ОБОСНОВАНИЕ РАСЧЕТОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ОТХОДОВ И ОБЪЕМОВ ПОТРЕБЛЕНИЯ РЕСУРСОВ

Рабочий проект: «Благоустройство русла реки Букембай, с берегоукреплением от остановки «Экопост» до ул.Керей-Жанибек хандары Медеуского района г. Алматы» Расчеты количества выбросов загрязняющих веществ в атмосферу на период строительства

При строительстве проектируется использовать следующие материалы и осуществить объем работ:

Наименование	Ед. изм.	Объем
Вынимаемый грунт	\mathbf{M}^3	95247,69
Обратная засыпка	\mathbf{M}^3	61634,09
Щебень	\mathbf{M}^3	1670,554
Песок	\mathbf{M}^3	674,73
ПГС	\mathbf{M}^3	2604,1
Цемент	Т	0,032
Известь	Т	1,37
Гипс	Т	0,016
Электроды Э42	Т	8,521
Электроды Э42А, Э46А, Э50А, УОНИ-13/45	КГ	64,641
Электроды Э38, Э42, Э50, АНО-4	КГ	5,3
Проволока для сварки	КГ	149,33
Пропан-бутановая смесь	КГ	252,836
Припои	Т	0,05848
Аппарат для газовой сварки и резки	час/период	3272,7
Грунтовка ГФ-021	Т	0,25964
Грунтовка битумная	Т	0,00795
Эмаль ПФ-115	Т	0,31336
Лак БТ-123	КГ	105
Лак БТ-577	КГ	2
Лак электроизоляционный 318	КГ	5,76
Краска МА-15	КГ	8
Растворитель Р-4	T	1,0642
Уайт-спирит	Т	0,04039
Гидроизоляция	\mathbf{M}^2	1403,22
Укладка асфальта	\mathbf{M}^2	9445,6
Дрель электрическая	час/период	1547,5
Шлифовальная машина	час/период	1786
Компрессор с ДВС	час/период	802,5
Передвижная электростанция	час/период	18,207
Битумный котел	час/период	0,0649
ветошь	КГ	22,132

Вода питьевая	M^3	26,18
Вода техническая	\mathbf{M}^3	15086,65442

При строительстве будет использоваться готовый привозной бетон, готовый привозной раствор цемента.

Расчет источников выбросов загрязняющих веществ в атмосферу на период строительства

Источник №6001 Выбросы от работы автотранспорта

Расчет проведен согласно Приложению № 3 к приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п, применительно к расчетам выбросов от карьерного транспорта. соответствии с п.19 приказа Министра ООС от 16.04.2012 г №110-Ө максимальные разовые выбросы ГВС от двигателей передвижных источников учитываются целях оценки воздействия атмосферный В на воздух. Валовые источников выбросы двигателей передвижных OT (т/период) не нормируются.

$$Mi(\Gamma/ce\kappa) = q*N/3.6$$

q- удельный усредненный выброс i-го загрязняющего вещества автомобилей j-марки с учетом различных режимов работы двигателя, кг/ч,

N- наибольшее количество одновременно работающих автомобилей јмарки в течение часа.

Максимальный разовый выброс диоксида серы (SO_2) , при работе двигателей автомобилей, рассчитывается по формуле:

 $Mi(r/ce\kappa) = 0.02*Bчаc*Sr/3.6$

Вчас- часовой расход топлива всей техникой, одновременно работающей на данном участке, кг/час.

Sr- % содержание серы -0.3 %.

Суммарные выбросы оксидов азота разделяются на диоксид и оксид азота согласно формулам

 $M_{NO2} = M_{NOx} * 0.8$

 $M_{NO}=M_{NOx}*0,65*(1-0,13)$

Удельные выбросы загрязняющих веществ дизельными двигателями автомобилей

Загрязняющие	Удельные усредненные выбросы 3B с
вещества	учетом работы двигателей при различных
	режимах (q 1_{ij}), кг/ч
Оксид углерода,	0,339
CO	
Оксиды азота, NOх	1,018
Углеводороды, СН	0,106
Сажа, С	0,030

Расчет:

q- из таблицы, N - 2 ед.

Вчас- 21 кг/час

Наименование	Максимально-разовый выброс, г/сек
Оксид углерода, СО	0,188
Оксиды азота, NOх	0,566
В том числе	
NO2	0,4528
NO	0,07358
Углеводороды, СН	0,059
Сажа, С	0,0167
Диоксид серы	0,035

Выбросы от данного источника не нормируются, рассчитаны для комплексной оценки воздействия предприятия на прилегающую территорию.

Источник №6002 Выбросы пыли при автотранспортных работах

Количество пыли, выделяемое автотранспортом в пределах строительной площадки, рассчитываем согласно методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12. 06. 2014г. №221-ө):

 $Q_{\text{cek}} = (C_1 * C_2 * C_3 * N * L * q_1 * C_6 * C_7)/3600 + C_4 * C_5 * C_6 * q_2^1 * F_0 * n, \Gamma/\text{cek},$

 $Q_{\text{год}} = (C_1 * C_2 * C_3 * N * L * q_1 * C_6 * C_7) + C_4 * C_5 * C_6 * q^I_2 * F_0 * n$, т/период, где: C_1 -коэффициент, учитывающий среднюю грузоподъёмность единицы

где: C_1 -коэффициент, учитывающий среднюю грузоподъёмность единицы автотранспорта, т-1,0;

- C_2 коэффициент, учитывающий среднюю скорость передвижения транспорта на стройплощадке, км/час 0,6;
 - C_3 коэффициент, учитывающий состояние автодорог 0,1;
- C_4 коэффициент, учитывающий профиль поверхности материала на платформе определяемый как соотношение $C_4 = F_{\text{факт}}/F_0$ 1,3;

 $F_{\text{факт}}$ – фактическая площадь поверхности материала на платформе, м²;

 F_0 – средняя площадь платформы, м²;

- C_5 коэффициент, учитывающий скорость обдува материала 1,0;
- C_6 коэффициент, учитывающий влажность поверхностного слоя 0,1;
- N число ходов (туда и обратно в пределах строительной площадки) всего автотранспорта в час 2;
 - L среднее расстояние транспортировки в пределах площадки, км 0,01;
 - q_1 пылевыделение в атмосферу на 1 км пробега 1450 г;
- $q^1{}_2$ пылевыделение с единицы фактической поверхности материала на платформе, г/м²*сек-0,002;
 - n число автомашин, работающих на площадке 3;
 - C_7 коэффициент, долю пыли, уносимой в атмосферу, и равный 0,01.

$$\mathbf{Q}_{\mathbf{cek}} = (1,0*0,6*0,1*2*0,01*1450*0,1*0,01)/3600 + 1,3*1,0*0,1*0,002*14*3 = 0,000000048+0,01092 г/сек = 0.01092 г/сек $\mathbf{Q}_{\mathbf{rog}} = (1,0*0,6*0,1*2*0,01*1450*0,1*0,01) + 1,3*1,0*0,1*0,002*14*3 = 0,00174+0,01092 г/сек = 0.01266 т/период$$$

Источник №6003 Сварочные работы

В целом на площадке будет израсходовано:

Электроды Э42	Т	8,521
Электроды Э42А, Э46А, Э50А, УОНИ-13/45	КГ	64,641
Электроды Э38, Э42, Э50, АНО-4	КГ	5,3
Проволока для сварки	КГ	149,33
Пропан-бутановая смесь	КГ	252,836
Припои	T	0,05848
Аппарат для газовой сварки и резки	час/период	3272,7

Расчет ВВВ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)», Астана 2004 г.

Электроды марки Э42

В целом на площадке будет израсходовано 8521 кг электродов марки Э-42. Расход электродов 0,5 кг/час.

Расчет применим к электроду марки АНО-6.

Расчет ВВВ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)», Астана 2004 г.

Оксиды марганца (0143):

$$Mcek = 0.51 * 0.5 / 3600 = 0.000071 r/c.$$

Мпериод = 0.51 *8521/1000000 = 0.00435 т/период.

Фториды (0344):

$$MceK = 1,4 * 0,5/3600 = 0,0002 r/c.$$

Мпериод = 1,4 * 8521/1000000 = 0,01193 т/период.

Фтористые газообразные (0342):

$$Mcek = 1.0 * 0.5/3600 = 0.00014 r/c.$$

Мпериод = 1.0 * 8521/1000000 = 0.00852 т/период.

