2026-2028 ГОД

Проходка канав - источник №6001

Проходка канав на планируется механизированным способом.

После механизированной проходки канав экскаватором в обязательном порядке проводится ручная зачистка (лопатой) стенки и полотна канав, что обеспечит высокое качество геологических наблюдений и чистоту отбора проб.

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- θ .
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Перед началом работ производится снятие почвенно-растительного слоя на глубину 0,2 м при помощи бульдозера и складирование за пределами участка работ.

Объём снятия ПРС с участков проходки канав - 300 м³/год.

Производительность бульдозера - 100 м³/час.

Время работы - 3 ч/год.

Источник выделения N 001, Снятие ПРС бульдозером

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Почвенно-растительный слой

Примесь: 2908 Пыль неорганическая, содержащая двуокиси кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, кремнезем, зола углей казакстанских месторождений) (494)

Влажность материала, %, VL = 15

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=150 Максимальное количество перерабатываемого материала за 20 мин, тонн, G20=37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B' = 0.7

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 0.1575$ Время работы узла переработки в год, часов, RT2 = 2.25 Валовый выброс пыли при переработке, т/год (1), $AГОД = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 150 \cdot 0.7 \cdot 2.25 = 0.00068$

Максимальный разовый выброс пыли , г/сек, Q=0.1575 Валовый выброс пыли , т/год , QГОД = 0.00068

Итого выбросы от источника выделения: 001 Проходка канав

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.1575	0.00068
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N 002, Проходка канав экскаватором

Средняя глубина канав - 1,5 м, ширина - 1,5 м.

Общий объем канав 300 м^3 .

Производительность экскаватора 25 м³/час.

Время работы экскаватора - 96 ч/год.

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки

пылящих материалов

Материал: Грунт

Примесь: 2908 Пыль неорганическая, содержащая двуокиси кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.1

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), **K3SR = 1.2**

Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, $\tau/$ час, G=67.5 Максимальное количество перерабатываемого материала за 20 мин, тонн,

G20 = 17

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B'=0.7

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot 0.1 \cdot 0.4 \cdot 17 \cdot 10^6 \cdot 0.7 / 1200 = 0.714$ Время работы узла переработки в год, часов, RT2 = 96 Валовый выброс пыли при переработке, т/год (1), $AFOJ = K1 \cdot K2 \cdot K3SR$

валовыи выорос пыли при переработке, т/год (1), AlOH = K1 · K2 · K3SI · K4 · K5 · K7 · G · B' · RT2 = $0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.4 \cdot 67.5 \cdot 0.7 \cdot 96 = 0.1306$

Максимальный разовый выброс пыли , г/сек, Q=0.714 Валовый выброс пыли , т/год , QГОД = 0.1306

Итого выбросы от источника выделения: 002 Проходка канав

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.714	0.1306
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Рекультивация нарушенных участков земли будет производиться сразу после окончания работ на участке путем засыпки бульдозером.

Производительность бульдозера - 100 м³/час.

Время работы - 3 ч/год.

Источник выделения N 003, Рекультивация канав бульдозером

Материал: Грунт и почвенно-растительный слой

Примесь: 2908 Пыль неорганическая, содержащая двуокиси кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, **VL** = **15**

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4=1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=150 Максимальное количество перерабатываемого материала за 20 мин, тонн, G20=37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), $\mathbf{B'} = \mathbf{0.7}$

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 0.1575$ Время работы узла переработки в год, часов, RT2 = 2.25 Валовый выброс пыли при переработке, т/год (1), $AГОД = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot$

Максимальный разовый выброс пыли , г/сек, Q=0.1575 Валовый выброс пыли , т/год , Qгод = 0.00068

 $0.4 \cdot 150 \cdot 0.7 \cdot 2.25 = 0.00068$

Итого выбросы от источника выделения: 003 Проходка канав

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.1575	0.00068
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Итого от ИЗА №6001

Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокиси		
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина,	1,0290	0,13196
	глинистый сланец, доменный шлак,ола,	1,0290	0,13190
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Бульдозер - источник №6002

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников. Приложение N8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года N9 221- Θ .

Расчет выбросов от двигателя бульдозера

Масса i-го вредного вещества, выделяющегося при работе дизельного двигателя бульдозера:

$$m_{\,6\text{ri}}\!=\!(q_{y\!z\!t}\,t_{\,x\!x}\!+q_{y\!z\!i}\,t_{\,40\%}\!+q_{y\!z\!i}\,t_{\,100\%})\,T_{\,c\!x\!M}\,N_{\,6\,10^{-3}},\quad_{\mathrm{T/FOJ}}\quad (6\,.\,7\,)$$

Суммарная масса вредных веществ, выделяющихся при работе двигателя бульдозера:

$$m_{6r} = \sum m_{6ri}$$
, T/FOH (6.8)

Где:

- $q_{yдi}$ удельный выброс i-го вредного вещества при работе двигателя в соответствующем режиме, кг/ч (таблица 20)* согласно приложению к настоящей Методике,
- t_{xx} , $t_{40\$}$, $t_{100\$}$ время работы двигателя в течение смены, соответственно на холостом ходу, при частичном использовании мощности двигателя, \$.

- $t_{40\%}$, $t_{100\%}$ определяется аналогично;

где t1 - процентное распределение времени работы двигателя на различных нагрузочных режимах;

- t $_{\text{\tiny CM}}$ чистое время работы бульдозера в смену, 8 ч;
- Тсм число смен работы бульдозера в году, 2;
- Nб число бульдозеров, 1 шт.

