ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «M-Ali Petrol» ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «TIMAL CONSULTING GROUP»

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ К ПРОЕКТУ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ ЖЕНГЕЛЬДЫ по состоянию на 01.01.2025г

Договор №TCG-02 от 16.01.2025г

Директор
TOO «Timal Consulting Group»

Бабашева М.Н.

Список исполнителей

Ф.И.О.	Должность	Подпись
	Директора департамента	
Абытов А.Х.	экологического	worker
AUBITUB A.A.	проектирования ТОО	es o x ex
	«Timal Consulting Group»	
	Ведущий -эколог	
	департамента	
Хасенова М.В.	экологического	elfa-
	проектирования ТОО	V
	«Timal Consulting Group»	
	Инженер-эколог	
	департамента	P
Толеуишова Г.С.	экологического	alol
	проектирования ТОО	80
	«Timal Consulting Group»	
	Техник-эколог	
	департамента	
Бисенова А.А.	экологического	AL
	проектирования ТОО	O
	«Timal Consulting Group»	

No	СОДЕРЖАНИЕ	
	Введение	4
1	ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	10
1.1	Общие сведения о месторождении	10
1.2	Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета	11
1.3	Краткая характеристика физико-географических и климатических условий	12
2	ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОЙТИ В СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, СООТВЕТСТВУЮЩЕЕ СЛЕДУЮЩИМ УСЛОВИЯМ	22
2.1	Альтернативные технические и технологические решения. Вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды	22
3	ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	22
4	ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ИХ МОЩНОСТЬ, ГАБАРИТЫ (ПЛОЩАДЬ ЗАНИМАЕМЫХ ЗЕМЕЛЬ, ВЫСОТА), ДРУГИЕ ФИЗИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ, ВЛИЯЮЩИЕ НА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ; СВЕДЕНИЯ О ПРОИЗВОДСТВЕННОМ ПРОЦЕССЕ, В ТОМ ЧИСЛЕ ОБ ОЖИДАЕМОЙ ПРОИЗВОДИТЕЛЬНОСТИ ПРЕДПРИЯТИЯ, ЕГО ПОТРЕБНОСТИ В ЭНЕРГИИ, ПРИРОДНЫХ РЕСУРСАХ, СЫРЬЕ И МАТЕРИАЛАХ.	23
5	ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ	23
6	ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ, ЕСЛИ ЭТИ РАБОТЫ НЕОБХОДИМЫ ДЛЯ ЦЕЛЕЙ РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	25
8	ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВОМ И ЭКСПЛУАТАЦИЕЙ ОБЪЕКТОВ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ. ОЦЕНКА ВОЗДЕЙСТВИЕ	132
	ВИБРАЦИИ, ШУМОВЫХ, ЭЛЕКТРОМАГНИТНЫХ, ТЕПЛОВЫХ И РАДИАЦИОННЫХ ВОЗДЕЙСТВИЙ	
9	ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, В ТОМ ЧИСЛЕ ОТХОДОВ, ОБРАЗУЕМЫХ В РЕЗУЛЬТАТЕ ОСУЩЕСТВЛЕНИЯ ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ	134
9.1	Характеристика технологических процессов предприятия, как источников образования отходов	135
10	ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ С УКАЗАНИЕМ ЧИСЛЕННОСТИ ЕЕ НАСЕЛЕНИЯ, УЧАСТКОВ, НА КОТОРЫХ МОГУТ БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНЫЕ НЕГАТИВНЫЕ ВОЗДЕЙСТВИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, С УЧЕТОМ ИХ ХАРАКТЕРИСТИК И СПОСОБНОСТИ ПЕРЕНОСА В ОКРУЖАЮЩУЮ СРЕДУ	160
11	ОПИСАНИЕ ВОЗМОЖНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ С УЧЕТОМ ЕЕ ОСОБЕННОСТЕЙ И ВОЗМОЖНОГО ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ, ВКЛЮЧАЯ ВАРИАНТ, ВЫБРАННЫЙ ИНИЦИАТОРОМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ДЛЯ ПРИМЕНЕНИЯ, ОБОСНОВАНИЕ ЕГО ВЫБОРА, ОПИСАНИЕ ДРУГИХ ВОЗМОЖНЫХ РАЦИОНАЛЬНЫХ ВАРИАНТОВ, В ТОМ ЧИСЛЕ РАЦИОНАЛЬНОГО ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ) ЗДОРОВЬЯ ЛЮДЕЙ, ОКРУЖАЮЩЕЙ СРЕДЫ	161
12	ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	162
13	ВОЗМОЖНЫЙ РАЦИОНАЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ.	162

14	ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ	163
	МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ	
	ДЕЯТЕЛЬНОСТИ	
14.1	Жизнь и (или) здоровье людей, условия их проживания и деятельности	163
14.2	Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные	163
	ареалы растений и диких животных, пути миграции диких животных, экосистемы)	
14.3	Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию,	165
	уплотнение, иные формы деградации)	
14.4	Вода (в том числе гидроморфологические изменения, количество и качество вод)	166
14.5	Атмосферный воздух	170
14.6	Сопротивляемость к изменению климата экологических и социально-экономических систем	170
14.7	Материальные активы, объекты историко-культурного наследия	170
14.8	Взаимодействие затрагиваемых компонентов	170
15	ВОЗМОЖНЫЕ СУЩЕСТВЕННЫЕ ВОЗДЕЙСТВИЯ (ПРЯМЫХ И КОСВЕННЫХ,	170
	КУМУЛЯТИВНЫХ, ТРАНСГРАНИЧНЫХ, КРАТКОСРОЧНЫХ И ДОЛГОСРОЧНЫХ,	
	ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ) НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОБЪЕКТЫ	
16	ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ	172
	ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА	
	ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ.	
17	ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ	253
	ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА	
10	ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ	
18	ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ	254
19	ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ И	254
	ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, ХАРАКТЕРНЫХ СООТВЕТСТВЕННО ДЛЯ	
	НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ И ПРЕДПОЛАГАЕМОГО МЕСТА ЕЕ ОСУЩЕСТВЛЕНИЯ,	
	ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВРЕДНЫХ ВОЗДЕЙСТВИЙ НА	
	ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, С УЧЕТОМ ВОЗМОЖНОСТИ ПРОВЕДЕНИЯ	
	МЕРОПРИЯТИЙ ПО ИХ ПРЕДОТВРАЩЕНИЮ И ЛИКВИДАЦИИ	
20	ОПИСАНИЕ ПРЕДУСМАТРИВАЕМЫХ ДЛЯ ПЕРИОДОВ СТРОИТЕЛЬСТВА И	260
20	ЭКСПЛУАТАЦИИ ОБЪЕКТА МЕР ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ	200
	ВЫЯВЛЕННЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА	
	ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИСЛЕ ПРЕДЛАГАЕМЫХ МЕРОПРИЯТИЙ ПО	
	УПРАВЛЕНИЮ ОТХОДАМИ, А ТАКЖЕ ПРИ НАЛИЧИИ НЕОПРЕДЕЛЕННОСТИ В ОЦЕНКЕ	
	ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ – ПРЕДЛАГАЕМЫХ МЕР ПО	
	МОНИТОРИНГУ ВОЗДЕЙСТВИЙ (ВКЛЮЧАЯ НЕОБХОДИМОСТЬ ПРОВЕДЕНИЯ	
	ПОСЛЕПРОЕКТНОГО АНАЛИЗА ФАКТИЧЕСКИХ ВОЗДЕЙСТВИЙ В ХОДЕ РЕАЛИЗАЦИИ	
	НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ В СРАВНЕНИИ С ИНФОРМАЦИЕЙ, ПРИВЕДЕННОЙ В	
	ОТЧЕТЕ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ).	
21	Меры по сохранению и компенсации потери биоразнообразия, предусмотренные пунктом 2 статьи	262
	240 и пунктом 2 статьи 241 Кодекса	
22	Оценка возможных необратимых воздействий на окружающую среду и обоснование	262
	необходимости выполнения операций, влекущих такие воздействия, в том числе сравнительный	
	анализ потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в	
	экологическом, культурном, экономическом и социальном контекстах.	
23	Цели, масштабы и сроки проведения послепроектного анализа, требования к его содержанию,	263
	сроки представления отчетов о послепроектном анализе уполномоченному органу.	
24	Способы и меры восстановления окружающей среды на случаи прекращения намечаемой	264
_	деятельности, определенные на начальной стадии ее осуществления	
25	Сведения об источниках экологической информации,использованной при составлении отчета о	264
	возможных воздействиях	•
_	ожение - 1. Изолинии	266
	ожение - 2. Расчет рассеивания	275
_	ожение – 3. Лицензии	318
I Прил	ожение – 4. Справка фоновых концентрацией с РГП «Казгидромет»	323

ВВЕДЕНИЕ

Исходными данными для разработки проекта являются:

В 1931г маршрутной гравиметрической съемкой был впервые обнаружен купол Женгельды. С 1933 по 1941гг и с 1954 по 1958гг на куполе проведен большой объем гравиметрических, электрометрических, сейсмических работ, картировочное и структурнопоисковое бурение.

В 1934г начато глубокое разведочное бурение. В 1945г при опробовании неокомских отложений в интервале глубин 212-220 м в скважине 3 был получен приток нефти с расчетным дебитом $10.7 \text{ m}^3/\text{сут}$ с обводненностью 50%.

В 1939-1941гг было продолжено бурение разведочных скважин. В результате этих работ была выявлена нефтеносность среднеюрских, неокомских и аптских отложений на Юго-западном крыле структуры.

Всего на куполе Женгельды пробурено 14 разведочных скважин. С 1941 по 1945гг пять скважин находились в эксплуатации, при котором было добыто более 2 тыс.т нефти.

С 1945г скважины введены в консервацию ввиду малого дебита, удаленности от основной базы и ограниченности распространения нефтяных горизонтов.

В 1992г ЦНИЛ ПО «Эмбанефть» составлен отчет «Подсчет запасов нефти месторождения Женгельды», который был рассмотрен в ГКЗ при Комитете геологии и охране недр Республики Казахстан (далее — ГКЗ при КГиОН Республики Казахстан). Подсчитанные запасы нефти в целом по месторождению составили: геологические (категория C_1/C_2) — 1417 тыс.т / 512 тыс.т; извлекаемые — 425 тыс.т / 153 тыс.т.

Согласно экспертному заключению (№13-НГ-329 от «13» октября 1999г) ГКЗ при КГиОН Республики Казахстан подтвердил достоверность запасов нефти утвержденных в ГКЗ СССР по категории C_1 (протокол № 3915 от «15» июня 1946г).

ТОО «Тараз» в 1999г заключило контракт с Компетентным органом Республики Казахстан на проведение добычи углеводородного сырья на нефтяном месторождении Женгельды на блоке XXIV-13-F (частично) с Лицензией АИ № 1533 от «27» мая 1999г (акт регистрации № 1284-1915-ТОО от «23» ноября 2000г).

В 2003г ТОО «Горно-экономический консалтинг» разработало проектный документ – «Проект опытно-промышленной разработки месторождения Женгельды», который был рассмотрен и утвержден ЦКР сроком на 5 (пять) лет – 2004-2008гг (протокол № 24 от «03» декабря 2003г).

В 2007г ТОО «Центр Консалтинг» подготовлен отчет «Авторский надзор за реализацией проекта опытно-промышленной эксплуатации месторождения Женгельды (по состоянию изученности на 01.11.2006г)». Вышеперечисленный отчет для согласования и утверждения в ЦКР не представлялся. Таким образом, рекомендации согласно п. 3 протокола ЦКР №24 от «03» декабря 2003г об ежегодном предоставлении отчетов по авторским надзорам предыдущим недропользователем не выполнялись.

Дополнением №2 от «09» сентября 2015г к существующему Контракту №385 от «14» декабря 1999г и дополнением №3 от «22» февраля 2016г к существующему Контракту №385 от «14» декабря 1999г, Компетентный орган разрешил новому недропользователю — ТОО «ЕСО BAR FIELD RESOURCES» вести добычу углеводородного сырья в пределах Горного отвода месторождения Женгельды.

В декабре 2016г ТОО «М-Ali Petrol» получило право на пользование недрами углеводородного сырья на месторождении Женгельды в Атырауской области РК (письмо МЭ РК №10-03/35052 от 26.12.2016, Протокол №21 МЭ РК от 14.12.2016). В 1 марта 2017 года подписано Дополнение № 4 к основному Контракту №385 от «14» декабря 1999г на добычу углеводородного сырья на месторождении Женгельды на блоке XXIV -13 — А (частично) в Атырауской области, сроком до 27.01.2033г.

В 2017 году «Научно-производственным центром» было составлено «Дополнение к проекту опытно-промышленной разработки месторождения Женгельды» по состоянию на

01.10.2017 г. где были подсчитаны прогнозные показатели с 2017 по 2020 гг. (Протокол рассмотрения ЦКРР №91 от 17.11.2017 г.), где ЦКРР рекомендовал Недропользователю предоставить информационный отчет по выполнению комплекса исследовательских работ по состоянию на 01.07.2018 г.

Для продолжения опытно-промышленной разработки месторождения Женгельды, в «Дополнении к проектному документу...» было рекомендовано сформировать равномерную, площадную систему размещения скважин, максимально приближенную к той системе, что было предусмотрено в проектном документе, с учетом расположения уже пробуренного фонда скважин. Было предусмотрено продолжение опытно-промышленной разработки месторождения Женгельды с дополнительным бурением 12 новых добывающих скважин и расконсервацией 21 ранее пробуренной скважины. Кроме того, рекомендовано проведение опытно-промышленных испытаний по закачке полимерных растворов для увеличения охвата процессом вытеснения.

В 2018г был составлен «Анализ разработки месторождения Женгельды» на дату 01.07.2018г, утвержденный ЦКРР РК (Протокол №5/20 от 30.11.2018г), где были уточнены технологические показатели на период 2018-2020.

С августа 2019 года месторождение находится в консервации вследствие отказа Покупателя от приобретения нефти из-за ее неполной подготовленности. В связи с этим добыча и реализация были приостановлены, что привело к остановке работы скважин. Согласно последнему действующему проектному документу «Анализ разработки...», добыча могла продолжаться до середины 2020 года, однако при неполной обустроенности месторождения это было экономически нецелесообразно. Впоследствии руководство «М-Ali Petrol» приняло решение разработать проектную документацию по обустройству месторождения, согласовать ее с государственными органами и приступить к реализации обустройства.

Отчет «Проект разработки месторождения Женгельды» выполнен на дату 01.01.2025г на основании Договора № ТСG-02 от 16.01.2025г, между ТОО «M-Ali Petrol» и ТОО «Timal Consulting Group». В отчете использованы фактические геолого-промысловые материалы компании ТОО «M-Ali Petrol».

Отчет о возможных воздействиях на окружающую среду содержит описание намечаемой деятельности, включая: информацию об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных негативных антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра; информацию об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности; описание возможного воздействия на окружающую среду; описание предусматриваемых для периодов строительства и эксплуатации объекта мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду, в том числе предлагаемых мероприятий.

Целью проведения отчета о возможных воздействиях является изучение современного состояния природной среды, определение характера, степени и масштаба воздействия разработки работ на окружающую среду и последствий этого воздействия. Отчет о возможных воздействиях включает следующие этапы его проведения:

- характеристика и оценка современного состояния окружающей среды, включая атмосферу, гидросферу, литосферу, флору и фауну, выявление приоритетных по степени антропогенной нагрузки природных сред, ранжирование факторов воздействия;
- анализ планируемой производственной деятельности с целью установления видов и интенсивности воздействия на окружающую среду, пространственного распределения источников воздействия и ранжирования по их значимости;

- комплексная прогнозная оценка ожидаемых изменений окружающей среды в результате планируемой деятельности на участке работ;
- природоохранные мероприятия по снижению антропогенной нагрузки на окружающую среду.

В отчете приведены основные характеристики природных условий района проведения проектируемых работ, определены источники неблагоприятного воздействия на окружающую среду, а также степень влияния эмиссий загрязняющих веществ и отходов при проведении разработки на месторождении Женгельды.

Составление Отчета о возможных воздействиях, способствует принятию экологически ориентировочного управленческого решения о реализации намечаемой хозяйственной и иной деятельности посредством определения возможных неблагоприятных воздействий, оценки экологических последствий, выбора основных направлений мероприятий по охране окружающей среды.

Основным руководящим документом при составлении отчета о возможных воздействиях, является «Инструкция по организации и проведению экологической оценки» утверждённая Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.

Также, для составления проекта были использованы следующие нормативные документы, действующие на территории Республики Казахстан:

- «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утверждены Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2;
- Гигиенические нормативы к атмосферному воздуху в городских и сельских населенных пунктах утверждены Приказом Министра национальной экономики Республики Казахстан от 02 августа 2022 года № ҚР ДСМ-2.

Согласно статьи 35 главы 6 Экологического Кодекса Республики Казахстан, «Оценка воздействия на окружающую среду — процедура, в которой оцениваются возможные последствия хозяйственной и иной деятельности для окружающей среды и здоровья человека, разрабатываются меры по предотвращению неблагоприятных последствий (уничтожения, деградации, повреждения и истощения естественных экологических систем и природных ресурсов), оздоровлению окружающей среды с учетом требований экологического законодательства Республики Казахстан».

Согласно, статьи 65 «Экологического Кодекса Республики Казахстан»

- 1. Оценка воздействия на окружающую среду является обязательной:
- 1) для видов деятельности и объектов, перечисленных в разделе 1 приложения 1 к настоящему Кодексу с учетом указанных в нем количественных пороговых значений (при их наличии).

Отчет о возможных воздействиях разрабатывается на основании статьи 72 «Экологического Кодекса Республики Казахстан» с учетом содержания заключения об определении сферы охвата оценки воздействия на окружающую среду.

Законодательные акты РК и нормативные документы Министерства экологии, геологии и природных ресурсов РК, использованные при разработке отчета, приведены в списке использованных источников.

Puc. 1. – Картограмма геологического отвода TOO «M-Ali Petrol»

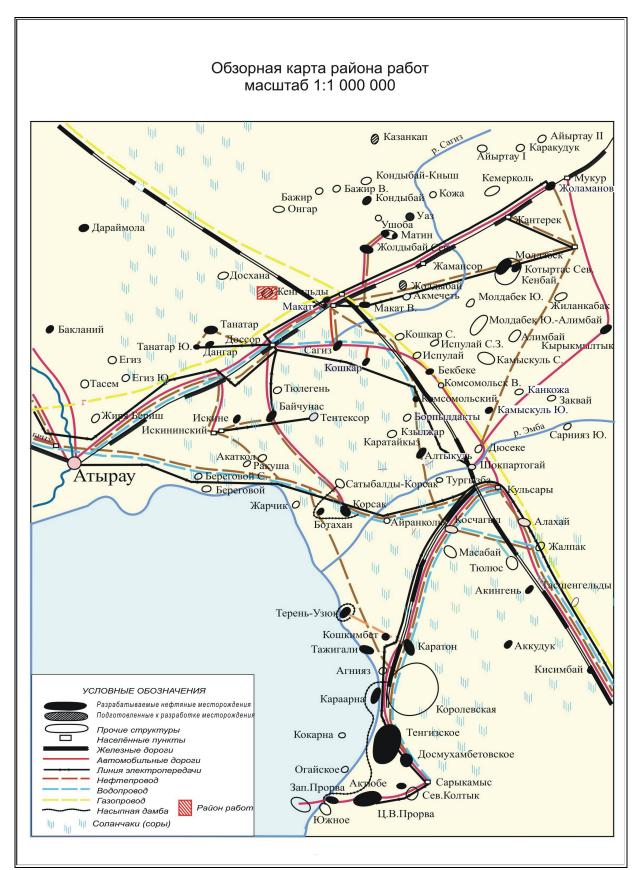


Рис. 2. Обзорная карта района работ

TOO «TIMAL CONSULTING GROUP»

Рис. 3. – Карта схема расположения территории месторождения Женгельды ТОО «M-Ali Petrol» с нанесенными источниками выбросов загрязняющих веществ

1. ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

1.1. Общие сведения о месторождении

Месторождения Женгельды расположено в центральной части Южно-Эмбинского нефтегазоносного района. По административному делению площадь относится к Макатскому району Атырауской области.

Ближайшими населенными пунктами являются нефтяные промыслы и железнодорожные станции Доссор и Макат, которые находятся в 20 км к югу и востоку от рассматриваемой площади. С населенными пунктами Доссор и Макат месторождение связано грунтовыми дорогами. Эти поселки с областным центром г. Атырау соединены асфальтированными автомобильными дорогами и железной дорогой Актобе-Атырау. Областной центр г. Атырау располагается в 100 км к юго-западу.

Рельеф местности представляет собой всхолмленную равнину с неглубокими впадинами, не имеющими стока.

Гидросеть района не развита. Весной во время паводков и сезона дождей впадины заполняются талой и дождевой водой. Летом эти озера-соры пересыхают. Почва в них сильно засолонена. Источником водоснабжения является водовод Атырау-Макат-Кульсары.

Через нефтепромысел Макат проходит магистральный газопровод и нефтепровод. Линии электропередач также проходят через поселки Доссор и Макат.

Таблица 1.1 Координаты угловых точек геологического отвода

	Месторождения Ж	Сенгельды					
Угловые	е Координаты угловых точек						
точки	Северная широта	Восточная долгота					
1.	47°43'04"	52°57'05"					
2.	47°42'56"	52°57'32"					
3.	47°42'42"	52°57'57"					
4.	47°42'17"	52°57'40"					
5.	47°42'21"	52°57'24"					
6.	47°42'10"	52°57'10"					
7.	47°42'21"	52°56'48"					
8.	47°42'36"	52°56'39"					
9.	47°42'30"	52°57'00"					
10.	47°42'37"	52°56'59"					
11.	47°42'40"	52°56'47"					
12.	47°42'52"	52°56'47"					
13.	47°42'49"	52°57'00"					
	Площадь 1,516	KB.KM					

Площадь геологического отвода за вычетом площади исключенных объектов составляет – 72,287 (семьдесят два целых двести восемьдесят семь тысячных) кв.км.

Глубина разведки – до абсолютной отметки минус 700м.

1.2. Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета

В данном разделе рассмотрено воздействие на атмосферный воздух при осуществлении работ.

Определены возможные источники образования и выделения в атмосферу загрязняющих веществ. Составлен перечень вредных загрязняющих веществ, выбрасываемых в приземный слой атмосферы, подлежащих нормированию. Установлена номенклатура загрязняющих веществ и объем выбросов.

Согласно текущему проектному предусматривается:

Предусмотрено бурение 10 добывающих скважин в период 2027-2030гг, ввод из консервации 12 скважин, ввод из консервации одной нагнетательной скважины – 1H, также ввод из консервации с переводом под закачку для ППД 2 скважин.

Также, по данному варианту разработки для достижения утвержденного КИН, для увеличения нефтеотдачи предлагается проведение ОПИ по снижению вязкости путем термогазохимического воздействия на пласт в 22 скважинах в период с 2025-2030гг.

Таблица 1.2.1 - Геолого-технические мероприятия скважин по рекомендуемому 3 варианту разработки месторождения Женгельды

месторожден №№п/п	Год	№скв	Объект	Вид ГТМ						
1	2025	102	I							
2	2025	111	I							
3	2025	118	I	Ввод из консервации						
4	2026	103	I							
5	2026	104	I	Ввод из консервации						
6	2026	106	I							
7	2026	107	I							
8	2026	109	I							
9	2025	1H	I	Ввод из консервации нагнетательной скважины						
10	2027	124	I	•						
11	2028	125	I							
12	2029	126	I							
13	2029	127	I	Γ						
14	2029	128	I	Бурение добывающих скважин						
15	2029	129	I							
16	2030	130	I							
17	2030	131	I							
18	2029	10	I	Перевод под закачку из консервации						
19	2041	7	I	Перевод под закачку из консервации						
20	2025	112	II							
21	2025	114	II	Drog un volucerranu						
22	2025	119	II	Ввод из консервации						
23	2026	113	II							
24	2027	132	II	Europus actions and actions are a second						
25	2028	133	II	Бурение добывающих скважин						
26	2025	102	I							
27	2025	111	I							
28	2025	118	I							
29	2026	103	I	Термогазохимия						
30	2026	104	I							
31	2026	106	I							
32	2026	107	I							

№№п/п	Год	№скв	Объект	Вид ГТМ					
33	2026	109	I						
34	2027	124	I						
35	2028	125	I						
36	2029	126	I						
37	2029	127	I						
38	2029	128	I						
39	2029	129	I						
40	2030	130	I						
41	2030	131	I						
42	2025	112	II						
43	2025	114	II						
44	2025	119	II	Термогазохимия					
45	2026	113	II						
46	2027	132	II						
47	2028	133	II						

Таблица 1.2.2 - Продолжительность цикла строительства вертикальных скважин глубиной 480 м

Продолжительность цикла строительства скважины, сут.	20
строительно-монтажные работы (мобилизация, монтаж), сут	4
подготовительные работы к бурению	2
бурение и крепление	14

Таблица 1.2.3 – Продолжительность цикла строительства вертикальных скважин глубиной 300 м

Продолжительность цикла строительства скважины, сут.	17
строительно-монтажные работы (мобилизация, монтаж), сут	4
подготовительные работы к бурению	2
бурение и крепление	11

1.3. Краткая характеристика физико-географических и климатических условий

Природно-климатические условия

Климат района резко-континентальный с продолжительной холодной зимой, устойчивым снежным покровом и сравнительно коротким, умеренно жарким летом. Характерны большие годовые и суточные колебания температуры воздуха, поздние весенние и ранние осенние заморозки, глубокое промерзание почвы, постоянно дующие ветры.

Температура воздуха. Температура воздуха является одной из основных характеристик климата. Режим температуры воздуха исследуемой области характеризуется большой контрастностью и резкостью сезонных и межгодовых колебаний, значительной суточной и годовой амплитудой. Характерным является также преобладание теплого периода над холодным. Продолжительность безморозного периода составляет около полугода для севера региона и увеличивается к югу. Преобладает вотсочный ветер, средня годовая скорость ветра 5,2 м/с.

1.3.1 Современное состояние воздушной среды

Таблица 1.3.1 - Средняя температура воздуха °С

I	II	III	IY	Y	YI	YII	YIII	IX
-7,7	-4,3	1,8	16,8	16,8	26,7	27,7	25,4	19,1

Таблица 1.3.2 - Максимальная температура воздуха °С

Tuotinga 11012 Markenmandian Temperatypa 200523 Na								
I	II	III	IY	Y	YI	YII	YIII	IX

5.5	8.0	15.0	30,8	35.5	40,6	39,5	39.4	31.4
5,5	8,0	15,0	30,8	33,3	40,6	39,3	39,4	31,4

Таблица 1.3.3 - Минимальная температура воздуха °C

I	II	III	IY	Y	YI	YII	YIII	IX
-25,5	-15,8	-7,5	3,7	3,4	13,7	13,1	13,7	5,1

Таблица 1.3.4 - Влажность воздуха в %

_	1 11 011111411	21011	HITOUID DOS,	J 1144 2 7 0					
	I	II	III	IY	Y	YI	YII	YIII	IX
	89	79	85	57	47	43	39	37	29

Таблица 1.3.5 – Количество осадков в мм

I	II	III	IY	Y	YI	YII	YIII	IX
9,9	14,9	17,3	5,1	42,7	10,5	7,4	16,4	5,9

Таблица 1.3.6 - Среднемесячная и максимальная скорость ветра м/сек.

	I	II	III	IY	Y	YI	YII	YIII	IX
Средняя	5,9	5,7	5,5	5,5	4,5	5,1	5,0	4,4	5,2
Максимальная	18	26	18	19	18	25	21	22	18

Таблица 1.3.7 - Средняя повторяемость направлений ветра и штилей, % за 1 квартал 2024г.

С	CB	В	ЮВ	Ю	ЮЗ	3	C3	Штиль
9	17	20	17	9	10	10	8	0

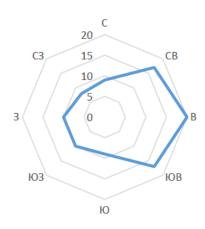


Рис. 4 – Роза ветров

Таблица 1.3.8 - Средняя повторяемость направлений ветра и штилей, % за 2 квартал 2024г.

тионици та	о среда	nn nobrop	memoerb manp	ubitemin be	pa n miner	, , o su - 10	bupitui 202.	
С	CB	В	ЮВ	Ю	ЮЗ	3	C3	Штиль
12	9	15	14	9	13	13	15	0

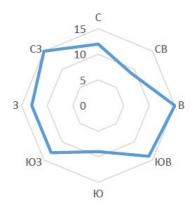


Рис. 5 – Роза ветров

<u>Примечание:</u> Данные по повторяемости ветра и штилей (роза ветров) за 2 квартал по АМС Исатай за июнь 2024г. отсутствует. Здесь рассчитаны данные за апрель и май 2024г..

Данные по повторяемости ветра и штилей (роза ветров) за 3 квартал по АМС Исатай и АМС Макат отсутствуют, база данных временно не доступна.

МЕХАНИЗМЫ ОБЕСПЕЧЕНИЯ КАЧЕСТВА ИНСТРУМЕНТАЛЬНЫХ ИЗМЕРЕНИЙ

Обеспечение качества означает разработку системы мероприятий, направленных на обеспечение соответствия измерений установленным стандартам качества.

Для обеспечения качества и достоверности инструментальных замеров необходимо следующее:

- отбор и анализ проб проводить в соответствии с установленными методами;
- проводить отбор проб поверенными и сертифицированными приборами;
- использовать стандартные процедуры обращения с пробами и их транспортировки;
 - проведение анализа с использованием установленной лабораторной практики;
 - проведение анализа в сертифицированных/аккредитованных лабораториях;
- проводить калибровку оборудования в соответствии с установленными методами;
 - участие в межлабораторных оценках.

Атмосферный воздух – Газоанализатор (Переносной автоматический газоанализатор ГАНК-4 (A, P, AP) с принудительным отбором проб воздуха, предназначен для измерения концентрации загрязняющих и вредных химических веществ, содержащихся в атмосфере, в воздухе рабочей зоны, в замкнутых помещениях и в промышленных выбросах.), Аспираторы ПУ 4Э, ПУ 3Э, Хроматэк, напорная трубка.

Почва, вода — пробоотборник, анализатор жидкости, ph метр, анализатор растворенного кислорода, кондуктометр, спектрофотометр, спектрометр.

1.3.2 Поверхностные и подземные воды

Жайык-Каспийская бассейновая инспекция по регулированию использования и охране водных ресурсов, рассмотрев вышеуказанный запрос, направляет имеющиеся сведения в отношении по Поверхностным и Подземным водам.

На территории Атырауской области имеется следующие поверхностные водные объекты: 4 крупные реки, общей протяженностью -1002км и 9 малых рек общей протяженностью-348км, в том числе:

- до 10 км - 7 рек, общей протяженностью 48 км;

- до 200 км 2 реки, общей протяженностью 300 км;
- от 200 до 500 км 1 река протяженностью 212 км;
- Свыше 500км -3 рек общей протяженностью 790 км.

98 озер с общей площадью зеркала 60,31км², а также Северо-Восточное побережье Каспийского моря протяженностью 740км.

На территории Атырауской области, также имеется четыре групповых водопроводов, среди них водовод «Астрахань-Мангышлак», имеющий межбассейновое значение. Мощность водовода 55 тыс.м³ в сутки, протяженность-1041км, диметр трубы 1220мм., целью водопользования является подача технической воды на нефтяные месторождения, а также водоснабжение отдаленных населенных пунктов Атырауской и Мангистауской областей.

Основными поверхностными водными источниками Атырауской области является Северо-восточное побережье Каспийского моря, реки Урал, Уил, Эмба, Сагиз, дельтовые рукава Волги — Кигач, Шароновка и другие малые реки. Слабо расчлененный рельеф, засушливый климат, небольшой уклон в сторону моря являются отрицательными факторами в образовании поверхностного стока. Все реки по Атырауской области относятся к рекам снегового питания. Для них характерна одна волна высоких весенних вод, объем которой зависит от снегового запаса прошедшей зимы. За этот период проходит большая часть годового стока, после чего наступает быстрый спад водности и реки переходят на дождевые или грунтовые питание.

Все реки Атырауской области имеют транзитный сток из Российской Федерации и Актюбинской области. Транзитный сток реки Урал в основном впадает в Каспийское море, а стоки рек Эмба, Уил, Сагиз теряются в сорах и в песках.

Река Жайык — является основным источником водного питания Прикаспийской низменности. Она берет начало со склонов Южно-Уральских гор и, пересекая границу Казахстана, территории Западно-Казахстанской и Атырауской областей впадает Северный Каспий. Общая протяженность реки 2428км., на территории Казахстана1084км., в пределах Западно-Казахстанской области -761км. Общая площадь бассейна реки Жайык (Урал) составляет 237 000 км2. В Казахстанской части площадь водосбора -109 100 км2. Доля в Республики Казахстана составляет 47,2 %, в РФ- 52,8%.

Ниже впадения р. Елек (Илек) у р.Жайык (Урал) нет заметного притока, и уже с верхней границы Западно-Казахстанской области начинается зона рассеивания (потери) стока воды. Небольшая часть стока во время половодья забирается Кушумским каналом, который наполняет ряд ниже лежащих водохранилищ и озер.

<u>Река Жайык</u> формирует свои стоки в верхней части бассейна на территории Российской Федерации до пос.Кушум Западно-Казахстанской области, после которого река уже не имеет притоков. В пределах Западно-Казахстанской области он принимает притоки Чаган, Деркул, Утва, Барбастау.

Из других значительных притоков Урала следует назвать реки Орь, Илек, Кос-Истек (левобережные притоки р.Урал), которые формирует свои стоки на территории Актюбинской области.

Основной приток воды реки Жайык, т.е. 70% наступает в период весенних паводков. Регулирование истока реки Урал осуществляется Ириклинским водохранилищем, расположенного выше 75км от г.Орска Оренбургской области. Вода с Ириклинского водохранилища в летние периоды необходимо для поддержания уровни р.Урал. В летний период осуществляется попуск воды с Ириклинского водохранилища в объеме 60м³/сек.

Малые реки, находящиеся на территории Атырауской области: Перетаска, Зарослый, Бухарка, Залотенок, КапУзек, Митрофан Узек, ТасУзек общей протяженностью 48 км является протоками рек Урал его устьевой части.

Перетаска и Зарослый используются для водоснабжения промышленности и сельского хозяйства, а остальные малые реки используется в основном для рыбного хозяйства. Состояние малых рек удовлетворительное.

<u>Река Кигаш</u> является рукавом реки Волги его устьевой части, протяженностью 100 км на территории Атырауской области.

Река Кигаш имеет свои протоки, как Шароновка, Кобяково и множество малых протоков общей протяженностью около 200км. Вода из реки Шарановка используется для коммунально-бытовых, промышленных нужд и для сельского хозяйства. Крупным водопользователем является Западный филиал АО «Казтрансойл», который снабжает по водоводу Астрахань-Мангышлак протяженностью более 1000км населенные пункты, промышленные организации Атырауской и Мангистауской областей.

<u>Река Эмба</u> формирует свои истоки на территории Актюбинской области. Общая протяженность русла реки Эмба составляет 635 км, из них 212 км на территории Атырауской области. В устьевой части на территории Атырауской области в межени период представляется ряд плесов.

Качество воды не пригодна для питьевых нужд, вода в основном используется для водопоя скота и полива сельхоз культур.

Река Сагиз формирует свои истоки на территории Актюбинской области. Общая протяженность русло реки Сагиз составляет 480 км, из них 212км на территории Атырауской области. Сагиз многоводен только весной в период половодья. В меженный период река мелеет и в устьевой части представляет ряд плесов. Вода реки Сагиз для питьевых нужд не пригоден. В основном вода реки Сагиз используется для полива сельхоз культур и водопоя скота.

<u>Река Уил</u> формирует свои истоки на территории Актюбинской области. Общая протяженность реки Уил составляет 682км, из них на территории Атырауской области - 278км.

Уил многоводен в весенний период половодья. В меженный период река мелеет и в устьевой части представляет ряд плесов.

Подземные воды

На территории Атырауской области имеются 99 месторождений подземных вод (в таблице №2 приведен список всех месторождений подземных вод, существующих в пределах Атырауской области с указанием кода присвоенного по Государственному водному кадастру, с их привязкой к населенным пунктам, с указанием запасов подземных вод, а также возраста эксплуатируемого водоносного горизонта).

Эксплутационным горизонтами подземных вод являются водоносные комплексы и горизонты триасовых, юрских, меловых (альб-сеномана и неокома), плиоценовых, неогеновых (апшерон-акчагыльских) отложений в системах одиночных и групп скважин, а колодцами (копани) — верхнечетвертичные и современные отложения на отгонных пастбищах.

Подземные воды верхнечетвертичных аллювиальное дельтовых отложений долины р.Уил используется в качестве основного источника хозяйственно-питьевого водоснабжения Кызылкугинского района. Они эксплуатируются Миялинским, Тайсойганским и Карабаускими водозаборами.

Воды триасовых, юрских горизонтов являются попутнодобываемыми, которые поступают на поверхность вместе с нефтью.

Воды меловых (неокома и альб-сеномана) и неогеновых (апшерон-акчагыльских) систем используются довольно широко для целей производственно-технического водоснабжения, еще альб-сеноманские воды – для сельхозводоснабжения.

Сумма утвержденных запасов Атырауской области по категориям $A+B+C_1+C_2$ составляет 262,286 тыс.м3/сут.

1.3.3 Состояние недр

Согласно Закону Республики Казахстан «О недрах и недропользовании» № 125-VI ЗРК от 27.12.2017 г, недра — часть земной коры, расположенная ниже почвенного слоя, а при его отсутствии — ниже земной поверхности и дна морей, озер, рек и других водоемов,

простирающаяся до глубин, доступных для проведения операций по недропользованию с учетом научно-технического прогресса.

Недра, по сравнению с другими компонентами окружающей среды, обладают характерными особенностями, определяющими специфику некоторыми возможного ее изменения, это: достаточная инерционность системы, необратимость процессов, вызванных внешним воздействием, низкая способность к самовосстановлению (по сравнению с некоторыми биологическими компонентами). Необходимо отметить такую характерную особенность геологической среды, как полихронность, т.е. разная по времени формирования компонентов. Например, породная компонента, сформировавшаяся в течение сотен тысяч миллионов лет, находится в равновесии с окружающей средой, а газовая компонента более динамична.

Загрязнение недр и их нерациональное использование отрицательно отражается на состоянии и качестве поверхностных и подземных вод, почвы, растительности и так далее. Становится очевидным, что основной объем наиболее опасных сточных вод и других отходов приходится на долю нефтегазодобывающих предприятий.

Основными требованиями к обеспечению экологической устойчивости геологической среды при проектировании, строительстве и эксплуатации нефтегазового месторождения являются разработка и выполнение профилактических и организационных мероприятий, направленных на охрану недр.

Охрана недр предусматривает осуществление комплекса мероприятий в процессе геологического изучения недр и добычи природных ресурсов, направленных на рациональное использование недр, предотвращение потерь полезных ископаемых и разрушения нефтесодержащих пород.

Основной задачей мероприятий по охране недр в нефтегазодобывающей отрасли является обеспечение эффективной разработки нефтяных и газовых месторождений в целях достижения максимального извлечения запасов нефти и газа, а также других сопутствующих полезных ископаемых при минимальных затратах.

При реализации проекта непосредственное воздействие на недра не предполагается. <u>Территория выполняемых работ TOO «M-Ali Petrol» не входят в особо</u> охраняемые природные территории и территорию государственного лесного фонда.

Рассматриваемая территория находится вне земель государственного лесного фонда иособо охраняемых природных территорий Республики Казахстан.

Для минимизации негативного воздействия на объекты растительного и животного мира необходимо предусмотреть следующие мероприятия:

- ✓ не допускать расширения производственной деятельности за пределы отведенного земельного участка;
- ✓ строго соблюдать технологию ведения работ, использовать технику и оборудование с минимальным шумовым уровнем;
- ✓ запрещать перемещение автотранспорта вне проезжих мест;
- ✓ соблюдать установленные нормы и правила природопользования;
- ✓ проводить просветительскую работу экологического содержания в областибережного отношения и сохранения растительного и животного мира;
- ✓ проводить озеленение и благоустройство территории предприятия.

1.3.4 Растительный и животный мир

Растительность Атырауской области развивается в очень суровых природных условиях: засушливость климата, большие амплитуды колебаний температур, резкий недостаток влаги в сочетании с широким распространением засоленных почв. Все это определяет формирование растительного покрова, характерного для условий пустынь северного полушария.

Видовой состав пастбищ в основном представлен двумя жизненными формами: травянистыми растениями и полукустарниками.

В северо-западной части района по равнине на бурых почвах различного механического состава и степени засолонения, а также на солонцах пустынно-степных формируются белоземельнополынные пастбища. Встречаются как самостоятельными контурами, так и в комплексе с чернополынно - солянковыми, кокпеково - чернополынными, еркеково — серополынно - мятликовыми пастбищами. Группа белоземельнополынных пастбищ представлена белоземельнополынным, белоземельнополынно-злаковым, белоземельнополынно-солянковым типами.

Кроме полыни белоземельной в травостое характерны длительновегетирующие дерновые злаки (тырса, ковылок, тонконог, еркек, житняк), солянки (изень, камфоросма, климакоптера супротивнолистая, эхинопсилон). В ранневесеннюю пору наблюдается массовое произрастание мятлика луковичного, костра кровельного, мортука восточного, бурачка пустынного.

Небольшими пятнами по межбугровым понижениям формируются эфемеровые (Косте кровельный) и разнотравные (тысячелистник мелкоцветковый, сирения стручковая, василек красивый) типы пастбищных угодий.

Незначительное распространение получили биюргуновые, лерхианово-полынные, еркековые пастбища. Формируются по понижениям, пологосклоновым буграм. Субдоминирует костер кровельный, кияк, шагыр. Данные пастбища самостоятельных массивов не образуют, встречаются в комплексе друг с другом, а также с шагыровыми, кияковыми, жузгуновыми типами пастбищных угодий.

На пастбищных угодьях наблюдается общая тенденция к дегрессии растительного покрова под влиянием интенсивного использования. Постоянный бессистемный выпас скота вблизи зимовок, источников водопоя значительно ухудшает кормовые качества пастбищ, резко снижает их продуктивность, приводит к засорению вредными и непоедаемыми, а также ядовитыми травами (адраспан, молочай). По понижениям приморской равнины на аллювиально-луговых почвах формируются солянковые (солянка натронная, сведа высокая, солянка Паульсена), кустарниковые. Встречаются в комплексе друг с другом. Группа кустарниковых пастбищ представлена тамарисково - ажрековым, тамарисково - солянковым и тамарисково - полынным типами.

Область знаменита как уникальный поставщик рыбы осетровых пород и черной икры, а также как одна из животноводческих областей Казахстана.

При анализе современного состояния животного мира выделяются участки различной степени нарушенности состояния природной среды. Площадка расположения комплекса является сильно преобразованной. Фаунистические сообщества рассматриваемой территории длительное время подвергались антропогенному воздействию (нефтедобыча и перевыпас скота).

Учитывая, что площадь, занимаемая рассматриваемым объектом небольшая, на данном участке могут наблюдаться лишь представители синантропной фауны и случайно попавшие животные, характеристика животного мира приводится по прилежащим территориям (Урало-Эмбинское междуречье).

Фаунистический комплекс северного и северо-восточного побережья Каспийского моря носит ярко выраженный пустынный характер. Следует учитывать, что из-за небольшой площади рассматриваемой территории приведенный видовой состав животных может отклоняться от фактического и периодически изменяться. Местообитания представляют собой

солончаковую пустыню с сильно разреженной растительностью и обширными сорами.

Млекопитающие рассматриваемой территории представлены более чем 40 видами. Преобладающее положение занимают мелкие грызуны (фоновые виды), причём численность многих из них здесь не высокая, за исключением песчанок. По всей территории северного и восточного Каспия встречается ушастый ёж - типичный обитатель пустынь.

Наиболее распространенными видами из рукокрылых являются усатая ночница, поздний кожан, двухцветный кожан.

Хищные млекопитающие представлены следующими видами: лисица обитает повсеместно варидных, мезофильных и в пойменных ландшафтах, корсак селиться в открытых ландшафтах, обычен для территории между Уралом и Эмбой, ласка, горностай и степной хорь - виды, предпочитающие пойменные участки Урала и прибрежную зону Каспия. Степная кошка встречается от поймы Урала и далее на восток. Домовая мышь и серая крыса встречаются в районе жилых посёлков, в бытовых строениях. Заяц русак встречается к западу от Эмбы.

Большая территория исследуемого участка антропогенно преображена за счет проведения строительных и буровых работ, густой транспортной сетью.

1.3.5 Почвенный покров

По природно-сельскохозяйственному районированию земельного фонда Республики Казахстан контрактная территория расположена в пределах пустынной полупустынной зоны Прикаспийской низменности.

Почвенный покров рассматриваемой территории формируется на засоленных морских отложениях. Здесь широко распространены солончаки (типичные, соровые, приморские) и луговые засоленные приморские почвы. Все почвы характеризуются малой гумусностью, небольшой мощностью гумусового горизонта, низким содержанием элементов питания, малой емкостью поглощения. Эти особенности почв являются следствием сложившихся биоклиматических условий почвообразования: малого количества осадков, высоких летних температур, определивших преобладание в растительном покрове ксерофитных полукустарников и солянок при незначительном участии злаков и разнотравья. Другой характерной особенностью почв является карбонатность и засоленность профиля. Основным источником засоления служат почвообразующие породы, представленные морскими засоленными отложениями, а также соли, поступающие от минерализованных грунтовых вод.

На территории участка и прилегающем районе встречаются следующие почвы.

- Примитивные приморские;
- Суглинок
- Солончаки
- Песчаные отложения
- Пески

В почвенно-геоботаническом отношении данная площадь относится к пустынной зоне.

Систематический список почв Атырауской области:

- Светлокаштановые: светлокаштановые нормальные, светлокаштановые солонцеватые.
- Лугово-каштановые: лугово-каштановые обыкновенные, луговокаштановые солонцеватые.
- Бурые пустынные: бурые пустынные нормальные, бурые пустынные солонцеватые, бурые пустынные эродированные, бурые пустынные малоразвитые.
- Серобурые пустынные: серобурые пустынные нормальные, серобурые пустынные солонцеватые, серобурые пустынные эродированные, серобурые пустынные малоразвитые.
- Лугово-бурые пустынные: лугово-бурые обыкновенные, лугово-бурые солонцеватые, лугово-бурые солончаковатые.
- Такыры Солончаки: солончаки остаточные, солончаки соровые, солончаки луговые, солончаки приморские.

- Солонцы: солонцы пустынно-степные, солонцы лугово-степные, солонцы пустынные, солонцы лугово-пустынные, солонцы луговые.
- аллювиальнолуговые обыкновенные, аллювиально-луговые солончаковатые, аллювиальнолуговые солончаковые.
- Лугово-болотные: лугово-болотные солонцеватые, лугово-болотные солончаковые, лугово-болотные приморские солончаковые.

Болотные: болотные приморские солончаковые.

Мониторинг почв на участке является составной частью системы производственного мониторинга окружающей среды и проводится с целью:

- своевременного получения достоверной информации о воздействии объектов участка на почвенный покров;
- оценка прогноза и разработки рекомендаций по предупреждению и устранению негативных последствий техногенного воздействия нефтедобычи на природные комплексы, рациональному использованию и охране почв.

Непосредственно наблюдения за динамикой изменения свойств почв осуществляются на *стационарных экологических площадках* (СЭП), на которых проводятся многолетние периодические наблюдения за комплексом показателей свойств почв. Эти наблюдения обеспечивают выявление изменений направленности протекающих процессов и свойств, определяющих экологическое состояние почв; выявления тенденций и динамики изменений, структуры и состава почвенно-растительных экосистем под влиянием действия природных и антропогенных факторов.

Проводимый экологический мониторинг осуществляет контроль состояния почв с целью сохранения их ресурсного потенциала, обеспечения экологической безопасности производства, условий проживания и ведения трудовой деятельности персонала.

На период строительства проектируемых объектов возможное воздействие на почвенный покров оценивается в пространственном масштабе как локальное; во временном масштабе - как кратковременное и по интенсивности воздействия - как слабое.

Оценка воздействия на почвенный покров

Предполагаемое воздействие проектируемого объекта на почвенно-растительный покров будет сведено к следующему:

- деградация растительного покрова в результате проведения земельных работ;
- временное повышение уровня шума, искусственного освещения в результате работыспециальной и автотранспортной техники;
 - сокращение площади местообитания;
- незначительная гибель животных, ведущих подземный образ жизни (пресмыкающиеся имлекопитающие), в результате проведения земляных работ.

Для предотвращения разливов ГСМ необходимо предусмотреть герметизацию и изоляцию площадок на месте заправка авто и другой техники. Необходимо полностью исключить загрязнение почв ГСМ. Согласно ст. 397 ЭК РК запрещается утечка ГСМ и другие веществ, в последствии которого загрязняется почва и подземные воды.

На основании анализа проектной документации, при соблюдении технологии выполнения предусмотренных мероприятий по защите и восстановлению почвенного покрова, можно сделать следующие выводы:

На период строительства проектируемых объектов возможное воздействие на почвенный покров оценивается в пространственном масштабе как локальное; во временном масштабе - как кратковременное и по интенсивности воздействия - как слабое.

1.3.6 Радиационная обстановка

Согласно Закону Республики Казахстан от 23 апреля 1998г №219-1 «О радиационной безопасности населения» основными принципами обеспечения радиационной безопасности являются:

- принцип нормирования непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
- принцип обоснования запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;
- принцип оптимизации поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения;
- принцип аварийной оптимизации форма, масштаб и длительность принятия мер в чрезвычайных (аварийных) ситуациях должны быть оптимизированы так, чтобы реальная польза уменьшения вреда здоровью человека была максимально больше ущерба, связанного с ущербом от осуществления вмешательства.

Согласно Гигиеническому нормативу «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» Приказ Министра здравоохранения Республики Казахстан от 15 декабря 2020 года № ҚР ДСМ-275/2020. Зарегистрирован в Министерстве юстиции Республики Казахстан 20 декабря 2020 года № 21822 в производственных условиях для защиты от природного облучения предусмотрены следующие нормы:

Эффективная доза облучения, природными источниками излучения всех работников, включая персонал, в производственных условиях не должна превышать 5 мЗв в год. Средние значения радиационных факторов в течение года, соответствующие при монофакторном воздействии эффективной дозе 5 мЗв за год при продолжительности работы 2000 час/год, средней скорости дыхания 1,2 м³/час, составляют:

- мощность эффективной дозы гамма-излучения на рабочем месте 2,5 мкЗв/час;
- удельная активность в производственной пыли урана -238, находящегося в радиоактивном равновесии с членами своего ряда -40/f, кБк/кг, где, f среднегодовая общая запыленность в зоне дыхания, мг/м³;
- удельная активность в производственной пыли тория -232, находящегося в радиоактивном равновесии с членами своего ряда -27/f, кFк/кF.

Радиационная безопасность обеспечивается:

- Общеизвестно, что природные органические соединения, в том числе нефть и газ являются естественными активными сорбентами радиоактивных элементов. Их накопление в нефти, газоконденсате, пластовых водах является закономерным геохимическим процессом. Поэтому настоящим отчетом предусматриваются следующие мероприятия по радиационной безопасности:
- Проведение замеров радиационного фона на территории месторождения (по плану мониторинга).
- Ежемесячный отбор проб пластового флюида, бурового раствора, шлама для определения концентрации в них радионуклидов.
- Проведение инструктажа обслуживающего персонала о правилах и режиме работы в случае обнаружения пластов (вод) с повышенным уровнем радиоактивности.
- Объектами постоянного радиометрического контроля должны быть места хранения нефти и ее транспорта, бурильные трубы.
- В случае вскрытия пласта с повышенной радиоактивностью предусматривается произвести отбор проб на исследование следующих компонентов: шлама или керна горных пород, бурового раствора на выходе из скважины, отходов бурения.

- В случае обнаружения пластов с повышенной радиоактивностью, необходимо: получить разрешение уполномоченных органов на дальнейшее углубление скважины; вокруг буровой обозначить санитарно-защитную зону.
- Проведение замеров удельной и эффективной удельной активности природных радионуклидов в производственных отходах.
- Определение мощности дозы гамма-излучения, содержащихся в производственных отходах природных радионуклидов на расстоянии 0,1 метра от поверхности отходов и на рабочих местах (профессиональных маршрутах).
- С обязательным оформлением санитарных паспортов на право производства с радиоактивными веществами соответствующего класса.

Проведенный анализ радиометрических измерений показал, что на территории предприятие радиационный фон в пределах нормы, что свидетельствует о не превышении природного радиационного фона.

2.ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОЙТИ В СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, СООТВЕТСТВУЮЩЕЕ СЛЕДУЮЩИМ УСЛОВИЯМ

2.1. Альтернативные технические и технологические решения. Вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды

В связи с тем, что при осуществлении намечаемой деятельности будут осуществляться природоохранные мероприятия изменения окружающей среды не планируется. В рамках проекта разработки месторождения Женгельды планируется получение достоверной информации для подтверждения условий залегания углеводородов и продуктивности скважин для подготовки участка к промышленной разработке, соответственно выбросы ЗВ должны быть минимальными.

3. ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

ТОО «M-Ali Petrol» в декабре 2016г ТОО «M-Ali Petrol» получило право на пользование недрами углеводородного сырья на месторождении Женгельды в Атырауской области РК Макатский район (письмо МЭ РК №10-03/35052 от 26.12.2016, Протокол №21 МЭ РК от 14.12.2016). В 1 марта 2017 года подписано Дополнение № 4 к основному Контракту №385 от «14» декабря 1999г на добычу углеводородного сырья на месторождении Женгельды на блоке XXIV -13 — А (частично) в Атырауской области Макатский район, сроком до 27.01.2033г.

Площадь горного отвода месторождения Женгельды составляет 1,516 кв.км.

Земельный фонд Республики Казахстан в соответствии с целевым назначением подразделяется на следующие категории:

- 1) земли сельскохозяйственного назначения;
- 2) земли населенных пунктов (городов, поселков и сельских населенных пунктов);
- 3) земли промышленности, транспорта, связи, для нужд космической деятельности, обороны, национальной безопасности и иного несельскохозяйственного назначения;
- 4) земли особо охраняемых природных территорий, земли оздоровительного, рекреационного и историко-культурного назначения;
 - 5) земли лесного фонда;
 - 6) земли водного фонда;
 - 7) земли запаса.

Земли месторождения Женгельды относятся к землям промышленности.

К землям промышленности относятся земли, предоставленные для размещения и строительное объектов промышленности, в том числе их санитарно-защитные и иные зоны.

Размеры земельных участков, предоставляемых для указанных целей, определяются в соответствии с утвержденными в установленном порядке нормами или проектно-технической документацией, а отугвод земельных участков осуществляется с учетом очередности их освоения.

4. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ИХ МОЩНОСТЬ, ГАБАРИТЫ (ПЛОЩАДЬ ЗАНИМАЕМЫХ ЗЕМЕЛЬ, ВЫСОТА), ДРУГИЕ ФИЗИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ, ВЛИЯЮЩИЕ НА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ; СВЕДЕНИЯ О ПРОИЗВОДСТВЕННОМ ПРОЦЕССЕ, В ТОМ ЧИСЛЕ ОБ ОЖИДАЕМОЙ ПРОИЗВОДИТЕЛЬНОСТИ ПРЕДПРИЯТИЯ, ЕГО ПОТРЕБНОСТИ В ЭНЕРГИИ, ПРИРОДНЫХ РЕСУРСАХ, СЫРЬЕ И МАТЕРИАЛАХ.

Конструкция скважин проектируется с учетом литолого-стратиграфического разреза и физических особенностей вскрываемых пород, предупреждения осложнений и обеспечения проведения предусмотренного комплекса исследовательских работ.

Для проектных поисковых скважин принимается следующая конструкция:

Таблица 4.1.1 - Сводные данные по типовой конструкции скважин глубиной 480м

Наименование колонны	Диаметр колонны, мм	Глубина спуска, м	Высота подъема цемента за колонной, м	Примечания/способ цементирования
Направление	426	5	устье	Прямое
Кондуктор	299	67	устье	Прямое
Эксплуатационная колонна	168	480	устье	Прямое

Таблица 4.1.2 - Сводные данные по типовой конструкции скважин глубиной 300м

Наименование колонны	Диаметр колонны, мм	Глубина спуска, м	Высота подъема цемента за колонной, м	Примечания/способ цементирования
Направление	426	5	устье	Прямое
Кондуктор	299	67	устье	Прямое
Эксплуатационная колонна	168	300	устье	Прямое

Примечание:

5. ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ

Наилучшим условием реализации природ сберегающей технологии является условие, когда основные производственные процессы не зависят от квалификации персонала, а организационно-управленческие структуры процесса составляют неотъемлемую часть используемой техники и технологии. Однако в настоящее время такие технико-технологические разработки отсутствуют.

Для оценки уровня примененной в проекте технологии использованы следующие критерии:

- уровень готовности технологии;
- уровень готовности производства;
- уровень готовности интеграции;
- уровень готовности системы.

^{*-} фактическая конструкция скважины будет зависит от фактических геологических условий.

Уровень готовности технологии. Используемая технология является серийным производством. Существуют реально эксплуатируемые оборудование, подтверждающие работоспособность технологии в условиях эксплуатации.

Уровень готовности производства. Продукция выпускается в полномасштабном производстве и соответствует всем требованиям к производительности, качеству и надежности. Возможности производственного процесса обеспечивают необходимый уровень качества. Все материалы, инструменты, инспекционное и тестовое оборудование, технические средства и персонал доступны и соответствуют требованиям полномасштабного производства. Цена продукции и затраты на единицу продукции соответствуют целевым, финансирование достаточно для производства продукции по требуемой цене. Практика бережливого производства внедрена.

Уровень готовности интеграции. Применяемые технологии успешно использованы в составе системы, проверены в релевантном окружении взаимодействия используемых технологий.

Уровень готовности системы. Снижены риски интеграции и производства, реализованы механизмы операционной поддержки, оптимизирована логистика, реализован интерфейс с эксплуатацией, система спроектирована с учетом возможностей производства, обеспечены доступность и защита критической информации. Продемонстрированы интеграция системы, взаимодействие с ней, безопасность и полезность. Функциональные возможности соответствуют требованиям заказчика. Поддержка системы осуществляется в соответствии с требованиями к эксплуатации наименее затратным образом на протяжении всего жизненного цикла.

Также при проведении работ предприятие старается использовать технологическое оборудование, соответствующее передовому научно- техническому уровню.

В настоящее время одним из основных показателей предъявляемых к данному типу оборудования, является их производительность, высокая точность, многооперационность, управляемость, доступность и безопасность.

Использование в различных отраслях промышленности экономически развитых стран, данного типа оборудования и их аналогов, с учетом их соответствия требованиям международных стандартов, свидетельствует о их соответствии передовому научнотехническому уровню.

Надлежащее функционирование и соответствие техническим условиям применяемого на предприятии оборудования обеспечивается за счет регулярного ремонта и контроля исправности.

На данный момент все технологическое оборудование, используемое предприятием, находится в должном техническом состоянии, что создает необходимые условия для качественного решения всех производственных задач.

В соответствии с вышеизложенным, применяемые на предприятии технологии, учитывая специфику предприятия и характер производимых работ, вполне соответствуют предъявляемым к ним требованиям.

Используемые технологические оборудования на участке соответствуют стандарту ИСО 9001:2000, противопожарным, санитарным и экологическим требованиям и при использовании оборудований с соблюдением правил безопасности и согласно инструкции по эксплуатации гарантийный срок службы увеличивается в несколько раз.

Критериями для выбора оборудований являются:

- характер работ;
- производительность технологических оборудований;
- малоотходность или безотходность технологий;
- минимум затрат на приобретение и эксплуатацию оборудования.

6. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ, ЕСЛИ ЭТИ РАБОТЫ НЕОБХОДИМЫ ДЛЯ ЦЕЛЕЙ РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Месторождение Женгельды имеет определенные особенности: небольшая глубина залегания, пластовое давление ниже гидростатического столба жидкости.

На дату составления данного проекта, общий пробуренный фонд по месторождению Женгельды составил 28 скважин (№№3, 5, 6, 7, 8, 10, 11, 13, 17, 101, 102, 103, 104, 105, 106, 107, 109, 111, 112, 113, 114, 115, 116, 118, 119, 121, 123, 1H).

Исходя из анализа материалов бурения, можно отметить, что местоположения пробуренных скважин не соответствуют местоположениям, которые были заложены в утвержденном проектном документе, кроме того, не соблюдались расстояния между скважинами и в результате имеется ряд скважин, находящихся друг от друга на расстоянии 70м.

Помимо этого, можно сделать вывод, что при первичном вскрытии продуктивных горизонтов на скважинах не в полном объеме выполнялись рекомендации группового технического проекта по строительству скважин, в частности: проходка скважины с нулевого цикла для бурения кондуктора и эксплуатационной колонн проводилось на альбсеноманской воде, следовательно, плотность раствора поддерживалась за счет выбуренной породы (глина, песок и т.д.), что приводило к кольматации коллектора и снижению естественной проницаемости коллектора.

Отклонения параметров бурового раствора от проекта при проводке скважины приводили к работам по расширению суженных участков, дополнительным спускоподъемным операциям перед спуском колонны, а также к повышенному расходу цемента при цементировании колонны.

Качество цементирования колонн при бурении скважин является одним из главных элементов технологии строительства скважин как инженерного сооружения. Однако, по результатам записей АКЦ по пробуренным скважинам в период опытно-промышленной разработки, показывает некачественное сцепление цемента как с колонной, так и с породой заколонного пространства. Некачественный цементаж колонны был основной причиной роста обводненности по всем нефтяным скважинам.

Конструкция скважины должна обеспечивать:

- максимальное использование пластовой энергии продуктивных горизонтов;
- возможность применения оптимальных способов и режимов эксплуатации, поддержания пластового давления, теплового воздействия и других методов повышения нефтеотдачи пластов;
- обеспечение безопасной и безаварийной проводки скважин на всех этапах ее строительства и эксплуатации;
- получение необходимой горно-геологической информации по вскрываемому разрезу;
- соблюдение условий охраны недр и окружающей среды;
- максимальную унификацию по типоразмерам обсадных труб и ствола скважины;
- при строительстве скважин предусматривать возможность их перевода в эксплуатационные.

С учетом горно-геологических условий бурения и в соответствии с «Требованиями к безопасности строительства наземных и морских производственных объектов, связанных с нефтяными операциями», предусматривается следующая типовая конструкция скважин:

Для скважин глубиной до 480м:

Направление Ø426,0 мм спускается на глубину 5 м. цементируется до устья;

Кондуктор диаметром Ø299 мм спускается на глубину 67 м для перекрытия рыхлых четвертичных и водоносных горизонтов альб-сеномана, высота подъема цемента – до устья;

Эксплуатационная колонна диаметром Ø168 мм спускается на глубину 480 (±250) метров для предохранения стенок скважины от разрушения, перекрытия и изоляции продуктивных и возможно продуктивных горизонтов меловых и юрских горизонтов. Цементаж эксплуатационной колонны производится в интервале установки до устья.

Для скважин глубиной до 300м:

Направление Ø426,0 мм спускается на глубину 5 м. цементируется до устья;

Кондуктор диаметром Ø299 мм спускается на глубину 67 м для перекрытия рыхлых четвертичных и водоносных горизонтов альб-сеномана, высота подъема цемента – до устья;

Эксплуатационная колонна диаметром Ø168 мм спускается на глубину 300 (±250) метров для предохранения стенок скважины от разрушения, перекрытия и изоляции продуктивных и возможно продуктивных горизонтов меловых и юрских горизонтов. Цементаж эксплуатационной колонны производится в интервале установки до устья.

Окончательные решения по конструкции скважин, по выбору типа и компонентного состава бурового раствора, технологии цементирования и высоте подъема цемента за колоннами, методу освоения будут приняты при разработке технических проектов на строительство скважин.

7. ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВОМ И ЭКСПЛУАТАЦИЕЙ ОБЪЕКТОВ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ

ОЦЕНКА ОЖИДАЕМОГО ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

ПРЕДУСМОТРЕНО БУРЕНИЕ 10 ДОБЫВАЮЩИХ СКВАЖИН В ПЕРИОД 2027-2030ГГ.

2027г. – 2 скв.

2028г. – 2 скв.

2029г. – 4 скв.

2030г. – 2 скв.

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ: ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТАХ (МОБИЛИЗАЦИЯ, МОНТАЖ), ПОДГОТОВИТЕЛЬНЫХ РАБОТАХ К БУРЕНИЮ

Источник загрязнения N 6001. Пыление при подготовке площадки

Источник загрязнения N 6002. Пыление при уплотнении грунта катками

Источник загрязнения N 6003, Пыление при работе автосамосвала

Источник загрязнения N 6004, Пыление при работе бульдозеров и экскаваторов

Источник загрязнения N 6005, Сварочный пост

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

ПРИ БУРЕНИИ И КРЕПЛЕНИЕ

Источник загрязнения N 0001, Силовой привод буровой установки

Источник загрязнения N 0002, Насосный блок буровой установки

Источник загрязнения N 0003, Дизельная электростанция буровой установки

Источник загрязнения N 0004, Цементировочный агрегат

Источник загрязнения N 0005, Емкость для топлива буровой

Источник загрязнения N 0006, Дизельная электростанция для выработки электроэнергии

Источник загрязнения N 0007, Передвижная паровая установка

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

РАБОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН (ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТАНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.

2025г. -6 скв.

2025 г. – 1 скв.- ввод из консервации нагнетательной скважины

2026г. -6 скв.

Источник загрязнения N 0008, Дизельный двигатель

Источник загрязнения N 0009, Дизельный-генератор

Источник загрязнения N 6006, Земляные работы: выемка и погрузка

Источник загрязнения N 6007, Земляные работы: временное хранение грунта

Источник загрязнения N 6008, Сварочные работы

Источник загрязнения N 6009, Покрасочные работы

Источник загрязнения N 6010, Лакокрасочные работы

Источник загрязнения N 6011, Снятие грунта

Источник загрязнения N 6012, Планировка площадки

Источник загрязнения N 6013, Трамбовка грунта

Источник загрязнения N 6014, Планировка грунта

Источник загрязнения N 6016, Емкость масла

Источник загрязнения N 6017, Емкость отработанного масла

Источник загрязнения N 6018, Емкость для шлама 4м3

Источник загрязнения N 6019. Дегазатор бурового раствора

Источник загрязнения N 6020 - 6021, Установка подачи топливо (насос)

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

ПРИ ИСПЫТАНИИ

В 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119.

В 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

Источник загрязнения N 1001, Буровой станок

Источник загрязнения N 1002, Дизельный двигатель Цементировочного агрегата

Источник загрязнения N 1003, Дизель генератор

Источник загрязнения N 1004, ДЭС

Источник загрязнения N 6101, Емкость для хранения дизтоплива

Источник загрязнения N 6102, Блок манифольд

Источник загрязнения N 6103 - 6107, Насос для перекачки дизельного топлива - 5шт.

Источник загрязнения N 6108, Емкость для отработанного масла

Источник загрязнения N 6109 - 6111, Емкость для сбора нефти V = 50 м3 - 3 ед.

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

ПРИ ЛИКВИДАЦИИ

Срок начала работ – декабрь 2051г; завершения работ – февраль 2052г.

Скважины \mathbb{N} 102, 104, 109, 106, 107, 103, 118, 111, 124, 125, 126, 127, 128, 129, 130, 131, 1H, 10, 7.

Источник загрязнения N 0010, Дизельная электростанция (ДЭС) для освещения

Источник загрязнения N 0011, Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)

Источник загрязнения N 0012, Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)

Источник загрязнения N 0013, Дизельный двигатель Цементировочного агрегата ЦА-320

Источник загрязнения N 0014, Дизельный двигатель Цементировочного агрегата ЦА-320

Источник загрязнения N 0015, Агрегат сварочный дизельный

Источник загрязнения N 0016, Агрегат сварочный дизельный

Источник загрязнения N 0017, Цементосмесительная машина (СМН)

Источник загрязнения N 0018, Цементосмесительная машина (СМН)

Источник загрязнения N 0019, Емкость для дизельного топлива

Источник загрязнения N 6022, Сварочные работы

Источник загрязнения N 6023, Газосварочные работы

Источник загрязнения N 6024, Узел приготовление цементного раствора

Источник загрязнения N 6025, Насос подачи ГСМ к дизелям

Источник загрязнения N 6026, Пересыпка инертных материалов

Источник загрязнения N 6027 Покрасочные работы

Источник загрязнения N 6028 Пыление при работе автогрейдера

Источник загрязнения N 6029 Пыление при работе бульдозера

Источник загрязнения N 6030 Пыление при работе экскаватора

Источник загрязнения N 6031, Разработка грунта экскаваторами

Источник загрязнения N 6032, Выемка грунта бульдозером

Загрязняющими ингредиентами при проведении намечаемых работ могут быть следующие компоненты: углеводороды, оксид углерода, сажа, оксид азота, диоксид азота, метан и другие.

Воздействие на атмосферный воздух намечаемой деятельности оценивается с позиции соответствия законодательным и нормативным требованиям, предъявляемым к качеству воздуха.

Расчеты выбросов вредных веществ произведены в соответствии с требованиями, сборников методик.

Выбросы, которые могут привести к нарушению экологических нормативов или целевых показателей качества атмосферного воздуха, а до их утверждения – гигиенических нормативов при осуществлении операций отсутствуют. Все выбросы в пределах экологических нормативов.

ИСХОДНЫЕ ДАННЫЕ С ХАРАКТЕРИСТИКОЙ ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ, НЕОБХОДИМЫЕ ДЛЯ РАСЧЕТА ПРОЕКТА ОВОС К «ПРОЕКТУ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ ЖЕНГЕЛЬДЫ»

№	НАИМЕНОВАНИЕ ОБОРУДОВАНИЯ	РАСХОД
	РАСЧЕТ ВАЛОВІ	ЫХ ВЫБРОСОВ

	ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РА	АБОТАХ (МОБИЛИЗАНИЯ МОНТАЖ)
	ПОДГОТОВИТЕЛЬНЫХ РАБО	
1	Пыление при подготовке площадки	Количество рабочих часов в году. = 144
2	Пыление при уплотнении грунта катками	Количество рабочих часов в году. = 144
3	Пыление при работе автосамосвала	Количество отгружаемого (перегружаемого)
	• •	материала, т/год, = 6000
		Количество рабочих часов в году. = 144
4	Пыление при работе бульдозеров и	Количество отгружаемого (перегружаемого)
	экскаваторов	материала, т/год, = 6000
	•	Количество рабочих часов в году. = 144
5	Сварочный пост	Вид сварки: Ручная дуговая сварка сталей
	•	штучными электродами
		Электрод (сварочный материал): АНО-4
		Расход сварочных материалов, кг/год, = 100
		Количество рабочих часов в году. = 144
	ПРИ БУРЕНИИ И КР	ЕПЛЕНИЕ НА 1СКВ.
6	Силовой привод буровой установки	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 22.03
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 545
		Количество рабочих часов в году. = 336
		Диаметр выхлопной трубы- 0,08м
		Высота выхлопной трубы – 2,0м
7	Насосный блок буровой установки	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 95.9
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 1102
		Количество рабочих часов в году. = 336
		Диаметр выхлопной трубы- 0,08м
		Высота выхлопной трубы – 2,0м
8	Дизельная электростанция буровой установки	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 55.87
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 494
		Количество рабочих часов в году. = 336
		Диаметр выхлопной трубы- 0,1м
0	TT	Высота выхлопной трубы – 2,0м
9	Цементировочный агрегат	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 1.12
		Эксплуатационная мощность стационарной дизельной установки, кВт, 176.5
		Количество рабочих часов в году. = 336
		Диаметр выхлопной трубы- 0,08м
		Высота выхлопной трубы – 2,0м
10	Емкость для топлива буровой	Нефтепродукт: Дизельное топливо
10	Емкость для топлива оуровой	Количество закачиваемого в резервуар
		нефтепродукта в осенне-зимний период, м3= 84.32
		Количество закачиваемого в резервуар
		нефтепродукта в весенне-летний период, м3 =
		84.32
		Количество рабочих часов в году. = 336
11	Дизельная электростанция для выработки	Нефтепродукт: Дизельное топливо
' '	электроэнергии	Расход топлива стационарной дизельной
	- Mentipooneprini	установки за год, т, 56.736
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 372
		Количество рабочих часов в году. = 336
		Диаметр выхлопной трубы- 0,1м
		promise in the contract of the

-		
		Высота выхлопной трубы – 2,0м
12	Передвижная паровая установка	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 38.4
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 1.7
		Количество рабочих часов в году. = 336
		Диаметр выхлопной трубы- 0,08м
		Высота выхлопной трубы – 2,0м
PA	БОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТА	(ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ АНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.
202	5г. − 6 скв.	
202	5г. – 1 скв ввод из консервации нагнетательной с	кважины
	6г. – 6 скв.	
13	Дизельный двигатель	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 3.8
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 392
		Количество рабочих часов в году. = 240
		Диаметр выхлопной трубы- 0,2м
		Высота выхлопной трубы – 2,0м
14	Дизельный-генератор	Нефтепродукт: Дизельное топливо
14	дизельный-тенератор	Расход топлива стационарной дизельной
		установки за год, т, 8.36
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 320
		Количество рабочих часов в году. = 240
		Диаметр выхлопной трубы- 0,2м
15	2	Высота выхлопной трубы – 2,0м
13	Земляные работы: выемка и погрузка	п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов
		Материал: Щебень из осад. пород крупн. от 20мм
		и более
		Суммарное количество перерабатываемого
		материала, т/год, = 3000
		Материал: Песок
		Суммарное количество перерабатываемого
		материала, т/год, = 3000
		Материала, 1710д, — 3000 Материал: Песчано-гравийная смесь (ПГС)
		Суммарное количество перерабатываемого
		материала, т/год, = 3000
16	Земляные работы: временное хранение грунта	п.3.2. Статическое хранение материала
10	земылиые расоты. временное хранение грунта	Материал: Щебень из осад. пород крупн. от 20мм
		и более
		п.3.2. Статическое хранение материала
		Материал: Песчано-гравийная смесь (ПГС)
		п.3.2. Статическое хранение материала
		Материал: Песок
		Количество рабочих часов в году. = 240
17	Сварочные работы	Вид сварки: Ручная дуговая сварка сталей
1 /	Chapo mine pacorni	штучными электродами
		Электрод (сварочный материал): УОНИ-13/45
		Расход сварочных материалов, кг/год, = 7
		Электрод (сварочный материал): МР-3
		Расход сварочных материалов, кг/год, = 2
1.0	Поутоворину в побетия	Количество рабочих часов в году. = 240
18	Покрасочные работы	Марка ЛКМ: Грунтовка ГФ-021
		Фактический годовой расход ЛКМ, тонн, = 0.0005
		Марка ЛКМ: Растворитель Р-4

		T
		Фактический годовой расход ЛКМ, тонн, = 0.0009
		Фактический годовой расход ЛКМ, тонн, = 0.0044
		Марка ЛКМ: Лак БТ-99
10	П	Количество рабочих часов в году. = 24
19	Лакокрасочные работы	Фактический годовой расход ЛКМ, тонн, = 0.00018
		Марка ЛКМ: Эмаль ПФ-115
20	C	Количество рабочих часов в году. = 24 Количество рабочих часов в году. = 24
20	Снятие грунта	Вид работ: Выемочно-погрузочные работы
		Количество перерабатываемой экскаватором
		породы, т/час, = 313.87
21	Планировка площадки	Количество рабочих часов в году. = 240
	тыштровки площидки	п.3.1. Погрузочно-разгрузочные работы,
		пересыпки пылящих материалов
		Материал: Глина
		Суммарное количество перерабатываемого
		материала, т/год, = 62648
		п.3.1. Погрузочно-разгрузочные работы,
		пересыпки пылящих материалов
		Материал: Глина
		Суммарное количество перерабатываемого
		материала, т/год, = 62648
		п.3.1. Планировка
		Материал: Глина
		Суммарное количество перерабатываемого
		материала, т/год, = 62648
22	Трамбовка грунта	Вид работ: Выемочно-погрузочные работы
		Количество перерабатываемой экскаватором
		породы, т/час, = 261.3
23	Птомую ормо разлито	Количество рабочих часов в году. = 240 п.3.1. Погрузочно-разгрузочные работы,
23	Планировка грунта	пересыпки пылящих материалов
		Материал: Вскрышные породы
		Суммарное количество перерабатываемого
		материала, т/год, = 62648
		Количество рабочих часов в году. = 240
24	Емкость масла	Нефтепродукт: Масла
		Расчет выбросов от резервуаров
		Количество закачиваемого в резервуар
		нефтепродукта в осенне-зимний период, м3,=
		0.2511
		Количество закачиваемого в резервуар
		нефтепродукта в весенне-летний период, м3, =
		0.2511 Количество рабочих часов в году. = 240
25	Емкость отработанного масла	Количество расочих часов в году. – 240 Нефтепродукт: Отработанное масло
23	Emkoeth ofpaootamnoro macha	Расчет выбросов от резервуаров
		Количество закачиваемого в резервуар
		нефтепродукта в осенне-зимний период, м3, = 0.07
		Количество закачиваемого в резервуар
		нефтепродукта в весенне-летний период, м3, =
		0.07
		Количество рабочих часов в году. = 240
26	Емкость для шлама 4м3	Количество рабочих часов в году. = 240
27	Дегазатор бурового раствора	Количество рабочих часов в году. = 240
28	Установка подачи топливо (насос)	Количество рабочих часов в году. = 240
	РАСЧЕТ ВАЛОВЫХ ВЫБР	осов при испытании
B 2	025 году 6 скважин: №№ 102, 111, 112, 114, 118, 1	19
	025 году 6 скважин. №№ 102, 111, 112, 114, 116, 1 026 году 6 скважин: №№ 103, 104, 106, 107, 109, 1	
29	Буровой станок	Нефтепродукт: Дизельное топливо
	I ~ I	

		дизельной установки, кВт, 100
		Эксплуатационная мощность стационарной лизельной установки кВт 100
		Количество рабочих часов в году. = 240
		Диаметр выхлопной трубы- 0,4м
		Высота выхлопной трубы – 3,0м
32	ДЭС	Нефтепродукт: Дизельное топливо
		Расход топлива стационарной дизельной
		установки за год, т, 110,5
		Эксплуатационная мощность стационарной
		дизельной установки, кВт, 250
		Количество рабочих часов в году. = 240
		Диаметр выхлопной трубы- 0,4м
		Высота выхлопной трубы – 3,0м
33	Емкость для хранения дизтоплива	Нефтепродукт, = Дизельное топливо
		Количество закачиваемой в резервуар жидкости в
		осенне-зимний период, т, = 234.0725
		Количество закачиваемой в резервуар жидкости в
		весенне-летний период, т, = 234.0725
34	Блок манифольд	Запорно-регулирующая арматура (легкие
		углеводороды, двухфазные среды) – 8шт.
		Фланцевые соединения (легкие углеводороды,
		Фланцевые соединения (легкие углеводороды, двухфазные среды) – 16шт.
		Фланцевые соединения (легкие углеводороды, двухфазные среды) – 16шт. Предохранительные клапаны (легкие жидкие
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт.
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год
35	Насос для перекачки дизельного топлива - 5шт.	Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования,
35	Насос для перекачки дизельного топлива - 5шт.	Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240
35	Насос для перекачки дизельного топлива - 5шт.	Фланцевые соединения (легкие углеводороды, двухфазные среды) – 16шт. Предохранительные клапаны (легкие жидкие углеводороды) – 2шт. Время работы – 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо
35	Насос для перекачки дизельного топлива - 5шт.	Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства
35	Насос для перекачки дизельного топлива - 5шт.	Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала
35	Насос для перекачки дизельного топлива - 5шт. Емкость для отработанного масла	Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, = 1
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, = 1 Количество закачиваемой в резервуар жидкости в
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, = 1
		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, = 1 Количество закачиваемой в резервуар жидкости в
	Емкость для отработанного масла	Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, = 1 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, = 1 Время работы — 240 час/год
36		Фланцевые соединения (легкие углеводороды, двухфазные среды) — 16шт. Предохранительные клапаны (легкие жидкие углеводороды) — 2шт. Время работы — 240 час/год Время работы одной единицы оборудования, час/год, = 240 Нефтепродукт: Дизельное топливо Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала Нефтепродукт, = Масла Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, = 1 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, = 1

Срок начала работ — <u>декабрь 2051г;</u> завершения работ — <u>февраль 2052г.</u> Скважины №102, 104, 109, 106, 107, 103, 118, 111, 124, 125, 126, 127, 128, 129, 130, 131, 1H, 10, 7.