Пыль неорганическая (2908):

$$Mcek = 1.4 * 0.5 / 3600 = 0.0002 r/c.$$

Мпериод = 1,4 * 8521/1000000 = 0,01193 т/период.

Взвешенные частицы (2902):

Мсек =
$$10,69$$
 г/кг *0,5 кг/час/ $3600 = 0,0015$ г/с.

Мпериод = 10.69 г/кг*8521/1000000 = 0.09109 т/период.

Выбросы составят:

Наименование вещества	Выбросы	
	г/сек	т/период
Оксиды марганца	0,000071	0,00435
Фториды	0,0002	0,01193
Фтористые газообразные	0,00014	0,00852
Пыль неорганическая	0,0002	0,01193
Взвешенные частицы	0,0015	0,09109

Электроды марки Э42А, Э46А, Э50А, УОНИ 13/45

В целом на площадке будет израсходовано 64,641кг электродов марки Э42A, Э46A, Э50A, УОНИ 13/45. Расход электродов – 0,5 кг/час.

Расчет применим к электроду марки УОНИ-13/45.

Оксиды железа (0123):

Мсек =
$$10,69 \, \Gamma/\kappa\Gamma * 0.5 \, \kappa\Gamma/\text{час} / 3600 = 0.00148 \, \Gamma/\text{с}$$
.

$$M$$
год = 10,69 г/кг* 64,641/1000000 = 0,00069 т/период.

Оксиды марганца (0143):

$$Mcek = 0.92 * 0.5/3600 = 0.000128r/c.$$

$$M$$
год = $0.92*64.641/1000000 = 0.00006$ т/ период.

Оксид углерода (0337):

$$Mcek = 13.3 * 0.5 / 3600 = 0.00185 r/c.$$

$$M$$
год = 13,3 * 64,641/ $1000000 = 0,00086$ т/ период.

Диоксид азота (0301):

$$Mcek = 1.5 * 0.5 / 3600 = 0.000208 r/c.$$

Мгод =
$$1,5 * 64,641/1000000 = 0,00010$$
 т/ период.

Фториды (0344):

$$Mcek = 3.3 * 0.5 / 3600 = 0.000458 r/c.$$

$$M$$
год = 3,3 * 64,641/ $1000000 = 0,00021$ т/ период.

Фтористые газообразные (0342):

$$Mcek = 0.75 * 0.5 / 3600 = 0.000104 r/c.$$

Мгод =
$$0.75 * 64,641/1000000 = 0.00005$$
 т/ период.

Пыль неорганическая (2908):

Мсек =
$$1,4 * 0,5 / 3600 = 0,0002$$
 г/с.

Мгод = 1,4 *
$$64,641/1000000 = 0,00009$$
 т/ период.

Выбросы составят:

Наименование	Выб	росы
вещества	г/сек	т/период
Железо оксид	0,00148	0,00069
Оксиды марганца	0,000128	0,0006
Оксид углерода	0,00185	0,00086
Диоксид азота	0,000208	0,00010
Фториды	0,000458	0,00021
Фтористые	0,000104	0,00005
газообразные		

Пыль неорганическая	0,0002	0,00009

Электроды марки Э38, Э42, Э46, Э50, АНО-4

В целом на площадке будет израсходовано 5,3 кг электродов марки **Э38**, **Э42**, **Э46**, **Э50**, **АНО-4**. Расход электродов 0,5 кг/час.

Расчет применим к электроду марки АНО-4.

Расчет BBB произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)», Астана 2004 г.

Оксиды железа (0123):

Мсек = $15,73 \, \Gamma/\kappa\Gamma * 0,5 \, \kappa\Gamma/\text{час} / 3600 = 0,00218 \, \Gamma/\text{с}$.

Мгод = 15,73 г/кг* 5,3/1000000 = 0,00008 т/период.

Оксиды марганца (0143):

Mcek = 1,66 * 0,5 / 3600 = 0,000231 r/c.

Mгод = 1,66 * 5,3 /1000000 = 0,000009 т/ период.

Пыль неорганическая-SiO2 (20-70%) (2908):

MceK = 0.41 * 0.5 / 3600 = 0.000057 r/c.

Mгод = 0,41 * 5,3 /1000000 = 0,0000022 т/ период.

Выбросы составят:

Наименование вещества	Выбросы		
	г/сек	т/период	
Железо оксид	0,00218	0,00008	
Оксиды марганца	0,000231	0,000009	
Пыль неорганическая-SiO2 (20-70%)	0,000057	0,0000022	

Сварочная проволока

Сварка производится в среде углекислого газа проволокой. Расход проволоки составляет – 149,33 кг/период.

Оксиды железа (0123):

Мсек = 7,67 г/кг * 0,05 кг/час / 3600 = 0,0001 г/с.

Мгод = 7,67 г/кг* 149,33 /1000000 = 0,00115 т/ период.

Оксиды марганца (0143):

Мсек = 1.9 * 0.05/3600 = 0.000026 г/с.

Мгод = 1,9 * 149,33 /1000000 = 0,00028 т/ период.

Пыль неорганическая (2908):

Mcek = 0.43 * 0.05 / 3600 = 0.000006 r/c.

Мгод = 0.43 * 149.33 / 1000000 = 0.00006 т/ период.

Выбросы по проволоку составят:

Наименование	Вы	Выбросы	
вещества	г/сек	т/период	
Железо оксид	0,0001	0,00115	
Оксиды марганца	0,000026	0,00028	
Пыль неорганическая	0,000006	0,0006	

Сварка пропанобутановой смесью

Расход пропан бутана – 252,836 кг.

Расчет выбросов произведен по «Методике определения валовых выбросов вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения», Приложение №4 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.

Диоксид азота:

$$M$$
сек = $15 * 1,0/3600 = 0,00417$ г/с. M год = $15 * 252,836/1000000 = 0,0038$ т/период.

Выбросы составят:

Наименование	Выбросы		
вещества	г/сек т/период		
Диоксид азота	0,00417	0,0038	

Паяльные работы

Расчет произведен согласно методике расчета выбросов загрязняющих веществ от различных производственных участков (приложение №3 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04. 2008г. №100-п).

Валовый выброс ЗВ определяется по формуле:

$$Mzo\partial = q \times t \times 3600 \times 10^{-6}$$
, m/zod

Максимально-разовый выброс ЗВ определяется по формуле:

$$Mce\kappa = \frac{Mzo\partial \times 10^6}{t \times 3600}$$
, г/сек

где q - удельные выделения свинца и оксидов олова, г/сек (таблица 4.8); t - «чистое» время работы паяльником в год, час/год.

"Чистое" время работы оборудования, час/год, $\mathbf{T}=\mathbf{584,8}$

Количество израсходованного припоя за год, кг, $\mathbf{M} = \mathbf{58,48}$

Марка применяемого материала: ПОС-40

Свинец и его неорганические соединения

Удельное выделение ЗВ, Γ/c (табл.4.8), $\mathbf{Q} = \mathbf{0.000005}$

$$0.000005 * 584,8 * 3600 * 10 ^ -6 = 0,000011$$
 т/год $(0,000011 * 10 ^ 6) / (58,48 * 3600) = 0,00005$ г/сек

Олово оксид

Удельное выделение ЗВ, г/с(табл.4.8), $\mathbf{Q} = \mathbf{0.0000033}$

$$0.0000033*$$
 584,8 * 3600 * 10 ^ -6 = 0,00001 т/год (0,00001* 10 ^ 6) / (**58,48*** 3600) = 0,000033 г/сек

Выбросы составят:

Наименование вещества	Выбросы	
	г/сек	т/период
Свинец и его неорганические соединения	0,00005	0,000011
Олово оксид	0,000033	0,00001

Газовая сварка и резка металла

Время работы газорезки — 3272,7 час/период. Расчет выбросов произведен согласно «Методики расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)» РНД 211.2.02.03-2004. Выбросы вредных веществ составят:

Оксиды железа (0123)

$$72,9/3600 = 0,0202 \ \Gamma/c$$
 $72,9*3272,7 \ /10^6 = 0,23858 \ т/период$

Марганец и его соединения (0143)

$$1,1/3600 = 0,0003 \text{ r/c}$$

$$1,1*3272,7 /10^6 = 0,00360$$
 т/период

Оксид углерода (0337)

$$49,5/3600 = 0,0137 \text{ r/c}$$

$$49,5*3272,7 /10^6 = 0,16200$$
 т/период

Диоксид азота (0301)

$$39/3600 = 0.0108 \, \text{r/c}$$

$$39*3272,7 /10^6 = 0,12763$$
 т/период

Выбросы по газовой резке составят:

Наименование	Выбросы	
вещества	г/сек	т/период
Железо оксид	0,0202	0,23858
Оксиды марганца	0,0003	0,00360
Оксид углерода	0,0137	0,16200
Диоксид азота	0,0108	0,12763

Выбросы по источнику составят:

Наименование ЗВ	<i>₂/c</i>	т/период
Железо оксид	0.0240	0.24050
Оксиды марганца	0.0008	0.00830
Оксид углерода	0.0156	0.16286
Диоксид азота	0.0152	0.13152
Фториды	0.0007	0.01214
Фтористые газообразные	0.0002	0.00857
Свинец и его неорганические	0.0003	0.00001
соединения		
Олово оксид	0.00003	0.00001
Пыль неорганическая	0.00046	0.01209
Взвешенные вещества	0.0015	0.09109

Источник №6004 Окрасочные работы

При покраске используются:

Грунтовка ГФ-021	Т	0,25964
Грунтовка битумная	Т	0,00795

Эмаль ПФ-115	Т	0,31336
Лак БТ-123	КГ	105
Лак БТ-577	КГ	2
Лак электроизоляционный 318	КГ	5,76
Краска МА-15	КГ	8
Растворитель Р-4	Т	1,0642
Уайт-спирит	Т	0,04039

Расчет выбросов произведен «Методики расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004».

Грунтовка марки ГФ-021, битумная

Расход грунтовок составит – 0.26759 т/период, 0.72 кг/час, 0.2 г/с.

Состав грунтовки ГФ - 021:

- сухой остаток 55 %;
- летучая часть 45 %,

в том числе:

• ксилол - 100 %;

При окраске в атмосферу выделяется 30 % красочного аэрозоля и 25 % растворителя.

Взвешенные вещества:

$$M$$
сек = 0.2 г/с * 0.55 * 0.3 = 0.165 г/с. M год = 0.26759 * 0.55 * 0.3 = 0.0442 т/период.

Ксилол:

При окраске: $Mcek = 0.2 * 0.45 * 0.25*1 = 0.0225 \ г/c.$ При сушке: $Mcek = 0.2 * 0.45 * 0.75*1 = 0.0675 \ г/c.$

Мгод = 0.26759 * 0.45 * 1 * 1 = 0.1204 т/период.

Выбросы составят:

Наименование	Выбросы	
вещества	г/сек	т/период
Взвешенные вещества	0,165	0,0442
Ксилол	0,0675	0,1204

Эмаль пентафталевая ПФ-115

Расход эмали-ПФ 115 - 0.31336т/период, 0.42 г/с.

Состав краски ПФ-115:

- сухой остаток 55%;
- летучая часть -45%.

в том числе:

- ксилол -50%;
- уайт-спирит 50%.

Окраска металлических изделий производится краскопультом. При окраске краскопультом в атмосферу выделяется 30% красочного аэрозоля и 25

% растворителей. При сушке окрашенных изделий в атмосферу выделяется 75% BBB.

Взвешенные частицы:

$$Mce\kappa=0,42 *0,55*0,3=0,0693 \ \Gamma/ce\kappa$$
 $Mrog=0,31336*0,55*0,3=0,0517 \ T/ период.$

Ксилол:

При окраске: Мсек=0,42*0,45*0,5*0,25=0,0236 г/сек При сушке: Мсек=0,42*0,45*0,5*0,75=0,071 г/сек Мгод = 0,31336*0,45*0,5*1=0,0705 т/ период.

Уайт-спирит:

При окраске: Мсек=0,42*0,45*0,5*0,25=0,0236 г/сек При сушке: Мсек=0,42*0,45*0,5*0,75=0,071 г/сек Мгод = 0,31336*0,45*0,5*1=0,0705 т/ период.

Выбросы по эмали составят:

Наименование	Выбросы	
вещества	г/сек	т/период
Взвешенные вещества	0,0693	0,0517
Уайт-спирит	0,071	0,0705
Ксилол	0,071	0,0705

Лак битумный марки БТ-123, БТ-577

Расчет применим к лаку марки БТ-577.

Общий расход лаков составит — 0,107 т/период, 1,5 кг/час, 0,42 г/с.

Состав лака БТ-577:

- сухой остаток 37 %;
- летучая часть 63 %.

в том числе:

- уайт-спирит 42,6 %;
- ксилол 57,4 %.

При окраске краскопультом в атмосферу выделяется 30 % красочного аэрозоля и 25 % растворителей. При сушке в атмосферу выделяется 75 % вредных веществ.

Взвешенные вещества:

Мсек =
$$0.42 \text{ г/c} * 0.37 * 0.3 = 0.04662 \text{ г/c}$$
.
Мгод = $0.107 * 0.37 * 0.3 = 0.0119 \text{ т/период}$.

Уайт-спирит

При окраске: Мсек =
$$0.42 * 0.426 * 0.63 * 0.25 = 0.0282$$
 г/с. При сушке: Мсек = $0.42 * 0.426 * 0.63 * 0.75 = 0.0845$ г/с. Мгод = $0.107 * 0.426 * 0.63 * 1 = 0.0287$ т/период.

Ксилол:

При окраске: Мсек =
$$0.42 * 0.574 * 0.63 * 0.25 = 0.038$$
 г/с. При сушке: Мсек = $0.42 * 0.574 * 0.63 * 0.75 = 0.1139$ г/с. Мгод = $0.107 * 0.574 * 0.63 * 1 = 0.0387$ т/период.

Выбросы составят:

•	D . C
	Выбросы

Наименование	г/сек	т/период
вещества		
Взвешенные вещества	0,04662	0,0119
Уайт-спирит	0,0845	0,0287
Ксилол	0,1139	0,0387

Лак электроизоляционный 318

Расход лака составит – 0.00576 т/период, 0.025 кг/час, 0.42 г/с.

Состав лака БТ-577:

- сухой остаток 37 %;
- летучая часть 63 %.

в том числе:

- уайт-спирит 42,6 %;
- ксилол 57,4 %.

При окраске краскопультом в атмосферу выделяется 30 % красочного аэрозоля и 25 % растворителей. При сушке в атмосферу выделяется 75 % вредных веществ.

Взвешенные вещества:

Мсек =
$$0.42 \text{ г/c} * 0.37 * 0.3 = 0.04662 \text{ г/c}$$
.
Мгод = $0.00576 * 0.37 * 0.3 = 0.00064 \text{ т/период}$.

Уайт-спирит

При окраске: Мсек =
$$0.42 * 0.426 * 0.63 * 0.25 = 0.0282$$
 г/с. При сушке: Мсек = $0.42 * 0.426 * 0.63 * 0.75 = 0.0845$ г/с. Мгод = $0.00576 * 0.426 * 0.63 * 1 = 0.00155$ т/период.

Ксилол:

При окраске: Мсек =
$$0.42 * 0.574 * 0.63 * 0.25 = 0.038$$
 г/с. При сушке: Мсек = $0.42 * 0.574 * 0.63 * 0.75 = 0.1139$ г/с. Мгод = $0.00576 * 0.574 * 0.63 * 1 = 0.00208$ т/период.

Выбросы составят:

Наименование	Выбросы	
вещества	г/сек	т/период
Взвешенные вещества	0,04662	0,00064
Уайт-спирит	0,0845	0,00155
Ксилол	0,1139	0,00208

Краска марки МА-15

Расчет применим к краске марки МЛ-242.

Общий расход красок составляет: 0,008 т/период, 1,5 кг/час, 0,42 г/с.

Расчет ВВВ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)», Астана 2004 г.

Состав краски:

• сухой остаток - 56 %;

• летучая часть - 44 %,

в том числе:

- спирт н-бутиловый 20 %;
- спирт изобутиловый 20 %;
- ксилол 60 %.

При окраске краскопультом в атмосферу выделяется 30 % красочного аэрозоля и 25 % растворителей. При сушке в атмосферу выделяется 75 % вредных веществ.

Взвешенные вещества:

Мсек =
$$0.42 \text{ г/c} * 0.56 * 0.3 = 0.07056 \text{ г/c}$$
.
Мгод = $0.008 * 0.56 * 0.3 = 0.0013 \text{ т/период}$.

