группы, двигающихся в течении получаса.

Расчеты выбросов сведены в таблицу 16.

Таблица 16. Расчет выбросов 3В при работе двигателей автотехники

Таолица 16. Ра	•	ъ	υш	pи	pau	016	дві	ai a	l I CJI	СИ	автот	ZAHNK	41			
Наименование]	Перио	Д											M_2^T ,		
вещества	теплый			Txm	T _{xm} T _{xs}		L _{1n}	L_2	L _{2n}	A	Nκ	Nk1	M ₁ ^т , г	г/30	G, г/сек	М, тонн
	Ml	M_{xx}	Dn											МИН		
Автопогрузчик, 5 т																
Углерод оксид	2,30	0,80	7	5	10	2	2	1	1	1	1	1	18,580	9,290	0,00516111	0,00012621
Керосин	0,60	0,20	7	5	10	2	2	1	1	1	1	1	4,760	2,380	0,00132222	0,00003233
Азота (II) оксид	0,29	0,02	7	5	10	2	2	1	1	1	1	1	1,524	0,762	0,00042322	0,00001035
Азота (IV) диоксид	1,76	0,13	7	5	10	2	2	1	1	1	1	1	9,376	4,688	0,00260444	0,00006369
Углерод (сажа)	0,15	0,02	7	5	10	2	2	1	1	1	1	1	0,840	0,420	0,00023333	0,00000571
Сера диоксид	0,33	0,05	7	5	10	2	2	1	1	1	1	1	2,058	1,029	0,00057167	0,00001398
					Ав	TON	юби	ли б	орто	вы	е, до	5 т				
Углерод оксид	2,30	0,80	1	5	10	2	2	1	1	1	1	1	18,580	9,290	0,00516111	0,00001646
Керосин	0,60	0,20	1	5	10	2	2	1	1	1	1	1	4,760	2,380	0,00132222	0,00000422
Азота (II) оксид	0,29	0,02	1	5	10	2	2	1	1	1	1	1	1,524	0,762	0,00042322	0,00000135
Азота (IV) диоксид	1,76	0,13	1	5	10	2	2	1	1	1	1	1	9,376	4,688	0,00260444	0,00000831
Углерод (сажа)	0,15	0,02	1	5	10	2	2	1	1	1	1	1	0,840	0,420	0,00023333	0,00000074
Сера диоксид	0,33	0,05	1	5	10	2	2	1	1	1	1	1	2,058	1,029	0,00057167	0,00000182
			Кра	ны-	ман	ипу	лят	оры,	гру	зоп	одъ	ёмно	сть 1,6	T		
Углерод оксид	2,30	0,80	154	5	10	1	0	0,5	0	1	1	1	10,300	5,150	0,00286111	0,00158368
Керосин	0,60	0,20	154	5	10	1	0	0,5	0	1	1	1	2,600	1,300	0,00072222	0,00039976
Азота (II) оксид	0,29	0,02	154	5	10	1	0	0,5	0	1	1	1	0,494	0,247	0,00013722	0,00007596
Азота (IV) диоксид	1,76	0,13	154	5	10	1	0	0,5	0	1	1	1	3,040	1,520	0,00084444	0,00046742
Углерод (сажа)	0,15	0,02	154	5	10	1	0	0,5	0	1	1	1	0,300	0,150	0,00008333	0,00004613
Сера диоксид	0,33	0,05	154	5	10	1	0	0,5	0	1	1	1	0,870	0,435	0,00024167	0,00013377
		Кı	ран на	аавт	гомс	би.	пьно	мхо	ду,	гру	зопо	дъег	иность	10 тн		
Углерод оксид	6,10	2,90	1	5	10	1	0	0,5	0	1	1	1	35,100	17,550	0,00975000	0,00002159
Керосин	1,00	0,45	1	5	10	1	0	0,5	0	1	1	1	5,500	2,750	0,00152778	0,00000338
Азота (II) оксид	0,52	0,13	1	5	10	1	0	0,5	0	1	1	1	1,820	0,910	0,00050556	0,00000112
Азота (IV)	3,20	0,80	1	5	10	1	0	0,5	0	1	1	1	11,200	5,600	0,00311111	0,00000689

