ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

к рабочему проекту «Строительство пробивки ул. Северное кольцо до границы города» в г. Алматы

Руководитель КГУ «Управление городской мобильногорода Алматы»

Телибаев С.

ИП «EcoDelo» \

Абилгазина М.Б.

АННОТАЦИЯ

«Отчета о возможных воздействиях к рабочему проекту «Строительство пробивки ул. Северное кольцо до границы города» в г. Алматы» разработан в рамках процедуры оценки воздействия на окружающую среду намечаемой деятельности в соответствии с требованиями Экологического кодекса Республики Казахстан от 2 января 2021 года № 400-VI ЗРК.

Заказчик — КГУ «Управление городской мобильности города Алматы». Генеральный проектировщик - ТОО «Казахский Промтранспроект».

Разработчик Отчета о возможных воздействиях - ИП «EcoDelo».

На период строительства выявлено: *3 организованных* - компрессор с ДВС, битумный котел, передвижная электростанция и *13 неорганизованных* источников загрязнения окружающей среды.

В выбросах в атмосферу от источников содержится 25 наименования загрязняющих веществ (без учета автотранспорта) и 3 групп веществ, обладающих эффектом суммации вредного действия.

Воздействие на окружающую среду процесса строительства будет незначительным, в связи с локальностью и кратковременностью работ.

Валовое количество выбрасываемых вредных веществ на период строительства 47,271250268 т/период; секундное количество выбрасываемых вредных веществ на период строительства -1,316470721 г/сек.

Расчет максимальных приземных концентраций загрязняющих веществ произведен на программе "ЭРА" v. 3.0 фирмы "Логос-Плюс" г. Новосибирск.

Согласно Инструкции по организации и проведению экологической оценки, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280, статьи 12 Экологического кодекса Республики Казахстан от 2 января 2021 года № 400- VI ЗРК, объект относиться к III категории.

Согласно санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» утвержденных приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 на проведение строительных работ установление СЗЗ не требуется, так как строительство носит временный характер, и выбросы загрязняющих веществ ограничиваются сроками строительства.

Общее водопользование. На период строительства используется вода питьевого и технического качества. Объемов потребления воды: Вода питьевого качества: 3197,25 м³/период, технического качества: 37499,74981 м³/период. Вода используется на питьевые нужды, обмыв подвижных частей автотранспорта и на увлажнение грунтов. Более подробнее будут определены на следующей стадии проектирования. Сброс загрязняющих веществ отсутствует.

Прав на недропользования нет. Сырье будет закупаться у специализированных организаций.

В результате проведенной инвентаризации и лесопатологического обследования зеленых насаждений **учтено и описано:**

- 1017 деревьев;
- 3 кустарника;
- 3694 кв.м. дикорастущей поросли;
- 53 кв.м.живой изгороди;
- 23 пней

Намечены следующие лесохозяйственные мероприятия:

требуется сохранение:

- 475 деревьев;
- 53 кв.м.живой изгороди;

под вырубку:

- 537 деревьев;
- 3694 кв.м. дикорастущей поросли;

под санитарную вырубку:

- 5 дерева;

под корчевания:

- 23 пней;

Согласно «Правил содержания и защиты зеленых насаждений города Алматы» компенсационное восстановление зеленых насаждений за санитарную рубку, вынужденный снос, произведенный с разрешения уполномоченного органа акимата, производится путем посадки саженцев лиственных пород высотой не менее 3-х метров, а хвойных не менее 2-х метров (І-го и ІІ-го класса качества).

Согласно «Правил содержания и защиты зеленых насаждений города Алматы» от 31 марта 2020 г. №173, при вырубке деревьев по разрешению уполномоченного органа компенсационная посадка восстанавливаемых деревьев производится в десятикратном размере.

В целях предупреждения нарушения растительного покрова в процессе проведения работ необходимо осуществление следующих мероприятий:

- движение автотранспорта только по отведенным дорогам;
- передвижение работающего персонала по пешеходным дорожкам;
- раздельный сбор отходов в специальных контейнерах;
- запрет разведение костров;
- проведение поэтапной технической рекультивации.

После завершения строительства производится озеленение территории.

При реализации проекта ущерб животному миру не наносится.

Наименование отходов	Группа	Подгруппа	Код	Количество образования, т/период
1	2	3	4	5
Всего				46678,84
Смешанные коммунальные отходы	20	20 03	20 03 01	26,64375
Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества	08	08 01	08 01 11*	11,6864159
Отходы сварки	12	12 01	12 01 13	0,25612581
Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами	15	15 02	15 02 02*	0,04853
Смешанные отходы строительства и сноса	17	1709	17 09 04	46640,20618

Отходы, подлежащие утилизации, передаются специализированным организациям, остальные вывозятся на полигон ТБО. В период эксплуатации: отходы не образуются. Общее количество людей, работающих на период строительство — 147 человек.

Продолжительность строительства, согласно календарного плана, составила 29 месяцев, в том числе подготовительный период-6 месяцев. Начало строительства 3 квартал (июль) 2025 года. Задел по капитальным вложениям К1п для расчетной продолжительности строительства по годам:

2025 год -18 %

2026 год -45 %

2027 год -37 %.

Завершение строительно-монтажных работ планируется на ноябрь 2027 года.

СОДЕРЖАНИЕ

	РИДАТОННА	2
	ВВЕДЕНИЕ	9
1.	Описание предполагаемого места осуществления намечаемой деятельности,	10
	его координаты, определенные согласно геоинформационной системе, с	
	векторными файлами	
2.	Описание состояния окружающей среды на предполагаемой затрагиваемой	11
	территории на момент составления отчета (базовый сценарий)	
3.	Описание изменений окружающей среды, которые могут произойти в случае	12
	отказа от начала намечаемой деятельности	
3.1.	Охват изменений в состоянии всех объектов охраны окружающей среды и	12
	антропогенных объектов, на которые намечаемая деятельность может	
	оказывать существенные воздействия, выявленные при определении сферы	
	охвата и при подготовке отчета о возможных воздействиях	
3.2.	Полнота и уровень детализации достоверной информации об	13
	изменениях состояния окружающей среды должны быть не ниже уровня,	
	достижимого при затратах на исследование, не превышающих выгоды от него	
4.	Информация о категории земель и целях использования земель в ходе	13
	строительства и эксплуатации объектов, необходимых для осуществления	
	намечаемой деятельности	1.0
5.	Информация о показателях объектов, необходимых для осуществления	13
	намечаемой деятельности, включая их мощность, габариты (площадь	
	занимаемых земель, высота), другие физические и технические	
	характеристики, влияющие на воздействия на окружающую среду; сведения о	
	производственном процессе, в том числе об ожидаемой производительности	
	предприятия, его потребности в энергии, природных ресурсах, сырье и материала	
5.1	Описание технологического процесса	13
	<u> </u>	
6.	Описание работ по постутилизации существующих зданий, строений,	25
	сооружений, оборудования и способов их выполнения, если эти работы	
7	необходимы для целей реализации намечаемой деятельности	25
7.	Информацию об ожидаемых видах, характеристиках и количестве	25
	эмиссий в окружающую среду, иных вредных антропогенных	
	воздействиях на окружающую среду, связанных со строительством и	
	эксплуатацией объектов для осуществления рассматриваемой	
	деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра, а также вибрации, шумовые, электромагнитные, тепловые	
	и радиационные воздействия	
7.1	Характеристика источников выбросов загрязняющих веществ в	26
7.1	атмосферу на период проведения строительства	20
7.2	Обоснование достоверности расчета количественного состава выбросов	27
7.3	Сведения о залповых выбросах	61
7.4	Параметры выбросов загрязняющих веществ в атмосферу	61
7.5	Определение нормативов допустимых выбросов загрязняющих веществ	61
7.6	L CHIDENEHEHRE HODMATRKOK HOHVCTRMBIX KBIDDICOK KALDAKHAHDIDA X KEDJECTK	
7.0		
	Расчеты количества выбросов загрязняющих веществ в атмосферу в целях	62
7.7	Расчеты количества выбросов загрязняющих веществ в атмосферу в целях определения нормативов ЗВ	62
7.7 7.8	Расчеты количества выбросов загрязняющих веществ в атмосферу в целях определения нормативов ЗВ Мероприятия по снижению отрицательного воздействия	62 63
7.7 7.8	Расчеты количества выбросов загрязняющих веществ в атмосферу в целях определения нормативов ЗВ	62

	неблагоприятных метеорологических условий.	
8.	Воздействие на состояние вод	67
8.1	Потребность в водных ресурсах для намечаемой деятельности на период	67
0.1	строительства, требования к качеству используемой воды	0,
8.2	Характеристика источника водоснабжения, его хозяйственное использование,	68
	местоположение водозабора, его характеристика	
8.3	Водный баланс объекта	68
8.4	Поверхностные воды	70
8.5	Определение нормативов допустимых сбросов загрязняющих веществ	71
9.	Воздействия проектируемой деятельности на почву	71
9.1	Характеристика ожидаемого воздействия на почвенный покров (механические нарушения, химическое загрязнение), изменение свойств почв и грунтов в зоне влияния объекта	71
9.2	Планируемые мероприятия и проектные решения в зоне воздействия по снятию, транспортировке и хранению плодородного слоя почвы и вскрышных пород, по сохранению почвенного покрова на участках, не затрагиваемых непосредственной деятельностью, по восстановлению нарушенного почвенного покрова и приведению территории в состояние, пригодное для первоначального или иного использования (техническая и биологическая	73
9.3	рекультивация) Организация экологического мониторинга почв	74
10.	Воздействие на недра	74
10.1	Наличие минеральных и сырьевых ресурсов в зоне воздействия намечаемого	74
10.1	объекта (запасы и качество)	/-
10.2	Потребность объекта в минеральных и сырьевых ресурсах в период	74
10.2	строительства и эксплуатации (виды, объемы, источники получения)	, .
10.3	Прогнозирование воздействия добычи минеральных и сырьевых ресурсов на	75
	различные компоненты окружающей среды и природные ресурсы	
10.4	Обоснование природоохранных мероприятий по регулированию водного	75
	режима и использованию нарушенных территорий	
11.	Оценка факторов физического воздействия	75
11.1	Оценка возможного теплового, электромагнитного, шумового, воздействия и других типов воздействия, а также их последствий	75
11.2	Характеристика радиационной обстановки в районе работ, выявление	79
11.4	природных и техногенных источников радиационного загрязнения	13
12.	Информация об ожидаемых видах, характеристиках и количестве отходов,	81
12.	которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности, в том числе отходов, образуемых в результате осуществления постутилизации существующих зданий, строений, сооружений, оборудования.	01
12.1	Характеристика технологических процессов предприятия как источников образования отходов	81
13.	Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов	82
14.	Описание возможных вариантов осуществления намечаемой деятельности с учетом ее особенностей и возможного воздействия на окружающую среду, включая вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, описание других	87

	возможных рациональных вариантов, в том числе рационального варианта,	
	наиболее благоприятного с точки зрения охраны жизни и (или) здоровья	
	людей, окружающей среды	
15.	Варианты осуществления намечаемой деятельности	87
16.	Под возможным рациональным вариантом осуществления намечаемой	88
	деятельности принимается вариант осуществления намечаемой деятельности,	
	при котором соблюдаются в совокупности следующие условия	
17.	Информация о компонентах природной среды и иных объектах, которые могут	88
	быть подвержены существенным воздействиям намечаемой деятельности	
17.1	Жизнь и (или) здоровье людей, условия их проживания и деятельности	88
17.2	Биоразнообразие (в том числе растительный и животный мир, генетические	89
	ресурсы, природные ареалы растений и диких животных, пути миграции	
	диких животных, экосистемы	
17.3	Земли (в том числе изъятие земель), почвы (в том числе включая органический	92
	состав, эрозию, уплотнение, иные формы деградации)	
17.4	Воды (в том числе гидроморфологические изменения, количество и качество	93
	вод)	
17.5	Атмосферный воздух (в том числе риски нарушения экологических	93
	нормативов его качества, целевых показателей качества, а при их отсутствии -	
	ориентировочно безопасных уровней воздействия на него)	
17.6	Сопротивляемость к изменению климата экологических и социально-	93
	экономических систем	
17.7	Материальные активы, объекты историко-культурного наследия (в том числе	95
	архитектурные и археологические), ландшафты	
18.	Оценка экологического риска реализации намечаемой	95
	деятельности в регионе	
18.1	Методика оценки экологического риска аварийных ситуаций	96
18.2	Анализ возможных аварийных ситуаций	97
18.3	Оценка риска аварийных ситуаций	97
18.4	Условия и необходимые меры, направленные на предупреждение аварий,	
	ограничение и ликвидацию их последствий	
19.	Описание предусматриваемых для периодов строительства и эксплуатации	99
	объекта мер по предотвращению, сокращению, смягчению выявленных	
	существенных воздействий намечаемой деятельности на окружающую среду	
19.1	Комплекс мероприятий по уменьшению выбросов в атмосферу	100
19.2	Мероприятия по охране недр и подземных вод	101
19.3	Мероприятия по предотвращению и смягчению воздействия отходов на	102
	окружающую среду	
19.4	Мероприятия по снижению физических воздействий на окружающую среду	103
19.5	Мероприятия по охране почвенного покрова	103
19.6	Мероприятия по охране биоразнообразия	104
20.	Сводная таблица предложений и замечаний по Заявлению о намечаемой	106
	деятельности	
21.	СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	115
	ТАБЛИЦЫ	
	ПРИЛОЖЕНИЯ	

ВВЕДЕНИЕ

«Отчет о возможных воздействиях» к рабочему проекту «Строительство пробивки улицы Северное кольцо до границы города» в г. Алматы» разработан в рамках процедуры оценки воздействия на окружающую среду намечаемой деятельности в соответствии с требованиями Экологического кодекса Республики Казахстан от 2 января 2021 года № 400-VI ЗРК.

Работа выполнена в соответствии с требованиями нормативно- методической документации по охране окружающей среды, действующей на территории Республики Казахстан. Характеристики и параметры воздействия на окружающую среду приняты по проектным решениям.

Главными целями проведения отчета о возможных воздействиях являются:

- всестороннее рассмотрение всех предполагаемых преимуществ и потерь экологического, экономического и социального характера, связанных с реализацией проектных решений, эффективных мер по снижению вынужденных неблагоприятных воздействий на окружающую среду до приемлемого уровня;
- определение степени деградации компонентов ОС под влиянием техногенной нагрузки, обусловленной размещением на изучаемой территории данного объекта;
- получение достоверных данных, необходимых для расчета лимитов при получении разрешений на природопользование, совершенствования технологических процессов и разработки инженерно-экологических мероприятий по обеспечению заданного качества окружающей среды.

Представленный «Отчет о возможных воздействиях» обобщает результаты предварительного ознакомления с исходными данными о намечаемой деятельности и районе ее реализации, а также с информацией о состоянии окружающей природной и социальной среды района расположения места проведения строительных работ.

В «Отчете о возможных воздействия» определен характер намечаемой детельности, рассмотрены альтернативы ее реализации, определены наиболее вероятные воздействия на компоненты окружающей природной и социальной среды.

В Отчете сделаны выводы о соответствии принятых проектных решений существующему природоохранному законодательству и рациональному использованию природных ресурсов. Первые стадии проектирования выполнены, получено заключение об определении сферы охвата оценки воздействия на окружающую среду за №KZ51VWF00300716 от 21.02.2025 г.

1. Описание предполагаемого места осуществления намечаемой деятельности, его координаты, определенные согласно геоинформационной системе, с векторными файлами

Объект проектирования расположен в Жетысуском районе города Алматы. По направлению от существующей улицы Северное кольцо до границы города с восточной стороны находится улицы Постышева и Жайсан, с западной стороны находится улица Геологов, в районе проектирования имеются практически все инженерные сети. За начало трассы проектируемого участка принята точка пересечения с ВЛ220 кВ в северной части мкр. Кокжиек. Конец трассы ПК 11+50 расположен на ул. Северное кольцо, восточнее моста через реку Есентай. Протяженность пробиваемого участка составляет 1,15 км.

Географические координаты места намечаемой деятельности:

Номер точки	Координаты		
Hayaya maaay	43°21'38.3''N		
Начало трассы	76 °55'25.0''E		
Companying Time solv	43 °21'23.9''N		
Середина трассы	76 °55'36.2''E		
Voyan magay	43 °21'06.3''N		
Конец трассы	76 °55'42.7''E)		

Трасса проектируемой улицы, предусматриваемой в соответствии с решениями Генерального плана развития г. Алматы на период до 2040 г. и Проекта детальной планировки района проектирования, проходит через селитебную территорию между микрорайонами Кокжиек и Кемел в северном направлении, западнее реки Есентай.

Ближайшие частные жилые дома расположены на расстоянии 15-32 м от крайней полосы движения (местный проезд, предназначенный для подъезда к жилым домам) и на расстоянии 15-20 м от крайней полосы дороги.

Памятники, состоящие на учете в органах охраны памятников Комитета культуры РК, имеющие архитектурно-художественную ценность и представляющие научный интерес в изучении народного зодчества Казахстана на территории объекта отсутствуют.

Особо охраняемые природные территории, включающие отдельные уникальные, невосполнимые, ценные в экологическом, научном, культурном и эстетическом отношении природные комплексы, а также объекты естественного и искусственного происхождения, отнесенные к объектам государственного природного заповедного фонда, в районе строительства объекта и на его территории отсутствуют.

Намечаемая деятельность не приведет к изменению рельефа местности, истощению, опустыниванию, водной и ветровой эрозии, селям, подтоплению, заболачиванию, вторичному засолению, иссушению, уплотнению, другим процессам нарушения почв, и не повлияет на состояние водных объектов. Деятельность не связана с производством, использованием, хранением, транспортировкой или обработкой веществ, или материалов, способных нанести вред здоровью человека, окружающей среде или вызвать необходимость оценки действительных или предполагаемых рисков для окружающей среды или здоровья человека.

Намечаемая деятельность не будет создавать риски загрязнения земель или водных объектов (поверхностных и подземных). Намечаемая деятельность не приведет к возникновению аварий и инцидентов, способных оказать воздействие на окружающую среду и здоровье человека.

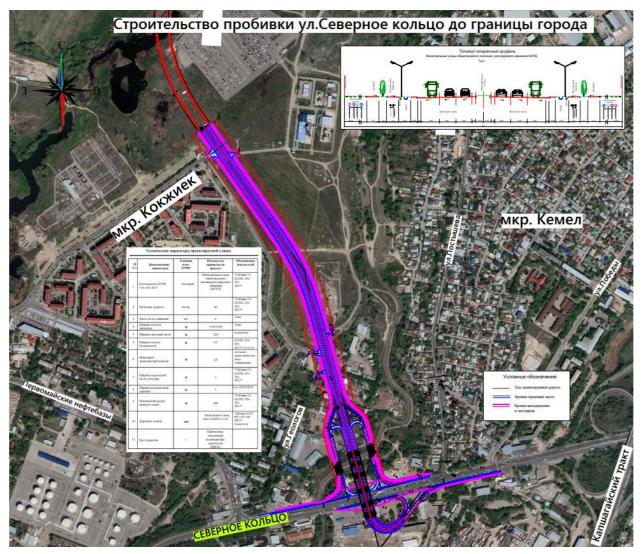


Рис.1.1. Обзорная карта-схема расположения участок застройки

Намечаемая деятельность не приведет к экологически обусловленным изменениям демографической ситуации, рынка труда, условий проживания населения и его деятельности, включая традиционные народные промыслы. При реализации намечаемой деятельности источники вибрационного радиационного воздействия отсутствуют. При реализации намечаемой деятельности уровень звукового в октановых полосах на границе жилого массива будет значительно ниже допустимых для территорий, прилегающих к жилым домам. Следовательно, какие-либо дополнительные мероприятия по защите окружающей среды от воздействия шума при реализации намечаемой деятельности не требуются.

Намечаемая деятельность воздействия на транспортные маршруты, подверженные рискам возникновения заторов или создающие экологические проблемы не окажет.

Реализация проекта окажет положительное влияние на местную и региональную экономику, а также рост занятости местного населения.

2. Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета (базовый сценарий)

2.1 Климатические условия региона

Город Алматы расположен в центре евразийского континента, на юго- востоке Республики Казахстан. Климат континентальный, с морозной зимой и жарким летом, характеризуется влиянием ярко-выраженной горно-долинной циркуляции и высотной поясности, что особенно проявляется в северной части города, расположенной непосредственно в зоне перехода горных склонов к равнине. Этот феномен, равно как и местоположение города, расположенного в межгорной котловине, оказывают влияние на довольно сложную экологическую обстановку, характеризующуюся частым установлением смога.

<u>Климат района резко континентальный</u>. Особенности климата района определяются широтностью и наличием орографических элементов на его поверхности. Совокупность климатообразующих факторов обуславливает преобладание жаркой сухой погоды с резкими сезонными и суточными колебаниями температур воздуха. Лето жаркое, зима умеренно холодная, мягкая. Весной и летом отмечаются ливневые дожди.

Пункт Алматы.

Климатический подрайон III В

Температура наружного воздуха в. °С:

абсолютная максимальная +43,4

абсолютная минимальная -37,7,

Средняя максимальная температура воздуха наиболее теплого месяца, °C+30.

Температура воздуха наиболее холодных (обеспеченностью 0,92):

Суток -23,4;

Пятидневки -20,1;

Периода -8,1;

Талица 1.1.1 Средняя месячная и годовая температуры воздуха, °C

Метеос танция	I	II	III	IV	v	VI	VII	VIII	IX	X	XI	XII	год
Алматы													
	-5,3	-3,6	2,9	11,5	16,5	21,5	23,8	22,7	17,5	9,9	2,6	-2,9	9,8

Таблица №1.1.2

Средняя продолжительность (сут) и температура воздуха (0 С) периодов со средней суточной температурой воздуха, 0 С, не выше						
0 8 10						
Продолжите	Температура	Продолжит	Температура	Продолжит	Температура	
льность		ельность		ельность		
105	-2,9	164	0,4	179	0,8	

Дата начала и окончания отопительного периода (период с температурой воздуха не выше 8^{0} C) --22.10-03.04;

Среднее число дней с оттепелью за декабрь-февраль -9;

Средняя месячная относительная влажность в 15ч наиболее холодного месяца (января) -65%; за отопительный сезон -75%;

Среднее количество осадков за ноябрь-март-249мм;

Среднее месячное атмосферное на высоте установки барометра за январь-924,1 гПа;

Преобладающее направление ветра за декабрь-февраль – Ю;

Средняя скорость за отопительный период-0,8м/с;

Максимальная из средних скоростей ветра по румбам за январь -2.0м/с;

Среднее число дней со скоростью >10м/с при отрицательной температуре воздуха- (-) нет

данных:

Климатические параметры теплого периода года:

Атмосферное давление на высоте установки барометра: среднемесячное за июль -912,7 г Π а; среднее за год -920,547 г Π а;

Высота барометра над уровнем моря – 846,5 м;

Температура воздуха с обеспеченностью $0.95 - 28.2^{\circ}$ C;

Температура воздуха с обеспеченностью $0.96 - 28.9^{\circ}$ C;

Температура воздуха с обеспеченностью $0.98 - 30.8^{\circ}$ C;

Температура воздуха с обеспеченностью $0.99 - 32.4^{\circ}$ C;

Средняя максимальная температура воздуха наиболее теплого месяца (июля)— $(+30^{0}\mathrm{C});$

Абсолютная максимальная температура воздуха - $(+43,4^{\circ}C)$;

Средняя месячная относительная влажность воздуха в 15ч наиболее теплого месяца (июля) –36%:

Среднее количество осадков за апрель-октябрь – 429мм;

Суточный максимум осадков за год : средний из максимальных -39мм; наибольший из максимальных-78мм;

Преобладающее направление ветра (румбы) за июнь-август – Ю;

Минимальная из средних скоростей ветра по румбам за июль -1,0м/с;

Повторяемость штилей за год-22%;

Среднегодовое количество осадков – 249+429=678мм.

Нормативная глубина промерзания по г.Алматы:

Таблица №1.1.3

Наименование грунта	Г. Алматы
Суглинок, глина	79 см
Крупнообломочный грунт	117 см

Среднее за год число дней с температурой воздуха ниже и выше заданных пределов:

Таблица №1.1.4

Среднее число д	ней с минимал	ьной	Среднее число дней с максимальной				
температурой воздуха равной и ниже			температурой и выше				
-35°C	-30°C	-25°C	25°C	30°C	34 ⁰ C		
0,0	0.0	0,2	108,2	44,5	9,4		

Нормативная глубина промерзания грунтов 79 см. Максимальная под оголенной от снега поверхностью 150 см.

Средняя за месяц и год относительная влажность, %:

Таблица 1.1.5

Метео станц ия	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	год
Алматы	8	6	1	9	7	9	7	5	9	3	3	9	2

Снежный покров:

Таблица 1.1.6

Высота снежн	Продолжительность		
Средняя из	Максимальная из	Максимальная	залегания

наибольших декадных за зиму	наибольших декадных	суточная за зиму на последний день	устойчивого снежного покрова,
		декады	дни
22,5	43,0	-	102,0

Среднее число дней с атмосферными явлениями за год:

- -пыльная буря -0,6;
- -туман -32;
- -метель 0;
- -гроза 32;

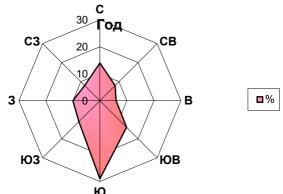


Рис.2. Роза ветров по данным метеостанции Алматы, ОГМС

Направление ветра в южной части территории в большей степени обусловлено горнодолинной циркуляцией, вследствие этого здесь преобладают ветры южного, юго-восточного и юго-западного направлений.

2.2 Современное состояние воздушного бассейна

Статистические данные: суммарный фактический выброс предприятий – 2 995, 912 тонны. Количество предприятия –250 единиц, осуществляющих выбросы 10359 единиц. Количество источников теплоснабжения (котельных и ТЭЦ) – 164 единица.

По данным Управления зеленой экономики, количество частных домов в г.Алматы составляет – 151059 единиц. Из них на газовом отоплении – 149 341 ед.

По данным Департамент полиций в городе Алматы зарегистрировано 630725 единиц автомототранспортных средств, из них: легковые автомобили — 544067 единиц, автобусы — 10346 единиц, грузовые автомобили — 40902 единиц, специальная техника — 1169 и мототранспорт— 8320 единиц. Ежегодно происходит увеличение количества автотранспорта на 70557 единиц.

Ежегодно происходит увеличение количества автотранспорта на 70557 единиц.

Наблюдения за состоянием атмосферного воздуха на территории г. Алматы проводятся на 16 постах наблюдения, в том числе на 2 поста ручного отбора проб и на 14 автоматических станциях (Приложение 1).

В целом по городу определяются 25 показателя: 1) взвешенные частицы (пыль); 2) взвешенные частицы РМ-2,5; 3) взвешенные частицы РМ-10; 4) диоксид серы; 5) оксид углерода; 6) диоксид азота; 7) оксид азота; 8) фенол; 9) формальдегид; 10) озон; 11) кадмий; 12) медь; 13) мышьяк; 14) свинец; 15) хром (6+); 16) никель; 17) цинк; 18) бенз(а)пирен19) бензол, 20 этилбензол, 21) хлорбензол, 22) параксилол, 23) метаксилол, 24) кумол, 25) ортаксилол.

В таблице 1 представлена информация о местах расположения постов наблюдений и перечне определяемых показателей на каждом посту.

Место расположения постов наблюдений и определяемые примеси

Номер поста	Сроки отбора	Проведения наблюдений	Адрес поста	Определяемые примеси
16	3 раза в сутки	ручной отбор проб	м-н Тастак-1, ул. Толе би,249, ТОО «центральная семейная клиника».	взвешенные частицы (пыль), оксид азота, диоксид азота, диоксид серы, оксид углерода, фенол, формальдегид, бенз(а)пирен, бензол, этилбензол, хлорбензол параксилол, метаксилол, кумол, ортаксилол,

Номер	Сроки отбора	Проведения	Адрес поста	Определяемые примеси
1			Бостандыкский район, терр. Казахского национального	взвешенные частицы
2			Илийский район, Бурундайское автохозяйство,	РМ-2,5, взвешенные вещества РМ-10, диоксид серы, оксид
3			Алатауский район, ледовая арена «Алматы арена» по улице Момышулы	углерода, диоксид и оксид азота
4			Турксибский район, район 70 разъезда,	
			общеобразовательная школа Медеуский район,	
5			ледовая арена «Халык арена», микрорайон «Думан»	
6	в непре- рывном режиме	каждые 20 минут	Жетысуский район, терр. Жетысуского акимата, микрорайон «Кулагер»	
27			В.Бенберина 63, м-н Айгерим 2,	взвешенные частицы PM-2,5, PM-10, оксид углерода, диоксид и оксид азота
28			Алатаускогорайона; аэрологическая станция (район Аэропорта) ул.	
29			РУВД Турскибского района, ул.	взвешенные частицы РМ-
30			Р. Зорге,14 м-н «Шанырак», школа №26,	2,5, взвешенные
			ул. Жанкожа батыра, 202	вещества РМ-10, диоксид серы, оксид
31			пр.Аль-Фараби, угол ул.Навои, м-н Орбита (территория	углерода, диоксид и оксид азота озон
			Дендропарка АО «Зеленстрой»)	
	4 раза в сутки	ручной отбор проб	«serielle i pori»	взвешенные частицы (пыль), оксид азота, фенол, формальдегид, бенз(а)пирен, бензол,
1			ул. Амангельды, угол ул. Сатпаева	этилбензол, хлорбензол, параксилол, метаксилол, кумол, ортаксилол
	в непре- рывном	каждые 20		диоксид серы, оксид углерода, диоксид азота,
12	3 раза в сутки	ручной отбор проб	пр. Райымбека, угол ул. Наурызбай батыра	взвешенные частицы (пыль), оксид азота, фенол, формальдегид, бенз(а)пирен, бензол, этилбензол, хлорбензол, параксилол, метаксилол,

	в непре- рывном	каждые 20		диоксид серы, оксид углерода, диоксид азота, озон
25	3 раза в сутки	ручной отбор проб	м-н Аксай-3, ул. Кабдолова, угол ул. Б.Момышулы	взвешенные частицы (пыль), оксид азота, фенол, формальдегид, бенз(а)пирен, бензол, этилбензол, хлорбензол, параксилол, метаксилол, диоксид серы, оксид углерода, диоксид азота, озон

Помимо стационарных постов наблюдений в г.Алматы действует передвижная экологическая лаборатория, с помощью которой измерение качества воздуха проводится дополнительно по 10 точкам: в г.Талгар (2 точки), г.Есик (2 точки), с.Тургень (2 точки), п.Отеген Батыр (2 точки), пгт. Каскелен (2 точки) (Приложение 2).

По 15 показателям:1) взвешенные частицы РМ-2,5; 2) взвешенные частицы РМ10; 3) диоксид азота; 4) диоксид серы; 5) оксид углерода; 6) сероводород; 7) фенол; 8) формальдегид; 9)бензол; 10)этилбензол; 11)хлорбензол; 12)параксилол; 13)метаксилол; 14) кумол; 15) ортаксилол.

Результаты мониторинга качества атмосферного воздуха в г. Алматы за I полугодие 2024 года.

Уровень загрязнения атмосферного воздуха оценивался как высокий, он определялся значением СИ равным 7,0 (высокий уровень) и НП=43% (высокий уровень) по озону в районе поста No 30.

*Согласно РД 52.04.667-2005, если СИ и НП попадают в разные градации, то степень загрязнения атмосферы оценивается по наибольшему значению из этих показателей.

В загрязнение атмосферного воздуха основной вклад вносит: озон (количество превышений ПДК: 6454 случаев), диоксиду азота (количество превышений ПДК: 4926 случаев), оксид углерода (количество превышений ПДК: 2849 случаев), взвешенные частицы РМ-2,5 (количество превышений ПДК: 1455 случаев), диоксид серы (количество превышений ПДК: 1110 случаев), оксиду азота (количество превышений ПДК: 1090 случаев), взвешенным частицам РМ-10 (количество превышений ПДК: 266 случаев), взвешенным частицам (пыль) (количество превышений ПДК:21 случаев).

Наибольшее количество превышений максимально-разовых ≥5ПДК было отмечено по озон (1436), диоксид азота (1), взвешенным частицам РМ-2.5 (4).

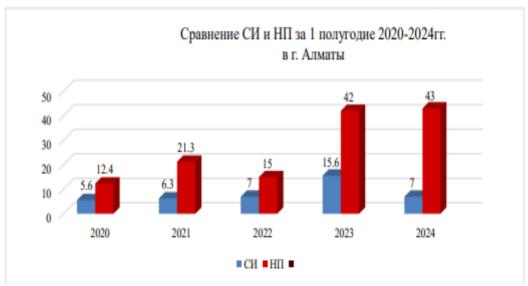
Превышения нормативов среднесуточных концентраций наблюдалось по диоксиду азота и озон. Больше всего отмечено по озону.

Увеличение показателя наибольшей повторяемости отмечено в основном за счет взвешенным частицам (пыль), взвешенным частицам РМ-2.5, диоксид серы, оксид углерода, диоксида азота, оксид азота, озон что свидетельствует о влиянии автотранспорта и метеорологических условий на загрязнение атмосферного воздуха.

Максимально-разовые концентрации составили: взвешенные частицы (пыль) - 1,1 ПДКм.р., взвешенные частицы РМ-2,5 - 5,7 ПДКм.р., взвешенные частицы РМ-10 - 8 3,1 ПДКм.р., диоксид серы -2,0 ПДКм.р., оксид углерода -5,0 ПДКм.р., диоксид азота 5,1 ПДКм.р., оксид азота -2,5 ПДКм.р., озон -7,0 ПДКм.р. концентрации остальных загрязняющих веществ не превышали ПДК.

Средние концентрации составили: диоксид азота –1,6 ПДКс.с., озон–1,7 ПДКс.с. концентрации остальных загрязняющих веществ не превышали ПДК.

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): Случаи высокого загрязнения (ВЗ) и экстремально высокого загрязнения (ЭВЗ) атмосферного воздуха не зафиксированы.


Фактические значения, а также кратность превышений нормативов качества и количества

случаев превышения указаны в Таблице 2.

Характеристика загрязнения атмосферного воздуха

Примесь	Средняя концентрация		Максимальная разовая концентрация		НΠ	преві	Число случаев превышения ПДК _{м.р.}	
прияссь	мг/м ³	Кратност ь ПДКс.с.	мг/м ³	Крати ость ПДК _{м.р}	%	>пдк	>5 ПДК	K
							втомч	исле
		г. Алмат	ы					
Взвешенные частицы (пыль)	0,14	0,9	0,54	1,1	1	21	0	
Взвешанные частицы РМ-2,5	0,01	0,39	0,92	5,7	7	1455	4	
Взвешенные частицы РМ-10	0,02	0,33	0,93	3,1	1	266	0	
Диоксид серы	0,03	0,66	1,00	2,0	8	1110	0	
Оксид углерода	0,76	0,25	24,86	5,0	11	2849	0	
Диоксид азота	0,07	1,6	1,02	5,1	20	4926	1	
Оксид азота	0,05	0,77	1,00	2,5	4	1009	0	
Озон	0,05	1,7	1,12	7,0	43	6454	1436	
Фенол	0,001	0,33	0,008	0,80				
Формальдегид	0,01	0,83	0,04	0,70				
Бензол	0,007	0,07	0,02	0,07				
Хлорбензол	0,005		0,01	0,10				
Этилбензол	0,005		0,01	0,50				
Бенз(а)пирен	0,0005	0,49	0,001					
Параксилол	0,01		0,02	0,10				
Метаксилол	0,00		0,02	0,10				
Ортоксилол	0,00		0,01	0,05				
Кумол	0,00		0,01	0,71				
Кадмий	0,001	0,00						
Свинец	0,007	0,02						
Мышьяк	0,000	0,00						
Хром	0,006	0,00						
Медь	0,007	0,00						
Никель	0,000	0,00						
Цинк	0,028	0,00						

Выводы: За последние пять лет уровень загрязнения атмосферного воздуха в 1-ом полугодии изменялся следующим образом:

Метеорологические условия.

Январь в г. Алматы выдался теплым, это было обусловлено тем, что в течение месяца часто осуществлялся вынос теплого воздуха с юго-западными потоками в средней тропосфере. Осадки преимущественно в виде снега прошли в начале и в середине второй, также третьей декады, из них сильный снег отмечался ночью 17 января (выпало 9 мм). В целом осадки выпали чуть больше нормы (41,5 мм при норме 35 мм). Максимальная скорость ветра за весь месяц не превышала 5 м/с. В первой декаде месяца температура воздуха ночью была около 3 мороза-2 тепла, в остальные ночи января основной температурный фон был в пределах 3-12 мороза, днем температура воздуха колебалась от 1-7 мороза до 1-10 тепла.

В феврале в Алматы погода была неустойчивой. С 17 по 20 февраля зафиксированы очень холодные дни из за ультраполярной холодной воздушной массы, пришедшей на территорию республики с севера. Остальные дни месяца были в пределах климатических норм. Осадки в виде снега прошли в начале и в середине месяца, из них сильный снег отмечался днем 16 февраля (выпало 19 мм).

В целом осадки выпали ниже нормы (36,9 мм при норме 43 мм). Максимальная скорость ветра за весь месяц не превышала 3 м/с. В первой и третьей декадах месяца температура воздуха была в пределах ночью от 7° С до 11 °Смороза, днем от 1° С мороза до 16° С тепла, во второй половине февраля температура воздуха понизилась ночью от 15° С до 22° С мороза, днем до 13° С мороза.

В марте в Алматы погода была неустойчивой. Тепемратура воздуха была в пределах климатической нормы. Осадки выпадали в основном во второй и третьей декадах виде дождь и снега, сильные осадки отмечались ночью 13 марта (20 мм), днем 28 марта (17 мм) и ночью 30 марта (15 мм). В целом осадков выпало больше 0 10 20 30 40 50 2020 2021 2022 2023 2024 5.6 6.3 7 15.6 7 12.4 21.3 15 42 43 Сравнение СИ и НП за 1 полугодие 2020-2024гг. в г. Алматы СИ НП 10 нормы (128.7 мм при норме 72 мм). Максимальная скорость ветра за весь месяц не превышала 10 м/с.

В апреле в Алматы погода была неустойчивой. Тепемратура воздуха была в пределах климатической нормы. Осадки выпадали в равномерно в течении месяца в виде дождя, сильные осадки отмечались ночью 6 (15-16 мм), днем 9 (15-20 мм), сутки 16 (19-29.9 мм), днем 25 (17 мм) апреля. В целом осадков выпало около климатической нормы (110 мм при норме 112 мм).

В мае погода на территории г. Алматы была неустойчивой. Тепемратура воздуха была в пределах климатической нормы. Осадки выпадали в равномерно в течении месяца, преимущественно в виде дождя, сильные осадки отмечались днем 5 (18-28 мм), днем 16 (16 мм), ночью 17 (25 мм), днем 18 (17 мм) мая. В целом осадков выпало больше климатической нормы (116 мм при норме 99 мм). Максимальная скорость ветра за весь месяц не превышала 10-18 м/с.

В июне погода на территории г. Алматы была устойчивой, в третьей декаду месяца жаркой. Температура воздуха была выше климатической нормы на 2 градуса. Осадки выпадали в редко в течении месяца, в начале 1, 2 и в конце 3 декады, преимущественно в виде дождя. В целом осадков выпало меньше климатической нормы (18.3 мм при норме 59 мм). Максимальная скорость ветра за

2.3 Гидрографическая характеристика Поверхностные воды

Гидрографическая сеть в пределах участка проектирования представлена р. Есентай.

Река Есентай представляет собой старую протоку Киши Алматы, сток по которой возобновился после селя 1921 года. Она ответвляется слева от Киши Алматы при выходе из гор, на высоте около 1100 м. Есентай протекает как бы по границе между слившимися конусами выноса Киши Алматы и Улькен Алматы и делит территорию г. Алматы почти на две равные части.

Поселок Первомайка является границей города, обогнув который, река, повернув на северовосток в нижнем течении принимает ряд правобережных притоков р. Султанка,

р. Мойка и р. Карасу-Турксиб.

В верхней части р. Есентай зарегулирована. Современное русло благоустроенно, возведены подпорные стены. В центральной части города оно представляет собой железобетонные каналы прямоугольного сечения, перегороженные водосливными стенками 30—40 м. Таким образом, создан каскад бассейнов шириной 10-15 м и глубиной 0.6-1.5 м.

Река Есентай селеопасна, однако профилактически работы и плотины помогают контролировать уровень воды.

Питание реки смешанное: снеговое, грунтовое. Максимальные расходы воды наблюдаются весной и летом за счет интенсивного таяния ледников и паводковых вод, минимальные зимой.

Средний годовой расход воды 0,06 м³/с, что составляет менее пятой части стока р. Малой Алматинки Половодье — в мае-июле в период интенсивного таяния ледников в связи с резким повышением температуры воздуха. Утром суточные колебания уровня воды незначительны, а к вечеру в связи с дневным таянием ледников, уровень воды в реке поднимается на 15–20 см.

В зимнее время на реке образуются забереги.

Есентай и ее притоки используют в вегетационный период для хозяйственных нужд. Сток реки и ее притоков практически сразу теряется в нижней части в связи с высокими значениями фильтрации. Но в отдельные годы за счет выклинивания грунтовых вод и в многоводные годы в период интенсивного снеготаяния из-за низкой пропускной способности, вода выходит на пойму и затапливает прибрежные участки. В настоящее время из-за интенсивного строительства высотных домов долина реки Есентай засыпается строительным и бытовым мусором, грунтом, что может привести к затоплению вышележащих и прилегающих территорий и поднятию в этом районе уровня грунтовых вод.

На участке проектируемого строительства мостового сооружения русло укреплено габионами, что привело к её заужению и во время паводков происходит затопление берегов.