 $t_{xx} = 20/100 * 8 = 1,6 = 1$

 $t_{40\%} = 40/100 * 8 y = 3,2 y$

 $t_{100\%} = 40/100 * 8 y = 3,2 y$

Примесь: 0301 Азота (IV) диоксид

moder = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 1.69 * 1 * 1.00 *

 $10^{-3} = 0.00276 \text{ T/год}$

 $mor = (0.00276 * 10^6) / (3600 * 13.5) = 0.05678 r/cek$

Валовый выброс, т/год , \underline{M} = 0.8 * \underline{M} = 0.8 * 0.00276 = 0.00221 Максимальный разовый выброс, г/с , \underline{GS} = 0.8 * \underline{G} = 0.8 * 0.05678 = 0.04542

Примесь: 0304 Азот (II) оксид

 $\overline{mor} = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 1.69 * 1 *$

 $10^{-3} = 0.00276 \text{ T/год}$

 $mfr = (0.00276 * 10^6) / (3600 * 13.5) = 0.05678 r/cek$

Валовый выброс, т/год , $_{\bf M}_{\bf -}$ = 0.13 * $_{\bf M}$ = 0.13 * 0.00276 =

Максимальный разовый выброс, r/c , GS = 0.13 * G = 0.13 * 0.05678 = 0.00738

Примесь: 0328 Углерод (сажа)

mor = (0.003 * 1.6 + 0.019 * 3.2 + 0.044 * 3.2) * 1.69 * 1 * 1.00 * 3.2 + 0.0035 * 7.000 * 1.69 * 1 *

 $10^{-3} = 0.00035 \text{ T/год}$

 $mbr = (0.00035 * 10^6) / (3600 * 13.5) = 0.00717 r/cek$

Примесь: 0337 Углерод оксид (угарный газ)

mor = (0.137 * 1.6 + 0.205 * 3.2 + 0.342 * 3.2) * 1.69 * 1 * 1.00 * 1.

 $10^{-3} = 0.00332 \text{ T/год}$

 $mfr = (0.00332 * 10^6) / (3600 * 13.5) = 0.06839 r/cek$

Примесь: 2732 Керосин

mor = (0.072 * 1.6 + 0.214 * 3.2 + 0.275 * 3.2) * 1.69 * 1 *

 $10^{-3} = 0.00284 \text{ T/год}$

 $mbr = (0.00284 * 10^6) / (3600 * 13.5) = 0.05833 r/cek$

Итоговая таблица выбросов от бульдозера

Код	Примесь	Выброс г/с	Выброс т/год
0301	Asora (IV)	0.04542	0.00221
	диоксид		
0304	(II) TOEA	0.00738	0.00036
	оксид		
0328	Углерод	0.00717	0.00035
	(сажа)		

0337	Углерод оксид	0.06839	0.00332
	(угарный газ)		
2732	Керосин	0.05833	0.00284

Экскаватор - источник №6003

Время работы экскаватора - 99,6 ч/год

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- θ .

Расчет выбросов от двигателя экскаватора

Масса і-го вредного вещества, выделяющегося при работе дизельного двигателя экскаватора:

$$m_{6ri} = (q_{yx}t_{xx} + q_{yxi}t_{40\%} + q_{yxi}t_{100\%}) T_{cm}N_{610}^{-3}, T_{FOX}$$
 (6.7)

Суммарная масса вредных веществ, выделяющихся при работе двигателя экскаватора:

$$m_{6r} = \sum m_{6ri}$$
, т/год (6.8)

Где:

- $q_{yдi}$ удельный выброс i-го вредного вещества при работе двигателя в соответствующем режиме, кг/ч (таблица 20)* согласно приложению к настоящей Методике,
- t_{xx} , $t_{40\$}$, $t_{100\$}$ время работы двигателя в течение смены, соответственно на холостом ходу, при частичном использовании мощности двигателя, \$.

$$t_{xx} = t_{1/100} x t_{cm}, y;$$
 (6.9)

- $t_{40\%}$, $t_{100\%}$ определяется аналогично;
- где t1 процентное распределение времени работы двигателя на различных нагрузочных режимах;
- t $_{\text{см}}$ чистое время работы экскаватора в смену, 8 ч;
- Тсм число смен работы экскаватора в году, 7;
- Мб число экскаваторов, 1 шт.

$$t_{xx} = 20/100 * 8 u = 1,6 u$$

 $t_{40\%} = 40/100 * 8 u = 3,2 u$
 $t_{100\%} = 40/100 * 8 u = 3,2 u$

Примесь: 0301 Азота (IV) диоксид

мбг = $(0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 12.45 * 1 * 10^-3 = 0.02036 т/год мбг = <math>(0.02036 * 10^6) / (3600 * 99.6) = 0.05678 г/сек Валовый выброс, т/год , <math>\underline{\mathbf{M}} = \mathbf{0.8} * \mathbf{M} = \mathbf{0.8} * 0.02036 = 0.01629$ Максимальный разовый выброс, г/с , $\mathbf{GS} = \mathbf{0.8} * \mathbf{G} = \mathbf{0.8} * 0.05678 = \mathbf{0.04542}$

Примесь: 0304 Азот (II) оксид

```
мбr = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 12.45 * 1 * 10^-3 = 0.02036 т/год мбr = <math>(0.02036 * 10^-6) / (3600 * 99.6) = 0.05678 г/сек Валовый выброс, т/год , _M_ = 0.13 * M = 0.13 * 0.02036 = 0.00265 Максимальный разовый выброс, г/с , GS = 0.13 * G = 0.13 * 0.05678 = 0.00738
```

Примесь: 0328 Углерод (сажа)

```
\overline{\text{mfr}} = (0.003 * 1.6 + 0.019 * 3.2 + 0.044 * 3.2) * 12.45 * 1 * 10^-3 = 0.00257 \text{ T/rog}
\overline{\text{mfr}} = (0.00257 * 10^6) / (3600 * 99.6) = 0.00717 \text{ r/cek}
```

Примесь: 0337 Углерод оксид (угарный газ)

```
mбr = (0.137 * 1.6 + 0.205 * 3.2 + 0.342 * 3.2) * 12.45 * 1 * 10^-3 = 0.02452 т/год <math>mбr = (0.02452 * 10^6) / (3600 * 99.6) = 0.06839 г/сек
```

Примесь: 2732 Керосин

```
mбr = (0.072 * 1.6 + 0.214 * 3.2 + 0.275 * 3.2) * 12.45 * 1 * 10^-3 = 0.02092 т/год <math>mбr = (0.02092 * 10^6) / (3600 * 99.6) = 0.05833 г/сек
```

Итоговая таблица выбросов от экскаватора

Код	Примесь	Выброс г/с	Выброс т/год
0301	Asora (IV)	0.04542	0.01629
	диоксид		
0304	Asor (II)	0.00738	0.00265
	оксид		
0328	Углерод	0.00717	0.00257
	(сажа)		
0337	Углерод оксид	0.06839	0.02452
	(угарный газ)		
2732	Керосин	0.05833	0.02092

Разведочное бурение скважин источники №№6004

<u>Обустройство площадок под буровые установки</u> предусмотрено проводить при помощи бульдозера.