38	Дизельная электростанция (ДЭС) для	Нефтепродукт: Дизельное топливо				
	освещения	Расход топлива стационарной дизельной				
		установки за год, т, 100,7				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 100				
		Количество рабочих часов в году. = 1847				
		Диаметр выхлопной трубы- 0,5м				
20	T	Высота выхлопной трубы – 5,0м				
39	Дизельный двигатель ЯМЗ-238 (Подъемный	Нефтепродукт: Дизельное топливо				
	агрегат УПА-60)	Расход топлива стационарной дизельной				
		установки за год, т, 59,28				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 176				
		Количество рабочих часов в году. = 1847 Диаметр выхлопной трубы- 0,5м				
40	Ливан или прирадан дМ2 229 (Пангамили	Высота выхлопной трубы – 5,0м				
40	Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)	Нефтепродукт: Дизельное топливо Расход топлива стационарной дизельной				
	arperar yrra-ou)					
		установки за год, т, 59,28				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 176 Количество рабочих часов в году. = 1847				
		Количество расочих часов в году. – 1847 Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
41	Дизельный двигатель Цементировочного	Нефтепродукт: Дизельное топливо				
41	Дизельный двигатель Цементировочного агрегата ЦА-320	Расход топлива стационарной дизельной				
	агрегата ЦА-320	установки за год, т, 21,28				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 176				
		Количество рабочих часов в году. = 1847				
		Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
42	Дизельный двигатель Цементировочного	Нефтепродукт: Дизельное топливо				
'-	агрегата ЦА-320	Расход топлива стационарной дизельной				
	arperara Arr 320	установки за год, т, 21,28				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 176				
		Количество рабочих часов в году. = 1847				
		Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
43	Агрегат сварочный дизельный	Нефтепродукт: Дизельное топливо				
		Расход топлива стационарной дизельной				
		установки за год, т, 0,57				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 37				
		Количество рабочих часов в году. = 1847				
		Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
44	Агрегат сварочный дизельный	Нефтепродукт: Дизельное топливо				
		Расход топлива стационарной дизельной				
		установки за год, т, 0,57				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 37				
		Количество рабочих часов в году. = 1847				
		Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
45	Цементосмесительная машина (СМН)	Нефтепродукт: Дизельное топливо				
		Расход топлива стационарной дизельной				
		установки за год, т, 32,49				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 176				
		Количество рабочих часов в году. = 1847				

		Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
46	Цементосмесительная машина (СМН)	Нефтепродукт: Дизельное топливо				
		Расход топлива стационарной дизельной				
		установки за год, т, 32,49				
		Эксплуатационная мощность стационарной				
		дизельной установки, кВт, 176				
		Количество рабочих часов в году. = 1847				
		Диаметр выхлопной трубы- 0,5м				
		Высота выхлопной трубы – 5,0м				
47	Емкость для дизельного топлива	Нефтепродукт, = Дизельное топливо				
		Количество закачиваемой в резервуар жидкости в				
		осенне-зимний период, т, = 163,97				
		Количество закачиваемой в резервуар жидкости в				
		весенне-летний период, т, = 163,97				
		Количество рабочих часов в году. = 1847				
48	Сварочные работы	Вид сварки: Ручная дуговая сварка сталей				
		штучными электродами				
		Электрод (сварочный материал): МР-4				
		Расход сварочных материалов, кг/год, = 18				
		Количество рабочих часов в году. = 120				
49	Газосварочные работы	Количество рабочих часов в году. = 194				
	1	Вид сварки: Газовая сварка стали с				
		использованием пропан-бутановой смеси				
		Расход сварочных материалов, кг/год, = 126				
50	Узел приготовление цементного раствора	Количество рабочих часов в году. = 1847				
	1 1	Материал: Цемент				
		Количество отгружаемого (перегружаемого)				
		материала, т/год, = 120				
51	Насос подачи ГСМ к дизелям	Нефтепродукт: Дизельное топливо				
		Тип нефтепродукта и средняя температура				
		жидкости:				
		Наименование аппаратуры или средства				
		перекачки: Насос центробежный с одним				
		торцевым уплотнением вала				
		Общее количество аппаратуры или средств				
		перекачки, шт., = 1				
		Время работы одной единицы оборудования,				
		час/год, = 1847				
52	Пересыпка инертных материалов	Вид работ: Расчет выбросов при погрузочно-				
	1 1	разгрузочных работах				
		Материал: Щебенка				
		Количество отгружаемого (перегружаемого)				
		материала, т/год, = 30				
53	Покрасочные работы	Фактический годовой расход ЛКМ, тонн, =				
		0.00018				
		Марка ЛКМ: Эмаль ПФ-115				
54	Пыление при работе автогрейдера	Количество рабочих часов в году. = 48				
55	Пыление при работе бульдозера	Количество рабочих часов в году. =120				
56	Пыление при работе экскаватора	Количество рабочих часов в году. =120				
57	Разработка грунта экскаваторами	Количество рабочих часов в году. =17.61				
58	Выемка грунта бульдозером	Количество рабочих часов в году. =20				
		i iv				

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

Таблица 1.8.1 Перечень загрязняющих веществ, выбрасываемых в атмосферу при смр (мобилизация, монтаж), подготовительные работы к бурению, бурение и крепление

PPA v3.0 TOO "Timal Consulting Group"

Таблица 3.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению

Бурение и крепление

2027г. – 2 скв.

2028г. – 2 скв.

2029г. – 4 скв.

2030г. – 2 скв.

2027г. – 2 скв.												
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК			
1	2	3	4	5	6	7	8	9	10			
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,00606	0,003146	0,07865			
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,00064	0,000332	0,332			
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	12,07071556	18,235104	455,8776			
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	1,961491278	2,9632044	49,38674			
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,808966668	1,252924	25,05848			
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	1,794038888	2,66216	53,2432			
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,0000364	2,4948E-05	0,0031185			
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	9,882855556	15,117312	5,039104			
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000018554	2,9708E-05	29,708			
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,197808334	0,296916	29,6916			

2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	1			4	4,77800249	7,29602905	7,29602906
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	11,113438	4,637842	46,37842
				•	Β С Ε Γ Ο :	42,614072	52,465024	702,092942
		2	028г. – 2 скв.					
					Β С Ε Γ Ο :	42,614072	52,465024	702,092942
		2	029г. – 4 скв.					
					ΒСΕΓΟ:	85,22814	104,93	1404,186
		2	030г. – 2 скв.					
					Β С Ε Γ Ο :	42,614072	52,465024	702,092942

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

Таблица 1.8.2 Перечень загрязняющих веществ, выбрасываемых в атмосферу работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин) в 2025-2026гг.

PPA v3.0 TOO "Timal Consulting Group"

Таблица 3.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин) в 2025-2026гг.

2025г. – 6 скв.

2025г. – 1 скв.- ввод из консервации нагнетательной скважины

2026г. - 6 скв.

		2025г. – 1 с	скв ввод из к	онсервации н	лгнетате ль	ной скважины	1		
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,000089	0,00009434	0,0023585
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,00000767	0,0000099	0,0099
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	1,518943334	0,3891284	9,72821
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,246828291	0,063233365	1,05388942
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,098888888	0,02432	0,4864
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,237333334	0,0608	1,216
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,0000332416	0,0000559608	0,0069951
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	1,226333022	0,3162531	0,1054177
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,00000625	0,00000605	0,00121

0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,2	0,03		2	0,0000275	0,0000231	0,00077
0616	Диметилбензол (смесь о-, м-, п-изомеров) (203)	0,2			3	0,04112	0,0026305	0,0131525
0621	Метилбензол (349)	0,6			3	0,03444	0,000558	0,00093
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0,000001		1	0,000002374	0,000000669	0,669
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,1			4	0,00667	0,000108	0,00108
1325	Формальдегид (Метаналь) (609)	0,05	0,01		2	0,023733334	0,00608	0,608
1401	Пропан-2-он (Ацетон) (470)	0,35			4	0,01444	0,000234	0,00066857
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)			0,05		0,0004	0,000004111	0,00008222
2752	Уайт-спирит (1294*)			1		0,012494	0,0001391	0,0001391
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			4	0,59783875884	0,2937620392	0,29376204
2902	Взвешенные частицы (116)	0,5	0,15		3	0,00917	0,0006635	0,00442333
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	0,69675167	8,2516418	82,516418
	Rususerunekiis inceroposigeniini) (151)	I	<u> </u>		Β С Ε Γ Ο :	4,765550667	9,40974594	96,7188065
			2025г. – 6 ск	6.		-,	.,	
					ΒСΕΓΟ:	28,5933	56,45848	580,3128
			2026г. – 6 ск	в.		-0,0200	2 3,	
					Β С Ε Γ Ο :	28,5933	56,45848	580,3128

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

Таблица 1.8.3 Перечень загрязняющих веществ, выбрасываемых в атмосферу при испытании ЭРА v3.0 TOO "Timal Consulting Group"

Таблица 3.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу при испытании

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol" при испытании

В 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119. В 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

	10ду 0 скважий. 32232 100, 104, 100, 107, 1		осы по вещес	твам на 1 объ	ьект при исі	пытании			
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	2,227199999	14,98064	374,516
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,361920001	2,434354	40,5725667
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,145	0,93629	18,7258
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,347999999	2,340725	46,8145
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,00018773968	0,0005491536	0,0686442
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	1,798	12,17177	4,05725667
0415	Смесь углеводородов предельных С1-С5 (1502*)				50		0,03544648	0,3879118032	0,00775824
0416	Смесь углеводородов предельных С6-С10 (1503*)				30		0,0152864	0,1469882688	0,00489961
0602	Бензол (64)		0,3	0,1		2	0,0001358	0,0018165	0,018165
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,00004268	0,0005709	0,0028545
0621	Метилбензол (349)		0,6			3	0,00008536	0,0011418	0,001903
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000003479	0,000025749	25,749
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,034799999	0,2340725	23,40725
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)				0,05		0,0000001	0,0000729	0,001458

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)		1		4	0,89957114032	5,7024142464	5,70241425
			•	•	Β С Ε Γ Ο :	5,865679177	39,3393428	539,65047
	Выбр	росы по вещеск	пвам на 2025г. –	- 6 скв. (6 объеі	ктов) при испыта	нии		
					ВСЕГО:	35,1941	236,036	3237,9
	Выбр	росы по вещест	твам на 2026г. –	- 6 скв. (6 объеі	ктов) при испыта	нии		
					Β С Ε Γ Ο :	35,1941	236,036	3237,9

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrob»

Таблица 1.8.4 Перечень загрязняющих веществ, выбрасываемых в атмосферу при ликвидации на 19 скв.

ЭРА v3.0 TOO "Timal Consulting Group"

Таблица 3.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу при ликвидации на 19 скв.

Атырау, OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol" при ликвидации на 19 скв.

Скважины №102, 104, 109, 106, 107, 103, 118, 111, 124, 125, 126, 127, 128, 129, 130, 131, 1H, 10, 7.

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности 3В	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,0000275	0,0001782	0,004455
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,000003056	0,0000198	0,0198
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	2,635744413	10,4985744	262,46436
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,428308453	1,7060183	28,4336383
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,174944441	0,65702	13,1404
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,407944447	1,63913	32,7826
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,00003232768	0,0002093644	0,02617055
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	2,138888888	8,531	2,84366667
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,000001111	0,0000072	0,00144
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,01125	0,0000405	0,0002025
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000004123	0,000018035	18,035
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,041616669	0,164084	16,4084
2752	Уайт-спирит (1294*)				1		0,01125	0,0000405	0,0000405

2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1		4	1,01673549632	4,0132636356	4,01326364
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1	3	0,278998	0,1138464	1,138464
	ВСЕГО:				7,145748925	27,3234503	379,311901

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 3.3

Таблица 1.8.7 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов При строительно-монтажных работах (мобилизация, монтаж), подготовительных работах к бурению, при бурении и крепление

3PA v3.0 TOO "Timal Consulting Group"

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов при строительно-монтажных работах (мобилизация, монтаж), подготовительных работах к бурению, при бурении и креплпнии

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

		Источник вы загрязняющих		Числ		Номер			смеси на при мак	ры газовозд а выходе из симально р нагрузке	трубы	точеч источн го к	рдинаты карте-с чного пика /1- онца йного	хеме,м. 2-го н линеі	сонца йного ника /	Наименова ние газоочистн	Вещество,	Коэффи	Среднеэксп			Выбро	сы загрязн вещества		
Произ - водст	Цех			числ о часов работ	Наименовани е источника выброса вредных	источн ика выброс	Высота источн ика выброс	Диаме тр устья трубы,		патрузке		/цеі площа	нника нтра адного нника	шир площа	ина оина адного иника	ых установок, тип и	по которому производи тся	-циент обеспеч ен- ности	луа- тационная степень очистки/	Код вещест ва	Наименован ие вещества				Год дости- жения
во		Наименование	Количест во, шт.	ы в году	вредных веществ	ов на карте- схеме	ов, м	м	Скорос ть, м/с (T = 293.15 К, P= 101.3 кПа)	Объемн ый расход, м3/с (Т = 293.15 K, P= 101.3 кПа)	Темп е- ратур а смеси , оС	X1	Y1	X2	Y2	мероприят ия по сокращени ю выбросов	гся газоочист ка	газо- очистко й, %	максималь ная степень очистки, %	ва		г/с	мг/нм3	т/год	ндв
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
002		Силовой привод буровой установки	1	336	Выхлопная труба	0001	при строито 2	ельно-мон 0,08		лботах (мобі 1,592223 4		, монтаж 7573		овительн	ых работ	ах к бурению,	при бурении	и креплпни	<u> </u>	0301	Азота (IV) диоксид (Азота диоксид) (4)	1,16266 67	1933,86	0,70496	2027- 2030
																				0304	Азот (II) оксид (Азота оксид) (6)	0,18893	314,254	0,11455	2027- 2030
																				0328	Углерод (Сажа, Углерод черный) (583)	0,07569 44	125,903	0,04406	2027- 2030
																				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,18166 67	302,167	0,11015	2027- 2030
																					Углерод оксид (Окись углерода, Угарный газ) (584)	0,93861	1561,19 6	0,57278	2027- 2030
																				0703	Бенз/а/пирен (3,4- Бензпирен) (54)	1,817E- 06	0,003	1,212E- 06	2027- 2030
																				1325	Формальдеги д (Метаналь) (609)	0,01816 67	30,217	0,01101 5	2027- 2030
																				2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на С); Растворитель РПК-265П)	0,43902 78	730,237	0,26436	2027- 2030
002		Насосный блок буровой установки	1	336	Выхлопная труба	0002	2	0,08	390,76	6,931436	450	8154	10470							0301	(10) Азота (IV) диоксид (Азота диоксид) (4)	2,6448	1010,52	3,4524	2027- 2030

																0304	Азот (II) оксид (Азота оксид) (6)	0,42978	164,21	0,56101 5	2027- 2030
																0328	Углерод (Сажа, Углерод	0,18366 67	70,175	0,23975	2027- 2030
																0330	черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,36733	140,35	0,4795	2027- 2030
																0337	Углерод оксид (Окись углерода, Угарный газ) (584)	2,204	842,101	2,877	2027- 2030
																0703	Бенз/а/пирен (3,4- Бензпирен) (54)	3,979E- 06	0,002	5,275E- 06	2027- 2030
																	Формальдеги д (Метаналь) (609)	0,04591 67	17,544		2027- 2030
																2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С) Растворитель		421,05	1,4385	2027- 2030
002	Дизельная	1	336	Выхлопная труба	0003	2	0,1	239,97	4,038154	450	7976	8516				0301	РПК-265П) (10) Азота (IV)	1,05386 67	691,16	1,78784	2027- 2030
	электростанц ия буровой установки			труоа					0								диоксид (Азота диоксид) (4)	67			2030
			1																		
																	Азот (II) оксид (Азота оксид) (6)	0,17125 33	112,313	0,29052 4	2027- 2030
																0328	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583)	0,06861	44,997	0,11174	2030 2027- 2030
																0328	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV)	0,06861		4	2030
																0328	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ)	0,06861 11 0,16466	44,997	0,11174 0,27935 1,45262	2030 2027- 2030 2027- 2030 2027- 2030
																0328	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Бенз/а/пирен (3,4-Бензпирен)	0,06861 11 0,16466 67	44,997 107,994	0,11174	2030 2027- 2030 2027- 2030 2027- 2030
																0328 0330 0337	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Бенз/а/пирен (3,4-Бензпирен) (54) Формальдеги д (Метаналь)	0,06861 11 0,16466 67 0,85077 78	44,997 107,994 557,967	0,11174 0,27935 1,45262 3,073E-06	2030 2027- 2030 2027- 2030 2027- 2030
																0328 0330 0337 0703	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Бенз/а/пирен (3,4-Бензпирен) (54) Формальдеги д (Метаналь) (609) Алканы С12-19 /в пересчете на С/	0,06861 11 0,16466 67 0,85077 78 1,647E- 06 0,01646 67 0,39794 44	44,997 107,994 557,967	0,11174 0,11174 0,27935 1,45262 3,073E- 06 0,02793 5	2027- 2030 2027- 2030 2027- 2030 2027- 2030
																0328 0330 0337 0703	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Бенз/а/пирен (3,4-Бензпирен) (54) Формальдеги д (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С) Растворитель	0,06861 11 0,16466 67 0,85077 78 1,647E- 06 0,01646 67 0,39794 44	44,997 107,994 557,967 0,001	0,11174 0,11174 0,27935 1,45262 3,073E- 06 0,02793 5	2027- 2030 2027- 2030 2027- 2030 2027- 2030 2027- 2030
002	Цементирово чный агрегат	1	336	Выхлопная труба	0004	2	0,08	7,67	0,081011	450	9240	8427				0328 0330 0337 0703 1325 2754	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Бенз/а/пирен (3,4-Бензпирен) (54) Формальдеги д (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С)	0,06861 11 0,16466 67 0,85077 78 1,647E- 06 0,01646 67 0,39794 44	44,997 107,994 557,967 0,001	0,11174 0,11174 0,27935 1,45262 3,073E- 06 0,02793 5	2030 2027- 2030 2027- 2030 2027- 2030 2027- 2030 2027- 2030

																	(Азота диоксид) (4)				
																0304	Азот (II) оксид (Азота оксид) (6)	0,06118 67	2000,24	0,00582	2027- 2030
																0328	Углерод (Сажа, Углерод черный) (583)	0,02451	801,382	0,00224	2027- 2030
																0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05883	1923,31 7	0,0056	2027- 2030
																0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,30397	9937,13	0,02912	2027- 2030
																0703	Бенз/а/пирен (3,4-Бензпирен) (54)	5,88E- 07	0,019	6,20E- 08	2027- 2030
																	Формальдеги д (Метаналь) (609)	0,00588	192,332	0,00056	2027- 2030
																2754	Алканы C12-19 /в пересчете на C/ (Углеводороды	06	4648,01	0,01344	2027- 2030
																	предельные C12-C19 (в пересчете на С). Растворитель РПК-265П) (10)				
002	Емкость для топлива буровой	1	336	Дыхательный клапан	0005	2	0,05	0,8	0,001570 8		8191	7357				0333	Сероводород (Дигидросуль фид) (518)	0,00001 82	11,586	1,2474E -05	2027- 2030
																	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С): Растворитель РПК-265П) (10)	18	4126,43	0,00444 253	2027- 2030
002	Дизельная электростанц ия для выработки	1	336	Выхлопная труба	0006	2	0,1	243,66	4,100758	450	8566	9307					Азота (IV) диоксид (Азота диоксид) (4)	0,7936		1,81555 2	2030
	электроэнерги и																Азот (II) оксид (Азота оксид) (6)	0,12896	83,285	72	2027- 2030
																	Углерод (Сажа, Углерод черный) (583)	0,05166 67	33,367	0,11347	2027- 2030
																0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,124	80,082	0,28368	2027- 2030
																0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,64066 67	413,755	1,47513 6	2027- 2030
																0703	Бенз/а/пирен (3,4-Бензпирен) (54)	1,24E- 06	0,0008	0,00000 312	2027- 2030
																1325	Формальдеги д (Метаналь) (609)	0,0124	8,008	0,02836	2027- 2030

																	2754	/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С).	67	193,531	0,68083	2027- 2030
002	Передвижная паровая установка	1	336	Выхлопная труба	0007	2	0,08	257,67	2,775453	450	8652	7806					0301	Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота	0,00389	3,713	1,32096	2027- 2030
																	0304	диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0,00063	0,603	0,21465	2027- 2030
																	0328	Углерод (Сажа, Углерод черный) (583)	0,00033	0,315	0,1152	2027- 2030
																	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,00051 94	0,496	0,1728	2027- 2030
																		Углерод оксид (Окись углерода, Угарный газ) (584)	0,0034	3,244	1,152	2027- 2030
																		Бенз/а/пирен (3,4-Бензпирен) (54)		0,00000	2,112E- 06	2027- 2030
																	1325	Формальдеги д (Метаналь) (609)	7,083E- 05	0,068	0,02304	2027- 2030
																	2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С)		1,622	0,576	2027- 2030
001	Пыление при	1	144	Неорганизова	6001	2					7051	7919	5	5			2908	Растворитель РПК-265П) (10)	0,0699		0,03624	2027-
001	пыление при подготовке площадки	1	144	неорганизова нный выброс	6001	2					7051	7919	3	3			2908	неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,0699		0,03624	2027-2030

001	Пыление при уплотнении грунта катками	1	144	Неорганизова нный выброс	6002	2			8932	10326	5	5			2908	Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,0699	0,036	24 20 2	027-
001	Пыление при работе автосамосвал а	1	144	Неорганизова нный выброс	6003	2			6233	9097	5	5			2908	пустраническ ая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторожден ий) (494)	2,16684	1,12	32 20 2	027-030
001	Пыление при работе бульдозеров и экскаваторов	1	144	Неорганизова нный выброс	6004	2			7701	10155	5	5				Пыль неорганическ ая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторожден ий) (494)	3,25	1,12	2	027- 030
001	Сварочный пост	1	144	Неорганизова нный выброс	6005	2			7380	9597	5	5			0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00303	0,001	57 20 3 2	027- 030
															0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00032	0,000	16 20 6 2	027- 030

TOO «M-Ali Petrol»

песок, клинкер, зола, кремнезем зола углей казахстанских месторождений (494)

Таблица 3.3

Таблица 1.8.8 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов работы

Работы при расконсервации скважин (подготовительные работы, монтаж установки КРС, работы по восстановлению скважин) в 2025-2026гг.

3PA v3.0 TOO "Timal Consulting Group"

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов работы при расконсервации скважин (подготовительные работы, монтаж установки КРС, работы по восстановлению скважин) в 2025-2026гг.

Атырау, С	DBOC "	Проект разраб. м/р Женгел	ьды ТОО "М	-Ali Petrol'	•																				
Произ- водство	Цех	Источник выделения заг веществ	рязняющих	Число часов работы в году	Наименование источника выброса вредных веществ	Номер источника выбросов на карте- схеме	Высота источника выбросов, м	Диаметр устья трубы, м	газо смеси тј ма	араметрь ввоздушн на выхо рубы при ксималы вой нагру	юй де из и	и кз точе п исто ка / коп лине п исто к /цен плоп оп	Коорди псточні арте-с: ечно го очни го очни са нтра щадн го очни са	ика на	а 1. го пца ейн го очн а / пна, рин цад го	Наимен ование газоочи стных установ ок, тип и меропр иятия по	Вещест во, по которо му произв одится газооч	Коэф фи- циен Т обесп ечен- ности газо-	Среднеэ ксплуа- тационн ая степень очистки / максим альная	Код веще ства	Наименов ание вещества	загр	Зыбрось язняюю веществ	цего	Год дост жені НД
		Наименование	Количест во, шт.						Скор ость, м/с (Т = 293.1 5 К, P= 101.3 кПа)	Объе мный расхо д, м3/с (T = 293.1 5 K, P= 101.3 кПа)	Те мпе - рат ура сме си, оС	X1	Y1	X 2	Y 2	сокращ ению выброс ов	истка	очист кой, %	степень очистки ,%			г/с	мг/н м3	т/год	
1	2	3	4	5	6	7	8	9	10	11	12	13		<u> </u>		17	18	19	20	21	22	23	24	25	26
		T=			Работы при расконсервации ске									влени	ію скв	ажин) в 20)25-2026гг.	1	1			0.000	****		T
003		Дизельный двигатель	1	240	Выхлопная труба	0008	2	0,2	11	0,345 5752	177	22 37 4	48 69							0301	Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод	0,836 2667 0,135 8933 0,054 4444	3988 ,89 648, 195 259, 693	0,121 6 0,019 76 0,007 6	
																				0330	черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,130 6667	623, 264	0,019	2025- 2026
																				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,675 1111	3220 ,198	0,098	2025- 2026
																				0703	Бенз/а/пир ен (3,4- Бензпирен) (54)	1,307 E-06	0,00	2,09E -07	2026
																				1325	Формальде гид (Метаналь) (609)	0,013 0667	62,3 26	0,001	2025- 2026

																	пересчете на С/ (Углеводо роды предельны е С12-С19 (в пересчете на С); Растворите ль РПК-	0,315 7778	1506 ,222	0,045 6	2025- 2026
003	Дизельный-генератор	1	240	Выхлопная труба	0009	2	0,2	8,88	0,614 0437	177	22 37 4	48 69				0301	265П) (10) Азота (IV) диоксид (Азота диоксид) (4)	0,682 6667	1832 ,565	0,267 52	2025- 2026
																0304		0,110 9333	297, 792	0,043 472	2025- 2026
																0328	Углерод (Сажа, Углерод черный)	0,044 4444	119, 308	0,016 72	2025- 2026
																	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,106 6667	286, 338	0,041	2025- 2026
																0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1111	,414	36	2025- 2026
																	Бенз/а/пир ен (3,4- Бензпирен) (54)	1,067 E-06	3	00046	2026
																	гид (Метаналь) (609)	0,010 6667	34	18	2025- 2026
																2754	Алканы С12-19 /в пересчете на С/ (Углеводо роды предельны е С12-С19 (в пересчете на С); Растворите ль РПК- 265П) (10)	0,257 7778	984	32	2025-2026
003	Земляные работы: выемка и погрузка	1	240	Неорганизованный выброс	6006	2					22 68 7	60 43	1	1		2908	Пыль неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый	0,016 68		0,017	2025-2026

														сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их месторожде ний) (494)				
003	Земляные работы: временное хранение грунта	1	240	Неорганизованный выброс	6007	2		25 66 1	12 85 1	1 1			2908	Пыль неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их месторожде ний) (494)		1,66	54 20 2	2025-2026
003	Сварочные работы	1	240	Неорганизованный выброс	6008	2		22	14	2 2			0123	Железо (II,	0,000	0,00	00 20	2025- 2026
		-		The property of the property o	3333			22 21 7	57					III) оксиды (пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	089	0943		
		-						21 7	57				0143	III) оксиды (пересчете на железо) (диЖелезо триоксид, Железа	7,67 E-06	0,00	000 20	2025-2026
								21 7	57				0143	III) оксиды (пересчете на железо) (диЖелезо триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327) Азота (IV) диоксид (Азота диоксид) (4)	7,67 E-06	0,00 009 0,00 0,00 008	00 20 99 2 00 20 84 2	2025-2026
								21 7	57				0301	III) оксиды (пересчете на железо) (диЖелезо триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	7,67 E-06 0,000 01 1,625 E-06	0,00 005 0,00 008 1,36 E-0	000 20 999 2 000 20 884 2 2655 20 2006 2	2025- 2026 2025- 2026 2025- 2026
								21 7	57				0301 0304 0337	III) оксиды (пересчете на железо) (диЖелезо триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота (Азота (Азота (Азота) (Азота (Азота) (Азота) (Азота (Азота) (Азота)	7,67 E-06 0,000 01 1,625 E-06	0,00 009 0,00 008	000 20 000 20 884 2 000 20 000 20 000 20 000 20	2025-2026

													0344	Фториды неорганиче ские плохо растворимы е - (алюминия фторид, кальция фторид, натрия гексафтора люминат) (Фториды неорганиче ские плохо растворимы е /в пересчете		0,0	00 20	025-2026
													2908	на фтор/) (615) Пыль неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их месторожде ний) (494)		0,0	00 20 298 2	0025-2026
003	Покрасочные работы	1	24	Неорганизованный выброс	6009	2		21 27 8		2	2			Диметилбе нзол (смесь о-, м-, п- изомеров) (203)	87			2026
														Метилбенз ол (349) Бутилацета т (Уксусной кислоты бутиловый эфир) (110)	0,034 44 0,006 67	0,0	00 20 58 2 00 20 08 2	025- 2026 025- 2026
														Пропан-2- он (Ацетон) (470)			34 2	2025- 2026
														Уайт- спирит (1294*)	0,001 244		86 2	2025-
002	Hanayaaaayy	1	24	Haansanaa	6010	2		2/	14	1	1			Взвешенны е частицы (116)	0,009		35 2	2025-
003	Лакокрасочные работы	1	24	Неорганизованный выброс	6010	2		26 05 2	73		1			Диметилбе нзол (смесь о-, м-, п- изомеров) (203)	0,011		05 2	2025- 2026
													2752	Уайт- спирит (1294*)	0,011	0,0	00 20	2025- 2026

003	Снятие грунта	1		Неорганизованный выброс	6011	2			46	56	1 1			2908	неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их месторожде ний) (494)	0,167		2025-2026
003	Планировка площадки		240	Неорганизованный выброс	6012	2			19 55 6	12 77 3				2908	Пыль неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их месторожде ний) (494)	0,276 4	0,505	2026
003	Трамбовка грунта	1	240	Неорганизованный выброс	6013	2				95 64				2908	Пыль неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их	0,139 36	0,045	2025-2026

															месторожде ний) (494)			
003	Планировка грунта	1	240	Неорганизованный выброс	6014	2			22 37 4	48 69	1	1		2908	Пыль неорганиче ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производст ва - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанск их	0,012	6,014 208	2025- 2026
003	Емкость дизтопливо 6	1	240	Неорганизованный выброс	6015	2			22 37 4	48 69	2	2		0333	ний) (494) Сероводор од (Дигидрос ульфид) (518)	2,134 E-06	2,200 8E-06	
														2754	Алканы С12-19 /в пересчете на С/ (Углеводо роды предельны е С12-С19 (в пересчете на С); Растворите ль РПК-265П) (10)	0,000 7599	0,000 7838	2025- 2026
003	Емкость масла	1	240	Неорганизованный выброс	6016	2			22 37 4	48 69	2	2		2735	Масло минерально е нефтяное (веретенное , машинное, цилиндрово е и др.) (716*)	0,000	3,215 E-06	2025- 2026
003	Емкость отработанног масла) 1	240	Неорганизованный выброс	6017	2			22 37 4	48 69	2	2		2735	Масло минерально е нефтяное (веретенное , машинное, цилиндрово е и др.) (716*)	0,000	8,96E -07	2025- 2026
003	Емкость для шлама 4м	3 1	240	Неорганизованный выброс	6018	2			22 37 4	48 69	2	2		2754	Алканы С12-19 /в пересчете на С/ (Углеводор оды предельные	0,004 4444	0,121	2025- 2026

															С12-С19 (в пересчете на С); Растворите ль РПК- 265П) (10)				
003	Дегазатор бурового раствора	1	240	Неорганизованный выброс	6019	2			22 37 4	48 69	2	2			Алканы С12-19 /в пересчете на С/ (Углеводор оды предельные С12-С19 (в пересчете на С); Растворите ль РПК- 265П) (10)	0,008			2025- 2026
003	Установка подачи топливо (насос) - 2шт.	2	480	Неорганизованный выброс	6020	2			22 37 4	48 69	2	2		0333	Сероводоро д (Дигидросу льфид) (518)	3,111 E-05	0	0,000 5376	2025- 2026
															Алканы С12-19 /в пересчете на С/ (Углеводор оды предельные С12-С19 (в пересчете на С); Растворите ль РПК- 265П) (10)	0,011 0789	1	0,019 4624	2025- 2026

Таблица 3.3

Таблица 1.8.9 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов

При испытании

3PA v3.0 TOO "Timal Consulting Group"

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов при испытании

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

		З "Проект разраб.	·										чника	инаты а на ка ие,м.											
Произ - водст	Цех	Источник вы загрязняющих		Число часов работ ы в	Наименование источника выброса вредных	Номер источни ка выбросо в на	Высота источни ка выбросо	Диаме тр устья трубы,	смеси на при мак	ры газовозду а выходе из тј симально раз нагрузке	рубы	источ /1-го в линей источ /цен площа	ника сонца ного ника гра дного	2-го к линей источ / дли шир площа источ	йного иника ина, оина адног	Наименова ние газоочистн ых установок, тип и	Вещество, по которому производи тся	Коэффи- циент обеспече н-ности газо-	Среднеэкспл уа- тационная степень очистки/	Код вещест ва	Наименовани е вещества	Выброс	ы загрязі вещества	няющего а	Год дости- жения
во		Наименование	Количест во, шт.	году	веществ	карте- схеме	B, M	M	Скорос ть, м/с (T = 293.15 K, P= 101.3 кПа)	Объемн ый расход, м3/с (Т = 293.15 K, P= 101.3 кПа)	Темп е- рату ра смес и, оС	X1	Y1	X2	Y2	мероприят ия по сокращени ю выбросов	газоочистк а	очистко й, %	максимальн ая степень очистки, %			r/c	мг/н м3	т/год	- НДВ
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001	1	Буровой станок	1	240	Выхлопная	1001	3	0,4	18	14,52674	450	ри исп	ытани 0	и						0301	Азота (IV)	0,6272	114,3	4,59392	2025-
		31			труба					29											диоксид (Азота диоксид) (4)		44		2026
																				0304	Азот (II) оксид (Азота оксид) (6)	0,10192	18,58 1	0,746512	2025- 2026
																				0328	Углерод (Сажа, Углерод черный) (583)	0,04083	7,444	0,28712	2025- 2026
																				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,098	17,86 6	0,7178	2025- 2026
																				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,50633	92,30 9	3,73256	2025- 2026
																					Бенз/а/пирен (3,4- Бензпирен) (54)		2		2026
																				1325	(Метаналь) (609)	0,0098	1,787	0,07178	2026
																				2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,23683	43,17	1,72272	2025- 2026

001	Дизельный двигатель Цементировоч ного агрегата	1	240	Выхлопная труба	1002	3	0,5	14,17	14,52644 18	450	0	0				0301	Азота (IV) диоксид (Азота диоксид) (4)	0,85333	155,5 73	4,59392	2025- 2026
	nore appraisa															0304	Азот (II) оксид (Азота оксид) (6)	0,13866 67	25,28 1	0,746512	2025- 2026
																0328	Углерод (Сажа, Углерод черный) (583)	0,05555 56	10,12	0,28712	2025- 2026
																0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,13333	24,30	0,7178	2025- 2026
																0337		0,68888	125,5 93	3,73256	2025- 2026
																0703	Бенз/а/пирен (3,4- Бензпирен) (54)	1,333E- 06	2	7,896E-06	2025- 2026
																1325	Формальдегид (Метаналь) (609)	0,01333	2,431	0,07178	2025- 2026
																2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на С); Растворитель РПК-265П)	0,32222 22	58,74	1,72272	2025- 2026
001	Дизель генератор	1	240	Выхлопная труба	1003	3	0,4	14,17	4,821956 6	127	0	0				0301	Азота (IV) диоксид (Азота диоксид) (4)	0,21333 33	64,82	2,2568	2025- 2026
																0304	Азот (II) оксид (Азота оксид) (6)	0,03466 67	10,53 4	0,36673	2025- 2026
																0328	Углерод (Сажа, Углерод черный) (583)	0,01388 89	4,22	0,14105	2025- 2026
																	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,03333	10,12	0,352625	2025- 2026
																	(Окись углерода, Угарный газ) (584)	0,17222 22	52,33	1,83365	2025- 2026
																0703	Бенз/а/пирен (3,4- Бензпирен) (54)	3,33E- 07	1	3,879E-06	2025- 2026
																1325	Формальдегид (Метаналь) (609)	0,00333 33	1,013	0,0352625	2025- 2026
																2754		0,08055	24,47	0,8463	2025- 2026

																		пересчете на С); Растворитель РПК-265П) (10)				
001	дэс	1	240	Выхлопная труба	1004	3	0,4	14,17	11,18151 83	450	0	0					0301	Азота (IV) диоксид (Азота диоксид) (4)	0,53333	126,3	3,536	2025- 2026
																	0304	Азот (II) оксид (Азота оксид) (6)	0,08666 67	20,52	0,5746	2025- 2026
																	0328	Углерод (Сажа, Углерод черный) (583)	0,03472 22	8,224	0,221	2025- 2026
																	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,08333	19,73	0,5525	2025- 2026
																	0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,43055 56	101,9 77	2,873	2025- 2026
																	0703	Бенз/а/пирен (3,4- Бензпирен) (54)	8,33E- 07	2	6,078E-06	2025- 2026
																	1325	Формальдегид (Метаналь) (609)	0,00833	1,974	0,05525	2025- 2026
																	2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на С); Растворитель РПК-265П)	0,20138 89	47,69 9	1,326	2025- 2026
001	Емкость для хранения дизтоплива	1	240	Неорганизованн ый выброс	6101	2					0	0	2	2			0333	Сероводород (Дигидросуль фид) (518)	1,22E- 06		2,5536E- 06	2025- 2026
																	2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на С); Растворитель РПК-265П)	0,00043 44		0,0009094	2025- 2026
001	Блок манифольд	1	240	Неорганизованн ый выброс	6102	2					0	0	2	2			0415	Смесь углеводородов предельных C1-C5 (1502*)	0,00733		0,0118444	2025- 2026
																		Смесь углеводородов предельных С6-С10 (1503*)	0,00488		0,0078962	2025- 2026
001	Насос для перекачки дизельного топлива - 5шт.	5	1200	Неорганизованн ый выброс	6103	2					0	0	2	2			0333	Сероводород (Дигидросуль фид) (518)	0,00016		0,0002352	2025- 2026

															2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,05813 68	0,0837648	2026
001	Емкость для отработанного масла	1	240	Неорганизованн ый выброс	6108	2			0	0	2	2			2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0,00000	0,0000729	2026
001	Емкость для сбора нефти V = 50 м3 - 3 ед.	3	720	Неорганизованн ый выброс	6109	2			0	0	2	2			0333	Сероводород (Дигидросуль фид) (518)	2,328E- 05	0,0003114	2025- 2026
															0415	Смесь углеводородов предельных С1-С5 (1502*)	0,02811 45	0,3760674	2026
															0416	Смесь углеводородов предельных С6-С10 (1503*)	0,01039 84	0,139092	2025- 2026
															0602	Бензол (64)	0,00013 58	0,0018165	2025- 2026
															0616	Диметилбензо л (смесь о-, м-, п- изомеров) (203)	4,268E- 05	0,0005709	2025- 2026
															0621	Метилбензол (349)	8,536E- 05	0,0011418	2025- 2026

Таблица 3.3

Таблица 1.8.10 Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов

При ликвидации

3PA v3.0 TOO "Timal Consulting Group"

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов при ликвидации

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

		проект разрао.	<u> </u>									_	инаты ис сарте-сх		са на										
Прои 3- водст во	Цех	Источник выд загрязняющих		Числ о часов работ ы в	Наименовани е источника выброса вредных	Номер источни ка выброс ов на	Высота источни ка выброс	Диаме тр устья трубы,	смеси на при мако	ры газовозд выходе из симально р: нагрузке	трубы	/1-го п линеі источ /цен площа	ника конца и́ного ника тра	2-1 КОВ ЛИНЕ С ИСТО а / ДЛ ШИР ПЛОШ Г ИСТО	ца йног іник ина, ина адно іник	Наименова ние газоочистн ых установок, тип и мероприят	Вещество, по которому производи тся	Коэффи -циент обеспеч ен- ности газо-	Среднеэксп луа- тационная степень очистки/ максимальн	Код вещест ва	Наименование вещества	Выбро	сы загрязн вещества		Год дости- жения НДВ
		Наименование	Количест во, шт.	году	веществ	карте- схеме	ов, м	М	Скорос ть, м/с (T = 293.15 K, P= 101.3 кПа)	Объемн ый расход, м3/с (Т = 293.15 К, Р= 101.3 кПа)	Темп е- рату ра смес и, оС	X1	¥1	X2	Y2	ия по сокращени ю выбросов	газоочист ка	очистко й, %	ая степень очистки, %			г/с	мг/нм3	т/год	
1	2	3	4	5	6	7	8	9	10	11	12	13 при лик	14	15	16	17	18	19	20	21	22	23	24	25	26
001		Дизельная электростанция (ДЭС) для освещения	1	1847	Выхлопная труба	0010	5	0,5	0,27	0,966435	181	1058 87	1154 31							0301	Азота (IV) диоксид (Азота диоксид) (4)	0,21333	367,096	3,2224	2051- 2052
																					Азот (II) оксид (Азота оксид) (6)	0,03466 67	59,653	0,52364	2052
																				0328	Углерод (Сажа, Углерод черный) (583)	0,01388 89	23,899	0,2014	2051- 2052
																				0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,03333	57,359	0,5035	2051- 2052
																				0337	Углерод оксид (Окись углерода Угарный газ) (584)	0,17222 22	296,353	2,6182	2051- 2052
																				0703	Бенз/а/пирен (3,4- Бензпирен) (54)	3,33E- 07	0,0006	5,539E- 06	
																					Формальдегид (Метаналь) (609)	0,00333	5,736		2052
																				2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,08055 56	138,617	1,2084	2051- 2052

001	Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)	1	1847	Выхлопная труба	0011	5	0,5	2,35	0,569055	181	1684 14	5052 8				0301	Азота (IV) диоксид (Азота диоксид) (4)	0,37546 67	1097,26	1,89696	2051- 2052
																	Азот (II) оксид (Азота оксид) (6)	0,06101	178,305	0,308256	2051- 2052
																0328	Углерод (Сажа, Углерод черный) (583)	0,02444 44	71,436	0,11856	2051- 2052
																0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05866	171,447	0,2964	2051- 2052
																0337	Углерод оксид (Окись углерода Угарный газ) (584)	0,30311	885,81	1,54128	2051- 2052
																0703	Бенз/а/пирен (3,4-Бензпирен)	5,87E- 07	0,002	0,000003 26	2051- 2052
																1325	(54) Формальдегид (Метаналь) (609)	0,00586 67	17,145	0,02964	2051- 2052
																2754	Алканы С12-19 /в пересчете на С/	0,14177 78	414,33	0,71136	2051- 2052
																	(Углеводороды предельные С12-С19 (в пересчете на С);				
001	H	1	1947	D	0012	5	0.5	2.25	0.5(0055	181	1225	1233				0201	Растворитель РПК-265П) (10)	0,37546	1007.26	1,89696	2051-
001	Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)	1	1847	Выхлопная труба	0012	5	0,5	2,35	0,569055	101	08	41				0301	Азота (IV) диоксид (Азота диоксид) (4)	67	1097,26	1,89090	2051-
																0304	Азот (II) оксид (Азота оксид) (6)	0,06101	178,305	0,308256	2051- 2052
																	Углерод (Сажа, Углерод черный) (583)	44	71,436		2052
																0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05866 67	171,447	0,2964	2051- 2052
																0337	Углерод оксид	0,30311	885,81	1,54128	2051- 2052
																	(Окись углерода Угарный газ) (584)	11			
																0703	Угарный газ) (584) Бенз/а/пирен (3,4- Бензпирен) (54)	5,87E- 07	0,002	26	2051- 2052
																0703	Угарный газ) (584) Бенз/а/пирен (3,4- Бензпирен)	5,87E- 07 0,00586 67	0,002 17,145 414,33	0,02964	2052 2051- 2052

'																			Растворитель РПК-265П) (10)				
Дизельный двигатель Цементировочно го агрегата ЦА-	1	1847	Выхлопная труба	0013	5	0,5	0,84	0,204348	181	1826 60	8376 8							0301	Азота (IV) диоксид (Азота диоксид) (4)	0,37546 67	3055,58		2051- 2052
320																			оксид (Азота оксид) (6)	33			2051- 2052
																		0328	(Сажа, Углерод	0,02444 44	198,931	0,04256	2051- 2052
																		0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05866	477,435		2051- 2052
																		0337	Углерод оксид (Окись углерода Угарный газ) (584)	0,30311	2466,74	0,55328	2051- 2052
																		0703	Бенз/а/пирен (3,4- Бензпирен) (54)	5,87E- 07	0,005	0,000001 17	2051- 2052
																		1325	(Метаналь) (609)	0,00586 67	47,743		2051- 2052
																			/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	78			2051- 2052
двигатель Цементировочно го агрегата ЦА-	1	1847	Выхлопная труба	0014	5	0,5	0,84	0,204348	181	1684 13	5052							0301	диоксид (Азота	0,37546 67	3055,58	0,68096	2051- 2052
320																		0304	Азот (II) оксид (Азота	0,06101	496,532	0,110656	2051- 2052
																		0328	Углерод (Сажа, Углерод	0,02444 44	198,931	0,04256	2051- 2052
																			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05866 67	477,435		2051- 2052
																		0337	(Окись углерода Угарный газ)	0,30311	2466,74	0,55328	2051- 2052
																		0703	Бенз/а/пирен (3,4-Бензпирен)	5,87E- 07	0,005	0,000001 17	2051- 2052
																		1325	Формальдегид (Метаналь) (609)	0,00586 67	47,743		2051- 2052
																		2754	/в пересчете на С/ (Углеводороды предельные С12-С19 (в	0,14177 78	1153,8	0,25536	2051- 2052
	Дизельный двигатель	Дизельный двигатель Цементировочно го агрегата ЦА- 320 Дизельный двигатель Цементировочно го агрегата ЦА-	Дизельный 1 1847 двигатель Цементировочно го агрегата ЦА- 320	Дизельный 1 1847 Выхлопная труба Диментировочно го агрегата ЦА- 320	Дизельный 1 1847 Выхлопная труба Дизельный двигатель Цементировочно го агрегата ЦА- дизельный двигатель цементировочно го агрегата ЦА-	Дизельный 1 1847 Выхлопная труба Дизельный двигатель Цементировочно го агрегата ЦА- дементировочно го агрегата ЦА-	Дизельный двигатель Цементировочно го агрегата ЦА- 320 Труба Труба Труба Труба О014 5 0,5 при двигатель Цементировочно го агрегата ЦА-	Дизельный 1 1847 Выхлопная труба Дизельный двигатель Цементировочно го агрегата ЦА- Дизельный двигатель Цементировочно го агрегата ЦА-	Дизельный 1 1847 Выхлопная труба 2 Дизельный 1 1847 выхлопная труба 2 Дизельный 1 1847 груба 2 Дизельный 1 1847 груба 2 Дизельный 1 1847 выхлопная труба 2 Дизельный 1 1847 груба 2 Дизельный 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Дизельный 1 1847 Выхлопная труба 2 Дизельный двигатель Цементировочно го агрегата ЦА- двигатель Цементировочно го агрегата ЦА-	Дизельный 1 1847 Выхлопная труба 2 60 60 60 60 60 60 60 60 60 60 60 60 60	Дизельный 1 1847 Выхлопная опта 5 0.5 0.84 0.204348 181 1684 5052 двигатель Цементировочно го агрегата ЦА-	Дизельный 1 двигатель Цементировочно го агретата ЦА- 320 Дизельный 1 двигатель Цементировочно го агретата ЦА- двигатель Цементировочно го агретата ЦА-	Дизельный 1 1847 Выклопная груба 0014 5 0.5 0.84 0.204348 181 1684 5052 двигатель Цементировочно го агрегата ЦА-	Дисельный 1 1847 Выхлопияя труба 0014 5 0,5 0,84 0,204348 181 1684 5052 1 3 6 1 13 6 10 го агреатац [Leeнruponoeulo го агреатац [Leenruponoeulo го агреатац [Leenruponoeu	Дизельный двигатель. Пементировочно го агретата ЦА- Дизельный двигатель. Пементировочно го агретата ЦА- Дизельный двигатель. Пементировочно го агретата ЦА-	Дисельный 1 1847 Выхлонная пруба 2 60 8 Постанция (Постанция) 1 1847 Выхлонная пруба 1 1 1847 Выхлонная пруба 1 1 1847 Выхлонная пруба 1 1 1 1847 Выхлонная пруба 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Дреждыції і 1847 Выхлоння Форма Орган Ідентировочно го дрежня го дрежня Ідентировочно го дрежня Ідентировочно го дрежня Галиновочно го дрежня Галиновочно го дрежня	Tourney color of the color of	Recommon 1	Prince P	Personal 1 187	Processing Pro

																Растворитель РПК-265П) (10)				
001	Агрегат сварочный дизельный	1	1847	Выхлопная труба	0015	5	0,5	0,05	0,00547	181	1707 88	7743 6			0301	Азота (IV) диоксид (Азота диоксид) (4)	0,08468 89	37	0,019608	2051- 2052
															0304	Азот (II) оксид (Азота оксид) (6)	0,01376 19	4183,94	0,003186	2051- 2052
															0328	Углерод (Сажа, Углерод черный) (583)	0,00719 44	2187,27	0,00171	2051- 2052
															0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,01130 56	5	0,002565	2051- 2052
															0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,074	22497,6	0,0171	2051- 2052
															0703	Бенз/а/пирен (3,4-Бензпирен) (54)			3,10E-08	2051- 2052
															1325	Формальдегид (Метаналь) (609)	0,00154		0,000342	2052
															2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		11248,8 36	0,00855	2051- 2052
001	Агрегат сварочный дизельный	1	1847	Выхлопная труба	0016	5	0,5	0,05	0,00547	181	1557 50	6477			0301	Азота (IV) диоксид (Азота диоксид) (4)	0,08468	25747,3 37	0,019608	2051- 2052
															0304	Азот (II) оксид (Азота оксид) (6)	0,01376 19	4183,94	0,003186	2051- 2052
															0328	Углерод (Сажа, Углерод черный) (583)	0,00719 44	2187,27	0,00171	2051- 2052
															0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,01130 56	3437,14	0,002565	2051- 2052
																Углерод оксид (Окись углерода Угарный газ) (584)		22497,6 73	0,0171	2052
															0703	Бенз/а/пирен (3,4- Бензпирен)	1,34E- 07	0,041	3,10E-08	2051- 2052
															1325	(54) Формальдегид (Метаналь) (609)	0,00154 17	468,702	0,000342	2051- 2052
															2754	Алканы С12-19 пересчете на С/ (Углеводороды предельные С12 С19 (в пересчети на С);		11248,8 36	0,00855	2051- 2052

																Растворитель РПК-265П) (10)				
001	Цементосмесите льная машина (СМН)	1	1847	Выхлопная труба	0017	5	0,5	0,84	0,311826	181	1185 50	9009			0301	Азота (IV) диоксид (Азота лиоксил) (4)	0,37546 67	2002,40		2051- 2052
															0304	оксид) (6)	0,06101		0,168948	2051- 2052
															0328	Углерод (Сажа, Углерод черный) (583)	0,02444 44	130,365		2051- 2052
															0330	(Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05866 67	312,876	0,16245	2051- 2052
															0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,30311	1616,52		2051- 2052
															0703	Бенз/а/пирен (3,4- Бензпирен) (54)	5,87E- 07	0,003	1,787E- 06	2051- 2052
															1325		0,00586 67	31,288	0,016245	2051- 2052
															2754	/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,14177 78	756,117		2051- 2052
001	Цементосмесите льная машина (СМН)	1	1847	Выхлопная труба	0018	5	0,5	0,84	0,311826	181	7106	1344 22			0301	Азота (IV) диоксид (Азота диоксид) (4)	0,37546 67	2002,40	1,03968	2051- 2052
															0304		0,06101 33	325,391	0,168948	2051- 2052
															0328	Углерод (Сажа, Углерод черный) (583)	0,02444 44	130,365		2051- 2052
																Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05866 67	312,876		2051- 2052
															0337	Углерод оксид (Окись углерода Угарный газ) (584)	0,30311	1616,52 6	0,84474	2051- 2052
															0703	Бенз/а/пирен (3,4- Бензпирен) (54)	5,87E- 07	0,003	1,787E- 06	2051- 2052
															1325		0,00586 67	31,288	0,016245	2051- 2052
															2754		0,14177 78	756,117	0,38988	2051- 2052

																		пересчете на С); Растворитель РПК-265П) (10)				
001	Емкость для дизельного топлива	1	1847	Дыхательный клапан	0019	3	0,5	0,02	0,003927	30	1058 87	1154 27					0333	Сероводород (Дигидросуль фид) (518)	1,22E- 06	0,345	2,4444E- 06	2051- 2052
																	2754	/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	44	122,769	0,000870 56	2051- 2052
001	Сварочные работы	1	120	Неорганизован ный выброс	6022	2				30	1164 76	9642	5	2			0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00002 75		0,000178	2051- 2052
																	0143	его соединения (в пересчете на марганца (IV) оксид) (327)	3,056E- 06		0,000019	2051- 2052
																	0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	1,111E- 06		0,000007	2051- 2052
001	Газосварочные работы	1	194	Неорганизован ный выброс	6023	2				30	1585 96	8068 0	5	2			0301	Азота (IV) диоксид (Азота диоксид) (4)	0,00023		0,001758 4	2051- 2052
																	0304	Азот (II) оксид (Азота оксид) (6)	0,00003 79		0,000285	2051- 2052
001	Узел приготовление цементного раствора	1		Неорганизован ный выброс	6024	2				30	1216 49	1095 84	5	2			2908	Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинастый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,00072 8		0,004838	2051- 2052
001	Насос подачи ГСМ к дизелям	1	1847	Неорганизован ный выброс	6025	2				30	1392 42	1100 87	5	2			0333	Сероводород (Дигидросуль фид) (518)	3,111E- 05		0,000206 92	2051- 2052
																	2754	Алканы С12- 19 /в пересчете на С/ (Углеводород ы предельные С12-С19 (в пересчете на	0,01107 89		0,073693 08	2051- 2052

																С); Растворитель РПК-265П) (10)			
001	Пересыпка инертных материалов	1	40	Неорганизован ный выброс	6026	2		30	8857 7	1225 16	5	2			2908	пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00032	0,001728	2051- 2052
001	Покрасочные работы	1	40	Неорганизован ный выброс	6027	2		30	1827 24	5881 4	5	2			2752	Диметилбензо л (смесь о-, м-, п- изомеров) (203) Уайт-спирит	0,01125	0,000040 5 0,000040 5	2051- 2052 2051-
001	Пыление при работе автогрейдера	1	48	Неорганизован ный выброс	6028	2		30	1033 01	1289 37	5	2			2908	(1294*) Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,0413	0,0043	2052 2051- 2052
001	Пыление при работе бульдозера	I	120	Неорганизован ный выброс	6029	2		30	1417 56	1012 90	5	2			2908	Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,099	0,0257	2051- 2052

001	Пыление при работе экскаватора	1	120	Неорганизован ный выброс		2		30	1404 99	1	2		2908	Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,02	0,00513	2051- 2052
001	Разработка грунта экскаваторами	1	17.61	Неорганизован ный выброс	6031	2		30	1594 63	1026 49	2		2908	Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,07632	0,00484	2051- 2052
001	Выемка грунта бульдозером	1	20	Неорганизован ный выброс	6032	2		30	8545 6	1274 29	2		2908	Пыль неорганическа я, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глиниа, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождени й) (494)	0,04133	0,06731	2051- 2052

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrob»

Таблица 1.8.11 Бланк инвентаризации выбросов вредных (загрязняющих) веществ в атмосферный воздух и их источников при строительно-монтажных работах (мобилизация, монтаж), подготовительных работах к бурению, при бурении и крепление

		УТВЕРЖДАЮ
	Руководит	ель предприятия
	TOO "	'M-Ali Petrol''
		(ф.и.о)
	(подпись)	
**	**	2025 г

ATTREPARTATO

м.п.

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТАХ (МОБИЛИЗАЦИЯ, МОНТАЖ), ПОДГОТОВИТЕЛЬНЫХ РАБОТАХ К БУРЕНИЮ

3PA v3.0 TOO "Timal Consulting Group"

1. Источники выделения (вредных) загрязняющих веществ

Атырау, ОВОС	"Проект разраб.	. м/р Женгельды	TOO	"M-Ali Petrol"

Наименование производства, номер цеха, участка и т.п.	Номер источника загрязнения атмосферы	Номер источника выделения	Наименование источника выделения загрязняющих веществ	Наимено- вание выпускае- мой продукции	Время ј источ выделен	ника	Наименование загрязняющего вещества	Код вред- ного вещества (ЭНК, ПДК или ОБУВ)	Количество загрязняю-щего вещества, отходящего от источника выделения, т/год
		2	2	4	в сутки	за год	7	0	0
A	<u>l</u> πn		<u> </u>	4 изапия, монтаж),	Э полготови	тепьных п	/ наботах к бурению	8	9
(001) Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6001	6001 01	Пыление при подготовке площадки	пыль	6	144	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,03624
	6002	6002 01	Пыление при уплотнении грунта катками	пыль	6	144	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,03624

	6003	6003 01	Пыление при работе автосамосвала	Пыль	6	144	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	1,1232
	6004	6004 01	Пыление при работе бульдозеров и экскаваторов	пыль	6	144	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	1,1232
	6005	6005 01	Сварочный пост	электроды	6	144	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,001573
							Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,000166
							Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,000041
(002) Бурение и крепление	0001	0001 01	Силовой привод буровой установки	дизельное топливо	14	336	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,70496
							Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583)	0304 (6) 0328 (583)	0,114556 0,04406
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,11015
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,57278
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000001212
							Формальдегид (Метаналь) (609)	1325 (609)	0,011015

						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,26436
0002	0002 02	Насосный блок буровой установки	дизельное топливо	14	336	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	3,4524
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,561015
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,23975
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,4795
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	2,877
						Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000005275
						Формальдегид (Метаналь) (609)	1325 (609)	0,05754
						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	1,4385
0003	0003 03	Дизельная электростанция буровой	дизельное топливо	14	336	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,78784
		установки				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,290524
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,11174
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,27935
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,45262
						Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000003073
						Формальдегид (Метаналь) (609)	1325 (609)	0,027935
						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,67044
0004	0004 01	Цементировочный агрегат	дизельное топливо	14	336	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,03584
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,005824
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,00224

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0056
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,02912
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	6,2000000E-08
							Формальдегид (Метаналь) (609)	1325 (609)	0,00056
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,01344
	0005	0005 01	Емкость для топлива буровой	дизельное топливо	14	336	Сероводород (Дигидросульфид) (518)	0333 (518)	0,000012474
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,004442526
	0006	0006 01	Дизельная электростанция для выработки электроэнергии	дизельное топливо	14	336	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,815552
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,2950272
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,113472
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,28368
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,475136
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,00000312
							Формальдегид (Метаналь) (609)	1325 (609)	0,028368
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,680832
	0007	0007 01	Передвижная паровая установка	дизельное топливо	14	336	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,32096
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,214656
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,1152

			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1728
			Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,152
			Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000002112
			Формальдегид (Метаналь) (609)	1325 (609)	0,02304
			Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,576

Примечание: В графе 8 в скобках указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК)

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТАХ (МОБИЛИЗАЦИЯ, МОНТАЖ), ПОДГОТОВИТЕЛЬНЫХ РАБОТАХ К БУРЕНИЮ, ПРИ БУРЕНИИ И КРЕПЛЕНИЕ

2. Характеристика источников загрязнения атмосферного воздуха

		ы источника ия атмосферы		рвоздушной смеси на в загрязнения атмосфер					изняющих веществ, ых в атмосферу
Номер источ- ника загряз- нения атмос- феры	Высота, м	Диаметр, размер сечения устья, м	Скорость, м/с	Объемный расход, м3/с	Температура, С	Код загряз- няющего вещества (ЭНК, ПДК или ОБУВ)	Наименование загрязняющего вещества	Максимальное, г/с	Суммарное,т/год
1	2	3	4	5	6	7	8	9	10
			при строительн	о-монтажных работах	(мобилиза	ция, монтаж), подго	отовительных работах к бурению		
6001	2					2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0699	0,03624
6002	2					2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0699	0,03624
6003	2					2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2,16684	1,1232
6004	2					2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	3,25	1,1232

6005	2					0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00303	0,001573
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00032	0,000166
						2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,000079	0,000041
					Бурение	и крепление			
0001	2	0,08	147,82	1,5922234	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	1,162666667	0,70496
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,188933333	0,114556
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,075694444	0,04406
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,181666667	0,11015
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,938611111	0,57278
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000001817	0,000001212
						1325 (609)	Формальдегид (Метаналь) (609)	0,018166667	0,011015
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,439027778	0,26436
0002	2	0,08	390,76	6,9314363	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	2,6448	3,4524
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,42978	0,561015
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,183666667	0,23975
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,367333333	0,4795
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	2,204	2,877
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000003979	0,000005275
						1325 (609)	Формальдегид (Метаналь) (609)	0,045916667	0,05754
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1,102	1,4385
0003	2	0,1	239,97	4,0381546	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	1,053866667	1,78784

						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,171253333	0,290524
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,068611111	0,11174
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,164666667	0,27935
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,850777778	1,45262
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000001647	0,000003073
						1325 (609)	Формальдегид (Метаналь) (609)	0,016466667	0,027935
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,397944444	0,67044
0004	2	0,08	7,67	0,0810118	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,376533333	0,03584
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061186667	0,005824
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,024513889	0,00224
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058833333	0,0056
				0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303972222	0,02912		
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000588	6,2000000E-08
						1325 (609)	Формальдегид (Метаналь) (609)	0,005883333	0,00056
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,142180556	0,01344
0005	2	0,05	0,8	0,0015708		0333 (518)	Сероводород (Дигидросульфид) (518)	0,0000182	0,000012474
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,0064818	0,004442526
0006	2	0,1	243,66	4,100758	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,7936	1,815552
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,12896	0,2950272
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,051666667	0,113472
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,124	0,28368
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,640666667	1,475136
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,00000124	0,00000312
						1325 (609)	Формальдегид (Метаналь) (609)	0,0124	0,028368

						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,299666667	0,680832
0007	2	0,08	257,67	2,7754531	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,003891111	1,32096
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,000632306	0,214656
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,000330556	0,1152
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,000519444	0,1728
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0034	1,152
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	6,0000000E-09	0,000002112
						1325 (609)	Формальдегид (Метаналь) (609)	0,000070833	0,02304
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,0017	0,576

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТАХ (МОБИЛИЗАЦИЯ, МОНТАЖ), ПОДГОТОВИТЕЛЬНЫХ РАБОТАХ К БУРЕНИЮ, ПРИ БУРЕНИИ И КРЕПЛЕНИЕ

Примечание: В графе 7 в скобках указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК)

3. Показатели работы пылегазоочистного оборудования (ПГО)

ATTURN OPOC "Il noove named w/n Woursett Htt TOO "M Ali Detrol"

		КПД апп	аратов, %	Код ЗВ, по	Коэффициент						
		Проект-ный	Факти-ческий	которому проис-	обеспеченности К(1),%						
Номер источника выделения	Наименование и тип пылегазоулавливающего оборудования			ходит очистка							
1	2	3	4	5	6						
	Пылегазоочистное оборудование отсутствует!										

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТАХ (МОБИЛИЗАЦИЯ, МОНТАЖ), ПОДГОТОВИТЕЛЬНЫХ РАБОТАХ К БУРЕНИЮ, ПРИ БУРЕНИИ И КРЕПЛЕНИЕ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация, т/год

Атырау, OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol"

Код заг-		Количество	В том чис.	пе	Из	поступивших на о	чистку	
рязняю-	Наименование	загрязняющих				уловлен	о и обезврежено	Всего выброшено в
щего вещест- ва	загрязняющего вещества	веществ отходящих от источников выделения	выбрасы-вается без очистки	поступает на очистку	выброшено в атмосферу	фактически	из них утилизировано	атмосферу
1	2	3	4	5	6	7	8	9
ВСЕГО:	•	26,232512054	26,232512054	0	0	0	0	26,232512054
	в том числе:							
Тверды	e:	2,947136854	2,947136854	0	0	0	0	2,947136854
	из них:							
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,001573	0,001573	0	0	0	0	0,001573
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000166	0,000166	0	0	0	0	0,000166
0328	Углерод (Сажа, Углерод черный) (583)	0,626462	0,626462	0	0	0	0	0,626462
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000014854	0,000014854	0	0	0	0	0,000014854
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2,318921	2,318921	0	0	0	0	2,318921
Газообр	азные и жидкие:	23,2853752	23,2853752	0	0	0	0	23,2853752
	из них:							
0301	Азота (IV) диоксид (Азота диоксид) (4)	9,117552	9,117552	0	0	0	0	9,117552
0304	Азот (II) оксид (Азота оксид) (6)	1,4816022	1,4816022	0	0	0	0	1,4816022
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1,33108	1,33108	0	0	0	0	1,33108
0333	Сероводород (Дигидросульфид) (518)	0,000012474	0,000012474	0	0	0	0	0,000012474
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	7,558656	7,558656	0	0	0	0	7,558656
1325	Формальдегид (Метаналь) (609)	0,148458	0,148458	0	0	0	0	0,148458
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	3,648014526	3,648014526	0	0	0	0	3,648014526

Таблица 1.8.12 БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ РАБОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН (ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТАНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.

3PA v3.0 TOO "Timal Consulting Group"

1. Источники выделения (вредных) загрязняющих веществ

Наименование производства, номер цеха, участка и т.п.	Номер источника загрязнения атмосферы	Номер источника выделения	Наименование источника выделения загрязняющих веществ	Наимено-вание выпускае-мой продукции	Время раб источни выделения	іка	Наименование загрязняющего вещества	Код вред- ного вещества (ЭНК, ПДК или ОБУВ)	Количество загрязняю-щего вещества, отходящего от источника выделения, т/год
					в сутки	38			
A	1	2	3	4	5	год 6	7	8	9
РАБОТЫ ПРИ РАСКОІ	НСЕРВАЦИИ СК	ВАЖИН (ПОДГ	ОТОВИТЕЛЬНЫЕ РАБО	гы, монтаж ус	ТАНОВКИ КР	С, РАБО	ТЫ ПО ВОССТАНОВЛЕНИЮ СЬ	КВАЖИН) В 202	5-2026ГГ.
(003) Работы при расконсервации скважин (подготов. работы,	0008	0008 01	Дизельный двигатель	дизельное топливо	10	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,1216
монтаж установки КРС, работы по							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,01976
восстановлению скважин)							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0076
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,019
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0988
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000000209
							Формальдегид (Метаналь) (609)	1325 (609)	0,0019
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0456
	0009	0009 01	Дизельный-генератор	дизельное топливо	10	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,26752
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,043472
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,01672
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0418
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,21736

						Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,00000046
						Формальдегид (Метаналь) (609)	1325 (609)	0,00418
						Алканы С12-19/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,10032
6006	6006 01	Земляные работы: выемка и погрузка	пыль	10	240	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0178
6007	6007 01	Земляные работы: временное хранение грунта	пыль	10	240	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	1,664
6008	6008 01	Сварочные работы	УОНИ-13/45	10	240	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,00009434
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,0000099
						Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0000084
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,000001365
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0000931
						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	0,00000605
						Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	0,0000231

						Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0000098
6009	6009 01	Покрасочные работы	ЛКМ	1,5	24	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,00259
						Метилбензол (349)	0621 (349)	0,000558
						Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	1210 (110)	0,000108
						Пропан-2-он (Ацетон) (470)	1401 (470)	0,000234
						Уайт-спирит (1294*)	2752 (1294*)	0,0000986
						Взвешенные частицы (116)	2902 (116)	0,0006635
6010	6010 01	Лакокрасочные работы	ЛКМ	1,5	24	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0000405
						Уайт-спирит (1294*)	2752 (1294*)	0,0000405
6011	6011 01	Снятие грунта	пыль	2	24	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,005424
6012	6012 01	Планировка площадки	пыль	10	240	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,505

6013	6013 01	Трамбовка грунта	пыль	10	240	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0452
6014	6014 01	Планировка грунта	пыль	10	240	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	6,014208
6015	6015 01	Емкость дизтопливо 6м3	дизельное топливо	10	240	Сероводород (Дигидросульфид) (518)	0333 (518)	0,0000022008
			10111111111111			Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0007837992
6016	6016 01	Емкость масла	масло	10	240	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735 (716*)	0,000003215
6017	6017 01	Емкость отработанного масла	отработанное масло	10	240	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735 (716*)	0,000000896
6018	6018 01	Емкость для шлама 4м3	шлам	10	240	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,121
6019	6019 01	Дегазатор бурового раствора	дегазация	10	240	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,006912
6020	6020 01	Установка подачи топливо (насос) - 2шт.	дизельное топливо	20	480	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005376
		, ,				Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,01914624

Примечание: В графе 8 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК), со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ РАБОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН (ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТАНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.

2. Характеристика источников загрязнения атмосферного воздуха

		ы источника ия атмосферы		воздушной смеси на н агрязнения атмосфе		Код загряз- няющего вещества (ЭНК, ПДК или			язняющих веществ, ных в атмосферу
Номер источ- ника загряз- нения атмос- феры	Высота, м	Диаметр, размер сечения устья, м	Скорость, м/с	Объемный расход, м3/с	Температура, С	обув)	Наименование загрязняющего вещества	Максимальное, г/с	Суммарное,т/год
1	2	3	4	5	6	7	8	9	10
		Pa	боты при расконсерват	ции скважин (подгот	ов. работы,	монтаж установки КР	С, работы по восстановлению скваж	син)	
0008	2	0,2	11	0,3455752	177	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,836266667	0,1216
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,135893333	0,01976
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,054444444	0,0076
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,130666667	0,019
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,675111111	0,0988
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000001307	0,000000209
						1325 (609)	Формальдегид (Метаналь) (609)	0,013066667	0,0019
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12- C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,315777778	0,0456
0009	2	0,2	8,88	0,6140437	177	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,682666667	0,26752
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,110933333	0,043472
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,044444444	0,01672
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,106666667	0,0418

			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,551111111	0,21736
			0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000001067	0,00000046
			1325 (609)	Формальдегид (Метаналь) (609)	0,010666667	0,00418
			2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,257777778	0,10032
6006	2		2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,01668	0,0178
6007	2		2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0846	1,664
6008	2		0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,000089	0,00009434
			0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00000767	0,0000099
			0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,00001	0,0000084
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,000001625	0,000001365
			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0001108	0,0000931
			0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,00000625	0,00000605
			0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо	0,0000275	0,0000231

					растворимые /в пересчете на фтор/) (615)		
			29	908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00001167	0,0000098
6009	2		06	616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,02987	0,00259
			06	621 (349)	Метилбензол (349)	0,03444	0,000558
			12	210 (110)	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,00667	0,000108
		14	401 (470)	Пропан-2-он (Ацетон) (470)	0,01444	0,000234	
				752 (1294*)	Уайт-спирит (1294*)	0,001244	0,0000986
				902 (116)	Взвешенные частицы (116)	0,00917	0,0006635
6010	2			616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,01125	0,0000405
				752 (1294*)	Уайт-спирит (1294*)	0,01125	0,0000405
6011	2			908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,1674	0,005424
6012	2		29	908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,2764	0,505

6013	2		2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,13936	0,0452
6014	2		2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0123	6,014208
6015	2		0333 (518) 2754 (10)	Сероводород (Дигидросульфид) (518) Алканы С12-19 /в пересчете на С/	0,0000021336 0,0007598664	0,0000022008 0,0007837992
				(Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)		
6016	2		2735 (716*)	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0,0002	0,000003215
6017	2		2735 (716*)	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0,0002	0,000000896
6018	2		2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0044444444	0,121
6019	2		2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,008	0,006912
6020	2		0333 (518)	Сероводород (Дигидросульфид) (518)	0,000031108	0,00005376
			2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,011078892	0,01914624

Примечание: В графе 7 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

PPA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ РАБОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН (ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТАНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.

3. Показатели работы пылегазоочистного оборудования (ПГО)

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

		КПД апт	аратов, %	Код ЗВ, по	Коэффициент					
Номер источника выделения	Наименование и тип пылегазоулавливающего оборудования	Проект-ный	Факти-ческий	которому проис- ходит очистка	обеспеченности К(1),%					
1	2	3	4	5	6					
	Пылегазоочистное оборудование отсутствует!									