	J	Перио	Д											M_2^{T} ,		
Наименование вещества	7	геплы	й	Txm	Txs	\mathbf{L}_1	L _{1n}	L_2	L _{2n}	A	Nĸ	Nk1	M ₁ ^т , г	г/30	G, г/сек	М, тонн
Бещества	Ml	M _{xx}	Dn											МИН		
диоксид																
Углерод (сажа)	0,30	0,04	1	5	10	1	0	0,5	0	1	1	1	0,700	0,350	0,00019444	0,00000043
Сера диоксид	0,54	0,10	1	5	10	1	0	0,5	0	1	1	1	1,540	0,770	0,00042778	0,00000095
							К	ран	ы, 25	5 т						
Углерод оксид	7,50	2,90	150,7	5	10	1	0	0,5	0	1	1	1	36,500	18,250	0,01013889	0,00550191
Керосин	1,10	0,45	150,7	5	10	1	0	0,5	0	1	1	1	5,600	2,800	0,00155556	0,00084413
Азота (II) оксид	0,59	0,13	150,7	5	10	1	0	0,5	0	1	1	1	1,885	0,943	0,00052361	0,00028414
Азота (IV) диоксид	3,60	0,80	150,7	5	10	1	0	0,5	0	1	1	1	11,600	5,800	0,00322222	0,00174855
Углерод (сажа)	0,40	0,04	150,7	5	10	1	0	0,5	0	1	1	1	0,800	0,400	0,00022222	0,00012059
Сера диоксид	0,78	0,10	150,7	5	10	1	0	0,5	0	1	1	1	1,780	0,890	0,00049444	0,00026831
		T	рубоу	кла,	дчи	ки д	т впр	груб	диа	мет	ром	до 4	Ю мм,	6,3 т		
Углерод оксид	5,10	2,80	42,6	5	10	3	3	1	1	1	1	1	63,190	25,730	0,0142944	0,0026919
Керосин	0,90	0,35	42,6	5	10	3	3	1	1	1	1	1	9,710	3,820	0,0021222	0,0004136
Азота (II) оксид	0,46	0,08	42,6	5	10	3	3	1	1	1	1	1	3,920	1,437	0,0007981	0,0001670
Азота (IV) диоксид	2,80	0,48	42,6	5	10	3	3	1	1	1	1	1	24,120	8,840	0,0049111	0,0010275
Углерод (сажа)	0,25	0,03	42,6	5	10	3	3	1	1	1	1	1	2,025	0,725	0,0004028	0,0000863
Сера диоксид	0,45	0,09	42,6	5	10	3	3	1	1	1	1	1	4,005	1,485	0,0008250	0,0001706
]	Ито	го в	ыбр	осы	3B	от и	сто	чниі	ka N	£6010			
Углерод оксид															0,0142944	0,0099417
Керосин															0,0021222	0,0016975
Азота (II) оксид									0,0007981	0,0005399						
Азота (IV) диокси	Азота (IV) диоксид									0,0049111	0,0033224					
Углерод (сажа)															0,0004028	0,0002599
Сера диоксид															0,0008250	0,0005894

Источник загрязнения 6011 – Работа двигателей стройтехники

Количество вредных веществ, содержащихся в выхлопных газах строительной техники (бульдозер, экскаватор и др.) рассчитывается путем умножения величины расхода топлива в тоннах (т/час) на соответствующие коэффициенты согласно Методике расчета нормативов выбросов от неорганизованных источников (Приложение 8 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 года №221-ө).