Размер площадки под буровые установки составляет $15*15 = 225 \text{ м}^2$. Объем снятия ПРС с площадки под буровую: 225 м3/год. Производительность бульдозера на снятии ПРС – 150 т/чаc.

Время на снятие всего объема ПРС - 2,25 ч/год.

<u>Проведение</u> колонкового бурения планируется буровым станком типа Cristensen C-14 с применением канадских буровых снарядов фирмы «Boart Longyear», производительностью 7 п.м. в смену. Время работы бурового станка — 464 ч/год.

Обустройство отстойников для промывочной жидкости (глинистый раствор) предусматривается на каждой скважине, размер отстойника 6 * 2* 1,5 м. Для обустройства отстойников предусмотрено использовать одноковшовый экскаватор.

Объём извлекаемого грунта при обустройстве отстойника на одной скважине $-18 \text{ m}^3.$

Производительность экскаватора на обустройстве отстойников – $25 \text{ m}^3/\text{час}$ (37,5 т/час), время работы – 3,6 ч/год.

Общий объем - 90 м3 (234 т)

Рекультивация площадок под буровые установки. После окончания бурения и проведения необходимых исследований, разведочные скважины ликвидируются, трубы вытаскиваются, зумпфы осущаются и закапываются, использованная площадка выравнивается, оборудование вывозится. Снятый плодородный слой отсыпается сверху. Производительность бульдозера - 150 $м^3$ /час, время работы - 2,25 ч/год. Объем грунта - 225 m^3 /год.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-π.

Источник выделения N 6004.01, Снятие ПРС

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: ПРС

Влажность материала, %, VL = 15

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=150

Максимальное количество перерабатываемого материала за 20 мин, тонн, G20 = 37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), $\mathbf{B}' = \mathbf{0.7}$

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3$

 $\cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^{6} \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot$

 $0.01 \cdot 0.5 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 0.197$

Время работы узла переработки в год, часов, RT2 = 3.00

Валовый выброс пыли при переработке, т/год (1), **АГОД = K1 \cdot K2 \cdot K3SR**

 $\cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot$ $0.5 \cdot 150 \cdot 0.7 \cdot 3 = 0.001134$

Максимальный разовый выброс пыли , г/сек, Q=0.197Валовый выброс пыли , т/год , $\emph{QГОД} = 0.001134$

Итого выбросы от источника выделения: 001 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.197	0.001134
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N 600402, Буровой станок

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение N 8 к Приказу Министра охраны окружающей среды
- и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-0
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Интенсивность пылевыделения от единицы оборудования, г/ч (табл.16), G = 97

Количество одновременно работающего данного оборудования, шт., N=1 Способ бурения: Шарошечное

Система пылеочистки: Мокрый пылеуловитель

Степень пылеочистки, в долях единицы (табл.15), N = 0.85

Максимальный разовый выброс , г/ч, $GC = N \cdot G \cdot (1-N) = 1 \cdot 97 \cdot (1-0.85) = 14.55$

Продолжительность работы в течении 20 минут, мин, TN = 20

Максимальный разовый выброс, г/с (9), $Q = GC / 3600 \cdot TN \cdot 60 / 1200 = 14.55 / 3600 \cdot 20 \cdot 60 / 1200 = 0.00404$

Время работы в год, часов, RT = 464

Валовый выброс, т/год, *QГОД* = $GC \cdot RT \cdot 10^{-6} = 14.55 \cdot 464 \cdot 10^{-6} = 0.00675$

Итого выбросы от источника выделения: 002 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.00404	0.00675
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

<u>Источник выделения N600403, Обустройство отстойников для промывочной</u> жидкости

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских месторождений) (494)

Вид работ: Выемочно-погрузочные работы

Влажность материала, %, **VL** = **10**

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.1

Доля пылевой фракции в материале (табл.1), P1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), P2 = 0.02

Скорость ветра в зоне работы экскаватора (средняя), м/с, G3SR = 2.2

Коэфф.учитывающий среднюю скорость ветра (табл.2), P3SR = 1.2

Скорость ветра в зоне работы экскаватора (максимальная), м/с, G3 = 34

Коэфф. учитывающий максимальную скорость ветра (табл.2), P3 = 3

Коэффициент, учитывающий местные условия (табл.3), P6 = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), P5 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), $\mathbf{B} = \mathbf{0.7}$

Количество перерабатываемой экскаватором породы, $\tau/$ час, G = 67.5

Максимальный разовый выброс, г/с (8), $Q = P1 \cdot P2 \cdot P3 \cdot K5 \cdot P5 \cdot$

 $P6 \cdot B \cdot G \cdot 10^6 / 3600 = 0.03 \cdot 0.02 \cdot 3 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.7 \cdot 67.5 \cdot 10^6 / 3600 = 1.181$

Время работы экскаватора в год, часов, RT = 3.6

Валовый выброс, т/год, $Q \Gamma O Z = P1 \cdot P2 \cdot P3SR \cdot K5 \cdot P5 \cdot P6 \cdot B \cdot G \cdot RT = 0.03 \cdot 0.02 \cdot 1.2 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.7 \cdot 67.5 \cdot 3.6 = 0.00612$

Итого выбросы от источника выделения: 003 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	1.181	0.01462
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N 600404, Рекультивация площадок под буровые установки

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый

сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских месторождений) (494)

Влажность материала, %, VL = 10Коэфф., учитывающий влажность материала (табл.4), K5 = 0.1

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, $\tau/$ час, G=150 Максимальное количество перерабатываемого материала за 20 мин, тонн,

G20 = 37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B' = 0.7 Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3$

 $\cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1$

 $0.1 \cdot 0.5 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 1.97$

Время работы узла переработки в год, часов, RT2 = 6

Валовый выброс пыли при переработке, т/год (1), **АГОД = K1 \cdot K2 \cdot K3SR**

 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 150 \cdot 0.7 \cdot 6 = 0.0227

Максимальный разовый выброс пыли , г/сек, Q=1.97 Валовый выброс пыли , т/год , QГОД = 0.0227

Итого выбросы от источника выделения: 004 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	1.97	0.0227
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Дизельные генераторы буровых станков - источник №0001.

Буровые станки оборудованы дизельными генераторами.