Спирт н-бутиловый:

При окраске: Мсек =
$$0.42 * 0.2 * 0.44 * 0.25 = 0.00924$$
 г/с. При сушке: Мсек = $0.42 * 0.2 * 0.44 * 0.75 / 3 = 0.00924$ г/с. Мгод = $0.008 * 0.2 * 0.44 * 1 = 0.0007$ т/период.

Спирт изобутиловый:

При окраске: Мсек =
$$0.42 * 0.2 * 0.44 * 0.25 = 0.00924$$
 г/с. При сушке: Мсек = $0.42 * 0.2 * 0.44 * 0.75 / 3 = 0.00924$ г/с. Мгод = $0.008 * 0.2 * 0.44 * 1 = 0.0007$ т/период.

Ксилол:

При окраске: Мсек =
$$0.42 * 0.6 * 0.44 * 0.25 = 0.02772$$
 г/с. При сушке: Мсек = $0.42 * 0.6 * 0.44 * 0.75 / 3 = 0.02772$ г/с. Мгод = $0.008 * 0.6 * 0.44 * 1 = 0.0021$ т/период.

Выбросы составят:

Наименование загрязняющего	Выбр	росы
вещества	г/сек	т/период
Взвешенные вещества	0,07056	0,0013
Спирт н-бутиловый	0,00924	0,0007
Спирт изобутиловый	0,00924	0,0007
Ксилол	0,02772	0,0021

Растворитель Р-4

Расход растворителя марки Р-4 составляет: 1,0642 т/период.

Расчет ВВВ произведен по «Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)», Астана 2004 г.

Состав растворителя марки Р-4:

- доля летучей части -100%;
- ацетон 26 %;
- бутилацетат 12 %
- толуол 62 %

Ацетон:

Мгод =
$$1,0642*100*100*26 / 10^6 = 0,277$$
 т/период. Мсек = $0,11*100*100*26 / (10^6*3,6) = 0,008$ г/сек

Бутилацетат:

Мгод =
$$1,0642*100*100*12 / 10^6 = 0,128$$
 т/период. Мсек = $0,11*100*100*12/(10^6*3,6) = 0,004$ г/сек

Толуол:

Мгод = 1,0642* 100 * 100 * 62/
$$10^6$$
 = 0,66 т/период. Мсек = 0,11*100*100*62/ $(10^6$ *3,6) = 0,019 г/сек

Выбросы по растворителю Р-4 составят:

Наименование вещества	Выбросы	
	г/сек	т/период
Ацетон	0,008	0,277
Бутилацетат	0,004	0,128
Толуол	0,019	0,66

Розлив уайт-спирита предварительное обезжиривание поверхностей, промывка инвентаря — 0.04039 т, 0.2 кг/час, 0.06 г/с. Учтено 100 % испарения. Уайт-спирит:

$$M$$
сек =0,06 г/с M год = 0,04039 т/год.

Так как покраска и сушка не производится одновременно, то максимально-разовые выбросы принимаются при сушке.

Выбросы по источнику составят:

Наименование ЗВ	г/сек	т/период
Взвешенные вещества	0.3981	0.1097
Ацетон	0.0080	0.27669
Бутилацетат	0.0040	0.12770
Толуол	0.0190	0.6598
Уайт-спирит	0.3	0.1412
Спирт н-бутиловый	0.0018	0.0007
Спирт изобутиловый	0.0018	0.0007
Ксилол	0.3717	0.2338

Источник №6005 Выемка грунта

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12.04.2014г. №221—ө), 24. Выбросы при выемочно-погрузочных работах:

При работе экскаваторов пыль выделяется, главным образом, при погрузке материала в автосамосвалы.

$$Q2 = \frac{P1*P2*P3*P4*P5*P6*B1*G*10^6}{3600}$$

- где, P1 доля пылевой фракции в породе; определяется путем промывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм (P1=k1)-0,03;
- P2 доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале (предполагается, что не вся летучая пыль переходит в аэрозоль). Уточнение значения P2 производится отбором запыленного воздуха на границах пылящего объекта при скорости ветра, 2 м/с, дующего в направлении точки отбора пробы (P2 = k2 из таблицы 1) -0,01;
- P3 коэффициент, учитывающий скорость ветра в зоне работы экскаватора. Берется в соответствии с таблицей 2 согласно приложению к настоящей Методике (P3 = k3) 1,2;
- Р4 коэффициент, учитывающий влажность материала и, принимаемый в соответствии с таблицей 4 согласно приложению к настоящей Методике (P4=k4) –0,1;
- G количество перерабатываемой породы т/ч;
- В' коэффициент, учитывающий высоту пересыпки 0,6.
- P5 коэффициент, учитывающий крупность материала и принимаемый в соответствии с таблицей 7 согласно приложению к настоящей Методике (P5 = k5)-0,7;
- Р6 коэффициент, учитывающий местные условия и принимаемый в соответствии с таблицей 3 согласно приложению к настоящей Методике (P6=k6)-1;

Объем вынимаемого грунта 95247,69 м³*1,9 = 180970,61 т Пыль неорганическая: 70-20% двуокиси кремния (2908) Q2 сек = $(0.03*0.01*1.2*0.1*0.7*1.0*0.6*15*10^6)/3600 = 0.063$ г/с Q2 пер. = 0.03*0.01*1.2*0.1*0.7*1.0*0.6*180970.61 = 2.7363 т/период

Источник №6006 <u>Обратная засыпка грунта</u>

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12.04.2014г. №221—ө), 24. Выбросы при выемочно-погрузочных работах:

При работе экскаваторов пыль выделяется, главным образом, при погрузке материала в автосамосвалы.

$$Q2 = \frac{P1*P2*P3*P4*P5*P6*B1*G*10^6}{3600}$$

- где, P1 доля пылевой фракции в породе; определяется путем промывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм (P1=k1)-0,03;
- P2 доля переходящей в аэрозоль летучей пыли с размером частиц 0-50 мкм по отношению ко всей пыли в материале (предполагается, что не вся летучая пыль переходит в аэрозоль). Уточнение значения P2 производится отбором

запыленного воздуха на границах пылящего объекта при скорости ветра, 2 м/c, дующего в направлении точки отбора пробы (P2 = k2 из таблицы 1) -0,01;

- P3 коэффициент, учитывающий скорость ветра в зоне работы экскаватора. Берется в соответствии с таблицей 2 согласно приложению к настоящей Методике (P3 = k3) 1,2;
- Р4 коэффициент, учитывающий влажность материала и, принимаемый в соответствии с таблицей 4 согласно приложению к настоящей Методике (Р4=k4) –0,1;
- G количество перерабатываемой породы т/ч;
- B' коэффициент, учитывающий высоту пересыпки 0,4.
- P5 коэффициент, учитывающий крупность материала и принимаемый в соответствии с таблицей 7 согласно приложению к настоящей Методике (P5 = k5)-0,7;
- Р6 коэффициент, учитывающий местные условия и принимаемый в соответствии с таблицей 3 согласно приложению к настоящей Методике (P6=k6)-1,0;

Объем обратной засыпки грунта 61634,09 м $^3*1,9=117104,77$ т

Пыль неорганическая: 70-20% двуокиси кремния (2908) Q2 сек = $(0.03*0.01*1.2*0.1*0.7*1.0*0.4*15*10^6)/3600 = 0.042$ г/с

Q2 пер. = 0.03*0.01*1.2*0.1*0.7*1.0*0.4*117104.77 = 1.1804 т/период

Источник №6007 Прием инертных материалов

На участке будет производиться хранение материалов:

Щебень	167	$70,55 \text{ m}^3$	4510,5 т
Песок	67	$4,73 \text{ m}^3$	1754,3 т
ПГС	26	$04,1 \text{ m}^3$	6770,7 т

Выгрузка щебня

Грузооборот щебня за период строительства – 4510,5 т (10 т/час).

Производим расчет пыли как о т неорганизованных источников выбросов, согласно Приложение №11к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100-п.