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ РАБОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН (ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТАНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация , т/год

Код заг-		Количество	В том чи	сле	Из	поступивших на оч	истку	
рязняю-	Наименование загрязняющего	загрязняющих веществ отходяших от	nyénasy nastag ésa		n6ma	уловлено	и обезврежено	Всего выброшено в
щего вещест-ва	загрязняющего вещества	источников выделения	выбрасы-вается без очистки	поступает на очистку	выброшено в атмосферу	фактически	из них утилизировано	атмосферу
1	2	3	4	5	6	7	8	9
Β С Ε Γ Ο:		9,409745935	9,409745935	0	0	0	0	9,409745935
	в том числе:							
Твердые	:	8,276753309	8,276753309	0	0	0	0	8,276753309
	из них:							
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00009434	0,00009434	0	0	0	0	0,00009434
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,0000099	0,0000099	0	0	0	0	0,0000099
0328	Углерод (Сажа, Углерод черный) (583)	0,02432	0,02432	0	0	0	0	0,02432
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,0000231	0,0000231	0	0	0	0	0,0000231
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000669	0,000000669	0	0	0	0	0,000000669

2902	Взвешенные частицы (116)	0,0006635	0,0006635	0	0	0	0	0,0006635
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	8,2516418	8,2516418	0	0	0	0	8,2516418
Газооб	бразные и жидкие:	1,132992626	1,132992626	0	0	0	0	1,132992626
	из них:							
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,3891284	0,3891284	0	0	0	0	0,3891284
0304	Азот (II) оксид (Азота оксид) (6)	0,063233365	0,063233365	0	0	0	0	0,063233365
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0608	0,0608	0	0	0	0	0,0608
0333	Сероводород (Дигидросульфид) (518)	0,0000559608	0,0000559608	0	0	0	0	0,0000559608
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,3162531	0,3162531	0	0	0	0	0,3162531
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,00000605	0,00000605	0	0	0	0	0,00000605
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0026305	0,0026305	0	0	0	0	0,0026305
0621	Метилбензол (349)	0,000558	0,000558	0	0	0	0	0,000558
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,000108	0,000108	0	0	0	0	0,000108
1325	Формальдегид (Метаналь) (609)	0,00608	0,00608	0	0	0	0	0,00608
1401	Пропан-2-он (Ацетон) (470)	0,000234	0,000234	0	0	0	0	0,000234
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0,000004111	0,000004111	0	0	0	0	0,000004111
2752	Уайт-спирит (1294*)	0,0001391	0,0001391	0	0	0	0	0,0001391
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,2937620392	0,2937620392	0	0	0	0	0,2937620392

Таблица 1.8.13 БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ИСПЫТАНИИ ЭРА v3.0 TOO "Timal Consulting Group"

1. Источники выделения (вредных) загрязняющих веществ

Наименование производства, номер цеха, участка и т.п.	Номер источ- ника загряз- нения атмос- феры	Номер источника выделения	Наименование источника выделения загрязняющих веществ	Наимено- вание выпускае- мой продукции	Время ј источ выделеі		Наименование загрязняющего вещества	Код вред- ного вещества (ЭНК, ПДК или ОБУВ)	Количество загрязняю-щего вещества, отходящего от источника выделения, т/год
					в сутки	за год			
A	1	2	3	4	5	6	7	8	9
			п	ри испытании					
(001) при испытании	1001	1001 01	Буровой станок	дизельное топливо	10	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	4,59392
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,746512
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,28712
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,7178
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	3,73256
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000007896
							Формальдегид (Метаналь) (609)	1325 (609)	0,07178
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	1,72272
	1002	1002 01	Дизельный двигатель Цементировочного	дизельное топливо	10	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	4,59392
			агрегата				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,746512
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,28712
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,7178
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	3,73256
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000007896

1	I	1	ı	I	ſ	Формальдегид (Метаналь) (609)	1225 (600)	0,07178
						• ' ' '	` /	•
						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	1,72272
1003	1003 01	Дизель генератор	дизельное топливо	10	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	2,2568
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,36673
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,14105
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,352625
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,83365
						Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000003879
						Формальдегид (Метаналь) (609)	1325 (609)	0,0352625
						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,8463
1004	1004 01	ДЭС	дизельное топливо	10	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	3,536
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,5746
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,221
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,5525
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	2,873
						Бенз/а/пирен (3,4-Бензпирен) (54)	ересчете на С/ дельные С12- С); 265П) (10) (Азота 0301 (4) 2 та оксид) (6) 0304 (6) 0, ерод черный) 0328 (583) 0, дрид ый газ, Сера 0330 (516) 0,3 съ углерода, 0337 (584) 1, ензпирен) (54) 0703 (54) 0,0000 (2754 (10) (2754 (
						Формальдегид (Метаналь) (609)	1325 (609)	0,05525
						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	1,326
6101	6101 01	Емкость для хранения дизтоплива	дизельное топливо	10	240	Сероводород (Дигидросульфид) (518)	0333 (518)	0,0000025536

						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0009094464
6102	6102 01	Блок манифольд	3PA	10	240	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,0118444032
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0078962688
6103	6103 01	Насос для перекачки дизельного топлива - 5шт.	дизельное топливо	50	1200	Сероводород (Дигидросульфид) (518)	0333 (518)	0,0002352
		Jiiii.				Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0837648
6108	6108 01	Емкость для отработанного масла	масло	10	240	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735 (716*)	0,0000729
6109	6109 01	Емкость для сбора нефти $V = 50 \text{ м3} - 3 \text{ ед.}$	нефть	30	720	Сероводород (Дигидросульфид) (518)	0333 (518)	0,0003114
						Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,3760674
						Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,139092
						Бензол (64)	0602 (64)	0,0018165
						Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0005709
						Метилбензол (349)	0621 (349)	0,0011418

Примечание: В графе 8 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

3PA v3.0 TOO " Timal Consulting Group "

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ИСПЫТАНИИ

2. Характеристика источников загрязнения атмосферного воздуха

		ы источника ия атмосферы		воздушной смеси на вы загрязнения атмосферы		Код загряз- няющего вещества (ЭНК,			зняющих веществ, ых в атмосферу									
Номер источ- ника загряз- нения атмос- феры	Высота, м	Диаметр, размер сечения устья, м	Скорость, м/с	Объемный расход, м3/с	Температура, С	ПДК или ОБУВ)	Наименование загрязняющего вещества	Максимальное, г/с	Суммарное,т/год									
1	2	3	4	5	6	7	8	9	10									
					при	испытании												
1001	3	0,4	18	14,5267429	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,6272	4,59392									
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,10192	0,746512									
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,040833333	0,28712									
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,098	0,7178									
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,506333333	3,73256									
																	0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)
						1325 (609)	Формальдегид (Метаналь) (609)	0,0098	0,07178									
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,236833333	1,72272									
1002	3	0,5	14,17	14,5264418	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,853333333	4,59392									
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,138666667	0,746512									
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,05555556	0,28712									
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,133333333	0,7178									
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,68888889	3,73256									
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000001333	0,000007896									
						1325 (609)	Формальдегид (Метаналь) (609)	0,013333333	0,07178									
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,322222222	1,72272									
1003	3	0,4	14,17	4,8219566	127	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,213333333	2,2568									

						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,034666667	0,36673
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,013888889	0,14105
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,033333333	0,352625
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,172222222	1,83365
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000333	0,000003879
						1325 (609)	Формальдегид (Метаналь) (609)	0,003333333	0,0352625
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,080555556	0,8463
1004	3	0,4	14,17	11,1815183	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,533333333	3,536
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,086666667	0,5746
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,034722222	0,221
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,083333333	0,5525
					0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,43055556	2,873	
							0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000833
						1325 (609)	Формальдегид (Метаналь) (609)	0,008333333	0,05525
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,201388889	1,326
6101	2					0333 (518)	Сероводород (Дигидросульфид) (518)	0,00000121968	0,0000025536
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,00043438032	0,0009094464
6102	2					0415 (1502*)	Смесь углеводородов предельных C1- C5 (1502*)	0,007332	0,0118444032
						0416 (1503*)	Смесь углеводородов предельных C6- C10 (1503*)	0,004888	0,0078962688
6103	2					0333 (518)	Сероводород (Дигидросульфид) (518)	0,00016324	0,0002352
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,05813676	0,0837648
6108	2					2735 (716*)	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0,0000001	0,0000729
6109	2					0333 (518)	Сероводород (Дигидросульфид) (518)	0,00002328	0,0003114

	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,02811448	0,3
	0416 (1503*)	Смесь углеводородов предельных C6- C10 (1503*)	0,0103984	0
	0602 (64)	Бензол (64)	0,0001358	0,0
	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,00004268	0,0
	0621 (349)	Метилбензол (349)	0,00008536	0,0

Примечание: В графе 7 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

PPA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ИСПЫТАНИИ

3. Показатели работы пылегазоочистного оборудования (ПГО)

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

		КПД апп	аратов, %	Код ЗВ, по	Коэффициент							
Номер источника выделения	Наименование и тип пылегазоулавливающего оборудования	Проект-ный	Факти-ческий	которому проис- ходит очистка	обеспеченности К(1),%							
1	2	3	4	5	6							
	Пылегазоочистное оборудование отсутствует!											

ЭРА v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ИСПЫТАНИИ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация , т/год

Атырау, OBOC "Проект разраб, м/р Женгельды TOO "M-Ali Petrol"

Код заг- рязняю-	Наименование	Количество загрязняющих веществ	В том чи	сле	Из	поступивших на оч	истку		
щего вещест-ва	загрязняющего вещества	отходящих от источников выделения	выбрасы-вается без	поступает на	выброшено в	уловлено	Всего выброшено в атмосферу		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	очистки	очистку	атмосферу	фактически	из них утилизировано		
1	2	3	4	5	6	7	8	9	
Β С Ε Γ Ο :	•	39,339342821	39,339342821	0	0	0	0	39,339342821	
	в том числе:								
Тверды	e:	0,936315749	0,936315749	0	0	0	0	0,936315749	
	из них:								
0328	Углерод (Сажа, Углерод черный) (583)	0,93629	0,93629	0	0	0	0	0,93629	
0703 Бенз/а/пирен (3,4-Бензпирен) (54)		0,000025749	0,000025749	0	0	0	0	0,000025749	
Газообр	азные и жидкие:	38,403027072	38,403027072	0	0	0	0	38,403027072	

	из них:							
0301	Азота (IV) диоксид (Азота диоксид) (4)	14,98064	14,98064	0	0	0	0	14,98064
0304	Азот (II) оксид (Азота оксид) (6)	2,434354	2,434354	0	0	0	0	2,434354
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	2,340725	2,340725	0	0	0	0	2,340725
0333	Сероводород (Дигидросульфид) (518)	0,0005491536	0,0005491536	0	0	0	0	0,0005491536
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	12,17177	12,17177	0	0	0	0	12,17177
0415	Смесь углеводородов предельных C1-C5 (1502*)	0,3879118032	0,3879118032	0	0	0	0	0,3879118032
0416	Смесь углеводородов предельных C6-C10 (1503*)	0,1469882688	0,1469882688	0	0	0	0	0,1469882688
0602	Бензол (64)	0,0018165	0,0018165	0	0	0	0	0,0018165
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0005709	0,0005709	0	0	0	0	0,0005709
0621	Метилбензол (349)	0,0011418	0,0011418	0	0	0	0	0,0011418
1325	Формальдегид (Метаналь) (609)	0,2340725	0,2340725	0	0	0	0	0,2340725
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0,0000729	0,0000729	0	0	0	0	0,0000729
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	5,7024142464	5,7024142464	0	0	0	0	5,7024142464

Таблица 1.8.14 БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ЛИКВИДАЦИИ ЭРА v3.0 TOO "Timal Consulting Group"

1. Источники выделения (вредных) загрязняющих веществ

Наименование производства, номер цеха, участка и т.п.	Номер источ- ника загряз- нения атмос- феры	ника загряз- нения атмос- феры выделения выделения выделения загрязняющих веществ выпускае- мой продукции				Наименование загрязняющего вещества	Код вред- ного вещества (ЭНК, ПДК или ОБУВ)	Количество загрязняю-щего вещества, отходящего от источника выделения, т/год				
A	1	2	3	4	в сутки 5	за год 6	7	8	9			
	•			ликвидации	Ü		,					
(001) При ликвидации	0010	0010 01	Дизельная электростанция (ДЭС) для освещения	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	3,2224			
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,52364			
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,2014			
				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,5035						
										Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	2,6182
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000005539			
							Формальдегид (Метаналь) (609)	1325 (609)	0,05035			
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	1,2084			
	0011	0011 01	Дизельный двигатель ЯМЗ- 238 (Подъемный агрегат	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,89696			
			УПА-60)				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,308256			
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,11856			
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,2964			
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,54128				
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,00000326			

I	I	I	I	İ			Формальдегид (Метаналь) (609)	1325 (609)	0,02964
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12- C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,71136
	0012	0012 01	Дизельный двигатель ЯМЗ- 238 (Подъемный агрегат	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,89696
			УПА-60)				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,308256
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,11856
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,2964
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,54128
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,00000326
							Формальдегид (Метаналь) (609)	1325 (609)	0,02964
	0013 0013 01						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,71136
		0013 01	3 01 Дизельный двигатель Цементировочного агрегата ЦА-320	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,68096
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,110656
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,04256
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1064
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,55328
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,00000117
							Формальдегид (Метаналь) (609)	1325 (609)	0,01064
							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,25536
	0014	0014 01	Цементировочного агрегата	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,68096
			ЦА-320				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,110656
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,04256

							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1064
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,55328
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,00000117
							Формальдегид (Метаналь) (609)	1325 (609)	0,01064
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12- C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,25536
	0015	0015 01	Агрегат сварочный дизельный	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,019608
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0031863
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,00171	
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,002565	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0171	
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	3,1000000E-08
							Формальдегид (Метаналь) (609)	1325 (609)	0,000342
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12- C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,00855
	0016	0016 01	Агрегат сварочный дизельный	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,019608
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0031863
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,00171
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,002565	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0171	
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	3,1000000E-08
							Формальдегид (Метаналь) (609)	1325 (609)	0,000342

							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,00855
	0017	0017 01	Цементосмесительная машина (СМН)	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,03968
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,168948
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,06498
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,16245
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,84474
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000001787
							Формальдегид (Метаналь) (609)	1325 (609)	0,016245
	0018						Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12- C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,38988
		0018 01	Цементосмесительная машина (СМН)	дизельное топливо	4	1847	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	1,03968
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,168948
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,06498
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,16245
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,84474
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,000001787
							Формальдегид (Метаналь) (609)	1325 (609)	0,016245
	0019 0019 01						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12- C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,38988
		Емкость для дизельного топлива	дизельное топливо	4	1847	Сероводород (Дигидросульфид) (518)	0333 (518)	0,0000024444	
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12- C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0008705556

6022	6022 01	Сварочные работы	электроды	4	120	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,0001782
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,0000198
						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	0,0000072
6023	6023 01	Газосварочные работы	пропан- бутановая	4	194	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0017584
			смесь			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0002857
6024	6024 01	Узел приготовление цементного раствора	пыль	4	1847	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0048384
6025	6025 01	Насос подачи ГСМ к дизелям	дизельное топливо	4	1847	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00020692
						Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,07369308
6026	6026 01	Пересыпка инертных материалов	щебень	3	40	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,001728
6027	6027 01	Покрасочные работы	эмаль	3	40	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0000405
						Уайт-спирит (1294*)	2752 (1294*)	0,0000405

6028	6028 01	Пыление при работе автогрейдера	пыль	4	48	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0043
6029	6029 01	Пыление при работе бульдозера	пыль	4	120	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0257
6030	6030 01	Пыление при работе экскаватора	пыль	4	120	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,00513
6031	6031 01	Разработка грунта экскаваторами	пыль	2	17,61	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,00484

l l	6032	6032 01	Выемка грунта бульдозером	пыль	2	20	Пыль неорганическая,	2908 (494)	0,06731
							содержащая двуокись кремния в		
							%: 70-20 (шамот, цемент, пыль		
							цементного производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских месторождений)		
							(494)		

Примечание: В графе 8 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

ЭРА v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ЛИКВИДАЦИИ 2. Характеристика источников загрязнения атмосферного воздуха

		ы источника ия атмосферы		воздушной смеси на вн загрязнения атмосфер					зняющих веществ, ых в атмосферу
Номер источника загрязнения атмосферы	Высота, м	Диаметр, размер сечения устья, м	Скорость, м/с	Объемный расход, м3/с	Температура, С	Код загряз- няющего вещества (ЭНК, ПДК или ОБУВ)	Наименование загрязняющего вещества	Максимальное, г/с	Суммарное,т/год
1	2	3	4	5	6	7	8	9	10
					При .	тиквидации			
0010	5	0,5	0,27	0,9664353	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,213333333	3,2224
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,034666667	0,52364
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,013888889	0,2014
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,033333333	0,5035
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,172222222	2,6182
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000333	0,000005539
						1325 (609)	Формальдегид (Метаналь) (609)	0,003333333	0,05035
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,080555556	1,2084
0011	5	0,5	2,35	0,5690553	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,375466667	1,89696

			l I			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061013333	0,308256				
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,11856				
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058666667	0,2964				
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303111111	1,54128				
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000587	0,00000326				
						1325 (609)	Формальдегид (Метаналь) (609)	0,005866667	0,02964				
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,141777778	0,71136				
0012	5	0,5	2,35	0,5690553	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,375466667	1,89696				
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061013333	0,308256				
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,11856				
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058666667	0,2964				
				0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303111111	1,54128						
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000587	0,00000326				
						1325 (609)	Формальдегид (Метаналь) (609)	0,005866667	0,02964				
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,141777778	0,71136				
0013	5	0,5	0,84	0,2043482	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,375466667	0,68096				
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061013333	0,110656				
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,04256				
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058666667	0,1064				
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303111111	0,55328				
						0703 (54)	0703 (54)	0703 (54)	0703 (54)	0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000587	0,00000117
						1325 (609)	Формальдегид (Метаналь) (609)	0,005866667	0,01064				
					2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,141777778	0,25536					

0014	5	0,5	0,84	0,2043482	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,375466667	0,68096
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061013333	0,110656
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,04256
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058666667	0,1064
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303111111	0,55328
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000587	0,00000117
						1325 (609)	Формальдегид (Метаналь) (609)	0,005866667	0,01064
						2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,141777778	0,25536
0015	5	0,5	0,05	0,00547	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,084688889	0,019608
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,013761944	0,0031863
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,007194444	0,00171
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,011305556	0,002565
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,074	0,0171
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000134	3,1000000E-08
						1325 (609)	Формальдегид (Метаналь) (609)	0,001541667	0,000342
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,037	0,00855
0016	5	0,5	0,05	0,00547	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,084688889	0,019608
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,013761944	0,0031863
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,007194444	0,00171
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,011305556	0,002565
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,074	0,0171
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000134	3,1000000E-08
						1325 (609)	Формальдегид (Метаналь) (609)	0,001541667	0,000342
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,037	0,00855
0017	5	0,5	0,84	0,3118261	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,375466667	1,03968

	1		1	I		0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061013333	0,168948
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,06498
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058666667	0,16245
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303111111	0,84474
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000587	0,000001787
						1325 (609)	Формальдегид (Метаналь) (609)	0,005866667	0,016245
						2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,141777778	0,38988
0018	5	0,5	0,84	0,3118261	181	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,375466667	1,03968
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,061013333	0,168948
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,06498
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,058666667	0,16245
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,303111111	0,84474
						0703 (54)	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000587	0,000001787
						1325 (609)	Формальдегид (Метаналь) (609)	0,005866667	0,016245
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,141777778	0,38988
0019	3	0,5	0,02	0,003927	30	0333 (518)	Сероводород (Дигидросульфид) (518)	0,00000121968	0,0000024444
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0,00043438032	0,0008705556
6022	2				30	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,0000275	0,0001782
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000003056	0,0000198
						0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,00001111	0,0000072
6023	2				30	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0002333	0,0017584
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,0000379	0,0002857

6024	2	30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,000728	0,0048384
6025	2	30	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000031108	0,00020692
			2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0,011078892	0,07369308
6026	2	30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00032	0,001728
6027	2	30	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,01125	0,0000405
			2752 (1294*)	Уайт-спирит (1294*)	0,01125	0,0000405
6028	2	30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0413	0,0043
6029	2	30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,099	0,0257
6030	2	30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,02	0,00513

6031	2		30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,07632	0,00484
6032	2		30	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,04133	0,06731

Примечание: В графе 7 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ЛИКВИДАЦИИ

3. Показатели работы пылегазоочистного оборудования (ПГО)

		КПД апп	аратов, %	Код ЗВ, по	Коэффициент				
Номер источника выделения	Наименование и тип пылегазоулавливающего оборудования	Проект-ный	Факти-ческий	которому проис-	обеспеченности К(1),%				
				ходит очистка					
1	2	3	4	5	6				
Пылегазоочистное оборудование отсутствует!									

3PA v3.0 TOO "Timal Consulting Group"

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ПРИ ЛИКВИДАЦИИ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация , т/год

Код заг-	Проект разрао. м/р жентельды 100	Количество	В том чи	сле	Из				
рязняю-	Наименование загрязняющего	загрязняющих веществ	выбрасы-вается без	поступает на	выброшено в	уловлено	и обезврежено	Всего выброшено в	
щего вещест-ва	вещества	отходящих от источников выделения	очистки	очистку	атмосферу	фактически	из них утилизировано	атмосферу	
1	2	3	4	5	6	7	8	9	
Β С Ε Γ Ο:		27,323450335	27,323450335	0	0	0	0	27,323450335	
	в том числе:								
Твердые	:	0,771082435	0,771082435	0	0	0	0	0,771082435	
	из них:								
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,0001782	0,0001782	0	0	0	0	0,0001782	
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,0000198	0,0000198	0	0	0	0	0,0000198	
0328	Углерод (Сажа, Углерод черный) (583)	0,65702	0,65702	0	0	0	0	0,65702	
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000018035	0,000018035	0	0	0	0	0,000018035	
2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		0,1138464	0,1138464	0	0	0	0	0,1138464	
Газообр	азные и жидкие:	26,5523679	26,5523679	0	0	0	0	26,5523679	
	из них:								
0301	Азота (IV) диоксид (Азота диоксид) (4)	10,4985744	10,4985744	0	0	0	0	10,4985744	
0304	Азот (II) оксид (Азота оксид) (6)	1,7060183	1,7060183	0	0	0	0	1,7060183	
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1,63913	1,63913	0	0	0	0	1,63913	
0333	Сероводород (Дигидросульфид) (518)	0,0002093644	0,0002093644	0	0	0	0	0,0002093644	
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	8,531	8,531	0	0	0	0	8,531	

0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,0000072	0,0000072	0	0	0	0	0,0000072
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0000405	0,0000405	0	0	0	0	0,0000405
1325	Формальдегид (Метаналь) (609)	0,164084	0,164084	0	0	0	0	0,164084
2752	Уайт-спирит (1294*)	0,0000405	0,0000405	0	0	0	0	0,0000405
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	4,0132636356	4,0132636356	0	0	0	0	4,0132636356

TOO «TIMAL CONSULTING GROUP» TOO «M-Ali Petrol»

Таблица 1.8.15 Нормативы выбросов загрязняющих веществ в атмосферу при смр (мобилизация, монтаж), подготовительные работы к бурению, бурение и крепление

Таблица 3.6 **3PA v3.0 TOO "Timal Consulting Group"**

Нормативы выбросов загрязняющих веществ в атмосферу при смр (мобилизация, монтаж), подготовительные работы к бурению, бурение и крепление

Атырау, ОВОС "Проект разраб. м/р 2	женгельды	100 "M	All Petrol											
Производство				1	1	Норма	тивы выброс	ов загрязняю	цих веществ					год
цех, участок	Номер источни		твующее жение	на 202	27 год	на 202	8 год	на 202	9 год	на 203	30 год	НД	(B	дос- тиже
Код и наименование загрязняющего вещества	ка	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	ния НДВ
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			0123, Жел	езо (II, III) окс	иды (в перес	чете на железо) (диЖелезо	гриоксид, Жел	теза оксид) (2	74)				
Неорганизованные исто чники														
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6005			0,00606	0,003146	0,00606	0,003146	0,01212	0,006292	0,00606	0,003146	0,00606	0,003146	2027- 2030
Итого:				0,00606	0,003146	0,00606	0,003146	0,01212	0,006292	0,00606	0,003146	0,00606	0,003146	
Всего по загрязняющему веществу:				0,00606	0,003146	0,00606	0,003146	0,01212	0,006292	0,00606	0,003146	0,00606	0,003146	2027- 2030
	l .		0	143, Марганеі	ц и его соедин	ения (в перес	чете на марга	нца (IV) окси,	д) (327)			l.		
Неорганизованные исто чники						•								
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6005			0,00064	0,000332	0,00064	0,000332	0,00128	0,000664	0,00064	0,000332	0,00064	0,000332	2027- 2030
Итого:				0,00064	0,000332	0,00064	0,000332	0,00128	0,000664	0,00064	0,000332	0,00064	0,000332	
Всего по загрязняющему веществу:				0,00064	0,000332	0,00064	0,000332	0,00128	0,000664	0,00064	0,000332	0,00064	0,000332	2027- 2030
					0301, Азота ((IV) диоксид (.	Азота диокси	д) (4)						
Организованные источн ики														
Бурение и крепление	0001			2,3253333 34	1,40992	2,3253333 34	1,40992	4,6506666 68	2,81984	2,3253333 34	1,40992	2,3253333 34	1,40992	2027- 2030
Бурение и крепление	0002			5,2896	6,9048	5,2896	6,9048	10,5792	13,8096	5,2896	6,9048	5,2896	6,9048	2027- 2030
Бурение и крепление	0003			2,1077333 34	3,57568	2,1077333 34	3,57568	4,2154666 68	7,15136	2,1077333 34	3,57568	2,1077333 34	3,57568	2027- 2030
Бурение и крепление	0004			0,7530666	0,07168	0,7530666	0,07168	1,5061333 32	0,14336	0,7530666	0,07168	0,7530666	0,07168	2027- 2030
Бурение и крепление	0006			1,5872	3,631104	1,5872	3,631104	3,1744	7,262208	1,5872	3,631104	1,5872	3,631104	2027- 2030
Бурение и крепление	0007			0,0077822 22	2,64192	0,0077822 22	2,64192	0,0155644 44	5,28384	0,0077822 22	2,64192	0,0077822 22	2,64192	2027- 2030

Итого:		12,0707	15 18,235104	12,070715 56	18,235104	24,141431 11	36,470208	12,070715 56	18,235104	12,070715 56	18,235104	
Всего по загрязняющему веществу:		12,0707		12,070715 56	18,235104	24,141431 11	36,470208	12,070715 56	18,235104	12,070715 56	18,235104	2027- 2030
			0304, A3	от (II) оксид (<i>I</i>	Азота оксид) (6)						
Организованные источн ики												
Бурение и крепление	0001	0,37786	0,229112 66 0,229112	0,3778666 66	0,229112	0,7557333 32	0,458224	0,3778666 66	0,229112	0,3778666 66	0,229112	2027- 2030
Бурение и крепление	0002	0,859	1,12203	0,85956	1,12203	1,71912	2,24406	0,85956	1,12203	0,85956	1,12203	2027- 2030
Бурение и крепление	0003	0,34250	0,581048	0,3425066 66	0,581048	0,6850133 32	1,162096	0,3425066 66	0,581048	0,3425066 66	0,581048	2027- 2030
Бурение и крепление	0004	0,12237	0,011648 34	0,1223733 34	0,011648	0,2447466 68	0,023296	0,1223733 34	0,011648	0,1223733 34	0,011648	2027- 2030
Бурение и крепление	0006	0,257	0,5900544	0,25792	0,5900544	0,51584	1,1801088	0,25792	0,5900544	0,25792	0,5900544	2027- 2030
Бурение и крепление	0007	0,00126	0,429312	0,0012646 12	0,429312	0,0025292 24	0,858624	0,0012646 12	0,429312	0,0012646 12	0,429312	2027- 2030
Итого:		1,96149	2,9632044	1,9614912 78	2,9632044	3,9229825 56	5,9264088	1,9614912 78	2,9632044	1,9614912 78	2,9632044	
Всего по загрязняющему веществу:		1,96149		1,9614912 78	2,9632044	3,9229825 56	5,9264088	1,9614912 78	2,9632044	1,9614912 78	2,9632044	2027- 2030
			0328, Углер	од (Сажа, Угл	ерод черный)	(583)				l	I.	
Организованные источн ики												
Бурение и крепление	0001	0,15138	38 0,08812 38	0,1513888 88	0,08812	0,3027777 76	0,17624	0,1513888 88	0,08812	0,1513888 88	0,08812	2027- 2030
Бурение и крепление	0002	0,36733	33 0,4795 34	0,3673333 34	0,4795	0,7346666 68	0,959	0,3673333 34	0,4795	0,3673333 34	0,4795	2027- 2030
Бурение и крепление	0003	0,13722	0,22348	0,1372222 22	0,22348	0,2744444 44	0,44696	0,1372222 22	0,22348	0,1372222 22	0,22348	2027- 2030
Бурение и крепление	0004	0,04902		0,0490277 78	0,00448	0,0980555 56	0,00896	0,0490277 78	0,00448	0,0490277 78	0,00448	2027- 2030
Бурение и крепление	0006	0,10333	0,226944	0,1033333 34	0,226944	0,2066666 68	0,453888	0,1033333 34	0,226944	0,1033333 34	0,226944	2027- 2030
Бурение и крепление	0007	0,00066		0,0006611 12	0,2304	0,0013222 24	0,4608	0,0006611 12	0,2304	0,0006611 12	0,2304	2027- 2030
Итого:		0,80896	1,252924 58	0,8089666 68	1,252924	1,6179333 36	2,505848	0,8089666 68	1,252924	0,8089666 68	1,252924	
Всего по загрязняющему веществу:		0,80896	56 1,252924 58	0,8089666 68	1,252924	1,6179333 36	2,505848	0,8089666 68	1,252924	0,8089666 68	1,252924	2027- 2030
		0330, Сера ди	оксид (Ангидрид	ц сернистый, С	Сернистый га	з, Сера (IV) он	ссид) (516)			1	1	
Организованные источн ики												

Бурение и крепление	0001	0,3633333	0,2203	0,3633333	0,2203	0,7266666 68	0,4406	0,3633333 34	0,2203	0,3633333	0,2203	2027- 2030
Бурение и крепление	0002	0,7346666	0,959	0,7346666	0,959	1,4693333	1,918	0,7346666	0,959	0,7346666	0,959	2027-
Вурение и крепление	0002	66	0,232	66	0,555	32	1,510	66	0,233	66	0,233	2030
Бурение и крепление	0003	0,3293333	0,5587	0,3293333	0,5587	0,6586666	1,1174	0,3293333	0,5587	0,3293333	0,5587	2027-
1		34	·	34		68		34	·	34	·	2030
Бурение и крепление	0004	0,1176666	0,0112	0,1176666	0,0112	0,2353333	0,0224	0,1176666	0,0112	0,1176666	0,0112	2027-
-	2225	66	0.7570.5	66	0.7574.5	32		66	0.74774	66	0.7677.6	2030
Бурение и крепление	0006	0,248	0,56736	0,248	0,56736	0,496	1,13472	0,248	0,56736	0,248	0,56736	2027- 2030
Бурение и крепление	0007	0,0010388	0,3456	0,0010388	0,3456	0,0020777	0,6912	0,0010388	0,3456	0,0010388	0,3456	2027-
Итого:		1,7940388	2,66216	1,7940388	2,66216	76 3,5880777	5,32432	1,7940388	2,66216	1,7940388	2,66216	2030
итого.		1,7940388	2,00210	1,7940388	2,00210	76	3,32432	1,7940388	2,00210	1,7940388	2,00210	
Всего по загрязняющему веществу:		1,7940388	2,66216	1,7940388	2,66216	3,5880777	5,32432	1,7940388	2,66216	1,7940388	2,66216	2027-
		88		88	ŕ	76	ŕ	88	ŕ	88	ŕ	2030
	I		0333, Серов	одород (Диги,	дросульфид) ((518)						
Организованные источн												
ики	0005	0.0000264	0.0000240	0.0000264	0.0000240	0.0000720	0.0000400	0.0000264	0.0000240	0.0000264	0.0000240	2027
Бурение и крепление	0005	0,0000364	0,0000249 48	0,0000364	0,0000249 48	0,0000728	0,0000498 96	0,0000364	0,0000249 48	0,0000364	0,0000249 48	2027- 2030
Итого:		0,0000364	0,0000249	0,0000364	0,0000249	0,0000728	0,0000498	0,0000364	0,0000249	0,0000364	0,0000249	2030
ritoro.		0,0000304	48	0,0000304	48	0,0000728	96	0,0000504	48	0,0000304	48	
Всего по загрязняющему веществу:		0,0000364	0,0000249	0,0000364	0,0000249	0,0000728	0,0000498	0,0000364	0,0000249	0,0000364	0,0000249	2027-
			48	ŕ	48	·	96		48	ŕ	48	2030
	<u> </u>	0337,	Углерод окси	д (Окись угле	ерода, Угарнь	ій газ) (584)						
Организованные источн ики												
Бурение и крепление	0001	1,8772222	1,14556	1,8772222	1,14556	3,7544444	2,29112	1,8772222	1,14556	1,8772222	1,14556	2027-
		22	,	22	ĺ	44	ŕ	22	ĺ	22		2030
Бурение и крепление	0002	4,408	5,754	4,408	5,754	8,816	11,508	4,408	5,754	4,408	5,754	2027-
												2030
Бурение и крепление	0003	1,7015555	2,90524	1,7015555	2,90524	3,4031111	5,81048	1,7015555	2,90524	1,7015555	2,90524	2027- 2030
Ентонно и казанновно	0004	0.6079444	0,05824	56 0,6079444	0,05824	1,2158888	0,11648	56 0,6079444	0,05824	56 0,6079444	0,05824	2030
Бурение и крепление	0004	0,0079444	0,03624	0,6079444	0,03624	1,2130000	0,11048	0,0079444	0,03624	0,0079444	0,03624	2027-
Бурение и крепление	0006	1,2813333	2,950272	1,2813333	2,950272	2,5626666	5,900544	1,2813333	2,950272	1,2813333	2,950272	2027-
1		34		34	, , , , <u></u>	68		34	, <u> </u>	34	, <u> </u>	2030
Бурение и крепление	0007	0,0068	2,304	0,0068	2,304	0,0136	4,608	0,0068	2,304	0,0068	2,304	2027-
Итого:		9,8828555	15,117312	9,8828555	15,117312	19,765711	30,234624	9,8828555	15,117312	9,8828555	15,117312	2030
riioio.		9,8828333	13,11/312	9,8828333	13,11/312	19,763711	30,234024	9,0020333	13,11/312	9,8828333	13,11/312	
Всего по загрязняющему веществу:		9,8828555	15,117312	9,8828555	15,117312	19,765711	30,234624	9,8828555	15,117312	9,8828555	15,117312	2027-
, and an parameter, being entry.		56	,,-2	56	,,-2	11	,	56	,-1,012	56	,-1,012	2030
	I		0702 East		Еонанивон) (4	[] (A)						1
			u/us, ben	<i>ы ал</i> пирен (3,4-	ъсизнирен) (з	ודי						

Организованные источн ики													
Бурение и крепление	0001	0,00	00036 34	0,0000024 24	0,0000036 34	0,0000024 24	0,0000072 68	0,0000048 48	0,0000036 34	0,0000024 24	0,0000036 34	0,0000024 24	2027- 2030
Бурение и крепление	0002	0,00	00079 58	0,0000105	0,0000079 58	0,0000105 5	0,0000159 16	0,0000211	0,0000079 58	0,0000105 5	0,0000079 58	0,0000105 5	2027- 2030
Бурение и крепление	0003	0,00	00032 94	0,0000061 46	0,0000032 94	0,0000061 46	0,0000065 88	0,0000122 92	0,0000032 94	0,0000061 46	0,0000032 94	0,0000061 46	2027- 2030
Бурение и крепление	0004	0,00	00011 76	1,24E-07	0,0000011 76	1,24E-07	0,0000023 52	2,48E-07	0,0000011 76	1,24E-07	0,0000011 76	1,24E-07	2027- 2030
Бурение и крепление	0006	0,00	00024	0,0000062 4	0,0000024 8	0,0000062 4	0,0000049	0,0000124 8	0,0000024 8	0,0000062 4	0,0000024 8	0,0000062 4	2027- 2030
Бурение и крепление	0007	1,2	0E-08	0,0000042 24	1,20E-08	0,0000042 24	2,40E-08	0,0000084 48	1,20E-08	0,0000042 24	1,20E-08	0,0000042 24	2027- 2030
Итого:		0,00	00185 54	0,0000297 08	0,0000185 54	0,0000297 08	0,0000371 08	0,0000594 16	0,0000185 54	0,0000297 08	0,0000185 54	0,0000297 08	
Всего по загрязняющему веществу:		0,00	00185 54	0,0000297 08	0,0000185 54	0,0000297 08	0,0000371 08	0,0000594 16	0,0000185 54	0,0000297 08	0,0000185 54	0,0000297 08	2027- 2030
		l I	I	1325, Фој	омальдегид (М	Метаналь) (6 0	9)			L			
Организованные источн ики													
Бурение и крепление	0001	0,03	63333	0,02203	0,0363333 34	0,02203	0,0726666 68	0,04406	0,0363333 34	0,02203	0,0363333 34	0,02203	2027- 2030
Бурение и крепление	0002	0,09	18333 34	0,11508	0,0918333 34	0,11508	0,1836666 68	0,23016	0,0918333 34	0,11508	0,0918333 34	0,11508	2027- 2030
Бурение и крепление	0003	0,03	29333 34	0,05587	0,0329333 34	0,05587	0,0658666 68	0,11174	0,0329333 34	0,05587	0,0329333 34	0,05587	2027- 2030
Бурение и крепление	0004	0,01	17666 66	0,00112	0,0117666 66	0,00112	0,0235333 32	0,00224	0,0117666 66	0,00112	0,0117666 66	0,00112	2027- 2030
Бурение и крепление	0006	(0,0248	0,056736	0,0248	0,056736	0,0496	0,113472	0,0248	0,056736	0,0248	0,056736	2027- 2030
Бурение и крепление	0007	0,00	01416 66	0,04608	0,0001416 66	0,04608	0,0002833 32	0,09216	0,0001416 66	0,04608	0,0001416 66	0,04608	2027- 2030
Итого:		0,19	78083 34	0,296916	0,1978083 34	0,296916	0,3956166 68	0,593832	0,1978083 34	0,296916	0,1978083 34	0,296916	
Всего по загрязняющему веществу:		0,19	78083 34	0,296916	0,1978083 34	0,296916	0,3956166 68	0,593832	0,1978083 34	0,296916	0,1978083 34	0,296916	2027- 2030
	2754,	Алканы С12-19 /в пересчет	е на С/	(Углеводород	ы предельны	е С12-С19 (в	пересчете на С	С); Растворит	ель РПК-2651	T) (10)			
Организованные источн ики													
Бурение и крепление	0001	, in the second	80555 56	0,52872	0,8780555 56	0,52872	1,7561111 12	1,05744	0,8780555 56	0,52872	0,8780555 56	0,52872	2027- 2030
Бурение и крепление	0002		2,204	2,877	2,204	2,877	4,408	5,754	2,204	2,877	2,204	2,877	2027- 2030
Бурение и крепление	0003	0,79	58888 88	1,34088	0,7958888 88	1,34088	1,5917777 76	2,68176	0,7958888 88	1,34088	0,7958888 88	1,34088	2027- 2030

Бурение и крепление	0004	0,2843611	,	0,2843611	0,02688	0,5687222 24	0,05376	0,2843611 12	0,02688	0,2843611 12	0,02688	2027- 2030
Бурение и крепление	0005	0,0129636	0,0088850 52	0,0129636	0,0088850 52	0,0259272	0,0177701 04	0,0129636	0,0088850 52	0,0129636	0,0088850 52	2027- 2030
Бурение и крепление	0006	0,5993333		0,5993333 34	1,361664	1,1986666 68	2,723328	0,5993333 34	1,361664	0,5993333 34	1,361664	2027- 2030
Бурение и крепление	0007	0,0034	1,152	0,0034	1,152	0,0068	2,304	0,0034	1,152	0,0034	1,152	2027- 2030
Итого:		4,7780024	,	4,7780024 9	7,2960290 52	9,5560049 8	14,592058 1	4,7780024 9	7,2960290 52	4,7780024 9	7,2960290 52	
Всего по загрязняющему веществу:		4,7780024		4,7780024 9	7,2960290 52	9,5560049 8	14,592058 1	4,7780024 9	7,2960290 52	4,7780024 9	7,2960290 52	2027- 2030
2908, Пыль неорганическая, содерж	ащая двуокі	ись кремния в %: 70-20 (шамот,			оизводства - ождений) (494		стый сланец,	доменный шл	ак, песок, кл	инкер, зола, к	ремнезем, зол	а углей
Неорганизованные исто чники												
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6001	0,1398	0,07248	0,1398	0,07248	0,2796	0,14496	0,1398	0,07248	0,1398	0,07248	2027- 2030
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6002	0,1398	0,07248	0,1398	0,07248	0,2796	0,14496	0,1398	0,07248	0,1398	0,07248	2027- 2030
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6003	4,33368	2,2464	4,33368	2,2464	8,66736	4,4928	4,33368	2,2464	4,33368	2,2464	2027- 2030
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6004	6,5	2,2464	6,5	2,2464	13	4,4928	6,5	2,2464	6,5	2,2464	2027- 2030
Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению	6005	0,000158		0,000158	0,000082	0,000316	0,000164	0,000158	0,000082	0,000158	0,000082	2027- 2030
Итого:		11,113438	4,637842	11,113438	4,637842	22,226876	9,275684	11,113438	4,637842	11,113438	4,637842	
Всего по загрязняющему веществу:		11,113438	ĺ	11,113438	4,637842	22,226876	9,275684	11,113438	4,637842	11,113438	4,637842	2027- 2030
Всего по объекту:		42,614071	52,465024 11	42,614071 72	52,465024 11	85,228143 45	104,93004 82	42,614071 72	52,465024 11	42,614071 72	52,465024 11	
Из них:												
Итого по организованным источникам:		31,493933 724		31,493933 724	47,823704 108	62,987867 448	95,647408 216	31,493933 724	47,823704 108	31,493933 724	47,823704 108	
Итого по неорганизованным источникам:		11,120138	4,64132	11,120138	4,64132	22,240276	9,28264	11,120138	4,64132	11,120138	4,64132	

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrob»

Таблица 1.8.16 Нормативы выбросов загрязняющих веществ в атмосферу при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин) в 2025-2026гг.

3PA v3.0 TOO "Timal Consulting Group"

Таблица 3.6

Нормативы выбросов загрязняющих веществ в атмосферу при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин) в 2025-2026гг. Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

Производство цех, участок					Нор	мативы выброс	ов загрязняющ	их веществ				
	Номер источника		вующее жение	на 2025 го	од - 6скв.	на 2025 год - 1 консер нагнетательно	вации	на 2026 го	од - 6скв.	нд	В	год дос- тиже
Код и наименование загрязняющего вещества	nero mina	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	ния НДВ
1	2	3	4	5	6	7	8	9	10	11	12	13
		0123, Ж	селезо (II, III) оксиды (в пере	счете на железо) (диЖелезо три	оксид, Железа	оксид) (274)				
Неорганизованные источни ки												
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008			0,000534	0,00056604	0,000089	0,00009434	0,000534	0,00056604	0,000534	0,00056604	2025- 2026
Итого:				0,000534	0,00056604	0,000089	0,00009434	0,000534	0,00056604	0,000534	0,00056604	
Всего по загрязняющему веществу:				0,000534	0,00056604	0,000089	0,00009434	0,000534	0,00056604	0,000534	0,00056604	2025- 2026
			0143, Mapi	ганец и его соеди	нения (в перес	чете на марганц	а (IV) оксид) (3	27)				
Неорганизованные источни ки					` •	•		,				
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008			0,00004602	0,0000594	0,00000767	0,0000099	0,00004602	0,0000594	0,00004602	0,0000594	2025- 2026
Итого:				0,00004602	0,0000594	0,00000767	0,0000099	0,00004602	0,0000594	0,00004602	0,0000594	
Всего по загрязняющему веществу:				0,00004602	0,0000594	0,00000767	0,0000099	0,00004602	0,0000594	0,00004602	0,0000594	2025- 2026
				0301, Азота	(IV) диоксид (Азота диоксид) (4)					
Организованные источник и												
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008			5,017600002	0,7296	0,836266667	0,1216	5,017600002	0,7296	5,017600002	0,7296	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009			4,096000002	1,60512	0,682666667	0,26752	4,096000002	1,60512	4,096000002	1,60512	2025- 2026
Итого:				9,113600004	2,33472	1,518933334	0,38912	9,113600004	2,33472	9,113600004	2,33472	

Неорганизованные источни ки										
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008	0,00006	0,0000504	0,00001	0,0000084	0,00006	0,0000504	0,00006	0,0000504	2025- 2026
Итого:		0,00006	0,0000504	0,00001	0,0000084	0,00006	0,0000504	0,00006	0,0000504	
Всего по загрязняющему веществу:		9,113660004	2,3347704	1,518943334	0,3891284	9,113660004	2,3347704	9,113660004	2,3347704	2025- 2026
	1	0304, A ₃	от (II) оксид (А	зота оксид) (6)			l			
Организованные источник и										
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008	0,815359998	0,11856	0,135893333	0,01976	0,815359998	0,11856	0,815359998	0,11856	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009	0,665599998	0,260832	0,110933333	0,043472	0,665599998	0,260832	0,665599998	0,260832	2025- 2026
Итого:		1,480959996	0,379392	0,246826666	0,063232	1,480959996	0,379392	1,480959996	0,379392	
Неорганизованные источни ки										
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008	0,00000975	0,00000819	0,000001625	0,000001365	0,00000975	0,00000819	0,00000975	0,00000819	2025- 2026
Итого:		0,00000975	0,00000819	0,000001625	0,000001365	0,00000975	0,00000819	0,00000975	0,00000819	
Всего по загрязняющему веществу:		1,480969746	0,37940019	0,246828291	0,063233365	1,480969746	0,37940019	1,480969746	0,37940019	2025- 2026
1	l	0328, Углер	од (Сажа, Угле	род черный) (58	33)					
Организованные источник				-						
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008	0,326666664	0,0456	0,054444444	0,0076	0,326666664	0,0456	0,326666664	0,0456	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009	0,266666664	0,10032	0,044444444	0,01672	0,266666664	0,10032	0,266666664	0,10032	2025- 2026
Итого:		0,593333328	0,14592	0,098888888	0,02432	0,593333328	0,14592	0,593333328	0,14592	
Всего по загрязняющему веществу:		0,593333328	0,14592	0,098888888	0,02432	0,593333328	0,14592	0,593333328	0,14592	2025- 2026
L	0.	 330, Сера диоксид (Ангидрид	ц сернистый, С	ернистый газ, С	Сера (IV) оксид)	(516)				
Организованные источник и										

Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	8000		0,784000002	0,114	0,130666667	0,019	0,784000002	0,114	0,784000002	0,114	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009		0,640000002	0,2508	0,106666667	0,0418	0,640000002	0,2508	0,640000002	0,2508	2025- 2026
Итого:			1,424000004	0,3648	0,237333334	0,0608	1,424000004	0,3648	1,424000004	0,3648	
Всего по загрязняющему веществу:			1,424000004	0,3648	0,237333334	0,0608	1,424000004	0,3648	1,424000004	0,3648	2025- 2026
			0333, Cepo	водород (Дигид	росульфид) (518	<u> </u>					
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6015		1,28016E-05	1,32048E-05	2,1336E-06	2,2008E-06	1,28016E-05	1,32048E-05	1,28016E-05	1,32048E-05	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6020		0,000186648	0,00032256	0,000031108	0,00005376	0,000186648	0,00032256	0,000186648	0,00032256	2025- 2026
Итого:			0,00019945	0,000335765	3,32416E-05	5,59608E-05	0,00019945	0,000335765	0,00019945	0,000335765	
Всего по загрязняющему веществу:			0,00019945	0,000335765	3,32416E-05	5,59608E-05	0,00019945	0,000335765	0,00019945	0,000335765	2025- 2026
1		0.	337, Углерод окс	ид (Окись углер	рода, Угарный і	газ) (584)					
Организованные источник и											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008		4,050666666	0,5928	0,675111111	0,0988	4,050666666	0,5928	4,050666666	0,5928	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009		3,306666666	1,30416	0,551111111	0,21736	3,306666666	1,30416	3,306666666	1,30416	2025- 2026
Итого:			7,357333332	1,89696	1,226222222	0,31616	7,357333332	1,89696	7,357333332	1,89696	
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008		0,0006648	0,0005586	0,0001108	0,0000931	0,0006648	0,0005586	0,0006648	0,0005586	2025- 2026

Итого:			0,0006648	0,0005586	0,0001108	0,0000931	0,0006648	0,0005586	0,0006648	0,0005586	
Всего по загрязняющему веществу:			7,357998132	1,8975186	1,226333022	0,3162531	7,357998132	1,8975186	7,357998132	1,8975186	2025- 2026
-	l e	0342, Ф	тористые газообр	разные соедине	ния /в пересчете	е на фтор/ (617)			L		
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008		0,0000375	0,0000363	0,00000625	0,00000605	0,0000375	0,0000363	0,0000375	0,0000363	2025- 2026
Итого:			0,0000375	0,0000363	0,00000625	0,00000605	0,0000375	0,0000363	0,0000375	0,0000363	
Всего по загрязняющему веществу:			0,0000375	0,0000363	0,00000625	0,00000605	0,0000375	0,0000363	0,0000375	0,0000363	2025- 2026
0344, Фториды неорганические пл	юхо растворимые	- (алюминия фтор	оид, кальция фтор	оид, натрия гек	сафторалюмина	т) (Фториды н	еорганические п	лохо растворим	иые /в пересчете	на фтор/) (615)	
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008		0,000165	0,0001386	0,0000275	0,0000231	0,000165	0,0001386	0,000165	0,0001386	2025- 2026
Итого:			0,000165	0,0001386	0,0000275	0,0000231	0,000165	0,0001386	0,000165	0,0001386	
Всего по загрязняющему веществу:			0,000165	0,0001386	0,0000275	0,0000231	0,000165	0,0001386	0,000165	0,0001386	2025- 2026
	1	•	0616, Диметилбо	ензол (смесь о-,	м-, п- изомеров) (203)	- 1			<u>'</u>	
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6009		0,17922	0,01554	0,02987	0,00259	0,17922	0,01554	0,17922	0,01554	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6010		0,0675	0,000243	0,01125	0,0000405	0,0675	0,000243	0,0675	0,000243	2025- 2026
Итого:			0,24672	0,015783	0,04112	0,0026305	0,24672	0,015783	0,24672	0,015783	
Всего по загрязняющему веществу:			0,24672	0,015783	0,04112	0,0026305	0,24672	0,015783	0,24672	0,015783	2025- 2026
			00		ол (349)						
Неорганизованные источни											
к и Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6009		0,20664	0,003348	0,03444	0,000558	0,20664	0,003348	0,20664	0,003348	2025- 2026
ктс, расоты по восстановлению скважин)											

Итого:			0,20664	0,003348	0,03444	0,000558	0,20664	0,003348	0,20664	0,003348	
Всего по загрязняющему веществу:			0,20664	0,003348	0,03444	0,000558	0,20664	0,003348	0,20664	0,003348	2025- 2026
	I		0703, Бег	нз/а/пирен (3,4-1	Бензпирен) (54)					l I	
Организованные источник и											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008	0	,000007842	0,000001254	0,000001307	0,000000209	0,000007842	0,000001254	0,000007842	0,000001254	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009	0	,000006402	0,00000276	0,000001067	0,00000046	0,000006402	0,00000276	0,000006402	0,00000276	2025- 2026
Итого:		0	,000014244	0,000004014	0,000002374	0,000000669	0,000014244	0,000004014	0,000014244	0,000004014	
Всего по загрязняющему веществу:		0	,000014244	0,000004014	0,000002374	0,000000669	0,000014244	0,000004014	0,000014244	0,000004014	2025- 2026
,		1210, Бу	тилацетат (Уксусной кисло	ты бутиловый	эфир) (110)				<u>'</u>	
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6009		0,04002	0,000648	0,00667	0,000108	0,04002	0,000648	0,04002	0,000648	2025- 2026
Итого:			0,04002	0,000648	0,00667	0,000108	0,04002	0,000648	0,04002	0,000648	
Всего по загрязняющему веществу:			0,04002	0,000648	0,00667	0,000108	0,04002	0,000648	0,04002	0,000648	2025- 2026
	V.	ļ	1325, Ф	ормальдегид (М	Іетаналь) (609)					l l	
Организованные источник и											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008	0	,078400002	0,0114	0,013066667	0,0019	0,078400002	0,0114	0,078400002	0,0114	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009	0	,064000002	0,02508	0,010666667	0,00418	0,064000002	0,02508	0,064000002	0,02508	2025- 2026
Итого:		0	,142400004	0,03648	0,023733334	0,00608	0,142400004	0,03648	0,142400004	0,03648	
Всего по загрязняющему веществу:		0	,142400004	0,03648	0,023733334	0,00608	0,142400004	0,03648	0,142400004	0,03648	2025- 2026
	•		1401,	Пропан-2-он (А	цетон) (470)						
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6009		0,08664	0,001404	0,01444	0,000234	0,08664	0,001404	0,08664	0,001404	2025- 2026

Итого:			0,08664	0,001404	0,01444	0,000234	0,08664	0,001404	0,08664	0,001404	
Всего по загрязняющему веществу:			0,08664	0,001404	0,01444	0,000234	0,08664	0,001404	0,08664	0,001404	2025- 2026
		2735, Масл	о минеральное нефтя	ное (веретенное	е, машинное, ци	линдровое и др	.) (716*)	- 1			
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6016		0,0012	0,00001929	0,0002	0,000003215	0,0012	0,00001929	0,0012	0,00001929	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6017		0,0012	0,000005376	0,0002	0,000000896	0,0012	0,000005376	0,0012	0,000005376	2025- 2026
Итого:			0,0024	0,000024666	0,0004	0,000004111	0,0024	0,000024666	0,0024	0,000024666	
Всего по загрязняющему веществу:			0,0024	0,000024666	0,0004	0,000004111	0,0024	0,000024666	0,0024	0,000024666	2025- 2026
	<u> </u>	l	27		г (1294*)						
Неорганизованные источни ки											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6009		0,007464	0,0005916	0,001244	0,0000986	0,007464	0,0005916	0,007464	0,0005916	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6010		0,0675	0,000243	0,01125	0,0000405	0,0675	0,000243	0,0675	0,000243	2025- 2026
Итого:			0,074964	0,0008346	0,012494	0,0001391	0,074964	0,0008346	0,074964	0,0008346	
Всего по загрязняющему веществу:			0,074964	0,0008346	0,012494	0,0001391	0,074964	0,0008346	0,074964	0,0008346	2025- 2026
	2754, Алкань	ы C12-19 /в пересче	те на С/ (Углеводоро	 оды предельные	С12-С19 (в пер	есчете на С); Ра	створитель РП	К-265П) (10)			
Организованные источник											
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0008		1,894666668	0,2736	0,315777778	0,0456	1,894666668	0,2736	1,894666668	0,2736	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	0009		1,54666668	0,60192	0,257777778	0,10032	1,54666668	0,60192	1,54666668	0,60192	2025- 2026
Итого:			3,441333336	0,87552	0,57355556	0,14592	3,441333336	0,87552	3,441333336	0,87552	
Неорганизованные источни ки											

Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6015	0,004559198	0,004702795	0,000759866	0,000783799	0,004559198	0,004702795	0,004559198	0,004702795	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6018	0,026666667	0,726	0,004444444	0,121	0,026666667	0,726	0,026666667	0,726	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6019	0,048	0,041472	0,008	0,006912	0,048	0,041472	0,048	0,041472	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6020	0,066473352	0,11487744	0,011078892	0,01914624	0,066473352	0,11487744	0,066473352	0,11487744	2025- 2026
Итого:		0,145699217	0,887052235	0,024283203	0,147842039	0,145699217	0,887052235	0,145699217	0,887052235	
Всего по загрязняющему веществу:		3,587032553	1,762572235	0,597838759	0,293762039	3,587032553	1,762572235	3,587032553	1,762572235	2025- 2026
		2902	, Взвешенные ча	астицы (116)						
Неорганизованные источни ки										
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6009	0,05502	0,003981	0,00917	0,0006635	0,05502	0,003981	0,05502	0,003981	2025- 2026
Итого:		0,05502	0,003981	0,00917	0,0006635	0,05502	0,003981	0,05502	0,003981	
Всего по загрязняющему веществу:		0,05502	0,003981	0,00917	0,0006635	0,05502	0,003981	0,05502	0,003981	2025- 2026
2908, Пыль неорганическая, содержащая	 		ь цементного пр танских месторо		на, глинистый	сланец, доменн	ый шлак, песок	г, клинкер, зола,	кремнезем, зол	іа углей
Неорганизованные источни		Rasaac	Танских месторе	эжденин) (424)						
к и Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6006	0,10008	0,1068	0,01668	0,0178	0,10008	0,1068	0,10008	0,1068	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6007	0,5076	9,984	0,0846	1,664	0,5076	9,984	0,5076	9,984	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6008	0,00007002	0,0000588	0,00001167	0,0000098	0,00007002	0,0000588	0,00007002	0,0000588	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6011	1,0044	0,032544	0,1674	0,005424	1,0044	0,032544	1,0044	0,032544	2025- 2026

Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6012	1,6584	3,03	0,2764	0,505	1,6584	3,03	1,6584	3,03	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6013	0,83616	0,2712	0,13936	0,0452	0,83616	0,2712	0,83616	0,2712	2025- 2026
Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)	6014	0,0738	36,085248	0,0123	6,014208	0,0738	36,085248	0,0738	36,085248	2025- 2026
Итого:		4,18051002	49,5098508	0,69675167	8,2516418	4,18051002	49,5098508	4,18051002	49,5098508	
Всего по загрязняющему веществу:		4,18051002	49,5098508	0,69675167	8,2516418	4,18051002	49,5098508	4,18051002	49,5098508	2025- 2026
Всего по объекту:		28,593304	56,45847561	4,765550667	9,409745935	28,593304	56,45847561	28,593304	56,45847561	
Из них:										
Итого по организованным источникам:		23,55297425	6,033796014	3,925495708	1,005632669	23,55297425	6,033796014	23,55297425	6,033796014	
Итого по неорганизованным источникам:		5,0403297566 4	50,4246796	0,8400549594	8,404113266	5,0403297566 4	50,4246796	5,0403297566 4	50,4246796	

TOO «TIMAL CONSULTING GROUP» TOO «M-Ali Petrol»

Таблица 1.8.17 Нормативы выбросов загрязняющих веществ в атмосферу при испытании

ЭРА v3.0 TOO "Timal Consulting Group" Таблица 3.6

Нормативы выбросов загрязняющих веществ в атмосферу при испытании

					Нормативы выбр	росов загрязняюш	их веществ			год
Производство цех, участок	Номер источника	существующее положение		на 2025 год - 6скв.		на 2026 год - 6скв.		ндв		дос- тиже ния НДВ
Код и наименование загрязняющего вещества		г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	
1	2	3	4	5	6	7	8	9	10	11
			0301, A30	ота (IV) диоксид (<i>I</i>	Азота диоксид) (4)					
Организованные источники										
при испытании	1001			0,6272	4,59392	0,6272	4,59392	0,6272	4,59392	2025-2026
при испытании	1002			0,853333333	4,59392	0,853333333	4,59392	0,853333333	4,59392	2025-2026
при испытании	1003			0,213333333	2,2568	0,213333333	2,2568	0,213333333	2,2568	2025-2026
при испытании	1004			0,533333333	3,536	0,533333333	3,536	0,533333333	3,536	2025-2026
Итого:				2,227199999	14,98064	2,227199999	14,98064	2,227199999	14,98064	
Всего по загрязняющему веществу:				2,227199999	14,98064	2,227199999	14,98064	2,227199999	14,98064	2025-2026
		•	0304,	Азот (П) оксид (А	зота оксид) (6)			1		
Организованные источники										
при испытании	1001			0,10192	0,746512	0,10192	0,746512	0,10192	0,746512	2025-2026
при испытании	1002			0,138666667	0,746512	0,138666667	0,746512	0,138666667	0,746512	2025-2026
при испытании	1003			0,034666667	0,36673	0,034666667	0,36673	0,034666667	0,36673	2025-2026
при испытании	1004			0,086666667	0,5746	0,086666667	0,5746	0,086666667	0,5746	2025-2026
Итого:				0,361920001	2,434354	0,361920001	2,434354	0,361920001	2,434354	
Всего по загрязняющему веществу:				0,361920001	2,434354	0,361920001	2,434354	0,361920001	2,434354	2025-2026
			0328, Угл	перод (Сажа, Угле	род черный) (583)					
Организованные источники				- , .						
при испытании	1001			0,040833333	0,28712	0,040833333	0,28712	0,040833333	0,28712	2025-2026
при испытании	1002			0,05555556	0,28712	0,05555556	0,28712	0,05555556	0,28712	2025-2026
при испытании	1003			0,013888889	0,14105	0,013888889	0,14105	0,013888889	0,14105	2025-2026
при испытании	1004			0,034722222	0,221	0,034722222	0,221	0,034722222	0,221	2025-2026
Итого:				0,145	0,93629	0,145	0,93629	0,145	0,93629	
Всего по загрязняющему веществу:				0,145	0,93629	0,145	0.93629	0,145	0,93629	2025-2026

	0330, Сера д	иоксид (Ангидрид сернистый, Се	ернистый газ, Сера	а (IV) оксид) (516)				
Организованные источники								
при испытании	1001	0,098	0,7178	0,098	0,7178	0,098	0,7178	2025-2026
при испытании	1002	0,133333333	0,7178	0,133333333	0,7178	0,133333333	0,7178	2025-2026
при испытании	1003	0,033333333	0,352625	0,033333333	0,352625	0,033333333	0,352625	2025-2026
при испытании	1004	0,083333333	0,5525	0,083333333	0,5525	0,083333333	0,5525	2025-2026
Итого:		0,347999999	2,340725	0,347999999	2,340725	0,347999999	2,340725	
Всего по загрязняющему веществу:		0,347999999	2,340725	0,347999999	2,340725	0,347999999	2,340725	2025-2026
		0333, Сероводород (Дигид	росульфид) (518)					
Неорганизованные источники								
при испытании	6101	1,21968E-06	2,5536E-06	1,21968E-06	2,5536E-06	1,21968E-06	2,5536E-06	2025-2026
при испытании	6103	0,00016324	0,0002352	0,00016324	0,0002352	0,00016324	0,0002352	2025-2026
при испытании	6109	0,00002328	0,0003114	0,00002328	0,0003114	0,00002328	0,0003114	2025-2026
Итого:		0,00018774	0,000549154	0,00018774	0,000549154	0,00018774	0,000549154	
Всего по загрязняющему веществу:		0,00018774	0,000549154	0,00018774	0,000549154	0,00018774	0,000549154	2025-2026
			рода, Угарный газ) (584)				
Организованные источники								
при испытании	1001	0,506333333	3,73256	0,506333333	3,73256	0,506333333	3,73256	2025-2026
при испытании	1002	0,688888889	3,73256	0,688888889	3,73256	0,68888889	3,73256	2025-2026
при испытании	1003	0,172222222	1,83365	0,172222222	1,83365	0,172222222	1,83365	2025-2026
при испытании	1004	0,430555556	2,873	0,430555556	2,873	0,430555556	2,873	2025-2026
Итого:		1,798	12,17177	1,798	12,17177	1,798	12,17177	
Всего по загрязняющему веществу:		1,798	12,17177	1,798	12,17177	1,798	12,17177	2025-2026
		0415, Смесь углеводородов пред	цельных C1-C5 (15	02*)				
Неорганизованные источники			<u> </u>					
при испытании	6102	0,007332	0,011844403	0,007332	0,011844403	0,007332	0,011844403	2025-2026
при испытании	6109	0,02811448	0,3760674	0,02811448	0,3760674	0,02811448	0,3760674	2025-2026
Итого:		0,03544648	0,387911803	0,03544648	0,387911803	0,03544648	0,387911803	
Всего по загрязняющему веществу:		0,03544648	0,387911803	0,03544648	0,387911803	0,03544648	0,387911803	2025-2026
		0416, Смесь углеводородов пред	ельных С6-С10 (1	503*)				
Неорганизованные источники		умеводородов пред		,				
*						L		

при испытании	6102	0,004888	0,007896269	0,004888	0,007896269	0,004888	0,007896269	2025-2026
при испытании	6109	0,0103984	0,139092	0,0103984	0,139092	0,0103984	0,139092	2025-2026
Итого:		0,0152864	0,146988269	0,0152864	0,146988269	0,0152864	0,146988269	
Всего по загрязняющему веществу:		0,0152864	0,146988269	0,0152864	0,146988269	0,0152864	0,146988269	2025-2026
		0602, Бензол	(64)					
Неорганизованные источники								
при испытании	6109	0,0001358	0,0018165	0,0001358	0,0018165	0,0001358	0,0018165	2025-2026
Итого:		0,0001358	0,0018165	0,0001358	0,0018165	0,0001358	0,0018165	
Всего по загрязняющему веществу:		0,0001358	0,0018165	0,0001358	0,0018165	0,0001358	0,0018165	2025-2026
		0616, Диметилбензол (смесь о-	, м-, п- изомеров) (2	203)				
Неорганизованные источники								
при испытании	6109	0,00004268	0,0005709	0,00004268	0,0005709	0,00004268	0,0005709	2025-2026
Итого:		0,00004268	0,0005709	0,00004268	0,0005709	0,00004268	0,0005709	
Всего по загрязняющему веществу:		0,00004268	0,0005709	0,00004268	0,0005709	0,00004268	0,0005709	2025-2026
		0621, Метилбенз	вол (349)					
Неорганизованные источники								
при испытании	6109	0,00008536	0,0011418	0,00008536	0,0011418	0,00008536	0,0011418	2025-2026
Итого:		0,00008536	0,0011418	0,00008536	0,0011418	0,00008536	0,0011418	
Всего по загрязняющему веществу:		0,00008536	0,0011418	0,00008536	0,0011418	0,00008536	0,0011418	2025-2026
		0703, Бенз/а/пирен (3,4-	Бензпирен) (54)					
Организованные источники								
при испытании	1001	0,00000098	0,000007896	0,00000098	0,000007896	0,00000098	0,000007896	2025-2026
при испытании	1002	0,000001333	0,000007896	0,000001333	0,000007896	0,000001333	0,000007896	2025-2026
при испытании	1003	0,000000333	0,000003879	0,000000333	0,000003879	0,000000333	0,000003879	2025-2026
при испытании	1004	0,000000833	0,000006078	0,000000833	0,000006078	0,000000833	0,000006078	2025-2026
Итого:		0,000003479	0,000025749	0,000003479	0,000025749	0,000003479	0,000025749	
Всего по загрязняющему веществу:		0,000003479	0,000025749	0,000003479	0,000025749	0,000003479	0,000025749	2025-2026
		1325, Формальдегид (М	Летаналь) (609)					
Организованные источники								
							-	

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

при испытании	1001	0,0098	0,07178	0,0098	0,07178	0,0098	0,07178	2025-2026
при испытании	1002	0,013333333	0,07178	0,013333333	0,07178	0,013333333	0,07178	2025-2026
при испытании	1003	0,003333333	0,0352625	0,003333333	0,0352625	0,003333333	0,0352625	2025-2026
при испытании	1004	0,008333333	0,05525	0,008333333	0,05525	0,008333333	0,05525	2025-2026
Итого:		0,034799999	0,2340725	0,034799999	0,2340725	0,034799999	0,2340725	
Всего по загрязняющему веществу:		0,034799999	0,2340725	0,034799999	0,2340725	0,034799999	0,2340725	2025-2026
	2735, Масло м		е, машинное, цили	ндровое и др.) (71	6*)			
Неорганизованные источники								
при испытании	6108	0,0000001	0,0000729	0,0000001	0,0000729	0,0000001	0,0000729	2025-2026
Итого:		0,0000001	0,0000729	0,0000001	0,0000729	0,0000001	0,0000729	
Всего по загрязняющему веществу:		0,0000001	0,0000729	0,0000001	0,0000729	0,0000001	0,0000729	2025-2026
2754, AJ	каны С12-19/в пересчете		е С12-С19 (в пересч	нете на С); Раство	ритель РПК-265П)	(10)		
Организованные источники								
при испытании	1001	0,236833333	1,72272	0,236833333	1,72272	0,236833333	1,72272	2025-2026
при испытании	1002	0,322222222	1,72272	0,322222222	1,72272	0,322222222	1,72272	2025-2026
при испытании	1003	0,080555556	0,8463	0,080555556	0,8463	0,080555556	0,8463	2025-2026
при испытании	1004	0,201388889	1,326	0,201388889	1,326	0,201388889	1,326	2025-2026
Итого:		0,841	5,61774	0,841	5,61774	0,841	5,61774	2025-2026
Неорганизованные источники								
при испытании	6101	0,00043438	0,000909446	0,00043438	0,000909446	0,00043438	0,000909446	2025-2026
при испытании	6103	0,05813676	0,0837648	0,05813676	0,0837648	0,05813676	0,0837648	2025-2026
Итого:		0,05857114	0,084674246	0,05857114	0,084674246	0,05857114	0,084674246	
Всего по загрязняющему веществу:		0,89957114	5,702414246	0,89957114	5,702414246	0,89957114	5,702414246	2025-2026
Всего по объекту:		5,865679177	39,33934282	5,865679177	39,33934282	5,865679177	39,33934282	
Из них:								
Итого по организованным источникам:		5,755923477	38,715617249	5,755923477	38,715617249	5,755923477	38,715617249	
Итого по неорганизованным источникам:		0,1097557	0,623725572	0,1097557	0,623725572	0,1097557	0,623725572	

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrob»

Таблица 1.8.18 Нормативы выбросов загрязняющих веществ в атмосферу при ликвидации на 19 скв.

3PA v3.0 TOO "Timal Consulting Group"

Таблица 3.6

Нормативы выбросов загрязняющих веществ в атмосферу при ликвидации на 19 скв.

Атырау, ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol"

Производство	<u>_</u>		Норм	ативы выбросов загр	рязняющих вещес	ТВ				год
цех, участок	Номер источника	существующее	положение	на 2051 год		на 2052 год		ндв		дос- тиже
Код и наименование загрязняющего вещества		г/с	т/год	г/с	т/год	r/e	т/год	г/с	т/год	ния НДВ
1	2	3	4	5	6	7	8	9	10	11
		0123, Жел	езо (II, III) оксиды	(в пересчете на жело	езо) (диЖелезо три	юксид, Железа окси	д) (274)			
Неорганизованные	источники									
При ликвидации	6022	0,0000275	0,0001782	0,0000275	0,0001782	0,0000275	0,0001782	0,0000275	0,0001782	2051-2052
Итого:		0,0000275	0,0001782	0,0000275	0,0001782	0,0000275	0,0001782	0,0000275	0,0001782	
Всего по загрязняющему веществу:		0,0000275	0,0001782	0,0000275	0,0001782	0,0000275	0,0001782	0,0000275	0,0001782	2051-2052
		0	143, Марганец и ег	о соединения (в пер	есчете на марганц	а (IV) оксид) (327)				
Неорганизованные	источники									
При ликвидации	6022	0,000003056	0,0000198	0,000003056	0,0000198	0,000003056	0,0000198	0,000003056	0,0000198	2051-2052
Итого:		0,000003056	0,0000198	0,000003056	0,0000198	0,000003056	0,0000198	0,000003056	0,0000198	
Всего по загрязняющему веществу:		0,000003056	0,0000198	0,000003056	0,0000198	0,000003056	0,0000198	0,000003056	0,0000198	2051-2052
			0301	I, Азота (IV) диоксид	ц (Азота диоксид) ((4)				
Организованные ис	точники									
При ликвидации	0010	0,213333333	3,2224	0,213333333	3,2224	0,213333333	3,2224	0,213333333	3,2224	2051-2052
При ликвидации	0011	0,375466667	1,89696	0,375466667	1,89696	0,375466667	1,89696	0,375466667	1,89696	2051-2052
При ликвидации	0012	0,375466667	1,89696	0,375466667	1,89696	0,375466667	1,89696	0,375466667	1,89696	2051-2052
При ликвидации	0013	0,375466667	0,68096	0,375466667	0,68096	0,375466667	0,68096	0,375466667	0,68096	2051-2052
При ликвидации	0014	0,375466667	0,68096	0,375466667	0,68096	0,375466667	0,68096	0,375466667	0,68096	2051-2052
При ликвидации	0015	0,084688889	0,019608	0,084688889	0,019608	0,084688889	0,019608	0,084688889	0,019608	2051-2052
При ликвидации	0016	0,084688889	0,019608	0,084688889	0,019608	0,084688889	0,019608	0,084688889	0,019608	2051-2052
При ликвидации	0017	0,375466667	1,03968	0,375466667	1,03968	0,375466667	1,03968	0,375466667	1,03968	2051-2052
При ликвидации	0018	0,375466667	1,03968	0,375466667	1,03968	0,375466667	1,03968	0,375466667	1,03968	2051-2052
Итого:		2,635511113	10,496816	2,635511113	10,496816	2,635511113	10,496816	2,635511113	10,496816	

При ликвидации	6023	0,0002333	0,0017584	0,0002333	0,0017584	0,0002333	0,0017584	0,0002333	0,0017584	2051-2052
Итого:		0,0002333	0,0017584	0,0002333	0,0017584	0,0002333	0,0017584	0,0002333	0,0017584	
Всего по загрязняющему веществу:		2,635744413	10,4985744	2,635744413	10,4985744	2,635744413	10,4985744	2,635744413	10,4985744	2051-2052
	1		1	0304, Азот (II) окси	д (Азота оксид) (6)		1			
Организованные ис-	гочники									
При ликвидации	0010	0,034666667	0,52364	0,034666667	0,52364	0,034666667	0,52364	0,034666667	0,52364	2051-2052
При ликвидации	0011	0,061013333	0,308256	0,061013333	0,308256	0,061013333	0,308256	0,061013333	0,308256	2051-2052
При ликвидации	0012	0,061013333	0,308256	0,061013333	0,308256	0,061013333	0,308256	0,061013333	0,308256	2051-2052
При ликвидации	0013	0,061013333	0,110656	0,061013333	0,110656	0,061013333	0,110656	0,061013333	0,110656	2051-2052
При ликвидации	0014	0,061013333	0,110656	0,061013333	0,110656	0,061013333	0,110656	0,061013333	0,110656	2051-2052
При ликвидации	0015	0,013761944	0,0031863	0,013761944	0,0031863	0,013761944	0,0031863	0,013761944	0,0031863	2051-2052
При ликвидации	0016	0,013761944	0,0031863	0,013761944	0,0031863	0,013761944	0,0031863	0,013761944	0,0031863	2051-2052
При ликвидации	0017	0,061013333	0,168948	0,061013333	0,168948	0,061013333	0,168948	0,061013333	0,168948	2051-2052
При ликвидации	0018	0,061013333	0,168948	0,061013333	0,168948	0,061013333	0,168948	0,061013333	0,168948	2051-2052
Итого:		0,428270553	1,7057326	0,428270553	1,7057326	0,428270553	1,7057326	0,428270553	1,7057326	
Неорганизованные	источники									
При ликвидации	6023	0,0000379	0,0002857	0,0000379	0,0002857	0,0000379	0,0002857	0,0000379	0,0002857	2051-2052
Итого:		0,0000379	0,0002857	0,0000379	0,0002857	0,0000379	0,0002857	0,0000379	0,0002857	
Всего по загрязняющему веществу:		0,428308453	1,7060183	0,428308453	1,7060183	0,428308453	1,7060183	0,428308453	1,7060183	2051-2052
		1	032	8, Углерод (Сажа, У	Углерод черный) (5	583)	1	1		
Организованные ис-	гочники									
При ликвидации	0010	0,013888889	0,2014	0,013888889	0,2014	0,013888889	0,2014	0,013888889	0,2014	2051-2052
При ликвидации	0011	0,024444444	0,11856	0,024444444	0,11856	0,024444444	0,11856	0,024444444	0,11856	2051-2052
При ликвидации	0012	0,024444444	0,11856	0,024444444	0,11856	0,024444444	0,11856	0,024444444	0,11856	2051-2052
При ликвидации	0013	0,02444444	0,04256	0,024444444	0,04256	0,024444444	0,04256	0,024444444	0,04256	2051-2052
При ликвидации	0014	0,024444444	0,04256	0,024444444	0,04256	0,024444444	0,04256	0,024444444	0,04256	2051-2052
При ликвидации	0015	0,007194444	0,00171	0,007194444	0,00171	0,007194444	0,00171	0,007194444	0,00171	2051-2052
При ликвидации	0016	0,007194444	0,00171	0,007194444	0,00171	0,007194444	0,00171	0,007194444	0,00171	2051-2052
При ликвидации	0017	0,02444444	0,06498	0,024444444	0,06498	0,024444444	0,06498	0,024444444	0,06498	2051-2052
При ликвидации	0018	0,024444444	0,06498	0,024444444	0,06498	0,024444444	0,06498	0,024444444	0,06498	2051-2052
Итого:		0,174944441	0,65702	0,174944441	0,65702	0,174944441	0,65702	0,174944441	0,65702	

Всего по загрязняющему веществу:		0,174944441	0,65702	0,174944441	0,65702	0,174944441	0,65702	0,174944441	0,65702	2051-2052
	•	033	30, Сера диоксид (А	Ангидрид сернистый	, Сернистый газ, (Сера (IV) оксид) (516	<u>)</u>			
Организованные ис	точники									
При ликвидации	0010	0,033333333	0,5035	0,033333333	0,5035	0,033333333	0,5035	0,033333333	0,5035	2051-2052
При ликвидации	0011	0,058666667	0,2964	0,058666667	0,2964	0,058666667	0,2964	0,058666667	0,2964	2051-2052
При ликвидации	0012	0,058666667	0,2964	0,058666667	0,2964	0,058666667	0,2964	0,058666667	0,2964	2051-2052
При ликвидации	0013	0,058666667	0,1064	0,058666667	0,1064	0,058666667	0,1064	0,058666667	0,1064	2051-2052
При ликвидации	0014	0,058666667	0,1064	0,058666667	0,1064	0,058666667	0,1064	0,058666667	0,1064	2051-2052
При ликвидации	0015	0,011305556	0,002565	0,011305556	0,002565	0,011305556	0,002565	0,011305556	0,002565	2051-2052
При ликвидации	0016	0,011305556	0,002565	0,011305556	0,002565	0,011305556	0,002565	0,011305556	0,002565	2051-2052
При ликвидации	0017	0,058666667	0,16245	0,058666667	0,16245	0,058666667	0,16245	0,058666667	0,16245	2051-2052
При ликвидации	0018	0,058666667	0,16245	0,058666667	0,16245	0,058666667	0,16245	0,058666667	0,16245	2051-2052
Итого:		0,407944447	1,63913	0,407944447	1,63913	0,407944447	1,63913	0,407944447	1,63913	
Всего по загрязняющему веществу:		0,407944447	1,63913	0,407944447	1,63913	0,407944447	1,63913	0,407944447	1,63913	2051-2052
	1		03.	33, Сероводород (Ди	гидросульфид) (51	8)		•		
Организованные ис	точники									
При ликвидации	0019	1,21968E-06	2,4444E-06	1,21968E-06	2,4444E-06	1,21968E-06	2,4444E-06	1,21968E-06	2,4444E-06	2051-2052
Итого:		1,21968E-06	2,4444E-06	1,21968E-06	2,4444E-06	1,21968E-06	2,4444E-06	1,21968E-06	2,4444E-06	
Неорганизованные	источники			<u>.</u>						
При ликвидации	6025	0,000031108	0,00020692	0,000031108	0,00020692	0,000031108	0,00020692	0,000031108	0,00020692	2051-2052
Итого:		0,000031108	0,00020692	0,000031108	0,00020692	0,000031108	0,00020692	0,000031108	0,00020692	
Всего по загрязняющему веществу:		3,23277E-05	0,000209364	3,23277E-05	0,000209364	3,23277E-05	0,000209364	3,23277E-05	0,000209364	2051-2052
	•		0337, Угло	ерод оксид (Окись у	глерода, Угарный	газ) (584)		·		
Организованные ис	точники									
При ликвидации	0010	0,172222222	2,6182	0,172222222	2,6182	0,172222222	2,6182	0,172222222	2,6182	2051-2052
При ликвидации	0011	0,303111111	1,54128	0,303111111	1,54128	0,303111111	1,54128	0,303111111	1,54128	2051-2052
При ликвидации	0012	0,303111111	1,54128	0,303111111	1,54128	0,303111111	1,54128	0,303111111	1,54128	2051-2052
При ликвидации	0013	0,303111111	0,55328	0,303111111	0,55328	0,303111111	0,55328	0,303111111	0,55328	2051-2052
При ликвидации	0014	0,303111111	0,55328	0,303111111	0,55328	0,303111111	0,55328	0,303111111	0,55328	2051-2052
При ликвидации	0015	0,074	0,0171	0,074	0,0171	0,074	0,0171	0,074	0,0171	2051-2052
При ликвидации	0016	0,074	0,0171	0,074	0,0171	0,074	0,0171	0,074	0,0171	2051-2052

При ликвидации	0017	0,303111111	0,84474	0,303111111	0,84474	0,303111111	0,84474	0,303111111	0,84474	2051-2052
При ликвидации	0018	0,303111111	0,84474	0,303111111	0,84474	0,303111111	0,84474	0,303111111	0,84474	2051-2052
Итого:		2,138888888	8,531	2,138888888	8,531	2,138888888	8,531	2,138888888	8,531	
Всего по загрязняющему веществу:		2,138888888	8,531	2,138888888	8,531	2,138888888	8,531	2,138888888	8,531	2051-2052
	1	1	0342, Фтористы	е газообразные соед	цинения /в пересчет	е на фтор/ (617)	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Неорганизованные и	сточники									
При ликвидации	6022	0,000001111	0,0000072	0,000001111	0,0000072	0,000001111	0,0000072	0,000001111	0,0000072	2051-2052
Итого:		0,000001111	0,0000072	0,000001111	0,0000072	0,000001111	0,0000072	0,000001111	0,0000072	
Всего по загрязняющему веществу:		0,000001111	0,0000072	0,000001111	0,0000072	0,000001111	0,0000072	0,000001111	0,0000072	2051-2052
	•		0616, Ді	иметилбензол (смес	ъ о-, м-, п- изомерон	B) (203)		•		
Неорганизованные и	сточники									
При ликвидации	6027	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	2051-2052
Итого:		0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	
Всего по загрязняющему веществу:		0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	2051-2052
	•		(0703, Бенз/а/пирен (3,4-Бензпирен) (54)					
Организованные ист	гочники									
При ликвидации	0010	0,000000333	0,000005539	0,000000333	0,000005539	0,000000333	0,000005539	0,000000333	0,000005539	2051-2052
При ликвидации	0011	0,000000587	0,00000326	0,000000587	0,00000326	0,000000587	0,00000326	0,000000587	0,00000326	2051-2052
При ликвидации	0012	0,000000587	0,00000326	0,000000587	0,00000326	0,000000587	0,00000326	0,000000587	0,00000326	2051-2052
При ликвидации	0013	0,000000587	0,00000117	0,000000587	0,00000117	0,000000587	0,00000117	0,000000587	0,00000117	2051-2052
При ликвидации	0014	0,000000587	0,00000117	0,000000587	0,00000117	0,000000587	0,00000117	0,000000587	0,00000117	2051-2052
При ликвидации	0015	0,000000134	3,10E-08	0,000000134	3,10E-08	0,000000134	3,10E-08	0,000000134	3,10E-08	2051-2052
При ликвидации	0016	0,000000134	3,10E-08	0,000000134	3,10E-08	0,000000134	3,10E-08	0,000000134	3,10E-08	2051-2052
При ликвидации	0017	0,000000587	0,000001787	0,000000587	0,000001787	0,000000587	0,000001787	0,000000587	0,000001787	2051-2052
При ликвидации	0018	0,000000587	0,000001787	0,000000587	0,000001787	0,000000587	0,000001787	0,000000587	0,000001787	2051-2052
Итого:		0,000004123	0,000018035	0,000004123	0,000018035	0,000004123	0,000018035	0,000004123	0,000018035	
Всего по загрязняющему веществу:		0,000004123	0,000018035	0,000004123	0,000018035	0,000004123	0,000018035	0,000004123	0,000018035	2051-2052
				1325, Формальдеги	д (Метаналь) (609)					
Организованные ист			_	_						
При ликвидации	0010	0,003333333	0,05035	0,003333333	0,05035	0,003333333	0,05035	0,003333333	0,05035	2051-2052
При ликвидации	0011	0,005866667	0,02964	0,005866667	0,02964	0,005866667	0,02964	0,005866667	0,02964	2051-2052

При ликвидации Итого: Всего по загрязняющему	0013 0014 0015 0016 0017 0018	0,005866667 0,005866667 0,001541667 0,001541667 0,005866667 0,005866667 0,041616669 0,041616669	0,01064 0,01064 0,000342 0,000342 0,016245 0,016245 0,164084 0,164084	0,005866667 0,005866667 0,001541667 0,001541667 0,005866667 0,005866667	0,01064 0,01064 0,000342 0,000342 0,016245 0,016245	0,005866667 0,005866667 0,001541667 0,001541667 0,005866667	0,01064 0,01064 0,000342 0,000342 0,016245	0,005866667 0,005866667 0,001541667 0,001541667 0,005866667	0,01064 0,01064 0,000342 0,000342 0,016245	2051-2052 2051-2052 2051-2052 2051-2052 2051-2052
При ликвидации При ликвидации При ликвидации При ликвидации Итого: Всего по загрязняющему	0015 0016 0017	0,001541667 0,001541667 0,005866667 0,005866667 0,041616669	0,000342 0,000342 0,016245 0,016245 0,164084	0,001541667 0,001541667 0,005866667 0,005866667	0,000342 0,000342 0,016245	0,001541667 0,001541667 0,005866667	0,000342 0,000342	0,001541667 0,001541667	0,000342 0,000342	2051-2052 2051-2052
При ликвидации При ликвидации При ликвидации Итого: Всего по загрязняющему	0016 0017	0,001541667 0,005866667 0,005866667 0,041616669	0,000342 0,016245 0,016245 0,164084	0,001541667 0,005866667 0,005866667	0,000342 0,016245	0,001541667 0,005866667	0,000342	0,001541667	0,000342	2051-2052
При ликвидации При ликвидации Итого: Всего по загрязняющему	0017	0,005866667 0,005866667 0,041616669	0,016245 0,016245 0,164084	0,005866667 0,005866667	0,016245	0,005866667	·	·		
При ликвидации Итого: Всего по загрязняющему		0,005866667 0,041616669	0,016245 0,164084	0,005866667		· · · · · · · · · · · · · · · · · · ·	0,016245	0,005866667	0,016245	2051 2052
Итого: Всего по загрязняющему	0018	0,041616669	0,164084	*	0,016245	0.005866667				2031-2032
Всего по загрязняющему				0,041616669		0,003800007	0,016245	0,005866667	0,016245	2051-2052
		0,041616669	0,164084		0,164084	0,041616669	0,164084	0,041616669	0,164084	
веществу:	l		2,22.23.	0,041616669	0,164084	0,041616669	0,164084	0,041616669	0,164084	2051-2052
				2752, Уайт-сп	ирит (1294*)	I	I	I		
Неорганизованные ист	очники									
При ликвидации	6027	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	2051-2052
Итого:		0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	
Всего по загрязняющему веществу:		0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	0,01125	0,0000405	2051-2052
	2754,	, Алканы С12-19 /в пе	ресчете на С/ (Угл	еводороды предель	ные C12-C19 (в пе <u>г</u>	ресчете на С); Раст	воритель РПК-2651	I) (10)		
Организованные источ	ники									
При ликвидации	0010	0,080555556	1,2084	0,08055556	1,2084	0,080555556	1,2084	0,080555556	1,2084	2051-2052
При ликвидации	0011	0,141777778	0,71136	0,141777778	0,71136	0,141777778	0,71136	0,141777778	0,71136	2051-2052
При ликвидации	0012	0,141777778	0,71136	0,141777778	0,71136	0,141777778	0,71136	0,141777778	0,71136	2051-2052
При ликвидации	0013	0,141777778	0,25536	0,141777778	0,25536	0,141777778	0,25536	0,141777778	0,25536	2051-2052
При ликвидации	0014	0,141777778	0,25536	0,141777778	0,25536	0,141777778	0,25536	0,141777778	0,25536	2051-2052
При ликвидации	0015	0,037	0,00855	0,037	0,00855	0,037	0,00855	0,037	0,00855	2051-2052
При ликвидации	0016	0,037	0,00855	0,037	0,00855	0,037	0,00855	0,037	0,00855	2051-2052
При ликвидации	0017	0,141777778	0,38988	0,141777778	0,38988	0,141777778	0,38988	0,141777778	0,38988	2051-2052
При ликвидации	0018	0,141777778	0,38988	0,141777778	0,38988	0,141777778	0,38988	0,141777778	0,38988	2051-2052
При ликвидации	0019	0,00043438	0,000870556	0,00043438	0,000870556	0,00043438	0,000870556	0,00043438	0,000870556	2051-2052
Итого:		1,005656604	3,939570556	1,005656604	3,939570556	1,005656604	3,939570556	1,005656604	3,939570556	
Неорганизованные ист	очники	1	•	1	1	1				
При ликвидации	6025	0,011078892	0,07369308	0,011078892	0,07369308	0,011078892	0,07369308	0,011078892	0,07369308	2051-2052
Итого:		0,011078892	0,07369308	0,011078892	0,07369308	0,011078892	0,07369308	0,011078892	0,07369308	
Всего по загрязняющему веществу:		1,016735496	4,013263636	1,016735496	4,013263636	1,016735496	4,013263636	1,016735496	4,013263636	2051-2052

2908, Пыль неорганическая	я, содержащая двус	окись кремния в %: 7	70-20 (шамот, цеме		го производства - гл сторождений) (494)		анец, доменный шл	ак, песок, клинкер	, зола, кремнезем,	зола углей
Неорганизованные	источники									
При ликвидации	6024	0,000728	0,0048384	0,000728	0,0048384	0,000728	0,0048384	0,000728	0,0048384	2051-2052
При ликвидации	6026	0,00032	0,001728	0,00032	0,001728	0,00032	0,001728	0,00032	0,001728	2051-2052
При ликвидации	6028	0,0413	0,0043	0,0413	0,0043	0,0413	0,0043	0,0413	0,0043	2051-2052
При ликвидации	6029	0,099	0,0257	0,099	0,0257	0,099	0,0257	0,099	0,0257	2051-2052
При ликвидации	6030	0,02	0,00513	0,02	0,00513	0,02	0,00513	0,02	0,00513	2051-2052
При ликвидации	6031	0,07632	0,00484	0,07632	0,00484	0,07632	0,00484	0,07632	0,00484	2051-2052
При ликвидации	6032	0,04133	0,06731	0,04133	0,06731	0,04133	0,06731	0,04133	0,06731	2051-2052
Итого:		0,278998	0,1138464	0,278998	0,1138464	0,278998	0,1138464	0,278998	0,1138464	
Всего по загрязняющему веществу:		0,278998	0,1138464	0,278998	0,1138464	0,278998	0,1138464	0,278998	0,1138464	2051-2052
Всего по объекту:		7,145748925	27,32345034	7,145748925	27,32345034	7,145748925	27,32345034	7,145748925	27,32345034	
Из них:										
Итого по организованным ис	сточникам:	6,832838058	27,133373635	6,832838058	27,133373635	6,832838058	27,133373635	6,832838058	27,133373635	
Итого по неорганизованным	источникам:	0,312910867	0,1900767	0,312910867	0,1900767	0,312910867	0,1900767	0,312910867	0,1900767	

На этапе проектных работ предполагается эксплуатация автотранспорта и спецтехники, работающей на дизельном топливе. Основным источником загрязнения атмосферы при использовании автотранспорта являются отработавшие газы двигателей внутреннего сгорания. В них содержатся оксид углерода, оксид и диоксид азота, различные углеводороды, диоксид серы. Содержание диоксида серы зависит от количества серы в дизельном топливе, а содержание других примесей - от способа его сжигания, а также способа наддува и нагрузки двигателя. Высокое содержание вредных примесей в отработавших газах двигателей в режиме холостого хода обусловлено плохим смешиванием топлива с воздухом и сгоранием топлива при более низких температурах.