Максимальный разовый выброс токсичных веществ газов при работе строительной техники производится по формуле:

$$M = B * q / 3600, r/c$$

где,

B — расход топлива, т/час (расход топлива для дизельных двигателей составляет 0,25 кг/час на 1 л.с. мощности),

q – коэффициент эмиссий i-того загрязняющего вещества (таблица 13).

Валовый выброс токсичных веществ газов при работе строительной техники рассчитывается по формуле:

$$G = M * T * 3600 * 10^{-6}$$
, тонн

где,

Т – время работы строительной техники, маш.час.

Перечень используемой стройтехники представлен в таблице 17. Расчеты выбросов сведены в таблицу 18.

Таблица 17. Перечень стройтехники

№ п\п	Наименование	Маш/час
1	Бульдозеры, 96 кВт (130 л.с.)	273,17
	Агрегаты сварочные двухпостовые для ручной сварки на тракторе, мощность 79 кВт (108 л.с.)	337,44
	Машины бурильные с глубиной бурения 3,5 м на тракторе мощностью 85 кВт (115 л.с.)	6,16
4	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 0,65 до 1 м3, масса свыше 13 до 20 т (90 л.с.)	815,02

Таблица 18. Расчеты выбросов от работы стройтехники

Наименование	Удельные	Единица	Расход	Время	г/сек	т/период СМР			
вещества	выбросы ВВ	измерения	топлива, В,	работы, Т,		1 ,			
	дизельными	удельного	т\ч	маш.час					
	двигателями	выброса	26.5.(122						
Бульдозеры, 96 кВт (130 л.с.)									
Углерод оксид	0,1	T/T	0,033	273,17	0,90277778	0,88781809			
Керосин	0,03	$_{\mathrm{T}}/_{\mathrm{T}}$			0,27083333	0,26634543			
Азота (IV) диоксид	0,01	T/T			0,09027778	0,08878181			
Углерод (сажа)	15,5	кг/т			0,13993056	0,13761180			
Сера диоксид	0,02	T/T			0,18055556	0,17756362			
Бенз(а)пирен	0,32	г/т			0,00000289	0,00000284			
Агрегаты сва	рочные двухпос	стовые для ручн	ной сварки на	тракторе, мог	цность 79 кВт (108 л.с.)			
Углерод оксид	0,1	T/T	0,027	337,44	0,75000000	0,91108797			
Керосин	0,03	T/T			0,22500000	0,27332639			
Азота (IV) диоксид	0,01	T/T			0,07500000	0,09110880			
Углерод (сажа)	15,5	кг/т			0,11625000	0,14121864			
Сера диоксид	0,02	T/T			0,15000000	0,18221759			
Бенз(а)пирен	0,32	г/т			0,00000240	0,00000292			
Машины	бурильные с глу	убиной бурения	3,5 м на трак	торе мощнос	гью 85 кВт (115	л.с.)			
Углерод оксид	0,1	T/T	0,029	6,16	0,79861111	0,01771000			
Керосин	0,03	T/T			0,23958333	0,00531300			
Азота (IV) диоксид	0,01	T/T			0,07986111	0,00177100			
Углерод (сажа)	15,5	кг/т			0,12378472	0,00274505			
Сера диоксид	0,02	T/T			0,15972222	0,00354200			
Бенз(а)пирен	0,32	г/т			0,00000256	0,00000006			
Экскаваторы одноког	вшовые дизельн		ном ходу кови (90 л.с.)	п свыше 0,65,	до 1 м3, масса с	выше 13 до 20 т			
Углерод оксид	0,1	T/T	0,023	815,02	0,62500000	1,83379513			
Керосин	0,03	T/T			0,18750000	0,55013854			
Азота (IV) диоксид	0,01	T/T			0,06250000	0,18337951			
Углерод (сажа)	15,5	кг/т			0,09687500	0,28423825			
Сера диоксид	0,02	T/T			0,12500000	0,36675903			