Максимальный объем пылевыделений от выгрузки сырья рассчитывается по формуле:

$$\begin{aligned} \textit{Mcex} &= \frac{\textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B} \times \textit{Guac} \times 10^6}{3600} : \\ \textit{Mzod} &= \textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}' \times \textit{Gzod} \end{aligned} :$$

гле:

 k_1 – весовая доля пылевой фракции в материале – 0,04;

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль – 0,02;

 k_3 – коэффициент, учитывающий местные метеоусловия – 1,2;

 k_4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования — 1;

При учитывании местных условий, степень защищённости узла от внешних воздействий и условий пылеобразования инертных материалов имеет коэффициент 1 покрываемости узла, с 4 сторон.

 k_5 – коэффициент, учитывающий влажность материала – 0,9;

 k_7 – коэффициент, учитывающий крупность материала – 0,7;

 k_8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера – 1

 k_9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала – 0,1;

В' - коэффициент, учитывающий высоту пересыпки – 0,6;

Gчас – производительность узла пересыпки, т/час;

Gгод – производительность узла пересыпки, т/год;

Пыль неорганическая: 20-70% двуокиси кремния (2908)

 $\mathbf{Q}_{\text{сек}} = (0.04*0.02*1.2*1.0*0.9*0.7*1*0.1*0.6*10*10^6) / 3600 = \mathbf{0.1008} \text{ г/сек}$ $\mathbf{Q}_{\text{пер.}} = 0.04*0.02*1.2*1.0*0.9*0.7*1*0.1*0.6*4510.5 = \mathbf{0.16368} \text{ т/период.}$

Выгрузка песка

Грузооборот песка за период строительства – 1754,3 т (10 т/час).

Производим расчет пыли как о т неорганизованных источников выбросов, согласно Приложение №11к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.

Максимальный объем пылевыделений от выгрузки сырья рассчитывается по формуле:

$$\begin{aligned} &\textit{Mcex} = \frac{\textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}' \times \textit{Guac} \times 10^6}{3600} : \\ &\textit{M2od} = \textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}' \times \textit{G2od} \end{aligned} :$$

где:

 k_1 – весовая доля пылевой фракции в материале – 0,05;

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль – 0,03;

 k_3 – коэффициент, учитывающий местные метеоусловия – 1,2;

 k_4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования – 1,0;

При учитывании местных условий, степень защищённости узла от внешних воздействий и условий пылеобразования инертных материалов имеет коэффициент 1,0 открытый узел, с 4 сторон.

 k_5 – коэффициент, учитывающий влажность материала – 0,6;

 k_7 – коэффициент, учитывающий крупность материала – 1;

 k_8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера – 1;

 k_9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 - свыше 10 т. В остальных случаях k9=1;

В' - коэффициент, учитывающий высоту пересыпки – 0,6;

Gчас – производительность узла пересыпки, т/час;

Gгод – производительность узла пересыпки, т/год;

Пыль неорганическая: 20-70% двуокиси кремния (2908)

 $\mathbf{Q}_{\text{cek}} = (0.05*0.03*1.2*1*0.6*1*1*0.2*0.6*10*10^6) / 3600 = \mathbf{0.36} \, \text{g/cek}$

 $\mathbf{Q}_{\text{пер.}} = 0.05*0.03*1.2*1*0.6*1*1*0.2*0.6*1754,3 = \mathbf{0.22736}$ т/период.

Выгрузка ПГС

Грузооборот ПГС за период строительства – 6770,7 т (10 т/час).

Производим расчет пыли как о т неорганизованных источников выбросов, согласно Приложение №11к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п.

Максимальный объем пылевыделений от выгрузки сырья рассчитывается по формуле:

$$\begin{aligned} &\textit{Mcex} = \frac{\textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}^* \times \textit{Guac} \times 10^6}{3600} : \\ &\textit{M2od} = \textit{k}_1 \times \textit{k}_2 \times \textit{k}_3 \times \textit{k}_4 \times \textit{k}_5 \times \textit{k}_7 \times \textit{k}_8 \times \textit{k}_9 \times \textit{B}^* \times \textit{G2od} \end{aligned} :$$

где:

 k_1 – весовая доля пылевой фракции в материале – 0,03;

 k_2 – доля пыли (от всей массы пыли), переходящая в аэрозоль – 0,04;

k₃ – коэффициент, учитывающий местные метеоусловия – 1,2;

 k_4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования – 1;

При учитывании местных условий, степень защищённости узла от внешних воздействий и условий пылеобразования инертных материалов имеет коэффициент 1 покрываемости узла, с 4 сторон.

 k_5 – коэффициент, учитывающий влажность материала – 0,5;

 k_7 – коэффициент, учитывающий крупность материала – 0,5;

 k_8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера – 1;

 k_9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала – 0,1;

В' - коэффициент, учитывающий высоту пересыпки – 0,6;

Gчас – производительность узла пересыпки, т/час;

Gгод – производительность узла пересыпки, т/год;

Пыль неорганическая: 20-70% двуокиси кремния (2908)

 $Q_{cek} = (0.03*0.04*1.2*1.0*0.5*0.5*1.0*0.1*0.6*10*10^6)/3600 = 0.06 \text{ g/cek}$

 $Q_{\textit{nep.}} = 0.03*0.04*1.2*1.0*0.5*0.5*1.0*0.1*0.6*6770.7 = 0.14625$ т/период.

С учетом одновременного проведения земляных работ выбросы по источнику составят:

Наименование вешества	г/сек	т/период
Пыль неорганическая: 20-70% двуокиси кремния (2908)	0.5208	0.5373

Источник №6008 Пересыпка сыпучих материалов

Расчет произведен согласно «Методики расчета нормативов выбросов от неорганизованных источников, приложение №8 к приказу Министра охраны окружающей среды Республики Казахстан от 12 июня 2014г. №221 — ө».

1.Пересыпка цемента:

Максимальный разовый объем пылевыделений от загрузки сырья рассчитывается по формуле:

$$Q = \frac{k1*k2*k3*k4*k5*k7*B'*G*10^6}{3600}, z/c$$

а валовой выброс по формуле:

$$Q = k1xk2xk3xk4xk5xk7xBxGrod$$
, $m/nepuod$,

где: k_1 – весовая доля пылевой фракции в материале – 0,04;

 k_2 — доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль — 0,03;

k₃ – коэффициент, учитывающий местные метеоусловия - 1,2;

 k_4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования — 1,0;

 k_5 – коэффициент, учитывающий влажность материала – 0,8;

 k_7 – коэффициент, учитывающий крупность материала – 1,0;

В' - коэффициент, учитывающий высоту пересыпки – 0,4;

Gчас – производительность узла пересыпки или количество перерабатываемого материала, 0,03 т/час;

Gпериод − суммарное количество перерабатываемого материала, 0,032 т/период.

Пыль неорганическая (2908)

$$Q$$
сек = $(0.04*0.03*1.2*1.0*0.8*1.0*0.4*0.03*10^6)/3600 = 0.0038 г/сек Q период = $0.04*0.03*1.2*1.0*0.8*1.0*0.4*0.032 = 0.00001 т/год.$$

2.Пересыпка извести:

Максимальный разовый объем пылевыделений от загрузки сырья рассчитывается по формуле:

$$Q = \frac{k1*k2*k3*k4*k5*k7*B'*G*10^6}{3600}, z/c$$

а валовой выброс по формуле:

$$Q = k1xk2xk3xk4xk5xk7xBxGcod$$
, $m/nepuod$,

где: k_1 – весовая доля пылевой фракции в материале – 0,04;

 k_2 — доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль — 0,02;

k₃ – коэффициент, учитывающий местные метеоусловия - 1,2;

 k_4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования — 1,0;

 k_5 – коэффициент, учитывающий влажность материала – 0,9;

 k_7 – коэффициент, учитывающий крупность материала – 1,0;

В' - коэффициент, учитывающий высоту пересыпки – 0,4;

Gчас – производительность узла пересыпки или количество перерабатываемого материала, 0,5 т/час;

Gпериод − суммарное количество перерабатываемого материала, 1,37 т/период.

Пыль неорганическая (2908)

$$Q$$
сек = $(0.04*0.02*1.2*1.0*0.9*1.0*0.4*0.5*10^6)/3600 = 0.048 г/сек$ Q период = $0.04*0.02*1.2*1.0*0.9*1.0*0.4*1.37 = 0.00047 т/год.$

Пересыпка гипса:

Максимальный разовый объем пылевыделений от загрузки сырья рассчитывается по формуле:

$$Q = \frac{k1*k2*k3*k4*k5*k7*B'*G*10^6}{3600}$$

а валовой выброс по формуле:

$$Q = k1xk2xk3xk4xk5xk7xBxGrod$$
, $m/nepuod$,

где: k_1 – весовая доля пылевой фракции в материале – 0,08;

 k_2 — доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль — 0,04;

 k_3 – коэффициент, учитывающий местные метеоусловия - 1,2;

 k_4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования — 1,0;

 k_5 – коэффициент, учитывающий влажность материала – 0,8;

 k_7 – коэффициент, учитывающий крупность материала – 1,0;

В' - коэффициент, учитывающий высоту пересыпки – 0,4;

Gчас – производительность узла пересыпки или количество перерабатываемого материала, 0,02 т/час;

Gпериод – суммарное количество перерабатываемого материала, 0,016 т/период.