Согласно п. 17 статьи 202 Экологического Кодекса РК «Нормативы допустимых выбросов для передвижных источников не устанавливаются».

Работы на месторождении сопровождаются выбросами загрязняющих веществ в атмосферу, воздействие которых на окружающую среду находится в прямой зависимости от метеорологических условий, вида загрязняющего вещества, времени воздействия и др.

Перемещение воздушных масс в атмосфере возникает вследствие существующей разницы в нагреве воздушных слоев, находящихся над морями и материками между полюсами и экватором. Кроме крупномасштабных воздушных течений в нижних слоях атмосферы возникают многочисленные местные циркуляции, связанные с особенностями нагревания атмосферы в отдельных районах. Температурная стратификация атмосферы определяет условие перемешивания загрязняющих веществ и характеризуется коэффициентом стратификации.

Одним из ведущих параметров процесса рассеивания в воздухе конкретного промышленного предприятия является скорость ветра. В условиях безветрия рассеивание вредных веществ происходит главным образом под воздействием вертикальных потоков воздуха, и при данных условиях загрязняющие вещества оседают вблизи источника выброса. Высокие скорости ветра увеличивают разбавляющую роль атмосферы, способствуют более низким кризисным концентрациям в направлении ветра.

Степень опасности загрязнения атмосферного воздуха характеризуется наибольшим рассчитанным значением концентрации загрязняющих веществ, соответствующим неблагоприятным метеорологическим условиям, в том числе опасной скорости ветра.

Перед проведением расчетов загрязнения атмосферы была проведена оценка целесообразности расчетов. Определение необходимости расчетов приземных концентраций по веществам на существующее положение представлено в расчете рассеивания.

8. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ. ОЦЕНКА ВОЗДЕЙСТВИЕ ВИБРАЦИИ, ШУМОВЫХ, ЭЛЕКТРОМАГНИТНЫХ, ТЕПЛОВЫХ И РАДИАЦИОННЫХ ВОЗДЕЙСТВИЙ

Из физических факторов воздействия на окружающую среду и людей в период проведения работ можно выделить:

- воздействие шума;
- воздействие вибрации;
- электромагнитное излучение.

Шум. Технологические процессы проведения сейсморазведочных работ являются источником сильного шумового воздействия на здоровье людей, непосредственно принимающих участие в технологических процессах, а также на флору и фауну. Интенсивность внешнего шума зависит от типа оборудования, его рабочего органа, вида привода, режима работы и расстояния от места работы. Во время проектных работ на месторождениях внешний шум может создаваться при работе механических агрегатов, автотранспорта.

Для оценки суммарного воздействия производственного шума используется суточная доза. Суточная доза состоит из 3 парциальных доз, соответствующих 3 восьмичасовым периодам суток, отражающим основные виды жизнедеятельности человека: труд, деятельность и отдых в домашних условиях, сон.

Парциальные дозы определяют отдельно для каждого восьмичасового периода с учетом соответствующих им допустимых уровней шума. Расчет парциальных доз шума для 3 периодов жизнедеятельности проводят по разности между фактическими и допустимыми уровнями звука в дБА. Для этого находят три значения разностей уровней и по таблице соответствующие им превышения допустимых доз для каждого периода. Среднесуточную дозу определяют делением суммы парциальных доз на 3 (количество периодов суток).

Общее воздействие производимого шума на территории промысла в период проведения строительства, эксплуатации технологического оборудования будет складываться из двух факторов:

- воздействие производственного шума (автотранспортного, специальной технологической техники и передвижных дизель-генераторных установок);
- воздействие шума стационарных оборудований, расположенных на соответствующих площадках.

На контрактной территории оборудование буровых установок является источником шума широкополосного спектра с постоянным уровнем звука.

При удалении от источника шума на расстоянии до двухсот метров происходит быстрое затухание шума, при дальнейшем увеличении расстояния снижение звука происходит медленнее. Проектом производства работ следует учитывать изменение уровня звука в зависимости от направления и скорости ветра, характера и состояния прилегающей территории, наличия звукоотражающих и поглощающих сооружений и объектов, рельефа местности.

Мероприятия по снижению уровня шума при выполнении технологических процессов сводятся к снижению шума в его источнике, применение, при необходимости, звукоотражающих или звукопоглощающих экранов на пути распространения звука или шумозащитных мероприятий на самом защищаемом объекте.

Шумовое воздействие автомранспорта. Допустимые уровни внешнего шума автомобилей, действующие в настоящее время, применительно к условиям строительных работ, составляют: грузовые автомобили с полезной массой свыше 3,5 т создают уровень звука — 89дБ (A); грузовые автомобили с дизельным двигателем мощностью 162кВт и выше — 91 дБ (A).

Средний допустимый уровень звука на дорогах различного назначения, в том числе местного, составляет 73 дБ (A). Эта величина зависит от ряда факторов, в том числе от технического состояния транспорта, дорожного покрытия, интенсивности движения, времени суток конструктивных особенностей дорог и т.д.

В условиях транспортных потоков планируемых при проведении намечаемых работ, будут преобладать кратковременные маршрутные линии. Использование автотранспорта для обеспечения работ, перевозки персонала, технических грузов и др. с учетом создания звуковых нагрузок, не будет превышать допустимых нормированных шумов — 80дБ (А), а использование мероприятий по минимизации шумов при работах на месторождении, даст возможность значительно снизить последние.

Электромагнитные излучения. Влияние электромагнитных полей на биосферу разнообразно и многогранно. Взаимодействие электромагнитных полей с биологическим объектом определяется:

• параметрами излучения (частоты или длины волны, когерентностью колебания, скоростью распространения, поляризацией волны);

• физическими и биохимическими свойствами биологического объекта, как среды распространения ЭМП (диэлектрической проницаемостью, электрической проводимостью, длиной электромагнитной волны в ткани, глубиной проникновения, коэффициентом отражения от границы воздух-ткань).

Для оценки воздействия ЭМП на человеческий организм с целью выбора способа защиты проводится сравнение фактических уровней излучателей с нормативными документами.

Измерение уровней излучений производится в порядке текущего санитарного надзора, при сдаче в эксплуатацию новых или реконструированных источников ЭМП и общественных зданий и сооружений, расположенных на прилегающей к электромагнитным излучателям территории.

Источниками электромагнитных излучений будут являться высоковольтные линии электропередач после ввода их в эксплуатацию, и трансформаторные подстанции с силовыми трансформаторами.

Эти объекты устанавливаются и эксплуатируются только в соответствии с требованиями электробезопасности (высота опор, количество проводов и изоляторов на них). Поэтому ЛЭП не будет представлять опасности, как для населения, так и для ОС.

Аналогичные условия предъявляются и к трансформаторным подстанциям, которые также не будут являться источниками неблагоприятного электромагнитного воздействия на OC.

Вибрация. Действие вибрации на организм проявляется по – разному в зависимости от того, как действует вибрация. Общая вибрация воздействует на весь организм. Этот вид вибрации проявляется в проведения буровых работ.

Локальная (местная) вибрация воздействует на отдельные части тела (например, при работе с ручным пневмоинструментом, виброуплотнителями и т.д.).

В зависимости от продолжительности воздействия вибрации, частоты и силы колебаний возникает ощущение сотрясения (паллестезия).

При длительном воздействии возникают изменения в опорно-двигательной, серднечно-сосудистой и нервной системах.

Методы защиты от вибраций включают в себя способы и приемы по снижению вибрации как в источнике их возникновения, так и на путях распространения упругих колебаний в различных средах.

Эффективным методом снижения вибраций в источнике является выбор оптимальных режимов работы, состоящий, главным образом, в устранении резонансных явлений в процессе эксплуатации механизмов.

Радиационное воздействие

Основные требования радиационной безопасности предусматривают:

- исключение всякого необоснованного облучения населения и производственного персонала предприятий;
 - непревышение установленных предельных доз радиоактивного облучения;
 - снижения дозы облучения до возможно низкого уровня.

Все участки работ расположены в малонаселенной полупустынной местности.

Исходя из геолого-геоморфологических условий района исследований, первично природная радиационная обстановка соответствует относительно низкому уровню радиоактивности, характерному для селитебных территорий равнинных ландшафтов.

9. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ

ДЕЯТЕЛЬНОСТИ, В ТОМ ЧИСЛЕ ОТХОДОВ, ОБРАЗУЕМЫХ В РЕЗУЛЬТАТЕ ОСУЩЕСТВЛЕНИЯ ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ

9.1 Характеристика технологических процессов предприятия, как источников образования отходов

Этап разработки будет сопровождаться образованием, накоплением и удалением отходов производства и потребления, которые могут стать потенциальными источниками воздействия на окружающую среду.

Отходы - любые вещества, материалы или предметы, образовавшиеся в процессе производства, выполнения работ, оказания услуг или в процессе потребления (в том числе товары, утратившие свои потребительские свойства), которые их владелец прямо признает отходами либо должен направить на удаление или восстановление в силу требований закона или намеревается подвергнуть, либо подвергает операциям по удалению или восстановлению.

Отходы производства (производственные отходы) — остатки сырья, материалов, веществ, изделий, предметов, образовавшиеся в процессе производства продукции, выполнения работ (услуг) и утратившие полностью или частично исходные потребительские свойства.

Отходы потребления - продукты и (или) изделия, образующиеся в результате жизнедеятельности человека, полностью или частично утратившие свои потребительские свойства, их упаковка и иные вещества или их остатки, срок годности либо эксплуатации которых истек независимо от их агрегатного состояния, а также от которых собственник самостоятельно физически избавился либо документально перевел в разряд отходов потребления.

В соответствии с Экологическим кодексом РК под владельцем отходов понимается образователь отходов или любое лицо, в чьем законном владении находятся отходы. Образователемотходов признается любое лицо, в процессе осуществления деятельности которого образуются отходы (первичный образователь отходов), или любое лицо, осуществляющее обработку, смешивание или иные операции, приводящие к изменению свойств таких отходов или их состава (вторичный образователь отходов).

Субъекты предпринимательства, являющиеся образователями отходов, несут ответственность заобеспечение надлежащего управления такими отходами с момента их образования до момента передачи в соответствии с пунктом 3 статьи 339 Экологического Кодекса РК во владение лица, осуществляющего операции по восстановлению или удалению отходов на основании лицензии.

Для удовлетворения требований Республики Казахстан по недопущению загрязнения окружающей среды должна проводиться политика управления отходами, которая позволит минимизировать риск для здоровья и безопасности работников, и окружающей природной среды. Система управления отходами контролирует безопасное размещение различных типов отходов.

Одними из основополагающих принципов в области управления и обращения с отходами производства и потребления должны быть:

ответственность за обеспечение охраны компонентов окружающей среды (воздух, подземные воды, почва) от загрязнения отходами производства и потребления0;

организация всех строительных и эксплуатационных работ, исходя из возможности повторного использования, утилизации, регенерации, очистки или экологически приемлемого удаления отходов производства и потребления;

сокращение негативного воздействия на окружающую среду за счет использования технологий и оборудования, позволяющих уменьшить образование отходов;

приоритет принятия предупредительных мер над мерами по ликвидации

экологических негативных воздействий отходов производства и потребления на окружающую среду.

Все отходы производства и потребления подлежат временному хранению в специальных контейнерах на специально отведенных местах производственного объекта, с последующим

вывозом на утилизацию, переработку, обезвреживание и размещение отходов согласно договору, со специализированной организацией, имеющей лицензию на выполнение данных операций.

Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Временное складирование отходов разрешается на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению. (Экологический кодекс РК, статья 320 п.2).

Перечень отходов производства и потребления определен в соответствии со спецификой проведения работ, нормативными документами, действующими в РК, в соответствии с Классификатором отходов, утверждённым приказом И. о. министра экологии, геологии иприродных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Степень влияния группы отходов на экосистему зависит от вида отходов, класса опасности, количества, времени и характера захоронения или утилизации отходов.

Под видом отходов понимается совокупность отходов, имеющих общие признаки в соответствии с их происхождением, свойствами и технологией управления ими.

В соответствии со ст. 338 ЭК РК виды отходов определяются на основании классификатора отходов, утвержденного приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Классификатор отходов определяет вид отходов с учетом происхождения и состава каждого вида отходов и в необходимых случаях определяет лимитирующие показатели концентрации опасных веществ в целях их отнесения к опасным или неопасным.

Каждый вид отходов в классификаторе отходов идентифицируется путем присвоения шестизначного кода.

Виды отходов относятся к опасным или неопасным в соответствии с классификатором отходовс учетом требований Экологического Кодекса.

Отдельные виды отходов в классификаторе отходов могут быть определены одновременно как опасные и неопасные с присвоением различных кодов («зеркальные» виды отходов) в зависимости от уровней концентрации содержащихся в них опасных веществ или степени влияния опасных характеристик вида отходов на жизнь и (или) здоровье людей и окружающую среду.

Отнесение отходов к опасным или неопасным и к определенному коду классификатора отходов производится владельцем отходов самостоятельно.

Для определения класса опасности отходов, которые Экологическим Кодексом не регламентируются, использованы Санитарные Правила "Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления" (Приказ и.о. Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № КР ДСМ-331/2020.).

Управление отходами

Обращение с отходами в ТОО «M-Ali Petrol» производится в строгом соответствии с действующими в Республике Казахстан нормативно-правовыми актами и требованиями международных стандартов.

В ТОО «M-Ali Petrol» сложилась определенная система сбора, накопления, хранения и вывоза отходов. Принципиально это система обеспечивает охрану окружающей среды. Отходы, образующиеся при нормальном режиме эксплуатации из-за их незначительного и постепенного накопления, сразу не вывозятся в места их утилизации, а собираются в пронумерованные контейнеры и хранятся на отведенных для этих целей площадках. Все образующиеся отходы на предприятии временно хранятся на площадках с последующей передачей специализированным организациям. Обращение с отходами осуществляется согласно разработанным внутренним инструкциям по обращению с отходами. Договора на вывоз и дальнейшую утилизацию всех образующихся отходов производства и потребления заключаются ежегодно.

В систему управления отходами на месторождении Женгельды ТОО «M-Ali Petrol» входят:

- расчет объемов образования отходов;
- обустройство площадки для временного складирования отходов, вывоз отходов на утилизацию/переработку в места захоронения;
- оформление документации на вывоз отходов с указанием объемов вывозимых отходов;
- регистрация информации о вывозе отходов в журналы учета и базу данных на предприятии;
 - составление отчетов, предоставление отчетных данных в госорганы;
- заключение договоров на вывоз с территории предприятия образующихся отходов.

При проведении работ на на месторождении Женгельды ТОО «M-Ali Petrol» планируется следующая система управления отходами:

- Ведение строгого учета образования отходов на всех производственных объектах.
- Накопление отходов осуществляется на месте их образования согласно нормативным документам Республики Казахстан. Для накопления отходов будут оборудованы специальные площадки, и установлено необходимое количество контейнеров.
- При образовании отходов, в течение трех месяцев, будут осуществлены работы по паспортизации отходов с привлечением специализированных организаций.
- Транспортирование отходов будут осуществлять специализированные организации, которые имеют все необходимые разрешительные документы на занятие данным видом деятельности, а также автотранспорт и персонал.
- Передача отходов для утилизации и удаления будет осуществляться только в специализированные организации.

Накопление отходов на месте их образования

Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение установленных сроков, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.

Под накоплением отходов в процессе сбора понимается хранение отходов в специально оборудованных в соответствии с требованиями законодательства Республики

Казахстан местах, в которых отходы, вывезенные с места их образования, выгружаются в целях их подготовки к дальнейшей транспортировке на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению.

Лица, осуществляющие операции по сбору отходов, обязаны обеспечить раздельный сбор отходов в соответствии с требованиями Экологического кодекса Республики Казахстан. Под раздельным сбором отходов понимается сбор отходов раздельно по видам или группам в целях упрощения дальнейшего специализированного управления ими.

Требования к раздельному сбору отходов, в том числе к видам или группам (совокупности видов) отходов, подлежащих обязательному раздельному сбору, определяются уполномоченным органом в области охраны окружающей среды и с учётом технической, экономической и экологической целесообразности. Раздельный сбор осуществляется по следующим фракциям:

- 1) «сухая» (бумага, картон, металл, пластик и стекло);
- 2) «мокрая» (пищевые отходы, органика и иное).

Запрещается смешивание отходов, подвергнутых раздельному сбору, на всех дальнейших этапах управления отходами.

Места накопления отходов предназначены для:

- временного складирования отходов на месте образования на срок не более **шести месяцев** до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники, на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.
- накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).
- Запрещается накопление отходов с превышением установленных сроков и лимитов накопления.

При проведении работ на месторождении Женгельды ТОО «M-Ali Petrol» будет осуществляться накопление отходов на месте их образования. Все образующиеся на предприятии отходы до вывоза по договорам временно хранятся на территории предприятия.

Ниже приведены требования к площадкам временного хранения и емкостям сбора различных видов отходов, согласно Приказу и.о. Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № ҚР ДСМ-331/2020 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления».

Отходы производства 1 класса опасности хранят в герметичной таре (стальные бочки, контейнеры). По мере наполнения, тару с отходами закрывают стальной крышкой, при необходимости заваривают электрогазосваркой и обеспечивают маркировку упаковок с опасными отходами с указанием опасных свойств.

Отработанные люминесцентные лампы, до передачи их на термодемеркуризацию, размещаются в заводской картонной упаковке в специальном помещении (металлическом контейнере).

Отходы производства 2 класса опасности хранят, согласно агрегатному состоянию, в полиэтиленовых мешках, пакетах, бочках и тарах, препятствующих распространению вредных веществ (ингредиентов).

Отходы производства 3 класса опасности хранят в таре, обеспечивающей локализованное хранение, позволяющей выполнять погрузочно-разгрузочные, транспортные работы и исключающей распространение вредных веществ.

Отходы производства 4 класса опасности хранят открыто на промышленной площадке в виде конусообразной кучи, откуда их автопогрузчиком перегружают в автотранспорт и доставляют на место утилизации или захоронения.

Рекомендации по обезвреживанию, утилизации и захоронению всех видов отходов

Обезвреживание отмодов - обработка отходов, имеющая целью исключение их опасности или снижения уровня опасности до допустимого значения.

Твердые отходы, в том числе сыпучие отходы, хранятся в контейнерах, пластиковых, бумажных пакетах или мешках, по мере накопления их вывозят на полигоны.

Площадки для временного хранения отходов располагают на территории производственного объекта с подветренной стороны. Площадки покрывают твёрдым и непроницаемым для токсичных отходов (веществ) материалом, обваловывают, устройством слива и наклоном в сторону очистных сооружений. Направление поверхностного стока с площадок в общий ливнеотвод не допускается. Для поверхностного стока с площадки предусматривают специальные очистные сооружения, обеспечивающие улавливание токсичных веществ, очистку и их обезвреживание. На площадке предусматривают защиту отходов от воздействия атмосферных осадков и ветра.

Под твердыми бытовыми отходами (ТБО) понимаются коммунальные отходы в твердой форме. Контейнерные площадки — специальные площадки для накопления отходов, на которых размещаются контейнеры для сбора твёрдых бытовых отходов, с наличием подъездных путей для специализированного транспорта, осуществляющего транспортировку твёрдых бытовых отходов.

Контейнеры для сбора ТБО оснащают крышками. Вывоз ТБО осуществляется своевременно. Сроки хранения отходов в контейнерах при температуре 0°С и ниже – не более трех суток, при плюсовой температуре – не более суток.

Пищевые отходы столовой собирают в емкости с крышками, хранят в охлаждаемом помещении или в холодильных камерах. Пищевые отходы допускаются использовать на корм скоту.

При проведении разработки на месторождении Женгельды ТОО «M-Ali Petrol» накопление и временное хранение отходов производства проводится на специальных площадках (местах), соответствующих классу опасности отходов. Отходы по мере их накопления собирают раздельно для каждой группы отходов в соответствии с классом опасности. Допускается накопление и временное хранение отходов сроком не более шести месяцев, до их передачи третьим лицам, осуществляющим работы по утилизации, переработке, а также удалению отходов, не подлежащих переработке или утилизации.

Транспортировка отходов

Под транспортировкой отходов понимается деятельность, связанная с перемещением отходов с помощью специализированных транспортных средств между местами их образования, накопления в процессе сбора, сортировки, обработки, восстановления и (или) удаления. Транспортировка отходов осуществляется с соблюдением требований

Экологического кодекса. Транспортировка опасных отходов должна быть сведена к минимуму и допускается при следующих условиях:

- наличие соответствующих упаковки и маркировки опасных отходов для целей транспортировки;
- наличие специально оборудованных и снабжённых специальными знаками транспортных средств;
- наличие паспорта опасных отходов и документации для транспортировки и передачи опасных отходов с указанием количества транспортируемых опасных отходов, цели и места назначения их транспортировки;
- соблюдение требований безопасности при транспортировке опасных отходов, а также к выполнению погрузочно-разгрузочным работ.

Транспортировка (в том числе вывоз) твердых бытовых отходов должна осуществляться транспортными средствами, соответствующими требованиям настоящего Кодекса. Требования к транспортировке отходов, окраске, снабжению специальными отличительными знаками и оборудованию транспортных средств, а также к погрузочноразгрузочным работам устанавливаются национальными стандартами Республики Казахстан, включёнными в перечень, утверждённый уполномоченным органом в области охраны окружающей среды.

Восстановление отходов

Восстановлением отходов признается любая операция, направленная на сокращение объемов отходов, главным назначением которой является использование отходов для выполнения какой-либо полезной функции в целях замещения других материалов, которые в противном случае были бы использованы для выполнения указанной функции, включая вспомогательные операции по подготовке данных отходов для выполнения такой функции, осуществляемые на конкретном производственном объекте или в определенном секторе экономики.

К операциям по восстановлению отходов относятся:

- Подготовка отходов к повторному использованию. Подготовка отходов к повторному использованию включает в себя проверку состояния, очистку и (или) ремонт, посредством которых ставшие отходами продукция или ее компоненты подготавливаются для повторного использования без проведения какой-либо иной обработки.
- Переработка отходов. Под переработкой отходов понимаются механические, физические, химические и (или) биологические процессы, направленные на извлечение из отходов полезных компонентов, сырья и (или) иных материалов, пригодных для использования в дальнейшем в производстве (изготовлении) продукции, материалов или веществ вне зависимости от их назначения, за исключением случаев, предусмотренных пунктом 4 настоящей статьи.
- Утилизация отходов. Под утилизацией отходов понимается процесс использования отходов в иных, помимо переработки, целях, в том числе в качестве вторичного энергетического ресурса для извлечения тепловой или электрической энергии, производства различных видов топлива, а также в качестве вторичного материального ресурса для целей строительства, заполнения (закладки, засыпки) выработанных пространств (пустот) в земле или недрах или в инженерных целях при создании или изменении ландшафтов. Утилизация и размещение отходов должны осуществляться способами, при которых воздействие на здоровье людей и превышает установленных окружающую среду не нормативов, также предусматривается минимальный объем вновь образующихся отходов. Утилизация

отходов производства в подразделениях предприятия проводится в тех направлениях и объемах, которые соответствуют существующим производственным условиям.

Переработке подлежат следующие отходы: отработанные масла, металлолом.

Образующийся на предприятии металлолом складируется на площадке для сбора металлолома. По мере накопления сдается предприятиям на основе проведенного тендера.

Отработанное смазочное масло будет собираться в резервуарах для хранения отходов с дальнейшей утилизацией, которая будет выполняться специализированными предприятиями, список которых будет уточняться на следующих стадиях реализации проекта.

Учет отходов

Ответственным по учету всех отходов производства и потребления и осуществлению взаимоотношений со специализированными организациями является ответственный по ООС на предприятии.

Каждое производственное подразделение TOO «M-Ali Petrol» назначает ответственного за обращение с отходами. Ответственный за обращение с отходами, на основании инвентаризации отходов, ведет первичный учет объемов образования, сдачи на регенерацию, утилизации, реализации, отправки на специализированные предприятия и размещения на полигонах отходов, образованных в результате производственной и хозяйственной деятельности производственного подразделения.

Инженер по ООС готовит сводный отчет и представляет в уполномоченный орган отчет по опасным отходам, выполняет расчеты платежей за размещение отходов в ОС.

Производственный контроль при обращении с отходами

На территории предприятия предусмотрен производственный контроль за безопасным обращением отходов. Должностное лицо, ответственное за надлежащее содержание мест для временного хранения (накопления) отходов, контроль и первичный учет движения отходов, а также ответственный за безопасное обращение с отходами на территории предприятия ведут постоянный учет.

Собственные полигоны, хранилища и иные места для долговременного хранения отходов на балансе ТОО «M-Ali Petrol» отсутствуют.

Отходы, получаемые от третьих лиц, отсутствуют.

Накопленные отходы отсутствуют.

Отходы, подвергшиеся захоронению, отсутствуют.

Характеристика образующихся отходов на месторождении Женгельды со сведениями об объеме и составе отходов, скорости образования (т/год), классификации, способах их накопления, сбора, транспортировки, обезвреживания, восстановления и удаления представлены в таблице 1.9.3; 1.9.4; 1.9.5; 1.9.6; 1.9.7; 1.9.8.

Предварительные виды и характеристика образующихся отходов производства и потребления.

Опасные отходы

Буровые отходы

<u>Отработанный буровой раствор (ОБР)</u> – наиболее опасный вид буровых отходов, т.к. при приготовлении буровой раствор обработан химическими реагентами. Подбор компонентов раствора и их количественный состав осуществляется в зависимости от геологических и гидрогеологических условий района. Пастообразные, непожароопасные отходы.

Код отхода 010505*. Классификация отхода- опасные отходы

Согласно планируемому техническому заданию и договору с компанией, осуществляющей бурение скважин, отработанный буровой раствор - собирается в специальных металлических контейнерах, собирается в специальных металлических

контейнерах, с последующим вывозом на специализированные предприятия имеющие соответсвующую лицензию Согласно п.1 статьи 336 ЭК РК.

Срок накопления отхода согласно Экологический кодекса РК.

Буровой шлам (БШ) — представлен выбуренной породой, отделенной от буровой промывочной жидкости очистным оборудованием. Буровой шлам по минеральному составу нетоксичен, но диспергируясь в среду бурового раствора, частицы его адсорбируют на своей поверхности токсичные вещества и оказывают вредное воздействие. Отходы временно размещаются в металлических контейнерах и вывозятся по договору. Пастообразные, непожароопасные отходы.

Код отхода 010505*. Классификация отхода- опасные отходы

Согласно планируемому техническому заданию и договору с компанией, осуществляющей бурение скважин, буровой шлам - собирается в специальных металлических контейнерах, с последующим вывозом на специализированные предприятия имеющие соответсвующую лицензию Согласно п.1 статьи 336 ЭК РК.

Срок накопления отхода согласно Экологический кодекса РК.

<u>Промасленная ветоинь</u> - Отходы образуются в процессе протирки деталей и механизмов при эксплуатации и ремонте автотранспортных средств и спецтехники, дизельных установок, а также станков, оборудования. Отходом является ветошь с различной степенью загрязненностью нефтепродуктами. Основные компоненты отходов (95,15%): текстиль – 67,8, минеральное масло - 16,2%, SiO₂ –1,85%, смолистый остаток – 9,3%. По своим свойствам пожароопасна, нерастворима в воде.

<u>Код отхода 15 02 02* Классификация отхода – опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

<u>Промасленные фильтры</u> - Образуются при замене фильтров на дизельных генераторах.

<u>Код отхода 16 01 07* Классификация отхода – опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

<u>Отработанное масло по дизельэлектростанциям</u> - Образуются после истечения срока службы и вследствие снижения параметров качества при эксплуатации дизельных установок. Основные компоненты отходов (95,89%): масло минеральное — 91,2%, механические примеси 2,3%, смолистый остаток 0,84%, Fe — 0,75%, Zn — 0,80%.

<u>Код отхода 13 02 06* Классификация отхода – опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

 $\underline{\textit{Использованная мара из-nod ЛКМ}}$ - (лакокрасочных материалов) - образуются в процессе лакокрасочных работ.

<u>Код отхода 08 01 11* Классификация отхода – опасные отходы. Срок накопления отхода согласно Экологический кодекса РК.</u>

Тара из-под химреагентов (металлические бочки, мешкотара, биг бег) - Процесс, при котором происходит образование отходов: проведение различных технологических работ. Отходами являются металлические емкости (бочки), используются для доставки масла на месторождения и мешки из-под цемента и химреагентов.

<u>Код отхода 15 01 10* Классификация отхода – опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

Неопасные отходы

<u>Код отхода 17 01 07 Классификация отхода- не опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

Металлолом - Инертные отходы, остающиеся при строительстве, техническом обслуживании и демонтаже оборудования. К этому виду отходов относятся металлические отходы в виде обрезков труб, балок, проволока. Основные компоненты отходов (91,75%): Fe2O3 - 89,12%, Al2O3 - 0,1%, MgO - 0,85%, Cu - 1,7%. По своим физическим и химическим свойствам не пожароопасен, нерастворим в воде, при хранении химически не активен.

<u>Код отхода 17 04 07 Классификация отхода-не опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

<u>Огарки сварочных электродов</u> - Образуются в результате проведения сварочных работ. По своим физическим и химическим свойствам не пожароопасны, не растворимы в воде, при хранении химически не активны.

<u>Код отхода 12 01 13 Классификация отхода-не опасные отходы. Срок накопления</u> отхода согласно Экологический кодекса РК.

<u>Смешанные коммунальные отмоды (Твердо-бытовые отмоды)</u> - Отходы потребления, образующиеся в результате непроизводственной сферы деятельности рабочего персонала, обслуживающего месторождение (остатки упаковки из-под продуктов (стекло, пластиковые бутылки и металлические банки из-под продуктов, бумага, картон, пищевые отходы, бытовой мусор) — твердые, не токсичные, не растворимы в воде.

Сбор и вывоз согласно заключенному договору.

Согласно Приказу и.о Министра здравоохранения Республики, Казахстан от 25 декабря 2020 года N2 ҚР ДСМ-331/2020 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» - Срок хранения коммунальных отходов в контейнерах при температуре 0^0 С и ниже допускается не более трех суток, при плюсовой температуре не более суток.

Код отхода 20 03 01 Классификация отхода- не опасные отходы

<u>Отработанные автошины</u> - Образуются вследствие исчерпания ресурса автошин в результате эксплуатации автотранспорта находящегося на балансе Предприятия. Образование отходов происходит при замене шин во время проведения технического обслуживания транспорта и спецтехники. По мере образования отработанные автомобильные шины временно складируются в специализированном закрытом помещении. Автомобильные шины временно хранятся и вывозятся согласно договору со специализированной организацией.

Код отхода 16 01 03 Классификация отхода- не опасные отходы

Зеркальные

Зеркальные: не образуются.

Классификация отходов основана на последовательном рассмотрении и определении основных признаков отходов. Классификации подлежат местонахождение, состав, количество, агрегатное состояние отходов, а также их токсикологические, экологические и другие опасные характеристики.

Согласно к пункту 11 Инструкции по организации и проведению экологической оценки, утвержденной Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280, возможность превышения пороговых значений, установленных для переноса отходов правилами ведения регистра выбросов и переноса загрязнителей отсутствуют.

Обоснование лимитов накопления отходов расчетами Расчет объема отходов глубиной 480 м

Суммарный объем выбуренной породы всей скважины рассчитывают по формуле:

$$V_{\Pi} = \sum V_{\Pi, \text{ИНТ}}, M^3$$

где Vп.инт. – объем выбуренной породы интервала скважины, м3.

$$V_{\text{п.инт}}=K_1*\pi*R^2*L, M^3$$

Таблица 1.9.2 – Объем выбуренной породы гл. 480 м

Интервал	k ₁	π	Д∂, м	R², м	L, глубина интервала	<i>V</i> п, м ³
5	1,1	3,14	0,49	0,060025	5	1,03663175
67	1,1	3,14	0,351	0,0308003	62	6,595811937
480	1,1	3,14	0,2159	0,0116532	413	16,62331667
	ΒCΕΓΟ V _π :					

где K_1 – коэффициент кавернозности (величина кавернозности, выраженная отношением объемов всех пустот в определенном объеме породы к данному объему породы);

R — радиус интервала скважины, м; R=D/2 (D диаметр интервала скважины согласно тех. проекту) ;.

L – глубина интервала скважины, м.

Объем бурового шлама определяется по формуле:

$$V_{III} = V_{II} * 1.2 \text{ m}^3$$

 $V_{III} = 24,2557604 * 1.2 = 29,10691 \text{m}^3$

где 1,2 - коэффициент, учитывающий разуплотнение выбуренной породы, может изменяться с учетом особенностей геологического разреза и обосновывается расчетами Масса бурового шлама рассчитывается по формуле:

$$M_{\text{III}}=V_{\text{III}}*\rho$$

где Р- объемный вес бурового шлама, т/м3.

$$M_{\text{III}}=29,10691\text{m}^3 * 1,75\text{ T/m}^3 = 50,93709684\text{ T}.$$

Объем отработанного бурового раствора рассчитывается по формуле:

$$V_{OBP}=1,2 * V_{II} * K_1+0,5 * V_{II}, M^3$$

где K1 - коэффициент, учитывающий потери бурового раствора, уходящего со шламом при очистке на вибросите, пескоотделителе и илоотделителе (в соответствии с [1], K1=1,052);

Vц - объем циркуляционной системы буровой установки, м3. Объем циркуляционной системы буровой установки определяется в соответствии с паспортными данными установки (Vц = 90 м³);

при повторном использовании бурового раствора 1,2 заменяется на 0,25, согласно тех проекту буровой раствор повторно использоваться не будет.

$$V_{OBP} = 1.2 * 24.2557604 \text{ m}^3 * 1.052 + 0.5 * 90 = 75.62047193 \text{ m}^3$$

Масса отработанного бурового раствора рассчитывается по формуле:

$$M_{OBP} = V_{OBP} * \rho$$
,

где Р- удельный вес отработанного бурового раствора, т/м³.

$$M_{OBP} = 75,62047193 \text{ m}^3 * 1,45 \text{ T/m}^3 = 109,64968 \text{ T}.$$

Объем буровых сточных вод (V_{БСВ}) рассчитывается согласно нижеследующей формуле:

$$V6cB = 2 \times Vo6p$$

Для 1 скважины

$$V6cB = 2 * 75,62047193 = 151,24094 \text{ m}^3$$

Масса сброса загрязняющего вещества в отводимых буровых сточных водах определяется по формуле:

$$M_i = V_{BCB} \times C_i \times 10^{-6}$$
, T.

Буровые сточные воды к отходам не относятся. Расчет произведен согласно «Методики расчета объемов образования эмиссий (в части отходов производства, сточных вод) от бурения скважин.

Приказ и.о. Министра охраны окружающей среды Республики Казахстан от 03 мая 2012 года №129-ө. Зарегестрирован в Министерстве юстиции Республики Казахстан 7 июня 2012 года №7714».

где Ci – концентрация i-го загрязняющего вещества согласно составу отводимых сточных вод, г/м3. Ориентировочно концентрация равна **68,75** кг/м³ \approx **68750** г/м³

 $M_{i1ckb} = 151,24094 * 68750 * 10^{-6} = 10,39781$

Расчет образования отходов

При:

- Строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению
- Бурение и крепление
- Работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин)

Смешанные коммунальные отходы (Твердо-бытовые отходы)

Согласно РНД 03.1.0.3.01-96 «Порядок нормирования объемов образования и размещения отходов производства» как жилье с неблагоустроенным жилым фондом норма накопления отходов на 1 чел в год - 0,36m/год.

Количество ТБО определяется по формуле:

Qтбо = P * M * N,

где:

Р - норма накопления отходов на 1 чел в год - 0,36т/год;

P=0.36т/год / 365=0.0009863 т/сут

М – численность работающего персонала, 64 чел;

N – время работы 20 сут. при смр

Qком = 0,0009863 τ /сут*64чел*20 суток =1,2625 τ /год (при смр)

N – время работы 10 сут. при смр

Qком = 0,0009863T/суT*64че π *10 суток =0,6312 T/год (при расконсервации)

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при					
бурение и крепление					
2027г. – 2 скв.	2,525 т/год				
2028г. – 2 скв.	2,525 т/год				
2029г. – 4 скв.	5,05 т/год				
2030г. – 2 скв.	2,525 т/год				
Работы при расконсервации скважин					
2025г. – 1 скв ввод из консервации нагнетательной скважины	0,6312 т/год				
2025г. – 6 скв.	3,7872 т/год				
2026г. – 6 скв.	3,7872 т/год				

<u>Расчет строительных отхо</u>дов

Строительный отход образуется в результате проведения текущих, плановых и разработки на территории предприятия. По мере образования отход строительный складируется в специально отведенных площадках. По мере накопления отход строительный вывозится по договору.

Объемы строительного мусора принимаются по факту образования в соответсвии с п.2.37 "Методики разработки проектов нормативов предельного размещения отходов производтсва и потребления", Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008г. №100-п.

Объем образования строительного отхода принят как максимальное значение планируемого образования отхода на территории площадки.

$$M_{\text{обр}} = M_{\text{макс.план.}}$$

где:

Мобр - объем образования отходов производства (т/год)

М пр - количество отходов, предусмотренное проектной документацией (т/год)

Максимальный объем образования строительного отхода равный проектному объему составляет:

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при					
бурение и крепление					
2027г. – 2 скв.	3,5 т/год				
2028г. – 2 скв.	3,5 т/год				
2029г. – 4 скв.	7,0 т/год				
2030г. – 2 скв.	3,5 т/год				
Работы при расконсервации скважин					
2025г. – 1 скв ввод из консервации нагнетательной скважины	1,25 т/год				
2025г. – 6 скв.	7,5 т/год				
2026г. – 6 скв.	7,5 т/год				

Отработанные автошины

Расчет норматива образования произведен, согласно методическим рекомендациям по разработке проектов нормативов предельного размещения отходов производства и потребления (Приложение № 16 к приказу Министра охраны окружающей среды РК от 18.04. 2008г. № 100- п).

Расчет норм образования ведется по видам автотранспорта (і). Результаты расчета суммируются.

Норма образования отработанных шин определяется по формуле:

Мотх=0,001*Пср*K*k*M/H, т/год где k -количество шин;

М -масса шины (принимается в зависимости от марки шины),

К -количество машин, Пер -среднегодовой пробег машины (тыс.км), Н -нормативный пробег шины (тыс.км).

Motx=0.001*4*16*4*10/70

Итоговая таблина:

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при					
бурение и крепление					
2027г. – 2 скв.	0,074 т/год				
2028г. – 2 скв.	0,074 т/год				
2029г. – 4 скв.	0,148 т/год				
2030г. – 2 скв.	0,074 т/год				
Работы при расконсервации скважин					
2025г. – 1 скв ввод из консервации нагнетательной скважины	0,037 т/год				
2025г. – 6 скв.	0,222 т/год				
2026г. – 6 скв.	0,222 т/год				

Количество промасленной ветоши

Количество промасленной ветоши определяется по формуле:

 $N = M_o + M + W$, т/год,

где: N – количество промасленной ветоши, т/год;

 M_o — поступающее количество ветоши- 0,12 т/год;

M – норматива содержания в ветоши масел, т/год;

 $M = 0.12 * M_o$

W – норматива содержания в ветоши влаги, m/год.

$$W = 0.15 * M_o$$

Количество промасленной ветоши в году:

N = 0.12 + 0.0144 + 0.018 = 0.1524 T/год

Во время ремонта ДЭС также используется ветошь и в результате проведения ремонтных работ образуется промасленная ветошь. Режим работы 64 суток. Текущие ремонтные работы проводятся около 1 раза в 2 месяца, т.е. 6 раз в год.

Расчёт образования замасленной ветоши при ремонте ДЭС

Станок или оборудование	Кол-во,	Смен в	Уд. норматив,	Кол-во отхода, т/год
	шт.	год	г/смену	
Ремонт ДЭС	10	6	300	0,02

Итоговая таблица:

Жидкие теплоносители (промасленная ветошь) Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при					
бурение и крепление	, ,				
2027г. – 2 скв.	0,3048 т/год				
2028г. – 2 скв.	0,3048 т/год				
2029г. – 4 скв.	0,6096 т/год				
2030г. – 2 скв.	0,3048 т/год				
Жидкие теплоносители (промасленная ветошь	b)				
Работы при расконсервации скважин					
2025г. – 1 скв ввод из консервации нагнетательной скважины	0,1524 т/год				
2025г. – 6 скв.	0,9144 т/год				
2026г. – 6 скв. 0,9144 m/год					

Тара из-под химреагентов (металлические бочки, мешкотара, биг бег)

Расчёт образования тары из-под химреагентов произведён по формуле из «Методики разработки проектов нормативов предельного размещения отходов производства и потребления», утверждённой Приказом МООС РК №100-п от 18.04.2008 г.

Количество тары - N шт./год, средняя масса единичной тары - m, т.

Количество использованной тары зависит от расхода сырья.

Норма образования отхода, M_{OTX} *m, $_{T/rod}$.

Участок	Количество тары,	Масса единичной	Количество отходов,
	ШТ	тары, т	т/год
м/р Женгельды	30	0,03	0,9

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при				
бурение и крепление				
2027г. – 2 скв.	1,8 т/год			
2028г. – 2 скв.	1,8 т/год			
2029г. – 4 скв.	3,6 т/год			
2030г. – 2 скв.	1,8 т/год			

Работы при расконсервации скважин					
2025г. -1 скв ввод из консервации нагнетательной скважины	0,9 т/год				
2025г. – 6 скв.	5,4 т/год				
2026г. – 6 скв.	5,4 т/год				

Промасленные фильтры

Расчёт образования отработанных масляных фильтров напрямую зависит от количества отработанного масла. При замене масла происходит и замена масляного фильтра. Расчёт производится по формуле из "Справочных материалов по удельным показателям образования важнейших видов отходов производства и потребления", Москва, 1996 г.:

 $M\phi = \Sigma (Qa*Q3*mi)/1000$,

где Qa – количество техники определённого типа;

Qз – количество замен масла в год (по регламенту работы техники);

ті – средний вес одного фильтра і-той марки.

Расчет образования отработанных масляных фильтров

№ п/п	Тип, оборудования	Кол- во двига- телей	Объём масляной системы, л	Кол-во замены масла за год Qз	Масса одного фильтра, mi кг	Масса фильтров тонн Мф			
рабо	оты при смр (мобилиз		* *		е работы к бу	рению, при			
			ение и крепло						
1	Силовой привод буровой установки	1	10	3	1	0,004			
2	Насосный блок буровой установки	1	10	3	1	0,006			
3	Дизельная электростанция буровой установки	1	10	3	1	0,002			
4	Цементировочный агрегат	1	10	3	1	0,004			
5	Дизельная электростанция для выработки электроэнергии	1	10	3	1	0,003			
6	Передвижная паровая установка	1	10	3	1	0,005			
					Итого:	0,024			
	pa6	боты при	расконсерва	ции скважи	TH				
7	Дизельный двигатель	1	10	3	1	0,007			
8	Дизельный- генератор	1	10	3	1	0,003			
	Итого: 0,01								

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при бурение и крепление

Отходы из устройств борьбы с промышленным загрязнением для очистки промышленных отходящих газов, не указанные и не включенные в других						
позициях	, ,					
2027г. – 2 скв.	0,048 т/год					
2028г. – 2 скв.	0,048 т/год					
2029г. – 4 скв.	0,096 т/год					
2030г. – 2 скв.	0,048 т/год					
Работы при расконсервации скважин						
2025г. – 1 скв ввод из консервации нагнетательной скважины 0,01 т/год						
2025г. – 6 скв. 0,06 m/год						
2026г. – 6 скв.	0,06 т/год					

Отработанное масло по дизельэлектростанциям

В работе дизельэлектростанций (ДЭС), расположенных при подготовительных работах + бурение + крепление + испытание + на территории вахтового посёлка, при работе двигателей используется моторное масло.

Потребность в масле зависит от количества потребляемого топлива и составляет 0,5% от общего количества дизельного топлива.

Общее количество отработанного масла по технологическому регламенту составляет 25 % от объема масла, необходимого для работы ДЭС

Расчет образования отходов отработанного масла от дизельных генераторов

	при строительстве скважин (подг.работы, смр, бурение и крепление)								
№	Наименование	Кол-	Мощность	Расход	Кол-во	Итого			
π/	оборудования	во	дизельно	дизельно	израсходованн	отработанног			
П		двиг	ГО	ГО	ого масла, т	о масла, т			
		a-	агрегата,	топлива,					
		телей	кВт	T					
	при строительстве скважин (подг.работы, смр, бурение и крепление)								
1	Силовой привод	1	545	22,03	16,6875	2,171875			
	буровой								
	установки								
2	Насосный блок	1	1102	95,9	3,74	1,93775			
	буровой								
	установки								
3	Дизельная	1	494	55,87	0,3975	0,099375			
	электростанция								
	буровой								
	установки								
4	Цементировочн	1	176.5	1,12	0,7549	0,188725			
	ый агрегат								
5	Дизельная	1	372	56,736	0,52445	0,131113			
	электростанция								
	для выработки								
	электроэнергии								
6	Передвижная	1	1,7	38,4	0,2925	0,073125			
	паровая								
	установка								
	Итого: 270,056 22,39685 4,601963								
	работы при расконсервации скважин								

7	Дизельный	1	392	3,8	1,90715	0,476788
	двигатель					
8	Дизельный-	1	320	8,36	0,43705	0,109263
	генератор					
		•	Итого:	12,16	2,3442	0,586051

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при бурение и крепление					
Отработанные масла, не пригодные для использования п	о назначению				
2027г. – 2 скв.	540,112 т/год				
2028г. – 2 скв.	540,112 т/год				
2029г. – 4 скв.	1080,224 т/год				
2030г. – 2 скв.	540,112 т/год				
Работы при расконсервации скважин	<u> </u>				
2025г. – 1 скв ввод из консервации нагнетательной скважины	12,16 т/год				
2025г. – 6 скв.	72,96 т/год				
2026г. – 6 скв.	72,96 т/год				

Тара из-под лакокрасочных материалов

Объем образования отходов ЛКМ рассчитывается по формуле:

 $N=\sum Mi * n+\sum Mki * \alpha i$,

где: Mi – масса i-го вида тары (пустой) – 0.0005т;

п – число видов тары;

Mki – масса краски в i-й таре;

 αi – содержание остатков краски в таре в долях от MkI (0,01-0,05).

Общая масса использованной краски -0.757 т;

Масса тары с полной краской -0.005т.

Общее количество банок 0,757/0,005=152 шт.

N = 0.0005 * 152 + 0.757*0.05 = 0.11385T.

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные раб	боты к бурению, при				
бурение и крепление					
2027г. – 2 скв.	0,2277 т/год				
2028г. – 2 скв.	0,2277 т/год				
2029г. – 4 скв.	0,4554 т/год				
2030г. – 2 скв.	0,2277 т/год				
Работы при расконсервации скважин					
2025г. – 1 скв ввод из консервации нагнетательной скважины	0,11385 т/год				
2025г. – 6 скв.	0,6831 т/год				
2026г. – 6 скв.	0,6831 т/год				

<u>Металлолом</u>

Металлолом транспортных средств

Количество металлолома, образующегося в процессе ремонта транспортных средств, определяется по формуле:

 $N_{\pi} = n * \alpha * M$, где: N_{π} – количество лома черных металлов, т/год;

n – количество автотранспортных средств грузовые – 9 ед.:

α – коэффициент образования лома:

- грузовой транспорт -0.016.

М – масса металла на единицу транспорта, т:

- грузового -4,74. $N_{\pi} = 9*0,016*4,74 = 0,68256$ т/год

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при							
бурение и крепление	бурение и крепление						
2027г. – 2 скв.	1,36512 т/год						
2028г. – 2 скв.	1,36512 т/год						
2029г. – 4 скв.	2,73024 т/год						
2030г. – 2 скв.	1,36512 т/год						
Работы при расконсервации скважин							
2025г. – 1 скв ввод из консервации нагнетательной скважины	0,68256 т/год						
2025г. – 6 скв.	4,09536 т/год						
2026г. – 6 скв.	4,09536 т/год						

Огарки сварочных электродов

 $\overline{N} = M_{ocm} * \alpha,$

где: $M_{\text{ост}}$ - расход электродов, 0,726 т/год;

α- остаток электрода, 0,015.

N = 0.726 *0.015 = 0.011 т/год.

Итоговая таблица:

Работы при смр (мобилизация, монтаж), подготовительные рабо	Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при					
бурение и крепление						
2027г. – 2 скв.	0,022 т/год					
2028г. – 2 скв.	0,022 т/год					
2029г. – 4 скв.	0,044 т/год					
2030г. – 2 скв.	0,022 т/год					
Работы при расконсервации скважин						
2025г. – 1 скв ввод из консервации нагнетательной скважины	0,011 т/год					
2025г. – 6 скв.	0,066 т/год					
2026г. – 6 скв.	0,066 т/год					

TOO «TIMAL CONSULTING GROUP»

Таблица 1.9.3 Классификация отходов и объем образования

1 аол	ица 1.9.3 Классифик	ация отх	содов и ооъем о	оразования						
№ п/ п	Вид отхода	Код отхода	Классификация отхода	Работы при смр (мобилизация, монтаж), подготовительны е работы к бурению, при бурении и крепление 2027г. – 2 скв.	Работы при смр (мобилизация, монтаж), подготовительны е работы к бурению, при бурении и крепление 2028г. – 2 скв.	Работы при смр (мобилизация, монтаж), подготовительны е работы к бурению, при бурении и крепление 2029г. – 4 скв.	Работы при смр (мобилизация, монтаж), подготовительны е работы к бурению, при бурении и крепление 2030г. – 2 скв.	Работы при расконсерваци и скважин2025г. – 1 скв ввод из консервации нагнетательной скважины	Работы при расконсерваци и скважин — 2025г. – 6скв.	Работы при расконсерваци и скважин – 2026г. – 6скв.
					Опасные	отходы				
1	Буровой шлам	010505*	Опасные отходы	101,8742	101,8742	203,7484	101,8742	50,9371	305,6226	305,6226
2	Отработанный буровой раствор	010505*	Опасные отходы	219,2994	219,2994	438,5987	219,2994	109,64968	657,8981	657,8981
3	Промасленная ветошь	150202*	Опасные отходы	0,3048	0,3048	0,6096	0,3048	0,1524	0,9144	0,9144
4	Тара из-под химреагентов (металлические бочки, мешкотара, биг бег)	15 01 10*	Опасные отходы	1,8	1,8	3,6	1,8	0,9	5,4	5,4
5	Промасленные фильтры	16 01 07*	Опасные отходы	0,048	0,048	0,096	0,048	0,01	0,06	0,06
6	Отработанное масло по дизельэлектростанциям	13 02 06*	Опасные отходы	540,112	540,112	1080,224	540,112	12,16	72,96	72,96
7	Тара из-под лакокрасочных материалов	08 01 11*	Опасные отходы	0,2277	0,2277	0,4554	0,2277	0,11385	0,6831	0,6831
					Неопасные	е отходы				
8	Огарки электродов	120113	Неопасные отходы	0,022	0,022	0,044	0,022	0,011	0,066	0,066
9	Смешанные коммунальные отходы (Твердо-бытовые отходы)	200301	Неопасные отходы	2,525	2,525	5,05	2,525	0,6312	3,7872	3,7872
10	Отработанные автошины	160103	Неопасные отходы	0,074	0,074	0,148	0,074	0,037	0,222	0,222
11	Строительные отходы	17 01 07	Неопасные отходы	3,5	3,5	7,0	3,5	1,25	7,5	7,5
12	Металлолом	170407	Неопасные отходы	1,36512	1,36512	2,73024	1,36512	0,68256	4,09536	4,09536

TOO «TIMAL CONSULTING GROUP»

Таблица 1.9.4 Лимиты накопления отходов

Таблица 1.9.4 Лимит	ы накопления (n .	n -	n -			
Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при бурении и крепление 2027г. – 2 скв.	Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при бурении и крепление 2028г. – 2 скв.	Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при бурении и крепление 2029г. – 4 скв.	Работы при смр (мобилизация, монтаж), подготовительные работы к бурению, при бурении и крепление 2030г. – 2 скв.	Работы при расконсервации скважин2025г. – 1 скв ввод из консервации нагнетательной скважины	Работы при расконсервации скважин – 2025г. – 6скв.	Работы при расконсервации скважин – 2026г. – 6скв.
1	2	3	4	5	6	7	8	9
Всего	ī	871,15222	871,15222	1742,30434	871,15222	176,53479	1059,20876	1059,20876
в т. ч. отходов производства	-	868,6272	868,6272	1737,254	868,6272	175,90359	1055,42156	1055,42156
отходов потребления	-	2,525	2,525	5,05	2,525	0,6312	3,7872	3,7872
-				Опасные отходы				·
Буровой шлам	-	101,8742	101,8742	203,7484	101,8742	50,9371	305,6226	305,6226
Отработанный буровой раствор	-	219,2994	219,2994	438,5987	219,2994	109,64968	657,8981	657,8981
Промасленная ветошь	ветошь - 0,3048 0,3048		0,6096	0,3048	0,1524	0,9144	0,9144	
Тара из-под химреагентов (металлические бочки, мешкотара, биг бег)	-	1,8	1,8	3,6	1,8	0,9	5,4	5,4
Промасленные фильтры	-	0,048	0,048	0,096	0,048	0,01	0,06	0,06
Отработанное масло по дизельэлектростанциям	-	540,112	540,112	1080,224	540,112	12,16	72,96	72,96
Тара из-под лакокрасочных материалов	-	0,2277	0,2277	0,4554	0,2277	0,11385	0,6831	0,6831
			H	е опасные отходы				
Огарки электродов	-	0,022	0,022	0,044	0,022	0,011	0,066	0,066
Смешанные коммунальные отходы (Твердо-бытовые отходы)	-	2,525	2,525	5,05	2,525	0,6312	3,7872	3,7872
Отработанные автошины	-	0,074	0,074	0,148	0,074	0,037	0,222	0,222
Строительные отходы	-	3,5	3,5	7,0	3,5	1,25	7,5	7,5
Металлолом	-	1,36512	1,36512	2,73024	1,36512	0,68256	4,09536	4,09536
			36	еркальные отходы				
-	ı	=	•	-	-	=	-	-

Расчет образования отходов при испытании

В 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119. В 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

Смешанные коммунальные отходы (Твердо-бытовые отходы)

Отходы потребления представляют собой продукты, образующиеся в процессе функционирования хозяйственно-бытового блока, обеспечивающего необходимые условия для проживания и рабочего состояния штата, занятого на производстве и проживающих в вахтовом городке. Данный вид отходов представлен твердыми бытовыми отходами.

Объемы образования твёрдых бытовых отходов определены по нормам накопления мусора на 1 человека в год (0,36 тонн в год) для кварталов неблагоустроенного жилого фонда, принятым РНД 03.1.0.3.01-96 «Порядок нормирования объёмов образования и размещения отходов производства. Алматы, 1996.

На территории месторождения Женгельды отводятся специальные места для временного

складирования и хранения бытовых и других отходов.

Скважина	Норма накопл.	Буровая бриг.,	Продолжит.,	ТБО, тонн
	на чел.	чел.	сут.	
м/р Женгельды	0,36	47	10	0,41
	0,41			

Итоговая таблица:

2025г. – 6 скв.	2,46 m/год
2026г. – 6 скв.	2,46 m/год

<u>Люминесцентные лампы.</u> Расчет по «Методике разработки проектов нормативов предельного размещения отходов производства и потребления» Приложение 16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008г. №100-п

Норма образования отработанных ламп (N) рассчитывается по формуле:

 $N=n*T/T_p$, шт./год,

где п - количество работающих ламп данного типа;

T_р - ресурс времени работы ламп, ч (12000ч);

Т- время работы ламп данного типа ламп в году, ч.

Лампы ЛБ-20

Примечание: Лампы разрядные низкого давления люминесцентные

Эксплуатационный срок службы лампы, час, Тр =12000

Количество работающих ламп данного типа, шт. n=5

Объем образующегося отхода от данного типа ламп, шт./год,

N=5*450/12000=0,19 mt./год

Вес лампы, М=0,17 кг.

Масса образующихся отработанных ламп составит: М=0,19*0,17/1000

Итого: 0,0002 т/год. Итоговая таблица:

2025г. – 6 скв.	0,0012 т/год
2026г. – 6 скв.	0,0012 т/год

Промасленные фильтры

Расчет образования отработанных масляных фильтров

№ п/п	Тип, оборудования	Кол-во двига- телей	Объём масляной системы, л	Кол-во замены масла за год Q з	Масса одного фильтра, mi кг	Масса фильтров тонн Мф
1	Дизельный двигатель	1	10	3	1	0,003
	Цементировочного агрегата					
2	Буровой станок	1	10	3	1	0,003
3	Дизель генератор	1	10	3	1	0,003
4	ДЭС	1	10	3	1	0,003
5	Емкость для хранения	1	10	3	1	0,003
	дизтоплива					
6	Блок манифольд	1	10	3	1	0,003
7	Насос для перекачки	5	10	3	1	0,003
	дизельного топлива - 5шт.					
	0,021					
2025	0,126 т/год					
2026	г. – 6 скв.					0,126 т/год

Расчет образования отходов отработанного масла от дизельных генераторов

№ п/п	Наименование оборудования	Кол- во	Мощность дизельного	Расход дизельного	Кол-во израсходованного	Итого отработанного	
		двига- телей	агрегата, кВт	топлива, т	масла, т	масла, т	
1	Диз. двигатель Цементировочного агрегата	1	400	143,56	4,68115	0,508475	
2	Буровой станок	1	294	143,56	3,7338	0,93345	
3	Дизель генератор	1	100	70,525	0,13375	0,033438	
4	ДЭС	1	250	110,5	0,5575	0,139375	
5	Блок манифольд	1	-	-	0,446	0,1115	
6	Насос для перекачки дизельного топлива - 5шт.	5	-	-	1,54925	0,387313	
			Итого:	468,145	11,10145	2,113551	
2025	2025г. – 6 скв.						
2026	бг. – 6 скв.					2808,87 т/год	

TOO «TIMAL CONSULTING GROUP»

TOO «M-Ali Petrol»

Таблица 1.9.5 Классификация отходов и объем образования при испытании

В 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119. В 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

№ п/п	Вид отхода	Код отхода	Классификация отхода	При испытании 6ти скважин в 2025г.	При испытании 6ти скважин в 2026г.
Опасные отходы					
1	Люминесцентные лампы	20 01 21*	Опасные отходы	0,0012	0,0012
2	Промасленные фильтры	16 01 07*	Опасные отходы	0,126	0,126
3	Отработанное масло по дизельэлектростанциям	13 02 06*	Опасные отходы	2808,87	2808,87
	Неопасные отходы				
4	Смешанные коммунальные отходы (Твердо-бытовые отходы)	200301	Неопасные отходы	2,46	2,46

Таблица 1.9.6 Лимиты накопления отходов при испытании

В 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119.

В 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	При испытании 6ти скважин в 2025г.	При испытании бти скважин в 2026г.	
1	2	3	4	
Всего	-	2811,4572	2811,4572	
в т. ч. отходов производства	-	2808,9972	2808,9972	
отходов потребления	-	2,46	2,46	
	Опасные отходы			
Люминесцентные лампы	-	0,0012	0,0012	
Промасленные фильтры	-	0,126	0,126	
Отработанное масло по дизельэлектростанциям	-	2808,87	2808,87	
	Не опасные отходы			
Смешанные коммунальные отходы (Твердо-бытовые отходы)	-	2,46	2,46	
	Зеркальные отходы			
-	-	-	-	

Расчет образования отходов при ликвидации

Срок начала работ — декабрь 2051г; завершения работ — февраль 2052г. Скважины №102, 104, 109, 106, 107, 103, 118, 111, 124, 125, 126, 127, 128, 129, 130, 131, 1H, 10, 7.

Расчет образования отходов отработанного масла от дизельных генераторов

	при ликвидации последствий разведки							
$N_{\underline{0}}$	Наименование	Кол-	Мощность	Расход	Кол-во	Итого		
п/п	оборудования	во	дизельного	дизельного	израсходованного	отработанного		
		двига-	агрегата,	топлива,	масла, т	масла, т		
		телей	кВт	T				
1	Дизельная электростанция (ДЭС) дл освещения		100	100,7	4,68115	0,508475		
2	Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)	1	176	59,28	3,7338	0,93345		
3	Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)	1	176	59,28	0,13375	0,033438		
4	Дизельный двигатель Цементировочного агрегата ЦА-320	1	176	21,28	0,5575	0,139375		
5	Дизельный двигатель Цементировочного агрегата ЦА-320	1	176	21,28	0,652	0,163		
6	Агрегат сварочный дизельный	1	37	0,57	0,446	0,1115		
7	Агрегат сварочный дизельный	1	37	0,57	1,54925	0,387313		
8	Цементосмесительная машина (СМН)	1	176	32,49	3,7338	0,93345		
9	Цементосмесительная машина (СМН)	1	176	32,49	3,7338	0,93345		
10	Насос подачи ГСМ к дизелям	1	-	-	3,7338	0,93345		
			Итого:	327,94	22.9549	5,0769		
					Итого:	5,0769 * 19скв.		
						= 96,4611		

Количество промасленной ветоши

Промасленная ветошь образуется при ремонте спецтехники. Промасленная ветошь – пожароопасна, III класс опасности.

Расчет количества промасленной ветоши выполнен по «Методике разработке проекта нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК №100-п от 18.04.08 г.

Норма образования отхода определяется по формуле: $N = M_0 + M + W$, т/год, где:

N – количество отхода, т;

Мо - поступающее количество ветоши, 0,6 т/скв;

М - норматив содержания в ветоши масел, М=0,12*Мо;

W - нормативное содержание в ветоши влаги, W=0,15*Mo;

M = 0.12*0.6 = 0.072 T

W = 0.15*0.6 = 0.09 T

N = 0.6+0.072+0.09 = 0.762 *19ckb.t.

Отход не подлежит дальнейшему использованию. По мере образования и накопления вывозится на полигон по договору.

Во время ремонта ДЭС также используется ветошь и в результате проведения ремонтных работ образуется промасленная ветошь. Режим работы 97,2 суток.

Расчёт образования замасленной ветоши при ремонте ДЭС

Станок или оборудование	Кол-во,	Смен в	Уд. норматив,	Кол-во отхода, т/год
	шт.	год	г/смену	
Ремонт ДЭС	10	6	300	0,02

Итоговая таблица:

Материал	Количество отхода, т/год
Жидкие теплоносители (промасленная ветошь)	14,478

Расчет использованной тары

Использованная тара, применяемая для временного хранения химических реактивов, цемента.

Расчет количества использованной тары выполнен по «Методике разработке проекта нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК №100-п от 18.04.08 г. 4 класс опасности

Расчет отработанной тары (упаковка из-под цемента и химреагентов)

Норма образования отхода определяется по формуле:

 $M_{OTX} = m * Q/q$, т/скв. где:

m – масса мешка, m = 0.0001 т;

Q- потребность в материалах при цементировании скважин 3200,0 кг/скв. согласно табл.5.3 проекта,

q – вес материала в мешке, 50,0 кг

 $M_{OTX} = 0,0001 * 3200,0/50,0 = 0,0064 * 19ckb. \ T. = 0,1216 \ T.$

Отходы не подлежат дальнейшему использованию. По мере образования и накопления вывозится на полигон по договору.

Металлолом

Металлолом транспортных средств

Количество металлолома, образующегося в процессе ремонта транспортных средств, определяется по формуле:

 $N_{\pi} = n * \alpha * M$, где: N_{π} – количество лома черных металлов, т/год;

n – количество автотранспортных средств грузовые – 9 ед.:

α – коэффициент образования лома:

- грузовой транспорт -0.016.

М – масса металла на единицу транспорта, т:

- грузового -4.74. $N_{\pi} = 9*0.016*4.74 = 0.7584$ т/год * 19скв. = 14.4096 т/год

Огарки сварочных электродов

 $N = M_{ocm} * \alpha$,

где: $M_{\text{ост}}$ - расход электродов, 0,014 т/год;

α- остаток электрода, 0,015.

N = 0.014 *0.015 = 0.00021 т/год. * 19скв. = 0.00399 т/год.

Отход не подлежит дальнейшему использованию. По мере образования и накопления вывозится на полигон по договору.

Смешанные коммунальные отходы (Твердо-бытовые отходы)

Согласно РНД 03.1.0.3.01-96 «Порядок нормирования объемов образования и размещения отходов производства» как жилье с неблагоустроенным жилым фондом норма накопления отходов на 1 чел в год - 0,36m/год.

Количество ТБО определяется по формуле:

Qтбо = P * M * N,

где:

Р - норма накопления отходов на 1 чел в год - 0,36т/год;

P=0.36т/год / 13,1 =0.03 т/сут

М – численность работающего персонала, 7 чел;

N – время работы 97,2 сут;

Qком = 0,03T/суT*7че π *97,2суток =20,412 T/год * 19скв. = 387,828T/год.

Расчет строительных отходов

Строительные отходы — образуются в процессе проведения демонтажных работ. 4 класс опасности. По своим физическим и химическим свойствам не пожароопасен, нерастворим в воде, при хранении химически не активен. По мере образования отход строительный складируется в специально отведенных площадках. По мере накопления отход строительный вывозится по договору.

Объемы строительного мусора принимаются по факту образования в соответсвии с п.2.37 "Методики разработки проектов нормативов предельного размещения отходов производтсва и потребления", Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008г. №100-п.

Объем образования строительного отхода принят как максимальное значение планируемого образования отхода на территории площадки.

$$M_{\text{обр}} = M_{\text{макс.план.}}$$

где:

Мобр - объем образования отходов производства (т/год)

М пр - количество отходов, предусмотренное проектной документацией (т/год)

Максимальный объем образования строительного отхода равный проектному объему составляет: 1,860 тонн. *19скв. = 35,34 тонн.

Таблица 1.9.7 Классификация отходов и объем образования при ликвидации 19 скважин

№ п/п	Вид отхода	Код отхода	Классификация отхода	При ликвидации в 2051г. на 19скв.	При ликвидации в 2052г. на 19скв.		
	Опасные отходы						
1	Промасленная ветошь	150202*	Опасные отходы	14,478	14,478		
2	Отработанное масло по дизельэлектростанциям	13 02 06*	Опасные отходы	96,4611	96,4611		
3	Тара из-под лакокрасочных материалов	08 01 11*	Опасные отходы	0,1216	0,1216		
	Неопасные отходы						
4	Огарки электродов	120113	Неопасные отходы	0,00399	0,00399		
5	Смешанные коммунальные отходы (Твердо-бытовые отходы)	200301	Неопасные отходы	387,828	387,828		
6	Строительные отходы	17 01 07	Неопасные отходы	35,34	35,34		
7	Металлолом	170407	Неопасные отходы	14,4096	14,4096		

Таблица 1.9.8 Лимиты накопления отходов при ликвидации 19 скважин

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	При ликвидации в 2051г. на 19скв.	При ликвидации в 2052г. на 19скв.				
1	2	3	4				
Всего	-	548,64229	548,64229				
в т. ч. отходов производства	-	160,81429	160,81429				
отходов потребления	-	387,828	387,828				
	Опасные отходы						
Промасленная ветошь	-	14,478	14,478				
Отработанное масло по		96,4611	96,4611				
дизельэлектростанциям	-	70,4011	70,4011				
Тара из-под лакокрасочных	_	0,1216	0,1216				
материалов	-	,	0,1210				
	Не опасные отходы	I					
Огарки электродов	-	0,00399	0,00399				
Смешанные коммунальные							
отходы	-	387,828	387,828				
(Твердо-бытовые отходы)							
Строительные отходы	-	35,34	35,34				
Металлолом	-	14,4096	14,4096				
	Зеркальные отходы						
-	-	-	-				

10. ОПИСАНИЕ ЗАТРАГИВАЕМОЙ ТЕРРИТОРИИ С УКАЗАНИЕМ ЧИСЛЕННОСТИ ЕЕ НАСЕЛЕНИЯ, УЧАСТКОВ, НА КОТОРЫХ МОГУТ БЫТЬ ОБНАРУЖЕНЫ ВЫБРОСЫ, СБРОСЫ И ИНЫЕ НЕГАТИВНЫЕ ВОЗДЕЙСТВИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОКРУЖАЮЩУЮ СРЕДУ, С УЧЕТОМ ИХ ХАРАКТЕРИСТИК И СПОСОБНОСТИ ПЕРЕНОСА В ОКРУЖАЮЩУЮ СРЕДУ

Месторождение Женгельды в административно-территориальном отношении расположен на территории Атырауской области Республики Казахстана.