В гидрогеологическом отношении рассматриваемый район приурочен к южной части крупного Илийского артезианского бассейна, характеризующегося довольно сложными условиями формирования, залегания и разгрузки подземных вод.

Грунтовые воды, при бурении скважин глубиной 5,0 м по трассе проектируемой автодороги не вскрыты. При бурении скважин на участке проектируемого мостового сооружения, грунтовые воды типа «верховодки» вскрыты в пределах поймы на глубине 1,0 м. (абс. отметка 672,6 м). На правом берегу скважиной №7 вскрыта верховодка на глубине 6,0 м (абс. отметка 671,9 м), скважиной №8 верховодка вскрыта на глубине 4,6 м (абс. отметка 673,4 м). На левом берегу скважиной №6 вскрыта верховодка на глубине 7,4 м (абс. отметка 671,15 м). Амплитуда колебания уровня «верховодки» ±1,0 м. Уровень подземных вод (второй горизонт) показан с учетом амплитуды колебания уровня.

По химическому составу воды гидрокарбонатно-сульфатные-натриево-калиевые, по минерализации от пресных до слабосолоноватых (M-0,9-2,1 г/л), по общей жесткости очень жесткая (11,4-13,5 мг-экв/л). По величине pH (7,5-8,0) вода слабощелочная.

2.4 Современное состояние растительного покрова в зоне воздействия объекта Геологическое строение

На основании выполненных буровых и лабораторных работ по изучению вещественного состава и физических свойств грунтов, среди отложений различного генезиса и возраста выделены инженерно-геологические элементы (ИГЭ) слои, которые будут являться, или уже являются основанием проектируемых сооружений или использоваться в качестве строительного материала для сооружений земляного полотна.

Показатели физико-механических свойств, вещественного состава, засоленности выделенных разновидностей (ИГЭ) грунтов получены лабораторными методами и приведены в инженерно-геологическом отчете 1953-1-ИГ, группы по трудности разработки приведены в таблице 1.3, нормативные и расчетные характеристики грунтов основания в таблице 1.4.

- **ИГЭ-1. Асфальтобетон.** Вскрыт скважинами №2; 8; 10; 17; 18. Мощность 0,1-0,2 м.
- **ИГЭ-2. Насыпной грунт.** Представлен щебеночно-гравийно-песчаной смесью. Вскрыт скважинами №2; 8 и 9. Мощность от 0,4 до 0,5 м.
- **ИГЭ-2а. Насыпной грунт.** Представлен песком, гравием, галькой щебнем до 30%. Вскрыт скважинами №1; 5; 6. Мощность 0,4 м.
- **ИГЭ-26. Насыпной грунт.** Представлен песком, суглинком, гравием, галькой, валунами диаметром до 50 см. строительным мусором в виде кирпича, арматуры, бетонных плит и обломков бетона. Слежавшийся. Вскрыт скважиной №7. Мощность 6,3 м.
 - ИГЭ-3. Почвенно-растительный слой. Вскрыт скважинами №3 и 4. Мощность 0,1-0,15 м.
- **ИГЭ-4. Суглинок твёрдый** коричневый легкий и тяжелый. Просадочный. Мощность 0,8-1,7 м.
- **ИГЭ-5. Суглинок полутвёрдый** коричневый легкий и тяжелый. Непросадочный. Мощность 0,8-4,3 м.
- **ИГЭ-6. Суглинок тугопластичный** коричневый легкий. Непросадочный. Мощность 1,2-7,3 м.
- **ИГЭ-7. Суглинок мягкопластичный** коричневый легкий. Непросадочный. Вскрытая мощность от 0,5 до 2,9 м.
- **ИГЭ-8.** Суглинок текучепластичный коричневый легкий. Непросадочный. Вскрытая мощность от 1,6 до 2,8 м.
- **ИГЭ-9. Супесь твердая** от палевого до светло-коричневого цвета. Непросадочная. Мощность 0.9-2.0 м.
- **ИГЭ-10. Супесь пластичная** светло-коричневого цвета. Непросадочная. Вскрыта скважиной №8 и 14. Мощность 0,9 м.
- **ИГЭ-11. Песок пылеватый** светло-коричневого цвета маловлажный, средней плотности. Мощность 0,7-1,0 м.
- **ИГЭ-12. Песок мелкий** серовато-желтый, маловлажный средней плотности. Вскрыт скважиной №6. Мощность 3,1 м.
- **ИГЭ-13. Песок средней крупности** коричневый, маловлажный и водонасыщенный средней плотности. Мощность 0,4-1,8 м.
- **ИГЭ-14. Песок крупный** от серого до коричневого, влажный, плотный с прослоями суглинков. Мощность 5,3-11,5 м.
- **ИГЭ-14а. Песок крупный** от серого до коричневого, водонасыщенный, плотный с прослоями суглинков. Мощность 1,2-2,4 м.
- **ИГЭ-15. Песок гравелистый** серый, влажный плотный с прослоями суглинков с гравием и галькой до 30%. Вскрытая мощность 6,9-12,1 м.
- **ИГЭ-15а. Песок гравелистый** серый, водонасыщенный плотный с прослоями суглинков с гравием и галькой до 30%. Вскрытая мощность 1,1-1,4 м.
 - 2.5 Характеристика радиационной обстановки в районе работ, выявление природных и

техногенных источников радиационного загрязнения

Наблюдения за уровнем гамма излучения на местности осуществлялись ежедневно на 8-ми метеорологических станциях (Алматы, Баканас, Капшагай, Нарынкол, Жаркент, Лепсы, Талдыкорган, Сарыозек) и на 1-ой автоматической станции г. Талдыкорган (ПНЗ №2).

Средние значения радиационного гамма-фона приземного слоя атмосферы по населенным пунктам области находились в пределах 0,11-0,26 мкЗв/ч.

В среднем по области радиационный гамма-фон составил 0,17 мкЗв/ч и находился в допустимых пределах.

Контроль за радиоактивным загрязнением приземного слоя атмосферы на территории Алматинской области осуществлялся на 5-ти метеорологических станциях (Алматы, Нарынкол, Жаркент, Лепсы, Талдыкорган) путем отбора проб воздуха горизонтальными планшетами. На всех станциях проводился пятисуточный отбор проб.

Среднесуточная плотность радиоактивных выпадений в приземном слое атмосферы на территории области колебалась в пределах 1,7-2,4 Бк/м2.

Средняя величина плотности выпадений по области составила 2,0 Бк/м2, что непревышает предельно-допустимый уровень.

2.6 Современные социально-экономические условия жизни местного населения, характеристика его трудовой деятельности

Алматы — крупнейший мегаполис Казахстана, расположенный в предгорьях Заилийского Алатау. До 1997 года город был столицей государства. На данный момент Алматы является научным, культурным, историческим, производственным и финансовым центром страны.

Численность населения города Алматы на 1 марта 2024г. составила 2241 тыс. человек.

Естественный прирост населения в январе-феврале 2024г. составил 3844 человек (в соответствующем периоде предыдущего года – 3489 человек).

За январь-февраль 2024г. число родившихся составило 5875 человек (на 7,4% больше, чем в январе-феврале 2023 года), число умерших составило 2031 человек (на 2,5% больше, чем в январе-феврале 2023г.). Сальдо миграции положительное и составило 8685 человек (в январе-феврале 2023г. – 5696 человек), в том числе во внешней миграции – положительное сальдо - 1117 человек (777), во внутренней – 7568 человек (4919).

Численность безработных в IV квартале 2023г. составила 51,7 тыс. человек. Уровень безработицы составил 4,7% к численности рабочей силы. Численность лиц, зарегистрированных в органах занятости в качестве безработных, на 1 апреля 2024г. составила 25291 человек или 2,3% к численности рабочей силы.

Среднемесячная номинальная заработная плата, начисленная работникам (без малых предприятий, занимающихся предпринимательской деятельностью) в IV квартале 2023г. составила 474550 тенге, прирост к IV кварталу 2022г. составил 20,4%.

Индекс реальной заработной платы в IV квартале 2023г. составил 108,9%. Среднедушевые номинальные денежные доходы населения по оценке в IV квартале 2023г. составили 276199 тенге, что на 17,9% выше, чем в IV квартале 2022г., темп роста реальных денежных доходов за указанный период - 6,6%.

Объем промышленного производства в январе-марте 2024г. составил 513712 млн. тенге в действующих ценах, что на 0,2% меньше, чем в январе-марте 2023г.

В обрабатывающей промышленности объемы производства выросли на 2,4%, а в снабжении электроэнергией, газом, паром, горячей водой и кондиционированным воздухом отмечен спад на 18,5%, и в водоснабжении, сборе, обработке и удалении отходов, деятельности по ликвидации загрязнений – на 12,5%.

Объем валового выпуска продукции (услуг) сельского хозяйства в январе-марте 2024 года составил 118,1 млн. тенге или 131% к январю-марту 2023г. Объем грузооборота в январе-марте 2024г. составил 4929,6 млн. т-км (с учетом оценки объема грузооборота индивидуальных предпринимателей, занимающихся коммерческими перевозками) или 105,3% к январю-марту 2023г.

Объем пассажирооборота — 4290,7 млн.п-км или 120,8% к январю-марту 2023г. Объем строительных работ (услуг) составил 93944,3 млн. тенге или 103,5% к январю-марту 2023 года. В январе-марте 2024г. общая площадь введенного в эксплуатацию жилья уменшилась на 18,3% и составила 527,6 тыс. кв. м, из них в многоквартирных домах - на 11% (418,8 тыс. кв. м), индивидуальных жилых домах — на 37,9% (108,8 тыс. кв. м.).

Объем инвестиций в основной капитал в январе-марте 2024г. составил 280519,8 млн. тенге, или 111,4% к январю-марту 2023г.

Количество зарегистрированных юридических лиц по состоянию на 1 апреля 2024г. составило 149571 единица и увеличилось по сравнению с соответствующей датой предыдущего года на 4,4%, в том числе 147862 единицы с численностью работников менее 100 человек. Количество действующих юридических лиц составило 116645 единиц, среди которых 115043 единицы – малые предприятия.

Количество зарегистрированных предприятий малого и среднего предпринимательства (юридические лица) в городе составило 139767 единиц и увеличилось по сравнению с соответствующей датой предыдущего года на 4,7%. Краткосрочный экономический индикатор за январь-март 2024 года к январю-марту 2023 года составил 103,1%. Расчет краткосрочного экономического индикатора осуществляется для обеспечения оперативности и базируется на изменении индексов выпуска по базовым отраслям: сельское хозяйство, промышленность, строительство, торговля, транспорт и связь, составляющих свыше 60% от ВВП.

Объем валового регионального продукта за январь-сентябрь 2023г. составил в текущих ценах 14591960,1 млн. тенге.

В структуре ВРП доля производства товаров составила 7,6%, услуг — 84,1%. Индекс потребительских цен в марте 2024г. по сравнению с декабрем 2023г. составил 102,5%. Цены на продовольственные товары выросли на 3,5%, непродовольственные товары — на 1,3%, платные услуги для населения — на 2,4%.

Цены предприятий-производителей промышленной продукции в марте 2024г. по сравнению с декабрем 2023г. повысились на 2,2%. Объем розничной торговли в январе-марте 2024г. составил 1265652,3 млн. тенге или на 5,6% больше соответствующего периода 2023г. Объем оптовой торговли в январе-марте 2024г. составил 3453147,9 млн. тенге или 100,4% к соответствующему периоду 2023г.

По предварительным данным в январе-феврале 2024г. взаимная торговля со странами ЕАЭС составила 1070,5 млн. долларов США и по сравнению с январем-февралем 2023г. увеличилась на 6,2%, в том числе экспорт - 299,4 млн. долларов США (на 18,9% меньше), импорт - 771,1 млн. долларов США (на 20,7% больше).

- 3. Описание изменений окружающей среды, которые могут произойти в случае отказа от начала намечаемой деятельности, соответствующее следующим условиям:
- 3.1. Охват изменений в состоянии всех объектов охраны окружающей среды и антропогенных объектов, на которые намечаемая деятельность может оказывать существенные воздействия, выявленные при определении сферы охвата и при подготовке отчета о возможных воздействиях

В процессе оценки воздействия на окружающую среду проводится оценка воздействия на следующие объекты, в том числе в их взаимосвязи и взаимодействии:

- 1) атмосферный воздух;
- 2) поверхностные и подземные воды;
- 3) ландшафты;
- 4) земли и почвенный покров;
- 5) растительный мир;
- 3.2. Полнота и уровень детализации достоверной информации об изменениях состояния окружающей среды должны быть не ниже уровня, достижимого при затратах на исследование, не превышающих выгоды от него

Детализированная информация представлена об изменениях состояния окружающей среды представлена в разделах 8, 9.

4. Информация о категории земель и целях использования земель в ходе строительства и эксплуатации объектов, необходимых для осуществления намечаемой деятельности

Объект проектирования расположен в Жетысуском районе города Алматы. По направлению от существующей улицы Северное кольцо до границы города с восточной стороны находится улицы Постышева и Жайсан, с западной стороны находится улица Геологов, в районе проектирования имеются практически все инженерные сети.

Проектируемый объект включает в себя автомобильную дорогу протяженностью, 1,0 км, транспортную развязку по типу «труба», мост через реку Есентай, а также переустройство коммуникаций попадающих под полотно дороги.

Участок под строительство данного объекта относится к категории земель населенных пунктов (городов, поселков и сельских населенных пунктов).

5. Информация о показателях объектов, необходимых для осуществления намечаемой деятельности, включая их мощность, габариты (площадь занимаемых земель, высота), другие физические и технические характеристики, влияющие на воздействия на окружающую среду; сведения о производственном процессе, в том числе об ожидаемой производительности предприятия, его потребности в энергии, природных ресурсах, сырье и материала

5.1 Описание технологического процесса

Общие сведения об ул. Северное кольцо

В существующих границах ее общая протяженность составляет 10,1 км (от ул. Бекмаханова до пр. Рыскулова). Улица имеет направление с севера на юг, в северной части от пробиваемой улицы расположена селитебная территория с жилыми домами и частным сектором.

В соответствии с заданием на проектирование улица Северное кольцо отнесена к категории магистральная улица общегородского значения регулируемого движения.

На всем протяжении ул. Северное кольцо имеет по 3 полосы движения в каждом направлении, шириной 3,5 м и 4,0 м.

Расчетные и перспективные транспортные потоки. Срок службы. Расчетные нагрузки

Согласно прогнозу интенсивности движения, выданному за:

по ул. Северное кольцо - юг — 55 274 транспортных единиц в сутки;

по ул. Северное кольцо - север – 53 500 транспортных единиц в сутки;

Так как улица обеспечивает транспортную связь между жилыми, производственными зонами и центром города, а также к центрам планировочных районов; выходы на магистральные улицы и дороги и внешние автомобильные дороги и имеет пересечения с магистральными улицами и дорогами в одном уровне, улица классифицирована по «Градостроительство. Планировка и застройка городских и сельских населенных пунктов».

На основании п. 8.3.8 того же СП РК, дорожные одежды жесткого и нежесткого типа предусматриваются для магистральных улиц и дорог с нагрузкой на ось - группа АЗ (130 кН на ось), а расчет дорожных одежд должен выполняться по методике СН РК 3.03-34.

Срок службы дорожной одежды магистральных улиц общегородского значения в соответствии с градостроительными нормативами (таблица 9 СП РК 3.01-101-2013*), срок службы назначается 18 лет при устройстве цементобетонных дорожных одежд и 12 лет для асфальтобетонных дорожных одежд на щебеночном основании, соответственно, в соответствии с заданием на проектировании и в унификации с типами дорожных одежд города Алматы проектом предусматривается асфальтобетонное покрытие на щебёночном основании со сроком службы – 12 лет с расчетной нагрузкой от транспортных средств АЗ (130кН на ось).

Срок начала строительства установлен заказчиком письмом № 34.2-34/69150сл от 17.10.2023г. (приложение 7). Нормативный срок строительства определен по СП РК 1.03-101-2013 часть I, СП РК 1.03-102-2014 часть II, СН РК 1.03-02-2014 часть II «Продолжительность строительства и задел в строительстве предприятий зданий и сооружений» и составил 29 месяцев с заделом по годам: 2024-20% 2025-48% 2026-32%. С учетом нормативного срока строительства за первый год службы дорожной одежды принят 2026 год.

Годовой прирост интенсивности дорожного движения установлен на основании прогноза социально-экономического развития района строительства (раздел 2.1. записки) и в соответствии с ПР РК 218-04-2014 принят -1,04.

Общая интенсивность движения на первый год службы — 2016 год составила: 28 978 автомобилей в сутки, на конец расчетного перерода: 48 251 автомобиль в сутки в обоих направлениях.

Приведенное к легковому автомобилю количество транспортных единиц – 28 360 на 4 полосы движения.

Технические параметры проектируемой улицы

Согласно генеральному плану г. Алматы и техническому заданию, выданному КГУ «Управление городской мобильности города Алматы» (приложение 2), в соответствии с СН РК 3.01-01-2013 и СП РК 3.01-101-2013* «Градостроительство. Планировка и застройка городских и сельских населенных пунктов», ул. Северное кольцо на участке проектирования классифицируется как магистральная улица общегородского значения регулируемого движения (МУРД), с шириной в красных линиях — 80 метров.

Основные технические параметры магистральной улицы общегородского значения регулируемого движения принятые при проектировании приведены в таблице 3.1.

Таблица 5.1.

№ п/п	Наименование параметров	Единица изме- рения	Нормативные показатели по СП PK 3.01-101-2013*	Принятые решения по рабочему проекту	Обосно- вание показателей
1	Категория улиц	-	Магистральная улица общегородского значения регулируемого движения (МУРД)	Магистральная улица общегородского значения регулируемого движения (МУРД)	*Таблица 5-1 СП РК 3.01-101-2013*
2	Расчётная скорость	км/час	80	80	*Таблица 5-2 СП РК 3.01-101-2013*
3	Число полос движения	шт.	4-8	6	То же
4	Ширина полосы движения	M	3,50 (4,00)	3,50 (4,00)	То же
6	Ширина проезжей части	М	(4,0+3,5x2)	(4,0+3,5x2)	По расчету
7	Ширина полосы безопасности	М	0,5	0,5	
8	Ширина разделительной полосы	М	4,0	4,0	*Таблица 5-10 СП РК 3.01-101-2013*
9	Ширина пешеходной части тротуара	М	2,25-3,0	3,0	*Таблица 5-2 СП РК 3.01-101-2013*
10	Ширина велосипедной дорожки	М	1,5x2	3,0	То же
11	Наименьший радиус кривых в плане	М	400	655	То же
12	Наибольший продольный уклон	0/00	50	45	То же
13	Наименьшие радиусы выпуклых вертикальных кривых	М	5000	5000	по расчету
14	Наименьшие радиусы вогнутых вертикальных кривых	M	2000	2500	по расчету

№ п/п	Наименование параметров	Единица изме- рения	Нормативные показатели по СП РК 3.01-101-2013*	Принятые решения по рабочему проекту	Обосно- вание показателей
15	Дорожная одежда	тип	Капитального типа, срок службы 12 лет	Капитального типа, срок службы 12 лет	Табл. 8 и 9 СП РК 3.01-101-2013*
16	Вид покрытия	-	Щебеночно- мастичный полимер асфальтобетон 20	Щебеночно- мастичный полимер асфальтобетон 20	Задание на проектирование

Земляное полотно и водоотвод

По условиям рельефа местности и планировочных отметок проезжей части ул. Северное кольцо, земляное полотно запроектировано преимущественно в насыпях и, местами, в выемках. Основанием земляного полотна служат связные грунты — суглинки твердой и полутвердой консистенции легкие и валунно-галечниковый грунт. Согласно инженерно-геологическому отчету грунтовые условия по просадочности относятся к I (первому) типу.

Перед началом работ по устройству земляного полотна и подстилающего слоя из песчаногравийной смеси в нулевых метах, необходимо взрыхлить основание земляного полотна и уплотнить основание пневмокатками до достижения коэффициента уплотнения 0,98.

Насыпи возводятся из привозного дренирующего грунта - природной песчано-гравийной смесью с примесью валунно-галечникового грунта, доставляемой из действующего карьера в с. Балтабай Енбекшиказахского района Алматинской области. Дальность возки грунта составляет 42 км.

Для обеспечения водоотвода с проезжей части, дорожная часть запроектирована с поперечным уклоном 20 ‰. Для выпуска воды с проезжей части водоотводные лотки марки Б-3-1 в бордюрах устраиваются разрывы. В местах устройства автобусных остановок и, при пересечении лотками тротуаров и автобусных остановок, лотки запроектированы закрытыми с перекрытием их плитами ПУ-1.

Для отвода поверхностных вод вдоль автодороги предусмотрена открытая арычная сеть, а под съездами и примыканиями запроектированы водопропускные трубы диаметром 0,5м.

Проектная документация на строительство земляного полотна приведена в книге 1 тома 11 1953-1-А-АД «Дорожная часть», решения по продольному водоотводу – книга 3 тома 12 1953-1-3-ИС «Малые ИССО».

Дорожная одежда

В соответствии с требованиями СП РК 3.01-101-2013* (таблицы 8 и 9), для магистральных улиц общегородского значения регулируемого движения применяется дорожная одежда капитального типа из монолитного цементобетона и асфальтобетона. В соответствии с заданием на проектирование проектом произведен выбор оптимальной конструкции дорожной одежды капитального типа из асфальтобетона на щебеночном основании с использованием в верхнем слое покрытия щебеночно-мастичного полимерасфальтобетона ЩМА-20.

Расчет приведенной интенсивности движения по транспортному потоку на первый год службы 2026г. к расчетной нагрузке группы А2 (130кН) по СП РК 3.03-104-2014* «Проектирование дорожных одежд нежесткого типа» (тоже А3 -130кН по СП РК 3.01-101-2013* «Градостроительство. Планировка и застройка городских и сельских населенных пунктов») и требуемого модуля упругости дорожной одежды приведен в приложении 8.

Расчет требуемого модуля упругости выполнен на основании прогноза состава транспортного потока на расчетный срок службы с коэффициентом прироста интенсивности 1,04 и коэффициентов приведения к расчетной нагрузке по видам транспортных средств.

Для расчета дорожных одежд основной проезжей части приняты следующие исходные данные:

Категория дороги — магистральная улица общегородского значения регулируемого движения, эквивалентная по интенсивности движения дороге Іб технической категории и по ширине полос движения II категории (таблица 5.1 СП РК 3.01-101-2013*);

Количество полос движения – 6;

Номер расчетной полосы -1;

Тип дорожной одежды – капитальный;

Срок службы покрытия – 12 лет;

Поперечный профиль покрытия – двускатный;

Ширина полосы движения -3.5м (4.0м крайные для автобусов);

Ширина обочины -3,5м;

Тип местности по увлажнению – I;

Грунт земляного полотна – суглинок легкий, твердый (нулевые места).

При конструировании вариантов дорожных одежд учитывались следующие факторы:

- -прочность и надёжность в условиях эксплуатации,
- -экономичность и материалоёмкость,
- -экологичность при производстве работ и во время эксплуатации;
- -использование местных дорожно-строительных материалов и их рациональное размещение в конструкциях, с учётом грунтов в земляном полотне.

Расчётные характеристики используемых материалов:

- -Щебеночно-мастичный полимерасфальтобетон горячей укладки ЩМА-20 на битуме БНД 70/100 с характеристиками по СП РК 3.03-104-2014 (СТ РК 2373-2019), $E = 3\,700\,\mathrm{MHz}$;
- -Асфальтобетон горячей укладки плотный крупнозернистый на битуме БНД-70/100 марки II с характеристиками по СП РК 3.03-104-2014 (СТ РК 1225-2019), $E = 3200 \text{ M}\Pi a$;
- -Асфальтобетон горячей укладки пористый крупнозернистый на битуме БНД-70/100 марки II с характеристиками по СП РК 3.03-104-2014 (СТ РК 1225-2019), E =2000 МПа;
- –Черный щебень приготовленный в установке, уложенный по способу заклинки по СТ РК 1215-2003, $E=600~\mathrm{M}\Pi\mathrm{a}$;
- -Щебеночно-песчаная смесь по ГОСТ 23558, II класса прочности с портландцементом 7% М-400 смешением в установке, Е =600 МПа (приложение 11);
- -Подобранные щебёночно гравийно песчаные смеси для оснований C4 80 мм и C5 80 мм по CT PK 1549-2006 с модулями упругости E =275 МПа и E= 260 МПа (приложение12);
 - -Природная песчано-гравийная смесь (ГОСТ 8267-93*) Е=130МПа.

Расчет конструкций дорожной одежды выполнен с использованием следующих основных критериев надежности:

- -сопротивление упругому прогибу всей конструкции;
- -сопротивление сдвигу в грунтах и в неукрепленных материалах;
- -сопротивление слоев из монолитных материалов усталостному разрушению при растяжении при изгибе.
 - -сдвиго-устойчивость асфальтобетонных слоев дорожной одежды;
- -устойчивость асфальтобетонных слоев к совместному воздействию транспортной нагрузки и природно-климатических факторов,

Примыкания и пересечения

В соответствии с утвержденной градостроительной документацией, рабочем проектом предусмотрено строительство примыканий и пересечений к проектируемой улице.

Согласно п. 8.2.18 СП РК 3.01–101-2013* пересечения и примыкания дорог в одном уровне независимо от схемы пересечений рекомендуется выполнять под прямым или близким к нему

углом. В случаях, когда транспортные потоки не пересекаются, а разветвляются или сливаются, допускается устраивать пересечения дорог под любым углом с учетом обеспечения видимости. На основании данного пункта, а также с учетом того, что все примыкания выполнены с разветвлением или сливанием транспортных потоков, с целью минимизации сноса жилых строений, углы примыканий в одном уровне приняты в увязке с генеральным планом и с существующей конфигурацией улиц в жилой застройке.

Проектом предусматривается строительство на проектируемом участке 7 примыканий 7, в том числе: 3 примыканий слева по ходу пикетажа и 4 примыканий справа по ходу пикетажа.

Радиусы закруглений проезжей части улиц и дорог по кромке тротуаров и разделительных полос приняты в соответствии с п. 8.2.1-11 СП РК 3.01-101-2013 «Градостроительство. Планировка и застройка городских и сельских населенных пунктов» не менее:

- -для магистральных улиц и дорог регулируемого движения 8м;
- -дорог местного значения и проездов 5м.

Въезды во дворы ИЖС запроектированы с радиусом 3,0м

Учитывая низкую интенсивность движения на примыкающих к ул. Северное кольцо местных проездах, конструкция дорожной одежды запроектирована то типу 2.

Тротуары и велодорожки

В соответствии с требованиями СП РК 3.01-101-2013 «Градостроительство. Планировка и застройка городских и сельских населенных пунктов» и задания на проектирование, вдоль проектируемой магистральной улицы регулируемого движения предусматривается устройство тротуаров для двух направлений движения шириной 3,0м и велодорожки шириной 3,0м.

С учетом требований п. 8.2.12 СП РК 3.01-101-2013 тротуары отделены от проезжей части улицы разделительной полосой из зеленых насаждений и бордюрами.

В плане тротуары и велосипедные дорожки запроектированы параллельно проезжей части. Исключения составляют участки подхода к мосту.

На сопряжении тротуара и велосипедных дорожек с проезжей частью предусмотрены пандусы для обеспечения движения велосипедистов, маломобильнных групп населения и пешеходов с детскими колясками.

На тротуарах и велодорожках — проектом предусмотрено покрытие из мелкозернистого асфальтобетона, однослойного, толщиной 5 см, назначенного в соответствии с пунктом 8.4.4 СП РК 3.01–101-2013*, на основании из щебеночно-гравийно-песчаной смеси толщиной 12 см, с устройством подстилающего слоя из песчано-гравийной смеси толщиной 15 см в соответствии с таблицей 10 того же СП.

На всем протяжении тротуаров, для маломобильных групп населения, предусмотрены направляющие дорожки из тактильной плитки (направляющая и предупреждающая плитка), уложенная на бетон толщиной 5 см, аналогичные полосы запроектированы и на автобусных остановках.

Чертежи тротуаров и велодорожек приведены на чертежах комплекта 1953 1-А-АД, конструкция дорожной одежды на рисунке 3.8.

Автобусные остановки

Для обеспечения функционирования общественного транспорта на проектируемом участке улицы Северное кольцо запроектированы 4 автобусных остановок. Местоположение автобусных остановок указано в таблице 3.3.

Для обозначения края посадочной площадки устаивается полоса из тактильной плитки, уложенной на бетон толщиной 5 см.

№ п/п	Местоположение автобусных	Относи тельно	Площадь, м2	Бордюр 100.20.08
	остановок, на	оси		M

	улице					
	ПК+		Устройство подстилающего слоя из природной песчаногравийной смеси H = 0.15 м.;	Устройство основания из щебёночной смеси С4, H = 0.12 м.;	Покрытия из горячего плотного мелкозернистого асфальтобетона Тип В, марки II по СТ РК 1225-2019, на битуме 70/100 Н=0.05м	
1	0+13,50	справа	70	70	70	27
2	1+41,00	слева	70	70	70	27
3	6+74,30	справа	70	70	70	27
4	7+61,70	слева	70	70	70	27
	Итого		280	280	280	108

Посадочные площадки ограничены дорожным бордюром (с высотой от верха бордюра до верха проезжей части 30 см) на бетонном основании.

Автопавильоны приняты по типу по УСН РК 8.02-03-2018 «Остановочный комплекс 8601-0501-0106».

Расположение остановочных пунктов согласовано с КГУ «Управление городской мобильности города Алматы» на стадии эскизного проекта.

Озеленение территории

В соответствии с СП РК 3.01-105-2013 «Благоустройство территорий населенных пунктов» разделительные полосы пробиваемой улицы и территория в границах красных линий не занятая автомобильной дорогой и ее обустройством озеленяется.

Перечень высаживаемых зеленых насаждений с указанием их видового состава приведен в таблице 3.4.

Таблица 3.4

№ п\п	Наименование	Единица	Количество				
		измерения					
І. ПОС	І. ПОСАДКА ДЕРЕВЬЕВ И КУСТАРНИКОВ.						
Листве	нные и хвойные деревья, посадка с устрой	ством посадочны	іх мест 1,3х1,3х0,8м и				
0,8x0,8x	0,5 с заменой грунта до 50%						
1	Посадка вяза мелколистного, высотой 3,0-	ШТ	218				
	3,5м, ком 0,8х0,8х0,5м						
2	Посадка сосны обыкновенной, высотой	ШТ	735				
	2,0-3,0м, ком 1,3х1,3х0,8м						
3	Посадка ивы белой, высотой 3,0-3,5м, ком	ШТ	92				
	0,8х0,8х0,5м						
4	Посадка клена сахаристого, высотой 3,0-	ШТ	525				
	3,5м, ком 0,8х0,8х0,5м						
5	Посадка клена сахаристого, высотой 3,0-	ШТ	130				
	3,5м, ком 0,8х0,8х0,5м						
6	Посадка яблони декоративной, высотой	ШТ	176				
	3,0-3,5м, ком 0,8х0,8х0,5м						
7	Посадка абрикоса, высотой 3,0-3,5м, ком	ШТ	462				
	0,8х0,8х0,5м						

BCEI	ГО ДЕРЕВЬЕВ:	шт	2338
Куста 50%	прники, посадка с усчтройством посадочных	мест 0,3х0,3м	, с заменой грунта до
8	Посадка сирени обыкновенной, высотой до 1,5м, ком 0,3х0,3м	шт	924
9	Посадка спиреи ван-гутта, высотой до 1,5м, ком 0,3х0,3м	ШТ	243
10	Посадка снежноягодника, высотой до 1,0м, ком 0,3х0,3м	ШТ	37
BCEI	О КУСТАРНИКОВ:	шт	1204
II. У(СТРОЙСТВО ЦВЕТНИКОВ, МАССИВОВ И	живых из	ГОРОДЕЙ.
11	Устройство цветников из роз, с ОКС, из расчета 4 шт на м2 с выборкой корыта и заменой грунта на 15 см	м2/шт	1692/6768
12	Устройство массивов из кустарников и многолетников, высотой до 0,6м, с комом 0,2х0,2, из расчета 6 шт на м2 с выборкой корыта и заменой грунта на 15 см	м2/шт	240/960
BCEI	О ЦВЕТНИКОВ И МАССИВОВ:	м2/шт	1932/7728
III. Y	СТРОЙСТВО ГАЗОННЫХ ПОКРЫТИЙ.		·
13	Устройство одерновки в ленту цветников и откосов, шириной 0,2м, с выборкой корыта до 10 см и заменой грунта	м2/пм	13412/67060
14	Посев газона с выборкой корыта до 10см и заменой грунта	м2	53648
BCEI	ГО ГАЗОННЫХ ПОКРЫТИЙ:	м2	67060

Схема организации дорожного движения

Организация движения представляет собой комплекс мер, способствующих увеличению пропускной способности, обеспечению безопасности участников движения, снижению дорожнотранспортных происшествий, повышению эффективности эксплуатации транспортных средств, уменьшению загазованности воздушного бассейна города.

В соответствии с техническими условиями Департамента полиции города Алматы (приложение 13) проектируемый участок улицы оборудуется необходимыми обустройствами, обеспечивающими безопасность дорожного движения::

- дорожными знаками;
- разметкой проезжей части дороги;
- светофорными объектами.

Схемы организации движения разработаны исходя из условий движения, конфигураций перекрестков, направлений движения потоков, их интенсивности, а также с учетом рекомендаций Отдела дорожной инспекции ДВД г. Алматы. В проекте проведен расчет параметров основных и промежуточных тактов для программ управления. При разработке схемы организации дорожного движения по светофорным объектам разработано несколько резервных программ управления светофорными объектами.

Выбор типоразмеров, применяемой свет возвращающей пленки и расстановка дорожных знаков на светофорных объектах выполнена в соответствии с СТ РК 1412-2017, ГОСТ 32945-2014, СТ РК 1125-2021. На арочных и консольных конструкциях предусмотрена установка знаков УЗДО, информирующих водителей об объектах по пути следования и 5.8.1 указывающих направление движения по полосам.

Для обеспечения регулирования движения транспорта предусмотрена установка знаков:

- знаки приоритета применяются для указания очередности проезда перекрестков, на пересечении отдельных проезжих частей, а также узких участков дорог, движение по которым требует принять меры 2.4 «Уступите дорогу»
 - запрещающие знаки применяются для введения ограничений движения или их отмены;
- предписывающие знаки применяются для обозначения необходимых направлений, условий и режимов движения;
- информационно-указательные знаки применяются для информирования участников движения об особенностях режима движения;
- знаки дополнительной информации (таблички) уточняют или ограничивают действие других дорожных знаков, с которыми они применены.

На объектах проектом предусмотрена продольная и поперечная разметка проезжей части в соответствии с СТ РК 1124-2019, СТ РК 1412-2017.

Проектом предусматривается внедрение комплексных мероприятий, позволяющих существенно повысить уровень безопасности дорожного движения и эффективность управления транспортными потоками, в том числе:

Применение новых транспортных и пешеходных светофоров на гиперъярких светодиодах обеспечивает надлежащую видимость светофоров в любое время суток и при любых неблагоприятных погодных условиях (туман, дождь, снег и т.д.);

Применение консольно-арочных конструкций для размещения ТСРДД над проезжей частью улиц обеспечивает их хорошую видимость для всех участников дорожного движения;

Предоставление водителям дополнительной информации с помощью дорожных знаков, табло информационного водителя ТВСАв, панно с информационно-указательными дорожными знаками, панно маршрутного ориентирования для упорядочения транспортных и пешеходных потоков через перекресток.

Предоставление пешеходам дополнительной информации с помощью табло информационного пешехода ТВСАп, табло обратного отсчета времени горения сигнала светофора пешеходного.

Безостановочный проезд по магистралям или снижение задержек транспорта перед светофорами за счет режима «зеленая волна», который учитывает изменение характеристик потока транспорта (интенсивность и скорость движения) в различное время года и суток;

Мероприятия по обеспечению безопасности дорожного движения согласованы с Управлением административной полиции ДП г. Алматы (приложение 30).

Отвод земель. Подготовка территории строительства

В границах пробиваемой улицы Северное кольцо по «красным» линиям существующие земельные участки изымаются для государственных нужд в соответствии с Земельным кодексом Республики Казахстан. Существующие здания и сооружения подлежат сносу.

Согласно землеустроительному проект изъятию подлежат 22 земельных участков, площадь изымаемых земель -5 га.

Разборка существующих зданий и сооружений, а также дорожных обустройств производится на основании дефектного акта, согласованного с Заказчиком.

ИСКУССТВЕННЫЕ СООРУЖЕНИЯ

На выбор варианта проектируемой развязки и ее схемы в значительной мере повлиял подмостовой габарит приближения строений и габарит проезжей части. Наиболее оптимальным вариантом развязки является эстакада по схеме 28+33+2х44+28м с двумя съездам слева и справа. На каждом из съездов исходя из местных условий, запроектирован мост по схеме 1х24.

В пятно проектируемой развязки попадает существующий, ранее уже переустраиваемый с уширением и усилением мост, габарит проезжей части которого Γ –25,5 м, ширина левого и правого тротуара составляет – 1,0 м.

Мост состоит из двух частей:

- 1- двухпролетный балочно-разрезной по схеме 2х14,06 м,
- 2- двухпролетный плитно-разрезной по схеме 2х15,0 м.

Состояние данного сооружения по результатам обследования №ТСЮ23/01-62 от 2023 г, выполненного компанией «TestConstruction» на основании выявленных дефектов оценивается как «неудовлетворительное» и «крайне тяжелое», т.е. предаварийное (стр. 26 пункт 6).

Для пропуска современных нагрузок по нормам СП РК 3.03-112-2013 необходимо строительство нового транспортного сооружения (стр. 26 пункт 5).

Технические решения по эстакаде

Автодорожная эстакада полной длиной 177 м. Схема эстакады: 28+33+2x44+28м с подходами, выполненными в виде насыпи.

Исходя из категории дороги на которой расположена эстакада, и расчетной интенсивности движения на нормативный срок службы - габарит эстакады установлен $2(\Gamma-16)$ м по СП РК 3.03-112-2013 «Мосты и трубы» Приложение Б и СТ РК 2370-2013 п.6.42 .

Эстакада запроектирована раздельными пролетными строениями под каждое направление движения.

В поперечном сечении одного направления движения эстакада имеет 2 полосы движения 3.5м, полосу для общественного транспорта 4.0м, 2 полосы безопасности по 1.0 м и служебный проход 0.75м с одной стороны эстакады (0.2+0.75+0.5+1.0+4.0+2x3.5+1.0+0.5+1.0).

Общая ширина эстакады в двух направлениях с учетом барьерных ограждений - 4x0,5м, перильного ограждения – 2x0,2м и двусторонних служебных проходов по 0,75м составляет - 31,9м.

Подмостовой габарит приближения строения эстакады выполнен в соответствии с требованиями СП РК 3.03-112-2013 «Мосты и трубы».

Несущие конструкции и основания эстакады рассчитаны на действие постоянных нагрузок и неблагоприятных сочетаний временных нагрузок, указанных в СТ РК 1380-2005 «Нагрузки и воздействия». Временные нагрузки от подвижного состава автомобильных дорог приняты от автотранспортных средств - в виде полос А14 и от тяжелой одиночной колесной нагрузки НК-120, НК-180.

Конструкция устоев на свайном основании. Сваи круглые вертикальные диаметром 1,5м и длиной 25,0м. Сваи размещены в три ряда на опоре №6 и в четыре ряда на опоре №1 (по фасаду эстакады) по 6 шт. в ряду. Шаг свай в ряду – 2,75м, расстояние между рядами 2,5м. Головы свай объединены ростверком размерами в плане 15,93х7,0м на опоре №6 и 15,93х9,5м на опоре№1 и высотой 2,0м. Выше ростверка принята конструкция монолитного тела опоры размерами 15,93х1,5 и высотой 8м. на опоре№1 и 3,5 м. на опоре №6, бетон тела опоры B35, F200, W8. Поверху тела опоры устраивается железобетонный монолитный ригель сечением 1,85х1,2м длиной 15,93м, бетон ригеля B35, F200, W8. На ригеле устраиваются шкафная стенка с открылками (на опоре №6) и подферменными камнями. Бетон шкафной стенки B30, F200, W8, бетон подферменников B35, F200, W8, бетон ростверков B25, F200, W8, бетон буровых свай B25, F200, W8. У опоры №1 (перпендикулярно фасаду эстакады) расположены монолитные подпорные стенки уголкового типа на свайном основании. Сваи круглые вертикальные диаметром 1,5м и длиной 20,0м. Сваи размещены в два ряда (по фасаду эстакады) по 6 шт. в ряду. Шаг свай в ряду -2.5м, расстояние между рядами 3,5м. Головы свай объединены фундаментом подпорной стенки размерами в плане 15,0х5,5м ни высотой 1,5м. Подпорная стенка запроектирована ступенями с увеличением сечения ступеней от верха 0,35м. к низу 1,0м. Высота подпорной стенки 11,5 м. длина 14,5м. Бетон шкафной стенки B25, F200, W8.

Промежуточные опоры эстакады запроектированы на свайном основании. Сваи круглые вертикальные диаметром 1,5м и длиной опора №2-20,0м, опора №3-28,0м, опора №4-35,0м, опора №5-25,0м. Сваи размещены в три ряда (по фасаду эстакады) по 5 шт. в ряду. Шаг свай в ряду — 2,6м, расстояние между рядами 2,5м. Головы свай объединены ростверком размерами в плане 12,6х7,0м и высотой 2,0м. Выше ростверка - принята одностоечная конструкция овальной формы, размер стойки в плане 4,0х1,5м и высотой на опорах №2,3-8,0м, на опорах №4,5-3,5м. Поверху стойки устраивается железобетонный монолитный ригель сечением 1,8х2,0м длиной 8,4м. На ригеле устраиваются подферменные камни. Бетон тела опоры В40 F200 W8, бетон подферменников В40, F200, W8, бетон ростверков В25 F200 W8, бетон буровых свай 25 F200 W8.