[«]Строительство подземного подводящего газопровода от автоматизированной газораспределительной станции до газопоршневой электростанции»

Наименование вещества	Удельные выбросы ВВ дизельными двигателями	Единица измерения удельного выброса	Расход топлива, В, т\ч	Время работы, Т, маш.час	г/сек	т/период СМР
Бенз(а)пирен	0,32	Γ/T			0,00000200	0,00000587
	Ито	го по источни	ку №6011 на	период СМР		•
		0337	Углерод окс	ид	0,9027778	3,6504112
		2732	Керосин	,	0,2708333	1,0951234
		0301	Азота (IV) да	иоксид	0,0902778	0,3650411
		0328	Углерод (саж	ка)	0,1399306	0,5658137
		0330	Сера диокси,	Д	0,1805556	0,7300822
		0703	Бенз(а)пирен	I	0,0000029	0,0000117

Согласно проведенным расчетам выбросов 3В в атмосферный воздух при проведении строительно-монтажных работ выделяется 19 видов загрязняющих веществ. Перечень веществ с указанием класса опасности и значений предельно-допустимых концентраций приведен в таблице 19 – с учетом работы передвижных источников и в таблице 20 – без учета передвижных источников.

Таблица 19. Перечень загрязняющих веществ на период СМР (с учетом автостроительной техники)

	іца 17. Пере тепь загризниющих	вещееть	ma nepn	og Civili	(c j lete	WI UDIOC	pomiem		
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,00655417	0,00026705	0,00667625
	Марганец и его соединения		0,01	0,001		2	0,00072083	0,00004132	0,04132
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,42108273	1,6694868	41,73717
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,05375587	0,21197234	3,53287233
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,1673107	0,6795319	13,590638
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,2237733	0,9008589	18,017178
0337	Углерод оксид (Окись углерода, Угарный газ)		5	3		4	1,1945547	4,7949499	1,59831663
	Фтористые газообразные соединения		0,02	0,005		2	0,00016667	0,00000752	0,001504
	Диметилбензол (смесь о-, м-, п- изомеров)		0,2			3	0,125		0,0152575
	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,0000034		13,8
	Хлорэтилен (Винилхлорид, Этиленхлорид)			0,01		1	0,0000011	0,0000064	0,00064
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,0057808	0,0226917	2,26917
1401	Пропан-2-он (Ацетон) (470)		0,35			4	0,02083333	0,000093	0,00026571
2732	Керосин (654*)				1,2		0,2729555	1,0968209	0,91401742
2752	Уайт-спирит (1294*)				1		0,13888889	0,0014215	0,0014215
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в		1			4	0,13874	0,5672912	0,5672912
	пересчете на С); Растворитель РПК-265П) (10)								
	Взвешенные частицы (116)		0,5	0,15		3	0,04983333	0,001246	0,00830667
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20		0,3	0,1		3	0,19484423	0,31743067	3,1743067
2930	Пыль абразивная				0,04		0,0026	0,0000077	0,0001925
	Β С Ε Γ Ο:						3,0173996	10,26719	99,2765444

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

[«]Строительство подземного подводящего газопровода от автоматизированной газораспределительной станции до газопоршневой электростанции»

Таблица 20. Перечень загрязняющих веществ на период СМР (без учета автостроительной техники)