Местность ровная пустынная, с резко континентальным климатом. Абсолютные отметки рельефа в среднем составляют минус 25. Отсутствие горных цепей и близость Центрально-азиатской пустыни, расположенной к востоку от Каспийского моря, оказывают большое воздействие на погодные условия на восточном побережье Каспийского моря.

Каспийское море имеет сглаживающее влияние на климат данного района, и уменьшает изменчивость температур вдоль побережья, по сравнению с температурами, отмечающимися дальше к востоку в пустыне. Тем не менее, для района работ характерны значительные суточные и сезонные колебания температур, а также ветра, от умеренных до сильных в течение большей части года. Климат района резко континентальный: с холодной зимой (до -30° C) и жарким летом (до $+45^{\circ}$ C). Снеговой покров обычно ложится в середине ноября и сохраняется до конца марта. Глубина промерзания почвы до 1,5-2,0 метра. Годовое количество атмосферных осадков — 250—300 мм.

В течение всего года преобладает ветреная погода. Скорость ветра в течение месяца колеблется в среднем от 3,9 до 6,5 м/сек. Частота ветров значительной силы (до 10 м/сек и более) составляет около 25 раз в год. Скорость ветра влияет на температуру в зимнее время года. Сильный ветер и низкая температура увеличивают опасность обморожения. Зимы холодные, малоснежные, минимальная температура достигает -40°С.

Сеть автомобильных дорог в районе работ развита слабо, ближайшие населенные пункты связаны грунтовыми дорогами плохого качества, труднопроходимыми в связи с наличием многочисленных соровых солончаков.

Месторождения Женгельды расположено в центральной части Южно-Эмбинского нефтегазоносного района. По административному делению площадь относится к Макатскому району Атырауской области.

Ближайшими населенными пунктами являются нефтяные промыслы и железнодорожные станции Доссор и Макат, которые находятся в 20 км к югу и востоку от рассматриваемой площади. С населенными пунктами Доссор и Макат месторождение связано грунтовыми дорогами. Эти поселки с областным центром г. Атырау соединены асфальтированными автомобильными дорогами и железной дорогой Актобе-Атырау. Областной центр г. Атырау располагается в 100 км к юго-западу.

Рельеф местности представляет собой всхолмленную равнину с неглубокими впадинами, не имеющими стока.

Гидросеть района не развита. Весной во время паводков и сезона дождей впадины заполняются талой и дождевой водой. Летом эти озера-соры пересыхают. Почва в них сильно засолонена. Источником водоснабжения является водовод Атырау-Макат-Кульсары.

Через нефтепромысел Макат проходит магистральный газопровод и нефтепровод. Линии электропередач также проходят через поселки Доссор и Макат.

ОПИСАНИЕ возможных ОСУШЕСТВЛЕНИЯ ВАРИАНТОВ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ С УЧЕТОМ ЕЕ ОСОБЕННОСТЕЙ ВОЗМОЖНОГО ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ, ВКЛЮЧАЯ ВАРИАНТ, ВЫБРАННЫЙ ИНИЦИАТОРОМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ДЛЯ ПРИМЕНЕНИЯ, ОБОСНОВАНИЕ ЕГО ВЫБОРА, ОПИСАНИЕ ДРУГИХ возможных РАЦИОНАЛЬНЫХ ВАРИАНТОВ, B TOM ЧИСЛЕ РАЦИОНАЛЬНОГО ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ) ЗДОРОВЬЯ ЛЮДЕЙ, ОКРУЖАЮЩЕЙ СРЕДЫ

Предусмотрено бурение 10 добывающих скважин в период 2027-2030гг, ввод из консервации 12 скважин, ввод из консервации одной нагнетательной скважины – 1H, также ввод из консервации с переводом под закачку для ППД 2 скважин. Ликвидация последствий недропользования.

В декабре 2016г ТОО «М-Ali Petrol» получило право на пользование недрами углеводородного сырья на месторождении Женгельды в Атырауской области РК Макатский район (письмо МЭ РК №10-03/35052 от 26.12.2016, Протокол №21 МЭ РК от 14.12.2016). В 1 марта 2017 года подписано Дополнение № 4 к основному Контракту №385 от «14» декабря 1999г на добычу углеводородного сырья на месторождении Женгельды на блоке XXIV -13 — А (частично) в Атырауской области Макатский район, сроком до 27.01.2033г.

Фонд добывающих скважин – 22 ед.

Проектно-рентабельный период разработки – 2025-2052 годы.

Накопленная добыча нефти за проектно-рентабельный период – 405,5 тыс.т.

Накопленная добыча нефти с начала разработки – 431,1 тыс.т.

Накопленная добыча жидкости за проектно-рентабельный период – 3372,6 тыс.т.

Накопленная добыча жидкости с начала разработки – 3437,2 тыс.т.

Конечная обводненность – 96,3%.

Рентабельный КИН – 0,304 доли ед.

Предусмотрено бурение 10 добывающих скважин в период 2027-2030гг, ввод из консервации 12 скважин, ввод из консервации одной нагнетательной скважины – 1H, также ввод из консервации с переводом под закачку для ППД 2 скважин.

Площадь горного отвода месторождения Женгельды составляет 1,516 кв.км.

Технология бурения и конструкция скважины более подробно будет изложена в соответствующих технических проектах на строительство скважины. Других альтернатив и вариантов для достижения целей намечаемой деятельности и вариантов осуществления ее нет.

При планировании намечаемой деятельности, заказчик, совместно с проектировщиком, провели всесторонний анализ технологий производства, расположения строений, режима работы предприятия и выбрали наиболее рациональный вариант. Также выбор рационального варианта осуществления намечаемой деятельности определен в соответствии с пунктом 5 приложения 2 к Инструкции по организации и проведениюэкологической оценки (приказ Министра экологии, геологии и природных ресурсов Республики Казахстан № 280 от 30.07.2021 г), а именно:

- ✓ Отсутствием обстоятельств, влекущих невозможность применения данного варианта намечаемой деятельности.
- ✓ Все этапы намечаемой деятельности, которые будут осуществлены в соответствии с проектом, соответствуют законодательству Республики Казахстан, в том числе и в области охраны окружающей среды.
- ✓ Принятые проектные решения полностью соответствуют заданию на проектирование, позволяют достичь заданных целей и соответствуют заявленным характеристикам объекта.
- ✓ Для эксплуатации проектируемого объекта требуются ГСМ, электроэнергия. Все эти ресурсы доступны и будут поставляться по договорам либо в порядке единичного закупа.

При проведении оценки воздействия на окружающую среду проводятся общественные слушания, что обеспечит гласность принятия решений и доступность экологической информации, т.е. будут соблюдены права и законные интересы населения затрагиваемой намечаемой деятельностью территории.

Данный вариант реализации намечаемой деятельности не требует специальных проектных решений на строительство.

12. ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Экологическая оценка по упрощенному порядку проводится для намечаемой и осуществляемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду в соответствие с Экологическим кодексом РК, при разработке раздела «Охрана окружающей среды» в составе проектной документации по намечаемой деятельности и при подготовке декларации о воздействии на окружающую среду.

13. ВОЗМОЖНЫЙ РАЦИОНАЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ.

Всего по месторождению

Фонд добывающих скважин – 22 ед.

Проектно-рентабельный период разработки – 2025-2052 годы.

Накопленная добыча нефти за проектно-рентабельный период – 405,5 тыс.т.

Накопленная добыча нефти с начала разработки – 431,1 тыс.т.

Накопленная добыча жидкости за проектно-рентабельный период – 3372,6 тыс.т.

Накопленная добыча жидкости с начала разработки – 3437,2 тыс.т.

Конечная обводненность – 96,3%.

Рентабельный КИН – 0,304 доли ед.

І эксплуатационный объект

Фонд добывающих скважин – 16 ед.

Проектно-рентабельный период разработки – 2025-2052 годы.

Накопленная добыча нефти за проектно-рентабельный период – 346,0 тыс.т.

Накопленная добыча нефти с начала разработки – 357,1 тыс.т.

Накопленная добыча жидкости за проектно-рентабельный период – 3196,3 тыс.т.

Накопленная добыча жидкости с начала разработки – 3220,0 тыс.т.

Конечная обводненность – 96,3%.

Рентабельный КИН – 0,301 доли ед.

II эксплуатационный объект

Фонд добывающих скважин – 6 ед.

Проектно-рентабельный период разработки – 2025-2033 годы.

Накопленная добыча нефти за проектно-рентабельный период – 59,5 тыс.т.

Накопленная добыча нефти с начала разработки – 74,0 тыс.т.

Накопленная добыча жидкости за проектно-рентабельный период – 176,3 тыс.т.

Накопленная добыча жидкости с начала разработки – 217,3 тыс.т.

Конечная обводненность – 79,0%.

Рентабельный КИН – 0,323 доли ед.

14. ИНФОРМАЦИЯ О КОМПОНЕНТАХ ПРИРОДНОЙ СРЕДЫ И ИНЫХ ОБЪЕКТАХ, КОТОРЫЕ МОГУТ БЫТЬ ПОДВЕРЖЕНЫ СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

14.1 Жизнь и (или) здоровье людей, условия их проживания и деятельности

Воздействие на здоровье работающего персонала мало, так как предельно-допустимые концентрации загрязняющих веществ в атмосфере ниже нормативных требований к рабочей зоне. Из анализа технологических проектных решений установлено, что уровень производства высокий и созданы условия для значительного облегчения труда и оздоровления производственной среды на рабочих местах. Воздействие на другие близлежащие жилые массивы отсутствуют.

Характер воздействия. Воздействие носит локальный характер. По длительности воздействия – длительное при планириуемой эксплуатации скважин.

Уровень воздействия. Уровень воздействия характеризуется как минимальный.

Природоохранные мероприятия. Предусмотреть при следующих этапах разработки при получении ЭРФ в рамках ППМ.

Вывод: В целом воздействия работ при эксплуатации скважин на состояние здоровья населения может быть оценено, как *покальное* и длительное при планириуемой эксплуатации скважин.

14.2 Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

На состояние растительности территории, оказывают воздействие как природные, так и антропогенные факторы, кумулятивный эффект которых выражается в развитии и направлении процессов динамики как растительности, так и экосистем в целом.

Динамические процессы условно можно объединить в 3 группы:

- природные (климатические, эдафические, литологические, и др.);
- антропогенно-природные или антропогенно-стимулированные (опустынивание, засоление);
- антропогенные (выпас, строительство и др.).
- Проведение работ по эксплуатации скважин отразиться на почвенно-растительном покрове виде следующих изменений:
- частичное повреждение растений
- загрязнения почвенно-растительного покрова выхлопными газами, ГСМ
- запыления придорожной растительности;

Таблина 14.2.1 -	Анализ последствий возможного загрязнения на растительность

Источники и виды	Пространственный	Временный	Интенсивность	Значимость		
воздействия	масштаб	масштаб	воздействия	воздействия		
1	2	3	4	5		
Растительность						
Снятие растительного покрова	Ограниченное воздействие 2	Временное 1	Слабое 2	средней значимости 4		

Вывод: Воздействие на состояние растительности можно принять как *умеренное*, *локальное и временное*.

В период проведения работ по реализации рассматриваемого проекта влияние на представителей животного мира может сказываться при воздействии следующих факторов:

- прямых (изъятие или вытеснение части популяций, уничтожение части мест обитания и т.д.)
- косвенных (сокращение площади мест обитания, качественное изменение среды обитания).

Хозяйственная деятельность на участке работ приведет к усилению фактора беспокойства. Плотность населения пресмыкающихся групп животных при обустройстве участка в радиусе 1 км может снизиться в 2-3 раза. В радиусе 3-5 км снизится численность степного орла, а дрофа-красотка переместится в более отдаленные пустынные участки. Произойдет вытеснение из ближайших окрестностей лисицы, корсака, летучих мышей, большинства тушканчиков. На миграцию птиц производимые работы существенного влияния не окажут. В связи со значительной отдаленностью участков планируемых работ от мест обитания редких видов животных, внесенных в Красную Книгу, реализация проекта не отразится на сохранности и площади их мест обитания.

Для снижения негативного воздействия на животных и на их место обитания при проведении проектных работ, складировании производственно-бытовых отходов и в период эксплутации скважин необходимо учитывать наличие на территории самих животных, их гнёзд, нор и избегать их уничтожения или разрушения. Учитывая, что на территории планируемых работ, большая часть млекопитающих, пресмыкающихся и некоторых видов птиц, ведут ночной образ жизни, необходимо до минимума сократить передвижение автотранспорта в ночное время. При планировании транспортных маршрутов и передвижениях по территории следует использовать ранее проложенные дороги и избегать внедорожных передвижений автотранспорта. Важно обеспечить контроль за случайной (не планируемой) деятельностью нового населения (нелегальная охота и т. п.). На весь период работ необходимо проведение постоянных мероприятий по восстановлению нарушенных участков местности и своевременному устранению неизбежных загрязнений и промышленно-бытовых отходов со всей площади, затронутой хозяйственной деятельностью.

В целом, причиной сокращения численности и разнообразия животного мира являются следующие факторы:

- изъятие и уничтожение части местообитания;
- усиление фактора беспокойства;
- сокращение площади местообитаний;
- качественное изменение среды;
- движение автотранспорта.

Таблица 14.2.2 - Анализ воздейтвия на фауну

Источники и виды	Пространственный	Временный	Интенсивность	Значимость		
воздействия	масштаб	масштаб	воздействия	воздействия		
1	2	3	4	5		
Фауна						

Изъятие среды обитания, нарушение среды обитания	ограниченное воздействие 2	Временное 1	Слабое 2	средней значимости 4
Факторы беспокойства, шум, свет, движение автотранспорта	ограниченное воздействие 2	Временное 1	Слабое 2	средней значимости 4

14.3 Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)

В данном проекте приводится характеристика антропогенных факторов (физических и химических) воздействия на почвенный покров и почвы, связанных с реализацией данного проекта.

Антропогенные факторы воздействия выделяются в две большие группы:

- физические;
- химические.

Воздействие физических факторов в большей степени характеризуется механическим воздействием на почвенный покров:

- при движении автотранспорта;
- монтаж и демонтаж технологического оборудования.

К химическим факторам воздействия при производстве вышеназванных работ – привнос загрязняющих веществ в почвенные экосистемы при возможных разливах вод с хозбытовыми стоками, бытовыми и производственными отходами, сточными водами, при случайных разливах ГСМ.

Наибольшая степень деградации почвенного покрова территории, вызвана развитием густой сети полевых дорог для транспортировки технологического оборудования, ГСМ, доставки рабочего персонала.

Интенсивное неупорядоченное движение автотранспорта может привести к разрушению поверхностной солевой корочки и активизации процесса ветрового и солевого переноса. Интенсивное развитие процессов дефляции обуславливается также высокой ветровой активностью, характерной для этой территории. Дорожно-транспортное нарушение почв связано, прежде всего, с их переуплотнением внутри месторождений.

Необходимо полностью исключить загрязнение почв ГСМ. Согласно ст. 397 ЭК РК запрещается утечка ГСМ и другие веществ, в последствии которого загрязняется почва и подземные воды.

Основными потенциальными факторами химического загрязнения почвенного покрова на территории работ являются:

• загрязнение в результате газопылевых осаждений из атмосферы; По масштабам воздействия все виды химического загрязнения почв относятся к точечным.

Основными задачами охраны окружающей среды, заложенных в проекте являются максимально возможное сохранение почвенного покрова, возможность соблюдения установленных нормативов земельного отвода, проведение рекультивации почвеннорастительного покрова.

При реализации намечаемой деятельности значительного воздействия на почвогрунты и земельные ресурсы не прогнозируется. При выполнении проектных решений и предложенных мероприятий по охране почвенного покрова ущерба не ожидается.

Таблица 14.3.1 - Анализ последствий возможного загрязнения почвенного покрова

Источники и виды	Пространственный	Временный	Интенсивность	Значимость		
воздействия	масштаб	масштаб	воздействия	воздействия		
1	2	3	4	5		
Почвы и почвенный покров						

Изъятие земель	ограниченное воздействие 2	Временное 1	Среднее 2	низкой значимости 4
Воздействие на качество изымаемых земель	ограниченное воздействие 2	Временное 1	Умеренное 3	низкой значимости 6
Механические нарушения почвенного покрова при эксплуатации скважин	ограниченное воздействие 2	Временное 1	Умеренное 3	низкой значимости 6
Загрязнение промышленными отходами	Локальное 1	Кратковременное 1	Незначительное 1	низкой значимости 1

Вывод: Воздействие на состояние почвенного покрова можно принять как умеренное, локальное и временное.

14.4 Вода (в том числе гидроморфологические изменения, количество и качество вод)

Источниками загрязнения вод при строительстве на участке могут быть: бытовые и технические воды, химические реагенты.

Загрязняющие вещества могут поступать с инфильтрующимися атмосферными осадками на участках скопления промышленных и бытовых отходов, замазученных территорий.

Таблица 14.4.1 - Анализ последствий возможного загрязнения водных ресурсов

Источники и виды воздействия	Пространственный масштаб	Временный масштаб	Интенсивность воздействия	Значимость воздействия
1	2	3	4	5
]	Подземные воды		
Загрязнение				
подземных вод				низкой
сточными	Локальное	Временное	Слабое	значимости
водами,	1	1	2	эначимости
возможными				2
разливами ГСМ				

Выводы: Учитывая проектные решения c соблюдением требований законодательных и нормативных актов Республики Казахстан, негативное воздействие на воды от намечаемой хозяйственной деятельности в рамках проекта не прогнозируется. при эксплутации скважин оценивается: Воздействия на подземные воды пространственном масштабе как локальное, во временном как временное и по величине как умеренное.

Водоснабжение. Источников пресной воды в районе проектируемых работ нет.

Водоснабжение водой для питьевых и хозбытовых нужд осуществляется автоцистернами и привозной бутилированной водой.

Хозяйственно-питьевые нужды в период мобилизации, строительства скважины, водяной скважины и их демобилизации будут обеспечены привозной и бутилированной водой. Качество воды должно отвечать «Санитарно-эпидемиологическим требованиям к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», № 209 от 16 марта 2015 г. Хозяйственно-питьевая вода на территорию ведения буровых работ будет привозиться в цистернах, которые следует обеззараживать не менее 1 раза в 10 дней. Хранение воды для питьевых и хозяйственно-бытовых нужд предусматривается в емкостях объемом по 20 м³.

Число персонала, привлекаемого для бурения, обслуживания строительномонтажных работ и геофизических исследований в скважинах, составит максимально 30 человек. Проживать члены буровой бригады будут на участке проведения работ (вагончики с душем, умывальником).

Работающие будут обеспечены водой, удовлетворяющей требованиям Приказа Министра национальной экономики РК №209 от 16.03.2015г. «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов».

Водоотведение. Сточные воды отводятся в специальные емкости, по мере накопления откачиваются и вывозятся согласно договору. Сброс воды в поверхностные, подземные воды и на рельеф местности не планируется.

Расчет баланса водопотребления и водоотведения.

Общий максимальный ориентировочный расход воды составит:

Норма на одного человека: на питьевые нужды — 25π /сутки (0,025м3), на хозяйственно-бытовые нужды — 120π /сутки(0,12м3) (СП РК 4.01-101-2012).

Расчет потребности в технической воде производится по нормативу №2693.11.1982г. Нормативная потребность в технической воде составляет:

- при бурении и креплении 4,123м3/сут.;
- при подготовительных работах к бурению 1,33м3/сут.;
- при расконсервации 7,44 м3/сут.

Расчет водопотребления и водоотведения атмосферу при строительстве 10 скважин

(строительно-монтажные работы (мобилизация, монтаж), подготовительные работы к бурению, бурение и крепление, работы при расконсервации скважин (подготов. работы, монтаж установки КРС, работы по восстановлению скважин))

```
Расчет потребления воды на питьевые нужды. V_{\text{пить}} = 0.025*64*20 = 32 \text{ м}^3*10 \text{ скважин} = 320\text{м}^3 Расчет потребления воды на хоз. бытовые нужды. V_{\text{хоз-быт}} = 0.12*64*20 = 153.6 \text{ м}^3*10 \text{ скважин} = 1536\text{м}^3
```

Расчет потребления воды на технические нужды. $V_{\text{подгот}}$ =1,33*64 = 85,12 м³ *10 скважин = 851.2 м³ $V_{\text{бур}}$ =4,123*64 = 263,872 м³ *10 скважин =2638.72м³ $V_{\text{технич}}$ = 3489.92м³

Расчет водопотребления и водоотведения атмосферу работы при расконсервации 13 скважин

(подготов. работы, монтаж установки КРС, работы по восстановлению скважин)

```
Расчет потребления воды на питьевые нужды. V_{\text{пить}} = 0.025*64*10=16\text{м}^3*13 скважин= 208\text{ м}^3 Расчет потребления воды на хоз. бытовые нужды. V_{\text{хоз-быт}} = 0.12*64*10=76.8\text{ m}^3*13 скважин= 998.4\text{ m}^3
```

```
Расчет потребления воды на технические нужды. 
 V_{\text{подгот}}=1,33*64= 85,12 м³* 13 скважин = 1106,56 м³ 
 V_{\text{бур}}=4,123*64=263,872м³* 13 скважин = 3430,336 м³ 
 V_{\text{технич}}= 4536,896 м3
```

Расчет максимальных объемов водопотребления и водоотведения атмосферу при испытании 12ти скважин

в 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119. в 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

Расчет потребления воды на питьевые нужды.

 $V_{\text{пить}} = 0.025*30*10 = 7.5 \text{ м}^3 * 12 \text{ скважин} = 90 \text{ м}^3$

Расчет потребления воды на хоз. бытовые нужды.

 $V_{xo3-быт} = 0,12*30*10 = 36 \text{ м}^{3}*12 \text{ скважин} = 432 \text{ м}^{3}$

Расчет потребления воды на технические нужды.

 $V_{\text{исп}}=4,123*10=41,23 \text{ m}^3$

 $V_{\text{технич}} = 41,23 \text{ м}^3 * 12 \text{ скважин} = 494,76 \text{ м}^3$

Предварительный расчет максимальных объемов водопотребления и водоотведения при ликвидации

Численность бригады будет составлять 7 человек.

Расчет потребности бутилированной воды для питьевых нужд

Для питьевых нужд используется бутилированная вода, в расчет 5 л/сут на 1 чел.

Водопотребление на питьевые нужды бутилированной воды составит (5 л/с * 7 чел*97,2сут) *3402 м3*.**19скв*= *64638м3*

Расчет потребности пресной воды для хозяйственно-бытовых нужд

Обеспечение питьевой водой для хозяйственно-бытовых нужд бригады из 7 человек при ликвидации скважин осуществляется в автоцистернах.

При норме расхода (согласно СП РК 4.01-101-2012) питьевой воды 0,025 м3/сутки на 1 человека водопотребление составит (97,2сут * 7 чел * 0,025 м3/сут) — 17,01м3*19скв=323,19 м3

Расчет потребности технической воды при ликвидации

Потребность в технической воде, из расчета 18,66 литра на 1 метр скважины, при 1,5-кратном запасе жидкости при ликвидации 1-й скважины составит: при глубине скважины: 18,66*480*1,5/1000 = 13,4352м3. *19скв=255,2688 м3.

Ориентировочное количество воды для приготовления цементного раствора составит – 52,0 м3.

Для технической рекультивации территории вокруг скважины требуется уплотнение верхнего слоя почвы прицепным 25-тонным катком с поливом водой (от выветривания). Количество технической воды, необходимое для увлажнения грунта составит 61,2 m3.

При цементировании и увлажнении почвы водопотребление безвозвратное.

Отвод хозяйственно-бытовых стоков, от санитарно-технических приборов жилых вагонов для персонала, осуществляется в септик, откуда вывозится специальным автомобильным транспортом на специализированное предприятие на очистные сооружения по договору.

Септики после окончания работ очищаются, дезинфицируются и могут использоваться повторно. Территория расположения септиков подлежит засыпке и рекультивации.

Водоотведение производственных сточных вод будет осуществляться в металлические емкости, с последующим использованием на других скважинах.

TOO «TIMAL CONSULTING GROUP»

Таблица 14.1. Баланс водопотребления и водоотведения

Тионици	17.1. Daziai	С Водопотр	, сопси	ии и водо	отведен											_											
												Удел	іьная нор	ма водопотреб	пения, к	убический м	иетр/един	ицу прод	укции								
	Единипа			На	технолог	ические	нужды			На вспом	огательн	ые и по	дсобные	нужды		Ha xo	зяйствені	10-питье	вые нужді	ы		Вт	ом числе	воля н	еравномеј	эности	TC 1.1
Вид продукции	измерения	Система водоснаб			В	гом числ	е вода				1	В том ч	исле				В	том числ	е вода				om mene	вода п	сравноме	лости	Коэффициент неравномерн
вид продукции	продукци и	жения	Всего	Св	ежая вод	a	_	последовател	Всег	Све	жая вода		_	последоват	Всего	Св	ежая вода	ı	_	последоват	Всего	Све	жая вода			последовате	ости
			Beero	техниче ская	питье вая	итого	оборот ная	ьно используемая	0	техниче ская	питье вая	ито го	оборот ная	ельно используе мая	Beero	техниче ская	питье вая	итого	оборот ная	ельно используе мая		техниче ская	питье вая	итог 0	оборот ная	льно используема я	сезонного потребления
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Бурение 10 скважин	кубически й метр	привозная	5345, 92	3489,92	-	3489, 92	-	-	-	-	-	-	-	-	1856	1536	320	1856	-	-	-	-	-	-	-	-	-
Расконсервация 13 скважин	кубически й метр	привозная	5743, 296	4536,896	-	4536, 896	-	-	-	-	-	-	-	-	1206, 4	998,4	208	1206, 4	-	-	-	-	-	-	-	-	-
Испытание 12 скв	кубически й метр	привозная	1016, 76	494,76	-	494,7 6	-	-	-	=	-	-	-	-	522	432	92	522	-	-	-	-	-	-	-	-	-
Ликвидация	кубически й метр	привозная	65216 ,46	255,2688	-	255,2 688	-	-	-	-	-	-	-	-	64961 ,19	323,19	64638	64961 ,19	-	-	-	-	-	-	ı	1	-

14.5 Атмосферный воздух

Источниками воздействия на атмосферный воздух является технологическое оборудование, установки, системы и сооружения основного и вспомогательных производств, необходимые для эксплуатации скважин.

Таблица 14.5.1 - Анализ последствий возможного загрязнения атмосферного воздуха

Источники и виды воздействия	Пространственный масштаб	Временный масштаб	Интенсивность воздействия	Значимость воздействия
1	2	3	4	5
		Атмосферный воздух	K	
Выбросы ЗВ в		Воздействие		Воздействие
атмосферу от	Локальное	средней	Умеренное	низкой
стационарных	1	продолжительности	3	значимости
источников		2		6
Выбросы				
загрязняющих				
веществ в	Ограниченное	Воздействие		Низкой
атмосферу от	воздействие	средней	Слабое	
автотранспорта.	воздействие	продолжительности	2	значимости 8
Пыление дорог	2	2		o
при движении				
автотранспорта				

Вывод: В целом воздействия работ при эксплуатации скважин на состояние атмосферного воздуха, может быть оценено, как локальное, слабое и временное

14.6. Сопротивляемость к изменению климата экологических и социально-экономических систем

На затрагиваемой территории все виды флоры и фауны приспособлены к значительным колебаниям температуры. Не наблюдается также изменений видового состава или деградации животных и растений. Поэтому общее экологическое состояние территории можно характеризовать, как устойчивое, а сопротивляемость к изменению климата – высокой.

14.7. Материальные активы, объекты историко-культурного наследия

Проекта разработки по поиску углеводородов на месторождении Женгельды (в случае если скважины окажутся нефтеносными) является самоокупаемым и осуществляет инвестицииз собственных активов. Дополнительных инвестиций за счет бюджета административных и иных органов Республики Казахстан при осуществлении намечаемой деятельности не требуется. На рассматриваемой территории природные зоны, памятники истории и культуры, входящие в список охраняемых государством объектов отсутствуют.

14.8. Взаимодействие затрагиваемых компонентов

Природно-территориальный комплекс — это совокупность взаимосвязанных природных компонентов на определенной территории, который формируется в течение длительного времени под влиянием внешних и внутренних процессов. В природном комплексе происходит постоянное взаимодействие природных компонентов, все они взаимосвязаны и влияют друг на друга. При изменении одного природного компонента меняется весь природный комплекс.

При реализации намечаемой деятельности нарушения взаимодействия компонентов природной среды не предполагается.

15. ВОЗМОЖНЫЕ СУЩЕСТВЕННЫЕ ВОЗДЕЙСТВИЯ (ПРЯМЫХ И КОСВЕННЫХ, КУМУЛЯТИВНЫХ, ТРАНСГРАНИЧНЫХ, КРАТКОСРОЧНЫХ И

ДОЛГОСРОЧНЫХ, ПОЛОЖИТЕЛЬНЫХ И ОТРИЦАТЕЛЬНЫХ) НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ НА ОБЪЕКТЫ

Прямое воздействие

Прямое воздействие на атмосферный воздух будет связано с непосредственным выбросом загрязняющих веществ в атмосферный воздух. Прямое воздействие также будет связано с возможностью трансформации некоторых загрязняющих веществ за счет образования групп суммации, распада веществ или способностью давать новые вещества при взаимодействии с другими вещества, что будет влиять на качество воздуха в пределах области воздействия проектируемого объекта — это 500 метров от периметра территории производственной площадки.

Пространственные, временные параметры и параметры интенсивности воздействия

В соответствии с действующими в РК методиками прямое воздействие оценивается по пространственным, временным параметрам и его интенсивности, вытекающих из принятых технических решений.

Поступление в окружающую природную среду загрязняющих веществ возможно на всех стадиях технологического процесса.

При оценке воздействия в результате намечаемой проектной деятельности выделены основные источники загрязнения, определены расчетным методом основные загрязняющие вещества и их валовое количество, установлена зона влияния объекта на атмосферный воздух, в пределах которой проведен расчет концентраций вредных веществ с учетом нормативного размера СЗЗ и разработан комплекс мероприятий и технических решений, направленных на предотвращение отрицательного воздействия на воздушный бассейн.

Для контроля возможных существенных воздействий намечаемой деятельность согласно Экологического Кодекса РК от 2 января 2021 года № 400-VI ЗРК необходимо внедрять системы автоматического мониторинга выбросов вредных веществ на источниках выбросов.

Автоматизированная система мониторинга эмиссий в окружающую среду автоматизированная система производственного экологического мониторинга, отслеживающая показатели эмиссий в окружающую среду на основных стационарных источниках эмиссий, которая обеспечивает передачу данных в информационную систему мониторинга эмиссий в окружающую среду в режиме реального времени в соответствии с правилами ведения автоматизированной системы мониторинга эмиссий в окружающую среду при проведении производственного экологического контроля, утвержденными уполномоченным органом в области охраны окружающей среды. Функционирование автоматизированной системы мониторинга, осуществляемые ею измерения, их обработка, передача, хранение использование должны соответствовать требованиям законодательства Республики Казахстан в области технического регулирования, об обеспечении единства измерений и об информатизации. Согласно п. 10 «Правил ведения автоматизированной системы мониторинга эмиссий в окружающую среду при проведении производственного экологического контроля» проект автоматизированной системы мониторинга эмиссий является частью проектной документации по строительству и (или) эксплуатации или иных проектных документов для получения экологических разрешений.

АСМ предназначена для:

- 1) контроля за соблюдением нормативов допустимых выбросов загрязняющих веществ и массовой концентрации загрязняющих веществ;
- 2) оценки эффективности мероприятий по снижению вредного воздействия загрязняющих веществ на состояние атмосферного воздуха;
- 3) учета выбросов загрязняющих веществ по результатам непрерывных измерений, подготовки отчетности производственного экологического контроля.

Системы мониторинга выбросов прежде всего должны обеспечивать достоверные результаты, однако не менее важно, чтобы они работали надежно, требовали минимального обслуживания и служили на протяжении не одного десятка лет.

Решение по мониторингу выбросов включает:

- измерение химического состава и концентрации компонентов отходящих газов, измерение содержания пыли, измерение температуры, абсолютного давления и мгновенного расхода дымовых газов, контроллеры и специальное программное обеспечение для сбора, обработки и хранения информации.

Оборудование АСМ не является источником загрязнения атмосферного воздуха. АСМ позволит получать в непрерывном режиме данные измерений параметров выбросов загрязняющих веществ, оперативно реагировать на их изменения, достоверно оценивать воздействие выбросов на атмосферный воздух, эффективно планировать мероприятия по снижению выбросов.

Предприятие, внедряющее системы мониторинга выбросов, снижает риски штрафов и получает возможность оценивать целесообразность внедрения прогрессивных технологий, направленных на повышение экологической чистоты производства.

Внедрение систем экологического мониторинга и следующие за этим мероприятия по снижению выбросов ведут к улучшению экологической ситуации не только на территории предприятия, но и в ближайших населенных пунктах.

Выводы

- 1. Автоматизированная система мониторинга за выбросами окажет положительное воздействие на состояние атмосферного воздуха в районе предприятия так как позволит получать в непрерывном режиме данные измерений параметров выбросов загрязняющих веществ, оперативно реагировать на их изменения, достоверно оценивать воздействие выбросов на атмосферный воздух, эффективно планировать мероприятия по снижению выбросов.
- 2. Проведенные расчеты показали, что выбросы загрязняющих веществ в атмосферу при монтаже оборудования не создадут зон превышения допустимого уровня загрязнения атмосферы за пределами территории предприятия.
- 3. Оценка существующего состояния атмосферного воздуха и положительного эффекта от планируемой деятельности по мониторингу эмиссий свидетельствует о принципиальной возможности и необходимости реализации объекта с точки зрения воздействия на атмосферный воздух.
- 16. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ.

РАСЧЕТЫ ВЫБРОСОВ ТОО «M-ALI PETROL» «ПРОЕКТ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ ЖЕНГЕЛЬДЫ» ПРЕДУСМОТРЕНО БУРЕНИЕ 10 ДОБЫВАЮЩИХ СКВАЖИН В ПЕРИОД 2027-2030ГГ.

2027г. – 2 скв.

2028г. – 2 скв.

2029г. – 4 скв.

2030г. – 2 скв.

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ: ПРИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТАХ (МОБИЛИЗАЦИЯ, МОНТАЖ), ПОДГОТОВИТЕЛЬНЫХ РАБОТАХ К БУРЕНИЮ

Источник загрязнения N 6001. Неорганизованный выброс Источник выделения N 6001 01. Пыление при подготовке площадки

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)</u>

Вид работ: Автотранспортные работы

Влажность материала. %. VL = 2

Коэфф.. учитывающий влажность материала(табл.3.1.4). $k_7 = 0.8$

Число автомашин. работающих в карьере. N = 4

Число ходок (туда и обратно) всего транспорта в час. N1 = 4

Средняя протяженность 1 ходки в пределах карьера. км. L = 0.5

Средняя грузопод'емность единицы автотранспорта. т. G1 = 5

Коэфф. учитывающий среднюю грузопод'емность автотранспорта(таблица 3.3.1). CI = 0.8

Средняя скорость движения транспорта в карьере. км/ч. $G2 = NI \cdot L / N = 4 \cdot 0.5 / 4 = 0.5$

Коэфф. учитывающий среднюю скорость движения транспорта в карьере(таблица 3.3.2). C2 = 0.6

Коэфф. состояния дорог (1 - для грунтовых. 0.5 - для щебеночных. 0.1 - щебеночных. обработанных)(таблица 3.3.3). C3 = 1

Средняя площадь грузовой платформы. м2. F = 3

Коэфф.. учитывающий профиль поверхности материала (таблица 3.3.5- таблица 3.3.6). C4 = 1.45

Скорость обдувки материала. м/с. G5 = 3.5

Коэфф. учитывающий скорость обдувки материала(таблица 3.3.4). C5 = 1.2

Пылевыделение с единицы фактической поверхности материала. г/м2*с. Q2 = 0.004

Коэфф. учитывающий долю пыли. уносимой в атмосферу. C7 = 0.01

Количество рабочих часов в году. RT = 144

 $k_7 \cdot Q2 \cdot F \cdot N$ = $(0.8 \cdot 0.6 \cdot 1 \cdot 0.8 \cdot 4 \cdot 0.5 \cdot 0.01 \cdot 1450 / 3600 + 1.45 \cdot 1.2 \cdot 0.8 \cdot 0.004 \cdot 3 \cdot 4) = 0.0699$

Валовый выброс пыли. т/год. $_M_ = 0.0036 \cdot _G_ \cdot RT = 0.0036 \cdot 0.0699 \cdot 144 = 0.03624$

Итого:

	2027г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.1398	0.07248
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2028г. –2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.1398	0.07248
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2029г. – 4 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.2796	0.14496
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		

	2030г. –2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.1398	0.07248
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6002. Неорганизованный выброс Источник выделения N 6002 01. Пыление при уплотнении грунта катками

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Материал: Глина

Примесь: 2908 Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)

Вид работ: Автотранспортные работы

Влажность материала. %. VL = 2

Коэфф.. учитывающий влажность материала(табл.3.1.4). $k_7 = 0.8$

Число автомашин. работающих в карьере. N = 4

Число ходок (туда и обратно) всего транспорта в час. N1 = 4

Средняя протяженность 1 ходки в пределах карьера. км. L = 0.5

Средняя грузопод'емность единицы автотранспорта. т. G1 = 5

Коэфф. учитывающий среднюю грузопод'емность автотранспорта(таблица 3.3.1). CI = 0.8

Средняя скорость движения транспорта в карьере. км/ч. $G2 = N1 \cdot L / N = 4 \cdot 0.5 / 4 = 0.5$

Коэфф. учитывающий среднюю скорость движения транспорта в карьере (таблица 3.3.2). C2 = 0.6

Коэфф. состояния дорог (1 - для грунтовых. 0.5 - для щебеночных. 0.1 - щебеночных. обработанных)(таблица 3.3.3). C3 = 1

Средняя площадь грузовой платформы. м2. F = 3

Коэфф.. учитывающий профиль поверхности материала (таблица 3.3.5- таблица 3.3.6). C4 = 1.45

Скорость обдувки материала. м/с. G5 = 3.5

Коэфф. учитывающий скорость обдувки материала(таблица 3.3.4). C5 = 1.2

Пылевыделение с единицы фактической поверхности материала. г/м2*с. Q2 = 0.004

Коэфф. учитывающий долю пыли. уносимой в атмосферу. C7 = 0.01

Количество рабочих часов в году. RT = 144

Максимальный разовый выброс пыли. г/сек (7). $_G_ = (C1 \cdot C2 \cdot C3 \cdot K5 \cdot N1 \cdot L \cdot C7 \cdot 1450 / 3600 + C4 \cdot C5 \cdot k_7 \cdot Q2 \cdot F \cdot N) = (0.8 \cdot 0.6 \cdot 1 \cdot 0.8 \cdot 4 \cdot 0.5 \cdot 0.01 \cdot 1450 / 3600 + 1.45 \cdot 1.2 \cdot 0.8 \cdot 0.004 \cdot 3 \cdot 4) = 0.0699$

Валовый выброс пыли. т/год. $M = 0.0036 \cdot G \cdot RT = 0.0036 \cdot 0.0699 \cdot 144 = 0.03624$

Итого:

	2027г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.1398	0.07248
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2028г. –2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.1398	0.07248
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		

	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2029г. – 4 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.2796	0.14496
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2030г. –2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	0.1398	0.07248
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6003, Неорганизованный выброс Источник выделения: 6003 01, Пыление при работе автосамосвала

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.9.3. Расчет выбросов вредных веществ неорганизованными источниками

Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из:

"Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материала в диапазоне: 2.0 - 3.0 %

Коэфф., учитывающий влажность материала (табл.9.1), K0 = 1.3

Скорость ветра в диапазоне: 3.9 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость ветра (табл.9.2), K1 = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности узла (табл.9.4), K4 = 1

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.9.5), К5 = 1.5

Удельное выделение твердых частиц с тонны материала, г/т, Q = 80

Эффективность применяемых средств пылеподавления (определяется экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 6000

Максимальное количество отгружаемого (перегружаемого) материала , т/час, MH = 41.67

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Количество твердых частиц, выделяющихся при погрузочно-разгрузочных работах:

Валовый выброс, т/год (9.24), $_M_ = K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^{-6} = 1.3 \cdot 1.2 \cdot 1 \cdot 1.5 \cdot 80 \cdot 6000 \cdot (1-0) \cdot 10^{-6} = 1.1232$

Максимальный из разовых выброс, г/с (9.25), $\underline{G} = K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.3 \cdot 1.2 \cdot 1 \cdot 1.5 \cdot 80 \cdot 41.67 \cdot (1-0) / 3600 = 2.16684$

Итого выбросы:

	2027г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год

2908	Пыль неорганическая. содержащая двуокись кремния в	4.33368	2.2464
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2028г. –2 скв.		
Код	Наименование 3В	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	4.33368	2.2464
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2029г. – 4 скв.		
Код	Наименование ЗВ	Выброс г/с	Pulance m/20d
NOO	Пиименовиние ЭБ	выорос ас	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	8.66736	4.4928
	Пыль неорганическая. содержащая двуокись кремния в		
	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного		
	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный		
	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей		
	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494)		
2908	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494) 2030г. –2 скв.	8.66736	4.4928
2908 <i>Koo</i>	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494) 2030г. –2 скв. Наименование 3В	8.66736 Выброс г/с	4.4928 Выброс т/год
2908 <i>Koo</i>	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494) 2030г. –2 скв. Наименование 3В Пыль неорганическая. содержащая двуокись кремния в	8.66736 Выброс г/с	4.4928 Выброс т/год
2908 <i>Koo</i>	Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного производства - глина. глинистый сланец. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (494) 2030г. –2 скв. Наименование ЗВ Пыль неорганическая. содержащая двуокись кремния в %: 70-20 (шамот. цемент. пыль цементного	8.66736 Выброс г/с	4.4928 Выброс т/год

Источник загрязнения: 6004, Неорганизованный выброс Источник выделения: 6004 01, Пыление при работе бульдозеров и экскаваторов

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.9.3. Расчет выбросов вредных веществ неорганизованными источниками

Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материала в диапазоне: 2.0 - 3.0 %

Коэфф., учитывающий влажность материала (табл.9.1), K0 = 1.3

Скорость ветра в диапазоне: 3.9 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость ветра (табл.9.2), K1 = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности узла (табл.9.4), K4 = 1

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала (табл.9.5), К5 = 1.5

Удельное выделение твердых частиц с тонны материала, г/т, Q = 80

Эффективность применяемых средств пылеподавления (определяется экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 6000

Максимальное количество отгружаемого (перегружаемого) материала, т/час, MH = 41.67

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Количество твердых частиц, выделяющихся при погрузочно-разгрузочных работах:

Валовый выброс, т/год (9.24), $_M_ = K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^{-6} = 1.3 \cdot 1.2 \cdot 1 \cdot 1.5 \cdot 80 \cdot 6000 \cdot (1-0) \cdot 10^{-6} = 1.1232$

Максимальный из разовых выброс, г/с (9.25), $_G_ = K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.3 \cdot 1.2 \cdot 1 \cdot 1.5 \cdot 80 \cdot 41.67 \cdot (1-0) / 3600 = 2.16684$

Итого выбросы:

	2027г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	4.33368	2.2464
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2028г. –2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	4.33368	2.2464
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2029г. – 4 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	8.66736	4.4928
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		
	2030г. –2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая. содержащая двуокись кремния в	4.33368	2.2464
	%: 70-20 (шамот. цемент. пыль цементного		
	производства - глина. глинистый сланец. доменный		
	шлак. песок. клинкер. зола. кремнезем. зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6005, Неорганизованный выброс Источник выделения: 6005 01, Сварочный пост

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

Степень очистки, доли ед., $\eta = 0$

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): АНО-4

Расход сварочных материалов, кг/год, $B\Gamma O \mathcal{I} = 100$

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma / \nu$ час, $B \Psi A C = 0.694$

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 17.8$ в том числе:

Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), K_{M}^{X} = 15.73

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{I} = K \frac{X}{M} \cdot B\Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 15.73 \cdot 100 / 10^6 \cdot (1-0) = 0.001573$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, \Psi A \, C \, / \, 3600 \cdot (1-\eta) = 15.73 \cdot 0.694 \, / \, 3600 \cdot (1-0) = 0.00303$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_M^{X} = 1.66$ Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O\mathcal{J} = K\frac{X}{M} \cdot B\Gamma O\mathcal{J} / 10^6 \cdot (1-\eta) = 1.66 \cdot 100 / 10^6 \cdot (1-0) = 0.000166$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot BVAC / 3600 \cdot (1-\eta) = 1.66 \cdot 0.694 / 3600 \cdot (1-0) = 0.00032$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 0.41$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{A} = K \frac{X}{M} \cdot B\Gamma O \mathcal{A} / 10^6 \cdot (1-\eta) = 0.41 \cdot 100 / 10^6 \cdot (1-0) = 0.000041$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, \Psi A \, C \, / \, 3600 \cdot (1 - \eta) = 0.41 \cdot 0.694 \, / \, 3600 \cdot (1 - 0) = 0.000079$

ИТОГО:

	2027г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00606	0.003146
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.00064	0.000332
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000158	0.000082
70	2028г. – 2 скв.	D C /	D (/)
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00606	0.003146
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.00064	0.000332
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000158	0.000082
	2029г. – 4 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.01212	0.006292

0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.00128	0.000664					
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0.000316	0.000164					
	казахстанских месторождений) (494)							
	2030г. – 2 скв.							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00606	0.003146					
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.00064	0.000332					
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000158	0.000082					

<u>ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА</u> <u>ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:</u> <u>ПРИ БУРЕНИИ И КРЕПЛЕНИЕ</u>

Источник загрязнения N 0001, Выхлопная труба Источник выделения N 001, Силовой привод буровой установки

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{coo} , т, 22.03

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 545

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 120.3

Температура отработавших газов T_{02} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 120.3 * 545 = 0.57171372$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.57171372 / 0.359066265 = 1.59222343$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

I woulder outer remain b	Dioposob 4m		шдионирион,	A119 011 D11 011 J	Turrebrur de i	······································	Pemeran
Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	26	40	12	2	. 5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

		2	027г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без очистки	без очистки	очистки	с очисткой	с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	2,325333334	1,40992	0	2,325333334	1,40992
0304	Азот (II) оксид (Азота оксид) (6)	0,377866666	0,229112	0	0,377866666	0,229112
0328	Углерод (Сажа, Углерод черный) (583)	0,151388888	0,08812	0	0,151388888	0,08812
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,363333334	0,2203		0,363333334	0,2203
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,877222222	1,14556	0	1,877222222	1,14556
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003634	0,000002424	0	0,000003634	0,000002424
1325	Формальдегид (Метаналь) (609)	0,036333334	0,02203	0	0,036333334	0,02203
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,878055556	0,52872	0	0,878055556	0,52872
		2	028г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
0201	A (III)	очистки 2.22522224	<u>очистки</u>	0	очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	2,325333334	1,40992		2,325333334	1,40992
0304	Азот (II) оксид (Азота оксид) (6)	0,377866666	0,229112		0,377866666	0,229112
0328	Углерод (Сажа, Углерод черный) (583)	0,151388888	0,08812		0,151388888	0,08812
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,363333334	0,2203	0	0,363333334	0,2203
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,877222222	1,14556	0	1,877222222	1,14556
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003634	0,000002424	0	0,000003634	0,000002424
1325	Формальдегид (Метаналь) (609)	0,036333334	0,02203	0	0,036333334	0,02203
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);	0,878055556	0,52872	0	0,878055556	0,52872

	Растворитель РПК- 265П) (10)					
	1 / -/	20	029г. – 4 скв.	<u>'</u>		
Код	Примесь	г/сек без очистки	т/год без очистки	% очистки	г/сек с очисткой	т/год с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	4,650666668	2,81984	0	4,650666668	2,81984
0304	Азот (II) оксид (Азота оксид) (6)	0,755733332	0,458224	0	0,755733332	0,458224
0328	Углерод (Сажа, Углерод черный) (583)	0,302777776	0,17624	0	0,302777776	0,17624
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,726666668	0,4406	0	0,726666668	0,4406
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	3,754444444	2,29112	0	3,754444444	2,29112
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000007268	0,000004848	0	0,000007268	0,000004848
1325	Формальдегид (Метаналь) (609)	0,072666668	0,04406	0	0,072666668	0,04406
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1,756111112	1,05744	0	1,756111112	1,05744
			030г. – 2 скв.			
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	т/год с
0301	Азота (IV) диоксид	очистки 2,325333334	очистки 1,40992	0	очисткой 2,325333334	очисткой 1,40992
0304	(Азота диоксид) (4) Азот (II) оксид (Азота	0,377866666	0,229112	0	0,377866666	0,229112
0328	оксид) (6) Углерод (Сажа, Углерод черный) (583)	0,151388888	0,08812	0	0,151388888	0,08812
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,363333334	0,2203	0	0,363333334	0,2203
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,877222222	1,14556	0	1,877222222	1,14556
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003634	0,000002424	0	0,000003634	0,000002424
1325	Формальдегид (Метаналь) (609)	0,036333334	0,02203	0	0,036333334	0,02203
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,878055556	0,52872	0	0,878055556	0,52872

Источник загрязнения N 0002, Выхлопная труба Источник выделения N 002, Насосный блок буровой установки

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{cod} , т, 95.9

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 1102

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 259

Температура отработавших газов T_{02} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 259 * 1102 = 2.48884496$$
 (A.3)

Удельный вес отработавших газов **7**02, кг/м³:

$$\gamma_{0z} = 1.31/(1 + T_{0z}/273) = 1.31/(1 + 723/273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 2.48884496 / 0.359066265 = 6.931436345$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	CH	С	SO2	CH2O	БП
Γ	7.2	10.8	3.6	0.6	1.2	0.15	1.3E-5

<u>Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта</u>

Группа	СО	NOx	CH	С	SO2	CH2O	БП
Γ	30	45	15	2.5	5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{ioo} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	2027г. – 2 скв.									
Код	Примесь	г/сек	т/год	%	г/сек	т/год				
		без	без	очистки	c	c				
		очистки	очистки		очисткой	очисткой				
0301	Азота (IV) диоксид (Азота диоксид) (4)	5,2896	6,9048	0	5,2896	6,9048				
0304	Азот (II) оксид (Азота оксид) (6)	0,85956	1,12203	0	0,85956	1,12203				
0328	Углерод (Сажа, Углерод черный) (583)	0,367333334	0,4795	0	0,367333334	0,4795				
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,734666666	0,959	0	0,734666666	0,959				
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	4,408	5,754	0	4,408	5,754				
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000007958	0,00001055	0	0,000007958	0,00001055				

0,091833334	0,11508 2,877
2,204	2,877
г/сек ки с	т/год с очисткой
5,2896	6,9048
0,85956	1,12203
0,367333334	0,4795
0,734666666	0,959
4,408	5,754
0,000007958	0,00001055
0,091833334	0,11508
2,204	2,877
г/сек	т/год
ки с очисткой	с очисткой
10,5792	13,8096
	2,24406
0,734666668	0,959
1,469333332	1,918
8,816	11,508
0,000015916	0,0000211
1	
0,183666668	0,23016 5,754
	ки с очисткой 5,2896

	(Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)		020. 2			
Код	Примесь	г/сек	030г. – 2 скв. т/год	%	г/сек	т/год
Noo	Примссо	без	без	очистки	c	c
		очистки	очистки	очистки	очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	5,2896	6,9048	0	5,2896	6,9048
0304	Азот (II) оксид (Азота оксид) (6)	0,85956	1,12203	0	0,85956	1,12203
0328	Углерод (Сажа, Углерод черный) (583)	0,367333334	0,4795	0	0,367333334	0,4795
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,734666666	0,959	0	0,734666666	0,959
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	4,408	5,754	0	4,408	5,754
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000007958	0,00001055	0	0,000007958	0,00001055
1325	Формальдегид (Метаналь) (609)	0,091833334	0,11508	0	0,091833334	0,11508
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2,204	2,877	0	2,204	2,877

Источник загрязнения N 0003, Выхлопная труба Источник выделения N 003, Дизельная электростанция буровой установки

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 55.87

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 494

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 336.6

Температура отработавших газов T_{02} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов \boldsymbol{G}_{oz} , кг/с:

$$G_{02} = 8.72^{\circ} * 10^{\circ} * b_{3} * P_{3} = 8.72 * 10^{\circ} * 336.6 * 494 = 1.449965088$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 1.449965088 / 0.359066265 = 4.038154595$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

		2	027г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	2,107733334	3,57568	0	2,107733334	3,57568
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота оксид) (6)	0,342506666	0,581048		0,342506666	0,581048
0328	Углерод (Сажа, Углерод черный) (583)	0,137222222	0,22348		0,137222222	0,22348
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,329333334	0,5587	0	0,329333334	0,5587
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,70155556	2,90524	0	1,70155556	2,90524
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003294	0,000006146	0	0,000003294	0,000006146
1325	Формальдегид (Метаналь) (609)	0,032933334	0,05587	0	0,032933334	0,05587
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,795888888	1,34088	0	0,795888888	1,34088
		2	028г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без очистки	без очистки	очистки	с очисткой	с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	2,107733334	3,57568	0	2,107733334	3,57568
0304	Азот (II) оксид (Азота оксид) (6)	0,342506666	0,581048	0	0,342506666	0,581048
0328	Углерод (Сажа, Углерод черный) (583)	0,137222222	0,22348		0,137222222	0,22348
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,329333334	0,5587	0	0,329333334	0,5587

0337	Углерод оксид (Окись	1,701555556	2,90524	0	1,701555556	2,90524
0337	углерод оксид (Окись углерода, Угарный газ)	1,701333330	2,90324	U	1,/01333330	2,90324
	(584)					
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003294	0,000006146	0	0,000003294	0,000006146
1325	Формальдегид (Метаналь) (609)	0,032933334	0,05587	0	0,032933334	0,05587
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,795888888	1,34088	0	0,795888888	1,34088
			029г. – 4 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без очистки	без очистки	очистки	с очисткой	с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	4,215466668	7,15136	0	4,215466668	7,15136
0304	Азот (II) оксид (Азота оксид) (6)	0,685013332	1,162096	0	0,685013332	1,162096
0328	Углерод (Сажа, Углерод черный) (583)	0,274444444	0,44696	0	0,274444444	0,44696
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,658666668	1,1174	0	0,658666668	1,1174
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	3,403111112	5,81048	0	3,403111112	5,81048
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000006588	0,000012292	0	0,000006588	0,000012292
1325	Формальдегид (Метаналь) (609)	0,065866668	0,11174		0,065866668	0,11174
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1,591777776	2,68176	0	1,591777776	2,68176
TC)	П		030г. – 2 скв.	0/	,	/)
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	m/20d c
0301	Азота (IV) диоксид (Азота диоксид) (4)	очистки 2,107733334	очистки 3,57568	0	очисткой 2,107733334	очисткой 3,57568
0304	(Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0,342506666	0,581048	0	0,342506666	0,581048
0328	Углерод (Сажа, Углерод черный) (583)	0,137222222	0,22348	0	0,137222222	0,22348
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,329333334	0,5587	0	0,329333334	0,5587
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,701555556	2,90524	0	1,701555556	2,90524

0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003294	0,000006146	0	0,000003294	0,000006146
1325	Формальдегид (Метаналь) (609)	0,032933334	0,05587	0	0,032933334	0,05587
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,795888888	1,34088	0	0,795888888	1,34088

Источник загрязнения N 0004, Выхлопная труба Источник выделения N 001, Цементировочный агрегат

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{coo} , т, 1.12

Эксплуатационная мощность стационарной дизельной установки P_{2} , кВт, 176.5

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 18.9

Температура отработавших газов T_{02} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 18.9 * 176.5 = 0.029088612$$
 (A.3)

Удельный вес отработавших газов **7**02, кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 723/273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.029088612 / 0.359066265 = 0.081011821$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

1	аолица значении в	ыоросов $q{\mathfrak{N}}$	17 K1 . 101131. C1	ационарнои	дизельной у	установки до г	капитального	ремонта
	Группа	CO	NOx	CH	С	SO2	CH2O	БП
Ī	5	26	40	12		2 5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_3 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	2027г. – 2 скв.									
Код	Примесь	г/сек	т/год	%	г/сек	т/год				
		без	без	очистки	c	c				
		очистки	очистки		очисткой	очисткой				
0301	Азота (IV) диоксид	0,753066666	0,07168	0	0,753066666	0,07168				
	(Азота диоксид) (4)									

				Π.	T	
0304	Азот (II) оксид (Азота оксид) (6)	0,122373334	0,011648	0	0,122373334	0,011648
0328	Углерод (Сажа, Углерод черный) (583)	0,049027778	0,00448	0	0,049027778	0,00448
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,117666666	0,0112	0	0,117666666	0,0112
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,607944444	0,05824	0	0,607944444	0,05824
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000001176	0,000000124	0	0,000001176	0,000000124
1325	Формальдегид (Метаналь) (609)	0,011766666	0,00112	0	0,011766666	0,00112
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,284361112	0,02688	0	0,284361112	0,02688
		2	1028г. – 2 скв.			
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	т/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,753066666	0,07168	0	0,753066666	0,07168
0304	Азот (II) оксид (Азота оксид) (6)	0,122373334	0,011648	0	0,122373334	0,011648
0328	Углерод (Сажа, Углерод черный) (583)	0,049027778	0,00448	0	0,049027778	0,00448
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,117666666	0,0112	0	0,117666666	0,0112
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,607944444	0,05824	0	0,607944444	0,05824
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000001176	0,000000124	0	0,000001176	0,000000124
1325	Формальдегид (Метаналь) (609)	0,011766666	0,00112	0	0,011766666	0,00112
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,284361112	0,02688	0	0,284361112	0,02688
	_		<u> 1029г. – 4 скв.</u>		,	
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	т/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1,506133332	0,14336		1,506133332	0,14336
0304	Азот (II) оксид (Азота оксид) (6)	0,244746668	0,023296		0,244746668	0,023296
0328	Углерод (Сажа, Углерод черный) (583)	0,098055556	0,00896	0	0,098055556	0,00896

0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,235333332	0,0224	0	0,2353333332	0,0224
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,215888888	0,11648	0	1,215888888	0,11648
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000002352	0,000000248	0	0,000002352	0,000000248
1325	Формальдегид (Метаналь) (609)	0,023533332	0,00224	0	0,023533332	0,00224
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,568722224	0,05376	0	0,568722224	0,05376
	20011) (10)	2	030г. – 2 скв.			
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	т/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,753066666	0,07168	0	0,753066666	0,07168
0304	Азот (II) оксид (Азота оксид) (6)	0,122373334	0,011648	0	0,122373334	0,011648
0328	Углерод (Сажа, Углерод черный) (583)	0,049027778	0,00448	0	0,049027778	0,00448
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,117666666	0,0112	0	0,117666666	0,0112
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,607944444	0,05824	0	0,607944444	0,05824
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000001176	0,000000124	0	0,000001176	0,000000124
1325	Формальдегид (Метаналь) (609)	0,011766666	0,00112	0	0,011766666	0,00112
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,284361112	0,02688	0	0,284361112	0,02688

Источник загрязнения: 0005, Емкость для топлива буровой Источник выделения: 0005 01, Емкость для топлива буровой

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара: наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), СМАХ = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, OOZ = 84.32

Концентрация паров нефтепродуктов при заполнении резервуаров в осенне-зимний период, r/м3 (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 84.32

Концентрация паров нефтепродуктов при заполнении резервуаров в весенне-летний период, $\Gamma/M3$ (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 10.4

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 10.4) / 3600 = 0.0065$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 84.32 + 1.6 \cdot 84.32) \cdot 10^{-6} = 0.0002353$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (84.32 + 84.32) \cdot 10^{-6} = 0.00422$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0002353 + 0.00422 = 0.004455

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.004455 / 100 = 0.004442526$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 99.72 \cdot 0.0065 / 100 = 0.0064818$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.28 \cdot 0.004455 / 100 = 0.000012474$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.0065 / 100 = 0.0000182$

	2027г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,0000364	0,000024948
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,0129636	0,008885052
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		
	2028г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,0000364	0,000024948
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,0129636	0,008885052
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		
	2029г. – 4 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,0000728	0,000049896
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,0259272	0,017770104
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		
	2030г. – 2 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,0000364	0,000024948
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,0129636	0,008885052
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения N 0006, Выхлопная труба

Источник выделения N 001, Дизельная электростанция для выработки электроэнергии

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 56.736

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 372

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 453.92

Температура отработавших газов T_{o2} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 453.92 * 372 = 1.472443853$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 1.472443853 / 0.359066265 = 4.100757983$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	2027г. – 2 скв.										
Код	Примесь	г/сек	т/год	%	г/сек	т/год					
		без	без	очистки	c	c					
		очистки	очистки		очисткой	очисткой					
0301	Азота (IV) диоксид (Азота диоксид) (4)	1,5872	3,631104	0	1,5872	3,631104					
0304	Азот (II) оксид (Азота оксид) (6)	0,25792	0,5900544	0	0,25792	0,5900544					
0328	Углерод (Сажа, Углерод черный) (583)	0,103333334	0,226944	0	0,103333334	0,226944					
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,248	0,56736	0	0,248	0,56736					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,281333334	2,950272	0	1,281333334	2,950272					
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,00000248	0,00000624	0	0,00000248	0,00000624					
1325	Формальдегид (Метаналь) (609)	0,0248	0,056736	0	0,0248	0,056736					
2754	Алканы C12-19 /в пересчете на C/	0,599333334	1,361664	0	0,599333334	1,361664					

	1.5			T	T T	
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)		020 2			
<i>IC</i> -)	П		028г. – 2 скв.	0/		()
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
0201	(IV)	очистки	<u>очистки</u>	0	очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1,5872	3,631104	0	1,5872	3,631104
0304	Азот (II) оксид (Азота	0,25792	0,5900544	0	0,25792	0,5900544
0304	оксид) (6)	0,23792	0,5900544		0,23792	0,3900344
0328	Углерод (Сажа,	0,103333334	0,226944	0	0,103333334	0,226944
0320	Углерод (сажа, Углерод черный) (583)	0,103333334	0,220744		0,103333334	0,220744
0330	Сера диоксид	0,248	0,56736	0	0,248	0,56736
0330	(Ангидрид сернистый,	0,2 10	0,50750	o o	0,210	0,50750
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	1,281333334	2,950272	0	1,281333334	2,950272
	углерода, Угарный газ)	, :-::::::	_,. + _ /2		, , , , , , , , , , , , , , , , , , ,	=,
	(584)					
0703	Бенз/а/пирен (3,4-	0,00000248	0,00000624	0	0,00000248	0,00000624
	Бензпирен) (54)	,	,		,	,
1325	Формальдегид	0,0248	0,056736	0	0,0248	0,056736
	(Метаналь) (609)					
2754	Алканы С12-19 /в	0,599333334	1,361664	0	0,599333334	1,361664
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)	2	029г. – 4 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
1100	II punceo	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	3,1744	7,262208	0	3,1744	7,262208
	(Азота диоксид) (4)	- , .	.,			.,
0304	Азот (II) оксид (Азота	0,51584	1,1801088	0	0,51584	1,1801088
	оксид) (6)	Í				,
0328	Углерод (Сажа,	0,206666668	0,453888	0	0,206666668	0,453888
<u>L</u>	Углерод черный) (583)	·				
0330	Сера диоксид	0,496	1,13472	0	0,496	1,13472
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	2,562666668	5,900544	0	2,562666668	5,900544
	углерода, Угарный газ)					
	(584)					
0703	Бенз/а/пирен (3,4-	0,00000496	0,00001248	0	0,00000496	0,00001248
	Бензпирен) (54)					
1325	Формальдегид	0,0496	0,113472	0	0,0496	0,113472
	(Метаналь) (609)					
2754	Алканы C12-19 /в	1,198666668	2,723328	0	1,198666668	2,723328
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					

	Растворитель РПК-					
	265Π) (10)	2.	0.2.0.			
Код	Примесь	2/сек	030г. – 2 скв. m/год	%	г/сек	т/год
Roo	Примссо	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1,5872	3,631104	0	1,5872	3,631104
0304	Азот (II) оксид (Азота оксид) (6)	0,25792	0,5900544	0	0,25792	0,5900544
0328	Углерод (Сажа, Углерод черный) (583)	0,103333334	0,226944	0	0,103333334	0,226944
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,248	0,56736	0	0,248	0,56736
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,281333334	2,950272	0	1,281333334	2,950272
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,00000248	0,00000624	0	0,00000248	0,00000624
1325	Формальдегид (Метаналь) (609)	0,0248	0,056736	0	0,0248	0,056736
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,599333334	1,361664	0	0,599333334	1,361664

Источник загрязнения N 0007, Выхлопная труба Источник выделения N 001, Передвижная паровая установка

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{coo} , т, 38.4

Эксплуатационная мощность стационарной дизельной установки Р, кВт, 1.7

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{ij} , г/кBт*ij, г/кij

Температура отработавших газов T_{o2} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 67226.9 * 1.7 = 0.996571566$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31/(1 + T_{oz}/273) = 1.31/(1 + 723/273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oc} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.996571566 / 0.359066265 = 2.775453064$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

	1 1		' '	, ,	- ' '		
Группа	CO	NOx	CH	C	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

			027г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,007782222	2,64192	0	0,007782222	2,64192
0304	Азот (II) оксид (Азота оксид) (6)	0,001264612	0,429312	0	0,001264612	0,429312
0328	Углерод (Сажа, Углерод черный) (583)	0,000661112	0,2304	0	0,000661112	0,2304
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,001038888	0,3456	0	0,001038888	0,3456
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0068	2,304	0	0,0068	2,304
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000000012	0,000004224	0	0,000000012	0,000004224
1325	Формальдегид (Метаналь) (609)	0,000141666	0,04608	0	0,000141666	0,04608
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0034	1,152	0	0,0034	1,152
		2	028г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без очистки	без очистки	очистки	с очисткой	с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,007782222	2,64192	0	0,007782222	2,64192
0304	Азот (II) оксид (Азота оксид) (6)	0,001264612	0,429312	0	0,001264612	0,429312
0328	Углерод (Сажа, Углерод черный) (583)	0,000661112	0,2304	0	0,000661112	0,2304
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,001038888	0,3456	0	0,001038888	0,3456
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0068	2,304	0	0,0068	2,304

0702	E / / /2.4	0.00000013	0.000004224	0	0.00000012	0.000004224
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000000012	0,000004224	0	0,000000012	0,000004224
1325	Формальдегид (Метаналь) (609)	0,000141666	0,04608	0	0,000141666	0,04608
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0034	1,152	0	0,0034	1,152
		20	029г. – 4 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
0201	A (III)	0чистки	<u>очистки</u>	0	очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,015564444	5,28384		0,015564444	5,28384
0304	Азот (II) оксид (Азота оксид) (6)	0,002529224	0,858624		0,002529224	0,858624
0328	Углерод (Сажа, Углерод черный) (583)	0,001322224	0,4608	0	0,001322224	0,4608
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,002077776	0,6912		0,002077776	0,6912
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0136	4,608	0	0,0136	4,608
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000000024	0,000008448	0	0,000000024	0,000008448
1325	Формальдегид (Метаналь) (609)	0,000283332	0,09216	0	0,000283332	0,09216
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0068	2,304	0	0,0068	2,304
	[2031] (10)	20	030г. – 2 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,007782222	2,64192		0,007782222	2,64192
0304	Азот (II) оксид (Азота оксид) (6)	0,001264612	0,429312	0	0,001264612	0,429312
0328	Углерод (Сажа, Углерод черный) (583)	0,000661112	0,2304	0	0,000661112	0,2304
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,001038888	0,3456	0	0,001038888	0,3456
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0068	2,304		0,0068	2,304
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000000012	0,000004224		0,000000012	0,000004224
1325	Формальдегид (Метаналь) (609)	0,000141666	0,04608	0	0,000141666	0,04608

2754	Алканы С12-19 /в	0,0034	1,152	0	0,0034	1,152
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

РАБОТЫ ПРИ РАСКОНСЕРВАЦИИ СКВАЖИН (ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, МОНТАЖ УСТАНОВКИ КРС, РАБОТЫ ПО ВОССТАНОВЛЕНИЮ СКВАЖИН) В 2025-2026ГГ.

2025г. – 6 скв.

2025г. – 1 скв.- ввод из консервации нагнетательной скважины

2026г. - 6 скв.