Эстакада перекрыта двумя раздельными монолитным неразрезным пролетным строением плитного типа под каждое направление движения, общей длиной 177,0м, строительная высота пролетного строения принята 2,02 м по схеме 28+33+2х44+28м. Габарит по ширине на эстакаде 2(Г-16)м, габарит по высоте 5,5м от проезжей части пересекающей автомобильной дороги. Для изготовления монолитного пролетного строения принят тяжелый бетон класса В40 F200 W8. Пролетное строение устанавливается на металлические опорные части с шок-трансмиттерами. Все опорные части и шок- трансмиттеры, поставляемые на объект, должны быть испытаны согласно EN 1337 и EN 15129 с выдачей сертификата ETA. Поперечный уклон создается за счет сточного треугольника, продольный – за счет отметок опор.

Для сооружения пролетного строения подготавливают технологические площадки и насыпи, устраивают подготовку из ПГС под железобетонные плиты временных опор с последующей разборкой и перестановкой. После установки временных опор производится сборка опалубки пролетного строения.

Строительство эстакады ведется двумя потоками с двух сторон одновременно.

Сооружение опор начинается с расчистки территории и подготовки строительной площадки. Подвозят секции металлических извлекаемых труб диаметром 1500мм. При погружении труб, для устранения силы трения грунта по внутренней поверхности трубы, периодически удаляют грунт из внутренней полости при помощи шнекового оборудования. Выемку грунта ведут без водоотлива. Следующую секцию трубы устанавливают на первую и по стыку соединяют. По достижении проектной отметки, в трубу краном опускают арматурный каркас. Внутри каркаса помещают вертикально перемещающуюся трубу d=200мм с бункером наверху. Трубу и бункер наполняют бетонной смесью и медленно поднимают, затем извлекают секции труб. Укладываемый в сваю бетон уплотняют вибраторами. По окончании свайных работ перевозят буровую машину на другую опору.

Для выполнения работ по бетонированию свайных ростверков выполняется устройство металлических шпунтовых ограждений из шпунта типа Ларсен- V, затем, - разработка экскаваторами или грейферами котлованов внутри шпунтовых ограждений до отметок ниже подошвы ростверков на 0,2 м, после чего - производится устройство щебеночной подготовки.

Бетонную смесь подают в опалубку порциями и тщательно уплотняют. После готовности ростверков с выпусками арматуры возводятся части тела опор и ригели. Шкафные стенки устоев и открылки бетонируют после бетонирования пролетного строения.

На каждой опоре должны быть произведены испытания одной сваи статической нагрузкой. Испытания проводятся после набора бетоном заполнения проектной прочности. Для испытания выбирается центральная свая, а в качестве анкерных свай используют рядом стоящие. При испытаниях сваю загружают отдельными ступенями, равными 1/10 предельной нагрузки. Под каждой ступенью нагрузки сваю выдерживают до затухания деформаций, после чего загружают следующей ступенью. В результате испытаний строят график «нагрузка – осадка», по которому устанавливают предельную и расчетную нагрузку.

С завершением надобности в шпунтовом ограждении шпунт подлежит извлечению в полном объеме для повторного использования на других участках строительства.

Монолитное преднапряженное пролетное строение бетонируется на сплошных подмостях, для этого устанавливаются временные опоры и опалубка пролетного строения. После устройства подмостей, опалубки устраивается арматурный каркас и прокладка каналообразователей с пустообразователями. После завершения арматурных работ производится бетонирование пролетного строения, бетонная смесь наверх подается бетононасосами.

Бетонирование пролетных строений выполняется в следующей последовательности: на I этапе бетонируется пролетное строение в опорах 4-5, на этапе II выполняется бетонирование пролетных строений в обе стороны параллельно от пролетного строения в опорах 5-6 и 3-4, далее на этапе III выполняется бетонирование в опорах 1-2. Поверхность бетона должна соответствовать требованиям раздела 5 «Руководства по применению гидроизоляционного материала для гидроизоляции железобетонной плиты проезжей части мостовых сооружений». Гидроизоляция должна выполняться также в соответствии с тем же руководством путем наплавления рулонного оклеечного материала на бетон. В необходимой технологической последовательности на пролетных строениях устраиваются деформационные швы, барьерное и перильное ограждения, двухслойное асфальтобетонное покрытие.

Проезжая часть на эстакаде устраивается по плите пролетного строения. После полного завершения всех работ по бетонированию пролетного строения выполняется гидроизоляция пролетного строения. Поверхность накладной плиты перед устройством гидроизоляции с использованием рулонного оклеечного материала должна отвечать требованиям раздела 5 «Руководства по применению гидроизоляционного материала для гидроизоляции железобетонной плиты проезжей части мостовых сооружений».

Поверх гидроизоляции укладывается защитный слой толщиной 40мм армированный сварной сеткой Вр-1, поверх защитного слоя устраивается двухслойное асфальтобетонное покрытие типа Б марка 1 по ГОСТ 9128-97 общей толщиной 80мм. Между шкафными стенками устоев и торцами пролетных строений устраиваются резина-металлические деформационные швы. Их металлические части закрепляются в бетоне шкафных стенок и бетоне пролета. В проекте применены деформационные швы открытого типа под расчетные перемещения, которые приведены на соответствующих чертежах.

Все бетонные необлицованные и не гидроизолированные поверхности окрашиваются перхлорвиниловыми композициями или политонур композициями в два слоя по грунтовки.

Водоотвод с проезжей части эстакады для одного направления предусмотрен: односкатным поперечным уклоном 20% к борту барьерного ограждения, далее, по продольному уклону в две стороны от оси эстакады. За эстакадой вода попадает в прикромочные лотки, по ним вдоль проезжей части вода уводится за пределы эстакады.

Ограждение проезжей части барьерного типа марки 15-MO/300-0.9(0.3):1.5-0.65, высотой 0,9м с внутренней стороны и 0,9м с внешней стороны, разработанное применительно СТ РК 1278-2004, в соответствии с п. 1.65*, 2.19 СНиП 2.05.03-84*. Стойки ограждения на болтах крепятся к закладным деталям в железобетонных бортах проезжей части, шаг стоек 1,5м. Барьерное ограждение на монолитном пролетном строении оцинкованное по СТ РК 2368-2013 ГОСТ 26804-2012. Перильное ограждение окрасить двухкомпонентной полиуритановой краской ПОЛИТОН-УР, ПОЛИТОН-УФ, с расходом 0,21 кг/м².

После сооружения пролетного строения устраиваются шкафные стенки и открылки крайних опор №1 и №6.

Для устройства сопряжения и дальнейших работ по устройству проезжей части на эстакаде необходимо возвести насыпи подходов.

Конуса и насыпь за устоями отсыпаются из дренирующего грунта с коэффициентом фильрации после уплотнения не менее 2 м в сутки.

Отсыпка ведется послойно с тщательным уплотнением и поливом водой. Коэффициент уплотнения должен составлять не менее 0,95.

В сопряжении устоев с насыпью предусмотрена укладка железобетонных переходных плит полузаглубленного типа П800.98.25-ТАШ по типовому проекту 3.503.1-96. Плиты рассчитаны на прочность под нагрузки А14 и НК180. С одной стороны плиты опираются на выступ в шкафных стенках устоев, с другой - на щебеночную подушку. С этой стороны их концы объединяются монолитным бетоном В30 F200 W6.

Обочины земляного полотна на подходах (в пределах сопряжения) укрепляются асфальтобетоном толщиной 4см.

Укрепление откосов конусов устоев укрепляют посевом трав, для этого на спланированные откосы укладывается природный растительный слой и высеиваются семена трав.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКТИРУЕМОЙ ЭСТАКАДЫ

Таблица 5.1.

№ п/п	Наименование Показателей	Ед. изм.	СП РК 3.03-	Принятые	
11/11	Hokasarenen	nom.	основные	допускаемые	
1	Категория по основному направлению	-	І-б		І-б
2	Схема эстакады		=	-	28+33+2х44+28м
3	Длина эстакады	M	=	=	177,00
4	Число полос движения	шт.	3	3	3
5	Ширина полосы движения	М	3,5	3,5	3,5
6	Ширина полосы безопасности	М	2x1,0	2x1,0	1,0
7	Ширина полосы движения общественного транспорта	М	4,0	4,0	4,0
8	Ширина покрытия	M	13,0	13,0	13,0
9	Дорожная одежда	-	капитально	ого типа	капитального типа
10	Вид покрытия	-	горяч асфальто		горячий асфальтобетон
11	Крайние устои	ШТ	2	2	Железобетонная монолитная сплошностенчатая
12	Промежуточная опора	ШТ	4	4	Железобетонная монолитная стоечная
13	Временная подвижная нагрузка		HK120, HK180, A14	-	HK120, HK180, A14
14	Пересечения				Под углом 90
15	Уровень ответственности сооружения		II (нормальный)		II (нормальный)

Согласованные с заказчиком Алматинским областным филиалом АО «НК «Казавтожол» поперечные профили по эстакадам приведены в приложениях 29-32.

Технические решения по существующему мосту

Мостовой переход через реку Есентай представляет собой однопролётный мост с подходами к нему. Схема моста 1х24.0м.

Полная длина моста по краям открылков –32.1 м.

Габарит моста (Γ -16.5)+3.0+3.0м + (Γ -13.0)+3.0 м по СТ РК 1379-2012. Мост разделен продольным швом шириной 0.2м на два самостоятельных сооружения, шириной - 24,8м и -17.8м. Мост расположен в плане на прямой, а в профиле на продольном уклоне i=0.005.

Пролетное строение запроектировано из сборных ж.б. предварительно- напряженных балок ТБН 24 длиной 24м. Балки изготавливаются по чертежам типового проекта «Пролетные строения автодорожных мостов из предварительно напряженных ж.б. балок ТБН (Договор №14/2015 от 11.12.15г) разработки ТОО «Мостодорпроект».

В поперечном сечении полетного строения (12 балок (левое сооружение) и 9 балок (правое сооружение)). Всего на мост 21 балок ТБН 24 длиной 24м.

Балки ТБН 24 изготавливаются из бетона класс прочности В40 по ГОСТ 26633-2015; морозостойкость F200; водонепроницаемость W8.

Поверх балок укладываются ж.б. плиты несъемной опалубки толщиной 70мм и устраивается монолитная ж.б. плита толщиной 250мм которая объединяет проезжую часть.

Бетон монолитной накладной плиты B30, F200, W8.

Монолитная накладная плита со стороны тротуара и со стороны разделительной полосы возвышается на 43см, на которых к закладным деталям крепятся стойки перильного и барьерного металлического ограждений.

Балки пролетного строения по концам опираются на резиновые опорные части (РОЧ).

Резиновые опорные части марки РОЧ 20х40х5,2 приняты в соответствии с ГОСТ 32020-2012. Опорные части поставляемые на объект, должны соответствовать ГОСТ 32020-2012 и иметь сертификат качества со ссылкой на данный ГОСТ. Протокола испытаний по ГОСТ 32020-2012 представляются совместно с сертификатом качества. Резиновые опорные части, выполненные по ТУ (технические условия) не допускаются к применению на объекте.

На береговых опорах выполняются деформационные швы. Деформационные швы приняты металлические балочные с резиновым компенсатором фирмы «TARKER». Поставляемые на объект деформационные швы должны иметь сертификат с техническим документом, подтверждающим качества поставляемой продукции - ETA (European Technical Assessment).

Опоры моста состоят из двух частей под каждое сооружение (левое и правое). Береговые опоры моста запроектированы с ростверком на буровых столбах. Буровые столбы диаметром 1,5м из бетона B25 F200 W6.

Количество буровых столбов на опору - 28шт, 16 свай на левое сооружение и 12 свай на правое сооружение. Сваи объединены монолитным железобетонным ростверком.

Ростверки опор выполняются монолитными с геометрическими размерами 4,5х24,2х1,2м (левое сооружение) и 4,5х17,2х1.2м (правое сооружение) из бетона B25 F200 W6. В основании ростверка выполняется бетонная подготовка толщиной 10см из бетона марки B20 F200 W6. Из ростверка предусмотрены выпуски арматуры в стойки опор.

Проектом предусмотрено устройство на верхней поверхности фундамента монолитного слива. Слив устраивается после устройства стоек.

Стойки опор прямоугольного сечения от 100х80см. На опору левого сооружения предусмотрено 7 стоек, а правого сооружения 5 стоек. Стойки опор имеют арматурные выпуски в ригеля. Стойки опор выполнены из бетона с классом прочности В30; морозостойкость F200; водонепроницаемость W8.

Ригеля береговых опор железобетонные монолитные, прямоугольные в плане и имеют геометрические размеры - 1,2х24,89х1,0м и 1,2х17,89х1,0м. На ригелях опор размещаются подферменные площадки, шкафная стенка с открылками и упоры, воспринимающие горизонтальные сейсмические усилия. Они объединены с ригелем посредствам арматурных выпусков. Ригеля, подферменные площадки, шкафная стенка с открылками и упоры выполнены из бетона с классом прочности В30; морозостойкость F200; водонепроницаемость W8.

Шкафная стенка монолитная железобетонная выполнена с устройством ступени для опирания монолитных плит сопряжения. В шкафной стенке устраиваются штыри d=22-AI, для фиксации переходных плит. В верхней части открылков установлены закладные детали для установки перильного ограждения.

Сопряжение путепровода с насыпью подходов выполнено применительно к типовому проекту 3.503.1-96 со сборными железобетонными переходными плитами длиной 6м из бетона B30.F200.W8. Укрепление конусов монолитными плитами толщ. 10см с армосеткой по слою щебня 10см. Бетон B25.F200.W8.

Заустойная засыпка и отсыпка откосов производится дренирующим грунтом (коэффициент фильтрации не менее 2м/сут) при тщательном уплотнении механизированным способом.

На бетонные поверхности опор, засыпаемые грунтом, наносится обмазочная гидроизоляция битумной мастикой за 2 раза. Видимые бетонные поверхности опор окрашивается перхлорвиниловыми красками.

7. Информацию об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных вредных антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра, а также вибрации, шумовые, электромагнитные, тепловые и радиационные воздействия

7.1 Характеристика источников выбросов загрязняющих веществ в атмосферу на период проведения строительства

В современной концепции охраны окружающей среды особое место занимает состояние воздушного бассейна. Любое антропогенное влияние может привести к недопустимым уровням загрязнения компонентов природной среды, снижению биоразнообразия фауны и флоры, деградации почвенно-растительного покрова, изменению мест обитания животного мира, исчезновению и сокращению популяций, а главное — угрозе здоровью населения.

Предложенный методический подход базируется на определении трех параметров воздействия: пространственного, временного и интенсивности воздействия. Каждый из трех параметров оценивается по специальной шкале с применением критериев, разработанных для соответствующих градаций шкалы.

В результате почти повсеместной застроенной территории многие участки полностью лишены растительности. Воздействие сточных вод на компоненты природной среды, то есть возможность поступления их в окружающую среду, всецело зависит от способов их хранения и утилизации.

Негативного воздействия сточных вод на окружающую среду при штатной деятельности не предусмотрено.

Влияние отходов производства и потребления на природную среду будет минимальным при условии выполнения соответствующих санитарно-эпидемиологических и экологических норм, принятых проектом и направленных на минимизацию негативных последствий антропогенного воздействия на окружающую среду.

Факторы воздействия на недра. Техногенно-активизированными процессами на территории объекта могут являться:

- вторичное засоление, эрозия, дефляция, опустынивание;
- в зонах влияния автомобильных дорог на большом протяжении развиты техногенные процессы: формирование техногенно-переотложных и техногенно-измененных пород, просадка и деформация дорожного полотна, сдвиговые деформации искусственных откосов дорожных выемок и насыпей (осыпи, обвалы), активизация процессов ветровой эрозии.

Строительство моста в связи с отсутствием данного вида деятельности в Приложении 2 Экологического кодекса РК от 02.01.2021 г № 400-VI и на основании п.12 пп.8 «Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду», утвержденную приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246 относится к объектам - III категории.

Основные источники воздействия на окружающую среду при строительстве:

На основании п. 4 статьи 72 в данном разделе приводится информация об ожидаемых видах, характеристиках и количестве эмиссий в атмосферный воздух.

На площадке имеются временные (на период строительства) источники выбросов загрязняющих веществ в атмосферу. Расчеты производятся на период проведения строительных работ.

На период строительства

Ист.№0001. Котлы битумные. При растопке битумного котла используется дизельное топливо. При этом выделяются следующие вещества: Азота диоксид, Азот оксид, Углерод (Сажа, Углерод черный), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера оксид, Углерод оксид (Окись углерода, Угарный газ).

Ист.№0002. **Передвижная электростанция**. При работе электростанции используется дизельное топливо. При этом выделяются следующие вещества: Азота диоксид, Азот оксид, Углерод (Сажа, Углерод черный), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера оксид, Углерод оксид (Окись углерода, Угарный газ), Бенз/а/пирен, формалдегид, алканы С12-19, в пересчете на С. Организованный источник.

Ист.№0003. Передвижной компрессор. При работе компрессора используется дизельное топливо. При этом выделяются следующие вещества: Азота диоксид, Азот оксид, Углерод (Сажа, Углерод черный), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера оксид, Углерод оксид (Окись углерода, Угарный газ), Бенз/а/пирен, формалдегид, алканы С12-19, в пересчете на С. Организованный источник.

Ист.№6001. Разработка грунта. При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6002. Обратная засыпка грунта. При проведении разгрузочных, выемочнопогрузочных работ в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6003. Срезка ПРС. При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6004. Устройство щебеночного основания. (ф. 10–20 мм, ф. 20–40 мм). При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: Пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6005. Пересыпка песка. При проведении разгрузочных, выемочно-погрузочных работ песка в атмосферный воздух неорганизованно выделяются: Пыль неорганическая, содержащая двуокись кремния более 70% (динас) (493).

Ист.№6006. Хранение инертных материалов. Пересыпка инертных материалов. При проведении разгрузочных, выемочно-погрузочных работ пгс в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6007. Гидраизоляция ж/б битумом. Выделяется неорганизованно загрязняющее вещество: 2754 Алканы C12-19.

Ист.№6008. Сварочные работы (электроды). Ручная дуговая сварка сталей штучными электродами. Неорганизованно выделяются: Железо оксиды, марганец и его соединения, Азота (IV) диоксид, Азот (II) оксид, пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6009. Сварочные работы (пропан-бутаном, ацетиленом). Неорганизованно выделяются: Азота (IV) диоксид, Азот (II) оксид.

Ист.№6010. Покрасочные работы. Неорганизованно выделяются: диметилбензол, метилбензол, бутилацетат, пропан-2-он, уайт-спирит.

Ист.№6011.001 Механическая обработка металлов (машины шлифовальные). При проведении механической обработки металлов дрелью электрической в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.002 Механическая обработка металлов (дрели электрические). При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.003 Механическая обработка металлов (станки для резки арматуры. При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.004 Механическая обработка металлов (перфаратор электрический). При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.005 Механическая обработка металлов (машины шлифовальные угловые). При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6012. Движение и работа спецтехники. Неорганизованно выделяются: азота диоксид, азот оксид, углерод (Сажа, Углерод черный), сера диоксид, углерод оксид. Дорожные машины и оборудование находятся на объекте только в том составе, которое необходимо для выполнения технологических операций определенного вида работ. По окончании смены машины перемещаются на площадки с твердым покрытием.

На период эксплуатации объекта:

В период эксплуатации выбросы не будут осуществляться от данных источников.

7.2 Обоснование достоверности расчета количественного состава выбросов

РАСЧЕТ ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ НА ПЕРИОД СТРОИТЕЛСТВА

Источник загрязнения N 0001, Выхлопная труба Источник выделения N 0001 01, Котлы битумные

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 1.505246753

Расход топлива, г/с, BG = 0.222366667

Марка топлива, M = Дизельное **топливо**

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), A1R = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 42

Фактическая мощность котлоагрегата, кВт, QF = 42

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.07

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.07 \cdot (42/42)^{0.25} = 0.07$ Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 1.505246753$

 $42.75 \cdot 0.07 \cdot (1-0) = 0.0045$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.222366667 \cdot 42.75 \cdot 0.07 \cdot (1-0) = 0.000665$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.0045=0.0036$ Выброс азота диоксида (0301), г/с, $G=0.8 \cdot MNOG=0.8 \cdot 0.000665=0.000532$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.0045=0.000585$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.000665=0.0000865$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0.02 Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_=0.02 \cdot BT \cdot SR \cdot (1\text{-NSO2}) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 1.505246753 \cdot 0.3 \cdot (1\text{-}0.02) + 0.0188 \cdot 0 \cdot 1.505246753 = 0.00885$ Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1\text{-NSO2}) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 0.222366667 \cdot 0.3 \cdot (1\text{-}0.02) + 0.0188 \cdot 0 \cdot 0.222366667 = 0.001308$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, %(табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R=0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$ Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 1.505246753 \cdot 13.9 \cdot (1-0/100) = 0.02092$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.222366667 \cdot 13.9 \cdot (1-0/100) = 0.00309$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=1.505246753\cdot 0.025\cdot 0.01=0.000376$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.222366667\cdot 0.025\cdot 0.01=0.0000556$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000532	0.0036
0304	Азот (II) оксид (Азота оксид) (6)	0.0000865	0.000585
0328	Углерод (Сажа, Углерод черный) (583)	0.0000556	0.000376
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.001308	0.00885
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00309	0.02092

Источник загрязнения N 0002, Выхлопная труба Источник выделения N 0002 01, Электростанции передвижные

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 1.764$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 1.809335861$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 30$ / 3600=0.0147 Валовый выброс, т/год, $M=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 30$ / $10^3=0.0543$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 1.2$ / 3600=0.000588 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 1.2$ / $10^3=0.00217$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=39$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 39$ / 3600=0.0191 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 39$ / $10^3=0.0706$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=10$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 10$ / 3600=0.0049 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 10$ / $10^3=0.0181$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}} = 25$ Максимальный разовый выброс, г/с, $_G_ = G_{FJMAX} \cdot E_{\mathfrak{I}} / 3600 = 1.764 \cdot 25 / 3600 = 0.01225$ Валовый выброс, т/год, $_M_ = G_{FGGO} \cdot E_{\mathfrak{I}} / 10^3 = 1.809335861 \cdot 25 / 10^3 = 0.0452$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=12$ Максимальный разовый выброс, г/с, $_G_{_}=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 12$ / 3600=0.00588 Валовый выброс, т/год, $_M_{_}=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 12$ / $10^3=0.0217$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 1.2$ / 3600=0.000588 Валовый выброс, т/год, $M=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 1.2$ / $10^3=0.00217$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}} = 5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=1.764\cdot 5$ / 3600=0.00245 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=1.809335861\cdot 5$ / $10^3=0.00905$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0147	0.0543
0304	Азот (II) оксид (Азота оксид) (6)	0.0191	0.0706
0328	Углерод (Сажа, Углерод черный) (583)	0.00245	0.00905
0330	Сера диоксид (Ангидрид сернистый, Сернистый	0.0049	0.0181
	газ, Сера (IV) оксид) (516)		

0337	Углерод оксид (Окись углерода, Угарный газ)	0.01225	0.0452
	(584)		
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.000588	0.00217
1325	Формальдегид (Метаналь) (609)	0.000588	0.00217
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00588	0.0217
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

Источник загрязнения N 0003, Дымовая труба Источник выделения N 0003 01, Компрессор передвижной

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 7$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 172.3802204$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=7\cdot 30$ / 3600=0.0583 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=172.3802204\cdot 30$ / $10^3=5.17$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=7\cdot 1.2$ / 3600=0.002333 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=172.3802204\cdot 1.2$ / $10^3=0.207$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=39$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=7\cdot 39$ / 3600=0.0758 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=172.3802204\cdot 39$ / $10^3=6.72$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}} = 10$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX} \cdot E_{\mathfrak{I}} / 3600 = 7 \cdot 10 / 3600 = 0.01944$ Валовый выброс, т/год, $_M_=G_{FGGO} \cdot E_{\mathfrak{I}} / 10^3 = 172.3802204 \cdot 10 / 10^3 = 1.724$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=25$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=7\cdot 25$ / 3600=0.0486 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=172.3802204\cdot 25$ / $10^3=4.31$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{9} = 12$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX} \cdot E_{9} / 3600 = 7 \cdot 12 / 3600 = 0.02333$ Валовый выброс, т/год, $M=G_{FGGO} \cdot E_{9} / 10^{3} = 172.3802204 \cdot 12 / 10^{3} = 2.07$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=7\cdot 1.2$ / 3600=0.002333 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=172.3802204\cdot 1.2$ / $10^3=0.207$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=7\cdot 5$ / 3600=0.00972 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=172.3802204\cdot 5$ / $10^3=0.862$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0583	5.17
0304	Азот (II) оксид (Азота оксид) (6)	0.0758	6.72
0328	Углерод (Сажа, Углерод черный) (583)	0.00972	0.862
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.01944	1.724
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0486	4.31
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.002333	0.207
1325	Формальдегид (Метаналь) (609)	0.002333	0.207
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.02333	2.07

Источник загрязнения N 6001, Неорганизованный источник Источник выделения N 6001 01, Рарзаботка грунта

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 10Коэфф., учитывающий влажность материала(табл.4), K5 = 0.01 Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/c, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), *K4* = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Доля пылевой фракции в материале(табл.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 48.02515417

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 48.02515417 \cdot 10^6 \cdot 0.4 / 3600 = 0.0384$

Время работы узла переработки в год, часов, RT2 = 6960

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.05$

 $0.02 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 48.02515417 \cdot 0.4 \cdot 6960 = 0.802$

Максимальный разовый выброс, г/сек, G = 0.0384

Валовый выброс, т/год, M = 0.802

Итого выбросы от источника выделения: 001 Рарзаботка грунта

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0384	0.802
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6002, Неорганизованный источник Источник выделения N 6002 01, Обратная засыпка

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Доля пылевой фракции в материале(табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 48.02515417

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 48.02515417 \cdot 10^6 \cdot 0.4 / 3600 = 0.0384$

Время работы узла переработки в год, часов, RT2 = 6960

Максимальный разовый выброс, г/сек, G = 0.0384

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.05$

 $\cdot 0.02 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 48.02515417 \cdot 0.4 \cdot 6960 = 0.802$

Валовый выброс, т/год, M = 0.802

Итого выбросы от источника выделения: 001 Обратная засыпка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0384	0.802
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6003, Неорганизованный источник Источник выделения N 6003 01, ПРС

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Доля пылевой фракции в материале(табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 2.941918125

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 2.941918125 \cdot 10^6 \cdot 0.4 / 3600 = 0.002354$

Время работы узла переработки в год, часов, RT2 = 1600

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 2.941918125 \cdot 0.4 \cdot 1600 = 0.0113$

Максимальный разовый выброс, г/сек, G = 0.002354

Валовый выброс, т/год, M = 0.0113

Итого выбросы от источника выделения: 001 ПРС

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.002354	0.0113
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6004, Неорганизованный источник Источник выделения N 6004 01, Устройство щебеночного основания

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Щебень из изверж. пород крупн. до 20мм

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), **К4** = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Доля пылевой фракции в материале(табл.1), K1 = 0.03

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.015

Суммарное количество перерабатываемого материала, т/час, G = 1.851408243

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.03 \cdot 0.015 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 0.6 \cdot 1.851408243 \cdot 10^6 \cdot 0.4 / 3600 = 0.02666$

Время работы узла переработки в год, часов, RT2 = 6960

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.03 \cdot 0.015 \cdot 1 \cdot 1 \cdot 0.4 \cdot 0.6 \cdot 1.851408243 \cdot 0.4 \cdot 6960 = 0.557$

Максимальный разовый выброс, г/сек, G = 0.02666

Валовый выброс, т/год, M = 0.557

Материал: Щебень из изверж. пород крупн. от 20мм и более

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.4

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), M/c, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Доля пылевой фракции в материале(табл.1), KI = 0.02

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.01

Суммарное количество перерабатываемого материала, т/час, G = 5.364114669

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.02 \cdot 0.01 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 0.5 \cdot 5.364114669 \cdot 10^6 \cdot 0.4 / 3600 = 0.0286$

Время работы узла переработки в год, часов, RT2 = 6960

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.02 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.4 \cdot 0.5 \cdot 5.364114669 \cdot 0.4 \cdot 6960 = 0.597$

Максимальный разовый выброс, г/сек, G = 0.0286

Валовый выброс, т/год, M = 0.597

Итого выбросы от источника выделения: 001 Устройство щебеночного основания

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0286	1.154
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6005, Неорганизованный источник Источник выделения N 6005 01, Пересыпка песка

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Песок

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 2

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.8

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), **К4** = 1

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.8

Доля пылевой фракции в материале(табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.03

Суммарное количество перерабатываемого материала, т/час, G = 0.276718519

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.03 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 0.276718519 \cdot 10^6 \cdot 0.4 / 3600 = 0.0354$

Время работы узла переработки в год, часов, RT2 = 6960

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot 0.03 \cdot 1 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 0.276718519 \cdot 0.4 \cdot 6960 = 0.74$

Максимальный разовый выброс, г/сек, G = 0.0354

Валовый выброс, т/год, M = 0.74

Итого выбросы от источника выделения: 001 Пересыпка песка

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0354	0.74
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6006, Неорганизованный источник Источник выделения N 6006 01, Хранение инертных материалов

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников Приложение № к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Щебень из изверж. пород крупн. до 20мм

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.4

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Поверхность пыления в плане, м2, F = 50

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 1.2 \cdot 1 \cdot 1$

 $0.4 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 50 = 0.0418$

Время работы склада в году, часов, RT = 6960

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot 0.0036 = 1$

 $1 \cdot 0.4 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 50 \cdot 6960 \cdot 0.0036 = 0.872$

Максимальный разовый выброс, г/сек, G = 0.0418

Валовый выброс, т/год, M = 0.872

Материал: Щебень из изверж. пород крупн. от 20мм и более

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.4

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Поверхность пыления в плане, м2, F = 50

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 1.2 \cdot 1 \cdot 1$

 $0.4 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 50 = 0.0348$

Время работы склада в году, часов, RT = 6960

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot 0.0036 = 1$

 $1 \cdot 0.4 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 50 \cdot 6960 \cdot 0.0036 = 0.727$

Максимальный разовый выброс , г/сек, G = 0.0348

Валовый выброс, т/год, M = 0.727

Материал: Песчано-гравийная смесь (ПГС)

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 7

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.4

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Поверхность пыления в плане, м2, F = 50

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 1.2 \cdot 1 \cdot 1$

 $0.4 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 50 = 0.0418$

Время работы склада в году, часов, RT = 6960

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot 0.0036 = 1$

 $1 \cdot 0.4 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 50 \cdot 6960 \cdot 0.0036 = 0.872$

Максимальный разовый выброс, г/сек, G = 0.0418

Валовый выброс, т/год, M = 0.872

Материал: Песок

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 2

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.8

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 0.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 3

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.8

Поверхность пыления в плане, м2, F = 15

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 1.2 \cdot 1 \cdot 1$

 $0.8 \cdot 1.45 \cdot 0.8 \cdot 0.002 \cdot 15 = 0.0334$

Время работы склада в году, часов, RT = 6960

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot 0.0036 = 1$

 $1 \cdot 0.8 \cdot 1.45 \cdot 0.8 \cdot 0.002 \cdot 15 \cdot 6960 \cdot 0.0036 = 0.698$

Максимальный разовый выброс, г/сек, G = 0.0334

Валовый выброс, т/год, M = 0.698

Итого выбросы от источника выделения: 001 Хранение инертных материалов

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0418	3.169
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

Источник загрязнения N 6007 Неорганизованный источник Источник выделения N 6007 01, Битумные работы

Список литературы:

- 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Аматы, КазЭКОЭКСП, 1996 г.
- п.6. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов

Тип источника выделения: Битумоплавильная установка

Время работы оборудования, ч/год, $_{-}T_{-} = 50$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Объем производства битума, т/год, MY = 85,9904679

Валовый выброс, т/год (ф-ла 6.7[1]), $_M_=(1\cdot MY)/1000=(1\cdot 85,9904678)/1000=0,085990468$ Максимальный разовый выброс, г/с, $_G_=_M_\cdot 10^6/(_T_\cdot 3600)=0,085990468\cdot 10^6/(50\cdot 3600)=0,477724821$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,477724821	0,085990468

Источник загрязнения N 6008, Неорганизованный источник Источник выделения N 6008 01, Сварочные работы (электроды)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кг/год, B = 5516.46

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 2

Удельное выделение сварочного аэрозоля, $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 16.31 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 10.69 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 10.69 \cdot 5516.46 / 10^6 = 0.059$ Максимальный из разовых выброс, г/с (5.2), $G = GIS \cdot BMAX / 3600 = 10.69 \cdot 2 / 3600 = 0.00594$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.92 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.92 \cdot 5516.46 / 10^6 = 0.00508$ Максимальный из разовых выброс, г/с (5.2), $G = GIS \cdot BMAX / 3600 = 0.92 \cdot 2 / 3600 = 0.000511$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.4 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B / 10^6 = 1.4 \cdot 5516.46 / 10^6 = 0.00772$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX / 3600 = 1.4 \cdot 2 / 3600 = 0.000778$

Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 3.3 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 3.3 \cdot 5516.46 / 10^6 = 0.0182$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600=3.3 \cdot 2/3600=0.001833$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **0.75**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.75 \cdot 5516.46 / 10^6 = 0.00414$

Максимальный из разовых выброс, г/с (5.2), $G = GIS \cdot BMAX/3600 = 0.75 \cdot 2/3600 = 0.000417$

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $r/k\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.5

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 1.5 \cdot 5516.46 / 10^6 = 0.00662$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 1.5 \cdot 2 / 3600 = 0.000667$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO\cdot GIS\cdot B/10^6=0.13\cdot 1.5\cdot 5516.46/10^6=0.001076$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO\cdot GIS\cdot BMAX/3600=0.13\cdot 1.5\cdot 2/3600=0.0001083$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **13.3**

Валовый выброс, т/год (5.1), $_{M}$ = *GIS* · *B* / 10^{6} = 13.3 · 5516.46 / 10^{6} = 0.0734

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 13.3 \cdot 2 / 3600 = 0.00739$

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/55

Расход сварочных материалов, кг/год, B = 8551.168

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 2

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **16.99**

в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **13.9**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 13.9 \cdot 8551.168 / 10^6 = 0.1189$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 13.9 \cdot 2 / 3600 = 0.00772$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **1.09**

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 1.09 \cdot 8551.168 / <math>10^6 = 0.00932$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1.09 \cdot 2 / 3600 = 0.000606$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 1

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 1 \cdot 8551.168 / <math>10^6 = 0.00855$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1 \cdot 2 / 3600 = 0.000556$

<u>Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)</u>

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 1

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 1 \cdot 8551.168 / <math>10^6 = 0.00855$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1 \cdot 2 / 3600 = 0.000556$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **0.93**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.93 \cdot 8551.168 / 10^6 = 0.00795$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 0.93 \cdot 2 / 3600 = 0.000517$

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **2.7**

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 2.7 \cdot 8551.168 / 10^6 = 0.01847$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 2.7 \cdot 2 / 3600 = 0.0012$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO \cdot GIS \cdot B / 10^6 = 0.13 \cdot 2.7 \cdot 8551.168 / 10^6 = 0.003$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 2.7 \cdot 2 / 3600 = 0.000195$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **13.3**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 13.3 \cdot 8551.168 / 10^6 = 0.1137$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 13.3 \cdot 2 / 3600 = 0.00739$

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): АНО-4

Расход сварочных материалов, кг/год, B = 3007.424

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 2

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **17.8**

в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **15.73**

Валовый выброс, т/год (5.1), $_M_=GIS \cdot B \ / \ 10^6 = 15.73 \cdot 3007.424 \ / \ 10^6 = 0.0473$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 15.73 \cdot 2 / 3600 = 0.00874$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **1.66**

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 1.66 \cdot 3007.424 / <math>10^6 = 0.00499$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1.66 \cdot 2 / 3600 = 0.000922$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **0.41**

Валовый выброс, т/год (5.1), $_M_=GIS \cdot B \ / \ 10^6 = 0.41 \cdot 3007.424 \ / \ 10^6 = 0.001233$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 0.41 \cdot 2 / 3600 = 0.000228$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00874	0.2252
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.000922	0.01939
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0012	0.02509
0304	Азот (II) оксид (Азота оксид) (6)	0.000195	0.004076
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00739	0.1871
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.000517	0.01209
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия	0.001833	0.02675

	гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000778	0.017503

Источник загрязнения N 6009, Неорганизованный источник Источник выделения N 6009 01, Сварочные работы (пропан-бутаном, ацетиленом)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси Расход сварочных материалов, кг/год, B = 2553.17

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 3

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $r/\kappa \Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **15**

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 15 \cdot 2553.17 / 10^6 = 0.03064$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 15 \cdot 3 / 3600 = 0.01$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO \cdot GIS \cdot B / 10^6 = 0.13 \cdot 15 \cdot 2553.17 / 10^6 = 0.00498$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 15 \cdot 3 / 3600 = 0.001625$

Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем Расход сварочных материалов, кг/год, B=420.2705787 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=3

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **22**

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B / 10^6 = 0.8 \cdot 22 \cdot 420.2705787 / 10^6 = 0.0074$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX / 3600 = 0.8 \cdot 22 \cdot 3 / 3600 = 0.01467$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO \cdot GIS \cdot B / 10^6 = 0.13 \cdot 22 \cdot 420.2705787 / 10^6 = 0.001202$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 22 \cdot 3 / 3600 = 0.002383$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.01467	0.03804
0304	Азот (II) оксид (Азота оксид) (6)	0.002383	0.006182

Источник загрязнения N 6010, Неорганизованный источник Источник выделения N 6010 01, Покрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 7.1610232

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.2

Марка ЛКМ: Эмаль ХВ-124

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 27

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 7.1610232 \cdot 27 \cdot 26 \cdot 100 \cdot 10^{-6} = 0.503$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 27 \cdot 26 \cdot 100 / (3.6 \cdot 10^6) = 0.0039$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 7.1610232 \cdot 27 \cdot 12 \cdot 100 \cdot 10^{-6} = 0.232$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 27 \cdot 12 \cdot 100 / (3.6 \cdot 10^6) = 0.0018$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 7.1610232 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 1.199$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 27 \cdot 62 \cdot 100 / (3.6 \cdot 10^6) = 0.0093$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2902 Взвешенные частицы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс 3В (1), т/год, $_M_=KOC \cdot MS \cdot (100-F2) \cdot DK \cdot 10^{-4} = 1 \cdot 7.1610232 \cdot (100-27) \cdot 30 \cdot 10^{-4} = 1.568$

Максимальный из разовых выброс 3В (2), г/с, $_G_=KOC \cdot MS1 \cdot (100\text{-}F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 0.2 \cdot (100\text{-}27) \cdot 30 / (3.6 \cdot 10^4) = 0.01217$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0621	Метилбензол (349)	0.0093	1.199
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.0018	0.232
1401	Пропан-2-он (Ацетон) (470)	0.0039	0.503
2902	Взвешенные частицы (116)	0.01217	1.568

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 17.1077459

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: Лак БТ-577

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 63

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 57.4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 17.1077459 \cdot 63 \cdot 57.4 \cdot 100 \cdot 10^{-6} = 6.19$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 63 \cdot 57.4 \cdot 100 / (3.6 \cdot 10^6) = 0.0201$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, *FPI* = **42.6**

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 17.1077459 \cdot 63 \cdot 42.6 \cdot 100 \cdot 10^{-6} = 4.59$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 63 \cdot 42.6 \cdot 100 / (3.6 \cdot 10^6) = 0.0149$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2902 Взвешенные частицы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс ЗВ (1), т/год, $_M_ = KOC \cdot MS \cdot (100-F2) \cdot DK \cdot 10^{-4} = 1 \cdot 17.1077459 \cdot (100-63) \cdot 30 \cdot 10^{-4} = 1.9$

Максимальный из разовых выброс 3В (2), г/с, $_G_=KOC \cdot MS1 \cdot (100-F2) \cdot DK / (3.6 \cdot 10^4) = 1 \cdot 0.2 \cdot (100-63) \cdot 30 / (3.6 \cdot 10^4) = 0.00617$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.19
0621	Метилбензол (349)	0.0093	1.199
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)	0.0018	0.232
	(110)		
1401	Пропан-2-он (Ацетон) (470)	0.0039	0.503
2752	Уайт-спирит (1294*)	0.0149	4.59
2902	Взвешенные частицы (116)	0.01217	3.468

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0514481

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0514481 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.01158$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0125$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0514481 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.01158$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0125$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.20158
0621	Метилбензол (349)	0.0093	1.199
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)	0.0018	0.232
	(110)		
1401	Пропан-2-он (Ацетон) (470)	0.0039	0.503
2752	Уайт-спирит (1294*)	0.0149	4.60158
2902	Взвешенные частицы (116)	0.01217	3.468

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0234083

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: Растворитель Р-4

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26 Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0234083 \cdot 100 \cdot 26 \cdot 100 \cdot 10^{-6} = 0.00609$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 26 \cdot 100 / (3.6 \cdot 10^6) = 0.01444$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0234083 \cdot 100 \cdot 12 \cdot 100 \cdot 10^{-6} = 0.00281$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 12 \cdot 100 / (3.6 \cdot 10^6) = 0.00667$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0234083 \cdot 100 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.0145$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 62 \cdot 100 / (3.6 \cdot 10^6) = 0.03444$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.20158
0621	Метилбензол (349)	0.03444	1.2135
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)	0.00667	0.23481
	(110)		
1401	Пропан-2-он (Ацетон) (470)	0.01444	0.50909
2752	Уайт-спирит (1294*)	0.0149	4.60158
2902	Взвешенные частицы (116)	0.01217	3.468