Пыль неорганическая (2908)

$$Q$$
сек = $(0.08*0.04*1.2*1.0*0.8*1.0*0.4*0.02*10^6)/3600 = 0.0068 г/сек$ Q период = $0.08*0.04*1.2*1.0*0.8*1.0*0.4*0.016 = 0.00002 т/год.$

Выбросы по источнику составят:

Наименование вещества	Выбросы				
	г/сек	т/период			
Пыль неорганическая (2908)	0.0587	0.00051			

Источник №6009 <u>Гидроизоляция</u>

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение №11 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04 2008г. N0100 – π).

Масса выделяющихся загрязняющих веществ из открытых поверхностей, в т.ч. смазанных форм для заливки, определяется в зависимости от количества испаряющейся жидкости и составляет:

$$Mce\kappa = q \times S$$
, Γ/c ,

где: q — удельный выброс загрязняющего вещества, г/с \square м², для нефтяных масел - 0,0139.

S- площадь обработанной за 20 мин поверхности или свободная поверхность испаряющейся жидкости, м 2 .

$$Mnepuo\partial = \frac{Mce\kappa \times T \times 3600}{10^6}$$
, т/период,

где T – "чистое" время нанесения смазки или время "работы" открытой поверхности, ч/год.

Площадь покрытия гудроном составит 1403,22 м².

Выбросы углеводородов составят:

$$M$$
сек = 0,0139*20 = 0.278 г/сек M период = 0,278*23,39*3600/1000000 = 0.02341 т/период

Источник №6010 Укладка асфальта

Расчет выбросов загрязняющих веществ произведен по методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов (приложение N 11 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04 2008г. N 100 - 1).

Пыление при уплотнении грунта отсутствует. Пыление от щебня и других инертных материалов при подготовке основания учтено при расчете выбросов от источника №6006 (прием и хранение материалов).

Масса выделяющихся загрязняющих веществ из открытых поверхностей, в т.ч. смазанных форм для заливки, определяется в зависимости от количества испаряющейся жидкости и составляет:

$$Mce\kappa = q \times S$$
, Γ/c ,

где: q — удельный выброс загрязняющего вещества, г/с □м², для нефтяных масел - 0,0139.

S — площадь обработанной за 20 мин поверхности или свободная поверхность испаряющейся жидкости, \mathbf{m}^2 .

$$Mnepuo\partial = \frac{Mce\kappa \times T \times 3600}{10^6}$$
, т/период,

где T — "чистое" время нанесения смазки или время "работы" открытой поверхности, ч/год.

Площадь покрытия гудроном составит 9445,6 ${\rm M}^2$.

Выбросы углеводородов составят:

Мсек = 0.0139*20 = 0.278 г/сек Мпериод = 0.278*157.43*3600/1000000 = 0.15755 т/период

Источник №6011 Механический участок

Расчет выбросов произведен согласно «Методике расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов» РНД 211.2.02.06-2004.

Дрель электрическая	час/период	1547,5
Шлифовальная машина	час/период	1786

<u>Дрель</u>. Общее время работы 1547,5час/период;

Пыль металлическая (взвешенные частицы)

Удельный выброс -0.007 г/с

0,007*0,2=0,0014 г/сек 3600*0,2*0,0014*1547,5/1000000=0,00156 т/период.

<u>Шлифовальная машина.</u> Общее время работы 1786 час/период; Пыль металлическая (взвешенные частицы)

Удельный выброс -0.03 г/с

0.03*0.2 = 0.006 г/сек $3600*0.2*0.03*1786/10^6 = 0.0772$ т/период

Пыль абразивная

Удельный выброс -0.02 г/с

0.02*0.2 = 0.004 г/сек $3600*0.2*0.02*1786/10^6 = 0.0051$ т/период

Выбросы по источнику составят:

Наименование вещества	г/сек	т/период
Взвешенные частицы	0.0074	0.0787
Пыль абразивная	0.004	0.0051

Источник №0001 Битумный котел

В период строительства будет использоваться передвижной битумный котел, работающий на дизельном топливе.

Расчет проведен согласно «Методике расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от асфальтобетонных заводов (Приложению № 3 к приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п).

Продукты сгорания удаляются через дымовую трубу высотой 3 метров и диаметром $0,1\,\mathrm{m}$.

При сжигании топлива:

На период строительства битумный котел будет работать – 0,0649 час/период.

Расход дизтоплива на 1 м³ составляет 0,24 кг или 0,24 х 30 = 7,2 кг/час или 7,2 х 1000/3600 = 2 г/сек

Расход дизтоплива битумного котла за период равен: 7,2*0,0649/1000=0,00047 т/период

Расчетные характеристики топлива:

 $Q_{\rm H}^{\rm p} = 10180 \, \text{Ккал/кг} (42,62 \, \text{Мдж/кг})$

Объем продуктов сгорания на выходе из дымовой трубы, м3/с:

Т-температура уходящих газов на выходе из трубы - 300 °C

Расчет выбросов загрязняющих веществ (оксиды серы, углерода и азота, твердые частицы) выполняются согласно формулам.

Валовый выброс твердых частиц (*золы твердого топлива - сажа*) рассчитывают по формуле:

$$M_{TB} = co\partial = g_T \times m \times \chi \times (1 - \frac{\eta_T}{100}), m / co\partial,$$

$$M_{TB}$$
20 ∂ = 0,025*0,00047 *0,01*(1-0/100) = **0,00000012** T/**nep**

где: g_T - зольность топлива в % (дизтопливо - 0,025 %);

m - количество израсходованного топлива т/пер:

 χ - безразмерный коэффициент дизтопливо – 0,01;

 η_T - эффективность золоуловителей по паспортным данным установки, 0.

Максимально разовый выброс рассчитывают по формуле:

$$M_{TB}ce\kappa = \frac{M_{TB}co\partial \times 10^6}{3600 \times n \times T_3}, \varepsilon/ce\kappa,$$

$$M_{TR}ce\kappa = 0,00000012*1000000/3600*0,0649 = 0,0005 \text{ r/ce}$$

Валовый выброс *ангидрида сернистого* в пересчете на SO_2 (сера диоксид) рассчитывают по формуле:

$$M_{SO2} co\partial = 0.02 \times B \times S^P \times (1 - \eta'_{SO2}) \times (1 - \eta''_{SO2}), m/co\partial,$$

$$M_{so2}$$
год = 0,02*0,00047 *0,3* (1-0,02) (1-0) = **0,0000027** т/пер

где: В - расход жидкого топлива, т/пер;

 S^p - содержание серы в топливе, 0,3 %

 η'_{so2} - доля ангидрида сернистого, связываемого летучей золой топлива (при сжигании дизтоплива $\eta'_{so2}=0{,}02$);

 η''_{so2} - доля ангидрида сернистого, улавливаемого в золоуловителе. Для сухих золоуловителей принимается равной 0.