Источник загрязнения N 0008, Выхлопная труба Источник выделения N 001, Дизельный двигатель

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 3.8

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 392

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 40.39

Температура отработавших газов T_{02} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{3} = 8.72 * 10^{-6} * 40.39 * 392 = 0.138062714$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31/(1 + T_{oz}/273) = 1.31/(1 + 450/273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{0z} = G_{0z} / \gamma_{0z} = 0.138062714 / 0.494647303 = 0.279113447$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{2} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{ioo} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	2025г. – 1 с	кв ввод из конс	сервации нагне	<i>стательной</i>	скважины	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.836266667	0.1216	0	0.836266667	0.1216
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0.135893333	0.01976	0	0.135893333	0.01976
	оксид) (6)					
0328	Углерод (Сажа,	0.054444444	0.0076	0	0.054444444	0.0076
	Углерод черный) (583)					
0330	Сера диоксид	0.130666667	0.019	0	0.130666667	0.019
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	0.675111111	0.0988	0	0.675111111	0.0988
	углерода, Угарный газ)					
	(584)					
0703	Бенз/а/пирен (3,4-	0.000001307	0.000000209	0	0.000001307	0.000000209
	Бензпирен) (54)					
1325	Формальдегид	0.013066667	0.0019	0	0.013066667	0.0019
	(Метаналь) (609)					
2754	Алканы С12-19 /в	0.315777778	0.0456	0	0.315777778	0.0456
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					
70	— — — — — — — — — — — — — — — — — — —		025г. – 6 скв.	A /	T , T	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	<i>c</i>	<i>c</i>
0301	A (IV)	очистки 5.017(00002	<u>очистки</u>	0	очисткой 5.017(00002	очисткой
0301	Азота (IV) диоксид	5,017600002	0,7296	0	5,017600002	0,7296
0204	(Азота диоксид) (4)	0.015250000	0.11056	0	0.015250000	0.11057
0304	Азот (II) оксид (Азота	0,815359998	0,11856	0	0,815359998	0,11856
0000	оксид) (6)	0.22666664	0.0476		0.22666664	0.0456
0328	Углерод (Сажа,	0,326666664	0,0456	0	0,326666664	0,0456
0000	Углерод черный) (583)	. =			. =	
0330	Сера диоксид	0,784000002	0,114	0	0,784000002	0,114
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
0227	(IV) оксид) (516)	4.05066666	0.5020	0	1.05066666	0.5020
0337	Углерод оксид (Окись	4,050666666	0,5928	0	4,050666666	0,5928
	углерода, Угарный газ)					
	(584)	0,000007842	0,000001254	0	0.000007943	0.000001254
0702	Farra/a/27777 arr (2.4	0.00000/64/	0,000001234	U	0,000007842	0,000001254
0703	Бенз/а/пирен (3,4-	0,0000070.2				
	Бензпирен) (54)		0.0114	0	0.079400003	0.0114
0703 1325	Бензпирен) (54) Формальдегид	0,078400002	0,0114	0	0,078400002	0,0114
1325	Бензпирен) (54) Формальдегид (Метаналь) (609)	0,078400002				
	Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в		0,0114		0,078400002 1,894666668	
1325	Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/	0,078400002				
1325	Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды	0,078400002				
1325	Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0,078400002				
1325	Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);	0,078400002				0,0114
1325	Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0,078400002				

		2	026г. – 6 скв.			
Код	Примесь	г/сек без очистки	т/год без очистки	% очистки	г/сек с очисткой	т/год с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	5,017600002	0,7296	0	5,017600002	0,7296
0304	Азот (II) оксид (Азота оксид) (6)	0,815359998	0,11856	0	0,815359998	0,11856
0328	Углерод (Сажа, Углерод черный) (583)	0,326666664	0,0456	0	0,326666664	0,0456
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,784000002	0,114	0	0,784000002	0,114
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	4,050666666	0,5928	0	4,050666666	0,5928
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000007842	0,000001254	0	0,000007842	0,000001254
1325	Формальдегид (Метаналь) (609)	0,078400002	0,0114	0	0,078400002	0,0114
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1,894666668	0,2736	0	1,894666668	0,2736

Источник загрязнения N 0009, Выхлопная труба Источник выделения N 001, Дизельный-генератор

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 8.36

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 320

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{i} , г/кВт*ч, 108.85

Температура отработавших газов T_{02} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 108.85 * 320 = 0.30373504$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.30373504 / 0.494647303 = 0.614043659$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений ві	ыбросов $q_{\scriptscriptstyle 2i}$.	г/кг.топл. ст	ационарной ,	дизельной у	становки до і	капитального	ремонта	
Группа	CO	NOx	CH	С	SO2	CH2O	БП	

Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{9} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

		кв ввод из конс			·	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.682666667	0.26752	0	0.682666667	0.26752
0304	Азот (II) оксид (Азота оксид) (6)	0.110933333	0.043472	0	0.110933333	0.043472
0328	Углерод (Сажа, Углерод черный) (583)	0.044444444	0.01672	0	0.044444444	0.01672
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.106666667	0.0418	0	0.106666667	0.0418
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.551111111	0.21736	0	0.551111111	0.21736
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001067	0.00000046	0	0.00001067	0.00000046
1325	Формальдегид (Метаналь) (609)	0.010666667	0.00418	0	0.010666667	0.00418
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.257777778	0.10032	U	0.257777778	0.10032
		20	025г. – 6 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	4,096000002	1,60512	0	4,096000002	1,60512
0304	Азот (II) оксид (Азота оксид) (6)	0,665599998	0,260832	0	0,665599998	0,260832
0328	Углерод (Сажа, Углерод черный) (583)	0,26666664	0,10032	0	0,26666664	0,10032
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,640000002	0,2508	0	0,640000002	0,2508
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	3,306666666	1,30416	0	3,306666666	1,30416
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000006402	0,00000276	0	0,000006402	0,00000276
1325	Формальдегид (Метаналь) (609)	0,064000002	0,02508	0	0,064000002	0,02508

2754	Алканы C12-19 /в	1,54666668	0,60192	0	1,54666668	0,60192
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					
			026г. – 6 скв.			
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	4,096000002	1,60512	0	4,096000002	1,60512
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0,665599998	0,260832	0	0,665599998	0,260832
	оксид) (6)					
0328	Углерод (Сажа,	0,266666664	0,10032	0	0,266666664	0,10032
	Углерод черный) (583)		Ť			-
0330	Сера диоксид	0,640000002	0,2508	0	0,640000002	0,2508
	(Ангидрид сернистый,		ŕ			,
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	3,306666666	1,30416	0	3,306666666	1,30416
	углерода, Угарный газ)		,			,
	(584)					
0703	Бенз/а/пирен (3,4-	0,000006402	0,00000276	0	0,000006402	0,00000276
	Бензпирен) (54)		,			,
1325	Формальдегид	0,064000002	0,02508	0	0,064000002	0,02508
	(Метаналь) (609)		,			,
2754	Алканы С12-19 /в	1,546666668	0,60192	0	1,54666668	0,60192
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

Источник загрязнения: 6006, Неорганизованный выброс Источник выделения: 6006 01, Земляные работы: выемка и погрузка

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **КОС** = **0.4** Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Щебень из осад. пород крупн. от 20мм и более Весовая доля пылевой фракции в материале (табл.3.1.1), KI = 0.04 Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 12

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.4

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.5

Суммарное количество перерабатываемого материала, $\tau/4$ ас, *GMAX* = 12.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 3000

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.04 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 12.5 \cdot 10^6 / 3600 \cdot (1-0) = 0.01111$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.04 \cdot 0.02 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 3000 \cdot (1-0) = 0.00672$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0111 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.00672 = 0.00672

п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песок

Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.03

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 0.1

Уточненная влажность материала, не более, % (табл.3.1.4), VL = 99

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала (табл.3.1.5), **К7 = 0.8**

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.5

Суммарное количество перерабатываемого материала, т/час, GMAX = 12.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 3000

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.03 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 12.5 \cdot 10^6 / 3600 \cdot (1-0) = 0.0417$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.03 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 3000 \cdot (1-0) = 0.0252$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0417

Сумма выбросов, т/год (3.2.4), M = M + MC = 0.00672 + 0.0252 = 0.0319

п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песчано-гравийная смесь (ПГС)

Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 14

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.5

Суммарное количество перерабатываемого материала, т/час, *GMAX* = 12.5

Суммарное количество перерабатываемого материала, т/год, GGOD = 3000

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 12.5 \cdot 10^6 / 3600 \cdot (1-0) = 0.02083$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.03 \cdot 0.04 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 0.5 \cdot 1 \cdot 1 \cdot 1 \cdot 0.5 \cdot 3000 \cdot (1-0) = 0.0126$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0417 Сумма выбросов, т/год (3.2.4), M = M + MC = 0.0319 + 0.0126 = 0.0445

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.0445 = 0.0178$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0417 = 0.01668$

Итоговая таблица выбросов

<u>итого</u>	вая таолица выоросов		
	2025г. – 1 скв ввод из консервации нагнег	тательной скважини	bl
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0,01668	0,0178
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		
	2025г. – 6 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0,10008	0,1068
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		
	2026г. – 6 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0,10008	0,1068
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6007, Неорганизованный выброс Источник выделения: 6007 01, Земляные работы: временное хранение грунта

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2. Статическое хранение материала

Материал: Щебень из осад. пород крупн. от 20мм и более

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 12

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 50

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.4

Поверхность пыления в плане, м2. S = 50

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 38

Продолжительность осадков в виде дождя, часов/год, TO = 22

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 22 / 24 = 1.833$

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.4 \cdot 0.002 \cdot 50 \cdot (1-0) = 0.00116$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 \cdot (TSP + TD)) \cdot (1-NJ) = 0.0864 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.4 \cdot 0.002 \cdot 50 \cdot (365 \cdot (38 + 1.833)) \cdot (1-0) = 0.0228$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.00116 = 0.00116

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.0228 = 0.0228

п.3.2. Статическое хранение материала

Материал: Песчано-гравийная смесь (ПГС)

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 14

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.5

Поверхность пыления в плане, м2, S = 50

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 38

Продолжительность осадков в виде дождя, часов/год, TO = 22

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 22 / 24 = 1.833$

Эффективность средств пылеподавления, в долях единицы, NJ=0

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 50 \cdot (1-0) = 0.00145$

Валовый выброс, т/год (3.2.5), $MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 - (TSP + TD)) \cdot (1-NJ) =$

 $0.0864 \cdot 1.4 \cdot 1 \cdot 0.01 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 50 \cdot (365 - (38 + 1.833)) \cdot (1 - 0) = 0.0285$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.00116 + 0.00145 = 0.00261

Сумма выбросов, т/год (3.2.4), M = M + MC = 0.0228 + 0.0285 = 0.0513

п.3.2. Статическое хранение материала

Материал: Песок

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 7

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Поверхность пыления в плане, м2, S = 50

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, *TSP* = 38

Продолжительность осадков в виде дождя, часов/год, TO = 22

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 22 / 24 = 1.833$

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Максимальный разовый выброс, г/с (3.2.3), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ) = 2 \cdot 1 \cdot 0.9 \cdot 1.45 \cdot 0.8 \cdot 0.002 \cdot 50 \cdot (1-0) = 0.209$

 $0.0864 \cdot 1.4 \cdot 1 \cdot 0.9 \cdot 1.45 \cdot 0.8 \cdot 0.002 \cdot 50 \cdot (365 - (38 + 1.833)) \cdot (1 - 0) = 4.11$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0.00261 + 0.209 = 0.2116

Сумма выбросов, т/год (3.2.4), M = M + MC = 0.0513 + 4.11 = 4.16

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 4.16 = 1.664$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.2116 = 0.0846$

Итоговая таблица выбросов

2025г. – 1 скв ввод из консервации нагнетательной скважины				
Код		Наименование ЗВ	Выброс г/с	Выброс т/год

2908	Пыль неорганическая, содержащая двуокись кремния в	0,0846	1,664
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		
	2025г. – 6 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0,5076	9,984
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		
	2026г. – 6 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в	0,5076	9,984
	%: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения: 6008, Неорганизованный выброс Источник выделения: 6008 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13 Степень очистки, доли ед., $\eta = 0$

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кг/год, $B\Gamma O \mathcal{I} = 7$

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma / 4$ сс. $B \ \Psi A \ C = 0.03$

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), $K_M^X = 16.31$ в том числе:

Примесь: 0123 Железо (ІІ, ІІІ) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 10.69$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1),
$$M\Gamma O\mathcal{J} = K\frac{X}{M} \cdot B\Gamma O\mathcal{J} / 10^6 \cdot (1-\eta) = 10.69 \cdot 7 / 10^6 \cdot (1-0) = 0.0000748$$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, \Psi A \, C \, / \, 3600 \cdot (1 - \eta) = 10.69 \cdot 0.03 \, / \, 3600 \cdot (1 - 0) = 0.000089$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 0.92$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1),
$$M\Gamma O\mathcal{I} = K\frac{X}{M} \cdot B\Gamma O\mathcal{I} / 10^6 \cdot (1-\eta) = 0.92 \cdot 7 / 10^6 \cdot (1-0) = 0.00000644$$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \Psi A C / 3600 \cdot (1-\eta) = 0.92 \cdot 0.03 / 3600 \cdot (1-0) = 0.00000767$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 1.4$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O\mathcal{J} = K\frac{X}{M} \cdot B\Gamma O\mathcal{J} / 10^6 \cdot (1-\eta) = 1.4 \cdot 7 / 10^6 \cdot (1-0) = 0.0000098$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, \Psi AC / 3600 \cdot (1-\eta) = 1.4 \cdot 0.03 / 3600 \cdot (1-0) = 0.00001167$

<u>Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/)</u> (615)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), **К** $_{\pmb{M}}^{\pmb{X}}$ = **3.3**

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O\mathcal{J} = K\frac{X}{M} \cdot B\Gamma O\mathcal{J} / 10^6 \cdot (1-\eta) = 3.3 \cdot 7 / 10^6 \cdot (1-0) = 0.0000231$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, \Psi A \, C \, / \, 3600 \cdot (1-\eta) = 3.3 \cdot 0.03 \, / \, 3600 \cdot (1-0) = 0.0000275$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 0.75$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{I} = K\frac{X}{M} \cdot B\Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 0.75 \cdot 7 / 10^6 \cdot (1-0) = 0.00000525$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B VAC / 3600 \cdot (1-\eta) = 0.75 \cdot 0.03 / 3600 \cdot (1-0) = 0.00000625$

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 1.5$

С учетом трансформации оксидов азота получаем:

Степень очистки, доли ед., $\eta = 0$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $M\Gamma O\mathcal{A} = KNO2 \cdot K\frac{X}{M} \cdot B\Gamma O\mathcal{A} / 10^6 \cdot (1-\eta) = 0.8 \cdot 1.5 \cdot 7 / 10^6 \cdot (1-0) = 0.0000084$ Максимальный из разовых выброс, г/с (5.2), $MCEK = KNO2 \cdot K\frac{X}{M} \cdot B4AC / 3600 \cdot (1-\eta) = 0.8 \cdot 1.5 \cdot 0.03 / 3600 \cdot (1-0) = 0.00001$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{I} = KNO \cdot K \frac{X}{M} \cdot B\Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 7 / 10^6 \cdot (1-0) = 0.13 \cdot 1.5

0.000001365

Максимальный из разовых выброс, г/с (5.2), $MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.03 / MCEK = KNO \cdot K \Psi AC / M$ $3600 \cdot (1-0) = 0.000001625$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 13.3$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{A} = K \frac{X}{M} \cdot B\Gamma O \mathcal{A} / 10^6 \cdot (1-\eta) = 13.3 \cdot 7 / 10^6 \cdot (1-0) = 0.0000931$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, VAC / 3600 \cdot (1-\eta) = 13.3 \cdot 0.03 / 3600 \cdot (1-0) = 10.00 \cdot (1-\eta) = 10.00 \cdot$

0.0001108

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): МР-3

Расход сварочных материалов, кг/год, $B\Gamma O \mathcal{I} = 2$

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, $B \, \Psi A \, C = 0.01$

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 11.5$ в том числе:

Примесь: 0123 Железо (П, ПІ) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K\frac{X}{M}$ = 9.77

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{J} = K \frac{X}{M} \cdot B\Gamma O \mathcal{J} / 10^6 \cdot (1-\eta) = 9.77 \cdot 2 / 10^6 \cdot (1-0) = 0.00001954$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, VAC / 3600 \cdot (1-\eta) = 9.77 \cdot 0.01 / 3600 \cdot (1-0) = 0.00 \cdot (1-\eta) = 0.00 \cdot$ 0.00002714

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 1.73$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{I} = K \frac{X}{M} \cdot B\Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 1.73 \cdot 2 / 10^6 \cdot (1-0) = 0.00000346$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, VAC / 3600 \cdot (1-\eta) = 1.73 \cdot 0.01 / 3600 \cdot (1-0) = 1.73 \cdot 0.01 /$

0.00000481

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 0.4$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M\Gamma O \mathcal{I} = K \frac{X}{M} \cdot B\Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 0.4 \cdot 2 / 10^6 \cdot (1-0) = 0.0000008$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \Psi A C / 3600 \cdot (1-\eta) = 0.4 \cdot 0.01 / 3600 \cdot (1-0) = 0.01 / 3600 \cdot (1-0$ 0.000001111

итого:

<i>итогс</i>	2025г. – 1 скв ввод из консервации нагнет	ทสพ <i>อ</i> กรมกับ <i>เ</i> หยสมเนนม	
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,000089	0,00009434
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00000767	0,0000099
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,00001	0,0000084
0304	Азот (II) оксид (Азота оксид) (6)	0,000001625	0,000001365
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0001108	0,0000931
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,00000625	0,00000605
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,0000275	0,0000231
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00001167	0,0000098
TC \	2025г. – 6 скв.	D (/	D (/)
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,000534	0,00056604
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00004602	0,0000594
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,00006	0,0000504
0304	Азот (II) оксид (Азота оксид) (6)	0,00000975	0,00000819
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0006648	0,0005586
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,0000375	0,0000363
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,000165	0,0001386
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,00007002	0,0000588
	2026г. – 6 скв.		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,000534	0,00056604
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,00004602	0,0000594
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,00006	0,0000504
0304	Азот (II) оксид (Азота оксид) (6)	0,00000975	0,00000819
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0006648	0,0005586
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,0000375	0,0000363
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,000165	0,0001386
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный	0,00007002	0,0000588

шлак, песок, клинкер, зола, кремнезем, зола углей	
казахстанских месторождений) (494)	

Источник загрязнения: 6009 Неорганизованный выброс Источник выделения: 6009 01, Покрасочные работы

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0005

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.2

Марка ЛКМ: *Грунтовка ГФ-021* Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Лиметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0005 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.000225$ Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.025$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2902 Взвешенные частицы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс 3В (1), т/год, $_M_ = KOC \cdot MS \cdot (100-F2) \cdot DK \cdot 10^{-4} = 1 \cdot 0.0005 \cdot (100-45) \cdot 30 \cdot 10^{-4} = 0.0000825$

Максимальный из разовых выброс 3B (2), г/с, $\underline{G} = KOC \cdot MS1 \cdot (100-F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 0.2 \cdot (100-45) \cdot 30 / (3.6 \cdot 10^4) = 0.00917$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0009

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: *Растворитель Р-4* Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 1401 Пропан-2-он (Аиетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, **DP** = 100

Валовый выброс ЗВ (3-4), т/год, $\underline{M} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0009 \cdot 100 \cdot 26 \cdot 100 \cdot 10^{-6} = 0.000234$ Максимальный из разовых выброс ЗВ (5-6), г/с, $\underline{G} = MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 26 \cdot 100 / (3.6 \cdot 10^6) = 0.01444$

Примесь: 1210 Бутилаиетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $\underline{M} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0009 \cdot 100 \cdot 12 \cdot 100 \cdot 10^{-6} = 0.000108$ Максимальный из разовых выброс 3В (5-6), г/с, $\underline{G} = MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 12 \cdot 100 / 100 \cdot 100 \cdot 100 / 100 / 100 \cdot 100 / 1$

 $(3.6 \cdot 10^6) = 0.00667$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $\underline{M} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0009 \cdot 100 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000558$ Максимальный из разовых выброс 3В (5-6), г/с, $G = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 62 \cdot 100 / 100 \cdot 100$

 $(3.6 \cdot 10^6) = 0.03444$

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0044

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.2

Марка ЛКМ: *Лак БТ-99*

Способ окраски: Пневматически

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 56

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 96

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0044 \cdot 56 \cdot 96 \cdot 100 \cdot 10^{-6} = 0.002365$ Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 56 \cdot 96$

 $100 / (3.6 \cdot 10^6) = 0.02987$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 4

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, **DP** = 100

Валовый выброс 3В (3-4), т/год, $\underline{M} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0044 \cdot 56 \cdot 4 \cdot 100 \cdot 10^{-6} = 0.0000986$ Максимальный из разовых выброс 3В (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 56 \cdot 4 \cdot 100 / (3.6 \cdot 10^6) = 0.001244$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2902 Взвешенные частины (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс 3В (1), т/год, $_M_ = KOC \cdot MS \cdot (100-F2) \cdot DK \cdot 10^{-4} = 1 \cdot 0.0044 \cdot (100-56) \cdot 30 \cdot 10^{-4} = 0.000581$

Максимальный из разовых выброс 3B (2), г/с, $\underline{G} = KOC \cdot MS1 \cdot (100-F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 0.2 \cdot (100-56) \cdot 30 / (3.6 \cdot 10^4) = 0.00733$

Итого:

MIOIO:	2025. 1		
IC a d	2025г. – 1 скв ввод из консервации нагн	1	Danier and and
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,02987	0,00259
0621	Метилбензол (349)	0,03444	0,000558
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)		
	(110)	0,00667	0,000108
1401	Пропан-2-он (Ацетон) (470)	0,01444	0,000234
2752	Уайт-спирит (1294*)	0,001244	0,0000986
2902	Взвешенные частицы (116)	0,00917	0,0006635
	2025г. – 6 скв.	<u> </u>	
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,17922	0,01554
0621	Метилбензол (349)	0,20664	0,003348
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)		
	(110)	0,04002	0,000648
1401	Пропан-2-он (Ацетон) (470)	0,08664	0,001404
2752	Уайт-спирит (1294*)	0,007464	0,0005916
2902	Взвешенные частицы (116)	0,05502	0,003981
	2026г. – 6 скв.	<u> </u>	·
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,17922	0,01554
0621	Метилбензол (349)	0,20664	0,003348
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)		-
	(110)	0,04002	0,000648
1401	Пропан-2-он (Ацетон) (470)	0,08664	0,001404
2752	Уайт-спирит (1294*)	0,007464	0,0005916
2902	Взвешенные частицы (116)	0,05502	0,003981

Источник загрязнения N 6010 Неорганизованный выброс Источник выделения N 001 01, Лакокрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.00018

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.18

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00018 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0000405$ Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.18 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.01125$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00018 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0000405$ Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.18 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.01125$

Итого:

111010.					
	2025г. – 1 скв ввод из консервации нагнетательной скважины				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,01125	0,0000405		
2752	Уайт-спирит (1294*)	0,01125	0,0000405		
	2025г. – 6 скв.				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0675	0,000243		
2752	Уайт-спирит (1294*)	0,0675	0,000243		
	2026г. – 6 скв.				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0675	0,000243		
2752	Уайт-спирит (1294*)	0,0675	0,000243		

Источник загрязнения N 6011 Неорганизованный выброс Источник выделения N 001 01, Снятие грунта

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния

Вид работ: Выемочно-погрузочные работы

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4) , $\mathit{K5} = 0.01$

Доля пылевой фракции в материале(табл.1) , P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1) , P2 = 0.02

Скорость ветра в зоне работы экскаватора (средняя), м/с, G3SR = 4.5

Коэфф. учитывающий среднюю скорость ветра (табл. 2), P3SR = 1.2

Скорость ветра в зоне работы экскаватора (максимальная), м/с , G3 = 12

Коэфф. учитывающий максимальную скорость ветра(табл.2), P3 = 2.0

Коэффициент, учитывающий местные условия(табл.3), P6 = 0.8

Размер куска материала, мм , G7 = 500

Коэффициент, учитывающий крупность материала(табл.5) , P5 = 0.2

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.6

Количество перерабатываемой экскаватором породы, т/час , G = 313.87

Максимальный разовый выброс, г/с (8) , $\underline{G} = P1 * P2 * P3 * K5 * P5 * P6 * B * G * 10 ^ 6 / 3600 = 0.05 * 0.02 * 2.0 * 0.01 * 0.2 * 0.8 * 0.6 * 313.87 * 10 ^ 6 / 3600 = 0.1674$

Время работы экскаватора в год, часов, RT = 24

Валовый выброс, т/год , $_M_=P1*P2*P3SR*K5*P5*P6*B*G*RT=0.05*0.02*1.2*0.01*0.2*0.5*0.6*313.87*24=0.005424$

Итого выбросы от источника выделения: 001 Разработка грунта экскаваторами с погрузкой в автосамосвалы

	2025г. – 1 скв ввод из консервации нагнетательной скважины			
Код	Примесь	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,1674	0,005424	
	2025г. – 6 скв.			
Код	Примесь	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая: 70-20% двуокиси кремния	1,0044	0,032544	
	2026г. – 6 скв.			
Код	Примесь	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая: 70-20% двуокиси кремния	1,0044	0,032544	

Источник загрязнения N 6012 Неорганизованный выброс Источник выделения N 001 01, Планировка площадки

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.7

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 261.3

Суммарное количество перерабатываемого материала, т/год, GGOD = 62648

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 261.3 \cdot 10^6 / 3600 \cdot (1-0) = 0.691$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 62648 \cdot (1-0) = 0.421$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.691 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.421 = 0.421

п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.7

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), $\mathbf{\textit{B}} = \mathbf{0.7}$

Суммарное количество перерабатываемого материала, т/час, GMAX = 261.3

Суммарное количество перерабатываемого материала, т/год, GGOD = 62648

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Разгрузка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 261.3 \cdot 10^6 / 3600 \cdot (1-0) = 0.691$ Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 10^6$

 $0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 62648 \cdot (1-0) = 0.421$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.691 Сумма выбросов, т/год (3.2.4), M = M + MC = 0.421 + 0.421 = 0.842

п.3.1. Планировка

Материал: Глина

Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль (табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 3.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 9

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 1.7

Влажность материала, %, VL = 20

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.01

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), B = 0.7

Суммарное количество перерабатываемого материала, т/час, GMAX = 261.3

Суммарное количество перерабатываемого материала, т/год, GGOD = 62648

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 261.3 \cdot 10^6 / 3600 \cdot (1-0) = 0.691$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.7 \cdot 62648 \cdot (1-0) = 0.421$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.691 Сумма выбросов, т/год (3.2.4), M = M + MC = 0.842 + 0.421 = 1.263

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 1.263 = 0.505$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.691 = 0.2764$

Итоговая таблица выбросов

	2025г. – 1 скв ввод из консервации нагнетательной скважины			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая, содержащая двуокись кремния в	0,2764	0,505	
	%: 70-20 (шамот, цемент, пыль цементного			
	производства - глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем, зола углей			
	казахстанских месторождений) (494)			
	2025г. – 6 скв.			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая, содержащая двуокись кремния в	1,6584	3,03	
	%: 70-20 (шамот, цемент, пыль цементного			
	производства - глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем, зола углей			
	казахстанских месторождений) (494)			
	2026г. – 6 скв.			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая, содержащая двуокись кремния в	1,6584	3,03	
	%: 70-20 (шамот, цемент, пыль цементного			
	производства - глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем, зола углей			
	казахстанских месторождений) (494)			

Источник загрязнения N 6013 Неорганизованный выброс Источник выделения N 001 01, Трамбовка грунта

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния

Вид работ: Выемочно-погрузочные работы

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.01

Доля пылевой фракции в материале(табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), P2 = 0.02

Скорость ветра в зоне работы экскаватора (средняя), м/с, G3SR = 4.5

Коэфф.учитывающий среднюю скорость ветра(табл.2), P3SR = 1.2

Скорость ветра в зоне работы экскаватора (максимальная), M/c, G3 = 12

Коэфф. учитывающий максимальную скорость ветра(табл.2), P3 = 2.0

Коэффициент, учитывающий местные условия(табл.3), P6 = 0.8

Размер куска материала, мм, G7 = 500

Коэффициент, учитывающий крупность материала(табл.5), P5 = 0.2

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.6

Количество перерабатываемой экскаватором породы, т/час, G = 261.3

Максимальный разовый выброс, г/с (8) , $\underline{G} = P1 * P2 * P3 * K5 * P5 * P6 * B * G * 10 ^ 6 / 3600 = 0.05 *$

 $0.02 * 2.0 * 0.01 * 0.2 * 0.8 * 0.6 * 261.3 * 10^{-6} 6 / 3600 = 0.13936$

Время работы экскаватора в год, часов, RT = 240

Валовый выброс, т/год, $M_{-} = P1 * P2 * P3SR * K5 * P5 * P6 * B * G * RT = 0.05 * 0.02 * 1.2 * 0.01 * 0.2 * 0.5 * 0.6 * 261.3 * 240 = 0.0452$

Итого выбросы от источника выделения:

	2025г. – 1 скв ввод из консервации нагнетательной скважины				
Код	Примесь	Выброс г/с	Выброс т/год		
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,13936	0,0452		
	2025г. – 6 скв.				
Код	Примесь	Выброс г/с	Выброс т/год		
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,83616	0,2712		
	2026г. – 6 скв.				
Код	Примесь	Выброс г/с	Выброс т/год		
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,83616	0,2712		

Источник загрязнения N 6014 Неорганизованный выброс Источник выделения N 001 01, Планировка грунта

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1. Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Вскрышные породы

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 4.5

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2.0

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.1

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.6

Суммарное количество перерабатываемого материала, т/час, GMAX = 4350,55

Суммарное количество перерабатываемого материала, т/год, GGOD = 62648

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106$

 $3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2.0 \cdot 1 \cdot 0.1 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.6 \cdot 4350.55 \cdot 106 / 3600 \cdot (1-0) = 0.0123$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 10^{-10}$

 $0.02 \cdot 2.0 \cdot 1 \cdot 0.1 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.6 \cdot 62648 \cdot (1-0) = 6.014208$

Итого выбросы от источника выделения:

2025г. – 1 скв ввод из консервации нагнетательной скважины							
Код	Примесь	Выброс г/с	Выброс т/год				
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,0123	6,014208				
	2025г. – 6 скв.						
Код	Примесь	Выброс г/с	Выброс т/год				
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,0738	36,085248				
2026г. – 6 скв.							
Код	Примесь	Выброс г/с	Выброс т/год				
2908	Пыль неорганическая: 70-20% двуокиси кремния	0,0738	36,085248				

Источник загрязнения: 6016, Неорганизованный выброс

Источник выделения: 6016 01, Емкость масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Масла

Расчет выбросов от резервуаров

Конструкция резервуара: наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), CMAX = 0.24 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.2511

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3 (Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.2511

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3 (Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.2511 + 0.15 \cdot 0.2511) \cdot 10^{-6} = 0.0000000753$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot (0.2511 + 0.2511) \cdot 10^{-6} = 0.00000314$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000000753 + 0.00000314 = 0.000003215

Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 100 \cdot 0.000003215 / 100 = 0.000003215$

Максимальный из разовых выброс, г/с (5.2.4), $_{\bf G}$ = $CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002$

	2025г. – 1 скв ввод из консервации нагнетательной скважины							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
2735	Масло минеральное нефтяное (веретенное, машинное,	0.0002	0.000003215					
	цилиндровое и др.) (716*)							
	2025г. – 6 скв.							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
2735	Масло минеральное нефтяное (веретенное, машинное,	0,0012	0,00001929					
	цилиндровое и др.) (716*)							
	2026г. – 6 скв.							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
2735	Масло минеральное нефтяное (веретенное, машинное,	0,0012	0,00001929					
	цилиндровое и др.) (716*)							

Источник загрязнения: 6017, Неорганизованный выброс Источник выделения: 6017 01, Емкость отработанного масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Отработанное масло Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), CMAX = 0.24 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.07

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3 (Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.07

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3 (Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.07 + 0.15 \cdot 0.07) \cdot 10^{-6} = 0.000000021$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot (0.07 + 0.07) \cdot 10^{-6} = 0.000000875$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000000021 + 0.000000875 = 0.000000896

Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)

Концентрация 3В в парах, % масс (Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 100 \cdot 0.000000896 / 100 = 0.000000896$

Максимальный из разовых выброс, г/с (5.2.4), $G_{-} = CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002$

2025г. – 1 скв ввод из консервации нагнетательной скважины							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год				
2735	Масло минеральное нефтяное (веретенное, машинное,	0.0002	0.000000896				
цилиндровое и др.) (716*) 2025г. – 6 скв.							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год				
2735	Масло минеральное нефтяное (веретенное, машинное,	•	•				
	цилиндровое и др.) (716*)	0,0012	0,000005376				
2026г. – 6 скв.							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год				

2735	Масло минеральное нефтяное (веретенное, машинное,	0,0012	0,000005376
	цилиндровое и др.) (716*)		

Источник загрязнения: 6018, Неорганизованный выброс Источник выделения: 6018 01, Емкость для шлама 4м3

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.3. Методика по расчету норм естественной убыли углеводородов в атмосферу на предприятиях нефтепродуктов

Расчет по пункту 5.3.3. От испарения с открытых поверхностей земляных амбаров для мазута Площадь испарения поверхности, м2, $F = X2 \cdot Y2 = 2 \cdot 2 = 4$ Нормы убыли мазута в ОЗ период, кг/м2 в месяц (п.5.3.3), NIOZ = 2.16 Нормы убыли мазута в ВЛ период, кг/м2 в месяц (п.5.3.3), N2VL = 2.88

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Максимальный разовый выброс, г/с (ф-ла 5.45), $_G_=N2VL\cdot F/2592=2.88\cdot 4/2592=0.004444444444$ Валовый выброс, т/год (ф-ла 5.46), $G=(N1OZ+N2VL)\cdot 6\cdot F\cdot 0.001=(2.16+2.88)\cdot 6\cdot 4\cdot 0.001=0.121$ Валовый выброс, т/год, $_M_=0.121$

Итого:

	2025г. – 1 скв ввод из консервации на	гнетательной скважин	lbl						
Код	Наименование ЗВ	Выброс г/с	Выброс т/год						
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00444444444	0.121						
	предельные С12-С19 (в пересчете на С);								
	Растворитель РПК-265П) (10)								
	2025г. – 6 скв.								
Код	Наименование ЗВ	Выброс г/с	Выброс т/год						
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,026666667	0,726						
	предельные С12-С19 (в пересчете на С);								
	Растворитель РПК-265П) (10)								
	2026г. – 6 скв								
Код	Наименование ЗВ	Выброс г/с	Выброс т/год						
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,026666667	0,726						
	предельные С12-С19 (в пересчете на С);								
	Растворитель РПК-265П) (10)								

Источник загрязнения: 6019. Неорганизованный выброс Источник выделения: 6019 01. Дегазатор бурового раствора

No	Наименование	Обозн.	Ед.изм.	Кол-	Расчет	Результат
				во		
1	<u>Исходные</u>	данные:				
1.1.	Объем аппарата	V	м3	1		
1.2.	Давление в аппарате	P	гПа	1520		
1.3.	Средняя молекулярная масса паров	Мп	г/моль	98		
1.4.	Время работы	T	час	240		
1.5.	Средняя температура в аппарате	t	К	313		
2	Количество выбросов углеводородов составит: 2754 Углеводороды C12-C19				$\Pi = 0.037 * \left(\frac{PV}{1011}\right)^{0.8} * \sqrt{\frac{M \ n}{T}}$	
	1		Пр	кг/час	$\Pi = 0.037 * \left[\frac{2T}{1011} \right] * \sqrt{\frac{M}{T}}$	0,0287
			Пр	г/с	0,0287 * 1000 /3600	0,0080

	Пр	т/год	0,008 / 1000000* 3600 * 240	0,006912				
2025г. – 1 скв ввод из консервации нагнетательной скважины								
	Пр	г/с	0,0287 * 1000 /3600	0,0080				
	Пр	т/год	0,008 / 1000000* 3600 * 240	0,006912				
2025г. – 6 скв.								
	Пр	г/с	0,0287 * 1000 /3600	0,048				
	Пр	т/год	0,008 / 1000000* 3600 * 240	0,041472				
2026г. – 6 скв.								
	Пр	г/с	0,0287 * 1000 /3600	0,048				
	Пр	т/год	0,008 / 1000000* 3600 * 240	0,041472				

Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы, N61-п от 24.02.2004 г.

Источник загрязнения: 6020 - 6021, Неорганизованный выброс Источник выделения: 6020 01, Установка подачи топливо (насос)

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников Астана, 2005 (п.б.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости:

Наименование аппаратуры или средства перекачки: Насос центробежный с одним торцевым уплотнением вала

Удельный выброс, кг/час (Прил.Б2), Q = 0.04

Общее количество аппаратуры или средств перекачки, шт., N1 = 2

Одновременно работающее количество аппаратуры или средств перекачки, шт., NN1 = 1

Максимальный из разовых выброс, г/с (6.2), $G = Q \cdot NN1 / 3.6 = 0.04 \cdot 1 / 3.6 = 0.01111$

Валовый выброс, т/год (6.3), $M = (Q \cdot N1 \cdot T_{-}) / 1000 = (0.04 \cdot 2 \cdot 240) / 1000 = 0.0192$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Концентрация 3В в парах, % масс (Прил. 14[3]), CI = 99.72

Валовый выброс, т/год (5.2.5 [3]), $_{M}$ = $CI \cdot M / 100 = 99.72 \cdot 0.0192 / 100 = 0.01914624$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_{G}$ = $CI \cdot G / 100 = 99.72 \cdot 0.01111 / 100 = 0.011078892$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил.14[3]), CI = 0.28

Валовый выброс, т/год (5.2.5 [3]), $M = CI \cdot M / 100 = 0.28 \cdot 0.0192 / 100 = 0.00005376$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_{\bf G}$ = $CI \cdot G / 100 = 0.28 \cdot 0.01111 / 100 = 0.000031108$

Итоговая таблица:

2025г. – 1 скв ввод из консервации нагнетательной скважины								
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
0333	Сероводород (Дигидросульфид) (518)	0.000031108	0.00005376					
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.011078892	0.01914624					
	2025г. – 6 скв.							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
0333	Сероводород (Дигидросульфид) (518)	0,00018665	0,00032256					

2754	Алканы С12-19 /в пересчете на С/ (Углеводороды				
	предельные С12-С19 (в пересчете на С);				
	Растворитель РПК-265П) (10)	0,06647335	0,11487744		
2026г. – 6 скв.					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0333	С (Д 1) (510)	0.00010665	0.00022256		
0000	Сероводород (Дигидросульфид) (518)	0,00018665	0,00032256		
2754	Сероводород (Дигидросульфид) (518) Алканы C12-19 /в пересчете на С/ (Углеводороды	0,00018665	0,00032256		
		0,00018665	0,00032256		

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

ПРИ ИСПЫТАНИИ

В 2025 году 6 скважин: №№ 102, 111, 112, 114, 118, 119. В 2026 году 6 скважин: №№ 103, 104, 106, 107, 109, 113.

Источник загрязнения N 1001, Выхлопная труба Источник выделения N 001, Буровой станок

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{coo} , т, 143.56

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 294

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт * ч, 2034.6

Температура отработавших газов T_{oz} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов \hat{G}_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 2034.6 * 294 = 5.216063328$$
 (A.3)

Удельный вес отработавших газов у_{ог}, кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 5.216063328 / 0.359066265 = 14.52674293$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

		Итого выбросы	по веществам		!	
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	m/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.6272	4.59392	0	0.6272	4.59392
0304	Азот (II) оксид (Азота оксид) (6)	0.10192	0.746512	0	0.10192	0.746512
0328	Углерод (Сажа, Углерод черный) (583)	0.040833333	0.28712	0	0.040833333	0.28712
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.098	0.7178	0	0.098	0.7178
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.506333333	3.73256	0	0.506333333	3.73256
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.00000098	0.000007896	0	0.00000098	0.000007896
1325	Формальдегид (Метаналь) (609)	0.0098	0.07178	0	0.0098	0.07178
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.236833333	1.72272		0.236833333	1.72272
		росы по вещест				
Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	т/год с
0301	Азота (IV) диоксид (Азота диоксид) (4)	очистки 7,5264	очистки 55,12704	0	очисткой 7,5264	очисткой 55,12704
0304	Азот (II) оксид (Азота оксид) (6)	1,22304	8,958144	0	1,22304	8,958144
0328	Углерод (Сажа, Углерод черный) (583)	0,489999996	3,44544	0	0,489999996	3,44544
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1,176	8,6136	0	1,176	8,6136
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	6,075999996	44,79072	0	6,075999996	44,79072
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,00001176	0,000094752	0	0,00001176	0,000094752
1325	Формальдегид (Метаналь) (609)	0,1176	0,86136	0	0,1176	0,86136
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2,841999996	20,67264	0	2,841999996	20,67264

Источник выделения N 001, Дизельный двигатель Цементировочного агрегата

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 143.56

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 400

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 1495.4

Температура отработавших газов T_{oz} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 1495.4 * 400 = 5.2159552$$
 (A.3)

Удельный вес отработавших газов у₀₂, кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 723/273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 5.2159552 / 0.359066265 = 14.5264418$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	ì	Итого выбросы	по веществам	на 1 объект	ı	
Код	Примесь	г/сек без	m/20д без	% очистки	г/сек с	m/год c
0301	Азота (IV) диоксид (Азота диоксид) (4)	очистки 0.853333333	очистки 4.59392	0	очисткой 0.853333333	очисткой 4.59392
0304	Азот (II) оксид (Азота оксид) (6)	0.138666667	0.746512	0	0.138666667	0.746512
0328	Углерод (Сажа, Углерод черный) (583)	0.05555556	0.28712	0	0.05555556	0.28712
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.133333333	0.7178	0	0.133333333	0.7178
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.688888889	3.73256	0	0.688888889	3.73256
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001333	0.000007896	0	0.000001333	0.000007896

1325	Формальдегид	0.013333333	0.07178	0	0.013333333	0.07178
1020	(Метаналь) (609)	0.01222222	0.07170		0.01222222	0.07170
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.322222222	1.72272	0	0.322222222	1.72272
	пересчете на C); Растворитель РПК- 265П) (10)					
		осы по веществ	вам на 12 скваз	нсин (на 1 ск	в. 1 объект)	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
	-	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	10,24	55,12704	0	10,24	55,12704
0304	Азот (II) оксид (Азота оксид) (6)	1,664000004	8,958144	0	1,664000004	8,958144
0328	Углерод (Сажа, Углерод черный) (583)	0,666666672	3,44544	0	0,666666672	3,44544
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1,599999996	8,6136	0	1,599999996	8,6136
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	8,26666668	44,79072	0	8,26666668	44,79072
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000015996	0,000094752	0	0,000015996	0,000094752
1325	Формальдегид (Метаналь) (609)	0,159999996	0,86136	0	0,159999996	0,86136
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	3,866666664	20,67264	0	3,866666664	20,67264

Источник загрязнения N 1003, Выхлопная труба Источник выделения N 001, Дизель генератор

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{\textit{200}}$, т, 70.525

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 100

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/к B_T^* ч, 2938.5

Температура отработавших газов T_{o2} , K, 400

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов $\textbf{\textit{G}}_{o\varepsilon}$, кг/с:

$$G_{0z} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 2938.5 * 100 = 2.562372$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$y_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 400/273) = 0.531396731$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 2.562372 / 0.531396731 = 4.821956648$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	1	Итого выбросы	по веществам	на 1 объект	ļ	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
	_	без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.213333333	2.2568	0	0.213333333	2.2568
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0.034666667	0.36673	0	0.034666667	0.36673
	оксид) (6)					
0328	Углерод (Сажа,	0.013888889	0.14105	0	0.013888889	0.14105
	Углерод черный) (583)					
0330	Сера диоксид	0.033333333	0.352625	0	0.033333333	0.352625
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	0.172222222	1.83365	0	0.172222222	1.83365
	углерода, Угарный газ)					
	(584)					
0703	Бенз/а/пирен (3,4-	0.000000333	0.000003879	0	0.000000333	0.000003879
	Бензпирен) (54)					
1325	Формальдегид	0.003333333	0.0352625	0	0.003333333	0.0352625
	(Метаналь) (609)					
2754	Алканы С12-19 /в	0.08055556	0.8463	0	0.080555556	0.8463
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					
		осы по вещест				
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	2,559999996	27,0816	0	2,559999996	27,0816
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0,416000004	4,40076	0	0,416000004	4,40076
	оксид) (6)					
0328	Углерод (Сажа,	0,166666668	1,6926	0	0,166666668	1,6926
	Углерод черный) (583)					
0330	Сера диоксид	0,399999996	4,2315	0	0,399999996	4,2315
	(Ангидрид сернистый,					

	Сернистый газ, Сера (IV) оксид) (516)					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	2,066666664	22,0038	0	2,066666664	22,0038
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000003996	0,000046548	0	0,000003996	0,000046548
1325	Формальдегид (Метаналь) (609)	0,039999996	0,42315	0	0,039999996	0,42315
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,966666672	10,1556	0	0,966666672	10,1556

Источник загрязнения N 1004, Выхлопная труба Источник выделения N 001, ДЭС

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{coo} , т, 110.5

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 250

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{2} , г/кBт*ч, 1841.7

Температура отработавших газов T_{oz} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 1841.7 * 250 = 4.014906$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 723/273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oc} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 4.014906 / 0.359066265 = 11.18151826$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

			<u> </u>				
Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{\scriptscriptstyle 9} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Итого выбросы по веществам на 1 объект

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
0301	A (IV)	<i>очистки</i> 0.533333333	очистки 3.536	0	очисткой 0.533333333	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.33333333	3.330	U	0.55555555	3.536
0304	Азот (II) оксид (Азота оксид) (6)	0.086666667	0.5746	0	0.086666667	0.5746
0328	Углерод (Сажа, Углерод черный) (583)	0.034722222	0.221	0	0.034722222	0.221
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.083333333	0.5525	0	0.083333333	0.5525
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.430555556	2.873	0	0.430555556	2.873
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000833	0.000006078	0	0.000000833	0.000006078
1325	Формальдегид (Метаналь) (609)	0.008333333	0.05525	0	0.008333333	0.05525
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.201388889	1.326	0	0.201388889	1.326
		осы по веществ	вам на 12 скваз	нсин (на 1 ск	в. 1 объект)	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
0301	A (IV)	<i>очистки</i>	<u>очистки</u>	0	очисткой (20000000	очисткой 42,422
0301	Азота (IV) диоксид (Азота диоксид) (4)	6,399999996	42,432	U	6,399999996	42,432
0304	Азот (II) оксид (Азота оксид) (6)	1,040000004	6,8952	0	1,040000004	6,8952
0328	Углерод (Сажа, Углерод черный) (583)	0,416666664	2,652		0,416666664	2,652
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,999999996	6,63	0	0,999999996	6,63
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5,166666672	34,476	0	5,166666672	34,476
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000009996	0,000072936	0	0,000009996	0,000072936
1325	Формальдегид (Метаналь) (609)	0,099999996	0,663	0	0,099999996	0,663
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-	2,416666668	15,912	0	2,416666668	15,912

Источник загрязнения: 6101, Неорганизованный выброс Источник выделения: 6101 01, Емкость для хранения дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, *NP* = Дизельное топливо

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.92

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YOZ = 2.36

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, *BOZ* = 234.0725

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YVL = 3.15

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 234.0725

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC = 4

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 20

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный горизонтальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.27

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.0029 \cdot 1 = 0.000783$

Коэффициент, KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 20

Сумма Ghri*Knp*Nr, *GHR* = **0.000783**

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.92 \cdot 0.1 \cdot 4 / 3600 = 0.0004356$

Среднегодовые выбросы, т/год (6.2.2), $M = (YOZ \cdot BOZ + YVL \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (2.36 \cdot PVL) \cdot (2.36 \cdot PV$

 $234.0725 + 3.15 \cdot 234.0725 \cdot 0.1 \cdot 10^{-6} + 0.000783 = 0.000912$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.000912 / 100 = 0.0009094464$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 99.72 \cdot 0.0004356 / 100 = 0.00043438032$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 0.28 \cdot 0.000912 / 100 = 0.0000025536$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.0004356 / 100 = 0.00000121968$

	Итого выбросы по веществам	на 1 объект	
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000121968	0.0000025536
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00043438032	0.0009094464
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		
	Итого выбросы по веществам на 12 сквах	кин (на 1 скв. 1 объек	m)
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,00001	0,00003
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,00521	0,01091
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник выделения: 6102 01, Блок манифольд

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников Астана, 2005 (п.б.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Наименование оборудования: Запорно-регулирующая арматура (легкие углеводороды, двухфазные среды) Наименование технологического потока: Поток №9

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.012996

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X = 0.365

Общее количество данного оборудования, шт., N = 8

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.365 \cdot 0.012996 \cdot 8 = 0.03795$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.03795/3.6 = 0.01054

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 60

Максимальный разовый выброс, Γ/c , $G_{-} = G \cdot C / 100 = 0.01054 \cdot 60 / 100 = 0.006324$

Валовый выброс, т/год, $_M_ = _G_ \cdot _T_ \cdot 3600 / 10^6 = 0.006324 \cdot 240 \cdot 3600 / 10^6 = 0.005463936$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 40

Максимальный разовый выброс, г/с, $G = G \cdot C / 100 = 0.01054 \cdot 40 / 100 = 0.004216$

Валовый выброс, т/год, $M_{-} = G_{-} \cdot T_{-} \cdot 3600 / 10^{6} = 0.004216 \cdot 240 \cdot 3600 / 10^{6} = 0.003642624$

Наименование оборудования: Фланцевые соединения (легкие углеводороды, двухфазные среды)

Наименование технологического потока: Поток №9

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.000396

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X = 0.05

Общее количество данного оборудования, шт., N = 16

Среднее время работы данного оборудования, час/год, $_{-}T_{-}$ = 240

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.05 \cdot 0.000396 \cdot 16 = 0.000317$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.000317/3.6 = 0.000088

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 60

Максимальный разовый выброс, г/с, $G = G \cdot C / 100 = 0.000088 \cdot 60 / 100 = 0.0000528$

Валовый выброс, т/год, $_M_ = _G_ \cdot _T_ \cdot 3600 / 10^6 = 0.0000528 \cdot 240 \cdot 3600 / 10^6 = 0.0000456192$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 40

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000088 \cdot 40 / 100 = 0.0000352$

Валовый выброс, т/год, $M_{-} = G_{-} \cdot T_{-} \cdot 3600 / 10^{6} = 0.0000352 \cdot 240 \cdot 3600 / 10^{6} = 0.0000304128$

Наименование оборудования: Предохранительные клапаны (легкие жидкие углеводороды)

Наименование технологического потока: Поток №9

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.08802

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X = 0.25

Общее количество данного оборудования, шт., N = 2

Суммарная утечка всех компонентов, кг/час (6.1), $G = \overline{X} \cdot \overline{Q} \cdot N = 0.25 \cdot 0.08802 \cdot 2 = 0.044$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.044/3.6 = 0.01222

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 60

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.01222 \cdot 60 / 100 = 0.007332$

Валовый выброс, т/год, $_{_}M_{_} = _{_}G_{_} \cdot _{_}T_{_} \cdot 3600 / 10^6 = 0.007332 \cdot 240 \cdot 3600 / 10^6 = 0.006334848$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 40

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.01222 \cdot 40 / 100 = 0.004888$

Валовый выброс, т/год, $_{_}M_{_}=_{_}G_{_}\cdot_{_}T_{_}\cdot 3600 / 10^{6}=0.004888\cdot 240\cdot 3600 / 10^{6}=0.004223232$

Сводная таблица расчетов:

Оборудов.	Технологич. поток	Общее кол- во, шт.	Время ра- боты, ч/г
Запорно-регулирующая арматура (легкие углеводороды, двухфазные среды)	Поток №9	8	240
Фланцевые соединения (легкие углеводороды, двухфазные среды)	Поток №9	16	240
Предохранительные клапаны (легкие жидкие углеводороды)	Поток №9	2	240

Итоговая таблица:

	Итого выбросы по веществам на 1 объект								
Код	Наименование ЗВ	Выброс г/с	Выброс т/год						
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.007332	0.0118444032						
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.004888	0.0078962688						
	Итого выбросы по веществам на 12 ск	сважин (на 1 скв. 1 объ	ект)						
Код	Наименование ЗВ	Выброс г/с	Выброс т/год						
0415	Смесь углеводородов предельных С1-С5 (1502*)	0,08798	0,14213						
0416	Смесь углеводородов предельных С6-С10 (1503*)	0,05866	0,09476						

Источник загрязнения: 6103 - 6107, Неорганизованный выброс

Источник выделения: 6103 01, Насос для перекачки дизельного топлива - 5шт.

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости:

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час (Прил.Б2), Q = 0.07

Общее количество аппаратуры или средств перекачки, шт., N1 = 5

Одновременно работающее количество аппаратуры или средств перекачки, шт., NN1 = 3

Максимальный из разовых выброс, г/с (6.2), $G = Q \cdot NN1 / 3.6 = 0.07 \cdot 3 / 3.6 = 0.0583$

Валовый выброс, т/год (6.3), $M = (Q \cdot NI \cdot T) / 1000 = (0.07 \cdot 5 \cdot 240) / 1000 = 0.084$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Концентрация 3В в парах, % масс (Прил.14[3]), *CI* = 99.72

Валовый выброс, т/год (5.2.5 [3]), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.084 / 100 = 0.0837648$ Максимальный из разовых выброс, г/с (5.2.4 [3]), $\underline{G} = CI \cdot G / 100 = 99.72 \cdot 0.0583 / 100 = 0.05813676$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил.14[3]), CI = 0.28 Валовый выброс, т/год (5.2.5 [3]), $M_{-} = CI \cdot M / 100 = 0.28 \cdot 0.084 / 100 = 0.0002352$ Максимальный из разовых выброс, г/с (5.2.4 [3]), $G_{-} = CI \cdot G / 100 = 0.28 \cdot 0.0583 / 100 = 0.00016324$

Итоговая таблица:

	Итого выбросы по веществам на 1 объект									
Код	Наименование ЗВ	Выброс г/с	Выброс т/год							
0333	Сероводород (Дигидросульфид) (518)	0.00016324	0.0002352							
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.05813676	0.0837648							
	предельные С12-С19 (в пересчете на С);									
	Растворитель РПК-265П) (10)									
	Итого выбросы по веществам на 12 ск	кважин (на 1 скв. 1 объ	ект)							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год							
0333	Сероводород (Дигидросульфид) (518)	0,00196	0,00282							
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,69764	1,00518							
	предельные С12-С19 (в пересчете на С);									
	Растворитель РПК-265П) (10)									

Источник загрязнения: 6108, Неорганизованный выброс

Источник выделения: 6108 01, Емкость для отработанного масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Нефтепродукт, *NP* = Масла

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 0.39

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YOZ = 0.25

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т. *BOZ* = 1

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YVL = 0.25

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 1

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC = 2

Коэффициент (Прил. 12), *KNP* = **0.00027**

Объем одного резервуара данного типа, м3, VI = 6

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Конструкция резервуаров: Наземный горизонтальный

Количество выделяющихся паров нефтепродуктов при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.27

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.00027 \cdot 1 = 0.0000729$

Общий объем резервуаров, м3, V = 6

Сумма Ghri*Knp*Nr, *GHR* = **0.0000729**

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 0.39 \cdot 0 \cdot 2 / 3600 = 0.000001$

Среднегодовые выбросы, т/год (6.2.2), $M = (YOZ \cdot BOZ + YVL \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (0.25 \cdot 1 + 0.25 \cdot 1) \cdot 0 \cdot 10^{-6} + 0.0000729 = 0.0000729$

,

Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)

Концентрация 3В в парах, % масс (Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M$ / $100=100\cdot 0.0000729$ / 100=0.0000729

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 100 \cdot 0.000001 / 100 = 0.0000001$

TVICITOITI	1	100 0:000001 / 100	0.000001				
Итого выбросы по веществам на 1 объект							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год				

2735	Масло минеральное нефтяное (веретенное, машинное,	0.0000001	0.0000729					
	цилиндровое и др.) (716*)							
	Итого выбросы по веществам на 12 скважин (на 1 скв. 1 объект)							
Код	Наименование ЗВ	Выброс г/с	Выброс т/год					
	Наименование 3В Масло минеральное нефтяное (веретенное, машинное,	Выброс г/с 0,0000012	/					

Источник загрязнения: 6109 - 6111, Неорганизованный выброс

Источник выделения: 6109 01, Емкость для сбора нефти V = 50 м3 - 3 ед.

Список литературы:

1. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п 5.

Вид выброса, VV = Выбросы паров нефти и бензинов

Нефтепродукт, *NPNAME* = Сырая нефть

Минимальная температура смеси, гр.С, TMIN = 20

Коэффициент Kt (Прил.7), KT = 0.57

KTMIN = 0.57

Максимальная температура смеси, гр.С, TMAX = 30

Коэффициент Kt (Прил.7), KT = 0.74

KTMAX = 0.74

Режим эксплуатации, _*NAME*_ = "буферная емкость" (все типы резервуаров)

Конструкция резервуаров, _*NAME*_ = Наземный вертикальный

Объем одного резервуара данного типа, м3, VI = 50

Количество резервуаров данного типа, NR = 3

Количество групп одноцелевых резервуаров, KNR = 1

Категория веществ, $_{NAME} = A, Б, В$

Значение Kpsr (Прил.8), KPSR = 0.1

Значение Кртах (Прил.8), KPM = 0.1

Коэффициент, KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 150

Количество жидкости, закачиваемое в резервуар в течение года, т/год, B = 13800

Плотность смеси, T/M3, RO = 0.89

Годовая оборачиваемость резервуара (5.1.8), $NN = B/(RO \cdot V) = 13800/(0.89 \cdot 150) = 103.4$

Коэффициент (Прил. 10), KOB = 1.35

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, VCMAX = 5

Давление паров смеси, мм.рт.ст., PS = 79.5

P = 79.5

Коэффициент, KB = 1

Температура начала кипения смеси, гр.С, *ТКІР* = 60

Молекулярная масса паров смеси, кг/кмоль, $MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 60 + 45 = 81$

Среднегодовые выбросы паров нефтепродукта, т/год (5.2.2), $M = 0.294 \cdot PS \cdot MRS \cdot (KTMAX \cdot KB + KTMIN)$

 $\cdot KPSR \cdot KOB \cdot B / (10^7 \cdot RO) = 0.294 \cdot 79.5 \cdot 81 \cdot (0.74 \cdot 1 + 0.57) \cdot 0.1 \cdot 1.35 \cdot 13800 / (10^7 \cdot 0.89) = 0.519$

Максимальный из разовых выброс паров нефтепродукта, г/с (5.2.1), $G = (0.163 \cdot PS \cdot MRS \cdot KTMAX \cdot$

 $KPMAX \cdot KB \cdot VCMAX$) / $10^4 = (0.163 \cdot 79.5 \cdot 81 \cdot 0.74 \cdot 0.1 \cdot 1 \cdot 5) / 10^4 = 0.0388$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3B в парах, % масс (Прил. 14), *CI* = **72.46**

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.519 / 100 = 0.3760674$

Максимальный из разовых выброс, г/с (5.2.4), $_{G}$ = $CI \cdot G / 100$ = $72.46 \cdot 0.0388 / 100$ = 0.02811448

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс (Прил. 14), *CI* = 26.8

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 26.8 \cdot 0.519 / 100 = 0.139092$

Максимальный из разовых выброс, г/с (5.2.4), $G_{-} = CI \cdot G / 100 = 26.8 \cdot 0.0388 / 100 = 0.0103984$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.35 Среднегодовые выбросы, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.35 \cdot 0.519 / 100 = 0.0018165$ Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.35 \cdot 0.0388 / 100 = 0.0001358$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.22 Среднегодовые выбросы, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.519 / 100 = 0.0011418$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.0388 / 100 = 0.00008536$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.11 Среднегодовые выбросы, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.11 \cdot 0.519 / 100 = 0.0005709$ Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.11 \cdot 0.0388 / 100 = 0.00004268$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.06

Среднегодовые выбросы, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.06 \cdot 0.519 / 100 = 0.0003114$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.06 \cdot 0.0388 / 100 = 0.00002328$

	Итого выбросы по веществал	н на 1 объект	
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00002328	0.0003114
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.02811448	0.3760674
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0103984	0.139092
0602	Бензол (64)	0.0001358	0.0018165
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00004268	0.0005709
0621	Метилбензол (349)	0.00008536	0.0011418
	Итого выбросы по веществам на 12 сква	жин (на 1 скв. 1 объек	rm)
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,00027936	0,0037368
0415	Смесь углеводородов предельных С1-С5 (1502*)	0,33737376	4,5128088
0416	Смесь углеводородов предельных С6-С10 (1503*)	0,1247808	1,669104
0602	Бензол (64)	0,0016296	0,021798
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,00051216	0,0068508
0621	Метилбензол (349)	0,00102432	0,0137016

ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ОБЪЕКТА КАК ИСТОЧНИКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ:

ПРИ ЛИКВИДАЦИИ

Срок начала работ — <u>декабрь 2051г</u>; завершения работ — <u>февраль 2052г.</u> Скважины №102, 104, 109, 106, 107, 103, 118, 111, 124, 125, 126, 127, 128, 129, 130, 131, 1H, 10, 7.

Источник загрязнения N 0010, Выхлопная труба Источник выделения N 001, Дизельная электростанция (ДЭС) для освещения

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год $\textbf{\textit{B}}_{200}$, т, 100.7 Эксплуатационная мощность стационарной дизельной установки $\textbf{\textit{P}}_{2}$, кВт, 100

Удельный расход топлива на экспл./номин. режиме работы двигателя \emph{b}_{2} , г/кВт*ч, 545.2

Температура отработавших газов T_{oz} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 545.2 * 100 = 0.4754144$$
 (A.3)

Удельный вес отработавших газов у₀₂, кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 454 / 273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oc} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.4754144 / 0.491925722 = 0.966435335$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{\sigma} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	Итого выбросы по веществам при ликвидации на 19 скв.									
Код	Примесь	г/сек	т/год	%	г/сек	т/год				
		без	без	очистки	c	\boldsymbol{c}				
		очистки	очистки		очисткой	очисткой				
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.213333333	3.2224	0	0.213333333	3.2224				
0304	Азот (II) оксид (Азота оксид) (6)	0.034666667	0.52364	0	0.034666667	0.52364				
0328	Углерод (Сажа, Углерод черный) (583)	0.013888889	0.2014	0	0.013888889	0.2014				
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.033333333	0.5035	0	0.033333333	0.5035				
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.172222222	2.6182	0	0.172222222	2.6182				
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000333	0.000005539	0	0.000000333	0.000005539				
1325	Формальдегид (Метаналь) (609)	0.003333333	0.05035	0	0.003333333	0.05035				
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);	0.08055556	1.2084	0	0.080555556	1.2084				

Растворитель РПК-			
265Π) (10)			

Источник загрязнения N 0011, Выхлопная труба Источник выделения N 001, Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{\textit{200}}$, т, 59.28

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 176

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 182.4

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 182.4 * 176 = 0.279932928$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{0z} = 1.31/(1 + T_{0z}/273) = 1.31/(1 + 454/273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.279932928 / 0.491925722 = 0.569055277$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	Итого в	выбросы по веш	цествам при ли	квидации на	і 19 скв.		
Код	Примесь	г/сек	т/год	%	г/сек	т/год	
		без	без	очистки	c	\boldsymbol{c}	
		очистки	очистки		очисткой	очисткой	
0301	Азота (IV) диоксид	0.375466667	1.89696	0	0.375466667	1.89696	
	(Азота диоксид) (4)						
0304	Азот (II) оксид (Азота	0.061013333	0.308256	0	0.061013333	0.308256	
	оксид) (6)						
0328	Углерод (Сажа,	0.024444444	0.11856	0	0.024444444	0.11856	
	Углерод черный) (583)						
0330	Сера диоксид	0.058666667	0.2964	0	0.058666667	0.2964	
	(Ангидрид сернистый,						
	Сернистый газ, Сера						
	(IV) оксид) (516)						

0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.303111111	1.54128	0	0.303111111	1.54128
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000587	0.00000326	0	0.000000587	0.00000326
1325	Формальдегид (Метаналь) (609)	0.005866667	0.02964	0	0.005866667	0.02964
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.141777778	0.71136	0	0.141777778	0.71136

Источник загрязнения N 0012, Выхлопная труба

Источник выделения N 001, Дизельный двигатель ЯМЗ-238 (Подъемный агрегат УПА-60)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{coo} , т, 59.28

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 176

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 182.4

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 182.4 * 176 = 0.279932928$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 454 / 273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.279932928 / 0.491925722 = 0.569055277$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{\scriptscriptstyle 2} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{coo} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	Итого выбросы по веществам при ликвидации на 19 скв.									
Код	Примесь	г/сек т/год		%	г/сек	т/год				
		без	без	очистки	c	c				

		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.375466667	1.89696	0	0.375466667	1.89696
0304	Азот (II) оксид (Азота оксид) (6)	0.061013333	0.308256	0	0.061013333	0.308256
0328	Углерод (Сажа, Углерод черный) (583)	0.024444444	0.11856	0	0.024444444	0.11856
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.058666667	0.2964	0	0.058666667	0.2964
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.303111111	1.54128	0	0.303111111	1.54128
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000587	0.00000326	0	0.000000587	0.00000326
1325	Формальдегид (Метаналь) (609)	0.005866667	0.02964	0	0.005866667	0.02964
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.141777778	0.71136	0	0.141777778	0.71136

Источник загрязнения N 0013, Выхлопная труба Источник выделения N 001, Дизельный двигатель Цементировочного агрегата ЦА-320

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{cod} , т, 21.28

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 176

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 65.5

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 65.5 * 176 = 0.10052416$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 454/273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.10052416 / 0.491925722 = 0.204348249$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1) Расчет валового выброса W_i , т/год: $W_i = q_{9i} * B_{200} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

	Итого е	выбросы по вещ	ествам при ли	квидации на	19 скв.	
Код	Примесь	г/сек без	m/20d без	% очистки	г/сек с	m/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.375466667	0.68096	0	0.375466667	0.68096
0304	Азот (II) оксид (Азота оксид) (6)	0.061013333	0.110656	0	0.061013333	0.110656
0328	Углерод (Сажа, Углерод черный) (583)	0.024444444	0.04256	0	0.024444444	0.04256
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.058666667	0.1064	0	0.058666667	0.1064
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.303111111	0.55328	0	0.303111111	0.55328
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000587	0.00000117	0	0.000000587	0.00000117
1325	Формальдегид (Метаналь) (609)	0.005866667	0.01064	0	0.005866667	0.01064
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.141777778	0.25536	0	0.141777778	0.25536

Источник загрязнения N 0014, Выхлопная труба Источник выделения N 001, Дизельный двигатель Цементировочного агрегата ЦА-320

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год $\textbf{\textit{B}}_{\textit{200}}$, т, 21.28

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 176

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 65.5

Температура отработавших газов T_{o2} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{2} = 8.72 * 10^{-6} * 65.5 * 176 = 0.10052416$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 454 / 273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м3;

Объемный расход отработавших газов Q_{oc} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.10052416 / 0.491925722 = 0.204348249$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

-	1			· · ·	, ,	, ,		•
	Группа	CO	NOx	CH	С	SO2	CH2O	БП
]	Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{ioo} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

	Итого в	выбросы по вещ	ествам при ли	квидации на	і 19 скв.	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.375466667	0.68096	0	0.375466667	0.68096
0304	Азот (II) оксид (Азота оксид) (6)	0.061013333	0.110656	0	0.061013333	0.110656
0328	Углерод (Сажа, Углерод черный) (583)	0.024444444	0.04256	0	0.024444444	0.04256
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.058666667	0.1064	0	0.058666667	0.1064
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.303111111	0.55328	0	0.303111111	0.55328
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000587	0.00000117	0	0.000000587	0.00000117
1325	Формальдегид (Метаналь) (609)	0.005866667	0.01064	0	0.005866667	0.01064
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.141777778	0.25536	0	0.141777778	0.25536

Источник загрязнения N 0015, Выхлопная труба Источник выделения N 001, Агрегат сварочный дизельный

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 0.57

Эксплуатационная мощность стационарной дизельной установки P_{2} , кВт, 37

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 8.34

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 8.34 * 37 = 0.002690818$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 454/273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов $\mathbf{Q}_{\theta \ell}$, м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.002690818 / 0.491925722 = 0.005469967$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

	Итого выбросы по веществам при ликвидации на 19 скв.											
Код	Примесь	г/сек	т/год	%	г/сек	т/год						
		без	без	очистки	c	c						
		очистки	очистки		очисткой	очисткой						
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.084688889	0.019608	0	0.084688889	0.019608						
0304	Азот (II) оксид (Азота оксид) (6)	0.013761944	0.0031863	0	0.013761944	0.0031863						
0328	Углерод (Сажа, Углерод черный) (583)	0.007194444	0.00171	0	0.007194444	0.00171						
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.011305556	0.002565	0	0.011305556	0.002565						
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.074	0.0171	0	0.074	0.0171						
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000134	0.000000031	0	0.000000134	0.000000031						
1325	Формальдегид (Метаналь) (609)	0.001541667	0.000342	0	0.001541667	0.000342						
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.037	0.00855	0	0.037	0.00855						

Источник загрязнения N 0016, Выхлопная труба Источник выделения N 001, Агрегат сварочный дизельный

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it coo}$, т, 0.57

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 37

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{2} , г/кВт*ч, 8.34

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 8.34 * 37 = 0.002690818$$
 (A.3)

Удельный вес отработавших газов γ_{oz} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 454/273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.002690818 / 0.491925722 = 0.005469967$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{ii} * B_{ioo} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	Итого (выбросы по веш	ествам при ли	квидации на	и 19 скв.	
Код	Примесь	г/сек без	т/год без	% очистки	г/сек	m/год с
		очистки	очистки	очистки	очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.084688889	0.019608	0	0.084688889	0.019608
0304	Азот (II) оксид (Азота оксид) (6)	0.013761944	0.0031863	0	0.013761944	0.0031863
0328	Углерод (Сажа, Углерод черный) (583)	0.007194444	0.00171	0	0.007194444	0.00171
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.011305556	0.002565	0	0.011305556	0.002565
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.074	0.0171	0	0.074	0.0171
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000134	0.000000031	0	0.000000134	0.000000031
1325	Формальдегид (Метаналь) (609)	0.001541667	0.000342	0	0.001541667	0.000342

2754	Алканы С12-19 /в	0.037	0.00855	0	0.037	0.00855
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

Источник загрязнения N 0017, Выхлопная труба Источник выделения N 001, Цементосмесительная машина (СМН)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{200}$, т, 32.49

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 176

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 99.95

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов $G_{\theta z}$, кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 99.95 * 176 = 0.153395264$$
 (A.3)

Удельный вес отработавших газов у₀₂, кг/м³:

$$\gamma_{0z} = 1.31/(1 + T_{0z}/273) = 1.31/(1 + 454/273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.153395264 / 0.491925722 = 0.311826069$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{Mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

-	1			· · ·	, ,	, ,		•
	Группа	CO	NOx	CH	С	SO2	CH2O	БП
]	Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

	Итого с	выбросы по веш	цествам при ли	квидации на	і 19 скв.	
Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.375466667	1.03968	0	0.375466667	1.03968
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0.061013333	0.168948	0	0.061013333	0.168948
	оксид) (6)					
0328	Углерод (Сажа,	0.024444444	0.06498	0	0.024444444	0.06498
	Углерод черный) (583)					

0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.058666667	0.16245	0	0.058666667	0.16245
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.303111111	0.84474	0	0.303111111	0.84474
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000587	0.000001787	0	0.000000587	0.000001787
1325	Формальдегид (Метаналь) (609)	0.005866667	0.016245	0	0.005866667	0.016245
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.141777778	0.38988	0	0.141777778	0.38988

Источник загрязнения N 0018, Выхлопная труба Источник выделения N 001, Цементосмесительная машина (СМН)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{\textit{200}}$, т, 32.49

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 176

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{i} , г/кВт*ч, 99.95

Температура отработавших газов T_{02} , K, 454

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 99.95 * 176 = 0.153395264$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 454/273) = 0.491925722$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oc} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.153395264 / 0.491925722 = 0.311826069$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

	Итого в	выбросы по вещ	ествам при ли	квидации на	19 скв.	
Код	Примесь	г/сек без	m/год без	% очистки	г/сек с	т/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.375466667	1.03968	0	0.375466667	1.03968
0304	Азот (II) оксид (Азота оксид) (6)	0.061013333	0.168948	0	0.061013333	0.168948
0328	Углерод (Сажа, Углерод черный) (583)	0.024444444	0.06498	0	0.024444444	0.06498
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.058666667	0.16245	0	0.058666667	0.16245
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.303111111	0.84474	0	0.303111111	0.84474
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000587	0.000001787	0	0.000000587	0.000001787
1325	Формальдегид (Метаналь) (609)	0.005866667	0.016245	0	0.005866667	0.016245
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.141777778	0.38988	0	0.141777778	0.38988

Источник загрязнения: 0019, Дыхательный клапан

Источник выделения: 0019 01, Емкость для дизельного топлива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, *NP* = Дизельное топливо

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 3.92

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YOZ = 2.36

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т. BOZ = 163.97

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YVL = 3.15

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 163.97

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 4

Коэффициент (Прил. 12), KNP = 0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 6

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Конструкция резервуаров: Наземный горизонтальный

Значение Кртах для этого типа резервуаров (Прил. 8), **КРМ = 0.1**

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год (Прил. 13), *GHRI* = 0.27

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.0029 \cdot 1 = 0.000783$

Коэффициент, KPSR = 0.1Коэффициент, KPMAX = 0.1 Общий объем резервуаров, м3, V = 6

Сумма Ghri*Knp*Nr, GHR = 0.000783

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.92 \cdot 0.1 \cdot 4 / 3600 = 0.0004356$ Среднегодовые выбросы, т/год (6.2.2), $M = (YOZ \cdot BOZ + YVL \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (2.36 \cdot 163.97 + 3.15 \cdot 163.97) \cdot 0.1 \cdot 10^{-6} + 0.000783 = 0.000873$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Концентрация 3B в парах, % масс (Прил. 14), *CI* = 99.72

Валовый выброс, т/год (5.2.5), $_{_}M_{_} = CI \cdot M / 100 = 99.72 \cdot 0.000873 / 100 = 0.0008705556$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 99.72 \cdot 0.0004356 / 100 = 0.00043438032$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_{\underline{M}} = CI \cdot M / 100 = 0.28 \cdot 0.000873 / 100 = 0.0000024444$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.28 \cdot 0.0004356 / 100 = 0.00000121968$

	Итого выбросы по веществам при ликвидации на 19 скв.				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0333	Сероводород (Дигидросульфид) (518)	0.00000121968	0.0000024444		
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00043438032	0.0008705556		
	предельные С12-С19 (в пересчете на С); Растворитель				
	РПК-265П) (10)				

Источник загрязнения: 6022, Неорганизованный выброс Источник выделения: 6022 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

Степень очистки, доли ед., $\eta = 0$

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): МР-4

Расход сварочных материалов, кг/год, $B\Gamma O \mathcal{I} = 18$

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma/\nu$ ас, $B \Psi A C = 0.01$

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 11$ в том числе:

Примесь: 0123 Железо (ІІ, ІІІ) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 9.9$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M \Gamma O \mathcal{I} = K \frac{X}{M} \cdot B \Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 9.9 \cdot 18 / 10^6 \cdot (1-0) = 0.0001782$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \, \Psi A \, C \, / \, 3600 \cdot (1-\eta) = 9.9 \cdot 0.01 \, / \, 3600 \cdot (1-0) = 0.0000275$

Примесь: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 1.1$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M \Gamma O \mathcal{I} = K \frac{X}{M} \cdot B \Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 1.1 \cdot 18 / 10^6 \cdot (1-0) = 0.0000198$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \Psi A C / 3600 \cdot (1-\eta) = 1.1 \cdot 0.01 / 3600 \cdot (1-0) = 1.1 \cdot 0.01

0.000003056

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 0.4$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс, т/год (5.1), $M \Gamma O \mathcal{I} = K \frac{X}{M} \cdot B \Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 0.4 \cdot 18 / 10^6 \cdot (1-0) = 0.0000072$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.4 \cdot 0.01 / 3600 \cdot (1-0) = 0.4 \cdot 0.01 / 3600 \cdot (1-\eta) = 0$

0.000001111

итого:

	Итого выбросы по веществам при ликвидации на 19 скв.				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.0000275	0.0001782		
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.000003056	0.0000198		
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.000001111	0.0000072		

Источник загрязнения: 6023, Неорганизованный выброс Источник выделения: 6023 01, Газосварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8

Коэффициент трансформации оксидов азота в NO, KNO = 0.13

Степень очистки, доли ед., $\eta = 0$

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, кг/год, $B\Gamma O \mathcal{I} = 126$

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma / \nu$ час, B HAC = 0.07

K1/4ac, B AAC = 0.07

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 15$

С учетом трансформации оксидов азота получаем:

Степень очистки, доли ед., $\eta = 0$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $M\Gamma O\mathcal{I} = KNO2 \cdot K\frac{X}{M} \cdot B\Gamma O\mathcal{I} / 10^6 \cdot (1-\eta) = 0.8 \cdot 15 \cdot 126 / 10^6 \cdot (1-0) = 0.001512$ Максимальный из разовых выброс, г/с (5.2), $MCEK = KNO2 \cdot K\frac{X}{M} \cdot B VAC / 3600 \cdot (1-\eta) = 0.8 \cdot 15 \cdot 0.07 / 3600 \cdot (1-0) = 0.0002333$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $M\Gamma O\mathcal{J} = KNO \cdot K\frac{X}{M} \cdot B\Gamma O\mathcal{J} / 10^6 \cdot (1-\eta) = 0.13 \cdot 15 \cdot 126 / 10^6 \cdot (1-0) = 0.0002457$

Максимальный из разовых выброс, г/с (5.2), $MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 15 \cdot 0.07 / M$

$3600 \cdot (1-0) = 0.0000379$

Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем

Расход сварочных материалов, кг/год, $B\Gamma O I = 14$

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, $\kappa \Gamma/\mu$ ас. $B \, HAC = 0.01$

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), $K_{M}^{X} = 22$

С учетом трансформации оксидов азота получаем:

Степень очистки, доли ед., $\eta = 0$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1),
$$M\Gamma O \mathcal{I} = KNO2 \cdot K \frac{X}{M} \cdot B\Gamma O \mathcal{I} / 10^6 \cdot (1-\eta) = 0.8 \cdot 22 \cdot 14 / 10^6 \cdot (1-0) = 0.0002464$$
 Максимальный из разовых выброс, г/с (5.2), $MCEK = KNO2 \cdot K \frac{X}{M} \cdot B \mathcal{I} A C / 3600 \cdot (1-\eta) = 0.8 \cdot 22 \cdot 0.01 / 3600 \cdot (1-0) = 0.0000489$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1),
$$M\Gamma O\mathcal{I} = KNO \cdot K \frac{X}{M} \cdot B\Gamma O\mathcal{I} / 10^6 \cdot (1-\eta) = 0.13 \cdot 22 \cdot 14 / 10^6 \cdot (1-0) = 0.00004$$
 Максимальный из разовых выброс, г/с (5.2), $MCEK = KNO \cdot K \frac{X}{M} \cdot B \Psi AC / 3600 \cdot (1-\eta) = 0.13 \cdot 22 \cdot 0.01 / 3600 \cdot (1-0) = 0.00000794$

итого:

	110101					
	Итого выбросы по веществам при ликвидации на 19 скв.					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год			
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002333	0.0017584			
0304	Азот (II) оксид (Азота оксид) (6)	0.0000379	0.0002857			

Источник загрязнения: 6024, Неорганизованный выброс

Источник выделения: 6024 01, Узел приготовление цементного раствора

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.9.3. Расчет выбросов вредных веществ неорганизованными источниками

Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Цемент

Влажность материала в диапазоне: 7.0 - 8.0 %

Коэфф., учитывающий влажность материала (табл.9.1), K0 = 0.7

Скорость ветра в диапазоне: 2.0 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость ветра (табл.9.2), K1 = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности узла (табл.9.4), К4 = 1

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.9.5), K5 = 0.4

Удельное выделение твердых частиц с тонны материала, г/т, Q = 120

Эффективность применяемых средств пылеподавления (определяется

экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 120

Максимальное количество отгружаемого (перегружаемого) материала, т/час, MH = 0.065

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Количество твердых частиц, выделяющихся при погрузочно-разгрузочных работах:

Валовый выброс, т/год (9.24), $_M_ = K\theta \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^{-6} = 0.7 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 120 \cdot 120 \cdot (1-0) \cdot 10^{-6} = 0.0048384$

Максимальный из разовых выброс, г/с (9.25), $_{G}$ = $K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 0.7 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 120 \cdot 0.065 \cdot (1-0) / 3600 = 0.000728$

Итоговая таблица выбросов

	Итого выбросы по веществам при ликвидации на 19 скв.					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год			
2908	Пыль неорганическая, содержащая двуокись кремния в	0.000728	0.0048384			
	%: 70-20 (шамот, цемент, пыль цементного					
	производства - глина, глинистый сланец, доменный					
	шлак, песок, клинкер, зола, кремнезем, зола углей					
	казахстанских месторождений) (494)					

Источник загрязнения: 6025, Неорганизованный выброс Источник выделения: 6025 01, Насос подачи ГСМ к дизелям

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости:

Наименование аппаратуры или средства перекачки: Насос центробежный с одним торцевым уплотнением вала

Удельный выброс, кг/час (Прил.Б2), Q = 0.04

Общее количество аппаратуры или средств перекачки, шт., NI = 1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI = 1

Время работы одной единицы оборудования, час/год, T = 1847

Максимальный из разовых выброс, г/с (6.2), $G = Q \cdot NN1 / 3.6 = 0.04 \cdot 1 / 3.6 = 0.01111$

Валовый выброс, т/год (6.3), $M = (Q \cdot N1 \cdot T) / 1000 = (0.04 \cdot 1 \cdot 1847) / 1000 = 0.0739$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс (Прил.14[3]), *CI* = 99.72

Валовый выброс, т/год (5.2.5 [3]), $M = CI \cdot M / 100 = 99.72 \cdot 0.0739 / 100 = 0.07369308$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $G_{-} = CI \cdot G / 100 = 99.72 \cdot 0.01111 / 100 = 0.011078892$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс (Прил.14[3]), CI = 0.28

Валовый выброс, т/год (5.2.5 [3]), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.0739 / 100 = 0.00020692$

Максимальный из разовых выброс, г/с (5.2.4 [3]), $_{\mathbf{G}} = \mathbf{CI} \cdot \mathbf{G} / 100 = \mathbf{0.28} \cdot \mathbf{0.01111} / 100 = \mathbf{0.000031108}$

Итоговая таблица:

	Итого выбросы по веществам при ликвидации на 19 скв.					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год			
0333	Сероводород (Дигидросульфид) (518)	0.000031108	0.00020692			
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.011078892	0.07369308			
	предельные С12-С19 (в пересчете на С);					
	Растворитель РПК-265П) (10)					

Источник загрязнения: 6026, Неорганизованный выброс

Источник выделения: 6026 01, Пересыпка инертных материалов

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.9.3. Расчет выбросов вредных веществ неорганизованными источниками

Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Щебенка

Влажность материала в диапазоне: 0.5 - 1.0 %

Коэфф., учитывающий влажность материала (табл.9.1), K0 = 1.5

Скорость ветра в диапазоне: 2.0 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость ветра (табл.9.2), KI = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности узла (табл. 9.4), K4 = 1

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала (табл.9.5), K5 = 0.4

Удельное выделение твердых частиц с тонны материала, г/т, Q = 80

Эффективность применяемых средств пылеподавления (определяется

экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 30

Максимальное количество отгружаемого (перегружаемого) материала, т/час, MH = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Количество твердых частиц, выделяющихся при погрузочно-разгрузочных работах:

Валовый выброс, т/год (9.24), $_M_ = K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^{-6} = 1.5 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 80 \cdot 30 \cdot (1-0) \cdot 10^{-6} = 0.001728$

Максимальный из разовых выброс, г/с (9.25), $_{G}$ = $K0 \cdot K1 \cdot K4 \cdot K5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 80 \cdot 0.02 \cdot (1-0) / 3600 = 0.00032$

Итоговая таблица выбросов

Итого выбросы по веществам при ликвидации на 19 скв.					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
2908	Пыль неорганическая, содержащая двуокись кремния в	0.00032	0.001728		
	%: 70-20 (шамот, цемент, пыль цементного				
	производства - глина, глинистый сланец, доменный				
	шлак, песок, клинкер, зола, кремнезем, зола углей				
	казахстанских месторождений) (494)				

Источник загрязнения N 6027 Неорганизованный выброс Источник выделения N 001 01, Покрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.00018

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.18

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00018 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0000405$ Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.18 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.01125$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00018 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0000405$ Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.18 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.01125$

Итого:

	Итого выбросы по веществам при ликвидации на 19 скв.					
Код	Наименование ЗВ Выброс г/с Выброс т/год					
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.01125	0.0000405			
2752	Уайт-спирит (1294*)	0.01125	0.0000405			

Источник загрязнения N 6028 Неорганизованный выброс Источник выделения N 001 01, Пыление при работе автогрейдера

К1	Доля пылевой фракции в материале	0,05
К2	Доля пыли, переходящей в аэрозоль	0,03
КЗ	Коэффициент, учитывающий среднюю скорость ветра	2
К3	Коэффициент, учитывающий среднюю скорость ветра	1,2

К4	Коэффициент, учитывающий местные условия	0,5
К5	Коэффициент, учитывающий влажность материала	0,1
К7	Коэффициент, учитывающий крупность материала	0,6
G7	Размер куска материала, мм	1
Gв	Высота падения материала, м	0,5
G	Количество перерабатываемой автогрейдера породы, т/час	4
R	Время работы автогрейдера, ч	48
В	Коэффициент, учитывающий высоту падения материала	0,4

Максимальный разовый выброс, г/с:

Q=K1*K2*K3*K4*K5*K7*B*G*1000000/3600

Q= 0,05 * 0,03 * 2 * 0,5 * 0,1 * 0,6 * 0,4 * 4,125 * 10 6 / 3600 Валовый выброс, т/год

M=K1*K2*K3*K4*K5*K7*B*G*RT

M = 0.05 * 0.03 * 2 * 0.5 * 0.1 * 0.6 * 0.4 * 4.125 * 48

	Итого выбросы по веществам при ликвидации на 19 скв.				
G г/с	2908 Пыль неорганическая: 70-20% двуокиси	0,0413			
М т/год	2908 Пыль неорганическая: 70-20% двуокиси	0,0043			

Источник загрязнения N 6029 Неорганизованный выброс Источник выделения N 001 01, Пыление при работе бульдозера

K1	Доля пылевой фракции в материале	0,05
К2	Доля пыли, переходящей в аэрозоль	0,03
К3	Коэффициент, учитывающий среднюю скорость ветра	2
КЗ	Коэффициент, учитывающий среднюю скорость ветра	1,2
К4	Коэффициент, учитывающий местные условия	0,5
К5	Коэффициент, учитывающий влажность материала	0,1
К7	Коэффициент, учитывающий крупность материала	0,6
G7	Размер куска материала, мм	1
Gв	Высота падения материала, м	0,5
G	Количество перерабатываемой бульдозером породы, т/час	9,9
R	Время работы бульдозера, ч	120
В	Коэффициент, учитывающий высоту падения материала	0,4

Максимальный разовый выброс, г/с:

Q=K1*K2*K3*K4*K5*K7*B*G*1000000/3600

Q= 0,05 * 0,03 * 2 * 0,5 * 0,1 * 0,6 * 0,4 * 9,9 * 10 6 / 3600 Валовый выброс, т/год

M=K1*K2*K3*K4*K5*K7*B*G*RT

M = 0.05 * 0.03 * 2 * 0.5 * 0.1 * 0.6 * 0.4 * 9.9 * 120

Итого выбросы по веществам при ликвидации на 19 скв.				
G г/с	2908 Пыль неорганическая: 70-20% двуокиси	0,0990		
М т/год	2908 Пыль неорганическая: 70-20% двуокиси	0,0257		

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 №221-п

Источник загрязнения N 6030 Неорганизованный выброс Источник выделения N 001 01, Пыление при работе экскаватора

P1	Доля пылевой фракции в материале	0,05
P2	Доля пыли, переходящей в аэрозоль	0,03
P3	Коэффициент, учитывающий среднюю скорость ветра	2
P3	Коэффициент, учитывающий среднюю скорость ветра	1,2
P4	Коэффициент, учитывающий влажность материала	0,1
P5	Коэффициент, учитывающий крупность материала	0,6
P6	Коэффициент, учитывающий местные условия	0,1
Gв	Высота падения материала, м	0,5
B1	Коэффициент, учитывающий высоту падения материала	0,4
Rт	Время работы экскаватор	120
G	Количество перерабартываемой экскаватором породы т/час	9,9

Максимальный разовый выброс, г/с:

O=P1*P2*P3*P4*P5*P6*B1*G*1000000/3600

$$Q = 0.05 * 0.03 * 1.2 * 0.1 * 0.6 * 0.1 * 0.4 * 9.9 * 10 6 / 3600 Валовый выброс, т/год$$

M=P1*P2*P3*P4*P5*P6*B1*G*RT

$$M = 0.05 * 0.03 * 1.2 * 0.1 * 0.6 * 0.1 * 0.4 * 9.9 * 120$$

Итого выбросы по веществам при ликвидации на 19 скв.				
Gr/c	2908 Пыль неорганическая: 70-20% двуокиси	0,020		
М т/год	2908 Пыль неорганическая: 70-20% двуокиси	0,00513		

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 №221-п

Источник загрязнения N 6031, Пылящая поверхность Источник выделения N 001, Разработка грунта экскаваторами

Список литературы: 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п; 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)

Вид работ: планировочные работы

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4), К5 = 0.01

Доля пылевой фракции в материале (табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль (табл.1), P2 = 0.02

Скорость ветра в зоне работы экскаватора (средняя), M/c, G3SR = 3.8

Коэфф.учитывающий среднюю скорость ветра(табл.2), P3SR = 1.2

Скорость ветра в зоне работы экскаватора (максимальная), м/с , G3 = 4.8

Коэфф. учитывающий максимальную скорость ветра(табл.2), Р3 = 1.2

Коэффициент, учитывающий местные условия(табл.3), Р6 = 1

Коэффициент, учитывающий крупность материала(табл.5), P5 = 0.6

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B=0.6

Количество перерабатываемой экскаватором породы, т/час, G =63.6

Максимальный разовый выброс, г/с (8) , _G_ = P1 * P2 * P3 * K5 * P5 * P6 * B * G * 10 ^ 6 / 3600 = 0.05 * 0.02 * 1.2 * 0.01 * 0.6 * 1 * 0.6 * 63.6 * 10 ^ 6 / 3600 = 0.07632

Время работы экскаватора в год, часов , RT = 17.61

Валовый выброс, т/пер. , _M_ = P1 * P2 * P3SR * K5 * P5 * P6 * B * G * RT = 0.05 * 0.02 * 1.2 * 0.01 * 0.6 * 1 * 0.6 * 63.6 * 17.61 = <math>0.00484

Итого выбросов:

	Итого выбросы по веществам при ликвидации на 19 скв.						
Код	Примесь	Выброс г/с	Выброс т/пер.				
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот,	0.07632	0.00484				
	цемент, пыль цементного производства - глина, глинистый						
	сланец, доменный шлак, песок, клинкер, зола, кремнезем,						
	зола углей казахстанских месторождений) (503)						

Источник загрязнения N 6032, Пылящая поверхность Источник выделения N 001, Выемка грунта бульдозером

№ п.п.	Наименование	Обозначение	Ед.изм.	Количество		
1	Исходные данные:					
1.1.	Время работы	t	час/пер	20		
1.2.	Количество перерабатываемого грунта	Gп	т/пер	11200		
1.3.	Количество перерабатываемого грунта (планировка)	G	т/час	24,8		
2	Расчет:					
2.1.	Объем пылевыделения, где					
	P1*P2*P3*P4*P5*P6*G*106					
	Q =	Q	г/сек	0,04133 1скв.		
	0,0000000000003600			0,45463 11скв.		
	Весовая доля пылевой фракции в материале	P1	(табл.1)	0,05		
	Доля пыли переходящая в аэрозоль	P2	(табл.1)	0,02		
	Коэффициент, учитывающий метеоусловий	P3	(табл.2)	1,2		
	Коэффициент, учитывающий влажность материала	P4	(табл.4)	0,01		
	Коэффициент, учитывающий местные условия	P5	(табл.5)	1,0		
	Коэффициент, учитывающий крупность материала	P6	(табл.3)	0,5		
2.2.	Общее пылевыделения*	_				
	M = Q*t*3600/106	M	т/пер	0,06731 1 скв.		
Прилож	Приложениям 3, 11, 13 методик утвержденных приказом МООС РК от 18 апреля 2008 года№100-п.					