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0602675

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.2

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

<u>Примесь: 2752 Уайт-спирит (1294*)</u>

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0602675 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.0603$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.0556$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.20158
0621	Метилбензол (349)	0.03444	1.2135
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.00667	0.23481
1401	Пропан-2-он (Ацетон) (470)	0.01444	0.50909
2752	Уайт-спирит (1294*)	0.0556	4.66188
2902	Взвешенные частицы (116)	0.01217	3.468

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.1181085

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: Эмаль МЛ-12

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 49.5

<u> Примесь: 1042 Бутан-1-ол (Бутиловый спирт) (102)</u>

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 20.78

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1181085 \cdot 49.5 \cdot 20.78 \cdot 100 \cdot 10^{-6} = 0.01215$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 49.5 \cdot 20.78 \cdot 100 / (3.6 \cdot 10^6) = 0.00571$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, *FPI* = **20.14**

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1181085 \cdot 49.5 \cdot 20.14 \cdot 100 \cdot 10^{-6} = 0.01177$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 49.5 \cdot 20.14 \cdot 100 / (3.6 \cdot 10^6) = 0.00554$

Примесь: 1119 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 1.4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1181085 \cdot 49.5 \cdot 1.4 \cdot 100 \cdot 10^{-6} = 0.000818$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 49.5 \cdot 1.4 \cdot 100 / (3.6 \cdot 10^6) = 0.000385$

Примесь: 2750 Сольвент нафта (1149*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 57.68

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.1181085 \cdot 49.5 \cdot 57.68 \cdot 100 \cdot 10^{-6} = 0.0337$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 49.5 \cdot 57.68 \cdot 100 / (3.6 \cdot 10^6) = 0.01586$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.20158
0621	Метилбензол (349)	0.03444	1.2135
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.00571	0.01215
1119	2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)	0.000385	0.000818
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.00667	0.23481
1401	Пропан-2-он (Ацетон) (470)	0.01444	0.50909
2750	Сольвент нафта (1149*)	0.01586	0.0337
2752	Уайт-спирит (1294*)	0.0556	4.67365
2902	Взвешенные частицы (116)	0.01217	3.468

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.002106

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: Эмаль ЭП-140

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 53.5

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, *FPI* = 33.7

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.002106 \cdot 53.5 \cdot 33.7 \cdot 100 \cdot 10^{-6} = 0.00038$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 53.5 \cdot 33.7 \cdot 100 / (3.6 \cdot 10^6) = 0.01002$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 32.78

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.002106 \cdot 53.5 \cdot 32.78 \cdot 100 \cdot 10^{-6} = 0.000369$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 53.5 \cdot 32.78 \cdot 100 / (3.6 \cdot 10^6) = 0.00974$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 4.86

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.002106 \cdot 53.5 \cdot 4.86 \cdot 100 \cdot 10^{-6} = 0.0000548$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 53.5 \cdot 4.86 \cdot 100 / (3.6 \cdot 10^6) = 0.001445$

Примесь: 1119 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 28.66

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.002106 \cdot 53.5 \cdot 28.66 \cdot 100 \cdot 10^{-6} = 0.000323$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 53.5 \cdot 28.66 \cdot 100 / (3.6 \cdot 10^6) = 0.00852$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.201949
0621	Метилбензол (349)	0.03444	1.2135548
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.00571	0.01215
1119	2-Этоксиэтанол (Этиловый эфир этиленгликоля,	0.00852	0.001141
	Этилцеллозольв) (1497*)		
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)	0.00667	0.23481
	(110)		
1401	Пропан-2-он (Ацетон) (470)	0.01444	0.50947
2750	Сольвент нафта (1149*)	0.01586	0.0337
2752	Уайт-спирит (1294*)	0.0556	4.67365
2902	Взвешенные частицы (116)	0.01217	3.468

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0851355

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.2

Марка ЛКМ: Растворитель 646

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

<u>Примесь: 1401 Пропан-2-он (Ацетон) (470)</u>

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 7

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0851355 \cdot 100 \cdot 7 \cdot 100 \cdot 10^{-6} = 0.00596$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 7 \cdot 100 / (3.6 \cdot 10^6) = 0.00389$

Примесь: 1042 Бутан-1-ол (Бутиловый спирт) (102)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 15

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0851355 \cdot 100 \cdot 15 \cdot 100 \cdot 10^{-6} = 0.01277$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 15 \cdot 100 / (3.6 \cdot 10^6) = 0.00833$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 10

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0851355 \cdot 100 \cdot 10 \cdot 100 \cdot 10^{-6} = 0.00851$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 10 \cdot 100 / (3.6 \cdot 10^6) = 0.00556$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0851355 \cdot 100 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0426$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0278$

Примесь: 1061 Этанол (Этиловый спирт) (667)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 10

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0851355 \cdot 100 \cdot 10 \cdot 100 \cdot 10^{-6} = 0.00851$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 10 \cdot 100 / (3.6 \cdot 10^6) = 0.00556$

Примесь: 1119 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 8

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0851355 \cdot 100 \cdot 8 \cdot 100 \cdot 10^{-6} = 0.00681$

Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP/(3.6 \cdot 10^6) = 0.2 \cdot 100 \cdot 8 \cdot 100 / (3.6 \cdot 10^6) = 0.00444$

Итого:

MITOIO:			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0201	6.201949
0621	Метилбензол (349)	0.03444	1.2561548
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.00833	0.02492
1061	Этанол (Этиловый спирт) (667)	0.00556	0.00851
1119	2-Этоксиэтанол (Этиловый эфир этиленгликоля,	0.00852	0.007951
	Этилцеллозольв) (1497*)		
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)	0.00667	0.24332
	(110)		
1401	Пропан-2-он (Ацетон) (470)	0.01444	0.51543
2750	Сольвент нафта (1149*)	0.01586	0.0337
2752	Уайт-спирит (1294*)	0.0556	4.67365
2902	Взвешенные частицы (116)	0.01217	3.468

Источник загрязнения N 6011, Неорганизованный источник Источник выделения N 6011 01, Механическая обработка металлов (машины шлифовальные)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального круга - 100 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_{T}$ = **456.5144265**

Число станков данного типа, шт., _*KOLIV*_ = 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Удельный выброс, г/с (табл. 1), GV = 0.01

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), _ M_- = $3600 \cdot GV \cdot _T_- \cdot _KOLIV_- / 10^6 = 3600 \cdot 0.01 \cdot 456.5144265 \cdot 1 / 10^6 = 0.01643$

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NSI = 0.2 \cdot 0.01 \cdot 1 = 0.002$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.018

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.018 \cdot 456.5144265 \cdot 1 / 10^6 = 0.0296$

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NSI = 0.2 \cdot 0.018 \cdot 1 = 0.0036$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.0036	0.0296
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.002	0.01643

Источник загрязнения N 6011, Неорганизованный источник Источник выделения N 6011 02, Механическая обработка металлов (дрели электрические)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из феррадо: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудования, $\frac{1}{2} = 312.8747043$

Число станков данного типа, шт., _*KOLIV*_ = 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.007

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.007 \cdot 312.8747043 \cdot 1 / 10^6 = 0.00788$

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NSI = 0.2 \cdot 0.007 \cdot 1 = 0.0014$

ИТОГО:

	111 01 01				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год		
2902	Взвешенные частицы (116)	0.0014	0.00788		

Источник загрязнения N 6011, Неорганизованный источник Источник выделения N 6011 03, Механическая обработка металлов (станки для резки арматуры)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Отрезные станки (арматурная сталь)

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_{T}$ = **4894.1393422**

Число станков данного типа, шт., *KOLIV* = 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Удельный выброс, г/с (табл. 1), GV = 0.023

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), _ M_{-} = $3600 \cdot GV \cdot _{-}T_{-} \cdot _{-}KOLIV_{-} / 10^{6}$ = $3600 \cdot 0.023 \cdot 4894.1393422 \cdot 1 / 10^{6}$ = 0.405

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NSI = 0.2 \cdot 0.023 \cdot 1 = 0.0046$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.055

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.055 \cdot 4894.1393422 \cdot 1 / 10^6 = 0.97$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NS1 = 0.2 \cdot 0.055 \cdot 1 = 0.011$

итого:

111-01-01			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.011	0.97
2930	Пыль абразивная (Корунд белый, Монокорунд)	0.0046	0.405
	(1027*)		

Источник загрязнения N 6011, Неорганизованный источник Источник выделения N 6011 04, Механическая обработка металлов (перфаратор электрический)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из феррадо: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_{T}$ = 257.2149462

Число станков данного типа, шт., _*KOLIV*_ = 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.007

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), _M_ = $3600 \cdot GV \cdot _T$ _ · _KOLIV_ / 10^6 = $3600 \cdot 0.007 \cdot 257.2149462 \cdot 1 / <math>10^6$ = 0.00648

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NS1 = 0.2 \cdot 0.007 \cdot 1 = 0.0014$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.0014	0.00648

Источник загрязнения N 6011, Неорганизованный источник Источник выделения N 6011 05, Механическая обработка металлов (машины шлифовальные угловые)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального круга - 150 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_{T}$ = 86.9783055

Число станков данного типа, шт., _*KOLIV*_ = 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Удельный выброс, г/с (табл. 1), GV = 0.013

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.013 \cdot 86.9783055 \cdot 1 / 10^6 = 0.00407$

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NS1 = 0.2 \cdot 0.013 \cdot 1 = 0.0026$

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.02

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.02 \cdot 86.9783055 \cdot 1 / 10^6 = 0.00626$

Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NSI = 0.2 \cdot 0.02 \cdot 1 = 0.004$

ИТОГО:

1110101				
Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2902	Взвешенные частицы (116)	0.004	0.00626	
2930	Пыль абразивная (Корунд белый, Монокорунд)	0.0026	0.00407	
	(1027*)			

Источник загрязнения N 6012, Неорганизованный источник Источник выделения N 6012 01, Движение и работа спецтехники

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Перечень транспортных средств

Марка автомобиля	Марка топлива	Всего	Макс
Грузовые автомобили карбюраторные до	2 m (СНГ)		
ЕрАЗ-762Б	Дизельное топливо	30	
Грузовые автомобили дизельные свыше 2	до 5 m (СНГ)		
ЗИЛ-5301 ТО	Дизельное топливо	7	-
Грузовые автомобили дизельные свыше 5	до 8 т (СНГ)		
КамАЗ-5320	Дизельное топливо	22	
Грузовые автомобили дизельные свыше 8	до 16 m (СНГ)		
KpA3-257C	Дизельное топливо	13	-
Трактор (Г), N ДВС = 61 - 100 кВт			
Д3-42Г	Дизельное топливо	8	
ИТОГО: 80			

Расчетный период: Переходный период (t>-5 и t<5)		
Температура воздуха за расчетный период, град. С, $T = 0$	_	
Тип машины: Грузовые автомобили дизельные свыше 5 до 8 т (СНГ)		

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 120

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, *NKI* = 1

Общ. количество автомобилей данной группы за расчетный период, шт., NK = 8

Коэффициент выпуска (выезда), A = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 6

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LBI = 0.1

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LDI = 0.1

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0 Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1) / 2 = (0.1 + 0.1) / 2 = 0.1

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2) / 2 = (0 + 0) / 2 = 0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 3.96

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 5.58

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 2.8

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 3.96 \cdot 6 + 5.58 \cdot 0.1 + 2.8 \cdot 1 = 27.1$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 5.58 \cdot 0 + 2.8 \cdot 1 = 2.8$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (27.1 + 2.8) \cdot 8 \cdot 120 \cdot 10^{-6} = 0.0287$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 27.1 \cdot 1 / 3600 = 0.00753$

Примесь: 2732 Керосин (654*)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.72

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.99

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.35

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.72 \cdot 6 + 0.99 \cdot 0.1 + 0.35 \cdot 1 = 4.77$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.99 \cdot 0 + 0.35 \cdot 1 = 0.35$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (4.77 + 0.35) \cdot 8 \cdot 120 \cdot 10^{-6} = 0.00492$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 4.77 \cdot 1 / 3600 = 0.001325$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.8

Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 3.5

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.6

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.8 \cdot 6 + 3.5 \cdot 0.1 + 0.6 \cdot 1 = 5.75$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 3.5 \cdot 0 + 0.6 \cdot 1 = 0.6$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (5.75 + 0.6) \cdot 8 \cdot 120 \cdot 10^{-6} = 0.0061$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 5.75 \cdot 1 / 3600 = 0.001597$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8 \cdot M=0.8 \cdot 0.0061=0.00488$ Максимальный разовый выброс, г/с, $GS=0.8 \cdot G=0.8 \cdot 0.001597=0.001278$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13 \cdot M=0.13 \cdot 0.0061=0.000793$ Максимальный разовый выброс, г/с, $GS=0.13 \cdot G=0.13 \cdot 0.001597=0.0002076$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.108

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.315

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.03

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.108 \cdot 6 + 0.315 \cdot 0.1 + 0.03 \cdot 1 = 0.71$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.315 \cdot 0 + 0.03 \cdot 1 = 0.03$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.71 + 0.03) \cdot 8 \cdot 120 \cdot 10^{-6} = 0.00071$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.71 \cdot 1 / 3600 = 0.0001972$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.0972

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.504

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.09

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.0972 \cdot 6 + 0.504 \cdot 0.1 + 0.09 \cdot 1 = 0.724$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.504 \cdot 0 + 0.09 \cdot 1 = 0.09$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.724 + 0.09) \cdot 8 \cdot 120 \cdot 10^{-6} = 0.000781$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.724 \cdot 1 / 3600 = 0.000201$

Тип машины: Грузовые автомобили дизельные свыше 2 до 5 т (иномарки)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 120

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, *NKI* = 1

Общ. количество автомобилей данной группы за расчетный период, шт., NK = 13

Коэффициент выпуска (выезда), A = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 6

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LBI = 0.1

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LDI = 0.1

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1) / 2 = (0.1 + 0.1) / 2 = 0.1

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2) / 2 = (0 + 0) / 2 = 0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.10), MPR = 0.783

Пробеговые выбросы 3В, г/км, (табл.3.11), ML = 3.15

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.12), MXX = 0.36

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.783 \cdot 6 + 3.15 \cdot 0.1 + 0.36 \cdot 1 = 5.37$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 3.15 \cdot 0 + 0.36 \cdot 1 = 0.36$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (5.37 + 0.36) \cdot 13 \cdot 120 \cdot 10^{-6} = 0.00894$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 5.37 \cdot 1 / 3600 = 0.001492$

Примесь: 2732 Керосин (654*)

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.3.10), MPR = 0.27

Пробеговые выбросы 3В, г/км, (табл.3.11), ML = 0.54

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.12), MXX = 0.18

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.27 \cdot 6 + 0.54 \cdot 0.1 + 0.18 \cdot 1 = 1.854$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.54 \cdot 0 + 0.18 \cdot 1 = 0.18$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (1.854 + 0.18) \cdot 13 \cdot 120 \cdot 10^{-6} = 0.00317$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 1.854 \cdot 1 / 3600 = 0.000515$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.10), MPR = 0.33

Пробеговые выбросы 3В, г/км, (табл.3.11), ML = 2.2

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.12), MXX = 0.2

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.33 \cdot 6 + 2.2 \cdot 0.1 + 0.2 \cdot 1 = 2.4$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 2.2 \cdot 0 + 0.2 \cdot 1 = 0.2$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (2.4 + 0.2) \cdot 13 \cdot 120 \cdot 10^{-6} = 0.00406$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 2.4 \cdot 1 / 3600 = 0.000667$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8 \cdot M=0.8 \cdot 0.00406=0.00325$ Максимальный разовый выброс, г/с, $GS=0.8 \cdot G=0.8 \cdot 0.000667=0.000534$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13 \cdot M=0.13 \cdot 0.00406=0.000528$ Максимальный разовый выброс, г/с, $GS=0.13 \cdot G=0.13 \cdot 0.000667=0.0000867$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.10), MPR = 0.0144

Пробеговые выбросы ЗВ, г/км, (табл.3.11), ML = 0.18

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.12), MXX = 0.008

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.0144 \cdot 6 + ML \cdot L1 + MXX \cdot TX = 0.0144 \cdot C1 + MXX \cdot TX =$ $0.18 \cdot 0.1 + 0.008 \cdot 1 = 0.1124$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.18 \cdot 0 + 0.008 \cdot 1 = 0.008$ Валовый выброс 3B, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.1124 + 0.008) \cdot 13 \cdot 120 \cdot 10^{-6}$ $^{6} = 0.000188$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1/3600 = 0.1124 \cdot 1/3600 = 0.000$ 0.0000312

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.10), MPR = 0.0702

Пробеговые выбросы 3В, г/км, (табл.3.11), ML = 0.387

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.12), MXX = 0.065

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.0702 \cdot 6 + ML \cdot L1 +$ $0.387 \cdot 0.1 + 0.065 \cdot 1 = 0.525$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.387 \cdot 0 + 0.065 \cdot 1 = 0.065$ Валовый выброс 3B, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.525 + 0.065) \cdot 13 \cdot 120 \cdot 10^{-6}$ = 0.00092

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.525 \cdot 1 / 3600 =$ 0.0001458

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 120

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, NKI = 2

Общ. количество автомобилей данной группы за расчетный период, шт., NK = 30

Коэффициент выпуска (выезда), A = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 6

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LBI = 0.1

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LDI = 0.1

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1) / 2 = (0.1)+0.1)/2=0.1

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2) / 2 = (0 + LD2) / 20) / 2 = 0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), *MPR* = **7.38** Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 6.66

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 2.9

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 7.38 \cdot 6 + 6.66 \cdot 0.1 + 2.9 \cdot 1 = 47.8$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 6.66 \cdot 0 + 2.9 \cdot 1 = 2.9$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (47.8 + 2.9) \cdot 30 \cdot 120 \cdot 10^{-6} = 0.1825$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 47.8 \cdot 2 / 3600 = 0.02656$

<u> Примесь: 2732 Керосин (654*)</u>

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.99

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 1.08

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.45

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.99 \cdot 6 + 1.08 \cdot 0.1 + 0.45 \cdot 1 = 6.5$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1.08 \cdot 0 + 0.45 \cdot 1 = 0.45$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (6.5 + 0.45) \cdot 30 \cdot 120 \cdot 10^{-6} = 0.025$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 6.5 \cdot 2 / 3600 = 0.00361$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), *MPR* = 2

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 4

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 1

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 2 \cdot 6 + 4 \cdot 0.1 + 1 \cdot 1 = 13.4$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 4 \cdot 0 + 1 \cdot 1 = 1$

Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (13.4 + 1) \cdot 30 \cdot 120 \cdot 10^{-6} = 0.0518$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 13.4 \cdot 2 / 3600 = 0.00744$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8 \cdot M=0.8 \cdot 0.0518=0.0414$ Максимальный разовый выброс, г/с, $GS=0.8 \cdot G=0.8 \cdot 0.00744=0.00595$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13 \cdot M=0.13 \cdot 0.0518=0.00673$ Максимальный разовый выброс,г/с, $GS=0.13 \cdot G=0.13 \cdot 0.00744=0.000967$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс ЗВ при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.144 Пробеговые выбросы ЗВ, г/км, (табл.3.8), ML = 0.36 Удельные выбросы ЗВ при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.04

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.144 \cdot 6 + 0.36 \cdot 0.1 + 0.04 \cdot 1 = 0.94$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.36 \cdot 0 + 0.04 \cdot 1 = 0.04$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.94 + 0.04) \cdot 30 \cdot 120 \cdot 10^{-6} = 0.00353$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.94 \cdot 2 / 3600 = 0.000522$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.1224

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.603

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.1

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.1224 \cdot 6 + 0.603 \cdot 0.1 + 0.1 \cdot 1 = 0.895$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.603 \cdot 0 + 0.1 \cdot 1 = 0.1$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.895 + 0.1) \cdot 30 \cdot 120 \cdot 10^{-6} = 0.00358$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.895 \cdot 2 / 3600 = 0.000497$

Тип машины: Трактор (Γ), N ДВС = 36 - 60 кВт

Вид топлива: дизельное топливо

Температура воздуха за расчетный период, град. С, T = 0

Количество рабочих дней в периоде, DN = 120

Общее кол-во дорожных машин данной группы, шт., NK = 7

Коэффициент выпуска (выезда), A = 1

Наибольшее количество дорожных машин, выезжающих со стоянки в течении часа, шт, NKI = 1

Время прогрева машин, мин, TPR = 6

Время работы машин на хол. ходу, мин, TX = 1

Пробег машины от ближайшего к выезду места стоянки до выезда со стоянки, км, LBI = 0.1

Пробег машины от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LDI = 0.1

Пробег машины от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0

Пробег машины от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0

Суммарный пробег по территории или помещению стоянки (въезд), км (3.5), L1 = (LB1 + LD1) / 2 = (0.1 + 0.1) / 2 = 0.1

Суммарный пробег по территории или помещению стоянки (выезд), км (3.6), L2 = (LB2 + LD2) / 2 = (0 + 0) / 2 = 0

Скорость движения машин по территории, $\kappa M/\text{час}(\text{табл.4.7 [2]})$, SK = 5

Время движения машин по территории стоянки при выезде, мин, $TVI = L1/SK \cdot 60 = 0.1/5 \cdot 60 = 1.2$ Время движения машин по территории стоянки при возврате, мин, $TV2 = L2/SK \cdot 60 = 0/5 \cdot 60 = 0$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Выбросы за холодный период:

Удельный выброс машин при прогреве, г/мин, (табл. 4.5 [2]), MPR = 2.8

Удельный выброс машин на хол. ходу, г/мин, (табл. 4.2 [2]), MXX = 1.44

Пробеговый выброс машин при движении, г/мин, (табл. 4.6 [2]), ML = 0.94

Для переходного периода выбросы за холодный период умножаются на коэффициент 0.9

Удельный выброс машин при прогреве, г/мин, $MPR = 0.9 \cdot MPR = 0.9 \cdot 2.8 = 2.52$

Пробеговый выброс машин при движении, г/мин, $ML = 0.9 \cdot ML = 0.9 \cdot 0.94 = 0.846$

Выброс 1 машины при выезде, г (4.1), $MI = MPR \cdot TPR + ML \cdot TVI + MXX \cdot TX = 2.52 \cdot 6 + 0.846 \cdot 1.2 + 1.44 \cdot 1 = 17.58$

Выброс 1 машины при возвращении, г (4.2), $M2 = ML \cdot TV2 + MXX \cdot TX = 0.846 \cdot 0 + 1.44 \cdot 1 = 1.44$

Валовый выброс 3В, т/год (4.3), $M = A \cdot (M1 + M2) \cdot NK \cdot DN / 10^6 = 1 \cdot (17.58 + 1.44) \cdot 7 \cdot 120 / 10^6 = 0.01598$

Максимальный разовый выброс ЗВ, г/с

 $G = MAX(M1,M2) \cdot NK1 / 3600 = 17.58 \cdot 1 / 3600 = 0.00488$

Примесь: 2732 Керосин (654*)

Выбросы за холодный период:

Удельный выброс машин при прогреве, г/мин, (табл. 4.5 [2]), MPR = 0.47

Удельный выброс машин на хол. ходу, г/мин, (табл. 4.2 [2]), MXX = 0.18

Пробеговый выброс машин при движении, г/мин, (табл. 4.6 [2]), ML = 0.31

Для переходного периода выбросы за холодный период умножаются на коэффициент 0.9

Удельный выброс машин при прогреве, г/мин, $MPR = 0.9 \cdot MPR = 0.9 \cdot 0.47 = 0.423$

Пробеговый выброс машин при движении, г/мин, $ML = 0.9 \cdot ML = 0.9 \cdot 0.31 = 0.279$

Выброс 1 машины при выезде, г (4.1), $M1 = MPR \cdot TPR + ML \cdot TV1 + MXX \cdot TX = 0.423 \cdot 6 + 0.279 \cdot 1.2 + 0.18 \cdot 1 = 3.05$

Выброс 1 машины при возвращении, г (4.2), $M2 = ML \cdot TV2 + MXX \cdot TX = 0.279 \cdot 0 + 0.18 \cdot 1 = 0.18$

Валовый выброс 3В, т/год (4.3), $M = A \cdot (M1 + M2) \cdot NK \cdot DN / 10^6 = 1 \cdot (3.05 + 0.18) \cdot 7 \cdot 120 / 10^6 = 0.002713$

Максимальный разовый выброс ЗВ, г/с

 $G = MAX(M1,M2) \cdot NK1 / 3600 = 3.05 \cdot 1 / 3600 = 0.000847$

РАСЧЕТ выбросов оксидов азота

Удельный выброс машин при прогреве, г/мин, (табл. 4.5 [2]), MPR = 0.44

Удельный выброс машин на хол. ходу, г/мин, (табл. 4.2 [2]), MXX = 0.29

Пробеговый выброс машин при движении, г/мин, (табл. 4.6 [2]), ML = 1.49

Выброс 1 машины при выезде, г (4.1), $MI = MPR \cdot TPR + ML \cdot TV1 + MXX \cdot TX = 0.44 \cdot 6 + 1.49 \cdot 1.2 + 0.29 \cdot 1 = 4.72$

Выброс 1 машины при возвращении, г (4.2), $M2 = ML \cdot TV2 + MXX \cdot TX = 1.49 \cdot 0 + 0.29 \cdot 1 = 0.29$

Валовый выброс ЗВ, т/год (4.3), $M = A \cdot (M1 + M2) \cdot NK \cdot DN / 10^6 = 1 \cdot (4.72 + 0.29) \cdot 7 \cdot 120 / 10^6 = 0.00421$

Максимальный разовый выброс ЗВ, г/с

 $G = MAX(M1,M2) \cdot NK1 / 3600 = 4.72 \cdot 1 / 3600 = 0.00131$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8 \cdot M=0.8 \cdot 0.00421=0.00337$

Максимальный разовый выброс, Γ/c , $GS = 0.8 \cdot G = 0.8 \cdot 0.00131 = 0.001048$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_ = 0.13 \cdot M = 0.13 \cdot 0.00421 = 0.000547$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Выбросы за холодный период:

Удельный выброс машин при прогреве, г/мин, (табл. 4.5 [2]), MPR = 0.24

Удельный выброс машин на хол. ходу, г/мин, (табл. 4.2 [2]), MXX = 0.04

Пробеговый выброс машин при движении, г/мин, (табл. 4.6 [2]), ML = 0.25

Для переходного периода выбросы за холодный период умножаются на коэффициент 0.9

Удельный выброс машин при прогреве, г/мин, $MPR = 0.9 \cdot MPR = 0.9 \cdot 0.24 = 0.216$

Пробеговый выброс машин при движении, г/мин, $ML = 0.9 \cdot ML = 0.9 \cdot 0.25 = 0.225$

Выброс 1 машины при выезде, г (4.1), $M1 = MPR \cdot TPR + ML \cdot TV1 + MXX \cdot TX = 0.216 \cdot 6 + 0.225 \cdot 1.2 + 0.04 \cdot 1 = 1.606$

Выброс 1 машины при возвращении, г (4.2), $M2 = ML \cdot TV2 + MXX \cdot TX = 0.225 \cdot 0 + 0.04 \cdot 1 = 0.04$

Валовый выброс 3В, т/год (4.3), $M = A \cdot (M1 + M2) \cdot NK \cdot DN / 10^6 = 1 \cdot (1.606 + 0.04) \cdot 7 \cdot 120 / 10^6 = 0.001383$

Максимальный разовый выброс ЗВ, г/с

 $G = MAX(M1,M2) \cdot NK1 / 3600 = 1.606 \cdot 1 / 3600 = 0.000446$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Выбросы за холодный период:

Удельный выброс машин при прогреве, г/мин, (табл. 4.5 [2]), MPR = 0.072

Удельный выброс машин на хол. ходу, г/мин, (табл. 4.2 [2]), MXX = 0.058

Пробеговый выброс машин при движении, г/мин, (табл. 4.6 [2]), ML = 0.15

Для переходного периода выбросы за холодный период умножаются на коэффициент 0.9

Удельный выброс машин при прогреве, г/мин, $MPR = 0.9 \cdot MPR = 0.9 \cdot 0.072 = 0.0648$

Пробеговый выброс машин при движении, г/мин, $ML = 0.9 \cdot ML = 0.9 \cdot 0.15 = 0.135$

Выброс 1 машины при выезде, г (4.1), $MI = MPR \cdot TPR + ML \cdot TVI + MXX \cdot TX = 0.0648 \cdot 6 + 0.135 \cdot 1.2 + 0.058 \cdot 1 = 0.609$

Выброс 1 машины при возвращении, г (4.2), $M2 = ML \cdot TV2 + MXX \cdot TX = 0.135 \cdot 0 + 0.058 \cdot 1 = 0.058$

Валовый выброс ЗВ, т/год (4.3), $M = A \cdot (M1 + M2) \cdot NK \cdot DN / 10^6 = 1 \cdot (0.609 + 0.058) \cdot 7 \cdot 120 / 10^6 = 0.00056$

Максимальный разовый выброс 3В, г/с

 $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.609 \cdot 1 / 3600 = 0.000169$

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 120

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, NKI = 2

Общ. количество автомобилей данной группы за расчетный период, шт., NK = 22

Коэффициент выпуска (выезда), A = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 6

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LBI = 0.1

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LDI = 0.1

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1) / 2 = (0.1 + 0.1) / 2 = 0.1

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2) / 2 = (0 + 0) / 2 = 0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.3.7), MPR = 7.38

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 8.37

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 2.9

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 7.38 \cdot 6 + 8.37 \cdot 0.1 + 2.9 \cdot 1 = 48$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 8.37 \cdot 0 + 2.9 \cdot 1 = 2.9$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (48 + 2.9) \cdot 22 \cdot 120 \cdot 10^{-6} = 0.1344$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 48 \cdot 2 / 3600 = 0.02667$

Примесь: 2732 Керосин (654*)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.99

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 1.17

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.45

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.99 \cdot 6 + 1.17 \cdot 0.1 + 0.45 \cdot 1 = 6.51$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 1.17 \cdot 0 + 0.45 \cdot 1 = 0.45$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (6.51 + 0.45) \cdot 22 \cdot 120 \cdot 10^{-6} = 0.01837$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 6.51 \cdot 2 / 3600 = 0.00362$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.3.7), MPR = 2

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 4.5

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 1

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 2 \cdot 6 + 4.5 \cdot 0.1 + 1 \cdot 1 = 13.45$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 4.5 \cdot 0 + 1 \cdot 1 = 1$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (13.45 + 1) \cdot 22 \cdot 120 \cdot 10^{-6} = 0.03815$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 13.45 \cdot 2 / 3600 = 0.00747$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8 \cdot M=0.8 \cdot 0.03815=0.0305$ Максимальный разовый выброс, г/с, $GS=0.8 \cdot G=0.8 \cdot 0.00747=0.00598$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=0.13 \cdot M=0.13 \cdot 0.03815=0.00496$ Максимальный разовый выброс, г/с, $GS=0.13 \cdot G=0.13 \cdot 0.00747=0.000971$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.144

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.45

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.04

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.144 \cdot 6 + 0.45 \cdot 0.1 + 0.04 \cdot 1 = 0.949$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.45 \cdot 0 + 0.04 \cdot 1 = 0.04$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (MI + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.949 + 0.04) \cdot 22 \cdot 120 \cdot 10^{-6} = 0.00261$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.949 \cdot 2 / 3600 = 0.000527$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.1224

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.873

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.1

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.1224 \cdot 6 + 0.873 \cdot 0.1 + 0.1 \cdot 1 = 0.922$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.873 \cdot 0 + 0.1 \cdot 1 = 0.1$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.922 + 0.1) \cdot 22 \cdot 120 \cdot 10^{-6} = 0.0027$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.922 \cdot 2 / 3600 = 0.000512$

ИТОГО выбросы по периоду: Переходный период (t > -5 и t < 5)

Тип м	Тип машины: Грузовые автомобили дизельные свыше 5 до 8 т (СНГ)										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шm.	км	км						
120	8	1.00	1	0.1							
<i>3B</i>	Tpr	Mpr	Tx	, Mxx	; <i>Ml</i> ,	z/c	т/год				
	мин	г/ми	н ми	н г/ми	н г/км						
0337	6	3.96	1	2.8	5.58	0.00753	0.0287				
2732	6	0.72	1	0.35	0.99	0.001325	0.00492				
0301	6	0.8	1	0.6	3.5	0.001278	0.00488				
0304	6	0.8	1	0.6	3.5	0.0002076	0.000793				
0328	6	0.108	1	0.03	0.315	0.0001972	0.00071				
0330	6	0.097	1	0.09	0.504	0.000201	0.000781				

	Тип машины: Грузовые автомобили дизельные свыше 2 до 5 т (иномарки)										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шm.	км	км						
120	13	1.00	1	0.1							
<i>3B</i>	Tpr	Mpr	Tx	, Mxx,	, <i>Ml</i> ,	г/с	т/год				

	мин	г/мин	мин	г/мин	г/км		
0337	6	0.783	1	0.36	3.15	0.001492	0.00894
2732	6	0.27	1	0.18	0.54	0.000515	0.00317
0301	6	0.33	1	0.2	2.2	0.000534	0.00325
0304	6	0.33	1	0.2	2.2	0.0000867	0.000528
0328	6	0.014	1	0.008	0.18	0.0000312	0.000188
0330	6	0.07	1	0.065	0.387	0.0001458	0.00092

	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)											
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,							
cym	шm		шm.	км	км							
120	30	1.00	2	0.1								
3B	Tpr	Mpr	Tx	Mxx,	Ml,	z/c	т/год					
	мин	г/ми	н мин	г/мин	н г/км							
0337	6	7.38	1	2.9	6.66	0.02656	0.1825					
2732		0.99			1.08	0.00361	0.025					

_	I	· F /	,	,	,		
	мин	г/мин	мин	г/мин	г/км		
0337	6	7.38	1	2.9	6.66	0.02656	0.1825
2732	6	0.99	1	0.45	1.08	0.00361	0.025
0301	6	2	1	1	4	0.00595	0.0414
0304	6	2	1	1	4	0.000967	0.00673
0328	6	0.144	1	0.04	0.36	0.000522	0.00353
0330	6	0.122	1	0.1	0.603	0.000497	0.00358

	Тип машины: Трактор (Г), N ДВС = 36 - 60 кВт										
Dn,	Nk,	\boldsymbol{A}	Nk1	Tv1,	Tv2,						
cym	шm		шm.	мин	мин						
120	7	1.00	1	1.2							
•											
3B	Tpr	Mpi	; Tx	, Mxx	, Ml,	z/c	т/год				
3B	Трг мин	Мрг г/ми	<i>'</i>	´ , ´		2/c	т/год				
3B 0337	мин		<i>'</i>	·		2/c 0.00488	т/год 0.01598				
	мин 6	г/ми	<i>'</i>	н г/ми	н г/мин						

Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,		_			
	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)									
0220	Jo	0.002		0.020	0.155	0.000107	0.00020			
0330	6	0.065	1	0.058	0.135	0.000169	0.00056			
0328	6	0.216	1	0.04	0.225	0.000446	0.001383			
0304	6	0.44	1	0.29	1.49	0.0001703	0.000547			

Dn,	IVK,	\boldsymbol{A}	INKI	LI,	L2,					
cym	шт		шm.	КМ	КМ					
120	22	1.00	2	0.1						
<i>3B</i>	Tpr	Mpr	Tx	, Mxx	; <i>Ml</i> ,	z/c	т/год			
	мин	г/ми	н ми	н г/ми	н г/кл					
0337	6	7.38	1	2.9	8.37	0.02667	0.1344			
2732	6	0.99	1	0.45	1.17	0.00362	0.01837			
0301	6	2	1	1	4.5	0.00598	0.0305			
0304	6	2	1	1	4.5	0.000971	0.00496			
0328	6	0.144	1	0.04	0.45	0.000527	0.00261			
0330	6	0.122	1	0.1	0.873	0.000512	0.0027			

	ВСЕГО по периоду: Переходный период (t>-5 и t<5)									
Код	Примесь	Выброс г/с	Выброс т/год							
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.067132	0.37052							
2732	Керосин (654*)	0.009917	0.054173							

0301	Азота (IV) диоксид (Азота диоксид) (4)	0.01479	0.0834
0328	Углерод (Сажа, Углерод черный) (583)	0.0017234	0.008421
0330	Сера диоксид (Ангидрид сернистый, Сернистый	0.0015248	0.008541
	газ, Сера (IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.0024026	0.013558

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.01479	0.0834
0304	Азот (II) оксид (Азота оксид) (6)	0.0024026	0.013558
0328	Углерод (Сажа, Углерод черный) (583)	0.0017234	0.008421
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0015248	0.008541
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.067132	0.37052
2732	Керосин (654*)	0.009917	0.054173

Максимальные разовые выбросы достигнуты в переходный период

7.3 Сведения о залповых выбросах

Залповые выбросы на предприятии отсутствуют.

7.4 Параметры выбросов загрязняющих веществ в атмосферу

Исходные данные (г/сек, т/год), принятые в проекте определены расчетным путем по методическим документам на основании рабочего проекта.

Количественная характеристика (г/с) выбрасываемых в атмосферу загрязняющих веществ определена в зависимости от изменения режима работы участков, технологических процессов и оборудования. Параметры выбросов загрязняющих веществ по промплощадке на период строительства представлены в таблице 4.3.

Учитывая специфику строительства, проектом предусмотрено применение современных технологий, минимизирующих образование отходов, а также предотврающих большое количество выбросов в атмосферный воздух в период строительных работ. Рабочим проектом детализированы все этапы строительства, регламентированы технологии, также при строительстве ведется контроль над соблюдением требований в области ООС и ТБ.

7.5 Определение нормативов допустимых выбросов загрязняющих веществ

Предельно допустимым для предприятия считается суммарный выброс загрязняющего вещества в атмосферу от всех источников данного предприятия и рассеивания выбросов в атмосфере при условии, что выбросы того же вещества из источников не создадут приземную концентрацию, превышающую ПДК. Рассчитанные значения НДВ являются научно обоснованной технической нормой выброса предприятием вредных веществ, обеспечивающей соблюдения требований санитарных органов по чистоте атмосферного воздуха населенных мест и промышленных площадок.

Основными критериями качества атмосферного воздуха при установлении НДВ для источников загрязнения атмосферы являются ПДК.

По всем ингредиентам и группам суммации, для которых выполняется соотношение:

См/ПДК<1

Нормативы выбросов предложены для каждого вредного вещества, загрязняющего окружающую среду. Предложения по нормативам выбросов по каждому загрязняющему веществу и источникам выбросов на период проведения строительства объекта приведены в таблице 4.6.

Нормативы приведены без учета выбросов от передвижных источников, т.к., согласно ст. 202 Экологического кодекса РК «Нормативы допустимых выбросов для передвижных источников не устанавливаются».

Сведения о санитарно-защитной зоне

Согласно санитарных правил «Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» утвержденных приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 на проведение строительных работ установление СЗЗ не требуется, так как строительство носит временный характер, и выбросы загрязняющих веществ ограничиваются сроками строительства.

Категория объекта согласно Инструкции по организации и проведению экологической оценки, утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280, статьи 12 Экологического кодекса Республики Казахстан от 2 января 2021 года № 400- VI 3PK — III.

Результаты расчетов рассеивания показали, что вклад ЗВ при проведении ремонтно-строительных работ в атмосферу города незначительный.

7.6 Расчеты количества выбросов загрязняющих веществ в атмосферу в целях определения нормативов ЗВ

Для каждого предприятия органами охраны природы устанавливаются лимиты выбросов загрязняющих веществ в атмосферу на основе нормативов ПДВ.

На период достижения нормативов предельно допустимых выбросов устанавливаются лимиты природопользования с учетом экологической обстановки в регионе, видов используемого сырья, технического уровня, применяемого природоохранного оборудования, проектных показателей и особенностей технологического режима работы предприятия. В случае достижения предприятием норм ПДВ, лимит выбросов загрязняющих веществ на последующие годы устанавливается на уровне ПДВ и не меняется до их очередного пересмотра.

Расчеты произведены на летний период года, с учетом одновременности работы источников на площадке и на ближайшем жилом массиве. Расчет произведен с учетом фоновых концентраций ЗВ, представленных РГП Казгидромет (см.приложения). Результаты расчетов приведены полями концентраций веществ, дающих наибольший вклад в загрязнение и отражены в таблицах 19 и 20.

Инвентаризация источников выбросов вредных веществ на территории рассматриваемого объекта в период строительства выявила следующее: по характеру воздействия на атмосферу источники характеризуются прямым воздействием. Поступление загрязняющих веществ в основном происходит непрерывно на период проведения строительно-монтажных работ. Все работы будут производится с соблюдением технологий проведения работ.

Сварочные работы будут проводиться на площадках с твердым покрытием с применением защитных экранов.

Для снижения пыления в жаркие дни на территории строительной площадки будет осуществляться пылеподавление методом полива.

Все подготовительные и монтажные работы будут производиться в пределах ограниченной площадки, что позволит при соблюдении предусмотренных проектом природоохранных мероприятий свести к минимуму негативное воздействие на окружающую среду.

Анализ результатов расчета рассеивания показал, что на территории строительства концентрации ЗВ, выбрасываемых источниками загрязнения не превышают установленных санитарных норм по всем ингредиентам без учета фоновых концентраций ЗВ.

Предлагаемые нормативы выбросов на период строительства принятые на уровне расчетных данных,

приведены в таблице 4.6.

Учитывая временный характер воздействия на атмосферный воздух, применение рекомендованных проектом мероприятий можно сделать вывод, что существенного негативного влияния на здоровье людей не произойдет.