I aujir	ица 20. перечень загрязняющих в	сществ і	на перио	д Сип (ues yaera	a abiuci	роитель	нои техн	inknj
						Класс	Выброс вещества с	Выброс	Значение М/ЭНК
Код	Наименование загрязняющего вещества	ЭНК,	ПДКм.р,	ПДКс.с.,	ОБУВ,	опасности	,	учетом	WI/JIIK
3B	таименование загрязняющего вещества	мг/м3	мг/м3	мг/м3	мг/м3	ЗВ	очистки,	очистки,	
						J J D	г/с	т/год, (М)	
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды			0,04		3	0,00655417	0,00026705	0,00667625
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,00072083	0,00004132	0,04132
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,32589383	1,3011233	32,5280825
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,05295777	0,21143244	3,523874
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,0269773	0,1134583	2,269166
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,0423927	0,1701873	3,403746
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	0,2774825	1,134597	0,378199
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,00016667	0,00000752	0,001504
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,125	0,0030515	0,0152575
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,0000005	0,0000021	2,1
0827	Хлорэтилен (Винилхлорид, Этиленхлорид)			0,01		1	0,0000011	0,0000064	0,00064
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,0057808	0,0226917	2,26917
1401	Пропан-2-он (Ацетон) (470)		0,35			4	0,02083333	0,000093	0,00026571
2752	Уайт-спирит (1294*)				1		0,13888889	0,0014215	0,0014215
2754	Алканы С12-19 /в пересчете на С/		1			4	0,13874	0,5672912	0,5672912
2902	Взвешенные частицы (116)		0,5	0,15		3	0,04983333	0,001246	0,00830667
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20		0,3	0,1		3	0,19484423	0,31743067	3,1743067
2930	Пыль абразивная (Корунд белый, Монокорунд)				0,04		0,0026	0,0000077	0,0001925
	Β С Ε Γ Ο:						1,409668	3,844356	50,2894195

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

[«]Строительство подземного подводящего газопровода от автоматизированной газораспределительной станции до газопоршневой электростанции»

Отходы производства и потребления

В период проведения строительно-монтажных работ образуются следующие виды отходов производства и потребления:

- Смешанные коммунальные отходы;
- Металлолом;
- Отходы сварки;
- Упаковка, содержащая остатки или загрязненная опасными веществами.

Смешанные коммунальные отходы

Образуются в результате непроизводственной деятельности привлеченного в период строительства персонала.

Состав отходов: органические материалы (бумага, древесина, текстиль), стеклобой, металлы, пластмассы.

По физическим свойствам – твердые, пожароопасные, не растворимые в воде, невзрывоопасные, некоррозионноопасные.

По химическим свойствам – токсичных веществ не содержат.

Твердые бытовые отходы классифицируются как неопасные, код отхода по классификатору <u>200301</u>.

Объем образования отходов определяется по формуле Методики разработки проектов нормативов предельного размещения отходов производства и потребления (Приложение №16 к приказу МООС РК от 18.04.2008 г. №100-п):

$$M = Q* n* \rho*T/365,$$

где,

Q — санитарная норма образования отходов, $M^3/\Gamma \circ D$;

n – численность персонала, чел;

 ρ – средняя плотность отходов, т/м³;

Т – период, дни (часы).

тогда,

$$M = 0.3 * 64 * 0.25 * 66/365 = 0.8679$$
 тонн/период

Накопление отходов осуществляется в отдельный металлический контейнер с крышкой на специально отведенной площадке с последующей передачей специализированной организации по договору. Сроки хранения отходов в контейнерах при температуре 0°С и ниже — не более трех суток, при плюсовой температуре - не более суток в соответствии с Санитарными правилами "Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления" утвержденными Приказом и.о. Министра

здравоохранения Республики Казахстан от 25 декабря 2020 года № ҚР ДСМ-331/2020.

Металлолом

Отходы образуются как потери при укладке труб.

Состав отходов (%): железо -95, оксиды железа -2, углерод - до 3.

По физическим свойствам отходы твердые, не растворимые в воде, не пожароопасные, не взрывоопасные, коррозионноопасные.

По химическим свойствам – не токсичные.

Отходы металлов классифицируются как неопасные, код отхода по классификатору <u>170407.</u>

Количество отходов, образующихся в результате потерь, рассчитывается исходя из количества применяемых материалов их веса и нормы потерь, определенной по Приложению 3 Правил разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве (РДС 82-202-96). Расчет объемов образования отходов сведен в таблицу 1.