17.ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ КОЛИЧЕСТВЕННЫХ И КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЭМИССИЙ, ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ, ВЫБОРА ОПЕРАЦИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ

Рекомендации по управлению отходами

В настоящее время в компании недропользователя разработана политика, в которой определена необходимость планирования сбора, хранения, переработки, размещения и утилизации отходов, разработка единого плана управления отходов на всех этапах проведения работ, проводимых компанией. Согласно этому производится регулярная инвентаризация, учет и контроль над временным хранением и состоянием всех образующихся видов отходов производства и потребления.

Принципы единой системы управления заключаются в следующем:

- 1. На всех производственных объектах ведется строгий учет образующихся отходов. Специалистами отдела ОТ и ОС предприятия контролируются все процессы в рамках жизненного цикла отходов, и помогает установить оптимальные пути утилизации отходов, согласно требованиям законодательства РК и международных природоохранных стандартов.
- 2. Сбор и/или накопление отходов на производственных объектах осуществляется согласно нормативным документам Республики Казахстан. Для сбора отходов имеются специализировано оборудованные площадки, и имеются необходимое количество контейнеров. Необходимо соблюдать требования п.2 ст.320 Экологического кодекса РК, места накопления отходов предназначены для временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению.
 - 3. Все образующиеся отходы проходят идентификацию и паспортизацию.
 - 4. Осуществляется упаковка и маркировка отходов.
- 5. Транспортирование отходов осуществляет специализированные лицензированные организации по договору.
- 6. Складирование и временное хранение, образующихся отходов осуществляется в специализированные контейнеры и специально оборудованные площадки.
- 7. По мере возможности производится вторичное использование отходов, либо их передачи физическим и юридическим лицам, заинтересованным в их использовании;
- 8. Отходы передаются сторонним организациям по договору для размещения, утилизации, обезвреживания или переработки.
- В целях оптимизации управления отходами организовано заблаговременное заключение договоров на вывоз для дальнейшей переработки/использования/ утилизации отходов производства и потребления со специализированными предприятиями, что также снижает или полностью исключает загрязнение компонентов окружающей среды.

Отработанные масла используются повторно в производстве для смазки деталей.

Отходы бурения передаются сторонним специализированным организациям согласно договору.

Промасленная ветошь передается специализированной организации согласно договору.

ТБО вывозятся на полигон ТБО по договору со специализированной организацией.

Вещества, содержащиеся в отходах, временно складируемых на территории предприятия, не могут мигрировать в грунтовые воды и почвы, т.к. обеспечивается их соответствующее хранение. В связи с этим проведение инструментальных замеров в местах временного складирования отходов не планируется.

<u>Передача отходов должна осущетсвляться специализированной организацией, имеющей лицензию по переработке, обезвреживанию, утилизации и (или) уничтожению опасных отходов согласно п.1 статьи 336 на основании договора.</u>

Таблица 17.1 Существующая система передачи отходов

№ п/п	Наименование отхода	Куда передаются отходы		
4	Отработанные масла	Передаются сторонней организации на		
4		основании договора		
5	Промасленная ветошь	Передаются сторонней организации на		
		основании договора		
6	ТБО	Вывоз на полигон ТБО		
7	Металлолом	Передаются сторонней организации на		
		основании договора		
8	Огарки сварочных электродов	Передаются сторонней организации на		
		основании договора		
9	Отработанные аккумуляторы	Передаются сторонней организации на		
		основании договора		

Основными результатами работ по управлению отходами является их полная утилизация Подрядным Компаниям.

18. ОБОСНОВАНИЕ ПРЕДЕЛЬНЫХ ОБЪЕМОВ ЗАХОРОНЕНИЯ ОТХОДОВ ПО ИХ ВИДАМ.

Захоронение не планируется.

19. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ возникновения АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ явлений. ХАРАКТЕРНЫХ СООТВЕТСТВЕННО ДЛЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ И ПРЕДПОЛАГАЕМОГО **MECTA** $\mathbf{E}\mathbf{E}$ ОСУЩЕСТВЛЕНИЯ, ОПИСАНИЕ **ВРЕДНЫХ ВОЗЛЕЙСТВИЙ** возможных СУЩЕСТВЕННЫХ ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, С УЧЕТОМ ВОЗМОЖНОСТИ ПРОВЕДЕНИЯ МЕРОПРИЯТИЙ ПО ИХ ПРЕДОТВРАЩЕНИЮ И ЛИКВИДАЦИИ

Экологический риск — вероятность наступления события, имеющего неблагоприятные последствия для природной среды и вызванного негативным воздействием хозяйственной и иной деятельности, чрезвычайными ситуациями природного и техногенного характера. Под экологическим риском понимают также вероятностную меру опасности причинения вреда окружающей природной среде в виде возможных потерь за определенное время.

Оценки воздействия на окружающую среду подобных сооружений ориентированы на принятие быстрых управляющих решений на больших территориях в течение значительного срока функционирования, во время которого воздействие сооружения на окружающую среду становится значительным.

Исследования и оценки риска должны включать:

- выявление потенциально опасных событий, возможных на объекте и его составных частях;
 - оценку вероятности осуществления этих событий;
 - оценку последствий (ущерба) при реализации таких событий.

Величина риска определяется как произведение величины ущерба I на вероятность W события i, вызывающего этот ущерб:

$$R = I W_i$$

В программе работ в обязательном порядке необходимо учитывать возможность возникновения различного рода катастроф и предусматривать мероприятия по снижению

уязвимости социально-экономических систем, производственных комплексов и объектов от катастроф и их последствий.

Главная задача в соблюдении безопасности работ заключается в проведении операции таким образом, чтобы заранее предупредить риск с определением критических ошибок, снижением вероятности ошибок при проектировании работ.

При проведении буровых работ могут возникнуть различные осложнения и аварии. Борьба с ними требует затрат материальных и трудовых ресурсов, ведет к потере времени, что снижает производительность, повышает стоимость работ, вызывает увеличение продолжительности простоев и ремонтных работ. Поэтому значение причин аварий, мероприятий по их предупреждению, быстрая ликвидация возникших осложнений приобретают большое практическое значение.

Оценка вероятности возникновения аварийных ситуаций используется для определения или оценки следующих явлений:

- потенциальные события или опасности, которые могут привести к аварийной ситуации, а также к вероятным катастрофическим воздействиям на окружающую среду при осуществлении конкретного проекта;
 - вероятность и возможность наступления такого события;
- потенциальная величина или масштаб экологических последствий, которые могут быть причинены в случае наступления такого события.

Процедура оценки риска состоит из четырех главных фаз: превентивной, кризисной, посткризисной и ликвидационной.

Превентивная фаза включает в себя промышленный контроль и экологический мониторинг, прогноз природных и техногенных катастроф, выявление уязвимых и незащищенных зон, разработку аварийных регламентов, ГИС, подготовку сил и средств, тренаж персонала.

Кризисная фаза включает в себя систему предупреждения, оперативный контроль, первую помощь, эвакуацию.

Постиризисная фаза — восстановление жизнеобеспечивающей инфраструктуры, предотвращение рецидива.

Ликвидационная фаза – восстановление биоценозов.

Экономическими показателями ущерба являются утрата материальных ценностей, необходимость финансовых, порой значительных, затрат на восстановление потерянного и т.д. В число социальных показателей входят: заболеваемость, ухудшение здоровья людей, смертность, вынужденная миграция населения, связанная с необходимостью переселения групп людей, и т.п.

К экологическим показателям относятся: разрушение биоты, вредное, порой необратимое, воздействие на экосистемы, ухудшение качества окружающей среды, связанное с ее загрязнением, повышение вероятности возникновения специфических заболеваний, отчуждение земель, гибель лесов, озер, рек, морей и т. п.

Экологический риск связан не только с ухудшением состояния и качества окружающей среды и здоровья людей, но и с воздействием техногенной деятельности на эколого-экономические и природно-хозяйственные системы, изменением их свойств, нарушением связей и процессов, имеющих место в этих системах. В понятие «экологический риск» может быть вложен различный смысл. Вероятность аварии, имеющей экологические последствия; величина возможного ущерба для природной среды, здоровья населения или некоторая комбинация последствий.

Процедура оценки риска

Концепция риска включает в себя два элемента: оценку риска (Risk Assessment) и управление риском (Risk Management). Оценка риска — научный анализ генезиса и масштабов риска в конкретной ситуации, тогда как управление риском — анализ рисковой ситуации и разработка решения, направленного на его минимизацию.

Риск для здоровья человека, связанный с загрязнением окружающей среды, возникает при следующих необходимых и достаточных условиях:

- 1) существование источника риска (токсичного вещества в окружающей среде или продуктах питания, либо предприятия по выпуску продукции, содержащей такие вещества, либо технологического процесса и т.д.);
- 2) присутствие данного источника риска в определенной вредной для здоровья человека дозе или концентрации;
 - 3) подверженность человека воздействию упомянутой дозы токсичного вещества.

Перечисленные условия образуют в совокупности реальную угрозу или опасность для здоровья человека.

Оценка риска в общем виде подразумевает процесс идентификации, оценки и прогнозирования негативного воздействия на окружающую среду и/или здоровье и благосостояние людей в результате функционирования промышленных и иных производств и объектов, которые могут представлять опасность для населения и окружающей среды. Сегодня в нашей стране дальнейшее развитие методологии социальногигиенического мониторинга во многом связано с практическим внедрением концепции риска. В рамках нормативного подхода рассматривается оценка экологического риска, где рецептором (чувствительным звеном) является человек. Сравнительный анализ при такой оценке риска позволяет принять обоснованное решение о первоочередных мероприятиях по минимизации риска для здоровья людей от загрязнений объектов окружающей среды. При проведении оценок риска для здоровья населения общая схема оценки риска рис. 5.9.1, как правило, реализуется в упрощенном варианте, который выделен жирными линиями на рис. 5.9.1. В этом случае ограничиваются исследованием реального, не связанного с аварийными ситуациями, воздействия на окружающую среду источников опасности. Эта же упрощенная схема реализуется также в случае оценки риска для здоровья, связанного с существующим уровнем загрязнения окружающей среды различными химическими вешествами.

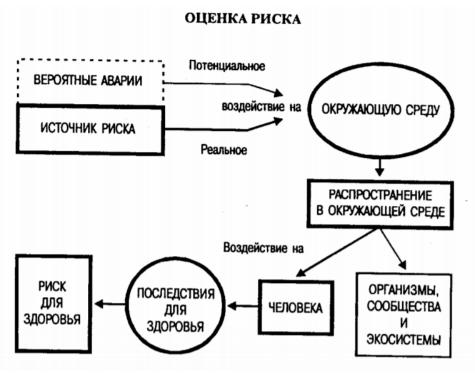


Рис 7.1 Оценка риска

Оценка риска — это использование доступной научной информации и научно обоснованных прогнозов для оценки опасности воздействия вредных факторов окружающей среды и условий на здоровье человека. При этом подчеркивается, что риск для здоровья человека, связанный с загрязнением окружающей среды, возникает при следующих необходимых и достаточных условиях:

- существование самого источника риска (токсичного вещества в объектах окружающей среды или продуктах питания; технологического процесса, предусматривающего использование вредных веществ и т.п.);
 - присутствие данного источника риска в определенной, вредной для человека дозе;
- подверженность населения воздействию упомянутой дозы токсичного вещества. Перечисленные условия образуют в совокупности реальную угрозу или опасность для здоровья человека.

Риск при нормальном функционировании промышленных объектов может быть обусловлен за счет выбросов или утечки вредных или опасных веществ, сбросов неочищенных стоков и др. в количествах, превышающих санитарно-гигиенические нормативы и оказывающих постоянное воздействие на здоровье населения и окружающую среду. Постоянные выбросы составляют:

- загрязнители воздуха выбросы из дымовых труб, выхлопных труб автотранспорта, выбросы летучих веществ из промышленной вентиляции, при сжигании различных материалов на открытом огне и т.д.;
- загрязнители воды сброс стоков в поверхностные водоемы, перелив из очистных прудов, неточечные источники, такие как ливневые стоки с городских дорог; загрязнение подземных вод вследствие выщелачивания почвы, разгрузки поверхностных водоемов, утечек из трубопроводов, сбросов из инжектирующих скважин.

Воздействие на здоровье работающего персонала мало, так как предельно-допустимые концентрации загрязняющих веществ в атмосфере ниже нормативных требований к рабочей зоне. Из анализа технологических проектных решений установлено, что уровень производства высокий и созданы условия для значительного облегчения труда и оздоровления производственной среды на рабочих местах. Воздействие на другие близлежащие жилые массивы в пределах допустимых концентраций.

Характер воздействия. Воздействие носит локальный характер. По длительности воздействия – временное при эксплуатации.

Уровень воздействия. Уровень воздействия характеризуется как минимальный.

Природоохранные мероприятия. Предусмотреть при следующих этапах разработки организаций системы управления безопасностью, охраной здоровья и окружающей среды.

Вывод: В целом воздействие работ при эксплуатации скважин на состояние здоровья населения может быть оценено, как **локальное**, временное.

Оценка риска аварийных ситуаций

Главная задача в соблюдении безопасности работ заключается в проведении операции таким образом, чтобы заранее предупредить риск с определением критических ошибок.

Вероятности возникновения аварийных ситуаций используется для определения следующих явлений:

- потенциальные события или опасности, которые могут привести к аварийной ситуации, а также к вероятным катастрофическим воздействиям на окружающую среду при осуществлении конкретного проекта;
 - вероятность и возможность наступления такого события;
- потенциальная величина или масштаб экологических последствий, которые могут быть причинены в случае наступления такого события.

Обзор возможных аварийных ситуаций

Возможными причинами аварийных ситуаций в общем случае могут быть:

- случайные технические отказы элементов;
- техногенные аварии, природные катастрофы и стихийные бедствия в районе дислокации объекта;
 - неумышленные ошибочные действия обслуживающего персонала;
 - преднамеренные злоумышленные действия и воздействия средств поражения.

Природные факторы воздействия

Под природными факторами понимается разрушительное явление, вызванное геофизическими причинами, которые не контролируются человеком. Иными словами, при возникновении чрезвычайной природной ситуации возникает опасность саморазрушения окружающей среды.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении о риске, связанном с природными факторами.

К природным факторам относятся:

- землетрясения;
- ураганные ветры;
- повышенные атмосферные осадки.

Сейсмическая активность. Согласно данным сейсмического микрорайонирования территория буровых работ не входит в зону риска по сейсмоактивности.

Характер воздействия: одномоментный. Вероятность возникновения землетрясения с силой 7-9 баллов, которое может привести к значительным разрушениям, пренебрежимо мала.

Неблагоприятные метеоусловия. Исследуемая территория находится в зоне умеренно жарких, резко засушливых пустынных степей и имеет резкоконтинентальный климат. Многолетняя аридизация климата способствовала постепенному высыханию водных потоков и озер и активному развитию эоловых процессов. Континентальность и аридность климата находят выражение в резких амплитудах суточных, среднемесячных и среднегодовых t° воздуха и в малых количествах выпадающих здесь осадков. На формирование рельефа существенное влияние оказывают ветры.

Равнинность территории создает благоприятные условия для интенсивной ветровой деятельности. Зимой, господствующие ветра западного направления вызывают бураны. Летом преобладают ветра северо-восточных направлений, способствующих быстрому испарению влаги и иссушению верхнего горизонта почвы.

В целом территория характеризуется повторяемостью приземных и приподнятых температурных инверсий, способствующих концентрации загрязнения в приземном слое, в пределах 40-45% за год. Наибольшая повторяемость инверсий отмечается в декабре — феврале (до 50-70% ежемесячно). Летом инверсии температуры быстро разрушаются, повторяемость их 30-35%. Как показывает анализ подобных ситуаций, причиной возникновения пожаров является не только природные факторы, но и неосторожное обращение персонала с огнем и нарушение правил техники безопасности. Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Антропогенные факторы

Под антропогенными факторами понимаются быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации.

К антропогенным факторам относятся факторы производственной среды и трудового процесса.

Трендовые показатели свидетельствуют: в то время как число природных катастроф при небольших колебаниях по годам в целом остается неизменным, техногенные аварии за последние пять лет резко умножились. Основной тенденцией формирования техногенной опасности является преобладание в них видов ситуаций, связанных непосредственно с проводимой деятельностью.

Возможные техногенные аварии при производстве буровых работ можно разделить на следующие категории:

- аварийные ситуации с автотранспортной техникой;
- аварии и пожары на временных хранилищах горюче-смазочных материалов (ГСМ);
 - аварийные ситуации при проведении работ.

Аварийные ситуации с автотранспортной техникой

При проведении работ будет использоваться автотранспорт. Выезд транспорта в неисправном виде, или опрокидывание транспорта может привести к возникновению аварий и как следствие к утечке топлива. Утечка топлива может привести к загрязнению почвенно-растительного покрова, поверхностных и подземных вод горюче смазочными материалами.

Аварийные ситуации при проведении работ

При проведении работ возможны следующие аварийные ситуации, связанные с проведением работ:

Воздействие машин и оборудования. При проведении буровых работ могут возникнуть ситуации, приводящие к травмам людей в результате столкновения с движущимися частями и элементами оборудования и причиняемыми неисправными шкивами и лопнувшими тросами, захват одежды шестернями, сверлами. Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций мала.

Воздействие электрического тока. Поражения током в результате прикосновения к проводникам, находящемся под напряжением, неправильного обращения с электроинструментами, прикосновения к воздушным линиям электропередачи, при работе во время грозы. Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительна.

Человеческий фактор. Анализ аварийности на крупных предприятиях показал, что в 39% случаев основные причины возникновения аварийных ситуаций обусловлены недостаточной обученностью операторов, их эмоциональной неустойчивостью, недостаточным уровнем оперативного мышления, дефектами оперативной памяти, проявлением растерянности в чрезвычайной ситуации, а также прямым нарушением должностных инструкций вследствие безответственности и халатного отношения к своим должностным обязанностям. В силу принятых решений по охране труда и техники безопасности, вероятность возникновения выше приведенной ситуации пренебрежимо мала.

Анализ вероятности возникновения аварий

Вероятность возникновения аварий оценивается по результатам анализа причин аварийности на конкретных объектах-аналогах примерно равной мощности. Для этого на объекте-аналоге проводят отбор и описание сценариев выбранных аварийных ситуаций, имевших экологические последствия, определяют размеры зон и характер их воздействия. Аварийность на объектах-аналогах следует оценивать по показателям риска их неблагоприятного воздействия на ОС, объекты инфраструктуры и население. При этом используют статистические данные по аварийности объекта-аналога за последние 5 лет и показатели экологического ущерба от зарегистрированных аварий.

При анализе аварийности следует указывать наименование объекта-аналога, название производства или технологического процесса, причину возникновения аварии,

виды и количество загрязняющих или токсичных веществ, попадающих в ОС в результате аварии, другие виды нарушений, а также последствия аварий и проводившиеся мероприятия по их ликвидации.

ПРЕДУСМАТРИВАЕМЫХ 20. ОПИСАНИЕ ЛЛЯ ПЕРИОДОВ СТРОИТЕЛЬСТВА ЭКСПЛУАТАЦИИ ОБЪЕКТА **MEP** ПО ПРЕДОТВРАЩЕНИЮ, СОКРАЩЕНИЮ, СМЯГЧЕНИЮ выявленных СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НАМЕЧАЕМОЙ **ЛЕЯТЕЛЬНОСТИ** НА ОКРУЖАЮЩУЮ СРЕДУ, В ТОМ ЧИСЛЕ ПРЕДЛАГАЕМЫХ МЕРОПРИЯТИЙ ПО УПРАВЛЕНИЮ ОТХОДАМИ, А ТАКЖЕ ПРИ НАЛИЧИИ НЕОПРЕДЕЛЕННОСТИ воздействий ОЦЕНКЕ возможных СУЩЕСТВЕННЫХ ПРЕДЛАГАЕМЫХ МЕР ПО МОНИТОРИНГУ ВОЗДЕЙСТВИЙ (ВКЛЮЧАЯ ПРОВЕДЕНИЯ **НЕОБХОДИМОСТЬ** ПОСЛЕПРОЕКТНОГО **АНАЛИЗА** ФАКТИЧЕСКИХ ВОЗДЕЙСТВИЙ В ХОДЕ РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ В СРАВНЕНИИ С ИНФОРМАЦИЕЙ, ПРИВЕДЕННОЙ В ОТЧЕТЕ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ).

1. Охрана атмосферного воздуха:

1) проведение работ по пылеподавлению на объектах недропользования и строительных площадках, в том числе на внутрипромысловых дорогах;

2. Охрана водных объектов:

1) проведение мероприятий, направленных на предотвращение загрязнения подземных вод вследствие межпластовых перетоков нефти, воды и газа, при освоении и последующей эксплуатации скважин, а также утилизации отходов производства и сточных вод.

3. Охрана от воздействия на прибрежные и водные экосистемы:

Мероприятия в рамках проекта разработки не предусмотрены.

4. Охрана земель:

1) рекультивация деградированных территорий, нарушенных и загрязненных в результате антропогенной деятельности земель: восстановление, воспроизводство и повышение плодородия почв и других полезных свойств земли, своевременное вовлечение ее в хозяйственный оборот, снятие, сохранение и использование плодородного слоя почвы при проведении работ, связанных с нарушением земель;

5. Охрана недр:

1) внедрение мероприятий по предотвращению загрязнения недр при проведении работ по недропользованию;

6. Охрана животного и растительного мира:

- 1) озеленение территорий административно-территориальных единиц, увеличение площадей зеленых насаждений, посадок на территориях предприятий и освобождаемых территориях, землях, подверженных опустыниванию и другим неблагоприятным экологическим факторам;
- 2) Предусмотреть озеленение санитарно-защитной зоны не менее указанного процента площади для соответствующего класса опасности, с обязательной организацией полосы древесно-кустарниковых насаждений со стороны жилой застройки, при невозможности выполнения указанного удельного веса озеленения площади СЗЗ (при плотной застройке объектами, а также при расположении объекта на удалении от населенных пунктов, в пустынной и полупустынной местности), допускается озеленение свободных от застройки территорий и территории ближайших населенных пунктов, по согласованию с местными исполнительными органами, с обязательным обоснованием в проекте СЗЗ.

7. Обращение с отходами:

1) проведение мероприятий по ликвидации бесхозяйных отходов и исторических загрязнений, недопущению в дальнейшем их возникновения, своевременному проведению

рекультивации земель, нарушенных в результате загрязнения производственными, твердыми бытовыми и другими отходами;

8. Радиационная, биологическая и химическая безопасность:

- 1) проведение радиоэкологических обследований территорий с целью выявления радиоактивного загрязнения объектов окружающей среды;
- 9. Внедрение систем управления и наилучших безопасных технологий: Мероприятия в рамках проекта разработкине предусмотрены.

10. Научно-исследовательские, изыскательские и другие разработки:

1) проведение экологических исследований для определения фонового состояния окружающей среды, выявление возможного негативного воздействия промышленной деятельности на экосистемы и разработка программ и планов мероприятий по снижению загрязнения окружающей среды;

Мероприятия по снижению экологического риска

Оценка риска аварии необходима постоянно, так как ее возникновение зависит не только от проектных параметров, но и от текущей ситуации, сочетание управленческих решений, параметров процесса, состояния оборудования и степени подготовленности персонала, внешних условий. Предупреждение аварии возможно при постоянном контроле за процессом и прогнозировании риска.

Важную роль в обеспечении безопасности рабочего персонала и местного населения и охраны окружающей природной среды во время проведения строительстве на участке играет система правил, нормативов, инструкций и стандартов, соблюдение которых обязательно руководителями и всеми сотрудниками компании и подрядчиков. При проведении работ необходимо уделять внимание монтажу, проверке и техническому обслуживанию всех видов оборудования, требуемых в соответствии с правилами техники безопасности и охраны труда, обучение персонала и проведение практических занятий.

На ликвидацию аварий затрачивается много времени и средств. Значительно легче предупредить аварию, чем ее ликвидировать. Поэтому при производстве планируемых работ необходимо уделять первоочередное внимание предупреждению аварий, а именно:

- своевременный ремонт нефтепроводов, выкидных линий, сточных коллекторов, осевых коллекторов;
 - осуществление мер по гидроизоляции грунта под буровым оборудованием;
- химические реагенты и запасы буровых растворов должны храниться в металлических емкостях, материалы для бурения на бетонных площадках на специальных складах;
- отделение твердой фазы и шлама из бурового раствора и сточных вод при помощи центрифуги, нейтрализации токсичных шламов, других отходов и транспортировка их;
- регенерация бурового раствора на заводе приготовления, повторное использование сточных вод в бурении;
 - бурение эксплуатационных скважин буровыми установками на электроприводе;
 - сокращение валового выброса продукции скважин за счет;
- проведение рекультивации нарушенных земель, в том числе в соответствии с типовым проектом;
- обеспечение движения транспортных средств в соответствии с разработанной транспортной схемой.

Считаем, что принятые проектные решения достаточны для уменьшения вероятности возникновения аварийных ситуаций.

При соблюдении предусмотренных проектных решений при эксплуатации участка, а также при условии выполнения всех предложенных данным проектом природоохранных

мероприятий отрицательное влияние на компоненты окружающей средыпри реализации намечаемой деятельности исключается.

21. МЕРЫ ПО СОХРАНЕНИЮ И КОМПЕНСАЦИИ ПОТЕРИ БИОРАЗНООБРАЗИЯ

В целях сохранения биоразнообразия применяется следующая иерархия мер в порядке убывания их предпочтительности:

- 1) первоочередными являются меры по предотвращению негативного воздействия;
- 2) когда негативное воздействие на биоразнообразие невозможно предотвратить, должны быть приняты меры по его минимизации;
- 3) когда негативное воздействие на биоразнообразие невозможно предотвратить или свести к минимуму, должны быть приняты меры по смягчению его последствий;
- 4) в той части, в которой негативные воздействия на биоразнообразие не были предупреждены, сведены к минимуму или смягчены, должны быть приняты меры по компенсации потери биоразнообразия.

Под мерами по предотвращению негативного воздействия на биоразнообразие понимаются меры, направленные на то, чтобы с самого раннего этапа планирования деятельности и в течение всего периода ее осуществления избегать любые воздействия на биоразнообразие.

Под мерами по минимизации негативного воздействия на биоразнообразие понимаются меры по сокращению продолжительности, интенсивности и (или) уровня воздействий (прямых и косвенных), которые не были предотвращены.

Под мерами по смягчению последствий негативного воздействия на биоразнообразие понимаются меры, направленные на создание благоприятных условий для сохранения и восстановления биоразнообразия.

Принятые проектные решения по реализации намечаемой деятельности не приведут к потере биоразнообразия и исчезновению отдельных видов представителей флоры и фауны. Характер намечаемой производственной деятельности показывает, что:

- ✓ использование объектов растительного и живоного мира отсутствует;
- ✓ территория воздействия находится вне земель государственного лесного фонда и особо охраняемых природных территорий, а также не входит в водоохранную зону и полосу водных объектов:
- ✓ негативного воздействия на здоровье населения прилегающих территорий не ожидается;
- ✓ отсутствуют объекты историко-культурного наследия.

На основании вышеизложенного проведение оценки потери биоразнообразия и разработка мероприятий по их компенсации не требуется.

воздействий ОЦЕНКА возможных НЕОБРАТИМЫХ ОКРУЖАЮЩУЮ **НЕОБХОДИМОСТИ** СРЕДУ И ОБОСНОВАНИЕ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛЕКУЩИХ ТАКИЕ ВОЗДЕЙСТВИЯ, В ТОМ СРАВНИТЕЛЬНЫЙ **АНАЛИЗ** ПОТЕРЬ OT **НЕОБРАТИМЫХ** ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЩИХ ЭТИ ПОТЕРИ, В ЭКОЛОГИЧЕСКОМ, КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИАЛЬНОМ КОНТЕКСТАХ

В настоящем проекте проведен анализ возможных воздействий намечаемой деятельности на различные компоненты природной среды, определены их характеристики в эксплуатации проектируемого объекта.

Оценка воздействия на окружающую среду показывает, что участок не окажет критического или необратимого воздействия на окружающую среду территории, которая окажется под воздействием намечаемой деятельности.

Проектом установлено, что в период реализации намечаемой деятельности будут преобладать воздействия низкой значимости. Воздействия высокой значимости не выявлены. Обоснования необходимости выполнения операций, влекущих необратимые воздействия, не требуется.

Предпосылок к потере устойчивости экологических систем района проведения планируемых работ не установлено. Ожидаемые воздействия не приведут к необратимым изменениям экосистем.

В сравнительном анализе потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери, в экологическом, культурном, экономическом и социальном контекстах нет необходимости.

23. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ.

Согласно Экологическому кодексу республики Казахстан (Статья 67. Стадии оценки воздействия на окружающую среду) после проектный анализ фактических воздействий при реализации намечаемой деятельности является последней стадией проведения оценки воздействия на окружающую среду.

В соответствии со Статьей 78 ЭК РК после проектный анализ фактических воздействий при реализации намечаемой деятельности (далее – после проектный анализ) будет проведен составителем отчета о возможных воздействиях.

Цель проведения после проектного анализа - подтверждение соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Сроки проведения после проектного анализа — после проектный анализ будет начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Не позднее срока, указанного выше, составитель отчета о возможных воздействиях подготавливает и подписывает заключение по результатам после проектного анализа, в котором делается вывод о соответствии или несоответствии реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам оценки воздействия на окружающую среду. В случае выявления несоответствий в заключении по результатам после проектного анализа приводится подробное описание таких несоответствий.

Составитель направляет подписанное заключение по результатам после проектного анализа оператору соответствующего объекта и в уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты подписания заключения по результатам после проектного анализа.

Уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты получения заключения по результатам после проектного анализа размещает его на официальном интернет ресурсе.

Порядок проведения после проектного анализа и форма заключения по результатам после проектного анализа определяются и утверждаются уполномоченным органом в области охраны окружающей среды.

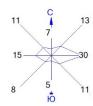
Получение уполномоченным органом в области охраны окружающей среды заключения по результатам после проектного анализа является основанием для проведения профилактического контроля без посещения субъекта (объекта) контроля.

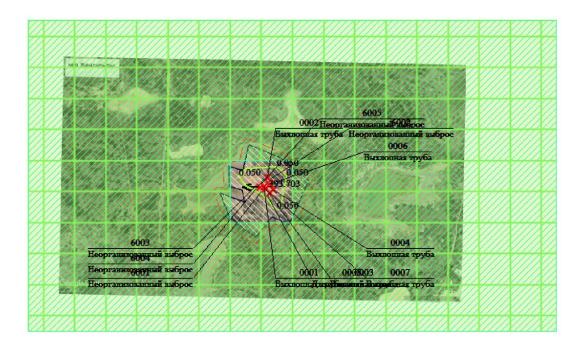
24. СПОСОБЫ И МЕРЫ ВОССТАНОВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА СЛУЧАИ ПРЕКРАЩЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ОПРЕДЕЛЕННЫЕ НА НАЧАЛЬНОЙ СТАДИИ ЕЕ ОСУЩЕСТВЛЕНИЯ.

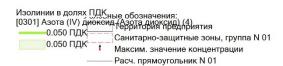
После прекращения намечаемой деятельности будет проведена ликвидация участка согласно действующим законам РК. Также предусмотрена рекультивация нарушенных земель.

25. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИИ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ.

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. Водный кодекс Республики Казахстан от 9 июля 2003 года, № 481-II ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 3. Лесной Кодекс Республики Казахстан от 8 июля 2003 года, № 477-II ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 4. Земельный Кодекс Республики Казахстан от 20 июня 2003 года, № 442-II ЗРК (с изменениями и дополнениями по состоянию на 06.07.2021 г.).
- 5. Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями от 01.07.2021 г.);
- 6. Кодекс Республики Казахстан от 07 июля 2020 № 360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 24.06.2021 г.);
- 7. Закон Республики Казахстан «Об особо охраняемых природных территориях» от 7 июля 2006 года № 175- III ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 8. Закон Республики Казахстан от 26 декабря 2019 года № 288-VI «Об охране и использовании объектов историко-культурного наследия».
- 9. Закон Республики Казахстан «Об охране, воспроизводстве и использовании животного мира» от 9 июля 2004 года № 593-II, (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 10. Закон Республики Казахстан от 23 апреля 1998 года № 219-I «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 25.02.2021 г.).
- 11. Закон Республики Казахстан от 16 июля 2001 года № 242-II «Об архитектурной, градостроительной и строительной деятельности в Республике Казахстан» (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 12. Приказ Министра энергетики Республики Казахстан от 15 июня 2018 года № 239 «Об утверждении Единых правил по рациональному и комплексному использованию недр» (c изменениями и дополнениями от 20.08.2021 c.).
- 13. Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучения (ОСП 72/87);
- 14. Санитарные правила СП 2.6.6.1168-02 «Санитарные правила обращения с радиоактивными отходами (СПОРО-2002)»;
- 15. Приказ Министра здравохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71. «Об утверждении гигиенических нормативов «Санитарноэпидемиологические требования к обеспечению радиационной безопасности».
- 16. СН РК 1.02-03-2011 «Порядок разработки, согласования, утверждения и состав проектной документации на строительство» (с изменениями по состоянию на 09.07.2021 г.).

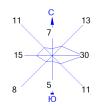

- 17. «Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду», утвержденную МООС РК приказом N270-о от $29.10.2010~\Gamma$.
- 18. Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий. Приложение №18 к приказу МООС РК №100-п от 18.04.2008 (приложение № 12 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- Ө).
 - 19. Технических характеристик применяемого оборудования.
- 20. Методического указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.
- 21. «Сборник методик по расчету выбросов вредных в атмосферу различными производствами». Алматы, 1996 г.
- 22. «Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)». РНД 211.2.02.03-2004. Астана, 2005.
- 23. «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004». Астана, 2005 г.
- 24. «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004». Астана, 2005.
- 25. «Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 №221-п».
- 26. РНД 03.1.0.3.01-96 «Порядок нормирования объемов образования и размещения отходов производства».
 - 27. Классификатор отходов от 6 августа 2021 года № 314.
- 28. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года № 286 «Об утверждении Правил проведения общественных слушаний».
- 29. Приказ Министра охраны окружающей среды Республики Казахстан от 8 апреля 2009 года № 68-п «Об утверждении Методики расчета платы за эмиссии в окружающую среду».
- 30. РД 52.04.52-85 «Регулирование выбросов при неблагоприятных метеорологических условиях».
- 31. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года №319 Об утверждении Правил выдачи экологических разрешений, представления декларации о воздействии на окружающую среду, а также форм бланков экологического разрешения на воздействие и порядка их заполнения.
- 32. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 25 июня 2021 года № 212 «Об утверждении Перечня загрязняющих веществ, эмиссии которых подлежат экологическому нормированию».
- 33. ГОСТ 17.5.3.04 83 Охрана природы. Земли. Общие требования к рекультивации земель.
- 34. ГОСТ 17.5.1.02 85 Охрана природы. Земли. Классификация нарушенных земель для рекультивации.__

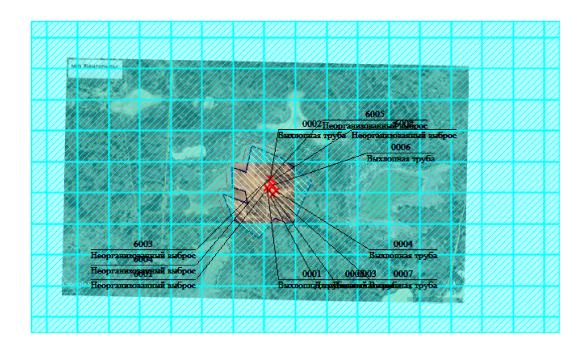

ПРИЛОЖЕНИЕ-1. Изолинии


Город: 003 Атырау

Объект : 0005 OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol" при смр Вар.№ 5 ПК ЭРА v3.0 Модель: МРК-2014

0301 Азота (IV) диоксид (Азота диоксид) (4)





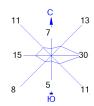
Макс концентрация 0.0633947 ПДК достигается в точке х= 9852 у= 10776 При опасном направлении 195° и опасной скорости ветра 2.38 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.

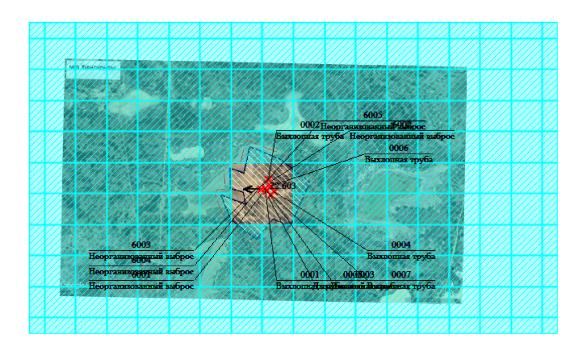
Город : 003 Атырау Объект : 0005 ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol" при смр Вар.№ 5

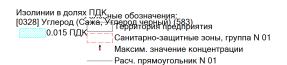
ПК ЭРА v3.0 Модель: MPK-2014 0304 Азот (II) оксид (Азота оксид) (6)

Изолинии в долях ПДК ные обозначения:
[0304] Азот (II) оксид (Азотарум биредприятия

0.027 ПДК Санитарно-защитные зоны, группа N 01 Расч. прямоугольник N 01

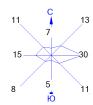


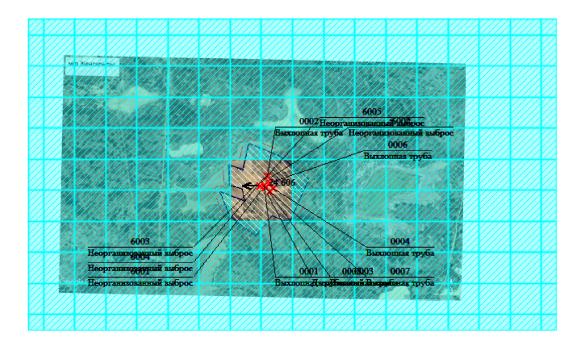

Макс концентрация 0.0051508 ПДК достигается в точке х= 9852 у= 10776 При опасном направлении 195° и опасной скорости ветра 2.38 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.


Город: 003 Атырау

Объект : 0005 OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol" при смр Вар.№ 5 ПК ЭРА v3.0 Модель: МРК-2014

0328 Углерод (Сажа, Углерод черный) (583)


Макс концентрация 0.0034655 ПДК достигается в точке х= 9852 у= 10776 При опасном направлении 260° и опасной скорости ветра 5.2 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.


Город: 003 Атырау

Объект : 0005 OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol" при смр Вар.№ 5

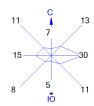
ПК ЭРА v3.0 Модель: MPK-2014

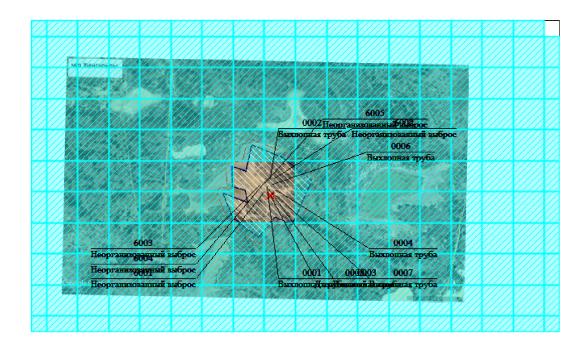
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Изолинии в долях ПДК ные обозначения:
[0330] Сера диоксид (Ангидрин серди стриистый газ, Сера (IV) оксид) (516)

0.021 ПДК —— Санитарно-защитные зоны, группа N 01

т Максим. значение концентрации


Расч. прямоугольник N 01

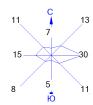


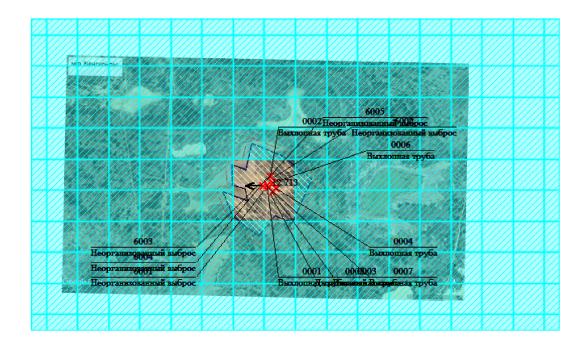
Макс концентрация 0.003962 ПДК достигается в точке x= 9852 y= 10776 При опасном направлении 195° и опасной скорости ветра 2.38 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.

Город : 003 Атырау Объект : 0005 ОВОС "Проект разраб. м/р Женгельды ТОО "M-Ali Petrol" при смр Вар.№ 5

ПК ЭРА v3.0 Модель: MPK-2014 0333 Сероводород (Дигидросульфид) (518)

Изолинии в долях ПДК ные обозначения: [0333] Сероводород (Дигидосульфид) (518) тирет применения предприятия 0.013 ПДК Санитарно-защитные зоны, группа N 01 Расч. прямоугольник N 01


Макс концентрация 8.02E-5 ПДК достигается в точке х= 9852 у= 5365 При опасном направлении 320° и опасной скорости ветра 2.5 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.

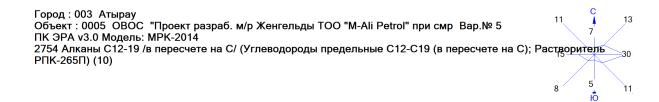

Город: 003 Атырау

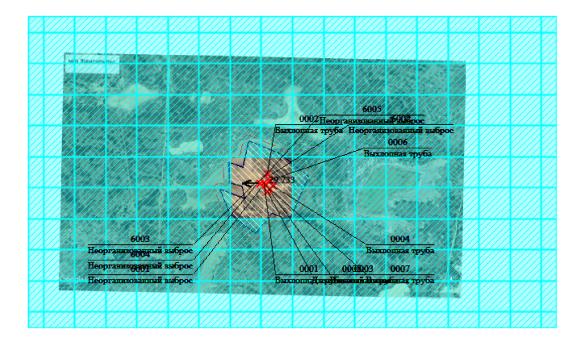
Объект : 0005 OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol" при смр Вар.№ 5

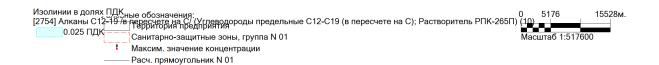
ПК ЭРА v3.0 Модель: MPK-2014

0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Изолинии в долях ПДК ные обозначения;
[0337] Углерод оксид (Окись углерода углеринай газ) (584)


Врингория предприятива зоны, группа N 01

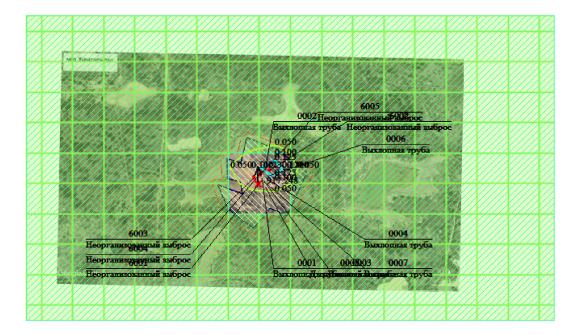

Максим. значение концентрации

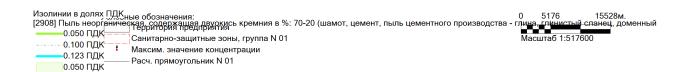

Расч. прямоугольник N 01

Макс концентрация 0.0020472 ПДК достигается в точке х= 9852 у= 10776 При опасном направлении 195° и опасной скорости ветра 2.38 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.

Макс концентрация 0.0048297 ПДК достигается в точке х= 9852 у= 10776 При опасном направлении 195° и опасной скорости ветра 2.34 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.

ф


13


Город: 003 Атырау

Объект : 0005 OBOC "Проект разраб. м/р Женгельды TOO "M-Ali Petrol" при смр Вар.№ 5

ПК ЭРА v3.0 Модель: MPK-2014

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Макс концентрация 0.1590723 ПДК достигается в точке x= 9852 y= 10776 При опасном направлении 253° и опасной скорости ветра 5.2 м/с на высоте 3 м Расчетный прямоугольник № 1, ширина 91987 м, высота 54110 м, шаг расчетной сетки 5411 м, количество расчетных точек 18*11 Расчёт на существующее положение.

ПРИЛОЖЕНИЕ 2. РАСЧЕТ РАССЕИВАНИЯ

```
1. Общие сведения.
   Расчет проведен на ПК "ЭРА" v3.0 фирмы НПП "Логос-Плюс", Новосибирск
  Расчет выполнен TOO "TIMAL CONSULTING GROUP"
 | Заключение экспертизы Министерства природных ресурсов и Росгидромета
 № 01-03436/23и выдано 21.04.2023
Рабочие файлы созданы по следующему запросу:
Расчёт на существующее положение.
Город = Атырау_
                     Базовый гол:2025
 Объект NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9 Режим предпр.: 1 - Основной
 Примесь = 0301 ( Азота (IV) диоксид (Азота диоксид) (4) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.2000000 ПДКс.с. = 0.0400000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2 Примесь = 0304 ( Азот (II) оксид (Азота оксид) (6) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.4000000 ПДКс.с. = 0.0600000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь = 0328 (Углерод (Сажа, Углерод черный) (583)) Коэф-т оседания = 3.0
ПДКм.р. = 0.1500000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл. опасн. = 3
 Примесь = 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
         Коэф-т оседания = 1.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь = 0333 ( Сероводород (Дигидросульфид) (518) ) Коэф-т оседания = 1.0 ПДКм.р. = 0.0080000 ПДКс.с. = 0.0000000 ПДКс. = 0.0000000 ПДКс. = 0.0000000 Сез учета фона. Кл. опасн. = 0.0000000
Примесь = 0337 ( Углерод оксид (Окись углерода, Угарный газ) (584) ) Коэф-т оседания = 1.0
ПДКм.р. = 5.0000000 ПДКс.с. = 3.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 4
 Примесь = 2754 ( Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на
           С); Растворитель РПК-265П) (10) )
ПДКм.р. = 1.0000000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 4
 Примесь = 2908 ( Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
           цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,
           зола, кремнезем, зола углей казахстанских месторождений) (494) )
           Коэф-т оселания = 3.0
ПДКм.р. = 0.3000000 ПДКс.с. = 0.1000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
 \Gammaр.суммации = 6007 ( 0301 + 0330 ) Коэфф. совместного воздействия = 1.00
Примесь - 0301 ( Азота (IV) диоксид (Азота диоксид) (4) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.2000000 ПДКс.с. = 0.0400000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Примесь - 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
          Коэф-т оседания = 1.0
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
 \Gammaр. суммации = 6037 ( 0333 + 1325 ) Коэфф. совместного воздействия = 1.00
Примесь - 0333 ( Сероводород (Дигидросульфид) (518) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0080000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
Примесь - 1325 ( Формальдегид (Метаналь) (609) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0500000 ПДКс.с. = 0.0100000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2 Гр.суммации = 6044 ( 0330+0333 ) Коэфф. совместного воздействия = 1.00
Примесь - 0330 ( Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
Коэф-т оседания = 1.0 
ПДКм.р. = 0.5000000 ПДКс.с. = 0.0500000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 3
Примесь - 0333 ( Сероводород (Дигидросульфид) (518) ) Коэф-т оседания = 1.0
ПДКм.р. = 0.0080000 ПДКс.с. = 0.0000000 ПДКсг = 0.0000000 без учета фона. Кл.опасн. = 2
2. Параметры города
 ПК ЭРА v3.0. Модель: MPK-2014
  Название: Атырау
Коэффициент A = 200
  Скорость ветра Uмр = 5.2 м/с
   Средняя скорость ветра = 1.5 м/с
   Температура летняя = 30.9 град.С
   Температура зимняя = -10.9 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
   Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
   Город :003 Атырау.
   Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
   Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4) ПДКмр для примеси 0301 = 0.2 мг/м3
   Коэффициент рельефа (КР): индивидуальный с источников
   Коэффициент оседания (F): индивидуальный с источников
   Коды источников уникальны в рамках всего предприятия
Код |Тип| Н | D | Wo | V1 | T | X1 | Y1 | X2 |
                                                              Y2 |Alf| F | КР |Ди| Выброс
          ~|rp.|~~~|~~~
~Ист.~|~
0001 T
                                                                          1.0 1.00 0 1.162667
          2.0 0.080 390.8 6.93 450.0 8154.39
                                                 10469.59
                                                                          1.0 1.00 0 2.644800
          2.0 0.10 240.0 4.04 450.0 7975.90 8516.03
                                                                         1.0 1.00 0 1.053867
1.0 1.00 0 0.3765333
```

1.0 1.00 0 0.7936000 1.0 1.00 0 0.0038911

```
4. Расчетные параметры См, Им, Хм
  ПК ЭРА v3.0. Модель: MPK-2014
   Город :003 Атырау.
Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
    Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
    Сезон :ЛЕТО (температура воздуха 30.9 град.С)
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
              ПДКмр для примеси 0301 = 0.2 \text{ мг/м3}
    Коды источников уникальны в рамках всего предприятия
                 Источники
                                                                Их расчетные параметры_
                                                       Um
Номер Код | М |Тип | Ст
                                                                        Xm
|-п/п-|-Ист.-|-
                                 ·|----|-[доли ПДК]-|--[м/c]--
                                                                         |----[M]----
   1 | 0001 |
                    1.162667| T |
                                          2.897863 | 36.24 | 129.9
   2 | 0002
                    2.644800| T | 1.514245 | 148.72 |
   3 | 0003
                    1.053867 T
                                          1.294611 | 73.52 |
                                                                         185.0 |
                   0.376533| T | 16.976927 | 1.67 | 0.793600| T | 0.960007 | 74.66 |
   4 | 0004
                                                                          27.3
   5 | 0006
                                                                         186.4
   6 | 0007 |
                   0.003891 T | 0.005564 | 63.17 | 171.5 |
Суммарный Mq= 6.035358 г/с
Сумма См по всем источникам = 23.649218 долей ПДК
Средневзвешенная опасная скорость ветра =
                                                                          22.23 м/с
5. Управляющие параметры расчета
  ПК ЭРА v3.0. Модель: МРК-2014
    Город :003 Атырау.
    Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
    Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
    Сезон :ЛЕТО (температура воздуха 30.9 град.С)
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4) ПДКмр для примеси 0301 = 0.2 мг/м3
    Расчет по прямоугольнику 001: 91987x54110 с шагом 5411
    Расчет по границе санзоны. Покрытие РП 001
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
    Средневзвешенная опасная скорость ветра Ucв= 22.23 м/с
6. Результаты расчета в виде таблицы.
  ПК ЭРА v3.0. Модель: МРК-2014
    Город :003 Атырау.
    Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
    Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
    Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
              ПДКмр для примеси 0301 = 0.2 \text{ мг/м3}
    Коды источников уникальны в рамках всего предприятия
    Расчет проводился на прямоугольнике 1
    с параметрами: координаты центра X= 12557, Y= 10776
                 размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
    Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
    Заказан расчет на высоте Z = 3 метров
                              Расшифровка_обозначений
           | Qc - суммарная концентрация [доли ПДК]
            Сс - суммарная концентрация [мг/м.куб]
            Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
           Ки - код источника для верхней строки Ви
   |-Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
у= 37831 : Y-строка 1 Cmax= 0.003 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4
Qc: 0.001: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000:
x= 53140: 58551:
Qc: 0.001: 0.001:
Cc: 0.000: 0.000:
```

у= 32420 : Y-строка 2 Cmax= 0.004 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)

```
x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -1
 Qc: 0.001: 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002:
 C_{c} = 0.000 \cdot 0.000 \cdot 0.000 \cdot 0.000 \cdot 0.001 \cdot 0.000 \cdot 0.00
   x= 53140: 58551:
   Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
   y= 27009 : Y-строка 3 Cmax= 0.006 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=186)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
   Qc: 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.005: 0.006: 0.006: 0.005: 0.004: 0.004: 0.004: 0.003: 0.003: 0.002: 0.002:
   Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000:
   x= 53140: 58551:
   Qc: 0.001: 0.001:
   Cc: 0.000: 0.000:
   y= 21598 : Y-строка 4 Cmax= 0.009 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=188)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
   Qc: 0.002: 0.002: 0.003: 0.003: 0.004: 0.005: 0.007: 0.009: 0.009: 0.008: 0.006: 0.004: 0.003: 0.003: 0.002: 0.002:
   Cc: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000:
   x= 53140: 58551:
   Qc: 0.002: 0.001:
   Čc: 0.000: 0.000:
   у= 16187 : Y-строка 5 Cmax= 0.020 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
   Qc: 0.002: 0.002: 0.003: 0.003: 0.005: 0.007: 0.011: 0.018: 0.020: 0.012: 0.008: 0.005: 0.004: 0.003: 0.002: 0.002:
 Cc: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.002: 0.004: 0.004: 0.002: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000:
     x= 53140: 58551:
 Qc: 0.002: 0.001:
 Cc: 0.000: 0.000:
   y= 10776 : Y-строка 6 Cmax= 0.063 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
   Qc: 0.002: 0.002: 0.003: 0.004: 0.005: 0.008: 0.015: 0.060: 0.063: 0.021: 0.010: 0.006: 0.004: 0.003: 0.002: 0.002:
   \hat{Cc}: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.003: 0.012: 0.013: 0.004: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 
   Фоп: 92: 93: 93: 94: 95: 97: 102: 119: 195: 253: 261: 264: 266: 267: 267: 268:
   Uon: 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20
B_{H}: 0.001: 0.001: 0.001: 0.002: 0.003: 0.004: 0.007: 0.034: 0.063: 0.009: 0.004: 0.003: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 
 Ви: : : : 0.001: 0.001: 0.001: 0.004: 0.016: : 0.007: 0.003: 0.001: 0.001: 0.000:
                                                                                                       : 0003 : 0004 : 0004 : 0004 : 0004 :
                                                                                                                                                                                                                                                                                                                                                            : 0001 : 0004 : 0004 : 0004 : 0003 :
                                                                                                                                   : 0.001: 0.001: 0.002: 0.008:
                                                                                                                                                                                                                                                                                                                                           : 0.003: 0.001: 0.001: 0.001:
   Ви:
                                                                                                                                : 0003 : 0003 : 0003 : 0003 : 0003 : 0003 : 0003 : 0003 :
     x= 53140: 58551:
   Qc: 0.002: 0.001:
   Cc: 0.000: 0.000:
   Фоп: 268: 268:
   Uoп: 5.20 : 5.20 :
 Ви: 0.001: 0.001:
 Ки: 0001: 0001:
 Ви:
   Ки:
 Ви:
```

y= 5365 : Y-строка 7 Cmax= 0.053 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=348)

```
x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
Oc: 0.002; 0.002; 0.003; 0.004; 0.005; 0.007; 0.013; 0.029; 0.053; 0.023; 0.010; 0.006; 0.004; 0.003; 0.002; 0.002; 0.002; 0.003; 0.004; 0.003; 0.002; 0.002; 0.003; 0.004; 0.003; 0.004; 0.003; 0.004; 0.003; 0.004; 0.003; 0.004; 0.003; 0.004; 0.003; 0.004; 0.003; 0.004; 0.004; 0.003; 0.004; 0.004; 0.004; 0.004; 0.004; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.004; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.005; 0.0
Cc: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.003: 0.006: 0.011: 0.005: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001
 B_{\text{H}}: 0.001; 0.001; 0.001; 0.002; 0.002; 0.004; 0.007; 0.019; 0.048; 0.011; 0.004; 0.003; 0.002; 0.002; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.00
 Ku: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0004: 0004: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 
                                                                                                                    : 0.001: 0.001: 0.001: 0.002: 0.004: 0.002: 0.007: 0.003: 0.001: 0.001: 0.000:
                                                                                                                    : 0003 : 0003 : 0004 : 0004 : 0003 : 0006 : 0001 : 0004 : 0004 : 0004 : 0003 :
 Ки:
                                                                                                                                                   : 0.001: 0.001: 0.002: 0.003: 0.002: 0.002: 0.001: 0.001: 0.001:
 Ви:
                                                                                                                                                   : 0004 : 0003 : 0003 : 0006 : 0002 : 0003 : 0003 : 0003 : 0003 :
 Ки:
   x= 53140: 58551:
 Oc: 0.002: 0.001:
 Cc: 0.000: 0.000:
   Фоп: 275: 274:
 Uoп: 5.20 : 5.20 :
   Ви: 0.001: 0.001:
 Ки: 0001: 0001:
 Ви:
 Ки:
 Ви:
 Ки:
   y= -46: Y-строка 8 Cmax= 0.014 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=350)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
   Qc: 0.002: 0.002: 0.003: 0.003: 0.004: 0.006: 0.009: 0.013: 0.014: 0.012: 0.007: 0.005: 0.004: 0.003: 0.002: 0.002:
 Cc: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.002: 0.003: 0.003: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000:
   x= 53140: 58551:
 Oc: 0.002: 0.001:
 Cc: 0.000: 0.000:
   <del>y=-5457 : </del>Y-строка 9 Cmax= 0.008 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=353)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 47729 : 4441 : 9852 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 4772
   Qc: 0.002: 0.002: 0.003: 0.003: 0.004: 0.005: 0.006: 0.007: 0.008: 0.007: 0.005: 0.004: 0.003: 0.003: 0.002: 0.002:
 Cc: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000:
   x= 53140: 58551:
 Oc: 0.001: 0.001:
 Cc · 0.000 · 0.000
   <u>y=-10868</u>: Y-строка 10 Cmax= 0.005 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=355)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
Qc: 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.005: 0.004: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.0
   x= 53140: 58551:
   Qc: 0.001: 0.001:
 Cc: 0.000: 0.000:
   у=-16279: Y-строка 11 Cmax= 0.004 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=356)
     x=-33437:-28026:-22615:-17204:-11793:-6382:-971:4441:9852:15263:20674:26085:31496:36907:42318:47729:
   Qc: 0.001: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.001:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000:
   x= 53140: 58551:
   Qc: 0.001: 0.001:
   Cc: 0.000: 0.000:
```

```
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
      Координаты точки : X= 9851.5 м, Y= 10776.0 м, Z= 3.0 м
Максимальная суммарная концентрация | Cs= 0.0633947 доли ПДКмр|
                      0.0126789 мг/м3
 Достигается при опасном направлении 195 град.
            и скорости ветра 2.38 м/с
Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
ВКЛАДЫ_ИСТОЧНИКОВ
||Ном.| Код | Тип| Выброс | Вклад в ||Вклад в || Сум. || Коэф.влияния |
|----|-Ист.-|---- b=C/M ---|
| 1 | 0004 | T | 0.3765 | 0.0633131 | 99.87 | 99.87 | 0.168147504 |
            B \text{ cymme} = 0.0633131 99.87
Суммарный вклад остальных = 0.0000816 0.13 (5 источников)
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
   Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
  Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
         ПДКмр для примеси 0301 = 0.2 \text{ мг/м3}
          _Параметры_расчетного_прямоугольника_No 1_
    Координаты центра : X= 12557 м; Y= 10776 |
Длина и ширина : L= 91987 м; B= 54110 м |
Шаг сетки (dX=dY) : D= 5411 м |
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
   Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
   Заказан расчет на высоте Z = 3 метров
 (Символ ^ означает наличие источника вблизи расчетного узла)
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 - [\ 0.001\ 0.002\ 0.002\ 0.002\ 0.002\ 0.003\ 0.003\ 0.003\ 0.003\ 0.003\ 0.003\ 0.003\ 0.003\ 0.003\ 0.003\ 0.002\ 0.002\ 0.002\ 0.002\ 0.001\ 0.001\ | -1
2-| 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 |- 2
3-| 0.002 0.002 0.002 0.003 0.003 0.004 0.005 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.001 0.001 |- 3
4-| 0.002 0.002 0.003 0.003 0.004 0.005 0.007 0.009 0.009 0.008 0.006 0.004 0.003 0.003 0.002 0.002 0.002 0.001 |-4
5-| 0.002 0.002 0.003 0.003 0.005 0.007 0.011 0.018 0.020 0.012 0.008 0.005 0.004 0.003 0.002 0.002 0.002 0.001 |- 5
6-C\ 0.002\ 0.002\ 0.003\ 0.004\ 0.005\ 0.008\ 0.015\ 0.060\ 0.063\ 0.021\ 0.010\ 0.006\ 0.004\ 0.003\ 0.002\ 0.002\ 0.002\ 0.001\ C-6
7-| 0.002 0.002 0.003 0.004 0.005 0.007 0.013 0.029 0.053 0.023 0.010 0.006 0.004 0.003 0.002 0.002 0.002 0.001 |-7
8-| 0.002 0.002 0.003 0.003 0.004 0.006 0.009 0.013 0.014 0.012 0.007 0.005 0.004 0.003 0.002 0.002 0.002 0.001 |- 8
9-| 0.002 0.002 0.003 0.003 0.004 0.005 0.006 0.007 0.008 0.007 0.005 0.004 0.003 0.003 0.002 0.002 0.001 0.001 |- 9
10-| 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 |-10
11-| 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 |-11
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См = 0.0633947 долей ПДКмр
                         = 0.0126789 \text{ MT/M}3
Достигается в точке с координатами: Хм = 9851.5 м
  (X-столбец 9, Y-строка 6) Yм = 10776.0 м
На высоте Z = 3.0 м
При опасном направлении ветра: 195 град.
 и "опасной" скорости ветра : 2.38 м/с
9. Результаты расчета по границе санзоны.
 ПК ЭРА v3.0. Модель: MPК-2014
  Город :003 Атырау.
  Робъект :0005 OBOC «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol»
Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
  Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
```

ПДКмр для примеси 0301 = 0.2 мг/м3

Qc: 0.012: 0.012:

Коды источников уникальны в рамках всего предприятия Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001 Всего просчитано точек: 122

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмp) м/с Заказан расчет на высоте Z=3 метров

Расшифровка_обозначений_ | Qc - суммарная концентрация [доли ПДК] | Cc - суммарная концентрация [мг/м.куб]

```
Фоп- опасное направл. ветра [ угл. град.] |
                    Uоп- опасная скорость ветра [ м/с ] |
Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                  Ки - код источника для верхней строки Ви
y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
 x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759:
Qc: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
v= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
x= -988: -987: -1011: -1042: -1057: -1057: -1040: -1009: -962: -901: -827: -741: -644: -538: -424:
Qc: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.016: 0.016: 0.016: 0.016: 0.017:
\widehat{Cc}: 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 
y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
x= -304: -181: -55: 70: 193: 313: 707: 692: 664: 653: 543: 545: 543: 554: 581:
Qc: 0.017: 0.018: 0.018: 0.018: 0.019: 0.019: 0.019: 0.021: 0.021: 0.021: 0.021: 0.018: 0.018: 0.018: 0.018: 0.017: 0.017:
Cc: 0.003: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003:
x= 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
Qc: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.018: 0.018: 0.018: 0.018: 0.019: 0.019: 0.019: 0.020: 0.026: 0.017:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.005: 0.003:
y= 16312: 16437: 16558: 16674: 16783: 16883: 16973: 17052: 17117: 17169: 17206: 17228: 17233: 17224: 17198:
x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
Qc: 0.017: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.015: 0.015: 0.015: 0.016: 0.016: 0.016: 0.016: 0.016:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
y= 17157: 16011: 14864: 14862: 14846: 14786: 14713: 12692: 10672: 10670: 10644: 10555: 10455: 10346: 10231:
x = 5311: 8078: 10845: 10844: 10885: 10995: 11097: 13555: 16012: 16011: 16044: 16132: 16208: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 162711: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 1627
Qc: 0.016: 0.022: 0.022: 0.022: 0.022: 0.022: 0.022: 0.020: 0.019: 0.019: 0.019: 0.018: 0.018: 0.018: 0.018:
Cc: 0.003: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
x = 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 12532: 125
Qc: 0.018: 0.019: 0.019: 0.019: 0.019: 0.020: 0.028: 0.018: 0.018: 0.018: 0.018: 0.018: 0.018: 0.017: 0.017:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.006: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003:
y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
x= 12417: 12297: 12173: 12048: 11923: 11800: 11681: 9374: 6823: 6822: 6808: 6719: 6620: 6512: 6396:
Oc: 0.017: 0.017: 0.017: 0.017: 0.018: 0.018: 0.018: 0.021: 0.013: 0.013: 0.013: 0.013: 0.012: 0.012: 0.012:
Cc: 0.003: 0.003: 0.003: 0.003: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002:
y= -942: -962:
x= 6276: 6152:
```

```
TOO «TIMAL CONSULTING GROUP»
Cc: 0.002: 0.002:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
       Координаты точки : X = 14635.0 \text{ м}, Y = 5745.4 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0280569 доли ПДКмр|
                        0.0056114 мг/м3
 Достигается при опасном направлении 296 град. и скорости ветра 5.20 \text{ м/c}
Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                     ВКЛАДЫ ИСТОЧНИКОВ
| Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф. влияния |
  ---|-Ист.-|---М-(Мq)--|-С[доли ПДК]-|------
                  0.3765| 0.0140051 | 49.92 | 49.92 | 0.037194878 |
1.1627| 0.0084833 | 30.24 | 80.15 | 0.007296397 |
1.0539| 0.0029231 | 10.42 | 90.57 | 0.002773650 |
  1 | 0004 | T |
  2 | 0001 | T |
  3 | 0003 | T
  4 | 0006 | T | 0.7936 | 0.0020104 | 7.17 | 97.74 | 0.002533299 |
             B \text{ cymme} = 0.0274219 \quad 97.74
Суммарный вклад остальных = 0.0006350 2.26 (2 источника)
3. Исходные параметры источников.
  ПК ЭРА v3.0. Модель: MPК-2014
   Город :003 Атырау.
   Объект : 0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol»
Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
```

Примесь :0304 - Азот (II) оксид (Азота оксид) (6)

ПДКмр для примеси 0304 = 0.4 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия

```
Код |Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 |
                                                       Y2 |Alf| F | КР |Ди| Выброс
         ~Ист.~|~
                                                                                    и-----|гр.|----|---|---|---|г/с---
                                                                  1.0 1.00 0 0.1889333
                                                                  1.0 1.00 0 0.4297800
0002 T
         2.0 0.10 240.0 4.04 450.0 7975.90 8516.03
                                                                 1.0 1.00 0 0.1712533
0003 T
        2.0 0.080 7.67 0.0810 450.0 9240.02 8427.24
0004 T
                                                                 1.0 1.00 0 0.0611867
0006 T 2.0 0.10 243.7 4.10 450.0 8565.74 9306.51
0007 T 2.0 0.080 257.7 2.78 450.0 8652.43 7806.04
                                                                 1.0 1.00 0 0.1289600
                                                                  1.0 1.00 0 0.0006323
```

4. Расчетные параметры См, Им, Хм

ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31

Сезон :ЛЕТО (температура воздуха 30.9 град.С)

Примесь :0304 - Азот (II) оксид (Азота оксид) (6)

ПДКмр для примеси 0304 = 0.4 мг/м3

Коды источников уникальны в рамках всего предприятия

```
Источники
                                       _Их расчетные параметры_
                                  | Um |
Номер Код | М |Тип | Ст
                                           Xm
|-п/п-|-Ист.-|--
                -----|-----[доли ПДК]-|--[м/с]--|----[м]---|
 1 | 0001 |
           0.188933| T | 0.235451 | 36.24 | 129.9 |
           0.429780 T |
                         0.123032 | 148.72 |
 2 | 0002 |
                                            263.1
           0.171253| T |
 3 | 0003 |
                         0.105187 | 73.52 |
                                            185.0
 4 | 0004 |
           0.061187 T
                         1.379375 | 1.67 |
                                            27.3
           0.128960 T
                         0.078001 | 74.66 |
 5 | 0006
                                            186.4
 6 | 0007 |
           0.000632 T | 0.000452 | 63.17 | 171.5 |
Суммарный Mq= 0.980746 г/с
|Сумма См по всем источникам = 1.921499 долей ПДК
|Средневзвешенная опасная скорость ветра = 22.23 м/с
```

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Тород 1003 Aпарах.