7.7 Мероприятия по снижению отрицательного воздействия

- Соблюдение норм ведения строительных работ и принятых проектных решений;
- Применение технически исправных машин и механизмов;
- Проведение земляных работ с организацией пылеподавления (увлажнения поверхности);
- Орошение открытых грунтов и разгружаемых сыпучих материалов при производстве работ;
- Устройство технологических площадок и площадок временного складирования отходов на стройплощадке со щебеночным покрытием;
- Сроки и организации, обеспечивающие вывоз отходов (сроки вывоза отходов, кратность вывоза, квалификации соответствующих организаций);
- Ведение строительных работ на строго отведенных участках;
- Осуществление транспортировки строительных грузов строго по одной сооруженной (наезженной) временной осевой дороге;
- Вывоз разработанного грунта, мусора, шлама в специально отведенные места;
- Укрывание грунта, мусора и шлама при перевозке автотранспортом
- Работы по укладке плотного слоя (асфальтного покрытия) производить готовыми разогретыми материалами без организации приготовления в зоне строительства;
- Запрет на сверхнормативную работу двигателей автомобилей и строительной техники в режиме холостого хода в пределах стоянки и на рабочей площадке;
- Внутренний контроль со стороны организации, образующей отходы;
- Проведение большинства строительных работ, за счет электрифицированного оборудования, работа которого не будет связана с загрязнением атмосферного воздуха;
- Сокращение или прекращение работ при неблагоприятных метеорологических условиях.

Учитывая временный характер воздействия на атмосферный воздух, применение рекомендованных проектом мероприятий можно сделать вывод, что в период монтажных работ существенного негативного влияния на здоровье людей в районе производства работ и в ближайших населенных пунктах не произойдет.

7.8 Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха

Целями производственного экологического контроля согласно п. 2 ст. 182 ЭК РК являются:

- получение информации для принятия оператором объекта решений в отношении внутренней экологической политики, контроля и регулирования производственных процессов, потенциально оказывающих воздействие на окружающую среду;
- обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- сведение к минимуму негативного воздействия производственных процессов на окружающую среду, жизнь и (или) здоровье людей;
- повышение эффективности использования природных и энергетических ресурсов;
- оперативное упреждающее реагирование на нештатные ситуации;
- формирование более высокого уровня экологической информированности и ответственности руководителей и работников оператора объекта;
- информирование общественности об экологической деятельности предприятия;
- повышение эффективности системы экологического менеджмента.

В программе производственного экологического контроля устанавливаются обязательный перечень количественных и качественных показателей эмиссий загрязняющих веществ и иных параметров, отслеживаемых в процессе производственного мониторинга, периодичность и продолжительность

производственного мониторинга, частоту осуществления измерений и т. д. согласно ст. 185 Экологического кодекса РК.

Для выполнения требований законодательства в области охраны атмосферного воздуха, в том числе для соблюдения нормативов предельно допустимых выбросов, предусматривается система контроля источников загрязнения атмосферы.

Система контроля источников загрязнения атмосферы (ИЗА) представляет собой совокупность организованных, технических и методических мероприятий, направленных на выполнение требований законодательства в области охраны атмосферного воздуха, в том числе, на обеспечение действенного контроля за соблюдением нормативов предельно-допустимых выбросов.

Контроль за соблюдением установленных нормативов допустимых выбросов, может осуществляться специализированной аккредитованной организацией, привлекаемой на договорных условиях или самим предприятием при расчетном методе.

Контроль включает определение массы выбросов вредных веществ в единицу времени от источника загрязнения и сравнение этих показателей с установленными величинами норматива, проверку плана мероприятий по достижению допустимых выбросов.

7.9 Разработка мероприятий по регулированию выбросов в период особо неблагоприятных метеорологических условий

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в период НМУ разрабатывают предприятия, организации, учреждения, расположенные в населенных пунктах, где органами Казгидромета проводится прогнозирование НМУ или планируется прогнозирование.

Мероприятия по регулированию выбросов выполняют в соответствии с прогнозными предупреждениями местных органов Казгидромета. Соответствующие предупреждения по городу (району) подготавливаются в том случае, когда ожидаются метеорологические условия, при которых превышается определенный уровень загрязнения воздуха.

Уровень загрязнения приземных слоев атмосферы во многом зависит от метеорологических условий. В некоторых случаях метеорологические условия способствуют накоплению вредных веществ в воздухе района расположения объекта. Для предупреждения указанных явлений осуществляют регулирование и сокращение вредных выбросов загрязняющих веществ в атмосферу.

Как показывает практика, при наступлении НМУ в первую очередь следует сокращать низкие, рассредоточенные и холодные выбросы загрязняющих веществ предприятия, а также учитывать приоритетность к существенному сокращению производственной мощности предприятия в периоды НМУ.

Вместе с тем выполнение мероприятий по регулированию выбросов загрязняющих веществ не должно приводить к существенному сокращению производственной мощности предприятия в периоды НМУ.

Мероприятия по регулированию выбросов по первому режиму носят процессами;

- запрещение продувки и очистки оборудования и емкостей, в которых хранятся загрязняющие вещества, а также ремонтных работ, связанных с повышенным выделением вредных веществ в атмосферу;
 - запрещение работы на форсированном режиме;
- ограничение погрузочно-разгрузочных работ, связанных с выбросом загрязняющих веществ в атмосферу;
- прекращение пусковых операций на оборудовании, приводящих к увеличению выбросов загрязняющих веществ в атмосферу;
- другие организационно-технические мероприятия, приводящие к снижению выбросов загрязняющих веществ.

Выполнение мероприятий по регулированию выбросов по первому режиму обеспечивает снижение выбросов на 15-20 %.

Мероприятия по сокращению выбросов по второму режиму включают в себя все мероприятия первого режима, а также мероприятия, связанные с технологическими процессами производства и сопровождающиеся незначительным снижением производительности объекта:

- снижение производительности отдельных аппаратов и технологических линий работа которых

связана со значительным выделением в атмосферу вредных веществ;

- усиление контроля за режимом горения, поддержания избытка воздуха на уровне, устраняющем условия образования недожога;
- остановку технологического оборудования на планово-предупредительный ремонт, если его сроки совпадают с наступлением НМУ;
 - уменьшение объема работ с применением красителей;
- усиление контроля за выбросами автотранспорта путем проверки состояния и работы двигателей;
- ограничение движения и использования транспорта на территории предприятия и города согласно ранее разработанным схемам маршрутов;
 - мероприятия по снижению испарения топлива;
 - запрещение сжигания отходов производства.

Выполнение мероприятий по регулированию выбросов по второму режиму обеспечивает снижение выбросов на 20-40 %.

Мероприятия по сокращению выбросов по третьему режиму включают в себя все мероприятия, разработанные для первого и второго режима, а также мероприятия, разработанные на базе технологических процессов, имеющих возможность снижения выбросов загрязняющих веществ в атмосферу за счет временного сокращения производственной мощности предприятия:

- снижение производственной мощности или полную остановку производственной мощности или полную остановку производств, сопровождающихся значительными выбросами загрязняющих веществ;
- проведение поэтапного снижения нагрузки параллельно-работающих однотипных технологических агрегатов и установок (вплоть до отключения одного, двух, трех и т.д. агрегатов);
- отключение аппаратов и оборудования с законченным технологическим циклом, сопровождающимся значительным загрязнением воздуха;
- запрещение погрузочно-разгрузочных работ, отгрузки готовой продукции, реагентов, являющихся источниками загрязнения;
- остановку технологического оборудования на планово-предупредительный ремонт, если его сроки совпадают с наступлением НМУ.

Выполнение мероприятий по регулированию выбросов по третьему режиму обеспечивают снижение выбросов на 40-60 %.

На период НМУ частота контрольных замеров увеличивается. Контрольные замеры выбросов на периоды НМУ производятся перед осуществлением мероприятий, в дальнейшем - один раз в сутки. Периодичность замеров определяется из возможностей методов контроля.

Ввиду кратковременности и специфики работ, на строительной площадке при НМУ рекомендуются мероприятия по первому режиму - организационно- технического характера.

8. Воздействие на состояние вод

8.1 Потребность в водных ресурсах для намечаемой деятельности на период строительства, требования к качеству используемой воды

В период строительства водопотребление на проектируемом объекте обусловлено хозяйственно-бытовыми нуждами персонала и нуждами строительного производства.

Потребность в воде на хозяйственно-питьевые нужды в период строительства будет обеспечена за счет местного питьевого водопровода. Для нужд строительства (технические нужды) используется техническая вода.

Техническая вода будет использована для нужд:

- обслуживания техники;
- пылеподавления (на территории и только в летний период);
- пожаротушения (при необходимости);
- гидроиспытания.

8.2 Характеристика источника водоснабжения, его хозяйственное использование, местоположение водозабора, его характеристика

Водоснабжение — используется привозная вода. Привозная бутилированная питьевая вода соответствует требованиям Закона Республики Казахстан от 21.07.2007 N 301-3 "О безопасности пищевой продукции" и Приказу Министра национальной экономики Республики Казахстан от 27 февраля 2015 года № 152.

Питьевая вода безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу, и иметь благоприятные органолептические свойства.

Вода используется на хозяйственно-бытовые и строительные нужды. Питание строителей осуществляется полуфабрикатами. Доставка пищи, будет осуществляться в одноразовой посуде, мытье посуды не предусмотрено.

На период строительства на территории устанавливаются биотуалеты.

По мере накопления биотуалеты очищаются и нечистоты вывозятся специальным автотранспортом.

8.3 Водный баланс объекта

Вода расходуется на хозяйственно-бытовые нужды и строительные нужды. Расход воды определен в соответствии со СП РК 4.01-101-2012 «Внутренний водопровод и канализация»

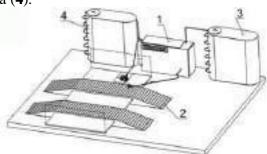
Хозяйственно-бытовые нужды.

Общее количество персонала составляет – 147 человек. Норма расхода воды для рабочих составляет 25 л/сут.

 $147*25/1000 = 3.675 \text{ м}^3/\text{сут};$ $3,675*870 = 3197,25 \text{ м}^3/\text{период}$

Увлажнение грунтов

Полив осуществляется привозной водой технического качества. В проекте учтено стоимость перевозки воды. Техническая вода, согласно сметному расчету составляет — 37499,74981 м3/период. Суточный расход составит 37499,74981 м3/период / 870 = 43,10316 м3/сут.


Обмыв колес

Мойка колес принимается марки «Мойдодыр» с замкнутым циклом оборота.

Комплект "Мойдодыр-К" с системой оборотного водоснабжения используется на строительных площадках, в автопарках, на промышленных и других объектах для мойки колес автотранспортных средств и строительной техники, выезжающей на трассы и городские магистрали. Обеспечивает экономию воды до 80%.

Комплект состоит из:

- компактной установки «Мойдодыр-К-1» (1);
- разборной транспортабельной эстакады (2) с поддоном и насосом;
- бака запаса чистой воды (3) с насосом;
- системы сбора осадка (4).

Такая комплектация позволяет не привязываться к водопроводной сети и не выполнять шламосборных кюветов. Для размещения Комплекта Заказчиком подготавливается ровная (без уклонов) площадка 6000×8000 мм (как вариант — из дорожных плит). Размеры площадки 6000×8000 мм даны ориентировочно и могут быть уточнены в зависимости от компоновки оборудования.

Для предотвращения выноса грязи на автомобильную дорогу со строительной площадки предусматривается установка и эксплуатация одного пункта мойки колес автотранспорта.

Осадок, образуемый при зачистке мойки колес автотранспорта, выгружается на твердую площадку, после естественной подсушки без накопления вывозится транспортом лицензированного предприятия на размещение. Периодически осуществляется долив воды. В состав отхода входит осадок, образующийся при зачистке мойки колес.

Расход воды на мойку одной машины составляет 70 л или 0,07 м³. Количество автомашин в течение рабочих смен выезжающих за пределы строительной площадки равно 5.

Таким образом, объем сточных вод, поступающих на очистку, составит 0.35 м^3 /сут. или с учетом продолжительности строительства – 29 месяцев (580 рабочих дней) – **203 м**³/период.

Пополнение системы оборотного водоснабжения:

 $0.35*0.1 = 0.035 \text{ м}^3/\text{сут } 203*0.1 = 20.3 \text{ м}^3/\text{период}$

Количество осадка от зачистки мойки колес определяется по формуле:

 $M=M_{H/\Pi}+M_{B/B}$ m/год, где:

 $M_{H/\Pi}$ – количество нефтепродуктов;

 $M_{B/B}$ — количество взвешенных веществ.

Количество нефтепродуктов, взвешенных веществ с учетом влажности определяется по формуле:

 $M=Q\times(C_{\partial o}-C_{nocne})\times10^{-6}/(1-B/100)$ m/год, где:

Q – объем сточных вод, поступающих на очистку;

 $C_{\partial o}$, $C_{noc.ne}$ — концентрация загрязняющих веществ в сточных водах до и после очистки (согласно ОНТП 01-91 предприятий автомобильного транспорта), мг/л;

B — влажность осадка, % (согласно СНиП 2.04.03-85 — Канализация. Наружные сети и сооружения \mathbb{I}) — 60%.

Количество осадка, образующееся в результате отстаивания вод от мойки колес, составит:

 $M_{H/\Pi} = 203 \times (100 - 20) \times 10^{-6} / (1 - 0.60) = 0.0406 T;$

 $M_{B/B} = 203 \times (3100-70) \times 10^{-6} / (1-0,60) = 0,246036 \text{T}.$

Общее количество отходов от зачистки колодцев-отстойников моек колес автотранспорта составит:

M = 0.0406 + 0.246036 = 0.286636 T

8.4 Поверхностные воды

Рабочим проектом предусмотрено пересечение БАК, р. Сасыкбулак, р. Ногайсай, р. Жарбулак. Река Малая Алматинка протекает с северной стороны на расстоянии 80 м от территории строительства.

Технические решения по существующему мосту

Мостовой переход через реку Есентай представляет собой однопролётный мост с подходами к нему. Схема моста 1х24.0м.

Полная длина моста по краям открылков –32.1 м.

Габарит моста (Γ -16.5)+3.0+3.0м + (Γ -13.0)+3.0 м по СТ РК 1379-2012. Мост разделен продольным швом шириной 0.2м на два самостоятельных сооружения, шириной - 24,8м и -17.8м. Мост расположен в плане на прямой, а в профиле на продольном уклоне i=0.005.

Пролетное строение запроектировано из сборных ж.б. предварительно- напряженных балок ТБН 24 длиной 24м . Балки изготавливаются по чертежам типового проекта «Пролетные строения автодорожных мостов из предварительно напряженных ж.б. балок ТБН (Договор №14/2015 от 11.12.15г) разработки ТОО «Мостодорпроект».

В поперечном сечении полетного строения (12 балок (левое сооружение) и 9 балок (правое сооружение)). Всего на мост 21 балок ТБН 24 длиной 24м.

Балки ТБН 24 изготавливаются из бетона класс прочности В40 по ГОСТ 26633-2015; морозостойкость F200; водонепроницаемость W8.

Поверх балок укладываются ж.б. плиты несъемной опалубки толщиной 70мм и устраивается монолитная ж.б. плита толщиной 250мм которая объединяет проезжую часть.

Бетон монолитной накладной плиты B30, F200, W8.

Монолитная накладная плита со стороны тротуара и со стороны разделительной полосы возвышается на 43см, на которых к закладным деталям крепятся стойки перильного и барьерного металлического ограждений.

Балки пролетного строения по концам опираются на резиновые опорные части (РОЧ).

Резиновые опорные части марки РОЧ 20х40х5,2 приняты в соответствии с ГОСТ 32020-2012. Опорные части поставляемые на объект, должны соответствовать ГОСТ 32020-2012 и иметь сертификат качества со ссылкой на данный ГОСТ. Протокола испытаний по ГОСТ 32020-2012 представляются совместно с сертификатом качества. Резиновые опорные части, выполненные по ТУ (технические условия) не допускаются к применению на объекте.

На береговых опорах выполняются деформационные швы. Деформационные швы приняты металлические балочные с резиновым компенсатором фирмы «TARKER». Поставляемые на объект деформационные швы должны иметь сертификат с техническим документом, подтверждающим качества поставляемой продукции - ETA (European Technical Assessment).

Опоры моста состоят из двух частей под каждое сооружение (левое и правое). Береговые опоры моста запроектированы с ростверком на буровых столбах. Буровые столбы диаметром 1,5м из бетона B25 F200 W6.

Количество буровых столбов на опору - 28шт, 16 свай на левое сооружение и 12 свай на правое сооружение. Сваи объединены монолитным железобетонным ростверком.

Ростверки опор выполняются монолитными с геометрическими размерами 4,5х24,2х1,2м (левое сооружение) и 4,5х17,2х1.2м (правое сооружение) из бетона В25 F200 W6. В основании ростверка выполняется бетонная подготовка толщиной 10см из бетона марки В20 F200 W6. Из ростверка предусмотрены выпуски арматуры в стойки опор.

Проектом предусмотрено устройство на верхней поверхности фундамента монолитного слива. Слив устраивается после устройства стоек.

Стойки опор прямоугольного сечения от 100х80см. На опору левого сооружения предусмотрено 7 стоек, а правого сооружения 5 стоек. Стойки опор имеют арматурные выпуски в ригеля. Стойки опор выполнены из бетона с классом прочности В30; морозостойкость F200; водонепроницаемость W8.

Ригеля береговых опор железобетонные монолитные, прямоугольные в плане и имеют геометрические размеры - 1,2х24,89х1,0м и 1,2х17,89х1,0м. На ригелях опор размещаются подферменные площадки, шкафная стенка с открылками и упоры, воспринимающие горизонтальные сейсмические усилия. Они объединены с ригелем посредствам арматурных выпусков. Ригеля, подферменные площадки, шкафная стенка с открылками и упоры выполнены из бетона с классом прочности В30; морозостойкость F200; водонепроницаемость W8.

Шкафная стенка монолитная железобетонная выполнена с устройством ступени для опирания монолитных плит сопряжения. В шкафной стенке устраиваются штыри d=22-AI, для фиксации переходных плит. В верхней части открылков установлены закладные детали для установки перильного ограждения.

Сопряжение путепровода с насыпью подходов выполнено применительно к типовому проекту 3.503.1-96 со сборными железобетонными переходными плитами длиной 6м из бетона B30.F200.W8. Укрепление конусов монолитными плитами толщ. 10см с армосеткой по слою щебня 10см. Бетон B25.F200.W8.

Заустойная засыпка и отсыпка откосов производится дренирующим грунтом (коэффициент фильтрации не менее 2м/сут) при тщательном уплотнении механизированным способом.

На бетонные поверхности опор, засыпаемые грунтом, наносится обмазочная гидроизоляция битумной мастикой за 2 раза. Видимые бетонные поверхности опор окрашивается перхлорвиниловыми красками.

Большой Алматинский канал им. Д.Л.Кунаева. Это один из самых сложных и крупных объектов водохозяйственного строительства в Республике Казахстан. По своей длине он оснащен сотнями гидротехнических сооружений, обеспечивающих его защиту от ливневых, паводковых вод и селевых потоков, а также подачу воды в оросительные системы. Канал пересекает малые реки, а также много мелких водотоков и логов. Переход через селеносные реки и лога осуществляется дюкерами. Для пропуска ливневого стока и стока реки Карасу предусмотрены трубы под каналом и акведуки. Экологическое состояние пересекающих его рек и самого канала неудовлетворительное. Реки в зоне пересечения с БАКом зачастую превращены в свалки бытового и промышленного мусора. Само русло канала в пределах города занесено наносами и сильно загрязнено. В настоящее время идет реконструкция БАКа, восстановление мест разрушенной облицовки канала, разрушенных гидротехнических сооружений и очистка дна канала.

Длина канала в пределах городской территории составляет свыше 16,3 км. От восточной границы города на запад канал проходит в трапецеидальном русле до пересечения с р. Мал. Алматинка. При этом пересекает рр. Тиксай (Прямуха)

- 0,91 км, затем Жарбулак (Казачка) - 1,25 км от границы города и р. Мал. Алматинка - 2,14 км. Над р.М.Алматинка БАК проходит в прямоугольном русле акведука и от ул.Волочаевской с правой стороны имеет покатый берег для использования в рекреационных целях. В 3,0 км от начала городского участка русло БАКа уходит под землю в закрытое русло, под пр. Рыскулова (в месте пересечения с ул. Айтыкова) и выходит на поверхность на восточной окраине рощи Баума. Закрытый участок составляет свыше 1,4 км. На этом участке БАК пересекают две составляющие р. Большая Карасу, западнее ул.Шемякина- Караса-Турксиб «восточную» - 3,32 км и Большая Карасу «западную» - 3,61 км. Ещѐ через 0,7 км БАК пересекает Карасу- «Рощинский». Вдоль рощи Баума расположен рекреационный участок, протянувшийся до пр.Сейфуллина. На этом участке БАК пересекает восточный приток р. Малая Карасу (с.ул.Уссурийской- Табачнозаводской) на расстоянии 4,74 км, а ниже по течению перед ул. Жансугирова пересекает и саму Мойку-Карасу на расстоянии 5,44 км от городской черты. Далее канал проходит в прямоугольном русле до пересечения с ул Казыбекова (бывш. Авангардная) и на этом участке на расстоянии 6,24 км от входа в город пересекает р.Султанка, а на расстоянии 7,54 км левый приток Султанки - карасу «ист.Есентай». Здесь также располагается рекреационная зона напротив микрорайона Кулагер. От пересечения с ул. Казыбекова тянется

закрытый участок ВАКа, который проходит под территориями промышленных предприятий и организаций - АЗОК и др. Его длина около 0,9 км. Далее канал опять выходит на поверхность и на 8,8 км пересекает р. Есентай, 9,3 км - автотрассу Северное кольцо. Русло канала на этом участке прямоугольное, во многих местах проводится его реконструкция. Далее БАК за мкр. Ужет пересекает реки-карасу Теренкара (на 10,2 км) и р. Ащыбулак (на 10,9 км от границы города). Над канализированными руслами рек канал проходит закрытыми участками. Западнее следутет пересечение ВАКа с р. Бол. Алматинка (11,9 км), р. Джигитовка (13,5 км) и р. Бурундай (14,9 км). У мкр. Трудовик, на расстоянии 16,3 км от восточной границы города БАК выходит за пределы городской территории.

<u>Протока Жарбулак (Казачка).</u> Правая протока р. Киши Алматы – Жарбулак берет свое начало выше автодорожного моста через р. Киши Алматы, от гидротехнических сооружений, расположенных по ул. Горная. Длина протоки Жарбулак от вододелителя, который отделяет еè от Киши Алматы, до устья составляет 19,4 км. В верхней части города русло протоки проходит по территориям частных домостроений по ул. Горная в основном в открытом русле. На расстоянии 3 км от вододелителя ниже по течению пр. Жарбулак принимает правый приток (лог Казахский). Здесь пр. Жарбулак протекает в достаточно глубокой V-образной долине с крутыми склонами, покрытыми древесно- кустарниковой растительностью.

Ниже пересечения протокой дороги на Кок-Тюбе, Жарбулак выходит на предгорно-равнинный участок своей долины. Далее пр. Жарбулак, отклоняясь в восточном направлении, идет по территории частных домостроений вдоль ул. Водная, пересекает ул. Кабанбай батыра, а ниже - ул. Богенбай батыра. На этом участке имеется водозабор, по которому подается вода для прудов Парка культуры и отдыха.

В месте пресечения пр. Жарбулак с ул. Кабанбай батыра русло шириной 2,0-3,5 м, пойма заросла кустарником. При пересечении протоки с ул. Богенбай батыра и далее по ул. Есенберлина протока Жарбулак проходит в железобетонном лотке. Ниже по течению в протоку Жарбулак впадает правый приток – р. Абылгазы (Солоновка).

Река Киши Алматы (Малая Алматинка) свое начало берет на высоте 3200 м с группы ледников, наиболее крупным из которых является ледник Туюксу. Кроме него в верховьях долины р. Киши Алматы расположено 19 ледников общей площадью 6,3 км², крупнейшие из которых Иглы Туюксу, Маметовой, Маяковского, Орджоникидзе, Партизан и др. Направление течения реки с юга на север. Площадь водосбора реки до выхода из гор составляет 118 км², а общая площадь водосбора при впадении в водохранилище Капшагай достигает 710 км². Киши Алматы до появления водохранилища Капшагай являлась правым притоком р. Каскелен, а позднее стала впадать самостоятельно в вдхр. Капшагай. Протяженность реки 125 км и по этому показателю она занимает третье место среди рек Илейского Алатау, уступая лишь р. Шилик (длина 245 км) и р. Каскелен (длина 177 км). Всего река принимает около 20 притоков, большинство из которых приходятся на горную часть.

Водный режим реки типичен для рек северного склона Илейского Алатау, питающихся ледниковым, снеговым, дождевым и грунтовым стоком. Сток р. Киши Алматы измеряется 1 Алматы.

В питании реки основную роль играют талые воды снега и льда. В меженный период сток отсутствует.

По генетическим признакам в годовом стоке р. Киши Алматы в исследуемом высокогорном районе можно выделить два основных фазово- однородных периода:

- 1) период половодья, формируемого преимущественно талыми водами высокогорных снегов, снежников и ледников. Этот период совпадает с наиболее жарким периодом года;
 - 2) период межени, когда речной сток отсутствует.

<u>Опасные явления - паводковые затопления, заторы, наличие шуги, нагонные явления</u> минимальные.

Оценка влияния объекта на поверхностные водоемы

Забор воды из рек, на производственные и хозяйственно-бытовые нужды; сброс сточных вод в водоемы – не осуществляется.

Объект не оказывает негативного влияния на водоемы.

Грунтовые воды в период проведения изысканий (2023 г.) вскрыты на глубине от 8,20 до 10,40 м.

Питание подземных вод осуществляется за счет инфильтрации атмосферных осадков и в весенний период за счет поглощения паводкового стока.

Минерально- сырьевые ресурсы

На близлежащей к объекту территории месторождения полезных ископаемых не обнаружены.

Операции по недропользованию, разведке и добыче полезных ископаемых не осуществляются.

При проведении строительных работ проектируемого объекта предприятие должно соблюдать в соответствие с «Правилами охраны поверхностных вод республики Казахстан», РНД. 1.01.03.-94» следующие технические и организационные мероприятия, предупреждающие возможное негативное воздействие на подземные воды и временные поверхностные водотоки:

- контроль над водопотреблением и водоотведением;
- искусственное повышение планировочных отметок участков строительства;
- организация системы сбора и хранения отходов производства;
- контроль над герметизацией всех емкостей и трубопроводов, во избежание утечек и возникновением аварийных ситуаций;
- согласование с территориальными органами ООС местоположение всех объектов использования и потенциального загрязнения подземных и поверхностных вод;
- по завершению работ проводить очистку территории от строительного и бытового мусора и нефтепродуктов в случае их разлива.
- устройство технологических площадок и площадок временного складирования отходов на стройплощадке с щебеночным покрытием
 - своевременное выполнение вертикальной планировки территории.
 - выполнение ливневой канализации одновременно с вертикальной планировкой.
- обязательное устройство кюветов вдоль дорог и проездов, с постоянным отводом воды за пределы застроенной территории.
 - не допускать сброса производственных и ливневых стоков в поверхностный объект;
 - не допускать захват земель водного фонда.
 - содержать территорию в надлежащем санитарном состоянии.
 - содержать спецтехнику в исправном состоянии.
- выполнение предписаний выданных уполномоченными органами в области охраны окружающей среды, направленных на снижение водопотребления и водоотведения, объемов сброса загрязняющих веществ;
 - исключить проливы ГСМ.
- разгрузку и складирование оборудования, демонтируемые объекты и строительных материалов осуществлять на площадках с твердым покрытием.
 - движение автотранспорта и другой техники осуществлять по имеющимся дорогам.
 - по завершению работ проводить очистку территории от строительного и бытового мусора.

Принятые в проекте инженерные решения по водоснабжению и водоотведению, а также предлагаемые мероприятия по охране водных ресурсов соответствуют нормам водоохранного проектирования, и их реализация будет способствовать минимальному воздействию на окружающую среду. Негативного воздействия на поверхностные и подземные воды в период строительства проектируемого объекта не ожидается.

8.5 Определение нормативов допустимых сбросов загрязняющих веществ

Сброс сточных вод в водные объекты, на рельеф местности или в недра проектными решениями не предусматривается. Следовательно, определение нормативов допустимых сбросов загрязняющих веществ не предполагается.

9. Воздействия проектируемой деятельности на почву

9.1 Характеристика ожидаемого воздействия на почвенный покров (механические нарушения, химическое загрязнение), изменение свойств почв и грунтов в зоне влияния объекта

Загрязнение почвы происходит главным образом выпадением из атмосферы на покрытие твердых мелкодисперсных и пылеватых фракций частиц, приносимых колесами автомобилей с дорог и проездов с неусовершенствованным покрытием, частичными потерями перевозимых сыпучих грузов, продуктами истирания шин и покрытий, а также токсичными компонентами отработанных газов автомобилей.

В процессе строительных работ воздействие на земли и почвенный покров в основном связано с изъятием плодородного слоя на участках строительства.

При реализации рассматриваемого проекта необратимых негативных последствий на почвенный горизонт не ожидается. К тому же, по окончании строительных и земляных работ для улучшения состояния почв на территории объекта будет выполнена очистка, планирование и рекультивация нарушенных участков земель.

Основными факторами воздействия на почвенный покров в результате строительно-монтажных работ будет служить захламление почвы.

Захламление - это поступление отходов твердого агрегатного состояния на поверхность почвы. Захламление физически отчуждает поверхность почвы из биокруговорота, сокращая ее полезную площадь, снижает биопродуктивность и уровень плодородия почв.

Потенциальное проявление данного воздействия может происходить в результате несанкционированного распространения твердых отходов, образующихся в процессе строительства трассы, а также бытовые отходы от жизнедеятельности рабочего персонала. Распространение производственных и бытовых отходов потенциально может происходить по всему рассматриваемому участку. Однако строгое соблюдение правил и норм сбора, хранения и утилизации мусора позволяет свести к минимуму данное неблагоприятное явление.

На строительной площадке предусматриваются специальные места для хранения материалов. Лакокрасочные материалы и сыпучие строительные материалы, используемые для отделочных работ, будут доставляться в герметичной таре и упаковке.

Воздействие на почвенный покров возможно через несанкционированное размещение твердых производственных отходов и бытовых отходов (ТБО и

хозбытовые стоки). Проектом предусмотрен сбор твердых отходов в специализированные контейнеры с дальнейшим вывозом по договору со специализированной организацией.

Проектом предусматривается снятие плодородного слоя почвы. Снятый ПСП будет беречься от намокания и загрязнения с последующим использованием для озеленения прилегающей территории проектируемого объекта.

Почвенный слой является ценным медленно возобновляющимся природным ресурсом. При ведении строительных работ, прокладке линий коммуникаций, добыче полезных ископаемых и всех других видах работ, приводящих к нарушению или снижению свойств почвенного слоя, последний подлежит снятию, перемещению в резерв и использованию для рекультивации нарушенных земель или землевания малопродуктивных угодий. Снятие и охрану плодородного почвенного слоя осуществляют в соответствии с требованиями ГОСТ 17.4.3.03-85 "Охрана природы. Почвы. Требования к охране плодородного слоя почвы при производстве земляных работ". Вертикальная планировка проектируемого участка решена путем искусственного создания необходимых уклонов, повышением отметок территории и сплошной подсыпки, а также отвода ливневых стоков на прилегающие газоны и проезды. Установленные схемой вертикальной планировки проектные отметки в характерных точках являются исходными для проектирования. Организация стока поверхностных ливневых и талых вод заключается в создании благоприятных условий стока талых и дождевых вод.

Расчет значимости воздействия на почвы и земельные ресурсы

Компоненты природной среды	Источники их воздействия	Пространствен н ый масштаб	Временной масштаб	Интенсивнос ть воздействия	Значимость воздействия в баллах	Категория значимости воздействия
Земельные ресурсы	Изьятие земель (Косвенное воздейств и)	Локальное воздействие 1	Кратковременн ое воздействие 1	Незначительн ое воздействие 1	3	Низкая значимость
Почвы	Изьятие земель (Косвенное воздействие)	Локальное воздействие 1	Кратковременно е воздействие 1	Незначительн ое воздействие 1	3	Низкая значимость
	Изъятие земель	Локальное воздействие 1	Кратковременно е воздействие	Незначительн ое воздействие	3	Низкая значимость
	Изьятие земель (Косвенноевоз действие)	Локальное воздействие 1	Кратковременно е воздействие 1	Незначительн ое воздействие 1	3	Низкая значимость

Таким образом, общее воздействие на почвенный покров оценивается как «допустимое» (низкая значимость воздействия).

9.2 Планируемые мероприятия и проектные решения в зоне воздействия по снятию, транспортировке и хранению плодородного слоя почвы и вскрышных пород, по сохранению почвенного покрова на участках, не затрагиваемых непосредственной деятельностью, по восстановлению нарушенного почвенного покрова и приведению территории в состояние, пригодное для первоначального или иного использования (техническая и биологическая рекультивация)

Проведение природоохранных мероприятий должно снизить негативное воздействие всех работ, обеспечить сохранение ресурсного потенциала земель и плодородия почв, экологической ситуации в пелом.

Проектом предусмотрены следующие мероприятия по уменьшению воздействия и сохранению почвенного покрова на участках проведения проектируемых работ и на участках не затрагиваемых непосредственной деятельностью:

- регулярное техническое обслуживание транспорта, строительной техники и производственного оборудования и его эксплуатации в соотвествии со стандартами изготовителей и только на специально подготовленных и отведенных площадках;
- транспортировка материалов, являющихся источниками пыли, должна производиться в транспортных средствах, оснащенных пылезащитными брезентовыми или иными пологами;
 - передвижение транспортных средств по ранее проложенным дорогам;
 - регулярная очистка территории от мусора;
 - предупреждение разливов ГСМ;
 - своевременное проведение работ по очистки территории строительства.

В целом, намечаемая деятельность будет проводиться с соблюдением природоохранных мероприятий, при выполнении которых воздействие на почвенный покров может быть определено как допустимое.

9.3 Организация экологического мониторинга почв

Учитывая особенности реализации намечаемой детальности, связанной с проведением строительного объекта, проведение экологического мониторинга почв не предполагается.

10. Воздействие на недра

10.1 Наличие минеральных и сырьевых ресурсов в зоне воздействия намечаемого объекта (запасы и качество)

При строительстве объекта основными источниками потенциального воздействия на геологическую среду будут являться транспорт и спецтехника, земляные работы.

На территории проектируемого объекта и в районе его расположения отсутствуют площади с залеганием полезных ископаемых.

Для обеспечения грунтом в проекте предусмотрено использовать существующих месторождений суглинка и песчано-гравийной смеси. Источники получения стройматериалов являются действующими, поэтому при строительстве объекта прямого воздействия на эти виды недропользования оказываться не будет.

Непосредственно на участке строительства добыча строительных материалов не предусматривается.

При соблюдении всех необходимых мероприятий строительство объекта не приведет к изменению сложившегося состояния геологической среды. Процесс строительства не окажет прямого воздействия на недра.

10.2 Потребность объекта в минеральных и сырьевых ресурсах в период строительства и эксплуатации (виды, объемы, источники

получения)

Источниками получения основных строительных материалов и конструкций являются привлечение действующих местных строительных баз и заводов строительных материалов.

Добыча минеральных и сырьевых ресурсов проектом не предусмотрена.

10.3 Прогнозирование воздействия добычи минеральных и сырьевых ресурсов на различные компоненты окружающей среды и природные

ресурсы

Добыча минеральных и сырьевых ресурсов проектом не предусмотрена.

Источниками получения основных строительных материалов и конструкций являются привлечение действующих местных строительных баз и заводов строительных материалов.

10.4 Обоснование природоохранных мероприятий по регулированию водного режима и использованию нарушенных территорий

Требованиями в области рационального и комплексного использования недр и охраны недр являются:

- использование недр в соответствии с требованиями экологического законодательства РК;
- использование недр в соответствии с требованиями законодательств государства по охране окружающей среды, предохраняющими недра от проявлений опасных техногенных процессов;
 - охрана недр от обводнения, пожаров и других стихийных факторов;
- соблюдение установленного порядка приостановления, прекращения операций по недропользованию, консервации и ликвидации объектов.

В период строительства объекта отрицательного воздействия на недра оказываться не будет, следовательно, такие последствия деятельности как изменение устойчивости и проницаемости грунтов, изменение динамики грунтовых вод, изменение условий миграции элементов в литосфере наблюдаться не будут.

11. Оценка факторов физического воздействия

11.1 Оценка возможного теплового, электромагнитного, шумового, воздействия и других типов воздействия, а также их последствий

В процессе строительства неизбежно происходит воздействие физических факторов, которые могут оказать влияние на здоровье человека и окружающую среду. Это, прежде всего:

шум; вибрация;

электромагнитное излучение и др.

Физические воздействия могут рассматриваться как энергетическое загрязнение окружающей среды, в частности, атмосферы. Так, основным отличием шумовых воздействий от выбросов загрязняющих веществ является влияние на окружающую среду посредством звуковых колебаний, передаваемых через воздух или твердые тела (поверхность земли).

Источниками возможного шумового, вибрационного, электромагнитного и светового воздействий на окружающую среду во время строительства будут строительная техника и оборудование, сами строительные работы.

Источниками возможного вибрационного воздействия на окружающую среду при строительстве будет являться строительная техника и инженерное оборудование, автотранспорт, непосредственное производство строительных работ.

Источниками электромагнитных излучений будут трансформаторная подстанция, кабельные линии электропередачи, оборудование, средства связи, электроаппаратура и др.

Проектными решениями предусмотрено использование такого оборудования, при котором уровни звука, вибрации, электромагнитного излучения и освещения будут обеспечены в пределах, установленных соответствующими нормативными документами и требованиями международных документов.

Производственный шум

Источниками шума в период работ по строительству объекта будут строительная техника: экскаваторы, автосамосвалы, фронтальные погрузчики, электровибраторы, сварочное оборудование и др.

Движение автотранспорта при строительстве будетпроисходить по площади строительства и по автодорогам. Возможно некоторое увеличение транспортных потоков на дорогах, что приведет к некоторому повышению уровня шума в дневное время, особенно при перевозке строительных материалов и отходов мощными грузовыми автомобилями и доставке строительной техники. Однако использование этой техники будет краткосрочным, что позволит защитить окружающую среду от значительного воздействия шума. Мероприятия по снижению уровня шума при выполнении технологических процессов сводятся к снижению шума в его источнике применение, при необходимости, звукоотражающих или звукопоглощающих экранов на пути распространения звука или шумозащитных мероприятий на самом защищаемом объекте. В соответствии с требованиями ГОСТ 12.1.003-83 «ССБТ. Шум. Общие требования безопасности» уровни звука на рабочих местах не должны превышать 85 дБ. Шумовые характеристики оборудования должны быть указаны в их паспортах.

Мероприятия по снижению шумового воздействия. Согласно нормативному документу «Санитарно-эпидемиологические требования к административным и жилым зданиям» (Утв. приказом МЗ РК КР ДСМ от 26.10.2018г. №29) мероприятия по защите от шума помещений, зданий и территорий жилой застройки должны проводиться в соответствии с требованиями действующих нормативных документов и строительных норм и правил.

При эксплуатации машин и оборудования, а также при организации рабочих мест персонала на период строительства проектируемых объектов будут приняты все необходимые меры по снижению шума, воздействующего на человека, до значений, не превышающих допустимые.

Борьба с шумом на объекте будет осуществляться по следующим основным направлениям:

• на источниках шума конструктивными и административными методами (применение малошумных агрегатов, а также регламентация времени их работы);

- на пути распространения шума от источника до объектов шумозащиты архитектурно-планировочными и инженерно- строительными методами и средствами;
- на объекте, защищаемом от шума, конструктивно-строительными мероприятиями, обеспечивающими повышение звукоизолирующих качеств ограждающих конструкций, зданий и сооружений, рациональной внутренней планировкой зданий.

В качестве глушителей шума систем вентиляции буду применены трубчатые, пластинчатые, цилиндрические и камерные, а также облицованные изнутри звукопоглощающими материалами воздуховоды и их повороты.

Соблюдение действующего законодательства в части использования техники и оборудования, соответствующих ГОСТу, является основным мероприятием по защите от шума персонала.

Вибрация

Общие требования к обеспечению вибрационной безопасности на производстве, транспорте, в строительстве и других работах, связанных с неблагоприятным воздействием вибрации на человека, установлены в ГОСТ 12.1.012-2004 «Вибрационная безопасность. Общие требования»

Вибрацию могут вызывать неуравновешенные виловые воздействия, возникающие при работе машин и механизмов.

В зависимости от источника возникновения выделяют три типа вибрации:

- транспортная;
- транспортно-технологическая;
- технологическая.

Минимизация вибраций в источнике производится на этапе проектирования и в период эксплуатации. При выборе машин и оборудования для проектируемого объекта отдается предпочтение кинематическим и технологическим схемам, которые исключают или максимально снижают динамику процессов, вызываемых ударами, резкими ускорениями и т.д.

Также для снижения вибрации необходимо устранение резонансных режимов работы оборудования, то есть выбор режима работы при тщательном учете собственных частот машин и механизмов.

При строительстве автомобильных дорог предусмотрено использование строительной и инженерной техники, которая обеспечит уровень вибрации в пределах.

Строительные работы, такие, как перемещение грунта, создающее небольшие уровни грунтовых вибраций, будут оказывать незначительное воздействие на окружающую среду.

Основными мероприятиями по снижению вибрации в источнике возбуждения являются:

- 1) виброизоляция с помощью виброизолирующих опор, упругих прокладок, конструктивных разрывов, резонаторов, кожухов и других;
- 2) виброизоляция ограждающих конструкций, устройство резонансных поглотителей, облицовка стен, потолков и пола;
- 3) применение виброизолирующих фундаментов для оборудования компрессорных машин, установок, систем вентиляции и кондиционирования воздуха;
- 4) применение невибрирующих технологических процессов и агрегатов, использование наиболее рациональных схем размещения оборудования производственных участков;
- 5) снижение вибрации, возникающей при работе машины или оборудования, путем увеличения жесткости и вибро-демпфирующих свойств конструкций и материалов, стабилизации прочности и других свойств деталей;

Проведение работ в соответствии с принятыми проектными решениями по выбору машин, оборудования и строительных конструкций позволит не превысить нормативных значений вибраций для персонала.