Список литературы:

1. ."Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год \mathbf{B}_{rog} , т, 5.32 Эксплуатационная мощность стационарной дизельной установки \mathbf{P}_{s} , кВт, 1

Удельный расход топлива на экспл./номин. режиме работы двигателя $\boldsymbol{b_{\text{s}}}$, r/kBt*q, 123.7

Температура отработавших газов $\boldsymbol{T_{or}}$, K, 720

Используемая природоохранная технология: применение топлива с пониженным содержанием серы

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{or} , кг/с:

 $G_{or} = 8.72 * 10^{-6} * b_{9} * P_{9} = 8.72 * 10^{-6} * 123.7 * 1 = 0.001078664$ (A.3)

Удельный вес отработавших газов $\gamma_{\mathtt{or}}$, кг/м 3 :

$$\gamma_{or} = 1.31 / (1 + T_{or} / 273) = 1.31 / (1 + 720 / 273) = 0.360151057$$

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{or} , \mathbf{M}^3/\mathbf{c} :

$$Q_{or} = G_{or} / \gamma_{or} = 0.001078664 / 0.360151057 = 0.002995032$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки по капитального ремонта

	I						
Группа	CO	NOx	СН	С	S02	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{si} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{9} / 3600$ (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{\ni i} * B_{rog} / 1000 \tag{2}$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 – для NO_2 и 0.13 – для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_9 / 3600 = 7.2 * 1 / 3600 = 0.002$$

$$W_i = q_{Mi} * B_{rog} = 30 * 5.32 / 1000 = 0.1596$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M_i = (e_{Mi} * P_s / 3600) * 0.8 = (10.3 * 1 / 3600) * 0.8 =$$

0.002288889

$$W_i = (q_{Mi} * B_{TOR} / 1000) * 0.8 = (43 * 5.32 / 1000) * 0.8 = 0.183008$$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

$$M_i = e_{Mi} * P_{\circ} / 3600 = 3.6 * 1 / 3600 = 0.001$$

$$W_i = q_{Mi} * B_{rog} / 1000 = 15 * 5.32 / 1000 = 0.0798$$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_{\odot} / 3600 = 0.7 * 1 / 3600 = 0.000194444$

 $W_i = q_{Mi} * B_{POH} / 1000 = 3 * 5.32 / 1000 = 0.01596$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_{\odot} / 3600 = 1.1 * 1 / 3600 = 0.000305556$ $W_i = q_{Mi} * B_{TOR} / 1000 = 4.5 * 5.32 / 1000 = 0.02394$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_9 / 3600 = 0.15 * 1 / 3600 = 0.000041667$

 $W_i = q_{Mi} * B_{POH} = 0.6 * 5.32 / 1000 = 0.003192$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_9 / 3600 = 0.000013 * 1 / 3600 = 0.000000004$

 $W_i = q_{Mi} * B_{rog} = 0.000055 * 5.32 / 1000 = 0.000000293$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_{\circ} / 3600) * 0.13 = (10.3 * 1 / 3600) * 0.13 =$

0.000371944

 $W_i = (q_{Mi} * B_{POH} / 1000) * 0.13 = (43 * 5.32 / 1000) * 0.13 =$

0.0297388

Итого выбросы по веществам:

MIOLO	о выбросы по в	веществам:				
Код	Примесь	г/сек без очистки	т/год без очистки	% ОЧИСТК И	г/сек с очисткой	т/год с очисткой
030	Азота (IV) диоксид (Азота диоксид) (4)	0.00228888	0.183008	0	0.00228888	0.183008
030 4	Азот (II) оксид (Азота оксид) (6)	0.00037194 4	0.0297388	0	0.00037194	0.0297388
032	Углерод (Сажа, Углерод черный) (583)	0.00019444	0.01596	0	0.00019444	0.01596
033	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00030555 6	0.02394	0	0.00030555 6	0.02394
033	Углерод оксид (Окись углерода, Угарный газ) (584)	0.002	0.1596	0	0.002	0.1596
070 3	Бенз/а/пирен (3,4-	0.000000004	0.00000029	0	0.00000000 4	0.00000029 3

	Бензпирен) (54)					
132 5	Формальдегид (Метаналь) (609)	0.00004166	0.003192	0	0.00004166	0.003192
275	Алканы C12- 19 /в пересчете на C/ (Углеводород ы предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.001	0.0798	0	0.001	0.0798

Топливозаправщик - источник 6004

Заправка техники

Методические указания по определению выбросов 3B в атмосферу из резервуаров $PHД\ 211.2.02.09-2004\ Actaha$

Расчет по п. 9

Нефтепродукт: Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, r/м3 (Прил. 12), **СМАХ** = **3.14**

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 6

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3 (Прил. 15), CAMOZ = 1.6 Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL — 6

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3 (Прил. 15), $\it CAMVL = 2.2$ Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.25

Количество одновременно работающих рукавов ТРК, отпускающих выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.25 / 3600 = 0.000218$ Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 6 + 2.2 \cdot 6) \cdot 10^{-6} = 0.0000228$ Удельный выброс при проливах, г/м3, J = 50 Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (6 + 6) \cdot 10^{-6} = 0.0003$ Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0000228 + 0.0003 = 0.000323

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72 Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.000323 / 100 = 0.0003220956 Максимальный из разовых выброс, г/с (5.2.4), <math>\underline{G} = CI \cdot G / 100 = 99.72 \cdot 0.000218 / 100 = 0.0002173896$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28 Валовый выброс, т/год (5.2.5), $\underline{\textit{M}} = CI \cdot \textit{M} / 100 = 0.28 \cdot 0.000323$ / 100 = 0.000009044

Максимальный из разовых выброс, г/с (5.2.4), $_{G}$ = $CI \cdot G / 100 = 0.28 \cdot 0.000218 / 100 = 0.0000006104$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0000006104	0.0000009044
2754	Алканы С12-19 /в пересчете на С/	0.0002173896	0.0003220956
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-		
	265π) (10)		

2029 ГОД

Проходка канав - источник №6001

Проходка канав на планируется механизированным способом.

После механизированной проходки канав экскаватором в обязательном порядке проводится ручная зачистка (лопатой) стенки и полотна канав, что обеспечит высокое качество геологических наблюдений и чистоту отбора проб.

Список литературы:

- 3. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- θ .
- 4. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-п$

Перед началом работ производится снятие почвенно-растительного слоя на глубину 0,2 м при помощи бульдозера и складирование за пределами участка работ.

Объём снятия ПРС с участков проходки канав - 100 м³/год.