Максимально разовый выброс определяется по формуле:

$$M_{so_2}ce\kappa = \frac{M_{so_2}zo\partial \cdot 10^6}{3600 \cdot n \cdot T_3}$$
, $z/ce\kappa$

$$M_{so,}ce\kappa = 0,0000027 *1000000/3600*0,0649 = 0,0118 \text{ r/ce}\kappa$$

Валовый выброс *оксидов азота* (в пересчете на NO_2) [5], выбрасываемых в атмосферу, рассчитывают по формуле:

$$M_{NO2} zod = 0.001 \times B \times Q_H^P \times K_{NO2} \times (1 - \beta), m/zod$$
(3.15)

где В - расход топлива т/период.

$$M_{NO2}$$
2000 = 0,001 * 0,00047 * 42,62*0,08* (1-0) = **0,000002** T/Tep

Максимально разовый выброс рассчитывают по формуле:

$$M_{NO_2}ce\kappa = \frac{M_{NO_2}co\partial \times 10^6}{3600 \times n \times T_3}$$
, $c/ce\kappa$

$$M_{NO}$$
, $CeK = 0.000002 * 1000000/3600*0.0649 = 0.0068 r/ceK$

Тогда диоксид азота: Мсек=0,0055 г/сек

 $M_{\rm год} = 0,000001$ т/пер

Оксид азота: М_{сек}=0,0009 г/сек

 $M_{\text{год}} = 0,0000002$ т/пер

Валовый выброс оксида углерода рассчитывают по формуле:

$$M_{co} zo\partial = 0.001 \times C_{co} \times B \times \left(1 - \frac{g_4}{100}\right), m/zo\partial,$$

$$M_{co}$$
20 ∂ = 0,001*13,85*0,00047 = **0,000006** T/**nep**

где C_{co} - выход оксида углерода при сжигании топлива, кг/т жидкого топлива, рассчитывается по формуле:

$$C_{CO} = g_3 \times R \times Q_H^P, \text{ K}_{\Gamma}/T$$

 $C_{CO} = 0.5*0.65*42.62=13.85 \text{ K}_{\Gamma}/T$

где: g_3 - потери теплоты вследствие химической неполноты сгорания топлива, % (ориентировочно для дизтоплива $g_3 = 0.5$ %);

- R коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, обусловленный наличием в продуктах неполного сгорания оксида углерода (для дизтоплива R=0.65);
- g_4 потери теплоты вследствие механической неполноты сгорания топлива, % (ориентировочно для мазута $g_4 = 0$ %).

Максимально разовый выброс определяется по формуле:

$$M_{co}ce\kappa = \frac{M_{co}zod \times 10^6}{3600 \times n \times T_3} \,, \, z/ce\kappa$$

$$M_{CO}ce\kappa = 0,000006 * 1000000/3600 * 0,0649 = 0,0277 \text{ r/cek}$$

При хранении битума:

 p_{mn} - плотность битума – 0,95 т/м3;

Минимальная температура жидкости – 100°C;

Максимальная температура жидкости – 140°C;

т – молекулярная масса битума, 187;

 V^{max} – максимальный объем ПВС, вытесняемой из резервуаров во время его закачки, 12 м³/час;

В – грузооборот, т/период;

 K^{max} , K^{cp} – опытные коэффициенты, 0,90 и 0,63;

 K_{o6} – коэффициент оборачиваемости, 2,50;

 $P^{max} = 19,91$ $P^{min} = 4,26$ — давление насыщенных паров жидкости при максимальной и минимальной температуре жидкости;

 $K_{\text{в}}$ = опытный коэффициент;

Максимальный выброс углеводорода:

 $M=0.445*19.91*187*0.90*1*12/10^{2*}(273+140) = 0.0433 \text{ г/сек};$

Валовый выброс углеводорода:

 $G=0,160*(19,91*1+4,26)*187*0,63*2,50*0,00047/10^4*0,95*(546+140+100)=0,00000007$ т/год.

Выбросы по источнику составят:

Наименование вещества	Выбросы			
	г/сек	т/год		
Сажа	0.0005	0,0000012		
Сера диоксид	0.0118	0,000027		
Азота диоксид	0.0055	0,00001		
Азота оксид	0.0009	0,0000002		
Оксид углерода	0.0277	0,00006		
Углеводород	0.0433	0,0000007		

Источник №0002 Передвижная электростанция

При строительстве используется передвижная электростанция, мощностью 4 кВт. Расход топлива составляет 0,9 л/час. Отвод выхлопных газов производится по трубе на высоту 2,5 м, диаметром трубы 0,05 м. Максимальное время работы передвижной электростанции 18,207 часов в период. Расход топлива составит: 0,9 л/час*0,769*18,207 = 12,6 кг/период, 0,0126 т/период.

Расчет выбросов произведен согласно «Методики расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004».

Максимальный секундный выброс определяется по формуле:

$$M = (1/3600) *e*P,r/c$$

 Γ де: P= 4 кBт - максимальная эксплуатационная мощность

е - выброс вредного вещества на единицу полезной работы стационарной дизельной установки, г/КВт*ч

1/3600 — коэффициент пересчета часов в секунды

Валовый выброс определяем по формуле:

$$W = (1/1000) * q*G, т/год$$

Где: q (г/кг.топл) - выброс загрязняющих веществ, приходящихся на 1кг дизельного топлива

G (т) - расход дизтоплива дизельгенератором

1/1000 - перевод кг в т.

При мощности 4 кВт дизельгенератор относится к группе А (маломощные, быстроходные и повышенной быстроходности).

Расчетные максимально-разовые выбросы и расчеты годовых выбросов от дизельгенератора

Расход	Наименование	Удельный	Секундный	Удельный вы-	Валовый выброс,
дизтоплива,	вещества	выброс, е,	выброс, г/с	брос, q, г/кг топл	т/период
G, T		г/кВт*ч			
0,0126	Оксид углерода	7,2	0.008	30	0.00038
	Окислы азота в	10,3	0.0114	43	0.00054
	т.ч.				
	Диоксид азота		0.00912		0.00043
	Азота оксид		0.0015		0.00007
	Углеводороды	3,6	0.004	15	0.00019
	Сажа	0,7	0.00078	3,0	0.00004
	Диоксид серы	1,1	0.0012	4,5	0.00006
	Формальдегид	0,15	0.00017	0,6	0.00001
	Бенз(а)пирен	1,3*10 ⁻⁵	0.000000014	5,5*10 ⁻⁵	0.0000000007

Объем отработавших газов определен в соответствии с приложением к вышеуказанной «Методике...» и составит:

$$Q = \frac{8,72*10^{-3}*B}{Y/(1+T/273)}$$
 где

Y- удельный вес отработавших газов при температуре 0^{0} C, можно принимать $1,31~{\rm kr/~m}^{3}$

Т- температура отработавших газов, К

В- часовой расход топлива

$$Q = \frac{8,72*10^{-3}*0,6921}{1,31/[1+723/273]} = 0,017 \text{ m}^3/\text{c}$$

Источник №0003 Компрессор с ДВС

На площадке будет использоваться передвижной компрессор с ДВС, время работы -802,5 час/период, мощностью 29 кВт.

Расчет потребляемого топлива:

$$M = 220*29/1000 = 6,38$$
 кг/час $6,38$ кг/час $*802,5 = 5120,0$ кг/период

Максимальный секундный выброс определяется по формуле:

$$M=(1/3600)*e*P,\Gamma/c$$

Где: Р = 29 кВт - максимальная эксплуатационная мощность

е - выброс вредного вещества на единицу полезной работы стационарной дизельной установки, г/КВт*ч

1/3600 — коэффициент пересчета часов в секунды

Валовый выброс определяем по формуле:

$$W = (1/1000)^* q^*G$$
, т/период

Где: q (г/кг.топл) - выброс загрязняющих веществ, приходящихся на 1кг дизельного топлива

 $G(\tau)$ - расход дизтоплива дизельгенератором 1/1000 - перевод кг в τ .

При мощности 29 кВт, устройство относится к группе А - малой мощности.

Расчетные максимально-разовые выбросы и расчет годовых выбросов от

компрессора:

Doorer	Harricarraparrica	Vromvy	Caramana	Vronvery prefere	Davanyy nyfaas
Расход	Наименование	Удельный	Секундный	Удельный выброс, q,	_ · ·
дизтопли	вещества	выброс, е,	выброс, г/с	г/кг топл	т/период
ва, G, т		г/кВт*ч			
5,12	Оксид углерода	7,2	0.06	30	0.15360
	Окислы азота в	10,3	0.083	43	0.22016
	т.ч.				
	Диоксид азота		0.066		0.17613
	Оксид азота		0.011		0.02862
	Углеводороды	3,6	0.029	15	0.07680
	Сажа	0,7	0.0056	3	0.01536
	Диоксид серы	1,1	0.0089	4,5	0.02304
	Формальдегид	0,15	0.0012	0,6	0.00307
	Бенз(а)пирен	1,3*10 ⁻⁵	0.0000001	0,000055	0.0000002816

Объем отработавших газов определен в соответствии с приложением к вышеуказанной «Методике...» и составит:

$$Q = \frac{8,72*10^{-3}*B}{Y/(1+T/273)}$$
, где

Y- удельный вес отработавших газов при температуре 0^{0} C, можно принимать $1,31~{\rm kr/}~{\rm m}^{3}$