Электромагнитные излучения

На территории строительной площадки будут располагаться установки, агрегаты, электрические генераторы и сооружения, которые являются источниками электромагнитных излучений. К ним относятся электродвигатели, линии электрокоммуникаций, электрооборудование строительных

механизмов и автотранспортных средств, средства связи.

При размещении объектов, излучающих электромагнитную энергию, руководствуются «Санитарно-эпидемиологические требования к радиотехническим объектам» (утв. приказом Министра здравоохранения РК от 23.04.2018г. №188).

Проектными решениями предусмотрено использование оборудования, обеспечивающего уровень электромагнитного излучения в пределах, установленных СТРК 1150-2002, что не окажет негативного влияния на

работающий персонал и, соответственно, уровень электромагнитных излучений не будет превышать допустимых значений, установленных санитарными правилами и нормами РК.

На предприятии источниками электромагнитных полей (ЭМП) промышленной частоты будут трансформаторная подстанция, токопроводы, подземные кабельные линии электропередачи и т.д., являющиеся элементами высоковольтных линий электропередач (ЛЭП).

Безопасность персонала и посторонних лиц должна обеспечиваться путем:

- применения надлежащей изоляции, а в отдельных случаях повышенной; применения двойной изоляции;
- соблюдения соответствующих расстояний до токоведущих частей или путем закрытия, ограждения токоведущих частей;
- применения блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям;
- надежного и быстродействующего автоматического отключения частей электрооборудования, случайно оказавшихся под напряжением, и поврежденных участков сети, в том числе защитного отключения;
- заземления или зануления корпусов электрооборудования и элементов электроустановок, которые могут оказаться под напряжением вследствие повреждения изоляции;
 - выравнивания потенциалов;
 - применения разделительных трансформаторов;
- применения напряжений 25 B и ниже переменного тока частотой 50 Гц и 60 B и ниже постоянного тока;
 - применения предупреждающей сигнализации, надписей и плакатов;
 - применения устройств, снижающих напряженность электрических полей;
- использования средств защиты и приспособлений, в том числе для защиты от воздействия электрического поля в электроустановках, в которых его напряженность превышает допустимые нормы.

Оценка воздействия физических факторов

При выполнении всех мероприятий, предусмотренных рабочим проектом уровни воздействия физических факторов (шума и вибраций, электромагнитного излучения) не превысят нормативных значений, установленных санитарными нормами и правилами Республики Казахстан.

Проектными решениями предусмотрено использование машин, оборудования, конструкций, при котором уровни звука, вибрации, электромагнитного излучения и освещения будут обеспечены в пределах, установленных соответствующими нормативными документами и требованиями международных документов.

Вывод: Воздействие физических факторов в период строительства на окружающую среду оценивается как *незначительное*.

11.2 Характеристика радиационной обстановки в районе работ, выявление природных и техногенных источников радиационного загрязнения

Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при

использовании излучения в различных областях хозяйства.

Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням:

детерминированные пороговые эффекты (лучевая болезнь, лучевой дерматит, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).

Изменения радиационной обстановки под воздействием природных факторов района. Однако вмешательство человека в природные процессы зачастую способно вызвать очень быстрые необратимые изменения естественной обстановки, и для избегания нежелательных последствий хозяйственной деятельности необходимо знать как современное состояние окружающей среды, так и факторы возможного изменения ситуации.

Радиоактивным загрязнением считается повышение концентраций естественных или природных радионуклидов сверх установленных санитарно- гигиенических нормативов

- предельно допустимых концентраций (ПДК) в окружающей среде (почве, воде, воздухе) и предельно допустимых уровней (ПДУ) излучения, а также сверхнормативные содержания радиоактивных элементов в строительных материалах, на поверхности технологического оборудования и в отходах промышленных производств.

Общая расчетная годовая доза облучения людей от различных природных источников радиации в районах с нормальным радиационным фоном составляет до 2,2 мЗв (милизиверт), что эквивалентно уровню радиоактивности окружающей среды до 25 мкР/Час. С учетом дополнительных «техногенных» источников радиации (радионуклиды в строительных материалах, минеральные удобрения, энергетические объекты, глобальные выпадения искусственных радионуклидов при ядерных испытаниях, радиоизотопы, рентгенодиагностика и др.) индивидуальные среднегодовые дозы облучения населения за счет всех источников определены в размере 60 мкР/Час.

Мощность смертельной дозы для млекопитающих - 100 Рентген, что соответствует поглощенной энергии излучения 5 Джоулей на 1 кг веса.

Радиационная безопасность обеспечивается соблюдением действующих Гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» утвержденных приказом Министра национальной экономики Республики Казахстан от 27 февраля 2015 года № 155, а также Санитарных правил «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» утвержденных приказом Министра здравоохранения Республики Казахстан от 15 декабря 2020 года № ҚР ДСМ-275/2020.

Основные требования радиационной безопасности предусматривают:

исключение необоснованного облучения населения и производственного персонала предприятий;
не превышение установленных предельных доз радиоактивного облучения;
снижение дозы облучения до возможно низкого уровня.

Радиационный контроль является одной из важнейших составных частей комплекса мер по обеспечению радиационной безопасности. Задачей радиационного мониторинга являются охрана здоровья населения от вредного воздействия техногенных и природных источников ионизирующего излучения и защита окружающей среды от радиоактивного загрязнения. Радиационный мониторинг предусматривает контроль соблюдения норм радиационной безопасности, а также получение необходимой информации о состоянии радиационной обстановки на предприятии, в окружающей среде.

Уровень физического воздействия проектируемых работ носит локальный и временный характер. Уровень шума, электромагнитного излучения и вибрации, создаваемый транспортом и технологическим оборудованием в период проведения строительно-монтажных работ, будет минимальным и несущественным. В целом физическое воздействие проектируемого объекта на здоровье населения и персонала оценивается как допустимое.

- 12. Информация об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности, в том числе отходов, образуемых в результате осуществления постутилизации существующих зданий, строений, сооружений, оборудования.
- 12.1 Характеристика технологических процессов предприятия как источников образования отходов

Согласно экологическому кодексу, законодательных и нормативных правовых актов, принятых в РК, отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться в места утилизации или захоронения.

Согласно Санитарных Правил строительная площадка в ходе строительства своевременно очищается от строительного мусора, в зимнее время от снега, в теплое время года поливается. Сбор и удаление отходов, содержащих токсические вещества, осуществляются в закрытые контейнеры или плотные мешки, исключая ручную погрузку.

Характеристика отходов производства и потребления, их качественный и количественный состав определены в соответствии с «Санитарно- эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления" утвержденные приказом Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № ҚР ДСМ- 331/2020.

Проектируемый объект не является промышленным предприятием и не занимается производством и выпуском продукции.

Для удовлетворения требований по недопущению загрязнения окружающей среды должна проводиться политика управления отходами, которая позволит минимизировать риск для здоровья и безопасности работников и природной среды. Система управления отходами контролирует размещение различных типов отходов.

Производство строительных работ сопровождается образованием и накоплением различного вида отходов, являющихся потенциальными загрязнителями окружающей среды, а именно:

- Смешанные коммунальные отходы
- Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества
 - Отходы сварки
- Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами.
 - Смешанные металлы.

В рабочем проекте предусмотрены мероприятия по снижению негативного воздействия на почвы отходов, образующихся в процессе строительства:

- передвижение строительной техники и автотранспорта (доставка материалов и конструкций) предусмотреть по дорогам общего пользования и внутриплощадочным дорогам с твердым покрытием;
- по окончании строительных работ на землях постоянного отвода предусмотреть вывоз строительного и бытового мусора в специально отведенные места по согласованию с органами;
- провести благоустройство и озеленение территории.

Отходы производства и потребления на площадке не хранятся, по мере накопления вывозятся ежедневно согласно договору.

Отходы от эксплуатации автотранспорта в виде замасленной ветоши, загрязненных воздушных и масляных фильтров и отработанного масла, а также изношенных шин не будут образовываться и храниться на строительной площадке, поскольку весь ремонт автотранспорта, замена автошин, фильтров и масла будет осуществляться на специализированных станциях техобслуживания в г.Алматы по мере необходимости вывозятся специализированной организацией согласно договору.

12.2 Описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой

деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов

Турксибский район, основанный в 1938 году, – один из старейших в городе, его площадь – 7546, 9 га, численность населения более 244 000 человек.

В районе 24 678 частных и 1185 многоквартирных жилых домов, в которых 27 692 квартиры, 7887 зарегистрированных юридических лиц, из них: 7351 представитель МСБ, 9 рынков, 29 общеобразовательных школ (2 частные), 1 высшее учебное заведение, 6 колледжей, 90 детских дошкольных учреждени (23 государственных, 40 — частных и 27 мини-центров), 7 поликлиник, 6 больниц (в том числе роддом), 1 театр, 5 библиотек, 9 спортивных объектов.

Все проекты по улучшению социально экономического развития района основываются на реализации Посланий Президента РК, направленных на рост благосостояния народа, повышение доходов и качества жизни. Учитывая временный характер воздействия на атмосферный воздух, применение рекомендованных проектом мероприятий можно сделать вывод, что в период монтажных работ существенного негативного влияния на здоровье людей в районе производства работ и в ближайших населенных пунктах не произойдет.

Сбросов, участков извлечения природных ресурсов и захоронения отходов проектом не предусмотрено.

Объемы образования отходов определены согласно Приложению №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п «Методика разработки проектов нормативов предельного размещения отходов производства и потребления».

На период строительства:

В результате деятельности образуются следующие виды отходов:

- твердые бытовые отходы персонала;
- производственные отходы.

Смешанные коммунальные отходы

Норма образования отходов составляет 0,3 м³ на человека в год. Количество персонала — 147 человек. Период строительства составляет 29 месяцев.

 $B^{\text{год}} = (147 \text{ чел*}0.3 \text{ м}^3/\text{год*}0.25 \text{ т/м}^3/12)*29 = 26.64375 \text{ т/период}$

Твердо-бытовые отходы включают отходы от рабочих на период строительства. Агрегатное состояние - твердые вещества. Не растворяются в воде. Пожароопасные, нетоксичные, взрывобезопасные.

Твердые бытовые отходы складируются в специальные контейнеры, размещаемые на площадке с твердым покрытием и по мере накопления вывозятся на полигон ТБО.

<u>Отходы от красок и лаков, содержащие органические растворители</u> <u>или другие опасные</u> вещества

Список литературы:

Методика разработки проектов нормативов предельного размещения отходов производства и потребления Приложение №16 к приказу Министра охраны окружающей среды РК от «18 » 04 2008г. № 100-п

Краска XB-161-8210,83 кг, Грунтовка $\Gamma\Phi$ -021 — 0,6997281 т, Растворитель 646 — 0,0851355, Грунтовка битумная — 0,6997281 т, Краска MA-015 — 118,1085 кг, Растворитель P-4 — 0,0234083 т, Эмаль XB-124 — 7,1610232 т, Эмаль $\Pi\Phi$ -115 — 0,0514481 Уайт-спирит — 0,0602675 т, Лак B-577 — 17107,0972 кг, Эмаль B-140 — 0,002106 т. Суммарный годовой расход сырья (ЛКМ), кг/год , $Q = \Sigma Q n*1000 = 24620,2582$ Норма образования отхода определяется по формуле:

$$N = \sum_{1}^{i} \ M_{i} * n_{i} + \ \sum_{1}^{i} \ Mk_{i} * \alpha_{i} \ [ext{т/год}],$$

где Mi - масса i-го вида тары, t/год; n - число видов тары; Mki - масса краски b i-ой таре, t/год; αi - содержание остатков краски b i-той таре b долях от Mki (0.01-0.05).

Масса краски в таре, кг , Mk = 1,5

Масса пустой тары из под краски, кг , M = 0.702

Количество тары, шт., n = Q/Mki = 24620,2582/1,5 = 16413,5055

Содержание остатков краски в таре в долях от Mki (0.01-0.05) $\alpha = 0.01 * Mk = 0.01 * 16413,5055 = 164,135055$ Наименование образующегося отхода (по методике): Тара из под ЛКМ

Объем образующегося отхода, т/период , $N = (0.702 * 16413,5055) + 164,135055* 10^-3 = 11,6864159$ Итоговая таблица:

Код	Отход	Кол-во, т/период
080111*	Жестяные банки из-под краски	11,6864159

Всего за период проведения строительства планируется к образованию **11,6864159 тонны** пустой тары из-под ЛКМ.

Тара из-под краски складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Отходы сварки

При строительстве планируется использовать 17,075054 т электродов.

Расчет образования огарков сварочных электродов производится по формуле «Методики разработки проектов нормативов предельного размещения отходов производства и потребления» (Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г.).

Норма образования огарков электродов составляет:

$$N = M_{oct} \cdot \alpha_{, T/\Gamma O Д}$$

где: $M_{\text{ост}}$ — расход электродов, т/год;

 α – остаток электрода, α =0.015 от массы электрода.

Количество образующихся огарков электродов при строительстве составит

17,075054*0,015=0,25612581 т/период

Физическая характеристика отходов: - не растворим в воде, взрыво и пожаробезопасны. Химический состав: - железо 96-97%, обмазка (типа $Ti(CO_3)_2$) — 2-3%; прочее - 1%. Агрегатное состояние - твердые вещества.

Класс опасности - IV, малоопасные отходы. Код отхода – 12 01 13.

Огарки сварочных электродов складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами

По данным заказчика общее количества ветоши составляет – 38,21254 кг.

$$N = Mo + M + W$$
, т/год,

где: Мо - поступающее количество ветоши, т/год;

М - норматив содержания в ветоши масел, М=0,12*Мо;

W - нормативное содержание в ветоши влаги, W=0,15*Mo.

M = 0.12*0.038216 = 0.004586

W = 0.15*0.038216 = 0.005732

N = 0.038216 + 0.004586 + 0.005732 = 0.04853 т/период.

Морфологический состав отхода:

Содержание компонентов: ткань - 73%, нефтепродукты и масла - 12%, вода - 15%. Физическая характеристика отходов: промасленная ветошь - горючие, взрывобезопасные материалы, нерастворимые в воде, химически не активны. Агрегатное состояние - твердые предметы (куски ткани) самых различных форм и размеров. Средняя плотность 1,0 т/м3. Максимальный размер частиц не ограничен.

Класс опасности - III, отходы умеренно опасные.

Код отхода - 15 02 02*

Отходы промасленной ветоши складируются в специальные контейнеры, размещаемые, на площадке с твердым покрытием и по мере накопления передаются специализированным организациям по приему данных видов отходов.

Строительный мусор.

Объем образования строительного мусора – 46 640,20618 т/период (согласно сметной документации).

Способ хранения – временное хранение в специально отведѐнном месте с твердым покрытием. Вывоз отходов на утилизацию будет предусмотрен по договору со специализированной организацией в специально-отведенное место, согласно письму КГУ «Управление городской мобильности города Алматы»

№01.2-03.99-Ш от 03.02.2023 г.

Лимиты на накопление отходов на период строительства

Таблица 5.1

таолица 3.					
Наименование отходов	Группа	Подгруппа	Код	Количество образования, т/период	
1	2	3	4	5	
Всего				46 678,84	
Смешанные коммунальные отходы	20	20 03	20 03 01	26,64375	
Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества	08	08 01	08 01 11*	11,6864159	
Отходы сварки	12	12 01	12 01 13	0,25612581	
Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами	15	15 02	15 02 02*	0,04853	
Смешанные отходы строительства и сноса	17	1709	17 09 04	46 640,20618	

Наименование отходов	Количество образования, т/период	Передача сторонним организациям, т/период				
2025-2027 гг.						
1	2	5				
Всего	46 678,841	46 678,841				
в том числе:	46 652,1973	46 652,1973				
- отходов производства						
- отходов потребления	26,64375	26,64375				
	Опасные отходы:	•				
Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества 08/0801/08 01 11	11,6864159	11,6864159				
Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами	0,04853	0,04853				
Всего	11,7349459	11,7349459				
	Неопасные отходы:					
Смешанные коммунальные отходы 20/2003/20 03 01	26,64375	26,64375				
Отходы сварки 12/1201/12 01 13	0,25612581	0,25612581				
Смешанные отходы строительства и сноса	46 640,20618	46 640,20618				
Всего	46 667,10606	46 67,10606				

13. Описание возможных вариантов осуществления намечаемой деятельности с учетом ее особенностей и возможного воздействия на окружающую среду, включая вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, описание других возможных рациональных вариантов, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды

Отказ от реализации намечаемой деятельности не приведет к значительному улучшению экологических характеристик окружающей среды, может привести к ухудшению качества окружающей среды, так как улица Северное кольцо обеспечит транспортную связь между жилыми зонами и центром городского округа, городского поселения, центрами планировочных районов; выходы на магистральные улицы и дороги и внешние автомобильные дороги. Пробивка улицы Северное кольцо с выходом на БАКАД – составная часть развития генерального плана города Алматы и Программы развития города Алматы до 2025 года и среднесрочной перспективы до 2030 года, реализация которой позволит перераспределить интенсивность движения по существующим улицам, будет способствовать развитию территорий, обеспечит жителей города качественными транспортными связями, новыми маршрутами городского общественного транспорта, что в целом будет способствовать экономическому и культурному развитию города Алматы.

Разработка рабочего проекта произведена в полном соответствии со строительными нормами и правилами Республики Казахстан обязательными для проектирования всех объектов, намечаемых к строительству на территории Республики Казахстан (СН РК), с использованием приемлемых решений, обеспечивающих устойчивое развитие населенных пунктов, обеспечение условий жизнедеятельности, необходимых для сохранения здоровья населения и охрану окружающей природной среды от воздействия техногенных факторов (СП РК), а также с соблюдением ведомственных и инструктивно-методических норм и указаний, действующих на территории РК.

14. Варианты осуществления намечаемой деятельности

Предусмотренный настоящим проектом вариант осуществления намечаемой деятельности является самым оптимальным, экологически необходимым и финансово выгодным.

Разработка рабочего проекта произведена в полном соответствии со строительными нормами и правилами Республики Казахстан обязательными для проектирования всех объектов, намечаемых к строительству на территории Республики Казахстан (СН РК), с использованием приемлемых решений, обеспечивающих устойчивое развитие населенных пунктов, обеспечение условий жизнедеятельности, необходимых для сохранения здоровья населения и охрану окружающей природной среды от воздействия техногенных факторов (СП РК), а также с соблюдением ведомственных и инструктивнометодических норм и указаний, действующих на территории РК.

15. Под возможным рациональным вариантом осуществления намечаемой деятельности принимается вариант осуществления намечаемой деятельности, при котором соблюдаются в совокупности следующие условия

Улучшение экологической ситуации в районе, в связи с обеспечением нормальным транспортирным сообщением между районами и территориями, сделать их более удобными и эффективными в плане транспортного проезда по ним.

16. Информация о компонентах природной среды и иных объектах, которые могут быть подвержены существенным воздействиям намечаемой деятельности

16.1 Жизнь и (или) здоровье людей, условия их проживания и деятельности

Поскольку анализ уровня воздействия объекта показал отсутствие превышений нормативных показателей рекомендуется регулярно производить мониторинг технологических процессов с целью недопущения отклонений от регламента производства, своевременно осуществлять плановый ремонт машин и механизмов.

Соблюдение технологии производства и техники безопасности позволит избежать внештатных ситуаций, сверхнормативных выбросов и превышения показателей гигиенических нормативов на границе санитарно-защитной зоны.

В целом, химическое и физическое воздействия на состояние окружающей природной среды от производственного объекта, подтвержденные расчетами приземных концентраций, уровня шума на рабочих местах, не превышающие допустимые значения, будет незначительным.

Потенциальное положительное воздействие на экономическую и социальную сферы.

Проведение планируемых работ не вызовет нежелательной нагрузки на социально-бытовую инфраструктуру населенных пунктов района.

Дополнительный экономический эффект в районе может быть получен за счет привлечения местных подрядчиков для выполнения определенных видов работ: транспортные услуги, клининг, общепит и др.

Планируемые работы, связанные со строительством, не приведут к значительному загрязнению окружающей природной среды, что не скажется негативно на здоровье населения.

Будут предусмотрены все необходимые меры для обеспечения нормальных санитарно-гигиенических условий работы и отдыха персонала, его медицинского обслуживания.

Меры по смягчению воздействия на социально-экономическую сферу

Мерами по усилению положительных и смягчению отрицательных воздействий на социально - экономическую среду являются:

- 1. В части трудовой занятости:
- организация специальных обучающих курсов по подготовке кадров;
- использование местной сферы вспомогательных и сопутствующих услуг.
- 2. В части отношения населения к намечаемой деятельности:
- совместное участие заказчика проекта, местных органов исполнительной власти и их санитарных служб в выполнении работ по реконструкции и расширению объектов и услуг водоснабжения, канализации и переработки отходов.
 - 3. В части обеспечения безопасности транспортных перевозок и сохранения дорожной сети:
 - осуществление постоянного контроля за соблюдение границ строительной площадки;
- для обеспечения безопасности дорожного движения: установка технических средств организации дорожного движения;
 - организация специальных инспекционных поездок.

16.2 Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы

Площадка строительства находится в освоенной части города, подвергнутом техногенному влиянию с 50-х годов XX века. Негативное воздействие на растительный и животный мир микрорайона оказывалось в период строительства города.

В районе размещения объекта данные о растительном и животном мире соответствуют не исконной, а уже антропогенно-преобразованной флоры и фауны. Территория строительства давно освоена, поэтому рассматриваемая зона бедна естественной травянистой растительностью, имеется луговая растительность на техногенных отложениях.

Места постоянного обитания птиц и животных, реликтовые насаждения, исторические памятники и памятники культуры отсутствуют.

Редких, реликтовых и эндемичных видов растений, занесенных в Красные книги, не выявлено. С точки зрения сохранения биоразнообразия растительного мира данный участок в настоящее время особой ценности не представляет.

Из объектов животного мира, не отнесенных в Красные книги, обитают несколько видов насекомоядных и мышевидных грызунов, черная ворона, мелкие воробьиные птицы.

Современное состояние растительного покрова в зоне воздействия объекта

- В результате проведенной инвентаризации и лесопатологического обследования зеленых насаждений учтено и описано:
 - 1017 деревьев;
 - 3 кустарника;
 - 3694 кв.м. дикорастущей поросли;
 - 53 кв.м.живой изгороди;
 - 23 пней.

Намечены следующие лесохозяйственные мероприятия:

требуется сохранение:

- 475 деревьев;
- 53 кв.м.живой изгороди;

под вырубку:

- 537 деревьев;
- 3694 кв.м. дикорастущей поросли;

под санитарную вырубку:

5 дерева;

под корчевания:

- 23 пней;

Согласно «Правил содержания и защиты зеленых насаждений города Алматы» компенсационное восстановление зеленых насаждений за санитарную рубку, вынужденный снос, произведенный с разрешения уполномоченного органа акимата, производится путем посадки саженцев лиственных пород высотой не менее 3-х метров, а хвойных не менее 2-х метров (I-го и II-го класса качества).

Согласно «Правил содержания и защиты зеленых насаждений города Алматы» от 31 марта 2020 г. №173, при вырубке деревьев по разрешению уполномоченного органа компенсационная посадка восстанавливаемых деревьев производится в десятикратном размере.

Дополнительно сообщаем, что в соответствии с «Типовыми правилами содержания и защиты зеленых насаждений города Алматы», вырубка осуществляется после получения разрешения Уполномоченного органа акимата г. Алматы.

Оценка воздействия химического загрязнения на растительность

Во время строительства растительность прилегающих участков будет испытывать воздействие загрязнителей атмосферного воздуха, т.е. на растительность окажут влияние выбросы загрязняющих веществ в атмосферу.

Воздействие вредных выбросов на растительность происходит как путем прямого их воздействия на растительность, так и путем косвенного воздействия через почву.

Попадание нефтепродуктов на почву, прежде всего, сказывается на гумусовом горизонте: количество углеродов в нем резко увеличивается, ухудшая свойства почв как питательного субстрата для растений.

Обволакивая корни растений, нефтепродукты резко снижают поступление влаги, что приводит к физиологическим изменениям и возможной гибели растений.

Главными причинами угнетения растений и их гибели в результате загрязнения служат нарушения в поступлении воды, питательных веществ и кислородное голодание. Вследствие подавления процессов нитрификации и аммонофикации в почве нарушается азотный режим, что в свою очередь вызывает азотное голодание. Интенсивное развитие нефтеокисляющих микроорганизмов сопряжено с активным потреблением ими элементов минерального питания, из-за чего может наблюдаться ухудшение пищевого режима растений.

Вредное влияние токсичных газов приводит к отмиранию отдельных частей растений, ухудшению

роста и урожайности. Накопление вредных веществ в почве способствует уменьшению почвенного плодородия, нарушению минерального питания, отравлению корневых систем и нарушению роста и гибели растения.

Основные виды, слагающие растительность наземных экосистем территории проведения проектных работ, представлены галофитами, псаммофитами и ксерофитами

Научные исследования и многолетняя практика наблюдений показали, что большая часть представителей исследуемой территории имеет умеренную чувствительность к химическому загрязнению.

Однолетние растения (эфемеры) устойчивы к химическому воздействию за счет так называемого «барьерного эффекта», то есть растения создают барьер невосприимчивости вредного воздействия в периоды отрастания и отмирания и только в период вегетации могут угнетаться загрязняющими веществами.

Исходное состояние водной и наземной фауны

Непосредственно около объекта животные отсутствуют в связи с техногенной освоенной территорией и близостью действующего объекта с жилым массивом.

Исследований, позволяющих дать качественную оценку условиям обитания животных, численности и видовому составу, а также путям их миграции не проводится много лет. Приводимые данные о животном мире носят общий характер и не имеют привязки к конкретной территории.

Участок проведения работ находится в границах городской территории, вдоль магистралей, где наблюдается сильное антропогенное воздействие на животный мир, исходный природный ландшафт полностью преобразован.

В результате активной деятельности человека животный мир в пределах рассматриваемого участка ограничен.

Животных занесенных в Красную книгу РК на данном объекте не обнаружено. Учитывая ограниченный масштаб, реализация проекта не приведет к существенному ухудшению условий существования животных в регионе.

Воздействие на животный мир оценивается как незначительное, в связи с техногенной освоенной территорией. На проектируемом участке не произойдет обеднение видового состава и существенного сокращения основных групп животных.

Проектом предусматриваются следующие мероприятия по снижению воздействия на животный мир:

- минимальное отчуждение земель для сохранения условий обитания зверей и птиц (проезд автомобильного транспорта должен осуществляться только по существующим дорогам или строго по вновь проложенным колеям);
- исключение вероятности возгорания на территории ведения работ и прилегающей местности, строгое соблюдение правил противопожарной безопасности.

Генетические ресурсы

Генетические ресурсы - это генетический материал растительного, животного, микробного или иного происхождения, содержащий функциональные единицы наследственности (ДНК) и представляющий фактическую или потенциальную ценность.

Генетическими ресурсами является как природное биологическое разнообразие страны (растения, животные), так и штаммы микроорганизмов, коллекции сортов и семян, сельскохозяйственных культур, генетически измененные организмы и т. д.

При проведении данных работ генетические ресурсы не используются.

Вывод: Воздействие на флору и фауну в период строительных работ кратковременное и локальное.

16.3 Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации)

В границах пробиваемой улицы Северное кольцо по «красным» линиям существующие земельные участки изымаются для государственных нужд в соответствии с Земельным кодексом Республики Казахстан. Существующие здания и сооружения подлежат сносу.

Согласно землеустроительному проект изъятию подлежат 22 земельных участков, площадь изымаемых земель -5 Га.

Разборка существующих зданий и сооружений, а также дорожных обустройств производится на

основании дефектного акта, согласованного с Заказчиком.

16.4 Воды (в том числе гидроморфологические изменения, количество и качество вод)

Водоснабжение — используется привозная вода. Привозная бутилированная питьевая вода соответствует требованиям Закона Республики Казахстан от 21.07.2007 N 301-3 "О безопасности пищевой продукции" и Приказу Министра национальной экономики Республики Казахстан от 27 февраля 2015 года № 152.

Питьевая вода безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу, и иметь благоприятные органолептические свойства.

Вода используется на хозяйственно-бытовые и строительные нужды. Питание строителей осуществляется полуфабрикатами. Доставка пищи, будет осуществляться в одноразовой посуде, мытье посуды не предусмотрено.

На период строительства на территории устанавливаются биотуалеты.

По мере накопления биотуалеты очищаются и нечистоты вывозятся специальным автотранспортом.

Сброса производственных и хозяйственно-бытовых сточных вод в поверхностные и подземные водные источники не предусматривается.

Следовательно, не предусматриваются гидроморфологические изменения вод. Угроза загрязнения подземных и поверхностных вод в процессе к минимуму, учитывая особенности технологических операция, не предусматривающих образование производственных стоков.

16.5 Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии - ориентировочно безопасных уровней воздействия на него)

Наблюдения за загрязнением атмосферного воздуха, проводимые как составная часть государственного мониторинга окружающей среды, осуществляется государственным подразделением «Казгидромет».

Контроль за выбросами загрязняющих веществ в атмосферу на предприятии будет выполняться расчётным методом.

По данным расчетов видно, что концентрации веществ находятся пределах ПДК.

Анализ полученных результатов по оценке воздействия на атмосферный воздух методом расчета рассеивания концентраций загрязняющих веществ в приземных слоях атмосферы, показал, что при соблюдении принятых проектных решений, воздействие на атмосферный воздух не будет превышать допустимых пороговых значений гигиенических нормативов к атмосферному воздуху, риски нарушения экологических нормативов не предполагаются. Ориентировочно безопасные уровни воздействия, принимаются на уровне результатов оценки воздействия на атмосферный воздух.

16.6 Сопротивляемость к изменению климата экологических и социально-экономических систем

Наблюдаемые последствия изменения климата, независимо от их причин, выводят вопрос чувствительности природных и социально-экономических систем на первый план.

Модели потребления производства с эффективным использованием ресурсов должны защищать, беречь, восстанавливать и поддерживать экосистемы, водные ресурсы, естественные зоны обитания и биологическое разнообразие, тем самым уменьшая воздействие на окружающую среду.

Создание устойчивого к климатическим изменениям предприятия вносит свой вклад в снижение уязвимости от бедствий (усиленных изменением климата) и повышает готовность к реагированию и восстановлению. Сочетание опасных природных событий с незащищенностью, уязвимостью и неподготовленностью населения приводит к катастрофам. Любой анализ жизнестойкости изучает то, как люди, места и организации могут пострадать от опасностей, связанных с изменением климата, т. е. определяет их чувствительность к этим изменениям. Степень чувствительности определяется сочетанием экологических и социально- экономических аспектов, включая оценку природных ресурсов, демографические тенденции и уровень бедности.

Меры по адаптации — это такие меры, которые предлагают поправки в экологической, социальной и экономической системах для реагирования на существующие или будущие климатические явления и на их воздействие или последствия. Могут быть изменения в процессах, практиках и структурах для снижения потенциального ущерба или для создания новых возможностей, связанных с изменением климата.

Рекомендации по созданию устойчивости (адаптации) к климату включают следующее:

- 1. Продвигать практические исследования в области рисков, связанных с последствиями изменения климата и другими опасностями;
 - 2. Поощрять и поддерживать оценку уязвимости к изменению климата на местах;
 - 3. Составить карту опасностей (в том числе тех, которые могут появиться по прошествии времени);
- 4. Планировать предприятия, регулировать землепользование и предоставлять жизненно важную инфраструктуру, с учетом информации о рисках и поддержки жизнестойкости;
- 5. В первую очередь осуществлять меры по укреплению жизнестойкости уязвимых и социально отчужденных слоев населения;
 - 6. Продвигать восстановление экосистем и естественных защитных зон;
- 7. Обеспечивать местное планирование, защищающее экосистемы и предотвращающее «псевдоадаптацию».

Любые меры по адаптации к изменению климата должны стремиться к улучшению жизнестойкости системы. Они должны поддерживать и повышать присущую системе жизнестойкость на основе природных решений и целостного подхода. Стратегии адаптации к климату должны учитывать то, как эти меры скажутся на предприятии.

Качество окружающей среды содержит данные, которые могут помочь в понимании того, каким образом меняющийся климат может повлиять на биопотенциал региона и свойства окружающей среды, например, качество воздуха, воды и почвы. Вместе с данными по устойчивости к климатическим изменениям, данная категория оценивает чувствительность конкретных экосистем и их способность к адаптации. При помощи этих данных измеряется текущее воздействие на систему, сообщая информацию по реальным стрессам, с которыми сталкиваются территории, занятые предприятиями.

Пробивка улицы Северное кольцо будет оказывать положительный эффект в первую очередь, на районном и городском уровне воздействий. В районе может улучшиться экологическая ситуация за счет разгрузки интенсивности движения автомобилей, что приведет к улучшению экологических характеристик района.

16.7 Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и археологические), ландшафты

Историко-культурное наследие, как важнейшее свидетельство исторической судьбы каждого народа, как основа и непременное условие его настоящего и будущего развития, как составная часть всей человеческой цивилизации, требует постоянной защиты от всех опасностей. Обеспечение этого в РК является гражданским долгом.

Следует отметить, что ответственность за сохранность памятников предусмотрена действующим законодательством РК. Нарушения законодательства по охране памятников истории и культуры влекут за собой установленную материальную, административную и уголовную ответственность.

В непосредственной близости от района расположения объекта историко-архитектурные памятники, охраняемые объекты, археологические ценности, а также особо охраняемые и ценные природные комплексы (заповедники, заказники, памятники природы) отсутствуют.

17. Оценка экологического риска реализации намечаемой деятельности в регионе

В районе строительства проектируемого объекта отсутствуют ценные природные комплексы, ландшафты, особо охраняемые природные объекты. В целом окружающая среда в районе строительства устойчива к воздействию намечаемой деятельности, как в период строительства, так и в период его эксплуатации.

В результате намечаемой хозяйственной деятельности с учетом выполнения природоохранных мероприятий наблюдаются остаточные последствия воздействий. Оценку значимости остаточных последствий можно проводить по следующей шкале:

- 1. Величина:
- пренебрежимо малая без последствий;
- малая природные ресурсы могут восстановиться в течение 1 сезона;
- незначительная ресурсы восстановятся, если будут приняты соответствующие природоохранные меры;
- значительная значительный урон природным ресурсам, требующий интенсивных мер по снижению воздействия.
 - Зона влияния:
- локального масштаба воздействия проявляются только в области непосредственной деятельности;
 - небольшого масштаба в радиусе 100 м от границ производственной активности;
- регионального масштаба воздействие значительно выходит за границы активности.
 - 3. Продолжительность воздействия:
 - короткая: только в течение проводимых работ (срок проведения работ);
 - средняя: 1-3 года;
 - длительная: больше 3-х лет. Согласно проведенной оценки:

17.1 Методика оценки экологического риска аварийных ситуаций

Проведение проектных работ требует оценки экологического риска данного вида работ.

Оценка экологического риска необходима для предотвращения и страхования возможных убытков и ответственности за экологические последствия аварий, которые возможны при проведении, практически, любого вида человеческой производственной деятельности.

Оценка экологического риска намечаемых проектных решений включает в себя рассмотрение следующих аспектов воздействия:

- комплексную оценку последствий воздействия на окружающую среду при нормальном ходе проектируемых работ;
 - оценку вероятности аварийных ситуаций с учетом наличия опасных природных явлений;
 - оценку ущерба природной среде и местному населению;
 - мероприятия по предупреждению аварийных ситуаций;
- мероприятия по ликвидации последствий возможных аварийных ситуаций.
- результирующий уровень экологического риска для каждого сценария аварий определяется следующим образом:
 - низкий приемлемый риск/воздействие.
- средний риск/воздействие приемлем, если соответствующим образом управляем;
 - высокий риск/воздействие не приемлем.

17.2 Анализ возможных аварийных ситуаций

Проектируемый объект в силу его специфики нельзя отнести к разряду опасного производства. Однако, на него (объект) должны распространяться общие правила безопасности, действующие на промышленных объектах, а также применяемые на объектах план ликвидации аварий, план тушения пожаров, план эвакуации и другие документы и процедуры согласно действующему законодательству и требованиям предприятия.

Вероятность аварийных ситуаций на проектируемом объекте на период строительства достаточно мала ввиду низкого технического оснащения объекта и отсутствия опасных природных явлений в районе объекта.

Реализация намечаемой деятельности будет осуществляться подрядными организациями, проектами производства работ будут предусмотрены все необходимые природоохранные и противоаварийные мероприятия. Размещение объектов обслуживания строителей выбирается с учетом максимального использования существующих объектов проминфраструктуры, размещения временных зданий и сооружений за границами водоохранных зон, минимизации дальности возки различных материалов, включая ГСМ, что минимизирует риски возникновения аварий связанных с воздействием на окружающую среду.

На период эксплуатации основными причинами аварий на объекте могут быть: механические воздействия, наружная коррозия, внутренняя коррозия и эрозия, природные воздействия, и повреждение техникой при проведении ремонтных работ.

17.3 Оценка риска аварийных ситуаций

В процессе проведения проектируемых работ существуют природные и техногенные опасности, каждая из которых может стать причиной возникновения аварийной ситуации.

Антропогенные опасности создают более значительный риск возникновения аварийных ситуаций, таких как: нарушение технологии, пожары из-за курения или работы в зимнее время с открытым огнем, технологическая недисциплинированность и др.

Деятельность организаций и граждан, связанная с риском возникновения чрезвычайных ситуаций, подлежит обязательному страхованию.

Организации, независимо от форм собственности и ведомственной принадлежности, представляют отчетность об авариях, бедствиях и катастрофах, приведших к возникновению чрезвычайных ситуаций, а специально уполномоченные государственные органы осуществляют государственный учет чрезвычайных ситуаций природного и техногенного характера.

Аварии, бедствия и катастрофы, приведшие к возникновению чрезвычайных ситуаций природного и техногенного характера, подлежат расследованию в порядке, установленном Правительством Республики Казахстан.

В случае выявления противоправных действий или бездействий должностных лиц и граждан материалы расследования подлежат передаче в соответствующие органы для привлечения виновных к ответственности.

Должностные лица и граждане, виновные в невыполнение или недобросовестном выполнение установленных нормативов, стандартов и правил, создании условий и предпосылок возникновению аварий, бедствий и катастроф, неприятие мер по защите населения, окружающей среды и объектов хозяйствования от чрезвычайных ситуаций природного и техногенного характера и других противоправных действий, несут дисциплинарную, административную, имущественную уголовную ответственность, а организации

- имущественную ответственность в соответствии с законодательством Республики Казахстан.

Ущерб, причиненный здоровью граждан вследствие чрезвычайных ситуаций техногенного характера, подлежит возмещению за счет юридических и физических лиц, являющихся ответственными за причиненный ущерб. Ущерб возмещается в полном объеме с учетом степени потери трудоспособности потерпевшего, затрат на его лечение, восстановление здоровья, ухода за больным, назначенных единовременных государственных пособий в соответствии с законодательством Республики Казахстан. Организации и граждане вправе требовать от указанных лиц полного возмещения имущественных убытков в связи с причинением ущерба их здоровью и имуществу, смертью из-за

чрезвычайных ситуаций техногенного характера, вызванных деятельностью организаций и граждан, а также возмещения расходов организациям, независимо от их формы собственности, частным лицам, участвующим в аварийно-спасательных работах, и ликвидации последствий чрезвычайных ситуаций.

Возмещение ущерба, причиненного вследствие чрезвычайных ситуаций природного характера здоровью и имуществу граждан, окружающей среде и объектам хозяйствования, производится в соответствии с законодательством Республики Казахстан. Организации и граждане, по вине которых возникли чрезвычайные ситуации техногенного характера, обязаны возместить причиненный ущерб земле, воде, растительному и животному миру (территории), включая затраты на рекультивацию земель и по восстановлению естественного плодородия земли.

Экстренная медицинская помощь при ликвидации чрезвычайных ситуаций природного и техногенного характера

При ликвидации чрезвычайных ситуаций природного и техногенного характера немедленно вводится в действие служба экстренной медицинской помощи, а при недостаточности, включаются медицинские силы и средства министерств, государственных комитетов, центральных исполнительных органов, не входящих в состав Правительства и организаций.

Строительство проектируемого объекта, при соблюдении установленного регламента и выполнении природоохранных мероприятий, не повлечет за собой необратимых негативных изменений в окружающей среде, не окажет недопустимого отрицательного воздействия на существующее экологическое состояние района. В этой связи реализация намечаемой деятельности в районе имеет низкий экологический риск. Вероятность аварийных ситуаций на проектируемом объекте достаточно мала ввиду низкого технического оснащения объекта и отсутствия опасных природных явлений в районе объекта.

17.4 Условия и необходимые меры, направленные на предупреждение аварий, ограничение и ликвидацию их последствий

Автономных источников теплоснабжения, а так же заправка техники ГСМ на территории не производится.

К решениям по снижению отрицательных последствий от реализации намечаемой деятельности отнесены меры предупреждения возможных аварийных ситуаций. Для минимизации ущерба от потенциальных аварий является готовность к ним, разработка сценариев возможного развития событий при аварии и сценариев реагирования на них.

Основными мерами предупреждения возможных аварийных ситуаций является строгое исполнение технологической и производственной дисциплины, выполнение проектных решений и оперативный контроль.

Строгое соблюдение всех правил технической безопасности и своевременное применение мероприятий по локализации и ликвидации последствий аварийных ситуаций позволят дополнительно уменьшить их возможные негативные влияния на окружающую среду, снизить уровни экологического риска.

18. Описание предусматриваемых для периодов строительства и эксплуатации объекта мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду

Одной из основных задач охраны окружающей среды при строительстве объектов является разработка и выполнение запроектированных природоохранных мероприятий.