Таблица 1. Расчет объемов образования металлолома

Наименование материала	Количество материала	Норма потерь, %	М, тонн	
Стальная труба	141	1	0,0028 (при весе 1 м трубы = 0,002 тонн)	

Накопление отходов осуществляется на специально отведенной площадке, по мере накопления передаются по договору специализированной организации.

Пластмассы

Образуются как как остатки при укладке полиэтиленовых труб.

Состав отходов (%): полиэтилен (100%).

По физическим свойствам отходы твердые, не растворимые в воде, пожароопасные, не взрывоопасные, не коррозионноопасные.

По химическим свойствам — обладают реакционной способностью, не токсичные (токсичные вещества могут возникнуть при нагревании, взаимодействии с маслами, смиртами, кислотами).

Отходы пластмассы классифицируются нак неопасные, код отхода по классификатору 170203.

Количество обрезков полиэтиленовых труб рассчитывается с учетом норм потерь по Приложению 3 РДС 82-202-96. Расчет объемов образования отходов сведен в таблицу 2.

Таблица 2.

Наименование	Количество	Норма	М,	Вес 1 метра	М, тонн	
материала	материала, м	потерь, %	метров	трубы, кг		
ПВХ трубы	13639	2,5	340	1	0,341	

Накопление отходов осуществляется в контейнер на специально отведенной площадке с последующей передачей на специализированное предприятие для утилизации.

Отходы сварки

Образуются при проведении электросварочных работ.

Состав отходов (%): железо -96-97; обмазка (типа Ti (CO₃)₂) -2-3; прочие -1.

По физическим свойствам отходы твердые, не растворимые в воде, непожароопасные, невзрывоопасные, коррозионноопасные.

По химическим свойствам – нетоксичные.

Отходы огарков сварочных электродов классифицируются как неопасные. Код отхода по классификатору <u>120113.</u>

По проектным данным расход электродов на период строительномонтажных работ составляет 0,0242 тонн.

Объем образования отходов в виде огарков электродов рассчитывается по формуле:

$$N = M_{ocm} \times L$$

где,

Мост – фактический расход электродов, т/период СМР;

L- остаток электродов (L=0,015) на 1 т электродов. тогда,

$$N = 0.0242 \times 0.015 = 0.0004$$
 Tohh

Накопление отходов осуществляется в ящик с последующей передачей специализированной организации по договору для утилизации.

Упаковка, содержащая остатки или загрязненная опасными веществами

Данный вид отходов образуется при проведении лакокрасочных работ. Состав отхода: железо, остатки ЛКМ.

По физическим свойствам отходы твердые, не растворимые в воде, непожароопасные, невзрывоопасные, коррозионноопасные.

По химическим свойствам – содержат незначительное количество токсичных веществ (остатки ЛКМ).

Отходы тары из-под ЛКМ классифицируются как опасные, отхода по классификатору 170409*

Расход ЛКМ (эмаль, грунтовка, лак), согласно проектным данным, составит 8 кг. Предполагается, что ЛКМ будут доставляться в таре по 5 кг. Масса тары - 0,5 кг.

Объем образования отхода определяется по формуле п.2.35 Приложения №16 к приказу МООС РК от 18.04.2008 г. №100-п:

$$N = \sum M_i \cdot n + \sum M_{\kappa i} \cdot \alpha_{i, T/\Gamma O J,}$$

где,

Мі - масса і-го вида тары;

n - число видов тары (на период CMP – 2 шт.)

Мкі - масса краски в і-ой таре;

 α_i - содержание остатков краски в i-той таре в долях от Мкi равна 0,03. тогда,

$$N = (0.0005*2) + (0.005*0.03) = 0.003$$
 Tohh

Накопление данного вида отходов осуществляется в тару, обеспечивающую локализованное хранение, позволяющее выполнять погрузочно-разгрузочные и транспортные работы, исключающие распространение вредных веществ. Передаются специализированной организации по договору на утилизацию.