Производительность бульдозера - 100 м³/час.

Время работы - 1 ч/год.

Источник выделения N 001, Снятие ПРС бульдозером

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Почвенно-растительный слой

Примесь: 2908 Пыль неорганическая, содержащая двуокиси кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, кремнезем, зола углей казакстанских месторождений) (494)

Влажность материала, %, VL = 15

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G=150 Максимальное количество перерабатываемого материала за 20 мин, тонн, G20=37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B' = 0.7

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 0.1575$ Время работы узла переработки в год, часов, RT2 = 1 Валовый выброс пыли при переработке, т/год (1), $AГОД = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 150 \cdot 0.7 \cdot 1 = 0.0003024$

Максимальный разовый выброс пыли , г/сек, Q=0.1575 Валовый выброс пыли , т/год , QГОД = 0.0003024

Итого выбросы от источника выделения: 001 Проходка канав

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.1575	0.0003024
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N 002, Проходка канав экскаватором

Средняя глубина канав - 1,5 м, ширина - 1,5 м.

Общий объем канав 100 м^3 .

Производительность экскаватора 25 м³/час.

Время работы экскаватора - 32 ч/год.

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Грунт

Примесь: 2908 Пыль неорганическая, содержащая двуокиси кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.1

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2

Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, $\tau/$ час, G = 67.5 Максимальное количество перерабатываемого материала за 20 мин, тонн,

G20 = 17

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B'=0.7 Макс. разовый выброс пыли при переработке, r/c (1), $A=K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot 0.1 \cdot 0.4 \cdot 17 \cdot 10^6 \cdot 0.7 / 1200 = 0.714$ Время работы узла переработки в год, часов, RT2=32 Валовый выброс пыли при переработке, r/rод (1), r/r0д = r/r1 · r/r2 · r/r3 · r/r4 · r/r5 · r/r6 · r/r6 · r/r7 ·

Максимальный разовый выброс пыли , г/сек, $\mathit{Q}=0.714$ Валовый выброс пыли , т/год , $\mathit{Q}\mathit{FOJ}\!\!\!/ = 0.04355$

Итого выбросы от источника выделения: 002 Проходка канав

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.714	0.04355
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Рекультивация нарушенных участков земли будет производиться сразу после окончания работ на участке путем засыпки бульдозером.

Производительность бульдозера - 100 м³/час.

Время работы - 1 ч/год.

Источник выделения N 003, Рекультивация канав бульдозером

Материал: Грунт и почвенно-растительный слой

Примесь: 2908 Пыль неорганическая, содержащая двуокиси кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 15

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.4

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, $\tau/$ час, G=150 Максимальное количество перерабатываемого материала за 20 мин, тонн,

G20 = 37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B'=0.7

Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 0.1575$ Время работы узла переработки в год, часов, RT2 = 2.00 Валовый выброс пыли при переработке, т/год (1), $AГОД = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.4 \cdot 150 \cdot 0.7 \cdot 2 = 0.000605$

Максимальный разовый выброс пыли , г/сек, Q=0.1575 Валовый выброс пыли , т/год , Qгод = 0.000605

Итого выбросы от источника выделения: 003 Проходка канав

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.1575	0.000605
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Итого от ИЗА №6001

Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокиси		
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина,	1,0290	0,044457
	глинистый сланец, доменный шлак,ола,	1,0290	0,044437
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Бульдозер - источник №6002

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-0.

Расчет выбросов от двигателя бульдозера

Масса i-го вредного вещества, выделяющегося при работе дизельного двигателя бульдозера:

$$m_{6ri} = (q_{yx}t_{xx} + q_{yxi}t_{40\%} + q_{yxi}t_{100\%}) T_{cm}N_{610}^{-3}, T_{POR}$$
 (6.7)

Суммарная масса вредных веществ, выделяющихся при работе двигателя бульдозера:

$$m_{6r} = \sum m_{6ri}$$
, T/POJ (6.8)

Где:

- $q_{yдi}$ удельный выброс i-го вредного вещества при работе двигателя в соответствующем режиме, кг/ч (таблица 20)* согласно приложению к настоящей Методике,
- t_{xx} , $t_{40\$}$, $t_{100\$}$ время работы двигателя в течение смены, соответственно на холостом ходу, при частичном использовании мощности двигателя, \$.

- $t_{40\%}$, $t_{100\%}$ определяется аналогично;

где t1 - процентное распределение времени работы двигателя на различных нагрузочных режимах;

- t см чистое время работы бульдозера в смену, 8 ч;
- Тсм число смен работы бульдозера в году, 1;
- Nб число бульдозеров, 1 шт.

 $t_{xx} = 20/100 * 8 y = 1,6 y$ $t_{40\%} = 40/100 * 8 y = 3,2 y$ $t_{100\%} = 40/100 * 8 y = 3,2 y$

Примесь: 0301 Азота (IV) диоксид

mbr = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 0.62 * 1 * $10^{-3} = 0.00102 \text{ T/rog}$ $mbr = (0.00102 * 10^6) / (3600 * 5) = 0.05678 r/cek$ Валовый выброс, т/год , $_{\rm M}$ = 0.8 * M = 0.8 * 0.00102 = 0.00082 Максимальный разовый выброс, r/c , GS = 0.8 * G = 0.8 * 0.05678= 0.04542

Примесь: 0304 Азот (II) оксид

 $\overline{\text{mor}} = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 0.62 * 1 *$ $10^{-3} = 0.00102 \text{ T/rog}$ $mfr = (0.00102 * 10^6) / (3600 * 5) = 0.05678 r/cek$ Валовый выброс, т/год , M = 0.13 * M = 0.13 * 0.00102 =0.00013

Максимальный разовый выброс, r/c , GS = 0.13 * G = 0.13 *0.05678 = 0.00738

Примесь: 0328 Углерод (сажа)

mbr = (0.003 * 1.6 + 0.019 * 3.2 + 0.044 * 3.2) * 0.62 * 1 * $10^{-3} = 0.00013 \text{ T/rog}$ $mbr = (0.00013 * 10^6) / (3600 * 5) = 0.00717 r/cek$

Примесь: 0337 Углерод оксид (угарный газ)

moder = (0.137 * 1.6 + 0.205 * 3.2 + 0.342 * 3.2) * 0.62 * 1 * $10^{-3} = 0.00123 \text{ T/год}$ $mbr = (0.00123 * 10^6) / (3600 * 5) = 0.06839 r/cek$

Примесь: 2732 Керосин

mfr = (0.072 * 1.6 + 0.214 * 3.2 + 0.275 * 3.2) * 0.62 * 1 * $10^{-3} = 0.00105 \text{ T/rog}$ $mfr = (0.00105 * 10^6) / (3600 * 5) = 0.05833 r/cek$

Итоговая таблица выбросов от бульдозера

Код	Примесь	Выброс г/с	Выброс т/год
0301	Asora (IV)	0.04542	0.00082
	диоксид		
0304	Asor (II)	0.00738	0.00013
	оксид		

0328	Углерод	0.00717	0.00013
	(сажа)		
0337	Углерод оксид	0.06839	0.00123
	(угарный газ)		
2732	Керосин	0.05833	0.00105

Экскаватор - источник №6003

Время работы экскаватора - 34 ч/год

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников. Приложение N8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года N9 221- Θ .