Т- температура отработавших газов, К

В- часовой расход топлива

$$Q = 8.72*10^{-3}*6.38/1.31/[1+(450+273)/273] = 0.15 \text{ m}^3/\text{c}$$

Выбросы загрязняющих веществ на период строительства

Код	Наименование	ПДК	ПДК	ОБУВ	Класс	Выброс	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,
веще-		разовая,	суточная,	безопасн.	ности	Γ/c	т/год
ства		мг/м3	мг/м3	УВ, мг/м3			
1	2	3	4	5	6	7	8
0123	Железо (II, III) оксиды		0.04		3	0.024	0.2405
0143	Марганец и его соединения	0.01	0.001		2	0.0008	0.0083
0168	Олово оксид /в пересчете на олово/		0.02		3	0.00003	0.00001
0184	Свинец и его неорганические	0.001	0.0003		1	0.0003	0.00001
0301	Азота (IV) диоксид	0.2	0.04		2	0.54862	0.308081
0304	Азот (II) оксид	0.4	0.06		3	0.08698	0.0286902
0328	Углерод	0.15	0.05		3	0.02358	0.01540012
0330	Сера диоксид	0.5	0.05		3	0.0569	0.0231027
0337	Углерод оксид	5	3		4	0.2993	0.316846
0342	Фтористые газообразные соединения	0.02	0.005		2	0.0002	0.00857
0344	Фториды неорганические плохо	0.2	0.03		2	0.0007	0.01214
	растворимые						
0616	Диметилбензол	0.2			3	0.3717	0.2338
0621	Метилбензол	0.6			3	0.019	0.6598

0703	Бенз/а/пирен		0.000001		1	0.000000114	0.0000002823
1042	Бутан-1-ол (Бутиловый спирт)	0.1			3	0.0018	0.0007
1048	2-Метилпропан-1-ол	0.1			4	0.0018	0.0007
1210	Бутилацетат	0.1			4	0.004	0.1277
1325	Формальдегид (609)	0.05	0.01		2	0.00137	0.00308
1401	Пропан-2-он (Ацетон)	0.35			4	0.008	0.27669
2752	Уайт-спирит			1		0.3	0.1412
2754	Алканы С12-19	1			4	0.6913	0.25795007
2902	Взвешенные частицы	0.5	0.15		3	0.407	0.27949
2908	Пыль неорганическая. содержащая	0.3	0.1		3	0.69588	4.47926
	двуокись кремния в %: 70-20						
2930	Пыль абразивная			0.04		0.004	0.0051
	ВСЕГО:					3.547260114	7.427120372

Виды и объемы образования отходов Система управления отходами на период строительства

Объемы образования отходов определены согласно Приложению №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п «Методика разработки проектов нормативов предельного размещения отходов производства и потребления».

На период строительства:

В результате деятельности образуются следующие виды отходов:

- твердые бытовые отходы персонала;
- производственные отходы.

Смешанные коммунальные отходы

Норма образования отходов составляет 0,3 м³ на человека в год. Количество персонала – 93 человек. Период строительства составляет 14,4 месяцев.

$$(93 \text{ чел.} * 0.3 * 0.25/12) * 14.4 = 8.37 т/период.$$

Твердо-бытовые отходы включают: полиэтиленовые пакеты, пластиковые бутылки, пластмасса, бумага, картон, стекло и т.п., сгораемые (бумага, картон, пластмасса) и не сгораемые бытовые отходы. Агрегатное состояние - твердые вещества. Не растворяются в воде. Пожароопасные, не токсичные, не взрывобезопасные.

Класс опасности - IV, малоопасные отходы.

Код отхода -200301.

Твердые бытовые отходы складируются в специальные контейнеры, размещаемые на площадке с твердым покрытием и по мере накопления вывозятся на полигон ТБО.

Уровень опасности отхода - зеленый уровень опасности.

<u>Отходы от красок и лаков, содержащие органические растворители</u> <u>или другие опасные вещества</u> Расчёт образования пустой тары произведён по «Методике разработки проектов нормативов предельного размещения отходов производства и потребления», утверждённой Приказом МООС РК № 100-п от 18.04.2008 г.

Норма образования отхода определяется по формуле:

$$N = \sum M_i \cdot n + \sum M_{i} \cdot \alpha_i, T/\Gamma O J$$

где: M_i – масса i -го вида тары, т/год;

n – число видов тары;

 $M_{\kappa i}$ — масса краски в i -ой таре, т/год;

 α_i – содержание остатков краски в i -той таре в долях от $M_{\kappa i}$ (0.01-0.05).

№	Наименование продукта ЛКМ	Масса поступивши х ЛКМ, т	Масса тары Мі, т (пустой)	Кол-во тары, п	Масса краски в таре Мкі, т	аі содержание остатков краски в таре в долях от Мкі (0,01-0,05)	Норма отхода тары из-под ЛКМ, т
1	2	3	4	5	6	7	8
1	Растворители	1,06420	0,0005	112,021	0,0095	0,01	0,066653
2	Грунтовки	0,26759	0,001	19,114	0,014	0,03	0,0271
3	Эмали	0,313	0,0005	32,985	0,0095	0,01	0,0196
4	Краски	0,0080	0,0005	0,842	0,0095	0,03	0,0007
5	Лак	0,11276	0,001	70,475	0,0016	0,03	0,0739
	Уайт-спирит	0,04039	0,0005	4,252	0,0095	0,01	0,0025
		1,80630		239,689			0,1905

Всего за период проведения строительства планируется к образованию **0,1905 тонны** пустой тары из-под ЛКМ.

Класс опасности - III, отходы умеренно опасные.

Код отхода -080111*

Тара из-под краски складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Отходы сварки

При строительстве планируется использовать 8,5909 т электродов.

Расчет образования огарков сварочных электродов производится по формуле «Методики разработки проектов нормативов предельного размещения отходов производства и потребления» (Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г.).

Норма образования огарков электродов составляет:

$$N = M_{oct} \cdot \alpha$$
, $T/\Gamma O J$,

где: $M_{\text{ост}}$ – расход электродов, т/год;

 α – остаток электрода, α =0.015 от массы электрода.

Количество образующихся огарков электродов при строительстве составит

8,5909*0,015= **0,128864** т/период

Физическая характеристика отходов: - не растворим в воде, взрыво и пожаробезопасны. Химический состав: - железо 96-97%, обмазка (типа $Ti(CO_3)_2$) – 2-3%; прочее - 1%. Агрегатное состояние - твердые вещества.

Класс опасности - IV, малоопасные отходы.

Код отхода – 12 01 13.

Огарки сварочных электродов складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами — 15/15 02/15 02 02*

По данным заказчика общее количества ветоши составляет – 22,132 кг.

N = Mo + M + W, т/год,

где: Мо - поступающее количество ветоши, т/год;

М - норматив содержания в ветоши масел, М=0,12*Мо;

W - нормативное содержание в ветоши влаги, W=0,15*Mo.

M = 0.12*0.022132 = 0.0026558

W = 0.15*0.022132 = 0.0033198

N = 0.022132 + 0.0026558 + 0.0033198 = 0.028108 т/период.

Морфологический состав отхода:

Содержание компонентов: ткань - 73%, нефтепродукты и масла - 12%, вода - 15%. Физическая характеристика отходов: промасленная ветошь - горючие, взрывобезопасные материалы, нерастворимые в воде, химически не активны. Агрегатное состояние - твердые предметы (куски ткани) самых различных форм и размеров. Средняя плотность 1,0 т/м3. Максимальный размер частиц не ограничен.

Класс опасности - III, отходы умеренно опасные.

Код отхода - 15 02 02*

По мере образования отходы складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления (не более 6 месяцев) передаются в стороннюю организацию на основании договора.

Нормативы размещения отходов производства и потребления, образуемых на этапе строительства

Таблица 5.1.2

Наименование отходов	Гру	Подгр	Код	Количество	Количество
	ппа	уппа		образования,	накопления,
				т/период	т/период
1	2	3	4	5	6
Всего				8,71747	0
Смешанные коммунальные	20	20 03	20 03 01	8,37	0
отходы				0,37	U

Отходы от красок и лаков,	08	08 01	08 01 11*		
содержащие органические				0,1905	0
растворители или другие				0,1703	U
опасные вещества					
Отходы сварки	12	12 01	12 01 13	0,128864	0
Абсорбенты, фильтровальные	15	15 02	15 02 02*		
материалы (включая масляные					
фильтры иначе не					
определенные), ткани для				0,028108	0
вытирания защитная одежда,					
загрязненные опасными					
материалами					