При проведении работ по строительству объектов и их эксплуатации, будет принят комплекс мер, обеспечивающих предотвращение и смягчение воздействия на природную среду.

Так, согласно Приложению 4 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI 3PK предприятием будет предусмотрено внедрение обязательных мероприятий, соответствующих данному виду деятельности по намечаемому строительству:

- выполнение мероприятий по предотвращению и снижению выбросов загрязняющих веществ от стационарных и передвижных источников;
 - проведение работ по пылеподавлению;
- приобретение современного строительного оборудования, замена и своевременный ремонт основного оборудования;
 - проведение работ по пылеподавлению на строительной площадке;
- выполнение мероприятий, направленных на восстановление естественного природного плодородия, сохранение плодородного слоя почвы и использование его для благоустройства территории после окончания строительных работ;
- осуществление комплекса технологических, гидротехнических, санитарных и иных мероприятий, направленных на предотвращение засорения, загрязнения и истощения водных ресурсов.

В целом, природоохранные мероприятия можно разделить на ряд общеорганизационных и специфических мероприятий, направленных на снижение воздействия на конкретный компонент природной среды.

Одним из наиболее значимых и необходимых требований для контроля воздействий и разработки конкретных мероприятий по их ограничению и снижению является производственный мониторинг окружающей среды, который предусматривает регистрацию возникающих изменений.

Согласно статье 182 п. 1 Экологического Кодекса производственный экологический контроль осуществляется для I и II категорий, для III категории не предусмотрен.

Лица, относящиеся к III категории, предоставляют статистическую отчетность, и сдаются в уполномоченные государственные органы статистики по месту нахождения объекта.

Вовремя выявленные негативные изменения в природной среде позволят определить источник негативного воздействия и принять меры по его снижению.

Из общих организационных мероприятий, позволяющих снижать воздействие на компоненты природной среды, можно выделить следующие:

Применение наиболее современных технологий и совершенствование технологического цикла;

Соблюдение природоохранных требований законодательных и нормативных актов Республики Казахстан, а также внутренних документов и стандартов Компании;

18.1 Комплекс мероприятий по уменьшению выбросов в атмосферу

При организации намеченной деятельности необходимо осуществлять мероприятия и работы по охране окружающей среды, которые должны включать предотвращение потерь природных ресурсов, предотвращение или очистку вредных выбросов в атмосферу.

Для уменьшения загрязнения атмосферы, вод, почвы и снижения уровня шума в период строительства необходимо выполнить следующие мероприятия:

- 1. Соблюдение норм ведения строительных работ и принятых проектных решений;
- 2. Применение технически исправных машин и механизмов;
- 3. Проведение земляных работ с организацией пылеподавления (увлажнения поверхности);
- 4. Орошение открытых грунтов и разгружаемых сыпучих материалов при производстве работ;

- 5. Устройство технологических площадок и площадок временного складирования отходов на стройплощадке со щебеночным покрытием;
- 6. Сроки и организации, обеспечивающие вывоз отходов (сроки вывоза отходов, кратность вывоза, квалификации соответствующих организаций);
 - 7. Ведение строительных работ на строго отведенных участках;
- 8. Осуществление транспортировки строительных грузов строго по одной сооруженной (наезженной) временной осевой дороге;
 - 9. Вывоз разработанного грунта, мусора, шлама в специально отведенные места;
 - 10. Укрывание грунта, мусора и шлама при перевозке автотранспортом
- 11. Работы по укладке плотного слоя (асфальтного покрытия) производить готовыми разогретыми материалами без организации приготовления в зоне строительства;
- 12. Запрет на сверхнормативную работу двигателей автомобилей и строительной техники в режиме холостого хода в пределах стоянки и на рабочей площадке;
 - 13. Внутренний контроль со стороны организации, образующей отходы;
- 14. Проведение большинства строительных работ, за счет электрифицированного оборудования, работа которого не будет связана с загрязнением атмосферного воздуха;
 - 15. Сокращение или прекращение работ при неблагоприятных метеорологических условиях.

Строительные работы ведутся из готовых строительных материалов, что позволяет сократить количество временных источников загрязнения и минимизировать выбросы загрязняющих веществ.

При соблюдении всех решений, принятых в технологическом регламенте и всех предложенных мероприятий, негативного воздействия на атмосферный воздух в период строительства проектируемого объекта не ожидается.

18.2 Мероприятия по охране недр и подземных вод

Воздействие на геологическую среду и подземные воды являются тесно взаимоувязанными, в связи с чем комплекс мероприятий по минимизации данных воздействий корректно рассмотреть елино.

Комплекс мероприятий по минимизации негативного воздействия предприятия на грунтовую толщу и подземные воды должен включать в себя меры по устранению последствий и локализацию возможных экзогенных геологических процессов, а также учитывать мероприятия по предотвращению загрязнения геологической среды и подземных вод.

С целью предотвращения загрязнения геологической среды и подземных вод в результате производственной деятельности предусматриваются следующие мероприятия:

- водоснабжение стройки осуществлять только привозной водой.
- по завершению работ проводить очистку территории от строительного и бытового мусора и нефтепродуктов в случае их разлива.
- Устройство технологических площадок и площадок временного складирования отходов на стройплощадке с щебеночным покрытием
 - своевременное выполнение вертикальной планировки территории.
 - Выполнение ливневой канализации одновременно с вертикальной планировкой.
- обязательное устройство кюветов вдоль дорог и проездов, с постоянным отводом воды за пределы застроенной территории.
 - не допускать сброса производственных и ливневых стоков в поверхностный объект;
 - не допускать захват земель водного фонда.
 - содержать территорию в надлежащем санитарном состоянии.
 - содержать спецтехнику в исправном состоянии.
- выполнение предписаний выданных уполномоченными органами в области охраны окружающей среды, направленных на снижение водопотребления и водоотведения, объемов сброса загрязняющих веществ;

- исключить проливы ГСМ.
- разгрузку и складирование оборудования, демонтируемые объекты и строительных материалов осуществлять на площадках с твердым покрытием.
 - движение автотранспорта и другой техники осуществлять по имеющимся дорогам.
 - по завершению работ проводить очистку территории от строительного и бытового мусора.

18.3 Мероприятия по предотвращению и смягчению воздействия отходов на окружающую среду

В целях минимизации возможного воздействия отходов на компоненты окружающей среды необходимо осуществлять ряд следующих мероприятий:

- раздельный сбор отходов;
- использование специальных контейнеров или другой специальной тары для временного хранения отходов;
- содержать в чистоте контейнеры, площадки для контейнеров, близлежащую территорию, оборудовать контейнерные площадки в соответствии с санитарными нормами и правилами;
 - перевозка отходов на специально оборудованных транспортных средствах;
 - сбор, транспортировка и захоронение отходов производится согласно требованиям РК;
- организация производственной деятельности по строительству объекта с акцентом на ответственность подрядной строительной организации за нарушение техники безопасности и правил охраны окружающей среды;
 - отслеживание образования, перемещения и утилизации всех видов отходов;
- подрядная организация, в процессе строительства объекта, должна нести ответственность за сбор и утилизацию отходов, а также за соблюдение всех строительных норм и требований РК в области ТБ и ООС;
- проведение всех видов деятельности в соответствии с требованиями экологических положений Республики Казахстан и т.д.Принятые проектными решениями природоохранные мероприятия позволяют минимизировать возможные воздействия на ОС и осуществлять деятельность в разрешенных законодательством РК пределах.

18.4 Мероприятия по снижению физических воздействий на окружающую среду

Снижение воздействия физических факторов на окружающую среду в результате строительства объекта возможно за счет следующих мероприятий:

- работа техники в разрешенное время, ограничения работы техники в ночное время;
- звукоизоляции двигателей дорожных машин защитным кожухами из поролона, резины и других звукоизолирующих материалов, а также путем использования капотов с многослойными покрытиями;
- размещение малоподвижных установок (компрессоров) должно производится на звукопоглощающих площадях или в звукопоглощающих палатках, которые снижают уровень шума до 70%;
- приобретаемые новые транспортные средства и техника должны соответствовать Европейским стандартам по уровню шума;
- при производстве дорожно-строительных работ зоны с уровнем звука выше 80 дБА должны быть обозначены знаками безопасности, а работающие в этой зоне должны быть обеспечены средствами индивидуальной защиты;

В результате этих мер физические воздействия в результате строительства объекта не распространятся за пределы строительной площадки.

При соблюдении общих требований эксплуатации оборудования и соблюдении мер безопасности на рабочих местах, воздействие физических факторов оценивается в пространственном масштабе как локальное, во временном масштабе как временное и по величине воздействия как незначительное.

18.5 Мероприятия по охране почвенного покрова

В начале освоения строительной площадки необходимо строго следить за снятием почвенно-плодородного слоя со всей застраиваемой и подлежащей планировочным работам территории для дальнейшего его использования при благоустройстве на месте строительства. Плодородный слой подлежит снятию с участка застройки, складируются в кучи на свободную площадку, и используется в дальнейшем для озеленения.

В процессе строительства объекта необходимо соблюдать комплекс мероприятий по охране и защите почвенного покрова в соответствии со ст.140 Земельного кодекса РК и ст. 238 Экологического кодекса РК.

В качестве основных мероприятий по защите почв на рассматриваемом объекте следует предусмотреть следующее:

- сохранение плодородного слоя почвы и использование его для благоустройства территории после окончания строительных работ;
 - рекультивация нарушенных земель;
- защита земель от заражения карантинными объектами, чужеродными видами и особо опасными вредными организмами, их распространения, зарастания сорняками, кустарником и мелколесьем, а также от иных видов ухудшения состояния земель;
- запрещение передвижения строительной техники и транспортных средств вне подъездных путей и внутрипостроечных дорог;
- не допускать захламления поверхности почвы отходами. Для предотвращения распространения отходов на рассматриваемом участке
- необходимо оснащение контейнерами для сбора мусора, а также установление урн, с последующим регулярным вывозом отходов в установленные места;
- запрещается закапывать или сжигать на участке реконструкции и прилегающих к нему территориях образующийся мусор;
- для предотвращения протечек ГСМ от работающей на участке строительной техники и автотранспорта запрещается использовать в процессе строительно-монтажных работ неисправную и неотрегулированную технику;
- недопустимо производить на участке строительства мойку строительной техники и автотранспорта.

Выполнение всех перечисленных мероприятий позволит предотвратить негативное воздействие на почвенный покров от строительно-монтажных работ.

18.6 Мероприятия по охране биоразнообразия

Охрану растительного покрова обеспечивают мероприятия, направленные на охрану почв, снижающие выбросы в атмосферу, упорядочивающие обращение с отходами, а также обеспечивающие санитарно-гигиеническую безопасность.

Для снижения негативных последствий проведения намечаемых работ необходимо строгое соблюдение технологического плана работ и использование специальной техники.

В процессе проведения строительных работ предусмотрен комплекс мероприятий, направленных на смягчение антропогенных воздействий:

- сохранение, восстановление естественных форм рельефа;
- своевременное проведение технического обслуживания и ремонтных работ;
- ведение строительных работ на строго отведенных участках;
- осуществление транспортировки строительных грузов строго по существующим дорогам;
- обслуживание транспортных автомашин и тракторов только на специально подготовленных и отведенных площадках;
- запрет на забивание в стволы деревьев гвоздей, штырей и др. для крепления знаков, ограждений и т. п.

- запрет на привязывание к стволам или ветвям деревьев проволоки для различных целей;
- исключение закапывания и забивания столбов, кольев, свай в зонах активного развития деревьев;
- запрет на складирование под кронами деревьев материалов, конструкций, остановки строительной техники.

При соблюдении всех правил при строительстве, дополнительно отрицательного влияния на растительную среду проектируемый объект оказывать не будет.

Реализация подобных природоохранных мероприятий позволит значительно снизить неблагоприятные последствия от намечаемой строительной деятельности.

19. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года №400-VI
- 2. Предельно-допустимые концентрации загрязняющих веществ в атмосферном воздухе населенных мест согласно Приказа Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70.
- 3. Методика расчетов концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятия. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө
- 4. Перечень загрязняющих веществ, эмиссии которых подлежат экологическому нормированию. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 25 июня 2021 года № 212.
- 5. Инструкции по организации и проведению экологической оценки согласно Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
- 6. "Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство"
- 7. "Санитарно эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов" утвержденные приказом Министра национальной экономики от 16.03.2015 года № 209.
- 8. СП Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" утв. приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2. Зарегистрирован в Министерстве юстиции Республики Казахстан 11 января 2022 года № 26447.
 - 9. СНиП РК 2.04-01-2017 «Строительная климатология» РК.
 - 10. СНиП РК 04.01-01-2011 «Внутренний водопровод и канализация».
- 11. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө
- 12. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005
- 13. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246. Об утверждении Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду.
- 14. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу «Министра охраны окружающей среды РК от 12 июня 2014 г №221
 в»
- 15. Классификатор отходов. Утвержден приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Сводная таблица предложений и замечаний по Заявлению о намечаемой деятельности Коммунального государственного учреждения "Управление городской мобильности города Алматы"

Дата составления протокола: 14.02.2025г.

Место составления протокола: <u>Департамент экологии по городу</u>
<u>Алматы Комитета экологического регулирования и контроля</u>
Министерства экологии и природных ресурсов Республики Казахстан

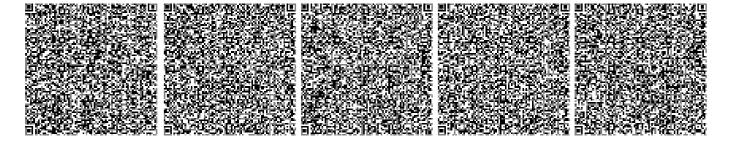
Наименование уполномоченного органа в области охраны окружающей среды: Департамент экологии по городу Алматы Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан

Дата извещения о сборе замечаний и предложений заинтересованных государственных органов: 24.01.2025г.

Срок предоставления замечаний и предложений заинтересованных государственных органов, наименование проекта намечаемой деятельности: 24.01.2025г. — 14.02.2025г., рабочий проект: «Строительство пробивки улицы Севернов кольцо до границы города Алматы в городе Алматы».

Обобщение замечаний и предложений заинтересованных государственных органов:

N.	Запетересованный	Замочение или предложение	Сведения о том
		Service and appropriate	какам образом
	государственный		
	OPENE		STATE STREET, STREET,
			предпожение было
			учтево, шти
			HIDEOTECHNIS (HD)
			которым замечание
			или предложение
			же было учтежо
			ne ontro y meno
		-	
1	Аппарат акима г.	Не представлено.	-
	Апмиты		
2.	Аппират акивиа	Не представлено.	-
	Жетысуского		
	района		
3.	Департимент	В соответствии с подпунктом 1) пункта 1 статьи 19	-
	савитарно	Кодекса Республики Казакстан от 7 июля 2020 года» о	
	запрежаютого печеск	здоровае варода и системе здравоокравивии " (далее -	
	ого контроли	Кодекс) разрешительный документ в области	
	города Алманы	адравоохражения, который может быть для	
	_	осуществления установленной деятельности	
		соответствие объекта высокой эпидемической	
		завливности ворманивами правовым актам в области	
		сажитарио-эпидемиологического благополучил	
		васеления санитарно-эпидемиологического заключения.	
		Объекты высокой эпидемической авачимости	
		определени приказом министра здравософанения	
		Рыскублика: Казакстан от 30 ноября 2020 года N. КР	
		ДСМ-220/2020 (дълее - перетевъ).	


		В связи с этим, в заявлениях об установлений	
		деятельности необходимо уклаль в перечне	
		веобходимость разрешительного документа на объекты	
		высокой эпиделической звичимости.	
		Также в соответствии с подпунктом 2) пункта 4 статьи	
		46 Кодекса государственными органими в сфере	
		сажитарио-эпидемиологического благополучил	
		васеления проводится савитарно-миндемиологическая	
		экспертила проектов вормативной документации по	
		предельно допуствыми выброски в предельно	
		допустимым обросам вредных веществ и физических	
		факторов в окружающую среду, зовам савитарной	
		охражы и санитарно – защитным зонам (далее –	
		проектов вормативной документации).	
		В свою очередь, экспертика проектов порыктивной	
		документации проводится в рамках государственных	
		услуг, предоставляемых в порядке, определенном	
		приказом министра адравоокранения Республики	
		Казакстав от 30 декабря 2020 года № КР ДСМ-336/2020	
		«о некоторых вопросах оказания государственных услуг	
		в сфере савитарно-эпидемикологического благополучил	
		Excenses in	
		Вместе с тем, заявление об оказании услуг не относится к выпосуказанным проектам порыстивной	
		документиции.	
		Таким образом, уклаганизми нерматинизми правования актами не предусмотрена компетенция и функция	
		рассмотрения замеления о деятельности,	
		уставляющей Департаментом.	
4	Балкатт-	Не представлено.	
-		The appropriate teachers.	
	Апакольская		
	Апакольская бассейновая		
	бассейновая		
	бассейновал писпекция по		
	бассейновая инспекция по регулированию		
	бассейновая инспекция по регулированию использования и охране водими ресурсов		
5.	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление	Не представлено.	-
5.	бассейновая инспекция по регупированию использования и охране водими ресурсов Управление экологии и	Не представлено.	-
3.	бассейновая инспекция по регулированию использования и охране водими управление экологии и окружающей	Не представлено.	-
	бассейновая инспекция по регупированию использования и охране водими управление экологии и окружановий среды		-
5.	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление зкологии и окружающей среды Управление	Не представлено. Не представлено.	-
	бассейновая инспекция по регупированию использования и охране водими управление экологии и окружающей среды Управление плинрования и		-
	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление знологии и окружающей среды Управление измирования и урбанистики		-
	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление экологии и окружающей среды Управление илинрования и урбанистики города Альяны		-
6.	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление запление управление измирования и урбанистики города Альяны городского	Не предстявлено.	-
	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление зкологии и окружающей среды Управление извирования и урбанистики города Альяны городского Управление		-
6.	бассейновая инспекция по регулированию использования и охране водимх ресурсов Управление зкологии и охружающей среды Управление плинрования и урбаниспики города Альяны городского Управление градостроительног	Не предстявлено.	-
6.	бассейновая инспекция по регулированию использования и охраме водимх ресурсов Управление экологии и охружающей среды Управление планирования и урбанистики города Альяны городского Управление градостроительног о контроля города	Не предстявлено.	-
6.	бассейновая инспекция по регулированию использования и охраме водими ресурсов Управление экологии и окружающей среды Управление планирования и урбанистики города Альяны городского Управление градостроительног о контроля города Альяны	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление укологии и окружающей среды Управление плипрования и урбанистики города Альяты городского Управление градостроительног о контроля города Альяты Департамент по	Не представлено. Нет замечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и окране управление управление управление управление плицрования и урбанистики городского Управление градостроительног о контроля города Алматы Департамент по управлению	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление укологии и окружающей среды Управление планирования и урбанистики города Альяны города Альяны города Альяны города Альяны города Альяны города Альяны радостроительного о контроля города Альяны Департамент по управлению земетымыми	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и окране управление управление управление управление плицрования и урбанистики городского Управление градостроительног о контроля города Алматы Департамент по управлению	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и охране водинк ресурсов Управление зиологии и окружающей среды Управление плянрования и урбанистики города Альяны городского Управление градостроительног о контроля города Альяны Департемент по управлению земельными ресурсами города Альяны Комитета	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и охране водими ресурсов Управление укологии и окружающей среды Управление плинрования и урбанистики города Альяны городского Управление градостроительног о компроля города Альяны Департамент по управлению земеньямы ресурсами города	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и охране водинк ресурсов Управление зиологии и окружающей среды Управление плянирования и урбанистики города Альяны городакого Управление градостроительног о контроля города Альяны Департемент по управлению земельными ресурсами города Альяны комитела по управлению	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регулированию использования и охране водинк ресурсов Управление зкологии и окружающей среды Управление планирования и урбанистики города Альены городского Управление градостроительног о контроля города Альения Департамент по управлению земельными ресурсами города Альения земельными ресурсами города Альения земельными ресурсами города Альения во управлению земельными	Не представлено. Нет азмечаний и предложений.	-
6.	бассейновая инспекция по регупированию использования и окраже водинк ресурсов Управление зиологии и окружающей среды Управление плянрования и урбанистики города Альяны города Альяны города Альяны города Альяны города Альяны города Альяны ресурсами города Альяны ресурсами города Альяны ресурсами ресурсами ресурсами ресурсами	Не представлено. Нет азмечаний и предложений.	-

	mosticusa		
	Psenvinnon		
	Каракстан		
		•••	
9.	Управление	Не представлено.	-
	эвергетики и		
	водрожабанения		
	города Апматы		
10.	Дапартамент	 Согласно п.1 ст. 65 Земельного Кодекса. 	-
	380,000,000	Республики Казахстан от 20 июня 2003 года, спедует	
	городу Апматы	попользовать землю в соответствии с ее пелевым	
		ENGINEERING CO.	
		2. Согласко п.5 ст.220 Экологического Колекса	
		РК, веобходимо привимень меры по предотвращению	
		последствий (загрязнения, засорения и истощения	
		волими объектов).	
		3. Согласно статыя 338 Кодекса откоды	
		образувание в процессе строительства и измечаемой	
		DESTRUMENCE OTRACIE & SERIAM S COOTSATCINESS C	
		Классификатором откодов, утверждением Приказом	
		и.о. Министра экологии, геопогии и природных	
		ресурсов Республики Казахстан от 6 августа 2021 года	
		No 314 c vigrous roesosazant Konasca.	
		В паких экприн зами, почьенной поверхности	
		в пропессе деятельности обеспечить соблюдение ворм	
		ст. 140 Земенъного кодекса РК.	
		 В цепли окраны земель в процессе деятельности. 	
		обеспечить соблюдение воры ст.238 Кодекса.	
		6. Предусмотреть вледрение мероприятий	
		согласно Приложивия 4 к Кодиксу, а такию	
		предлагаемые меры по предупреждению, исключению и	
		свижению возможных форм неблагоприятного	
	1	воздействия на окружающую среду, а также по	
		устравевию его последствий окрава атмосферного	
		воздука; окрана от воздействия на водиме экосистемы;	
		охрава водими объектов; охрава земель; охрава	
		животного и распитального мира; обращание с	
		отходами, радилировная, биологическая и химическая	
		бенопаскость.	
		*	

И.о. руководителя департамента

Касен Айдана Бекболаткызы

ИП «EcoDelo»

1601349

ЛИЦЕНЗИЯ

25.08.2016 года 02400P

EcoDelo Выдана

ИИН: 930606450249

(полное наименование, местонахождение, бизнес-идентификационный юридического лица (в том числе виостранного юридического лица), орадического лица в том часте висстранного предического лица от орадического лица — в случае отсутствия бизнес-идентификационного вомера у юрадического лица/полностью фималия, имя, отчество (в случае наличия), пединадуельный идентификационный помер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(ваименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстав «О разрешениях и

уведомлениям»)

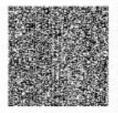
Примечание Неотчуждаемая, класс I

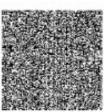
(отчуждаемость, класс разрешения)

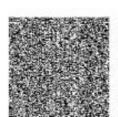
Лицензиар Комитет экологического регулирования, контроля государственной инспекции нефтегазовом комплексе. В

Министерство энергетики Республики Казахстан.

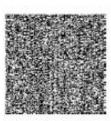
(полное наяменование лицензиара)


Руководитель ЖОЛДАСОВ ЗУЛФУХАР САНСЫЗБАЕВИЧ


(уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


Срок действия липензии


Место выдачи г. Астана

16013491

Страница 1 из 1

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02400Р

Дата выдачи лицензии 25.08.2016 год

Подвид(ы) лицензируемого вида деятельности:

Природоохранное проектирование, нормирование для 1 категория хозяйственной и иной деятельности

(наименование подвида лицевенируемого вида деятельности в соответствии с Законом Республики Клажстви «О разрешениях и уведомлениях»)

Лицензиат ИП EcoDelo

ИИН: 930606450249

(полное наименование, местонохождение, бизисс-идентвфикационный всогер корацического лица (в том числе иностражного коридического лица), бизисс-идентвфикационный номер физика на представленноство иностранного коридического лица — в случае отсутствия бизисс-идентвфикационного номера у коридического лица/полностью фамилия, имя, отчество (в случае валичия), индивидуальный идентвфикационный номер физического лица)

Производственная база

ул. Бауыржан Момышулы, 17

(местонахождение)

Особые условия действия лицеизии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

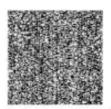
Лицензиар

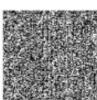
Комитет экологического регулирования, контроля и государственной инспекции в нефтегазовом комплексе. Министерство энергетики Республики Казахстан.

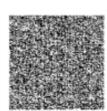
(полное навыенование органа, выдавшего приложение к лицензии)

Руководитель

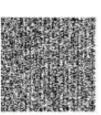
(уполномоченное лицо)


ЖОЛДАСОВ ЗУЛФУХАР САНСЫЗБАЕВИЧ (фанация, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия

Дата выдачи приложения 25.08.2016


Место выдачи г.Астана

Оси крал «Основния одил вик интеревам поброж коллей» ураза-Колекти Регубликания 200 жиля 7 секторым Заве В поброж в причим поброж коллей ураза-Колекти Регубликания 200 жиля 7 секторым Заве В причим в Причим поброж колле

95

Приложение 3. Нетехническое резюме

Краткое нетехническое резюме к Отчет о возможных воздействиях» к рабочему проекту «Строительство пробивки улицы Северное кольцо до границы города» в городе Алматы»

Отчет о возможных воздействиях к рабочему проекту «Строительство пробивки улицы Северное кольцо до границы города» в городе Алматы» разработан в рамках процедуры оценки воздействия на окружающую среду намечаемой деятельности в соответствии с требованиями Экологического кодекса Республики Казахстан от 2 января 2021 года № 400-VI ЗРК.

1) Описание предполагаемого места осуществления намечаемой деятельности, план с изображением его границ:

Объект проектирования расположен в Жетысуском районе города Алматы. По направлению от существующей улицы Северное кольцо до границы города с восточной стороны находится улицы Постышева и Жайсан, с западной стороны находится улица Геологов, в районе проектирования имеются практически все инженерные сети. (Координаты: Начало трассы 43°21'38.3"N, 76°55'25.0", середина трассы 43°21'23.9"N, 76°55'36.2"E, конец трассы 43°21'06.3"N 76°55'42.7"E.)

Трасса проектируемой улицы, предусматриваемой в соответствии с решениями Генерального плана развития г. Алматы на период до 2040 г. и Проекта детальной планировки района проектирования, проходит через селитебную территорию между микрорайонами Кокжиек и Кемел в северном направлении, западнее реки Есентай.

В существующих границах общая протяженность улицы составляет 10,1 км (от ул. Бекмаханова до пр. Рыскулова). Улица имеет направление с севера на юг, в северной части от пробиваемой улицы расположена селитебная территория с жилыми домами и частным сектором.

Ближайшие частные жилые дома расположены на расстоянии 15-32 м от крайней полосы движения (местный проезд, предназначенный для подъезда к жилым домам) и на расстоянии 15-20 м от крайней полосы дороги.

В соответствии с заданием на проектирование улица Северное кольцо отнесена к категории магистральная улица общегородского значения регулируемого движения.

На всем протяжении ул. Северное кольцо имеет по 3 полосы движения в каждом направлении, шириной 3,5 м и 4,0 м.

Памятники, состоящие на учете в органах охраны памятников Комитета культуры РК, имеющие архитектурно-художественную ценность и представляющие научный интерес в изучении народного зодчества Казахстана на территории объекта отсутствуют.

2) описание затрагиваемой территории с указанием численности ее населения, участков, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду, с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов;

Жетысуский район — административно-территориальная единица города Алматы. Образован в 1936 году как Ленинский район. 12 декабря 1995 года был переименован в Жетысуский, численность населения более 166 тыс. человек. Все проекты по улучшению социально экономического развития района основываются на реализации Посланий Президента РК, направленных на рост благосостояния народа, повышение доходов и качества жизни. Учитывая временный характер воздействия на атмосферный воздух, применение рекомендованных проектом мероприятий можно сделать вывод, что в период монтажных работ существенного негативного влияния на здоровье людей в районе производства работ и в ближайших населенных пунктах не произойдет.

Сбросов, участков извлечения природных ресурсов и захоронения отходов проектом не предусмотрено.

- **3) Наименование инициатора намечаемой деятельности, его контактные данные:** КГУ «Управление городской мобильности города Алматы», г. Алматы, Бостандыкский район, Площадь Республики 4. БИН: 161040019460. Контактные данные: тел: +77788011196
 - 4) краткое описание намечаемой деятельности:

Проектируемый объект включает в себя автомобильную дорогу протяженностью, 1,0км, транспортную развязку по типу «труба», мост через реку Есентай, а также переустройство коммуникаций попадающих под полотно дороги.

Согласно генеральному плану г. Алматы и техническому заданию, выданному КГУ «Управление городской мобильности города Алматы» (приложение 2), в соответствии с СН РК 3.01-01-2013 и СП РК 3.01-101-2013* «Градостроительство. Планировка и застройка городских и сельских населенных пунктов», ул. Северное кольцо на участке проектирования классифицируется как магистральная улица общегородского значения регулируемого движения (МУРД), с шириной в красных линиях — 80 метров.

Продолжительность строительства, согласно календарного плана, составила 29 месяцев, в том числе подготовительный период-6 месяцев. Начало строительства 3 квартал (июль) 2025 года. Задел по капитальным вложениям К1п для расчетной продолжительности строительства по годам:

2025 год - 18 %

2026 год -45 %

2027 год -37 %.

Завершение строительно-монтажных работ планируется на ноябрь 2027 года.

Общее количество персонала на период строительства составляет – 147 человек.

За начало трассы проектируемого участка принята точка пересечения с ВЛ220 кВ в северной части мкр. Кокжиек.. Конец трассы ПК 11+50 расположен на ул. Северное кольцо, восточнее моста через реку Есентай. Протяженность пробиваемого участка составляет 1,15 км.

На участке проектирования автодороги в зону строительства попадают кабельная канализация, кабельные и воздушные линии связи, принадлежащие ДЭСД «Алматытелеком», а также воздушные и кабельные линии связи, проложенные по опорам электроснабжения и освещения.

Категория дороги — магистральная улица общегородского значения регулируемого движения, эквивалентная по интенсивности движения дороге Іб технической категории и по ширине полос движения II категории

Количество полос движения -6;

Номер расчетной полосы -1;

Тип дорожной одежды – капитальный;

Срок службы покрытия – 12 лет;

Поперечный профиль покрытия – двускатный;

Ширина полосы движения -3.5м (4,0м крайные для автобусов);

Ширина обочины -3,5м;

Тип местности по увлажнению -I;

Грунт земляного полотна – суглинок легкий, твердый (нулевые места).

При конструировании вариантов дорожных одежд учитывались следующие факторы:

- прочность и надёжность в условиях эксплуатации,
- экономичность и материалоёмкость,
- экологичность при производстве работ и во время эксплуатации;
- использование местных дорожно-строительных материалов и их рациональное размещение в конструкциях, с учётом грунтов в земляном полотне.

Тротуары и велодорожки

В соответствии с требованиями СП РК 3.01-101-2013 «Градостроительство. Планировка и застройка городских и сельских населенных пунктов» и задания на проектирование, вдоль проектируемой магистральной улицы регулируемого движения предусматривается устройство тротуаров для двух направлений движения шириной 3,0м и велодорожки шириной 3,0м.

Тротуары отделены от проезжей части улицы разделительной полосой из зеленых насаждений и бордюрами. Тротуары и велосипедные дорожки запроектированы параллельно проезжей части. Исключения составляют участки подхода к мосту. На сопряжении тротуара и велосипедных дорожек с проезжей частью предусмотрены пандусы для обеспечения движения велосипедистов, маломобильнных групп населения и пешеходов с детскими колясками.

На тротуарах и велодорожках — проектом предусмотрено покрытие из мелкозернистого асфальтобетона, однослойного, толщиной 5 см, на основании из щебеночно-гравийно-песчаной смеси толщиной 12 см, с устройством подстилающего слоя из песчано-гравийной смеси толщиной 15 см в соответствии с таблицей 10 того же СП.

На всем протяжении тротуаров, для маломобильных групп населения, предусмотрены направляющие дорожки из тактильной плитки (направляющая и предупреждающая плитка), уложенная на бетон толщиной 5 см, аналогичные полосы запроектированы и на автобусных остановках.

Автобусные остановки

Для обеспечения функционирования общественного транспорта на проектируемом участке улицы Северное кольцо запроектированы 4 автобусных остановок.

Для обозначения края посадочной площадки устаивается полоса из тактильной плитки, уложенной на бетон толщиной 5 см.

Разделительные полосы пробиваемой улицы и территория в границах красных линий не занятая автомобильной дорогой и ее обустройством озеленяется.

Организация движения представляет собой комплекс мер, способствующих увеличению пропускной способности, обеспечению безопасности участников движения, снижению дорожнотранспортных происшествий, повышению эффективности эксплуатации транспортных средств, уменьшению загазованности воздушного бассейна города. В соответствии с техническими условиями Департамента полиции города Алматы проектируемый участок улицы оборудуется необходимыми обустройствами, обеспечивающими безопасность дорожного движения:

- дорожными знаками;
- разметкой проезжей части дороги;
- светофорными объектами.

Общая протяженность запроектированных тепловых сетей - 179.5м. Прокладка тепловых сетей предусмотрена подземная канальная - трубопроводы тепловых сетей в канале прокладываются на скользящих опорах, с использованием стальных предизолированных труб изготовленных индустриально в заводских условиях с тепловой изоляцией из пенополиуретана в кожухе из жесткого полиэтилена.

Проектом разработан вынос сетей диаметрами 40 мм, 100 мм, 200 мм из под автодороги. Сеть хозяйственно-питьевого запроектирована из труб полиэтиленовых диаметроми 250х14,8 мм и стальной электросварной трубы диаметром 426х7. Глубина заложения трубопроводов принята 2,10 м - 3,30 м от поверхности земли. Перекрывающая запорная арматура ремонтных участков предусмотрены в существующих колодцах по сети.

Проектом разработан вынос самотечной канализации, проходящей в зоне строительства автодороги. Канализационные колодцы запроектированы из сборного железобетона, диаметр колодцев приняты 1500 мм и 2000х2500 мм.

Технические решения по существующему мосту

Мостовой переход через реку Есентай представляет собой однопролётный мост с подходами к нему. Схема моста 1х24.0м.

Полная длина моста по краям открылков –32.1 м.

Габарит моста (Γ -16.5)+3.0+3.0м + (Γ -13.0)+3.0 м по СТ РК 1379-2012. Мост разделен продольным швом шириной 0.2м на два самостоятельных сооружения, шириной - 24,8м и -17.8м. Мост расположен в плане на прямой, а в профиле на продольном уклоне i=0.005.

Таким образом, за начало службы дороги принят первый год службы (планируемый год сдачи дороги в эксплуатацию) – 2027 год

Годовой прирост интенсивности дорожного движения установлен на основании прогноза социальноэкономического развития района строительства (раздел 2.1. записки) и в соответствии с ПР РК 218-04-2014принят -1,04.

Приведенное к легковому автомобилю количество транспортных единиц – 28 360 на 4 полосы движения.

5) краткое описание существенных воздействий намечаемой деятельности на окружающую среду, включая воздействия на следующие природные компоненты и иные объекты:

1. жизнь и (или) здоровье людей, условия их проживания и деятельности;

Проектируемые работы не окажут существенные воздействия на жизнь и здоровье людей, условия их проживания и деятельности, так как ближайшая жилая зона находится на значительном расстоянии.

- 2. биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы): Проектируемые работы не окажут существенные воздействия на биоразнобразие, условия их проживания и деятельности (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы) так как строительные работы являются временными.
- 3. земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации);

В границах пробиваемой улицы Северное кольцо по «красным» линиям существующие земельные участки изымаются для государственных нужд в соответствии с Земельным кодексом Республики Казахстан. Существующие здания и сооружения подлежат сносу.

Согласно землеустроительному проект изъятию подлежат 22 земельных участков, площадь изымаемых земель -5 Га.

Разборка существующих зданий и сооружений, а также дорожных обустройств производится на основании дефектного акта, согласованного с Заказчиком.

Соблюдение регламента работ, осуществление ряда дополнительных технологических решений с целью увеличения надежности работы оборудования и проведения природоохранных мероприятий сведут к минимуму воздействие проектируемых работ на почвенный покров. В целом же воздействие проектируемых работ на состояние почвенного покрова, при соблюдении проектных природоохранных требований, можно принять как локальное, временное, слабое.

4. Воды (в том числе гидроморфологические изменения, количество и качество вод):

На период строительства используется привозная вода питьевого и технического качества. Привозная бутилированная питьевая вода соответствует требованиям Закона Республики Казахстан от 21.07.2007 N 301-3 "О безопасности пищевой продукции" и Техническому регламенту "Требования к безопасности питьевой воды, расфасованной в емкости" утвержденным постановлением Правительства Республики Казахстан от 9 июня 2008 года N 551. Питьевая вода безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу, и иметь благоприятные органолептические свойства. Вода используется на хозяйственно-бытовые и строительные нужды. Питание строителей осуществляется полуфабрикатами. Доставка пищи, будет осуществляться в одноразовой посуде, мытье посуды не предусмотрено. На площадке строительства организуется обмыв подвижной части машин, выезжающих за пределы территории. Пост обмыва включает очистные сооружения, выполнены в соответствии с ТП 503-6-8,86. Сооружения стока в составе: - приемная секция-отстойник; - камера фильтрации с фильтрами из древесной стружки, объемом 0,2 м3. На период строительства используется привозная вода питьевого и технического качества. Проектом предусмотрено пересечение Большого Алматинского канала, р. Ногайсай и р. Жарбулак. Река Сасыкбулак протекает на расстоянии 38 метров от территории строительства. Имеется согласование размещения предприятий и других сооружений, а также условий производства строительных и других работ на водных объектах, водоохранных зонах и полосах №KZ46VRC00017666 от 10.10.2023 г.

При выезде автотранспортного средства со строительной площадки на центральную магистраль оборудуется пункт мойки колес, имеющий твердое покрытие с организацией системы сточной ливневой канализации с септиком и емкостью для забора воды.

5. Атмосферный воздух:

Проведение проектных работ не будет оказывать значительного воздействия на состояние атмосферного воздуха. Возможное воздействие на атмосферный воздух в процессе проведения работ оценивается как незначительное, локальное и непродолжительное.

На период строительства источники загрязнения (временные источники загрязнения атмосферного воздуха):

Ист.№0001. Котлы битумные. При растопке битумного котла используется дизельное топливо. При

этом выделяются следующие вещества: Азота диоксид, Азот оксид, Углерод (Сажа, Углерод черный), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера оксид, Углерод оксид (Окись углерода, Угарный газ).

Ист.№0002. **Передвижная электростанция**. При работе электростанции используется дизельное топливо. При этом выделяются следующие вещества: Азота диоксид, Азот оксид, Углерод (Сажа, Углерод черный), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера оксид, Углерод оксид (Окись углерода, Угарный газ), Бенз/а/пирен, формалдегид, алканы С12-19, в пересчете на С. Организованный источник.

Ист.№0003. Передвижной компрессор. При работе компрессора используется дизельное топливо. При этом выделяются следующие вещества: Азота диоксид, Азот оксид, Углерод (Сажа, Углерод черный), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера оксид, Углерод оксид (Окись углерода, Угарный газ), Бенз/а/пирен, формалдегид, алканы С12-19, в пересчете на С. Организованный источник.

Ист.№6001. Разработка грунта. При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6002. Обратная засыпка грунта. При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6003. Срезка ПРС. При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6004. Устройство щебеночного основания. (ф. 10–20 мм, ф. 20–40 мм). При проведении разгрузочных, выемочно-погрузочных работ в атмосферный воздух неорганизованно выделяются: Пыль неорганическая, содержащая двуокись кремния в %: 70–20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6005. Пересыпка песка. При проведении разгрузочных, выемочно-погрузочных работ песка в атмосферный воздух неорганизованно выделяются: Пыль неорганическая, содержащая двуокись кремния более 70% (динас) (493).

Ист.№6006. Хранение инертных материалов. Пересыпка инертных материалов. При проведении разгрузочных, выемочно-погрузочных работ пгс в атмосферный воздух неорганизованно выделяются: пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6007. Гидраизоляция ж/б битумом. Выделяется неорганизованно загрязняющее вещество: 2754 Алканы C12-19.

Ист.№6008. Сварочные работы (электроды). Ручная дуговая сварка сталей штучными электродами. Неорганизованно выделяются: Железо оксиды, марганец и его соединения, Азота (IV) диоксид, Азот (II) оксид, пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Ист.№6009. Сварочные работы (пропан-бутаном, ацетиленом). Неорганизованно выделяются: Азота (IV) диоксид, Азот (II) оксид.

Ист.№6010. Покрасочные работы. Неорганизованно выделяются: диметилбензол, метилбензол, бутилацетат, пропан-2-он, уайт-спирит.

Ист.№6011.001 Механическая обработка металлов (машины шлифовальные). При проведении механической обработки металлов дрелью электрической в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.002 Механическая обработка металлов (дрели электрические). При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.003 Механическая обработка металлов (станки для резки арматуры. При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.004 Механическая обработка металлов (перфаратор электрический). При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6011.005 Механическая обработка металлов (машины шлифовальные угловые). При проведении механической обработки металлов шлифовальной машиной в атмосферный воздух нерганизованно выделяются: взвешенные частицы.

Ист.№6012. Движение и работа спецтехники. Неорганизованно выделяются: азота диоксид, азот оксид, углерод (Сажа, Углерод черный), сера диоксид, углерод оксид.

Дорожные машины и оборудование находятся на объекте только в том составе, которое необходимо для выполнения технологических операций определенного вида работ. По окончании смены машины перемещаются на площадки с твердым покрытием.