Расчет выбросов от двигателя экскаватора

Масса і-го вредного вещества, выделяющегося при работе дизельного двигателя экскаватора:

$$m_{6ri} = (q_{yx}t_{xx} + q_{yxi}t_{40\%} + q_{yxi}t_{100\%}) T_{cm}N_{610}^{-3}, T_{rox}$$
 (6.7)

Суммарная масса вредных веществ, выделяющихся при работе двигателя экскаватора:

$$m_{6r} = \sum m_{6ri}$$
, T/POH (6.8)

Где:

- $q_{yдi}$ удельный выброс i-го вредного вещества при работе двигателя в соответствующем режиме, кг/ч (таблица 20)* согласно приложению к настоящей Методике,
- t_{xx} , $t_{40\$}$, $t_{100\$}$ время работы двигателя в течение смены, соответственно на холостом ходу, при частичном использовании мощности двигателя, \$.

$$t_{xx} = t_{1/100} x t_{cm}, y; (6.9)$$

- t_{40} , t_{100} определяется аналогично;
- где t1 процентное распределение времени работы двигателя на различных нагрузочных режимах;
- t $_{\text{см}}$ чистое время работы экскаватора в смену, 8 ч;
- Тсм число смен работы экскаватора в году, 5;
- Nб число экскаваторов, 1 шт.

$$t_{xx} = 20/100 * 8 u = 1,6 u$$

 $t_{40\%} = 40/100 * 8 u = 3,2 u$
 $t_{100\%} = 40/100 * 8 u = 3,2 u$

Примесь: 0301 Азота (IV) диоксид

мбг = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 4.25 * 1 * 10^-3 = 0.00695 т/год мбг = (0.00695 * 10^6) / (3600 * 34) = 0.05678 г/сек Валовый выброс, т/год , _M_ = 0.8 * M = 0.8 * 0.00695 = 0.00556 Максимальный разовый выброс, г/с , GS = 0.8 * G = 0.8 * 0.05678 = 0.04542

Примесь: 0304 Азот (II) оксид

```
мбг = (0.054 * 1.6 + 0.351 * 3.2 + 0.133 * 3.2) * 4.25 * 1 * 10^-3 = 0.00695 т/год мбг = <math>(0.00695 * 10^6) / (3600 * 34) = 0.05678 г/сек Валовый выброс, т/год , \underline{\mathbf{M}} = \mathbf{0.13} * \mathbf{M} = \mathbf{0.13} * \mathbf{0.00695} = \mathbf{0.0009} Максимальный разовый выброс, г/с , \mathbf{GS} = \mathbf{0.13} * \mathbf{G} = \mathbf{0.13} * \mathbf{0.05678} = \mathbf{0.00738}
```

Примесь: 0328 Углерод (сажа)

```
mбr = (0.003 * 1.6 + 0.019 * 3.2 + 0.044 * 3.2) * 4.25 * 1 * 10^-3 = 0.00088 т/год <math>mбr = (0.00088 * 10^6) / (3600 * 34) = 0.00717 г/сек
```

Примесь: 0337 Углерод оксид (угарный газ)

```
mбr = (0.137 * 1.6 + 0.205 * 3.2 + 0.342 * 3.2) * 4.25 * 1 * 10^-3 = 0.00837 т/год <math>mбr = (0.00837 * 10^6) / (3600 * 34) = 0.06839 г/сек
```

Примесь: 2732 Керосин

```
mбr = (0.072 * 1.6 + 0.214 * 3.2 + 0.275 * 3.2) * 4.25 * 1 * 10^-3 = 0.00714 т/год <math>mбr = (0.00714 * 10^6) / (3600 * 34) = 0.05833  г/сек
```

Итоговая таблица выбросов от экскаватора

Код	Примесь	Выброс г/с	Выброс т/год
0301	Asora (IV)	0.04542	0.00556
	диоксид		
0304	(II) TOEA	0.00738	0.0009
	оксид		
0328	Углерод	0.00717	0.00088
	(сажа)		
0337	Углерод оксид	0.06839	0.00837
	(угарный газ)		
2732	Керосин	0.05833	0.00714

Разведочное бурение скважин источники №№6004

<u>Обустройство площадок под буровые установки</u> предусмотрено проводить при помощи бульдозера.

Размер площадки под буровые установки составляет $15*15=225~\text{м}^2$. Объем снятия ПРС с площадки под буровую: 90 м3/год. Производительность бульдозера на снятии ПРС – 150~т/чаc.

Время на снятие всего объема ПРС - 1 ч/год.

<u>Проведение</u> колонкового бурения планируется буровым станком типа Cristensen C-14 с применением канадских буровых снарядов фирмы «Boart Longyear», производительностью 7 п.м. в смену. Время работы бурового станка — 152 ч/год.

Обустройство отстойников для промывочной жидкости (глинистый раствор) предусматривается на каждой скважине, размер отстойника 6 * 2* 1,5 м.

Для обустройства отстойников предусмотрено использовать одноковшовый экскаватор.

Объём извлекаемого грунта при обустройстве отстойника на одной скважине $-18~{\rm m}^3$.

Производительность экскаватора на обустройстве отстойников – $25 \text{ м}^3/\text{час}$ (37,5 т/час), время работы – 2 ч/год.