Объект :0005 OBOC «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Сезон :ЛЕТО (температура воздуха 30.9 град.С) Примесь :0304 - Азот (П) оксид (Азота оксид) (6)

ПДКмр для примеси 0304 = 0.4 мг/м3

Расчет по прямоугольнику 001 : 91987x54110 с шагом 5411

Расчет по границе санзоны. Покрытие РП 001

Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

```
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
                  Средневзвешенная опасная скорость ветра Ucв= 22.23 м/с
   6. Результаты расчета в виде таблицы.
            ПК ЭРА v3.0. Модель: MPК-2014
                  Город :003 Атырау.
                   Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
                  Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
                                                        ПДКмр для примеси 0304 = 0.4 мг/м3
                  Коды источников уникальны в рамках всего предприятия
                   Расчет проводился на прямоугольнике 1
                   с параметрами: координаты центра X=12557, Y=10776
                                                                        размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
                  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
                  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
                   Заказан расчет на высоте Z = 3 метров
                                                                                                                       _Расшифровка_обозначений
                                                 Qc - суммарная концентрация [доли ПДК]
                                                  Сс - суммарная концентрация [мг/м.куб]
                                                  Фоп- опасное направл. ветра [ угл. град.] |
                                                 Uоп- опасная скорость ветра [ м/с ] |
Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                             Ки - код источника для верхней строки Ви
                | -Если в строке Стах=< 0.05 ПДК, то Фоп, Ооп, Ви, Ки не печатаются |
   <u>y= 37831 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)</u>
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
   Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
   Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
   x= 53140: 58551:
   Qc: 0.000: 0.000:
   Čc: 0.000: 0.000:
   у= 32420 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
   Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   x= 53140: 58551:
 Oc: 0.000: 0.000:
 Cc: 0.000: 0.000:
   у= 27009 : Y-строка 3 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=186)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
   Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
   x= 53140: 58551:
 Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
   y= 21598 : Y-строка 4 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=188)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 
   Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 \tilde{Ce}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
   x= 53140: 58551:
   Qc: 0.000: 0.000:
```

```
Cc: 0.000: 0.000:
    у= 16187 : Y-строка 5 Cmax= 0.002 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
   \widetilde{Ce} : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y= 10776 : Y-строка 6 Cmax= 0.005 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.005: 0.005: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000:
    Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.002: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y= 5365 : Y-строка 7 Cmax= 0.004 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=348)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.004: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y= -46: Y-строка 8 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=350)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : \ 4441 : \ 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 \overset{\bullet}{\text{Ce}} : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000
    x= 53140: 58551:
  Oc: 0.000: 0.000
  Cc · 0.000 · 0.000
    <del>y=-5457 : </del>Y-строка 9 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=353)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y=-10868 : Y-строка 10 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=355)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  \texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
```

```
у=-16279 : У-строка 11 Стах= 0.000 долей ПДК (х= 9851.5, z= 3.0; напр.ветра=356)
 x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 \tilde{\textbf{Cc}} : 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: 
x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
             Координаты точки : X = 9851.5 \text{ м}, Y = 10776.0 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Сs= 0.0051508 доли ПДКмр|
                                                0.0020603 мг/м3
   Достигается при опасном направлении 195 град.
                            и скорости ветра 2.38 м/с
Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
ВКЛАДЫ_ИСТОЧНИКОВ

| Ном. | Код | Тип| Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
|----|-Ист.-|---- b=C/M ---|
| 1 | 0004 | T | 0.0612 | 0.0051442 | 99.87 | 99.87 | 0.084073640 |
                          В сумме = 0.0051442 99.87 |
Суммарный вклад остальных = 0.0000066 0.13 (5 источников)
7. Суммарные концентрации в узлах расчетной сетки. 
ПК ЭРА v3.0. Модель: MPK-2014
      Город :003 Атырау.
      Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol»
      Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
      Примесь :0304 - Азот (II) оксид (Азота оксид) (6) ПДКмр для примеси 0304 = 0.4 мг/м3
                     Параметры расчетного прямоугольника No 1
         Координаты центра : X= 12557 м; Y= 10776 |
Длина и ширина : L= 91987 м; B= 54110 м |
Шаг сетки (dX=dY) : D= 5411 м
      Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
      Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
      Заказан расчет на высоте Z = 3 метров
    (Символ ^ означает наличие источника вблизи расчетного узла)
       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 7-| . . . . . 0.001 0.001 0.002 0.004 0.002 0.001 0.000 . . . . . . . . . |-7
 8-| . . . . . . 0.000 0.001 0.001 0.001 0.001 0.001 . . .
 10-| . . . . .
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
        В целом по расчетному прямоугольнику:
 Максимальная концентрация -----> См = 0.0051508 долей ПДКмр = 0.0020603 мг/м3
```

Достигается в точке с координатами: Хм = 9851.5 м

```
( Х-столбец 9, Ү-строка 6)
                                                                                                                                 Y_M = 10776.0 \text{ M}
                                                            _{1.0}^{1} На высоте Z = 3.0 \text{ м}
 При опасном направлении ветра : 195 град. и "опасной" скорости ветра : 2.38 м/с
9. Результаты расчета по границе санзоны.
      ПК ЭРА v3.0. Модель: MPK-2014
           Город :003 Атырау.
           Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
          Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
                                   ПДКмр для примеси 0304 = 0.4 \text{ мг/м3}
          Коды источников уникальны в рамках всего предприятия
           Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
           Всего просчитано точек: 122
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
           Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
           Заказан расчет на высоте Z = 3 метров
                                                                           _Расшифровка_обозначений
                             | Qc - суммарная концентрация [доли ПДК]
                               Сс - суммарная концентрация [мг/м.куб]
                               Фоп- опасное направл. ветра [ угл. град.] |
                             | Uoп- опасная скорость ветра [ м/с ] |
| Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                            Ки - код источника для верхней строки Ви |
 y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
 x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759:
                                                                                                          Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
x= -988: -987: -1011: -1042: -1057: -1057: -1040: -1009: -962: -901: -827: -741: -644: -538: -424:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001:
y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
x= -304: -181: -55: 70: 193: 313: 707: 692: 664: 653: 543: 545: 543: 554: 581:
Qc: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
v= 12912: 13024: 13128: 13223: 13307: 13378: 13436: 13479: 13507: 13520: 13516: 13498: 13463: 12973: 16312:
x= 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y=16312:16437:16558:16674:16783:16883:16973:17052:17117:17169:17206:17228:17233:17224:17198:17106:17206:17228:17233:17224:17198:17106:17206:17228:17233:17224:17198:17106:17206:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17
x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
\widehat{Cc}: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 
y=17157:16011:14864:14862:14846:14786:14713:12692:10672:10670:10644:10555:10455:10346:10231:10670:10644:10555:10455:10346:10231:10670:10644:10555:10455:10346:10231:10670:10644:10555:10455:10455:10456:10231:10670:10644:10555:10455:10455:10456:10231:10670:10644:10555:10455:10455:10456:10231:10670:10644:10555:10455:10456:10231:10670:10644:10555:10455:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10231:10670:10644:10555:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10456:10
x = 5311:\ 8078:\ 10845:\ 10845:\ 10885:\ 10995:\ 11097:\ 13555:\ 16012:\ 16011:\ 16044:\ 16132:\ 16208:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16271:\ 16320:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16
Qc: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001:
Ce: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
x = 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 126390: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12
Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.0
```

```
y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
x = 12417 \cdot 12297 \cdot 12173 \cdot 12048 \cdot 11923 \cdot 11800 \cdot 11681 \cdot 9374 \cdot 6823 \cdot 6822 \cdot 6808 \cdot 6719 \cdot 6620 \cdot 6512 \cdot 6396 \cdot 6823 \cdot 682
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
y= -942: -962:
x= 6276: 6152:
Qc: 0.001: 0.001:
Cc: 0.000: 0.000:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: МРК-2014
            Координаты точки : X = 14635.0 \text{ м}, Y = 5745.4 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0022796 доли ПДКмр|
                                                   0.0009119 мг/м3
   Достигается при опасном направлении 296 град.
                           и скорости ветра 5.20 м/с
Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                                    _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
                                                                                                            --|---- b=C/M ---|
  ·---|-Ист.-|---M-(Mq)--|-С[доли ПДК]-|-----|
                                 0.0612| 0.0011379| 49.92|49.92|0.018597415
0.1889| 0.0006893| 30.24|80.15|0.003648215
   2 | 0001 | T |
   3 | 0003 | T
                                 0.1713|\ \ 0.0002375\ |\ 10.42\ |\ 90.57\ |\ 0.001386832
                              0.1290| 0.0001633 | 7.17 | 97.74 | 0.001266650 |
   4 | 0006 | T |
                        B \text{ cymme} = 0.0022280 \quad 97.74
 Суммарный вклад остальных = 0.0000516 2.26 (2 источника)
3. Исходные параметры источников.
   ПК ЭРА v3.0. Молель: MPК-2014
     Город :003 Атырау.
     Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol»
      Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
      Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                  ПДКмр для примеси 0328 = 0.15 \text{ мг/м3}
     Коэффициент рельефа (КР): индивидуальный с источников
     Коэффициент оседания (F): индивидуальный с источников
     Коды источников уникальны в рамках всего предприятия
Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
                      ~|rp.|~~~|~~~~|~~|~~
                                                                                                                                                         3.0 1.00 0 0.0756944

    0002 T
    2.0 0.080 390.8
    6.93 450.0
    8154.39
    10469.59

    0003 T
    2.0 0.10 240.0
    4.04 450.0
    7975.90
    8516.03

    0004 T
    2.0 0.080 7.67
    0.0810 450.0
    9240.02
    8427.24

    0006 T
    2.0 0.10 243.7
    4.10 450.0
    8565.74
    9306.51

    0007 T
    2.0 0.080 257.7
    2.78 450.0
    8652.43
    7806.04

                                                                                                                                                       3.0 1.00 0 0.1836667
3.0 1.00 0 0.0686111
                                                                                                                                                        3.0 1.00 0 0.0245139
                                                                                                                                                        3.0 1.00 0 0.0516667
                                                                                                                                                         3.0 1.00 0 0.0003306
4. Расчетные параметры См, Им, Хм
   ПК ЭРА v3.0. Модель: MPК-2014
     Город :003 Атырау.
     Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
     Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
      Сезон :ЛЕТО (температура воздуха 30.9 град.С)
      Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                  ПДКмр для примеси 0328 = 0.15 \text{ мг/м3}
     Коды источников уникальны в рамках всего предприятия
                                                                                       _Их расчетные параметры__
                         Источники
|Номер| Код | М | Тип | Ст | Um | Xm |
|-п/п-|-Ист.-|------|---|-[доли ПДК]-|--[м/с]--|----[м]---|
    1 | 0001 |
                          0.075694| T | 0.754652 | 36.24 |
    2 | 0002 |
                          0.183667| T |
                                                        0.420624 | 148.72 |
                                                                                                   131.6
                                                                                                   92.5
    3 | 0003
                          0.068611|T|
                                                        0.337138 | 73.52 |
                          0.024514| T | 4.421074 | 1.67 | 13.6 | 0.051667| T | 0.250002 | 74.66 | 93.2
    4 | 0004 |
    5 | 0006
    6 | 0007 |
                          0.000331| T | 0.001891 | 63.17 | 85.7
Суммарный Mq= 0.404483 г/с
Сумма См по всем источникам = 6.185381 долей ПДК
                                                                                                                                    -
|Средневзвешенная опасная скорость ветра = 22.77 м/с
```

Qc: 0.000: 0.000:

```
5. Управляющие параметры расчета
         ПК ЭРА v3.0. Модель: MPK-2014
              Город :003 Атырау.
               Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
              Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
                Сезон :ЛЕТО (температура воздуха 30.9 град.С)
              Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                                           ПДКмр для примеси 0328 = 0.15 \text{ мг/м3}
              Расчет по прямоугольнику 001: 91987x54110 с шагом 5411
               Расчет по границе санзоны. Покрытие РП 001
              Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
               Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
               Средневзвешенная опасная скорость ветра Ucв= 22.77 м/с
6. Результаты расчета в виде таблицы. ПК ЭРА v3.0. Модель: МРК-2014
              Город :003 Атырау.
               Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
               Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
              Примесь :0328 - Углерод (Сажа, Углерод черный) (583) ПДКмр для примеси 0328 = 0.15 мг/м3
              Коды источников уникальны в рамках всего предприятия
              Расчет проводился на прямоугольнике 1
              с параметрами: координаты центра X= 12557, Y= 10776
                                                      размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
              Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
               Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
               Заказан расчет на высоте Z = 3 метров
                                                                                           Расшифровка_обозначений
                                    | Qc - суммарная концентрация [доли ПДК]
                                      Сс - суммарная концентрация [мг/м.куб]
                                      Фоп- опасное направл. ветра [ угл. град.] |
                                      Uоп- опасная скорость ветра [ м/с ] |
                                      Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                 Ки - код источника для верхней строки Ви
           -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются
  у= 37831 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
   x = -334\overline{37} : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 4
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
  у= 32420 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=185)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
  y= 27009 : Y-строка 3 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=186)
   x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 \hat{Ce}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
  x= 53140: 58551:
```

```
Cc: 0.000: 0.000:
    y= 21598 : Y-строка 4 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=189)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
    Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y= 16187 : Y-строка 5 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=196)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y= 10776 : Y-строка 6 Cmax= 0.003 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=260)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.003: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    <del>y= 5365 : </del>Y-строка 7 Cmax= 0.002 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=329)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
 \overset{\bullet}{\text{Ce}} : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000
    x= 53140: 58551:
  Oc: 0.000: 0.000
  Cc : 0.000: 0.000:
    y= -46: Y-строка 8 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=348)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    <del>y=-5457 : </del>Y-строка 9 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=353)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  \texttt{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
```

```
у=-10868 : У-строка 10 Стах= 0.000 долей ПДК (х= 9851.5, z= 3.0; напр.ветра=355)
  x=-33437 :-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
\tilde{Ce}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 x= 53140: 58551:
 Qc: 0.000: 0.000:
Cc: 0.000: 0.000
 y=-16279: Y-строка 11 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=356)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
Cc: 0.000: 0.000
  Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                       Координаты точки : X = 9851.5 \text{ м}, Y = 10776.0 \text{ м}, Z = 3.0 \text{ м}
  Максимальная суммарная концентрация | Cs= 0.0034655 доли ПДКмр|
                                                                                               0.0005198 мг/м3
      Достигается при опасном направлении 260 град.
                                               и скорости ветра 5.20 м/с
 Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
Остальные источники не влияют на данную точку (5 источников)
 7. Суммарные концентрации в узлах расчетной сетки.
       ПК ЭРА v3.0. Модель: MPK-2014
           Город :003 Атырау.
            Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
            Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
           Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                                   ПДКмр для примеси 0328 = 0.15 \text{ мг/м3}
                  Параметры расчетного прямоугольника_No 1_ Координаты центра : X= 12557 м; Y= 10776 | Длина и ширина : L= 91987 м; B= 54110 м |
                   Шаг сетки (dX=dY) : D= 5411 м
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
           Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
           Заказан расчет на высоте Z = 3 метров
       (Символ ^ означает наличие источника вблизи расчетного узла)
              1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18
  2-1.
   7-| . . . . . . 0.001 0.001 0.002 0.001 . . . . . . | -7
```

```
10-| .
                                                                5 6 7 8 9 10 11 12 13 14 15 16 17 18
              В целом по расчетному прямоугольнику:
 Максимальная концентрация ———> См = 0.0034655 долей ПДКмр = 0.0005198 мг/м3
   Достигается в точке с координатами: Хм = 9851.5 м
        (X-столбец 9, Y-строка 6) Yм = 10776.0 м
На высоте Z = 3.0 м
   При опасном направлении ветра: 260 град.
     и "опасной" скорости ветра : 5.20 м/с
 9. Результаты расчета по границе санзоны.
      ПК ЭРА v3.0. Модель: MPK-2014
          Город :003 Атырау.
          Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
          Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                              ПДКмр для примеси 0328 = 0.15 \text{ мг/м3}
          Коды источников уникальны в рамках всего предприятия
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 122
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
          Заказан расчет на высоте Z = 3 метров
                                                                _Расшифровка_обозначений_
                          Qc - суммарная концентрация [доли ПДК] |
                           Сс - суммарная концентрация [мг/м.куб]
                           Фоп- опасное направл. ветра [ угл. град.] |
                         | Uoп- опасная скорость ветра [ м/с ] |
| Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                        Ки - код источника для верхней строки Ви
 y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
  x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
  x= -988: -987: -1011: -1042: -1057: -1057: -1040: -1009: -962: -901: -827: -741: -644: -538: -424:
 Oc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001;
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
  x= -304: -181: -55: 70: 193: 313: 707: 692: 664: 653: 543: 545: 543: 554: 581:
 Oc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001;
\tilde{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 y = \ 12912; \ 13024; \ 13128; \ 13223; \ 13307; \ 13378; \ 13436; \ 13479; \ 13507; \ 13520; \ 13516; \ 13498; \ 13463; \ 12973; \ 16312; \ 13498; \ 13463; \ 12973; \ 16312; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13498; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 13463; \ 1346
   x= 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
Qc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.0
Ce: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
```

 $y = \ 17157; \ 16\overline{011}; \ 14864; \ 14862; \ 14846; \ 14786; \ 14713; \ 12692; \ 10672; \ 10670; \ 10644; \ 10555; \ 10455; \ 10346; \ 10231; \ 1$

```
x = 5311:\ 8078:\ 10845:\ 10844:\ 10885:\ 10995:\ 11097:\ 13555:\ 16012:\ 16011:\ 16044:\ 16132:\ 16208:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16
  Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 C_{c} = 0.000 \cdot 0.00
  y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
  x = 16354 \colon 16373 \colon 16376 \colon 16363 \colon 16335 \colon 16291 \colon 14635 \colon 12979 \colon 12977 \colon 12962 \colon 12900 \colon 12824 \colon 12737 \colon 12639 \colon 12532 \colon 
  Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
  x = 12417; 12297; 12173; 12048; 11923; 11800; 11681; 9374; 6823; 6822; 6808; 6719; 6620; 6512; 6396; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620;
  Oc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  y= -942: -962:
  x= 6276: 6152:
  Oc: 0.000: 0.000:
 Cc: 0.000: 0.000:
   Результаты расчета в точке максимума  ПК ЭРА v3.0. Модель: MPK-2014
                               Координаты точки : X = 10844.3 \text{ м}, Y = 14862.2 \text{ м}, Z = 3.0 \text{ м}
   Максимальная суммарная концентрация | Cs= 0.0010382 доли ПДКмр|
                                                                                                           0.0001557 мг/м3
        Достигается при опасном направлении 208 град.
                                                               и скорости ветра 5.20 м/с
  Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
0.0686 | 0.0001419 | 13.67 | 89.43 | 0.002067914
        4 | 0006 | T | 0.0517 | 0.0001023 | 9.85 | 99.28 | 0.001979150 |
     В сумме = 0.0010307 99.28 | Суммарный вклад остальных = 0.0000075 0.72 (2 источника)
  3. Исходные параметры источников.
          ПК ЭРА v3.0. Модель: MPK-2014

        Город
        :003 Атырау.

        Объект
        :0005 ОВОС
        «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»

        Вар.расч.
        :5
        Расч.год:
        2025 (СП)
        Расчет проводился 21.04.2025 15:31

               Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                               ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
               Коэффициент рельефа (КР): индивидуальный с источников
                Коэффициент оседания (F): индивидуальный с источников
               Коды источников уникальны в рамках всего предприятия
  Код | Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | -\text{Mct.} -\text{Mct.} -\text{Mcm.} -\text{M
                                                                                                                                                                                                                                                                                                                         Y2 |Alf| F | КР |Ди| Выброс
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -|rp.|----|----|---|---|----|----|
                                                                                                                                                                                                                                                                                                                                                                                    1.0 1.00 0 0.1816667
                                                      2.0\ 0.080\ 390.8\quad 6.93\ 450.0\quad 8154.39\quad 10469.59
                                                                                                                                                                                                                                                                                                                                                                                      1.0 1.00 0 0.3673333
   0003 T
                                                      2.0 0.10 240.0 4.04 450.0 7975.90 8516.03
                                                                                                                                                                                                                                                                                                                                                                                 1.0\ 1.00\ \ 0\ 0.1646667
  1.0 1.00 0 0.0588333
                                                                                                                                                                                                                                                                                                                                                                                 1.0 1.00 0 0.1240000
1.0 1.00 0 0.0005194
  4. Расчетные параметры См, Uм, Хм
          ПК ЭРА v3.0. Модель: MPK-2014
                Город :003 Атырау.
             Тород 1.003 Aпарах.

Объект 1.0005 OBOC «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
Сезон :ЛЕТО (температура воздуха 30.9 град.С)
Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                                ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
               Коды источников уникальны в рамках всего предприятия
                                                         Источники
                                                                                                                                                                          ____Их расчетные параметры__
```

```
|Номер| Код | М |Тип | Ст
                                                                                                  Um Xm
 |-п/п-|-Ист.-|--
                                                    ----|----[доли ПДК]-|--[м/с]--|----[м]---|
      1 | 0001 |
                                    0.181667| T | 0.181116 | 36.24 | 129.9 |
                                    0.367333| T | 0.084125 | 148.72 | 263.1 |
      2 \pm 00021
     3 | 0003
                                    0.164667| T | 0.080913 | 73.52 | 185.0 |
      4 | 0004 |
                                    0.058833| T | 1.061058 | 1.67 |
                                                                                                                                  27.3
                                                                           0.060000 | 74.66 |
      5 | 0006
                                    0.124000| T |
                                                                                                                                   186.4
      6 | 0007 |
                                    0.000519| T | 0.000297 | 63.17 | 171.5 |
 |Суммарный Mq= 0.897019 г/с
 Сумма См по всем источникам = 1.467510 долей ПДК
                                                                                                                                                                                |Средневзвешенная опасная скорость ветра = 21.32 м/с
 5. Управляющие параметры расчета
     ПК ЭРА v3.0. Модель: MPК-2014
        Город :003 Атырау.
Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
        Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
         Сезон :ЛЕТО (температура воздуха 30.9 град.С)
        Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                          ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
        Расчет по прямоугольнику 001: 91987x54110 с шагом 5411
        Расчет по границе санзоны. Покрытие РП 001
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
         Средневзвешенная опасная скорость ветра Ucв= 21.32 м/с
6. Результаты расчета в виде таблицы. 
ПК ЭРА v3.0. Модель: MPK-2014
        Город :003 Атырау.
        Порож 10005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
         Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                         ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
        Коды источников уникальны в рамках всего предприятия
        Расчет проводился на прямоугольнике 1
        с параметрами: координаты центра X= 12557, Y= 10776
                                размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
         Заказан расчет на высоте Z = 3 метров
                                                      _Расшифровка_обозначений
                      Qc - суммарная концентрация [доли ПДК]
                      Сс - суммарная концентрация [мг/м.куб]
                      Фоп- опасное направл. ветра [ угл. град.] |
                      Uоп- опасная скорость ветра [ м/с ] |
                      Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                     Ки - код источника для верхней строки Ви |
        | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
 y= 37831 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
  x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
\tilde{Ce}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
 x= 53140: 58551:
 Oc: 0.000: 0.000
Cc: 0.000: 0.000:
 y= 32420 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
O_{\mathbf{C}}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.00
Cc: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000;
 x= 53140: 58551:
 Qc: 0.000: 0.000:
```

Cc: 0.000: 0.000:

```
y= 27009 : Y-строка 3 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=186)
   x = -334\overline{37} : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 47828 : 4
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
   x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y= 21598 : Y-строка 4 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=188)
   x=-33437:-28026:-22615:-17204:-11793:-6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y= 16187 : Y-строка 5 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y= 10776: Y-строка 6 Cmax= 0.004 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
 Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.004: 0.004: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.002: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y= 5365 : Y-строка 7 Cmax= 0.003 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=348)
   x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.003: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
 <del>y= -46 : У-строка</del> 8 Стах= 0.001 долей ПДК (х= 9851.5, z= 3.0; напр.ветра=350)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Ce: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000
```

y=-5457 : Y-строка 9 Стах= 0.000 долей ПДК (х= 9851.5, z= 3.0; напр.ветра=353)

```
x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 
Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 \overset{\bullet}{\text{Ce}} : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000
  x= 53140: 58551:
 Oc: 0.000: 0.000:
 Cc: 0.000: 0.000:
  y=-10868: Y-строка 10 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=355)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  x= 53140: 58551:
  Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
  y=-16279: Y-строка 11 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=356)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  x= 53140: 58551:
  Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
  Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                                   Координаты точки : X = 9851.5 м, Y = 10776.0 м, Z = 3.0 м
    Максимальная суммарная концентрация | Cs= 0.0039620 доли ПДКмр|
                                                                                                                       0.0019810 мг/м3
          Достигается при опасном направлении 195 град.
                                                                           и скорости ветра 2.38 м/с
  Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                                                                                                                                                                 ВКЛАДЫ ИСТОЧНИКОВ
 В сумме = 0.0039571 99.88
    Суммарный вклад остальных = 0.0000049 0.12 (5 источников)
                                                                                                                                                                                                                                                                                                                                                                                                                                     -
  7. Суммарные концентрации в узлах расчетной сетки.
           ПК ЭРА v3.0. Модель: MPК-2014
                 Город :003 Атырау.
                 Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
                   Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
                 Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                                      ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
                      _____Параметры_расчетного_прямоугольника_No_1_ | Координаты центра : X=12557 м; Y=10776 | Длина и ширина : L=91987 м; B=54110 м |
                             Шаг сетки (dX=dY) : D= 5411 м
                 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
                   Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
                   Заказан расчет на высоте Z = 3 метров
           (Символ <sup>^</sup> означает наличие источника вблизи расчетного узла)
                      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
```

```
0.001\ 0.002\ 0.003\ 0.001\ 0.001\ .
                                                                                . 0.001 0.001 0.001 0.001 . .
                        . . . . . . . 0.000 . .
                                                                                                                                                                                                                                                      . |- 9
10-| . . . . . . . . . . .
                            2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
               В целом по расчетному прямоугольнику:
  Максимальная концентрация -----> См = 0.0039620 долей ПДКмр
                                                                                         = 0.0019810 \text{ MT/M}3
 Достигается в точке с координатами: X_M = 9851.5 \text{ м} ( X-столбец 9, Y-строка 6) Y_M = 10776.0 \text{ м} На высоте Z = 3.0 \text{ м}
  При опасном направлении ветра : 195 град. и "опасной" скорости ветра : 2.38 м/с
9. Результаты расчета по границе санзоны. 
ПК ЭРА v3.0. Модель: MPK-2014

      Город
      :003 Атырау.

      Объект
      :0005 ОВОС
      «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»

      Вар.расч.
      :5
      Расч.год:
      2025 (СП)
      Расчет проводился
      21.04.2025 15:31

           Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                 ПДКмр для примеси 0330 = 0.5 \text{ мг/м3}
          Коды источников уникальны в рамках всего предприятия
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 122
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
           Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
           Заказан расчет на высоте Z = 3 метров
                                                                      Расшифровка_обозначений
                            | Qc - суммарная концентрация [доли ПДК] |
                              Сс - суммарная концентрация [мг/м.куб]
                              Фоп- опасное направл. ветра [ угл. град.] |

Uoп- опасная скорость ветра [ м/с ] |
                              Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                          | Ки - код источника для верхней строки Ви |
y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
 x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
y= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
x = -988: \ -987: \ -1011: \ -1042: \ -1057: \ -1057: \ -1040: \ -1009: \ -962: \ -901: \ -827: \ -741: \ -644: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -4
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001:
y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
x = -304 \colon -181 \colon -55 \colon \phantom{-}70 \colon \phantom{-}193 \colon \phantom{-}313 \colon \phantom{-}707 \colon \phantom{-}692 \colon \phantom{-}664 \colon \phantom{-}653 \colon \phantom{-}543 \colon \phantom{-}545 \colon \phantom{-}554 \colon \phantom{-}554 \colon \phantom{-}581 \colon \phantom{-}551 \: \phantom
Oc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001
y= 12912: 13024: 13128: 13223: 13307: 13378: 13436: 13479: 13507: 13520: 13516: 13498: 13463: 12973: 16312:
x = 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140: 1140:
```

```
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= 16312: 16437: 16558: 16674: 16783: 16883: 16973: 17052: 17117: 17169: 17206: 17228: 17233: 17224: 17198:
x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
y= 17157: 16011: 14864: 14862: 14846: 14786: 14713: 12692: 10672: 10670: 10644: 10555: 10455: 10346: 10231:
x = \ 5311: \ 8078: 10845: 10845: 10845: 10895: 10995: 11097: 13555: 16012: 16011: 16044: 16132: 16208: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16320: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 16271: 1
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
 x = 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12979: 12977: 12962: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 12979: 129
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
 x= 12417: 12297: 12173: 12048: 11923: 11800: 11681: 9374: 6823: 6822: 6808: 6719: 6620: 6512: 6396:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
y= -942: -962:
 x= 6276: 6152:
Oc: 0.001: 0.001:
Cc: 0.000: 0.000:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
            Координаты точки : X = 14635.0 \text{ м}, Y = 5745.4 \text{ м}, Z = 3.0 \text{ м}
 Максимальная сумма<br/>рная концентрация | Сs= \phantom{-}0.0017491 доли ПДКмр<br/>| \phantom{-}0.0008746 мг/м3 |
   Достигается при опасном направлении 296 град.
                             и скорости ветра 5.20 м/с
Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                                      __ВКЛАДЫ_ИСТОЧНИКОВ_
4 | 0006 | T | 0.1240 | 0.0001257 | 7.18 | 97.98 | 0.001013320 |
                         B \text{ cymme} = 0.0017139 \quad 97.98
 Суммарный вклад остальных = 0.0000353 2.02 (2 источника)
                                                                                                                                                              1
3. Исходные параметры источников.
   ПК ЭРА v3.0. Модель: MPК-2014
      Город :003 Атырау.
      Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
      Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0333 - Сероводород (Дигидросульфид) (518) ПДКмр для примеси 0333 = 0.008 мг/м3
      Коэффициент рельефа (КР): индивидуальный с источников
      Коэффициент оседания (F): индивидуальный с источников
      Коды источников уникальны в рамках всего предприятия
|гр.|~~~|~~~г/с~
                                                                                                                                                                    1.0 1.00 0 0.0000182
```

 Расчетные параметры См, Uм, Xм ПК ЭРА v3.0. Модель: MPK-2014 Город :003 Атырау.

```
Объект :0005 OBOC «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Сезон :ЛЕТО (температура воздуха 30.9 град.С) Примесь :0333 - Сероводород (Дигидросульфид) (518) ПДКмр для примеси 0333 = 0.008 мг/м3
```

```
Коды источников уникальны в рамках всего предприятия
Их расчетные параметры_
Суммарный Mq= 0.000018 г/с
Сумма См по всем источникам = 0.081255 долей ПДК
                                                                                                                                                                  Средневзвешенная опасная скорость ветра = 0.50 м/с
                                                                                                                                                             5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
       ПОЭТА УЗОВ. МОДЕЛЬ. М РЕ-2014
ГОРОД : :003 АТБІРДУ.
Объект ::0005 OBOC «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
       Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Сезон :ЛЕТО (температура воздуха 30.9 град.С)
       Примесь :0333 - Сероводород (Дигидросульфид) (518)
ПДКмр для примеси 0333 = 0.008 мг/м3
       Расчет по прямоугольнику 001: 91987x54110 с шагом 5411
       Расчет по границе санзоны. Покрытие РП 001
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2 (Ump) \ \text{м/c}
       Средневзвешенная опасная скорость ветра Ucb=0.5 \text{ м/c}
6. Результаты расчета в виде таблицы.
    ПК ЭРА v3.0. Модель: MPК-2014
       Город :003 Атырау.
       Объект : 0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
       Примесь :0333 - Сероводород (Дигидросульфид) (518)
                       ПДКмр для примеси 0333 = 0.008 \text{ мг/м3}
       Коды источников уникальны в рамках всего предприятия
       Расчет проводился на прямоугольнике 1
       с параметрами: координаты центра X=12557, Y=10776
                             размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
       Заказан расчет на высоте Z = 3 метров
                                                 _Расшифровка_обозначений
                   | Qc - суммарная концентрация [доли ПДК]
                    Сс - суммарная концентрация [мг/м.куб]
                    Фоп- опасное направл. ветра [ угл. град.] |
                  | Иоп- опасная скорость ветра [ м/с ] |
         -Если в расчете один источник, то его вклад и код не печатаются
        -Если в строке Cmax=< 0.05 ПДК, то Фоп,
Uoп,Ви,Ки не печатаются |
y= 37831 : Y-строка 1 Cmax= 0.000
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 42318 : 47729 : 31496 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 4786 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 : 36907 :
x= 53140: 58551:
y= 32420 : Y-строка 2 Cmax= 0.000
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -12724 : -1
x= 53140: 58551:
y= 27009 : Y-строка 3 Cmax= 0.000
x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
```

```
x= 53140: 58551:
     -----:
     y= 21598 : Y-строка 4 Cmax= 0.000
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
     x= 53140: 58551:
     y= 16187 : Y-строка 5 Cmax= 0.000
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 36907 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 : 47807 
     x= 53140: 58551:
     y= 10776 : Y-строка 6 Cmax= 0.000
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
     x= 53140: 58551:
     <del>y= 5365 : Y-строка 7 Стах= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=320)</del>
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
  O_{\mathbf{C}}: 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000; 0.00
 \overset{\bullet}{\text{Ce}} : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000
     x= 53140: 58551:
  Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
     y= -46: Y-строка 8 Cmax= 0.000
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
     x= 53140: 58551:
     ----:
     <del>y= -5457 : </del>Y-строка 9 Стах= 0.000
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
     x= 53140: 58551:
     y=-10868 : Y-строка 10 Cmax= 0.000
     x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32318 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 
     x= 53140: 58551:
     <del>y=-16279 : </del>Y-строка 11 Стах= 0.000
     x = -334\overline{37} : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 : -12617 :
```

```
x= 53140: 58551:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
      Координаты точки : X = 9851.5 \text{ м}, Y = 5365.0 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0000802 доли ПДКмр|
                     0.0000006 мг/м3
 Достигается при опасном направлении 320 град.
            и скорости ветра 2.50 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                 ВКЛАДЫ ИСТОЧНИКОВ
В сумме = 0.0000802 100.00
                                                        - 1
7. Суммарные концентрации в узлах расчетной сетки.
 ПК ЭРА v3.0. Модель: MPK-2014
Город :003 Атырау.
Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
Примесь :0333 - Сероводород (Дигидросульдыд) (518)
         ПДКмр для примеси 0333 = 0.008 \text{ мг/м3}
   Параметры_расчетного_прямоугольника_No_1 | Координаты центра: X= 12557 м; Y= 10776 | Длина и ширина : L= 91987 м; B= 54110 м | | Шаг сетки (dX=dY): D= 5411 м |
   Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
   Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2 (Ump) \ \text{м/c}
   Заказан расчет на высоте Z = 3 метров
  (Символ ^ означает наличие источника вблизи расчетного узла)
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2-| .
3-| . . . . . . . . . . . . . . .
6-C . . .
      . . . . . . . 0.000 . .
10-| . . . . . . . . . . . . .
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
```

В целом по расчетному прямоугольнику: Максимальная концентрация ———— См = 0.000802 долей ПДКмр = 0.0000006 MF/M3

Достигается в точке с координатами: Хм = 9851.5 м

(X-столбец 9, Y-строка 7) — Yм = 5365.0 м На высоте Z = 3.0 м При опасном направлении ветра : 320 град. и "опасной" скорости ветра : 2.50 м/с

9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31

```
Примесь :0333 - Сероводород (Дигидросульфид) (518)
                                         ПДКмр для примеси 0333 = 0.008 \text{ мг/м3}
           Коды источников уникальны в рамках всего предприятия
           Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
            Всего просчитано точек: 122
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
            Заказан расчет на высоте Z = 3 метров
                                                                                    _Расшифровка_обозначений
                                  Qc - суммарная концентрация [доли ПДК]
                                   Сс - суммарная концентрация [мг/м.куб]
                                   Фоп- опасное направл. ветра [ угл. град.] |
                                 | Uоп- опасная скорость ветра [ м/с ] |
            -Если в расчете один источник, то его вклад и код не печатаются
y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
 x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759:
v= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
x= -988: -987: -1011: -1042: -1057: -1057: -1040: -1009: -962: -901: -827: -741: -644: -538: -424:
y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
 x= -304: -181: -55: 70: 193: 313: 707: 692: 664: 653: 543: 545: 543: 554: 581:
y = 12912 \colon 13024 \colon 13128 \colon 13223 \colon 13307 \colon 13378 \colon 13436 \colon 13479 \colon 13507 \colon 13520 \colon 13516 \colon 13498 \colon 13463 \colon 12973 \colon 16312 \colon 13479 \colon 
 x = 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
y=16312:16437:16558:16674:16783:16883:16973:17052:17117:17169:17206:17228:17233:17224:17198:17206:17228:17233:17224:17198:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17216:17
 x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
y = 17157: 16011: 14864: 14862: 14846: 14786: 14713: 12692: 10672: 10670: 10644: 10555: 10455: 10346: 10231: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011: 102011:
 x = 5311:\ 8078:\ 10845:\ 10845:\ 10885:\ 10995:\ 11097:\ 13555:\ 16012:\ 16011:\ 16044:\ 16132:\ 16208:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16
v= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
x = 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 126390: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12
y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
 x=12417; 12297; 12173; 12048; 11923; 11800; 11681; 9374; 6823; 6822; 6808; 6719; 6620; 6512; 6396;
 y= -942: -962:
 x= 6276: 6152:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                         Координаты точки : X = 9373.6 \text{ м}, Y = 2432.8 \text{ м}, Z = 3.0 \text{ м}
 Максимальная суммарная концентрация | Cs= 0.0000295 доли ПДКмр|
                                                                                                0.0000002 мг/м3
     Достигается при опасном направлении 346 град.
                                                          и скорости ветра 5.20 м/с
Всего источников: 1. В таблице заказано вкладчиков 20, но не более 95.0% вклада
```

__ВКЛАДЫ_ИСТОЧНИКОВ_

```
1 | 0005 | T | 0.00001820| | 0.0000295 | 100.00 | 100.00 | | 1.6203080 |
            B \text{ cymme} = 0.0000295 \quad 100.00
```

3. Исходные параметры источников. ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584) ПДКмр для примеси 0337 = 5.0 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников Коды источников уникальны в рамках всего предприятия

```
Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2
                                                                                  Y2 |Alf| F | КР |Ди| Выброс
                          ~м~~|~м/с~|~м3/с~~|градС|~
                                                                                                                                    -|rp.|----|----|---|---|----|----|
             2.0 0.080 147.8 1.59 450.0 7572.63
                                                                  9006.09
                                                                                                 1.0 1.00 0 0.9386111
             2.0 0.080 390.8 6.93 450.0 8154.39
                                                                 10469.59
                                                                                                   1.0 1.00 0 2.204000
             2.0 0.10 240.0 4.04 450.0 7975.90
                                                                                                 1.0 1.00 0 0.8507778

    2.0
    0.080
    7.67
    0.0810
    450.0
    9240.02
    8427.24

    2.0
    0.10
    243.7
    4.10
    450.0
    8565.74
    9306.51

    2.0
    0.080
    257.7
    2.78
    450.0
    8652.43
    7806.04

                                                                  8427.24
                                                                                                  1.0 1.00 0 0.3039722
0006 T
                                                                                                 1.0\; 1.00 \quad 0\; 0.6406667
0007 T
                                                                                                 1.0 1.00 0 0.0034000
```

4. Расчетные параметры См, Им, Хм

ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31

Сезон :ЛЕТО (температура воздуха 30.9 град.С) Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584) ПДКмр для примеси 0337 = 5.0 мг/м3

Коды источников уникальны в рамках всего предприятия

<u>Источники</u>	Их расчетные параметры
Номер Код М Тип Ст	Um Xm
-п/п- -Ист [доли ПДК]- [м/с] [м]	
1 0001 0.938611 T 0.093577	7 36.24 129.9
2 0002 2.204000 T 0.050475	5 148.72 263.1
3 0003 0.850778 T 0.041805	5 73.52 185.0
4 0004 0.303972 T 0.548213	3 1.67 27.3
5 0006 0.640667 T 0.031000) 74.66 186.4
6 0007 0.003400 T 0.000194	4 63.17 171.5
Суммарный Mq= 4.941428 г/с	
Сумма См по всем источникам = 0.765265 долей ПДК	
Средневзвешенная опасная скорость ветра = 22.49 м/с	

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: MPК-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31

Сезон :ЛЕТО (температура воздуха 30.9 град.С)

Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Расчет по прямоугольнику 001: 91987x54110 с шагом 5411

Расчет по границе санзоны. Покрытие РП 001

Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с

Средневзвешенная опасная скорость ветра Ucв= 22.49 м/с

6. Результаты расчета в виде таблицы.

ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31

Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)

ПДКмр для примеси 0337 = 5.0 мг/м3

Коды источников уникальны в рамках всего предприятия

Расчет проводился на прямоугольнике 1

с параметрами: координаты центра X= 12557, Y= 10776

размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с Заказан расчет на высоте Z = 3 метров

```
_Расшифровка_обозначений
                                                             | Qc - суммарная концентрация [доли ПДК]
                                                                 Сс - суммарная концентрация [мг/м.куб]
                                                               Фоп- опасное направл. ветра [ угл. град.] |
                                                               Uоп- опасная скорость ветра [ м/с ] |
Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                                             Ки - код источника для верхней строки Ви
                    | -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
  <u>y= 37831 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)</u>
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 : 26085 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  x= 53140: 58551:
  Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
  у= 32420 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  x= 53140: 58551:
  Qc: 0.000: 0.000:
  Čc: 0.000: 0.000:
  у= 27009 : Y-строка 3 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=186)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
  y= 21598 : Y-строка 4 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=188)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000:
    x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
  y= 16187 : Y-строка 5 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 \overset{\bullet}{\text{Ce}} : 0.000: \ 0.000: \ 0.000: \ 0.001: \ 0.001: \ 0.001: \ 0.002: \ 0.003: \ 0.003: \ 0.002: \ 0.001: \ 0.001: \ 0.001: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.000: \ 0.00
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
  y= 10776: Y-строка 6 Cmax= 0.002 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
Qe: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
```

```
Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.010: 0.010: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000:
 x= 53140 · 58551 ·
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 у= 5365 : Y-строка 7 Cmax= 0.002 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=348)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.005: 0.009: 0.004: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000:
   x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y= -46: Y-строка 8 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=350)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 <del>y=-5457 : </del>Y-строка 9 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=353)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
 Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
Cc: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y=-10868: Y-строка 10 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=355)
   x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -1
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
C_{c} = 0.000 \cdot 0.000 \cdot 0.000 \cdot 0.000 \cdot 0.001 \cdot 0.000 \cdot 0.00
 x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y=-16279: Y-строка 11 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=356)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
   Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                                    Координаты точки : X = 9851.5 \text{ м}, Y = 10776.0 \text{ м}, Z = 3.0 \text{ м}
   Максимальная суммарная концентрация | Cs= 0.0020472 доли ПДКмр|
                                                                                                                                       0.0102359 мг/м3
```

Достигается при опасном направлении 195 град.

```
и скорости ветра 2.38 м/с
```

Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада

```
B \text{ cymme} = 0.0020445 \quad 99.87
Суммарный вклад остальных = 0.0000027 0.13 (5 источников)
```

7. Суммарные концентрации в узлах расчетной сетки.

ПК ЭРА v3.0. Модель: МРК-2014

Город :003 Атырау.

Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584) ПДКмр для примеси 0337 = 5.0 мг/м3

```
Параметры_расчетного_прямоугольника_No 1_
| Координаты центра : X= 12557 м; Y= 10776 |
| Длина и ширина : L= 91987 м; B= 54110 м |
| Шаг сетки (dX=dY) : D= 5411 м
```

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с Заказан расчет на высоте Z = 3 метров

(Символ ^ означает наличие источника вблизи расчетного узла)

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.000\ 0.002\ 0.002\ 0.001\ \ .
         0.001\ 0.002\ 0.001\ \ .
         . 0.000 . . .
                     . |- 8
```

В целом по расчетному прямоугольнику: Максимальная концентрация — \sim CM = 0.0020472 долей ПДКмр = 0.0102359 мг/м3 Достигается в точке с координатами: Xm = 9851.5 м (X-столбец 9, Y-строка 6) Ym = 10776.0 м На высоте Z = 3.0 м При опасном направлении ветра : 195 град.

и "опасной" скорости ветра : 2.38 м/с

9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014

Город :003 Атырау.

Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584) ПДКмр для примеси 0337 = 5.0 мг/м3

Коды источников уникальны в рамках всего предприятия Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001 Всего просчитано точек: 122

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с Заказан расчет на высоте Z = 3 метров

```
Расшифровка_обозначений
                                | Qc - суммарная концентрация [доли ПДК]
                                  Сс - суммарная концентрация [мг/м.куб]
                                  Фоп- опасное направл. ветра [ угл. град.] |
                                 Uoп- опасная скорость ветра [ м/с ] |
Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |
                              | Ки - код источника для верхней строки Ви |
  y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
  x = 6152; \ 6026; \ 5901; \ 5779; \ 5660; \ 5548; \ 5445; \ 3260; \ 1076; \ 1077; \ 1052; \ 960; \ 880; \ 813; \ 759; \ 1076; \ 1077; \ 1052; \ 960; \ 880; \ 813; \ 759; \ 1076; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 1077; \ 
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
 y= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
  x= -988: -987: -1011: -1042: -1057: -1057: -1040: -1009: -962: -901: -827: -741: -644: -538: -424:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003:
 y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
 x= -304: -181: -55: 70: 193: 313: 707: 692: 664: 653: 543: 545: 543: 554: 581:
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
 y = 12912: 13024: 13128: 13223: 13307: 13378: 13436: 13479: 13507: 13520: 13516: 13498: 13463: 12973: 16312: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 13612: 136
 x= 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
 y= 16312: 16437: 16558: 16674: 16783: 16883: 16973: 17052: 17117: 17169: 17206: 17228: 17233: 17224: 17198:
 x = 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193: 4168: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 4269: 
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
 y= 17157: 16011: 14864: 14862: 14846: 14786: 14713: 12692: 10672: 10670: 10644: 10555: 10455: 10346: 10231:
 x = 5311:\ 8078:\ 10845:\ 10845:\ 10885:\ 10995:\ 11097:\ 13555:\ 16012:\ 16011:\ 16044:\ 16132:\ 16208:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16271:\ 16320:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.003: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
 y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
  x = 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 126390: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.005: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
 y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
  x= 12417: 12297: 12173: 12048: 11923: 11800: 11681: 9374: 6823: 6822: 6808: 6719: 6620: 6512: 6396:
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002
 y= -942: -962:
  x= 6276: 6152:
 Oc: 0.000: 0.000:
 Cc: 0.002: 0.002:
```

Результаты расчета в точке максимума $\,$ ПК ЭРА v3.0. Модель: МРК-2014 Координаты точки : X= 14635.0 м, Y= 5745.4 м, Z= 3.0 м

Максимальная суммарная концентрация | Cs= 0.0009067 доли ПДКмр|

```
TOO «TIMAL CONSULTING GROUP»
                       0.0045334 мг/м3
 Достигается при опасном направлении 296 град.
            и скорости ветра 5.20 м/с
Всего источников: 6. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                              ВКЛАДЫ ИСТОЧНИКОВ
  |Ном.| Код |Тип| Выброс |
              0.3040| 0.0004522 | 49.88 | 49.88 | 0.001487795
              0.9386|\ \ 0.0002739\ |\ \ 30.21\ |\ 80.09\ |\ 0.000291857
 2 | 0001 | T
              0.8508|\ 0.0000944\ |\ 10.41\ |\ 90.50\ |\ 0.000110946
 3 | 0003 | T
              0.6407 | 0.0000649 | 7.16 | 97.66 | 0.000101332 |
 4 | 0006 | T |
          B \text{ cymme} = 0.0008855 \quad 97.66
Суммарный вклад остальных = 0.0000212 2.34 (2 источника)
                                                                1
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау.
  Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
  Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
            Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Коды источников уникальны в рамках всего предприятия
Код |Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 |
                                                        Y2 |Alf| F | КР |Ди| Выброс
~|Γp.|~~~|~~~~|~~|~~~Γ/c~~
                                                                  1.0 1.00 0 0.4390278
                                                                  1.0 1.00 0 1.102000
0003 T
         2.0 0.10 240.0 4.04 450.0 7975.90
                                                                 1.0 1.00 0 0.3979445
                                            8516.03
         2.0\ 0.080\ \ 7.67\ \ 0.0810\ 450.0\ \ \ 9240.02
                                                                  1.0 1.00 0 0.1421806
                                            8427.24
         2.0\ 0.050\ 0.800\ \ 0.0016\ \ \ 0.0\ \ \ 8190.87
                                             7357.24
                                                                  1.0 1.00 0 0.0064818
0006 T
         2.0 0.10 243.7 4.10 450.0 8565.74 9306.51
                                                                  1.0 1.00 0 0.2996667
0007 T 2.0 0.080 257.7 2.78 450.0 8652.43 7806.04
                                                                  1.0\ 1.00\ \ 0\ 0.0017000
4. Расчетные параметры См, Uм, Xм ПК ЭРА v3.0. Модель: МРК-2014
  Город :003 Атырау.
  Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
  Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
   Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 \text{ мг/м3}
  Коды источников уникальны в рамках всего предприятия
          Источники
                                      Их расчетные параметры_
2 | 0002 |
            1.102000 T
                        0.126187 | 148.72 |
                                          263.1
            0.397944| T |
                        0.097770 | 73.52 |
  3 | 0003
                                           185.0 |
           0.142181 T
  4 | 0004
                        1.282112 | 1.67
  5 | 0005
            0.006482 T
                        0.231507 | 0.50
  6 | 0006
            0.299667| T
                        0.072500 \mid 74.66
                                          186.4
  7 | 0007 |
           0.001700| T | 0.000486 | 63.17 | 171.5
|Суммарный Mq= 2.389001 г/с
Сумма См по всем источникам = 2.029412 долей ПДК
Средневзвешенная опасная скорость ветра = 20.49 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :003 Атырау
  Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
  Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
   Сезон :ЛЕТО (температура воздуха 30.9 град.С)
  Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
            Растворитель РПК-265П) (10)
        ПДКмр для примеси 2754 = 1.0 \text{ мг/м3}
```

Расчет по прямоугольнику 001: 91987x54110 с шагом 5411 Расчет по границе санзоны. Покрытие РП 001 Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с Средневзвешенная опасная скорость ветра Ucв= 20.49 м/с

```
6. Результаты расчета в виде таблицы.
       ПК ЭРА v3.0. Модель: MPK-2014
           Город :003 Атырау.
           Тород 1005 Агарау.
Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
           Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
                                                          Растворитель РПК-265П) (10)
                                       ПДКмр для примеси 2754 = 1.0 \text{ мг/м}3
           Коды источников уникальны в рамках всего предприятия
           Расчет проводился на прямоугольнике 1
           с параметрами: координаты центра X= 12557, Y= 10776 размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
            Заказан расчет на высоте Z = 3 метров
                                                                                   Расшифровка обозначений
                                | Qc - суммарная концентрация [доли ПДК]
                                  Сс - суммарная концентрация [мг/м.куб]
                                  Фоп- опасное направл. ветра [ угл. град.] |
                                  Uoп- опасная скорость ветра [ м/с ]
                                  Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                Ки - код источника для верхней строки Ви |
          |-Если в строке Стах=< 0.05 ПДК, то Фоп, Uоп, Ви, Ки не печатаются |
 y= 37831 : Y-строка 1 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
   x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Ce: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000
 y= 32420 : Y-строка 2 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=184)
  x=-33437 :-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 <u>y= 27009 : Y-строка</u> 3 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=186)
  x=-33437:-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000:
 y= 21598 : Y-строка 4 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=188)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Ce: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
 Qc: 0.000: 0.000:
 Cc: 0.000: 0.000
```

```
x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 36907 : 42318 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 : 47729 
Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 \overset{\bullet}{\text{Ce}} : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.001 : 0.001 : 0.001 : 0.002 : 0.001 : 0.001 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000 : 0.000
    x= 53140: 58551:
  Oc: 0.000: 0.000
  Cc: 0.000: 0.000:
    y= 10776: Y-строка 6 Cmax= 0.005 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=195)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.005: 0.005: 0.005: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000
    y= 5365 : Y-строка 7 Cmax= 0.004 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=348)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.004: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
  Ce: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.004: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
    x= 53140: 58551:
    Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y= -46: Y-строка 8 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=350)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
  Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
  Qc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    y=-5457: Y-строка 9 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=353)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
      x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    <u>y=-10868</u>: Y-строка 10 Cmax= 0.000 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=355)
      x=-33437 :-28026:-22615:-17204:-11793: -6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
    Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000:
    <del>y=-16279 : </del>Y-строка 11 Стах= 0.000 долей ПДК (х= 9851.5, z= 3.0; напр.ветра=356)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : \ 4441 : \ 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20674 : 20
```

и "опасной" скорости ветра : 2.34 м/с

```
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: МРК-2014
            Координаты точки : X = 9851.5 \text{ м}, Y = 10776.0 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0048297 доли ПДКмр|
                                               0.0048297 мг/м3
   Достигается при опасном направлении 195 град.
                           и скорости ветра 2.34 м/с
Всего источников: 7. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                                       __ВКЛАДЫ_ИСТОЧНИКОВ
1 | 0004 | T |       0.1422|     0.0047802 |   98.98 | 98.98 | 0.033620805 |
 В сумме = 0.0047802 98.98 |
Суммарный вклад остальных = 0.0000495 1.02 (6 источников)
7. Суммарные концентрации в узлах расчетной сетки.
   ПК ЭРА v3.0. Модель: MPK-2014
      Город :003 Атырау.
      Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
      Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
                             Растворитель РПК-265П) (10)
                    ПДКмр для примеси 2754 = 1.0 \text{ мг/м3}
       ____Параметры_расчетного_прямоугольника_No_1 | Координаты центра : X= 12557 м; Y= 10776 | Длина и ширина : L= 91987 м; B= 54110 м |
        Шаг сетки (dX=dY) : D= 5411 м
      Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
      Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
      Заказан расчет на высоте Z = 3 метров
   (Символ ^ означает наличие источника вблизи расчетного узла)
       1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18
 2-| .
 . . . 0.001 0.001 0.001 0.002 0.001 0.001 . . .
                                                                                                                                                       . . . . |-5
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 В целом по расчетному прямоугольнику: Максимальная концентрация ------> См = 0.0048297 долей ПДКмр
                                                    = 0.0048297 \text{ M}\Gamma/\text{M}3
Достигается в точке с координатами: Xм = 9851.5 м (X-столбец 9, Y-строка 6) Yм = 10776.0 м На высоте Z = 3.0 м При опасном направлении ветра : 195 град.
```

```
9. Результаты расчета по границе санзоны.
        ПК ЭРА v3.0. Модель: MPК-2014
             Город :003 Атырау.
              Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
              Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
              Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);
                                                                Растворитель РПК-265П) (10)
                                             ПДКмр для примеси 2754 = 1.0 \text{ мг/м}3
             Коды источников уникальны в рамках всего предприятия
             Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
              Всего просчитано точек: 122
             Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
              Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
              Заказан расчет на высоте Z = 3 метров
                                                                                              Расшифровка_обозначений_
                                     | Qc - суммарная концентрация [доли ПДК] |
                                       Сс - суммарная концентрация [мг/м.куб]
                                       Фоп- опасное направл. ветра [ угл. град.] |
                                       Uоп- опасная скорость ветра [ м/с ] |
                                       Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                    Ки - код источника для верхней строки Ви |
 y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050:
  x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759:
 \begin{array}{l} Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.00
                  7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
  x = -988: \ -987: \ -1011: \ -1042: \ -1057: \ -1057: \ -1040: \ -1009: \ -962: \ -901: \ -827: \ -741: \ -644: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -538: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -424: \ -4
 Oc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001;
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
 x = -304; -181; -55; \phantom{0}70; \phantom{0}193; \phantom{0}313; \phantom{0}707; \phantom{0}692; \phantom{0}664; \phantom{0}653; \phantom{0}543; \phantom{0}545; \phantom{0}543; \phantom{0}554; \phantom{0}581; \phantom{0}
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001:
 y = 12912: 13024: 13128: 13223: 13307: 13378: 13436: 13479: 13507: 13520: 13516: 13498: 13463: 12973: 16312: 13616: 13498: 13463: 12973: 16312: 13616: 13498: 13463: 12973: 16312: 13616: 13498: 13463: 12973: 16312: 13616: 13498: 13463: 12973: 16312: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 16316: 163
   x= 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
 Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 y=16312:16437:16558:16674:16783:16883:16973:17052:17117:17169:17206:17228:17233:17224:17198:17106:17206:17228:17233:17224:17198:17106:17206:17228:17233:17224:17198:17106:17206:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17208:17
  x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
 Oc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001
 \widehat{Ce}: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 
 y = 17157: 16011: 14864: 14862: 14846: 14786: 14713: 12692: 10670: 10670: 10644: 10555: 10455: 10346: 10231: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 10670: 106
   x= 5311: 8078: 10845: 10844: 10885: 10995: 11097: 13555: 16012: 16011: 16044: 16132: 16208: 16271: 16320:
 Qc: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 Cc: 0.001: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
 y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
  x= 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532:
Qc: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.002; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.0
Ce: 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.002; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.0
 y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
```

```
x= 12417: 12297: 12173: 12048: 11923: 11800: 11681: 9374: 6823: 6822: 6808: 6719: 6620: 6512: 6396:
Qc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001
C_{c} = 0.001 \cdot 0.002 \cdot 0.001 \cdot 0.00
y= -942: -962:
x= 6276: 6152:
Oc: 0.001: 0.001:
Cc: 0.001: 0.001:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
           Координаты точки : X = 14635.0 \text{ м}, Y = 5745.4 \text{ м}, Z = 3.0 \text{ м}
Максимальная суммарная концентрация | Сs= 0.0021289 доли ПДКмр|
                                              0.0021289 мг/м3
  Достигается при опасном направлении 296 град.
                        и скорости ветра 5.20 м/с
Всего источников: 7. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                             _ВКЛАДЫ_ИСТОЧНИКОВ_
0.3979 | 0.0002208 | 10.37 | 90.15 | 0.000554732
  3 | 0003 | T |
  4 | 0006 | T |
                             0.2997 | 0.0001518 | 7.13 | 97.28 | 0.000506659 |
                     B \text{ cymme} = 0.0020709 \quad 97.28
 Суммарный вклад остальных = 0.0000580 2.72 (3 источника)
3. Исходные параметры источников.
   ПК ЭРА v3.0. Модель: MPК-2014
     Город :003 Атырау.
     Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
     Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                         цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                         кремнезем, зола углей казахстанских месторождений) (494)
                 ПДКмр для примеси 2908 = 0.3 \text{ мг/м3}
     Коэффициент рельефа (КР): индивидуальный с источников
     Коэффициент оседания (F): индивидуальный с источников
     Коды источников уникальны в рамках всего предприятия
Код |Тип| Н | D | Wo | V1 | Т | X1 |
                                                                                                                    Y2 |Alf| F | КР |Ди| Выброс
                                                                                     Y1 |
                                                                                                    X2
                       ~м~~|~м~~|~м/с~|~м3/с~~|градС|-
                                                                                                                                                                                                                     -|~~|~~<sub>Γ</sub>/c
 6001 П1
                     2.0
                                                             7051.04
                                                                               7919.48
                                                                                                                      5.00 0 3.0 1.00 0 0.0699000
                                                    0.0
 6002 П1 2.0
                                                    0.0\quad 8932.12\quad 10326.43
                                                                                                       5.00
                                                                                                                       5.00 \ \ 0 \ 3.0 \ 1.00 \ \ 0 \ 0.0699000
 6003 III
                    2.0
                                                    0.0
                                                              6232.69
                                                                               9096.86
                                                                                                       5.00
                                                                                                                      5.00 \ \ 0 \ 3.0 \ 1.00 \ \ 0 \ \ 2.166840
 6004 III
                     2.0
                                                    0.0
                                                              7701 15 10155 21
                                                                                                       5.00
                                                                                                                       5 00 0 3 0 1 00 0 3 250000
6005 П1 2.0
                                                              7380.21 9597.08
                                                                                                      5.00
                                                                                                                      5.00 0 3.0 1.00 0 0.0000790
                                                    0.0
4. Расчетные параметры См, Им, Хм
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :003 Атырау.
     Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
                                Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
     Вар.расч. :5
     Сезон :ЛЕТО (температура воздуха 30.9 град.С)
     Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                         цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                         кремнезем, зола углей казахстанских месторождений) (494)
                 ПДКмр для примеси 2908 = 0.3 \text{ мг/м3}
     Коды источников уникальны в рамках всего предприятия
  - Для линейных и площадных источников выброс является суммарным
    по всей площади, а Cm - концентрация одиночного источника,
   расположенного в центре симметрии, с суммарным М
                      Источники
                                                                              Их расчетные параметры_
                          M |Тип | Cm | Um | Xm |
--------|-[доли ПДК]-|--[м/c]--|---[м]---|
|Номер| Код |
|-п/п-|-Ист.-|-
                       | 0.069900| III | 24.965847 | 0.50 | 5.7 | 0.069900 | III | 24.965847 | 0.50 | 5.7 | 2.166840 | III | 773.919922 | 0.50 | 5.7 |
   1 | 6001 |
    2 | 6002 |
   3 | 6003 |
                        3.250000 П1 |1160.786865 | 0.50 |
   4 | 6004
    5 | 6005 | 0.000079 | Π1 | 0.028216 | 0.50 | 5.7 |
|Суммарный Mq= 5.556719 г/с
```

```
Сумма См по всем источникам = 1984.666 долей ПДК
 Средневзвешенная опасная скорость ветра =
                                                                                                                                                                                              0.50 \text{ m/c}
 5. Управляющие параметры расчета
       ПК ЭРА v3.0. Модель: MPК-2014
            Город :003 Атырау.
            Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
           Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
            Сезон :ЛЕТО (температура воздуха 30.9 град.С)
           Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                                                      цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                                                      кремнезем, зола углей казахстанских месторождений) (494)
                                     ПДКмр для примеси 2908 = 0.3 \text{ мг/м3}
              Расчет по прямоугольнику 001: 91987x54110 с шагом 5411
           Расчет по границе санзоны. Покрытие РП 001
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
           Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
           Средневзвешенная опасная скорость ветра Ucb=0.5 \text{ м/c}
 6. Результаты расчета в виде таблицы.
       ПК ЭРА v3.0. Модель: MPK-2014
           Город :003 Атырау.
Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «М-Ali Petrol»
Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
           Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                                                     цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                                                      кремнезем, зола углей казахстанских месторождений) (494)
                                     ПДКмр для примеси 2908 = 0.3 \text{ мг/м3}
           Коды источников уникальны в рамках всего предприятия
           Расчет проводился на прямоугольнике 1
           с параметрами: координаты центра X=12557, Y=10776
                                              размеры: длина(по X)= 91987, ширина(по Y)= 54110, шаг сетки= 5411
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с
           Заказан расчет на высоте Z = 3 метров
                                                                             Расшифровка_обозначений_
                               Qc - суммарная концентрация [доли ПДК]
                                Сс - суммарная концентрация [мг/м.куб]
                                Фоп- опасное направл. ветра [ угл. град.] |
                                Uoп- опасная скорость ветра [ м/с ]
                                Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                              Ки - код источника для верхней строки Ви
         |-Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
 y= 37831 : Y-строка 1 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=185)
   x=-33437:-28026:-22615:-17204:-11793:-6382: -971: 4441: 9852: 15263: 20674: 26085: 31496: 36907: 42318: 47729:
 Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
 y= 32420 : Y-строка 2 Cmax= 0.001 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=187)
  x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -12726 : -1
 \Omega_{\rm G} \cdot 0.000 \cdot 0.000 \cdot 0.000 \cdot 0.000 \cdot 0.001 \cdot 0.000 \cdot 0.
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
 x= 53140: 58551:
 Qc: 0.000: 0.000
Cc: 0.000: 0.000:
 y= 27009 : Y-строка 3 Cmax= 0.002 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=189)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4868 : 4
 Oc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000:
 Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
```

```
x= 53140: 58551:
  Oc: 0.000: 0.000:
    Cc: 0.000: 0.000:
    y= 21598 : Y-строка 4 Cmax= 0.004 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=192)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 : 26087 
  Qc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.003: 0.004: 0.004: 0.003: 0.002: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  \tilde{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
    x= 53140: 58551:
  Oc: 0.000: 0.000:
  Cc: 0.000: 0.000
    y= 16187 : Y-строка 5 Cmax= 0.016 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=201)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4411 : 9852 : 4441 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9
  Oc: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.003: 0.005: 0.011: 0.016: 0.007: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.002: 0.003: 0.005: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    x= 53140: 58551:
    Qc: 0.000: 0.000:
    Cc: 0.000: 0.000:
    y= 10776: Y-строка 6 Cmax= 0.159 долей ПДК (x= 9851.5, z= 3.0; напр.ветра=253)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
    Oc: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.009: 0.080: 0.159: 0.011: 0.004: 0.002: 0.001: 0.001: 0.000: 0.000:
  Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.003: 0.024: 0.048: 0.003: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000:
                                                                                                     : 92: 93: 93: 95: 98: 133: 253: 264: 266: 267: 268: 268:
  Фоп:
                                                                                                     : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20 : 5.20
  Uоп:
                                                                                                                            : 0.001: 0.001: 0.002: 0.005: 0.080: 0.145: 0.008: 0.002: 0.001: 0.001: :
                                                                                                                                  : 6004 : 6004 : 6004 : 6004 : 6003 : 6004 : 6004 : 6004 : 6004 : 6004 : : :
                                                                                                                                                             : 0.001: 0.002: 0.004: 0.001: 0.010: 0.003: 0.001: 0.001:
                                                                                                                                                                      : 6003: 6003: 6003: 6001: 6003: 6003: 6003: 6003:
                                                                                         Ви:
                                                                                                                                                                                                                                                                                                                                                                                            : : : : :
  Ки:
    x= 53140: 58551:
  Qc: 0.000: 0.000:
  Cc : 0.000: 0.000
  Фоп:
  Uоп:
Ви:
Ви:
  Ки:
Ви:
  Ки:
    y= 5365 : Y-строка 7 Cmax= 0.031 долей ПДК (x= 4440.5, z= 3.0; напр.ветра= 28)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4441 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9852 : 4411 : 9
  Qc: 0.000: 0.000: 0.001: 0.001: 0.002: 0.003: 0.010: 0.031: 0.020: 0.007: 0.003: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.0
\tilde{Cc}: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.003: 0.009: 0.006: 0.002: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 
    x= 53140: 58551:
  Oc: 0.000: 0.000
  Cc: 0.000: 0.000:
    y= -46: Y-строка 8 Cmax= 0.006 долей ПДК (x= 4440.5, z= 3.0; напр.ветра= 15)
    x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674
```

Qe: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.004: 0.006: 0.005: 0.003: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.0

```
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.002: 0.002: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
x= 53140 · 58551 ·
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
у= -5457 : Y-строка 9 Cmax= 0.003 долей ПДК (x= 4440.5, z= 3.0; напр.ветра= 10)
x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 26085 : 31496 : 36907 : 42318 : 47729 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 : 32674 
Qc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.002: 0.003: 0.002: 0.002: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 x= 53140: 58551:
Oc: 0.000: 0.000:
Cc: 0.000: 0.000:
<u>y=-10868</u>: Y-строка 10 Cmax= 0.001 долей ПДК (x= 4440.5, z= 3.0; напр.ветра= 7)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : 26085 : 31496 : 36907 : 42318 : 47729 : 47828 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 : 47829 
Qc: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000:
<del>y=-16279 : </del>Y-строка 11 Cmax= 0.001 долей ПДК (x= 4440.5, z= 3.0; напр.ветра= 6)
 x = -33437 : -28026 : -22615 : -17204 : -11793 : -6382 : -971 : 4441 : 9852 : 15263 : 20674 : 26085 : 31496 : 36907 : 42318 : 47729 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -12618 : -1
Oc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
x= 53140: 58551:
Qc: 0.000: 0.000:
Cc: 0.000: 0.000
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                      Координаты точки : X = 9851.5 \text{ м}, Y = 10776.0 \text{ м}, Z = 3.0 \text{ м}
  Максимальная суммарная концентрация | Cs= 0.1590723 доли ПДКмр|
                                                                                             0.0477217 мг/м3
     Достигается при опасном направлении 253 град.
                                               и скорости ветра 5.20 м/с
Всего источников: 5. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                                                                                     __ВКЛАДЫ_ИСТОЧНИКОВ_
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф влияния
    ----- b=C/M ----|
                                          B \text{ суммe} = 0.1554149 \quad 97.70
  Суммарный вклад остальных = 0.0036574 2.30 (3 источника)
7. Суммарные концентрации в узлах расчетной сетки.
      ПК ЭРА v3.0. Модель: MPK-2014
           Город :003 Атырау.
           Объект :0005 OBOC «Проект разраб. м/р Женгельды TOO «M-Ali Petrol»
           Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31
          Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                                                 цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,
                                                 кремнезем, зола углей казахстанских месторождений) (494)
                                  ПДКмр для примеси 2908 = 0.3 \text{ мг/м3}
                                   _Параметры_расчетного_прямоугольника_No 1_
                Координаты центра : X= 12557 м; Y= 10776 | Длина и ширина : L= 91987 м; B= 54110 м | Шаг сетки (dX=dY) : D= 5411 м |
```

TOO «TIMAL CONSULTING GROUP» Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с Заказан расчет на высоте Z = 3 метров (Символ ^ означает наличие источника вблизи расчетного узла) $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18$ 3-| . . . 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 |-3 4-| . . . 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.003 0.002 0.001 0.001 0.001 |-4 5-| . . . 0.001 0.001 0.001 0.003 0.005 0.011 0.016 0.007 0.003 0.002 0.001 0.001 | - 5 7-| . . . 0.001 0.001 0.002 0.003 0.010 0.031 0.020 0.007 0.003 0.002 0.001 0.001 | -7 8-| . . . 0.001 0.001 0.001 0.002 0.004 0.006 0.005 0.003 0.002 0.001 0.001 0.001 | - 8 9-| . . . 0.000 0.001 0.001 0.001 0.002 0.003 0.002 0.002 0.001 0.001 0.001 |-9 11-| 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 . 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 В целом по расчетному прямоугольнику: Максимальная концентрация -----> См = 0.1590723 долей ПДКмр = 0.0477217 мг/м3 Достигается в точке с координатами: Хм = 9851.5 м $\begin{array}{cccc} (\text{ X-столбец 9, Y-строка 6}) & \text{YM} = 10776.0 \text{ M} \\ \text{ На высоте } \text{ Z} = & 3.0 \text{ M} \\ \text{При опасном направлении ветра} : & 253 \text{ град.} \end{array}$ и "опасной" скорости ветра : 5.20 м/с 9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: МРК-2014 Город :003 Атырау. Объект :0005 ОВОС «Проект разраб. м/р Женгельды ТОО «M-Ali Petrol» Вар.расч. :5 Расч.год: 2025 (СП) Расчет проводился 21.04.2025 15:31 Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) ПДКмр для примеси 2908 = 0.3 мг/м3Коды источников уникальны в рамках всего предприятия Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001 Всего просчитано точек: 122 Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 5.2(Uмр) м/с Заказан расчет на высоте Z = 3 метров _Расшифровка_обозначений | Qc - суммарная концентрация [доли ПДК] Сс - суммарная концентрация [мг/м.куб] Фоп- опасное направл. ветра [угл. град.] | Uоп- опасная скорость ветра [м/с] | Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] Ки - код источника для верхней строки Ви y= -962: -966: -954: -927: -884: -827: -757: 936: 2629: 2630: 2648: 2734: 2831: 2937: 3050: x= 6152: 6026: 5901: 5779: 5660: 5548: 5445: 3260: 1076: 1077: 1052: 960: 880: 813: 759: Qc: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.006: 0.006: 0.008: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009:

```
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
y= 7455: 7456: 7518: 7640: 7765: 7890: 8015: 8136: 8253: 8363: 8464: 8555: 8635: 8702: 8755:
x= -988: -987: -1011: -1042: -1057: -1057: -1040: -1009: -962: -901: -827: -741: -644: -538: -424:
Qc: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.012: 0.012: 0.012: 0.013:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.004: 0.004:
```

```
y= 8794: 8817: 8824: 8816: 8792: 8753: 8595: 8638: 8761: 8886: 12490: 12490: 12545: 12671: 12793:
 x= -304: -181: -55: 70: 193: 313: 707: 692: 664: 653: 543: 545: 543: 554: 581:
Qc: 0.013: 0.013: 0.014: 0.014: 0.015: 0.016: 0.018: 0.018: 0.017: 0.017: 0.010: 0.010: 0.010: 0.010: 0.009:
Cc: 0.004: 0.004: 0.004: 0.004: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.003: 0.003: 0.003: 0.003: 0.003:
y= 12912: 13024: 13128: 13223: 13307: 13378: 13436: 13479: 13507: 13520: 13516: 13498: 13463: 12973: 16312:
x= 623: 679: 749: 831: 925: 1029: 1140: 1258: 1380: 1505: 1631: 1755: 1876: 3264: 3932:
Qc: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.011: 0.012: 0.020: 0.010:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.006: 0.003:
x= 3932: 3949: 3983: 4031: 4093: 4168: 4256: 4354: 4461: 4575: 4695: 4819: 4945: 5070: 5193:
Qc: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.010:
Cc: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
v= 17157: 16011: 14864: 14862: 14846: 14786: 14713: 12692: 10672: 10670: 10644: 10555: 10455: 10346: 10231:
x = 5311:\ 8078:\ 10845:\ 10845:\ 10885:\ 10995:\ 11097:\ 13555:\ 16012:\ 16011:\ 16044:\ 16132:\ 16208:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16320:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16271:\ 16
Qc: 0.010: 0.017: 0.022: 0.022: 0.022: 0.022: 0.022: 0.018: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009:
Cc: 0.003: 0.005: 0.007: 0.007: 0.007: 0.007: 0.007: 0.005: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003:
y= 10110: 9986: 9860: 9735: 9613: 9495: 5745: 1996: 1996: 1960: 1850: 1750: 1660: 1581: 1516:
x = 16354: 16373: 16376: 16363: 16335: 16291: 14635: 12979: 12977: 12962: 12900: 12824: 12737: 12639: 12532: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 126390: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12639: 12
Qc: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.006: 0.006: 0.006: 0.006: 0.006: 0.005: 0.005: 0.005:
Cc: 0.003: 0.003: 0.002: 0.002: 0.002: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
y= 1464: 1427: 1406: 1400: 1410: 1435: 1476: 2433: -609: -608: -628: -716: -793: -857: -907:
x = 12417; 12297; 12173; 12048; 11923; 11800; 11681; 9374; 6823; 6822; 6808; 6719; 6620; 6512; 6396; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620; 6620;
Qc: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.005: 0.005: 0.005:
Cc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
y= -942: -962:
x= 6276: 6152:
Qc: 0.005: 0.005:
Cc: 0.002: 0.002:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
                Координаты точки : X = 11097.2 \text{ м}, Y = 14712.5 \text{ м}, Z = 3.0 \text{ м}
  Максимальная суммарная концентрация | Cs= 0.0219313 доли ПДКмр|
                                                                    0.0065794 мг/м3
    Достигается при опасном направлении 218 град.
                                   и скорости ветра 5.20 м/с
Всего источников: 5. В таблице заказано вкладчиков 20, но не более 95.0% вклада
                                                                                          _ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс | Вклад Вклад в% Сум. % Коэф.влияния |
   --|---- b=C/M ---|
 В сумме = 0.0217915 99.36 | Суммарный вклад остальных = 0.0001398 0.64 (3 источника)
```

приложение -3 лицензии

МЕМЛЕКЕТТІК ЛИЦЕНЗИЯ

05.09.2014 жылы 01695P

Берілді "Timal Consulting Group" жаvапкершілігі шектеvлі серіктестігі

Қазақстан Республикасы, Алматы к., Бостандық ауданы, АЛЬ-ФАРАБИ, № 7, БЦ "Нурлы Тау", блок 5 "А" үй., 188., БСН: 080440002381

(заңды тұлғаның толық аты, мекен-жайы, БСН реквизиттері / жеке тұлғаның тегі, аты,

әкесінің аты толығымен, ЖСН реквизиттері)

Қызмет түрі Қоршаған ортаны қорғау саласында жүмыстар орындау және

қызметтер көрсету

(«Лицензиялау туралы» Қазақстан Республикасының Заңына сәйкес қызмет түрінің

атауы)

Лицензия түрі басты

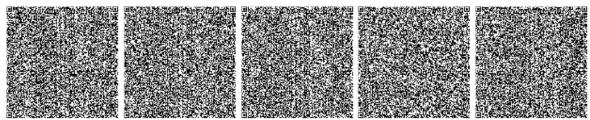
Лицензия

қолданылуының

(«Лицензиялау туралы» Қазақстан Республикасы Заңының 9-1бабына сәйкес)

айрықша жағдайлары Лицензиар

Қазақстан Республикасы Қоршаған орта және су ресурстары министрлігінің Экологиялық реттеу және бақылау комитеті. Казақстан Республикасы Қоршаған орта және су ресурстары


министрлігі.

(лицензиярдың толық атауы)

Басшы (уәкілетті тұлға) ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ

(лицензияр басшысының (уәкілетті адамның) тегі және аты-жөні)

Берілген жер Астана қ.

сецьке, кужат жане эпектрондые, цефрлык, колтаева т эко пункту 1 статье 7 39К от 7 янверя 2003 года «Об эл

1 - 1 14013011

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

05.09.2014 года 01695Р

Выдана <u>Товарищество с ограниченной ответственностью "Timal Consulting</u>

Group"

Республика Казахстан, г.Алматы, Бостандыкский район, АЛЬ-ФАРАБИ, дом № 7, БЦ

"Нурлы Тау", блок 5 "А"., 188., БИН: 080440002381

(полное наименование, местонахождение, реквизиты БИН юридического лица /

полностью фамилия, имя, отчество, реквизиты ИИН физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом

Республики Казахстан «О лицензировании»)

Вид лицензии генеральная

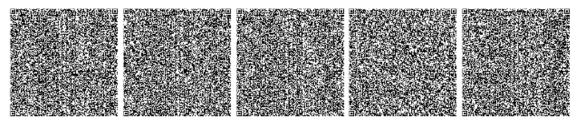
Особые условия действия лицензии

(в соответствии со статьей 9-1 Закона Республики Казахстан «О лицензировании»)

Лицензиар <u>Комитет экологического регулирования и контроля Министерства</u>

окружающей среды и водных ресурсов Республики Казахстан. Министерство окружающей среды и водных ресурсов Республики

<u>Казахстан.</u>


(полное наименование лицензиара)

Руководитель (уполномоченное лицо)

ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ

(фамилия и инициалы руководителя (уполномоченного лица) лицензиара)

Место выдачи г.Астана

берігіген құмат «Электроцьке құмат таки» электроцуке цефотық қотатаба тұралы» 2802 жылғы 7 қақтардағы Қазақтая Роспубликасы Зақының 7 бабының 1 тарманыс аймес қатаз тасығыштағы құматқа п Десетін түрілі

20015303

лицензия

15.10.2020 жылы 02497Р.

Қоршаған ортаны қорғау саласындағы жұмыстарды орындауға және қызметтерді көрсету айналысуға

(«Рұқсаттар және хабарламалар туралы» Қазақстан Республикасының Заңына сәйкес лицензияланатын қызмет түрінің атауы)

АБЫТОВ АЛЛАЯР ХАКЫМЖАНОВИЧ

ЖСН: 930819300125 берілді

(занды тұлғаның (соның ішінде шетелдік занды тұлғаның) толық атауы, мекенжайы, бизнес-сәйкестендіру нөмірі, занды тұлғаның бизнес-сәйкестендіру нөмірі болмаған жағдайда — шетелдік занды тұлға филиалының немесе өкілдігінің бизнес-сәйкестендіру нөмірі/жеке тұлғаның толық тегі, аты, әкесінің аты (болған жағдайда), жеке сәйкестендіру нөмірі)

Ерекше шарттары

(«Рұқсаттар және хабарламалар туралы» Қазақстан Республикасы Заңының 36-бабына

сәйкес)

Ескерту Иеліктен шығарылмайтын, 1-сынып

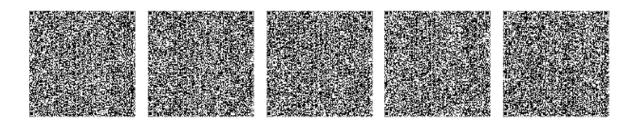
(иеліктен шығарылатындығы, рұқсаттың класы)

Лицензиар «Қазақстан Республикасының Экология, геология және табиғи

ресурстар министрлігінің Экологиялық реттеу және бақылау комитеті» республикалық мемлекеттік мекемесі . Қазақстан Республикасының Экология, геология және табиғи ресурстар

министрлігі.

(лицензиярдың толық атауы)


Басшы (уәкілетті тұлға) Умаров Ермек Касымгалиевич

(тегі, аты, әкесінің аты (болған жағдайда)

Алғашқы берілген күні

Лицензияның қолданылу кезеңі

Берілген жер Нұр-Сұлтан қ.

20015303

лицензия

10.11.2020 года 02497Р

Выдана АБЫТОВ АЛЛАЯР ХАКЫМ ЖАНОВИЧ

ИИН: 930819300125

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

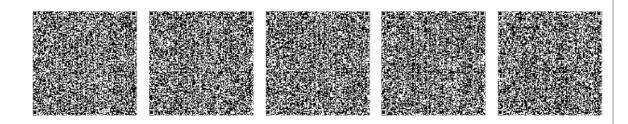
Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии,

геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов Республики Казахстан.

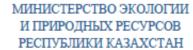
(полное наименование лицензиара)


Руководитель Умаров Ермек Касымгалиевич

(уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)

Дата первичной выдачи

Срок действия лицензии


Место выдачи г. Нур-Султан

ПРИЛОЖЕНИЕ -4 СПРАВКА ФОНОВЫХ КОНЦЕНТРАЦИЕЙ С РГП «КАЗГИДРОМЕТ»

КАЗАКСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ

«Қазгидромет» шаруашылық жүргізу құқығындағы Республикалық мемлекеттік кәсіпорнының Атырау облысы бойынша филиалы

Филиал Республиканского государственного предприятия на праве хозяйственного ведения «Казгидромет» по Атырауской области

060011, Атырау қаласы, Т.Бигельдинов көшесі 10А тел./факс: 8/7122/ 52-20-96

e-mail:info atr@meteo.kz

060011, город Атырау, ул. Т.Бигельдинова 10А тел./факс: 8/7122/ 52-20-96 e-mail:info atr@meteo.kz

24-05-5/667 1C8D04A92E264D64 02.12.2024

> Заместителю директора по анализу разработки TOO «Timal Consulting Group» Нурбаеву С.Т.

Филиал РГП «Казгидромет» по Атырауской области на Ваш запрос от 13.11.2024г. за № 453 предоставляет метеорологическую информацию за период 2024 года с января по сентябрь (3 квартала), по данным МС Кульсары Жылойского района, МС Индер Индерборского района, АМС Исатай Исатайского района, МС Сагиз Кзылкогинского района, МС Ганюшкино Курмангазинского района, АМС Макат Макатского района, МС Махамбет Махамбетского района Атырауской области.

Приложение: 16 листов.

Директор филиала

Туленов С.Д.

Исп.: Корнева В.Г т-фон 8(7122)52-22-67

https://seddoc.kazhydromet.kz/KxixW6

Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST) 2022, ТУЛЕНОВ САЛАВАТ, Филиал Республиканского государственного предприятия на праве хозяйственного ведения «Казгидромет» Министерства экологии, геологии и природных ресурсов Республики Казахстан по Атырауской области, BIN120841016202