Общий объем - 36 м3 (93,6 т)

Рекультивация площадок под буровые установки. После окончания бурения и проведения необходимых исследований, разведочные скважины ликвидируются, обсадные трубы вытаскиваются, зумпфы осущаются и закапываются, использованная площадка выравнивается, оборудование вывозится. Снятый плодородный слой отсыпается сверху. Производительность бульдозера — $150 \, \mathrm{m}^3/\mathrm{vac}$, время работы — $1 \, \mathrm{v/rog}$. Объем грунта — $90 \, \mathrm{m}^3/\mathrm{rog}$.

Список литературы:

1. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ №100-\pi$.

Источник выделения N 6004.01, Снятие ПРС

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: ПРС

Влажность материала, %, VL = 15

Коэфф., учитывающий влажность материала (табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 150

Максимальное количество перерабатываемого материала за 20 мин, тонн, G20 = 37.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), $\mathbf{B}' = \mathbf{0.7}$

Макс. разовый выброс пыли при переработке, г/с (1), $\mathbf{A} = \mathbf{K}\mathbf{1} \cdot \mathbf{K}\mathbf{2} \cdot \mathbf{K}\mathbf{3}$

 $\cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^{6} \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1 \cdot$

 $0.01 \cdot 0.5 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 0.197$

Время работы узла переработки в год, часов, RT2 = 1

Валовый выброс пыли при переработке, т/год (1), **АГОД = К1 · К2 · КЗSR**

 $\cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot$

 $0.5 \cdot 150 \cdot 0.7 \cdot 1 = 0.000378$

Максимальный разовый выброс пыли , г/сек, Q=0.197 Валовый выброс пыли , т/год , QГОД = 0.000378

Итого выбросы от источника выделения: 001 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.197	0.000378
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N 600402, Буровой станок

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение $\mathbb{N}8$ к Приказу Министра охраны окружающей среды
- и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ө
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008\ \ 100-\pi$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских месторождений) (494)

Тип источника выделения: Расчет выбросов пыли при буровых работах Оборудование: типа Cristensen C-14

Интенсивность пылевыделения от единицы оборудования, r/ч (табл.16), G = 97

Количество одновременно работающего данного оборудования, шт., N=1 Способ бурения: Шарошечное

Система пылеочистки: Мокрый пылеуловитель

Степень пылеочистки, в долях единицы (табл.15), N = 0.85

Максимальный разовый выброс , г/ч, $GC = N \cdot G \cdot (1-N) = 1 \cdot 97 \cdot (1-0.85) = 14.55$

Продолжительность работы в течении 20 минут, мин, TN = 20

Максимальный разовый выброс, г/с (9), $Q = GC / 3600 \cdot TN \cdot 60 / 1200$

 $= 14.55 / 3600 \cdot 20 \cdot 60 / 1200 = 0.00404$

Время работы в год, часов, RT = 152

Валовый выброс, т/год, *QГОД = GC · RT · 10^{-6} =* $14.55 \cdot 152 \cdot 10^{-6}$ = 0.00221

Итого выбросы от источника выделения: 002 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	0.00404	0.00221
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N600403, Обустройство отстойников для промывочной жидкости

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в 🐉: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Вид работ: Выемочно-погрузочные работы Влажность материала, %, **VL** = **10** Коэфф., учитывающий влажность материала (табл.4), K5 = 0.1Доля пылевой фракции в материале (табл.1), P1 = 0.03Доля пыли, переходящей в аэрозоль (табл.1), P2 = 0.02Скорость ветра в зоне работы экскаватора (средняя), м/с, G3SR = 2.2

Коэфф.учитывающий среднюю скорость ветра (табл.2), P3SR = 1.2

Скорость ветра в зоне работы экскаватора (максимальная), м/с, G3 = 34Коэфф. учитывающий максимальную скорость ветра (табл.2), P3 = 3

Коэффициент, учитывающий местные условия (табл.3), P6 = 1Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), P5 = 0.5

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B = 0.7Количество перерабатываемой экскаватором породы, $\tau/$ час, G = 67.5

Максимальный разовый выброс, г/с (8), $Q = P1 \cdot P2 \cdot P3 \cdot K5 \cdot P5 \cdot$

 $P6 \cdot B \cdot G \cdot 10^6 / 3600 = 0.03 \cdot 0.02 \cdot 3 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.7 \cdot 0.7 \cdot 0.1 \cdot 0.1$ $67.5 \cdot 10^6 / 3600 = 1.181$

Время работы экскаватора в год, часов, RT = 2.0

Валовый выброс, т/год, **QГОД = P1 · P2 · P3SR · K5 · P5 · P6 · B · G** \cdot RT = 0.03 \cdot 0.02 \cdot 1.2 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 0.7 \cdot 67.5 \cdot 2 = 0.0034

Итого выбросы от источника выделения: 003 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	1.181	0.0034
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Источник выделения N 600404, Рекультивация площадок под установки

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двускись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый

сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских месторождений) (494)

Влажность материала, %, VL = 10Коэфф., учитывающий влажность материала (табл.4), K5 = 0.1

Операция: Переработка

G20 = 37.5

Скорость ветра (среднегодовая), M/c, G3SR = 2.2

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), K3SR = 1.2 Скорость ветра (максимальная), м/с, G3 = 34

Коэфф., учитывающий максимальную скорость ветра (табл.2), K3 = 3

Коэффициент, учитывающий степень защищенности узла (табл.3), K4 = 1

Размер куска материала, мм, G7 = 40

Коэффициент, учитывающий крупность материала (табл.5), K7 = 0.5

Доля пылевой фракции в материале (табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль (табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, $\tau/$ час, G=150 Максимальное количество перерабатываемого материала за 20 мин, тонн,

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала (табл.7), B' = 0.7 Макс. разовый выброс пыли при переработке, г/с (1), $A = K1 \cdot K2 \cdot K3$

 $\cdot K4 \cdot K5 \cdot K7 \cdot G20 \cdot 10^6 \cdot B' / 1200 = 0.03 \cdot 0.02 \cdot 3 \cdot 1$

 $0.1 \cdot 0.5 \cdot 37.5 \cdot 10^6 \cdot 0.7 / 1200 = 1.97$

Время работы узла переработки в год, часов, RT2 = 2

Валовый выброс пыли при переработке, т/год (1), **АГОД = K1 \cdot K2 \cdot K3SR**

 $\cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B' \cdot RT2 = 0.03 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.1 \cdot 0.5 \cdot 150 \cdot 0.7 \cdot 2 = 0.00756$

Максимальный разовый выброс пыли , г/сек, Q=1.97 Валовый выброс пыли , т/год , QГОД = 0.00756

Итого выбросы от источника выделения: 004 Буровая площадка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	1.97	0.00756
	двуокись кремния в %: 70-20 (шамот,		
	цемент, пыль цементного		
	производства - глина, глинистый		
	сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола		
	углей казахстанских месторождений)		
	(494)		

Дизельные генераторы буровых станков - источник №0001.

Буровые станки оборудованы дизельными генераторами.

Список литературы:

1. ."Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год \mathbf{B}_{rog} , т, 1.468 Эксплуатационная мощность стационарной дизельной установки \mathbf{P}_{s} , кВт, 1

Удельный расход топлива на экспл./номин. режиме работы двигателя $\boldsymbol{b_{\text{s}}}$, r/kBt*q, 123.7

Температура отработавших газов $\boldsymbol{T_{or}}$, K, 720

Используемая природоохранная технология: применение топлива с пониженным содержанием серы

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{or} , кг/с:

$$G_{or} = 8.72 * 10^{-6} * b_{o} * P_{o} = 8.72 * 10^{-6} * 123.7 * 1 = 0.001078664$$
 (A.3)

Удельный вес отработавших газов $\gamma_{\mathtt{or}}$, кг/м 3 :

$$\gamma_{or} = 1.31 / (1 + T_{or} / 273) = 1.31 / (1 + 720 / 273) = 0.360151057$$
(A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{or} , \mathbf{M}^3/\mathbf{c} :

$$Q_{or} = G_{or} / \gamma_{or} = 0.001078664 / 0.360151057 = 0.002995032$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки по капитального ремонта

Группа	CO	NOx	СН	С	S02	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{si} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{9} / 3600$ (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{\ni i} * B_{rog} / 1000 \tag{2}$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 – для NO_2 и 0.13 – для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_9 / 3600 = 7.2 * 1 / 3600 = 0.002$$

$$W_i = q_{Mi} * B_{POH} = 30 * 1.468 / 1000 = 0.04404$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M_i = (e_{Mi} * P_s / 3600) * 0.8 = (10.3 * 1 / 3600) * 0.8 =$$

0.002288889

$$W_i = (q_{Mi} * B_{rox} / 1000) * 0.8 = (43 * 1.468 / 1000) * 0.8 = 0.0504992$$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

$$M_i = e_{Mi} * P_{\circ} / 3600 = 3.6 * 1 / 3600 = 0.001$$

$$W_i = q_{Mi} * B_{rog} / 1000 = 15 * 1.468 / 1000 = 0.02202$$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_{\odot} / 3600 = 0.7 * 1 / 3600 = 0.000194444$

 $W_i = q_{Mi} * B_{rog} / 1000 = 3 * 1.468 / 1000 = 0.004404$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_9 / 3600 = 1.1 * 1 / 3600 = 0.000305556$

 $W_i = q_{Mi} * B_{POH} / 1000 = 4.5 * 1.468 / 1000 = 0.006606$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_9 / 3600 = 0.15 * 1 / 3600 = 0.000041667$

 $W_i = q_{Mi} * B_{POH} = 0.6 * 1.468 / 1000 = 0.0008808$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_9 / 3600 = 0.000013 * 1 / 3600 = 0.000000004$

 $W_i = q_{Mi} * B_{rog} = 0.000055 * 1.468 / 1000 = 0.000000081$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_{\circ} / 3600) * 0.13 = (10.3 * 1 / 3600) * 0.13 =$

0.000371944

 $W_i = (q_{Mi} * B_{POR} / 1000) * 0.13 = (43 * 1.468 / 1000) * 0.13 =$

0.00820612

Итого выбросы по веществам:

711011	Итого выбросы по веществам:							
Код	Примесь	г/сек без очистки	т/год без очистки	% OYNCTK N	г/сек с очисткой	т/год с очисткой		
030	Азота (IV) диоксид (Азота диоксид) (4)	0.00228888	0.0504992	0	0.00228888	0.0504992		
030 4	Азот (II) оксид (Азота оксид) (6)	0.00037194 4	0.00820612	0	0.00037194 4	0.00820612		
032	Углерод (Сажа, Углерод черный) (583)	0.00019444	0.004404	0	0.00019444	0.004404		
033	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00030555 6	0.006606	0	0.00030555 6	0.006606		
033 7	Углерод оксид (Окись углерода, Угарный газ) (584)	0.002	0.04404	0	0.002	0.04404		
070 3	Бенз/а/пирен (3,4-	0.000000004	0.00000008	0	0.000000004	0.00000008 1		

	Бензпирен) (54)					
132 5	Формальдегид (Метаналь) (609)	0.00004166 7	0.0008808	0	0.00004166 7	0.0008808
275	Алканы C12- 19 /в пересчете на C/ (Углеводород ы предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.001	0.02202	0	0.001	0.02202

Топливозаправщик - источник 6004

Заправка техники

Методические указания по определению выбросов 3B в атмосферу из резервуаров $PHД\ 211.2.02.09-2004\ Actaha$

Расчет по п. 9

Нефтепродукт: Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, r/м3 (Прил. 12), **СМАХ** = **3.14**

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, $QOZ = \Delta$

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3 (Прил. 15), ${\it CAMOZ}=1.6$ Количество отпускаемого нефтепродукта в весенне-летний период, м3, ${\it QVL}$

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3 (Прил. 15), $\it CAMVL = 2.2$ Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.25

Количество одновременно работающих рукавов ТРК, отпускающих выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.14 \cdot 0.25 / 3600 = 0.000218$ Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.6 \cdot 4 + 2.2 \cdot 4) \cdot 10^{-6} = 0.0000152$ Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), MPRA = $0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (4 + 4) \cdot 10^{-6} = 0.0002$ Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.0000152 + 0.0002 = 0.000215

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72 Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 99.72 \cdot 0.000215 / 100 = 0.000214398$ Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 99.72 \cdot 0.000218 / 100 = 0.0002173896$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.28 Валовый выброс, т/год (5.2.5), $\underline{\textit{M}} = CI \cdot \textit{M} / 100 = 0.28 \cdot 0.000215$ / 100 = 0.00000602

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.000218 / 100 = 0.0000006104$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0000006104	0.000000602
2754	Алканы С12-19 /в пересчете на С/	0.0002173896	0.000214398
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-		
	265Π) (10)		