- 6. Сопротивляемость к изменению климата экологических и социально экономических систем: не предусматривается.
- 7. Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и археологические), ландшафты: не предусматривается.
 - 8. взаимодействие указанных объектов: не предусматривается.

6) информация о предельных количественных и качественных показателях эмиссий, физических воздействий на окружающую среду, предельном количестве накопления отходов, а также их захоронения, если оно планируется в рамках намечаемой деятельности.

Срок начала реализации намечаемой деятельности: начало работ: III квартал (июль) 2025 года, окончание работ: IV квартал 2027 год. Продолжительность строительства составляет — 29 месяцев. Срок службы дорожной одежды магистральных улиц общегородского значения в соответствии с градостроительными нормативами (таблица 9 СП РК 3.01-101-2013*), срок службы назначается 18 лет при устройстве цементобетонных дорожных одежд и 12 лет для асфальтобетонных дорожных одежд на щебеночном основании, соответственно, в соответствии с заданием на проектировании и в унификации с типами дорожных одежд города Алматы проектом предусматривается асфальтобетонное покрытие на щебёночном основании со сроком службы — 12 лет с расчетной нагрузкой от транспортных средств А3 (130кН на ось).

Предполагаемый общий выброс на период строительно-монтажных работ с учетом спецтехники (ДВС) – *47,271250268 m/nepuod*.

Предполагаемый общий выброс на период строительно-монтажных работ без учета спецтехники (без ДВС) – $46,509347268 \, m/nepuod$.

Отходы:

В процессе строительства намечаемой производственной деятельности на промышленной площадке предприятия предполагается образование отходов производства и отходов потребления, всего 3 наименования, в том числе:

Опасные отходы – промасленная ветошь;

Неопасные отходы – смешанные коммунальные отходы, огарки сварочных электродов; Зеркальные отходы – не образуются.

На период эксплуатации образование отходов не предполагается.

Лимиты на накопление отходов на период строительства

Наименование отходов	Количество образования, т/период	Передача сторонним организациям, т/период
	2025-2027 гг.	
1	2	5

Всего	46 678,841	46 678,841
в том числе:	46 652,1973	46 652,1973
- отходов производства		
- отходов потребления	26,64375	26,64375
	Опасные отходы:	
Отходы от красок и лаков, содержащие органические растворители или другие опасные вещества 08/0801/08 01 11	11,6864159	11,6864159
Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания защитная одежда, загрязненные опасными материалами	0,04853	0,04853
Всего	11,7349459	11,7349459
	Неопасные отходы:	
Смешанные коммунальные отходы 20/2003/20 03 01	26,64375	26,64375
Отходы сварки 12/1201/12 01 13	0,25612581	0,25612581
Смешанные отходы строительства и сноса	46 640,20618	46 640,20618
Всего	46 667,10606	46 667,10606

7) информация:

1. о вероятности возникновения аварий и опасных природных явлений, характерных соответственно для намечаемой деятельности и предполагаемого места ее осуществления;

Для повышения надежности работы и предотвращения аварийных ситуаций проведение работ в рамках намечаемой деятельности будет выполнено в строгом соответствии с действующими нормами. Одна из главных проблем оценки экологического риска является правильное прогнозирование возникновения и развития непредвиденных обстоятельств, заблаговременное их предупреждение. Очень важно разработать меры по локализации аварийных ситуаций с целью сужения зоны разрушений, оказания своевременной помощи.

Вероятность возникновения данных чрезвычайных ситуаций незначительная. Необходимо соблюдать правила техники безопасности.

2. о возможных существенных вредных воздействиях на окружающую среду, связанных с рисками возникновения аварий и опасных природных явлений;

Технологические решения и меры безопасности, реализуемые при осуществлении данного проекта, обеспечат безопасность работ, гарантируют защиту здоровья населения и окружающей среды, осуществят надлежащее и своевременное реагирование на аварийные ситуации в случае их возникновения.

3. о мерах по предотвращению аварий и опасных природных явлений и ликвидации их последствий, включая оповещение населения;

Меры, снижающие риск возникновения аварийных ситуаций:

- технологический процесс проводится в строгом соответствии с нормативнотехнической документацией, технологическим регламентом и стандартом предприятия;
- все решения и рекомендации по эксплуатации объектов предприятия проводятся в соответствии с техническим проектом;
- систематическое наблюдение за состоянием оборудования и соблюдением технологического режима производственного процесса;
- С целью предотвращения возникновения аварийных ситуаций на предприятии предполагается реализация следующих мер:
 - Техническое обслуживание оборудования по технологическому регламенту.

- Своевременное проведение ремонтно-профилактических работ.

8) краткое описание:

1. мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду;

Мероприятия по охране атмосферного воздуха, водных ресурсов, почвенно-растительного покрова, животного мира изложены в соответствующих разделах настоящего проекта.

2. мер по компенсации потерь биоразнообразия, если намечаемая деятельность может привести к таким потерям;

В целях сохранения биоразнообразия применяется следующие меры:

- охранить биологического разнообразия и целостности сообществ животного мира в состоянии естественной свободы;
- сохранить среды обитания и условий размножения объектов животного мира, путей миграции и мест концентрации животных;
- обеспечить неприкосновенность участков, представляющих особую ценность в качестве среды обитания диких животных;
- не допускать нарушений природоохранного законодательства в отношении видов растений, занесенных в Красную книгу Казахстана, а именно: изъятие из природы, уничтожение, повреждение растений, их частей и мест их произрастания;
 - разработка оптимальных маршрутов движения автотранспорта;
 - запрет неорганизованных проездов по территории;
 - обеспечение максимальной сохранности ценных объектов окружающей среды;
- запрет всех видов охоты и добычи животных любыми способами и средствами, интродукция чужеродных видов растений и животных, разрушение гнезд, нор, логовищ и другие действия, вызвавшие или, которые могут вызвать гибель животных;
- постоянный контроль за соблюдением установленных границ земельного отвода для сохранения почвенно-растительного покрова на прилегающих территориях;
 - соблюдение мер противопожарной безопасности;
- в случае обнаружения редких видов животных на территории намечаемого строительства приостановить работы на соответствующем участке и сообщить об этом уполномоченному органу и предусмотреть мониторинг обнаруженных охраняемых и редких видов фауны;
 - обеспечение максимальной сохранности ценных объектов окружающей среды.
- 3. возможных необратимых воздействий намечаемой деятельности на окружающую среду и причин, по которым инициатором принято решение о выполнении операций, влекущих таких воздействия;

При соблюдении требований при строительно-монтажных работах необратимых воздействий не прогнозируется.

4. способов и мер восстановления окружающей среды в случаях прекращения намечаемой деятельности;

Прекращения намечаемой деятельности не предусматривается, так как намечаемая деятельность имеет социальное значение для района его размещения и г. Алматы в целом.

Реализация намечаемой деятельности окажет положительное влияние на развитие экономики региона и социально-экономического благополучия населения.

На основании вышесказанного, способы и меры восстановления окружающей среды на случай прекращения намечаемой деятельности, в рамках данного отчета, не приводятся.

9) список источников информации, полученной в ходе выполнения оценки воздействия на окружающую среду.

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями от 01.07.2021 г.);
- 3. Земельный Кодекс Республики Казахстан от 20 июня 2003 года, № 442-II ЗРК (с изменениями и дополнениями по состоянию на 06.07.2021 г.).

- 4. Кодекс Республики Казахстан от 07 июля 2020 № 360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 24.06.2021 г.);
- 5. Водный кодекс Республики Казахстан от 9 июля 2003 года, № 481-II ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 6. Лесной Кодекс Республики Казахстан от 8 июля 2003 года, № 477-II ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 7. Закон Республики Казахстан «Об особо охраняемых природных территориях» от 7 июля 2006 года № 175- III ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.).
- 8. Закон Республики Казахстан от 26 декабря 2019 года № 288-VI «Об охране и использовании объектов историко-культурного наследия».
- 9. Закон Республики Казахстан от 23 апреля 1998 года № 219-I «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 25.02.2021 г.).
- 10. Приказ Министра энергетики Республики Казахстан от 15 июня 2018 года № 239 «Об утверждении Единых правил по рациональному и комплексному использованию недр» (с изменениями и дополнениями от 20.08.2021 г.).
- 11. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 22 июня 2021 года № 206 «Об утверждении методики расчета лимитов накопления отходов и лимитов захоронения отходов».
- 12. РНД 211.2.02.09-2004 г. Астана 2005 г. «Методическое указание по определению выбросов загрязняющих веществ в атмосферу из резервуаров».
- 13. РНД 211.2.02.04-2004, Астана, 2005 г. «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок».
- 14. РД 39-142-00 «Методика расчета выбросов вредных веществ в окружающую среду от неорганизованных источников нефтегазового оборудования».
- 15. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ. Приложение №12 к приказу Министра ООС РК от 18 апреля 2008 г. № 100-п.
- 16. Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года №ҚР ДСМ-2 «Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека».
- 17. Приказ Министра здравоохранения Республики Казахстан от 16 июня 2021 года № КР ДСМ-49 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к условиям труда и бытового обслуживания при строительстве, реконструкции, ремонте и вводе, эксплуатации объектов строительства».
- 18. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280. «Об утверждении инструкции по организации проведению экологической оценки».
- 19. Приказ и.о.Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года № 286 «Об утверждении Правил проведения общественных слушаний».
- 20. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года №319 Об утверждении Правил выдачи экологических разрешений, представления декларации о воздействии на окружающую среду, а также форм бланков экологического разрешения на воздействие и порядка их заполнения/
- 21. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 25 июня 2021 года № 212 «Об утверждении Перечня загрязняющих веществ, эмиссии которых подлежат экологическому нормированию».
- 22. Приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 9 августа 2021 года № 318 Об утверждении Правил разработки программы управления отходами.
- 23. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 Об утверждении Классификатора отходов.
- 24. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 19 июля 2021 года № 261 Об утверждении Правил разработки и утверждения лимитов накопления отходов и лимитов захоронения отходов, представления и контроля отчётности об управлении отходами.
 - 25. Приказ Министра экологии, геологи и природных ресурсов РК № 250 от 14.07.2021 года «Об

утверждении Правил разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических.

ЭРА v3.0 ИП "EcoDelo"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на период СМР

Алматы, Пробивка ул. Северное кольцо

Алматы	г, Пробивка ул. Северное кольцо								
Код	Наименование	пдк	пдк		Класс	Выброс	Выброс	Значение	Выброс ЗВ,
загр.	загрязняющего вещества	максималь-	среднесу-	ОБУВ,	опас-	вещества	вещества,	KOB	условных
веще-		ная разо-	точная,	мг/м3	ности	r/c	т/год	(М/ПДК)**а	TOHH
ства		вая, мг/м3	мг/м3				(M)		
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (0.04		3	0.00874	0.2252	5.63	5.63
	диЖелезо триоксид, Железа								
	оксид) /в пересчете на железо/								
	(274)								
	Марганец и его соединения /в	0.01	0.001		2	0.000922	0.01939	47.1901	19.39
	пересчете на марганца (IV)								
	оксид/ (327)								
	Азота (IV) диоксид (Азота	0.2	0.04		2	0.104192	5.37443	584.4591	134.36075
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (0.4	0.06		3	0.0999671	6.815001	113.5834	113.58335
	6)	0.15	0.05			0 010010	0 0 0 0 0 0 1 0	15.5060	45 50604
0328	Углерод (Сажа, Углерод черный)	0.15	0.05		3	0.013949	0.879847	17.5969	17.59694
0000	(583)	٥ ٦	0.05			0 0071700	1 750401	25 1000	25 10000
	Сера диоксид (Ангидрид	0.5	0.05		3	0.0271728	1.759491	35.1898	35.18982
	сернистый, Сернистый газ, Сера								
0337	(IV) оксид) (516) Углерод оксид (Окись углерода,	5	3		4	0.138462	4.93374	1.5648	1.64458
	Угарный газ) (584)	5	3		4	0.130402	4.933/4	1.3040	1.04430
	Фтористые газообразные	0.02	0.005		2	0.000517	0.01209	3.1513	2.418
	соединения /в пересчете на	0.02	0.003		2	0.000317	0.01203	3.1313	2.410
	фтор/ (617)								
	Фториды неорганические плохо	0.2	0.03		2	0.001833	0.02675	0	0.89166667
	растворимые - (алюминия фторид,		0.00			0.002000	0.02070	Ů	0.03200007
	кальция фторид, натрия								
	гексафторалюминат) (Фториды								
	неорганические плохо								
	растворимые /в пересчете на								
	фтор/) (615)								
	Диметилбензол (смесь о-, м-, п-	0.2			3	0.0201	6.201949	31.0097	31.009745
	изомеров) (203)								
0621	Метилбензол (349)	0.6			3	0.03444	1.2561548	2.0936	2.09359133

1	2	3	4	5	6	7	8	9	10
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.1			3	0.00833	0.02492	0	0.2492
1061	Этанол (Этиловый спирт) (667)	5			4	0.00556	0.00851	0	0.001702
1119	2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)			0.7		0.00852	0.007951	0	0.01135857
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.1			4	0.00667	0.24332	2.2262	2.4332
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.03	0.01		2	0.002921	0.20917	52.0774	20.917
1325	Формальдегид (Метаналь) (609)	0.05	0.01		2	0.002921	0.20917	52.0774	20.917
1401	Пропан-2-он (Ацетон) (470)	0.35			4	0.01444	0.51543	1.4167	1.47265714
2732	Керосин (654*)			1.2		0.009917	0.054173	0	0.04514417
2750	Сольвент нафта (1149*)			0.2		0.01586	0.0337	0	0.1685
2752	Уайт-спирит (1294*)			1		0.0556	4.67365	4.6737	4.67365
2754	Алканы C12-19 /в пересчете на	1			4	0.506934821	2.177690468	2.0146	2.17769047
	С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)								
2902	Взвешенные частицы (116)	0.5	0.15		3	0.03357	4.48822	29.9215	29.9214667
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства — глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3	0.1		3	0.185732	6.695803		
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0.04		0.0092	0.4255		
	всего:					1.316470721	47.271250268	1063.471779	524.392542

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) 0.1*ПДКм.р. или (при отсутствии ПДКм.р.) 0.1*ОБУВ;"а" - константа, зависящая от класса опасности ЗВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 ИП "EcoDelo"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на период СМР без ДВС

Алматы, Пробивка ул. Северное кольцо без двс

	ı, Пробивка ул. Северное кольцо б	без двс							
Код	Наименование	ПДК	ПДК		Класс	Выброс	Выброс	Значение	Выброс ЗВ,
загр.	загрязняющего вещества	максималь-	среднесу-	обув,	опас-	вещества	вещества,	KOB	условных
веще-		ная разо-	точная,	мг/м3	ности	r/c	т/год	(М/ПДК) **а	TOHH
ства		вая, мг/м3	мг/м3				(M)		
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (0.04		3	0.00874	0.2252	5.63	5.63
	диЖелезо триоксид, Железа								
	оксид) /в пересчете на железо/								
	(274)								
0143	Марганец и его соединения /в	0.01	0.001		2	0.000922	0.01939	47.1901	19.39
	пересчете на марганца (IV)								
	оксид/ (327)								
0301	Азота (IV) диоксид (Азота	0.2	0.04		2	0.074702	5.23673	565.0674	130.91825
0004	диоксид) (4)	0 4	0.06		2	0 0004645	6 500040	110 1007	110 100010
0304	Азот (II) оксид (Азота оксид) (0.4	0.06		3	0.0784645	6.730843	112.1807	112.180717
0.000	6)	0 15	0.05		2	0 0007756	0.060376	17 0475	17 04750
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		3	0.0097756	0.862376	17.2475	17.24752
0330	Сера диоксид (Ангидрид	0.5	0.05		3	0.020748	1.73285	34.657	34.657
	сернистый, Сернистый газ, Сера								
	(IV) оксид) (516)								
0337	Углерод оксид (Окись углерода,	5	3		4	0.05908	4.51802	1.4456	1.50600667
	Угарный газ) (584)								
0342	Фтористые газообразные	0.02	0.005		2	0.000517	0.01209	3.1513	2.418
	соединения /в пересчете на								
	фтор/ (617)								
0344	Фториды неорганические плохо	0.2	0.03		2	0.001833	0.02675	0	0.89166667
	растворимые - (алюминия фторид,								
	кальция фторид, натрия								
	гексафторалюминат) (Фториды								
	неорганические плохо								
	растворимые /в пересчете на								
	фтор/) (615)								
0616	Диметилбензол (смесь о-, м-, п-	0.2			3	0.0201	6.201949	31.0097	31.009745
0.001	изомеров) (203)	0.6				0 00444	1 0561540	0 0000	0.00250120
0621	Метилбензол (349)	0.6			3	0.03444	1.2561548	2.0936	2.09359133

1	2	3	4	5	6	7	8	9	10
1042	Бутан-1-ол (Бутиловый спирт) (0.1			3	0.00833	0.02492	0	0.2492
	102)								
1061	Этанол (Этиловый спирт) (667)	5			4	0.00556	0.00851		0.001702
1119	2-Этоксиэтанол (Этиловый эфир			0.7		0.00852	0.007951	0	0.01135857
	этиленгликоля, Этилцеллозольв)								
	(1497*)								
1210	Бутилацетат (Уксусной кислоты	0.1			4	0.00667	0.24332	2.2262	2.4332
	бутиловый эфир) (110)								
1301	Проп-2-ен-1-аль (Акролеин,	0.03	0.01		2	0.002333	0.207	51.3761	20.7
	Акрилальдегид) (474)								
1325	Формальдегид (Метаналь) (609)	0.05	0.01		2	0.002333	0.207	51.3761	20.7
1401	Пропан-2-он (Ацетон) (470)	0.35			4	0.01444	0.51543	1.4167	1.47265714
2750	Сольвент нафта (1149*)			0.2		0.01586	0.0337	0	0.1685
2752	Уайт-спирит (1294*)			1		0.0556	4.67365	4.6737	4.67365
2754	Алканы С12-19 /в пересчете на	1			4	0.501054821	2.155990468	1.9966	2.15599047
	С/ (Углеводороды предельные								
	С12-С19 (в пересчете на С);								
	Растворитель РПК-265П) (10)								
2902	Взвешенные частицы (116)	0.5	0.15		3	0.03357	4.48822	29.9215	29.9214667
2908	Пыль неорганическая, содержащая	0.3	0.1		3	0.185732	6.695803	66.958	66.95803
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2930	Пыль абразивная (Корунд белый,			0.04		0.0092	0.4255	10.6375	10.6375
	Монокорунд) (1027*)								
	всего:					1.158524921	46.509347268	1040.255411	518.025752

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) 0.1*ПДКм.р. или (при отсутствии ПДКм.р.) 0.1*ОБУВ;"а" - константа, зависящая от класса опасности ЗВ 2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 ИП "EcoDelo"

Параметры выбросов загрязняющих веществ в атмосферу на период СМР

Алматы, Пробивка ул. Северное кольцо

2 10 11 vi Ci	I DI	пробивка ул. сен	српос	. ICOJIDI	,0									
		Источники выдел	еиня	Число	Наименование	Номер	Высо	Диа-	Параме	етры газовозд	ц.смеси	Коорді	инаты ист	гочника
Про		загрязняющих ве	цеств	часов	источника выброса	источ	та	метр	на вых	коде из ист.в	выброса	на к	арте-схе	ме, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья						
одс		Наименование	Коли	ТЫ		выбро	ника	трубы	ско-	объем на 1	тем-	точечного	о источ.	2-го кон
TBO			чест	В		ca	выбро		рость	трубу, м3/с	пер.	/1-го кон	нца лин.	/длина, ш
			во	год			са,м	М	м/с		οС	/центра г	ілощад-	площадн
			ист.									ного исто	учника	источни
												Х1	Y1	Х2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	_		_											Площадка
001		Котлы битумные	1	1880.	Выхлопная труба	0001	2	0.15	1.24	0.0219127		0	0	
0.01				1005		0000		0 1 5	1 0 4	0 0010105				
001		Электростанции	1	1025.	Выхлопная труба	0002	2	0.15	1.24	0.0219127		0	0	
		передвижные												

	Наименование газоочистных	Вещества по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выбросы	загрязняющих	з веществ	
ца лин. ирина ого ка	установок и мероприятий по сокращению выбросов	рым произво- дится газо- очистка	газо- очист кой,	степень очистки/ мах.степ очистки%	ще-	вещества	r/c	мг/нм3	т/год	Год дос- тиже ния
Y2										ПДВ
16	17	18	19	20	21	22	23	24	25	26
						1				
						Азота (IV) диоксид (Азота диоксид) (4)	0.000532	24.278	0.0036	
					0304	Азот (II) оксид (Азота оксид) (6)	0.0000865	3.947	0.000585	
					0328	Углерод (Сажа, Углерод черный) (583)	0.0000556	2.537	0.000376	
					0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.001308	59.691	0.00885	
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00309	141.014	0.02092	
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0147	670.844	0.0543	
					0304	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0.0191	871.641	0.0706	
					0328	Углерод (Сажа, Углерод черный) (583)	0.00245	111.807	0.00905	
					0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0049	223.615	0.0181	
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01225	559.037	0.0452	

1	2 3	4 5	6	7	8	9	10	11	12	13	14	15
001	Компрессор передвижной			0003	2		1.24			0		

16	17	18	19	20	21	22	23	24	25	26
					1301	Проп-2-ен-1-аль (0.000588	26.834	0.00217	
						Акролеин,				
						Акрилальдегид) (474)				
					1325	Формальдегид (0.000588	26.834	0.00217	
						Метаналь) (609)				
					2754	Алканы С12-19 /в	0.00588	268.338	0.0217	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.0583	2660.558	5.17	
						Азота диоксид) (4)				
						Азот (II) оксид (0.0758	3459.181	6.72	
						Азота оксид) (6)				
						Углерод (Сажа,	0.00972	443.578	0.862	
						Углерод черный) (583)				
					0330	Сера диоксид (0.01944	887.157	1.724	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0000	IV) оксид) (516)	0 0106	0015 000	4 21	
						Углерод оксид (Окись	0.0486	2217.892	4.31	
						углерода, Угарный				
						газ) (584)	0 000000	106 460	0 007	
						Проп-2-ен-1-аль (0.002333	106.468	0.207	
						Акролеин,				
						Акрилальдегид) (474) Формальдегид (0.002333	106.468	0.207	
						Формальдетид (Метаналь) (609)	0.002333	100.400	0.207	
						метаналь) (609) Алканы С12-19 /в	0.02333	1064.679	2.07	
					2/34	пересчете на С/ (0.02333	1004.079	2.07	
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
						70011) (10)				

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Разработка грунта	1	6960		6001	2					0	0	1
001		Обратная засыпка	1	6960		6002	2					0	0	1
001		ПРС	1	1600		6003	2					0	0	1
001		Устройство	1	6960	Неорганизованный	6004	2					0	0	1

16	17	18	19	20	21	22	23	24	25	26
1	1 /	10	19	20	2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0.0384	24	0.802	
1					2908	казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец,	0.0384		0.802	
1					2908	доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль	0.002354		0.0113	
1						щементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая,	0.0286		1.154	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		щебеночного основания			источник									
001		Пересыпка песка	1		Неорганизованный источник	6005	2					0	0	1
001		Хранение инертных материалов	1		Неорганизованный источник	6006	2					0	0	1
001		Гидраизоляция ж/б битумом	1		Неорганизованный источник	6007	2					0	0	1

16	17	18	19	20	21	22	23	24	25	26
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					2908	Пыль неорганическая,	0.0354		0.74	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					2908	Пыль неорганическая,	0.0418		3.169	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1						Алканы C12-19 /в	0.477724821		0.085990468	
						пересчете на С/ (

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Сварочные работы (1	30	Неорганизованный источник	6008	2					0	0	1
		электроды)												

16	17	18	19	20	21	22	23	24	25	26
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					0123	Железо (II, III)	0.00874		0.2252	
						оксиды (диЖелезо				
						триоксид, Железа				
						оксид) /в пересчете				
						на железо/ (274)				
					0143	Марганец и его	0.000922		0.01939	
						соединения /в				
						пересчете на марганца				
						(IV) оксид/ (327)				
						Азота (IV) диоксид (0.0012		0.02509	
						Азота диоксид) (4)				
						Азот (II) оксид (0.000195		0.004076	
						Азота оксид) (6)				
						Углерод оксид (Окись	0.00739		0.1871	
						углерода, Угарный				
						газ) (584)				
						Фтористые	0.000517		0.01209	
						газообразные				
						соединения /в				
						пересчете на фтор/ (
					l l	617)				
						Фториды	0.001833		0.02675	
						неорганические плохо				
						растворимые - (
						алюминия фторид,				
						кальция фторид,				
						натрия				
						гексафторалюминат) (
						Фториды				
						неорганические плохо				
					l l	растворимые /в				
						пересчете на фтор/) (

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001	раб бут	рочные оты (пропан- аном,	1		Неорганизованный источник	6009	2					0	0	1
001	Пок	тиленом) грасочные готы	1		Неорганизованный источник	6010	2					0	0	1

16	17	18	19	20	21	22	23	24	25	26
						615)				
					2908	Пыль неорганическая,	0.000778		0.017503	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1						Азота (IV) диоксид (0.01467		0.03804	
						Азота диоксид) (4)	0 00000		0 006100	
						Азот (II) оксид (0.002383		0.006182	
1						Азота оксид) (6)	0 0001		6 001040	
1						Диметилбензол (смесь	0.0201		6.201949	
						о-, м-, п- изомеров) (203)				
					0621	(203) Метилбензол (349)	0.03444		1.2561548	
						Бутан-1-ол (Бутиловый	0.00833		0.02492	
						спирт) (102)	0.00033		0.02492	
						Этанол (Этиловый	0.00556		0.00851	
						спирт) (667)	0.0000		0.00001	
						2-Этоксиэтанол (0.00852		0.007951	
						Этиловый эфир				
						этиленгликоля,				
						Этилцеллозольв) (
						1497*)				
					1210	Бутилацетат (Уксусной	0.00667		0.24332	
						кислоты бутиловый				
						эфир) (110)				
						Пропан-2-он (Ацетон)	0.01444		0.51543	
						(470)				
					2750	Сольвент нафта (1149*	0.01586		0.0337	
)				

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Механическая обработка металлов (машины шлифовальные)	1		Неорганизованный источник	6011	2					0	0	1
		Механическая обработка металлов (дрели электрические)	1	312.8										
		Механическая обработка металлов (станки для	1	4894.										
		резки арматуры) Механическая обработка металлов (перфаратор электрический)	1	257.2										
		Механическая обработка металлов (машины шлифовальные угловые)	1	86.98										
001		Движение и работа спецтехники	1	960	Неорганизованный источник	6012	2					0	0	1

16	17	18	19	20	21	22	23	24	25	26
						Уайт-спирит (1294*)	0.0556		4.67365	
					2902	Взвешенные частицы (0.01217		3.468	
1					2902	116) Взвешенные частицы (0.0214		1.02022	
_					2302	116)	0.0214		1.02022	
					2930	Пыль абразивная (0.0092		0.4255	
						Корунд белый,				
						Монокорунд) (1027*)				
1					0201	7	0 01470		0 0024	
1						Азота (IV) диоксид (Азота диоксид) (4)	0.01479		0.0834	
						Азота диоксид) (4) Азот (II) оксид (0.0024026		0.013558	
						Азота оксид) (6)	0.0021020		0.01000	
					0328	Углерод (Сажа,	0.0017234		0.008421	
						Углерод черный) (583)				
						Сера диоксид (0.0015248		0.008541	
						Ангидрид сернистый,				
		1		ĺ		Сернистый газ, Сера (

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

16	17	18	19	20	21	22	23	24	25	26
						IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.067132		0.37052	
						Керосин (654*)	0.009917		0.054173	

УТВЕРЖДАЮ

Врио руководителя Управления городской мобильности г. Алматы

Телибаев С.Т.

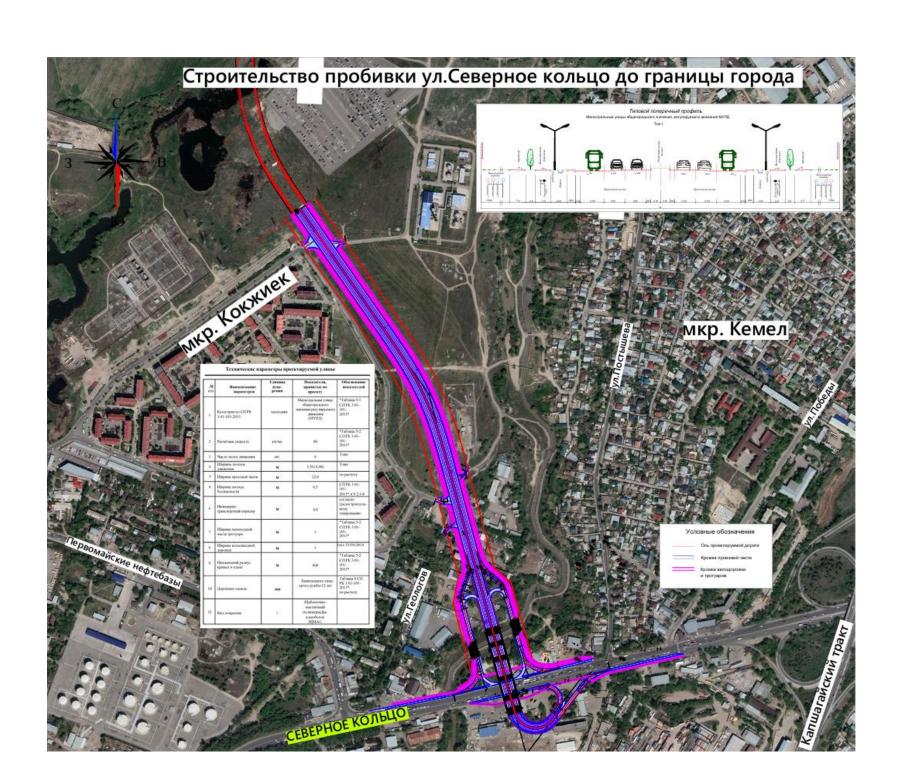
ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ

«Строительство пробивки ул.Северное кольцо до границы города»

1	Основание для	Договор о государственных закупках № 103 от 2					
	проектирования:	сентября 2022 года					
2	Заказчик:	КГУ "Управление городской мобильности города					
-	Samuel	Алматы".					
3	Наименование	«Строительство пробивки ул.Северное кольцо до					
	объекта:	границы города»					
4	Стадийность	Рабочий проект.					
•	проектирования:	Таоочин проект.					
5	Сроки выпуска:	В соответствии с договором					
6	Нормы	СН РК 3.03-01-2013 и СП РК 3.03-101-2013					
•	проектирования.	«Автомобильные дороги»;					
	просилирования	СН РК 3.01-01-2013 и СП РК 3.01-101-2013*					
		«Градостроительство. Планировка и застройка					
		городских и сельских населенных пунктов»;					
		СН РК 1380-2017 «Мостовые сооружения и					
		водопропускные трубы на автомобильных дорогах.					
		Нагрузки и воздействия»;					
		СТ РК 1413-2005 «Дороги автомобильные и железные					
		Требования по проектированию земляного полотна»;					
		и другими нормативами, действующими в РК.					
7	Границы	В границах красных линий от существующей					
	проектирования.	ул.Северное кольцо до границы города Алматы.					
		Протяженность проектируемого участка улицы					
		уточнить при проектировании.					
8	Особые условия	Сейсмичность района строительства согласно карты					
	строительства	общего сейсмического районирования РК – 9 баллов в					
		соответствии с СП РК 2.03-30-2017*. Сейсмичность					
		площадки строительства - уточнить по грунтовым					
		условиям при проведении инженерно-геологических					

9	Необходимость	изысканий. Стесненные городские условия эксплуатации в существующей плотной застройке. Выполнить комплексные инженерно-геодезические, инженерно-геологические, инженерно-гидрологические изыскания и лесопатологическое обследование и инвентаризацию зеленых насаждений. Определить необходимый снос жилья, строений и зеленых насаждений. Выполнить обследование существующие искусственных сооружений на предмет их дальнейшего использования. Категория проектируемой и примыкающих улиц и дорог в соответствии СП РК 3.01-101-2013*: ул. Северное кольцо - Магистральная улица общегородского значения регулируемого движения (МУНД) со следующими параметрами: - разделительная полоса -4 м; - полоса безопасности — 0,5 м; - количество полос движения — 6; - ширина проезжай части 23м (2х0,5+4х3,50+2х4,0);
		 ширина тротуаров 3,0 м; ширина велосипедной дорожки 3,0 м; дорожная одежда капитального типа с покрытием из щебеночно-мастичного асфальтобетона (ЩМА); расчет конструкция дорожного одежды принять по нагрузке –A2.
11	Основные требования	Запроектировать ул. Северное кольцо в границах проектирования с установкой бортового камня марки ГП по краям проезжей части и с учетом следующего: - Обеспечить безопасность движения транспортных средств применением нормативных параметров плана, продольного профиля улицы в соответствии с действующими нормативами РК с установкой обустройств; - На пересечении проектируемой ул.Северное кольцо и существующей улицы предусмотреть транспортную развязку в разных уровнях, в соответствии с

	0.0 / CTT DV6.2 01 101 2012*.
	требованиями п.8.2.1 СП РК 3.01-101-2013*;
	- Запроектировать водоотвод с проезжей части и
	продольный водоотвод;
	- Предусмотреть устройство автобусных остановок для
	общественного транспорта с автопавильонами с учетом
	доступности для маломобильных групп населения.
	- Тротуары и велосипедные дорожки на всем
	протяжении улицы;
	- Искусственные сооружения – капитального типа по
	нормам СП РК 3.03-112-2013 «Мосты и трубы». При
	необходимости, в местах резкого перепада высот,
	запроектировать подпорные стенки. Схемы мостов и
	диаметры труб уточнить на этапе проектирования.
	 Электроосвещение на всем протяжении улицы;
	- Переустройство и защиту пересекаемых инженерных
	сетей и коммуникаций;
	Озеленение территории в границах проектирования
	- Обустройство дороги;
	- Разработать землеустроительный проект по
	изымаемым земельным участкам.
Тборония и объем	Разработать проект по организации строительства
	(ПОС) и схему организации движения транспорта на
	период строительства с минимально возможным
	нарушением существующей транспортной схемы;
	Предусмотреть при строительстве использование
	современных строительных материалов (по
	возможности изготовленных на территории РК)
Стоимость	Сметную документацию разработать в установленном
строительства:	порядке в соответствии с Государственным
	нормативом по определению сметной стоимости
	строительства в Республике Казахстан, утвержденным
	приказом Комитета по делам строительства, жилищно
	коммунального хозяйства и управления земельными
	ресурсами Министерства национальной экономики
	14 5 2017 года №249-и
	Республики Казахстан от 14 ноября 2017 года №249-н
	Республики Казахстан от 14 нояоря 2017 года №249-и на основании государственных сметных нормативов для г. Алматы и принятых проектных решений.

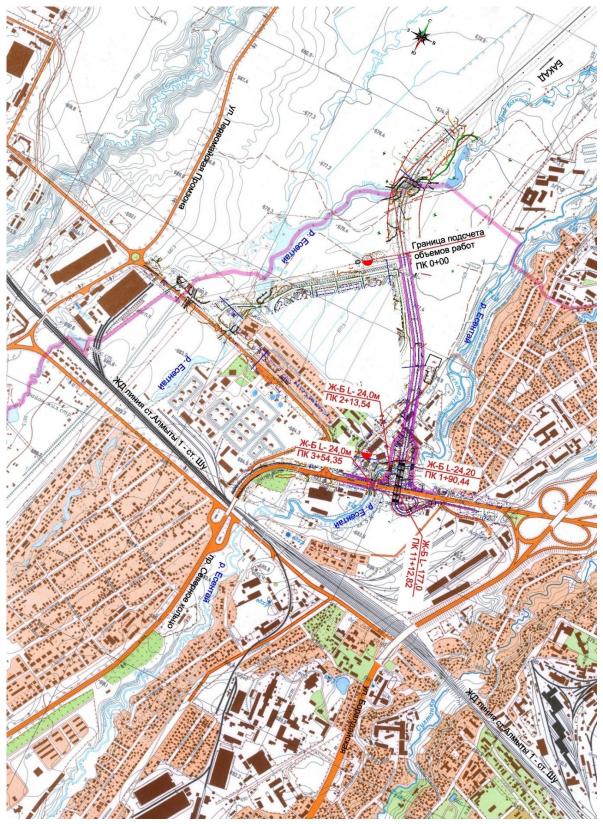
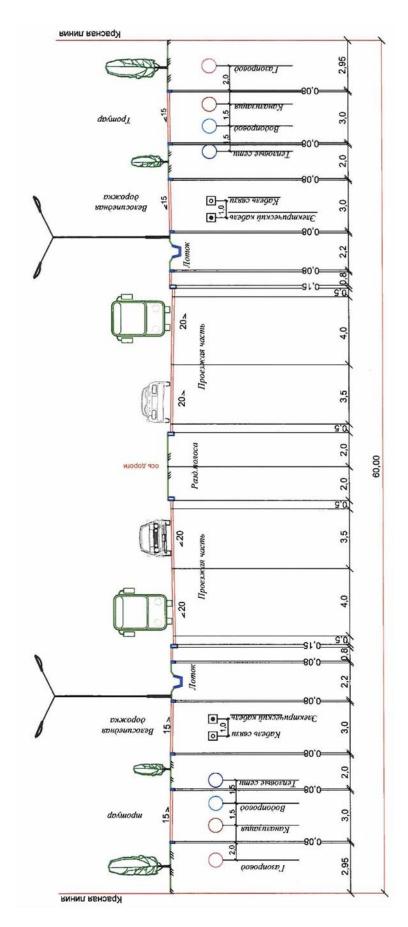
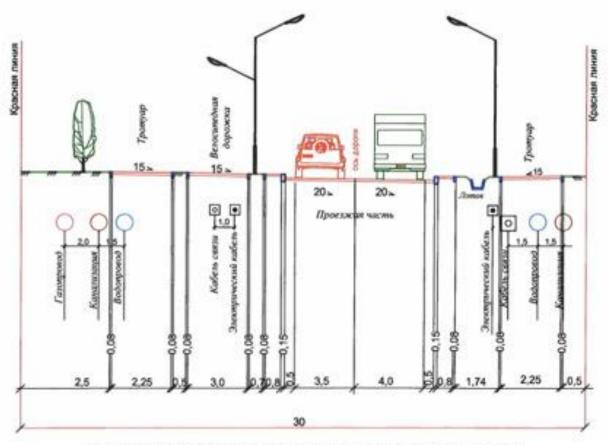

		Сметную документацию составить ресурсным методом с использованием программного комплекса ABC в текущих ценах с переходом на цены расчетного срока строительства (2023-2024 годы).
		Стоимость основных материалов и конструкций определить по РСНБ РК 2022, ССЦ 04.2022. Оборудование и материалы, отсутствующие в сборниках цен принять согласно Приказу председателя
		Комитета по делам строительства и жилищно- коммунального хозяйства Министерства по инвестициям и развитию Республики Казахстан №8-НК от 25.01.2022 года п.п.61.66 по утвержденному Заказчиком, прилагаемому перечню оборудования и
		материалов.
14	Исходные данные, выдаваемые заказчиком	Заказчиком выдаются следующие исходные данные: - архитектурно-планировочное задание (АПЗ); - технические условия на подключение к источникам инженерного и коммунального обеспечения и переустройство инженерных сетей и коммуникаций;
		- поперечные профили дорог и улиц согласно генеральному плану г. Алматы; - выкопировка из проекта детальной планировки (ПДП); - исходные данные для составления смет.
15	Согласования	Согласовать с заказчиком и Управлением городского планирования и урбанистики эскизный проект с типовыми поперечными профилями улицы. Для общественного рассмотрения выполненных работ готовить демонстрационные материалы и презентацию на бумажном носителе и в электронном формате. Рабочий проект согласовать с КГУ «Управление городского планирования и урбанистики города Алматы», Управлением административной полиции, и др. организациями.
16	Требование к экспертизе рабочего	Оплату прохождения государственной экспертизы осуществляет заказчик. Проектная организация — автор проекта обязана обеспечить сопровождение рабочего проекта (своевременно исправлять замечания по рабочему

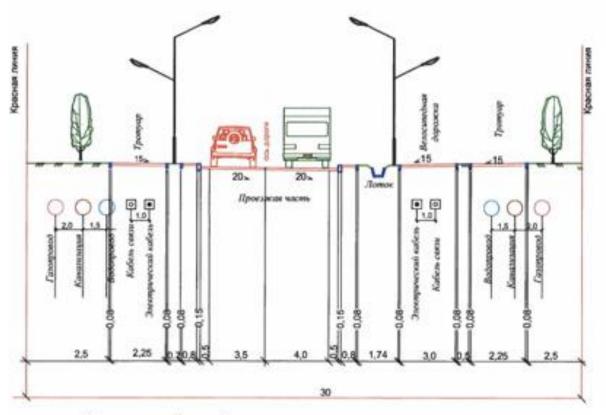
		проекту) в государственной экспертизе. В случае отказа сопровождения рабочего проекта или несвоевременного исправления замечаний комплексной вневедомственной экспертизы, будут приняты меры в судебном порядке в соответствии с Законодательством Республики Казахстан.
17	Количество экземпляров представляемых Заказчику	Проектно-сметную документацию предоставить на бумажном и электронных носителях — по 4 экз, 4 экземпляра в электронном виде.

Заказчик оставляет за собой право внесения изменений и дополнений в данное техническое задание.

Руководитель отдела развития дорожной инфраструктуры

Иш 11 А. Желдикбаев


Рис. 1.1. Схема района проектирования

Поперечный профиль на совмещенном земляном полотне Тип 1

Поперечный профиль на раздельном земляном полотне Тип 2 правая сторона проезжей части

Поперечный профиль на раздельном земляном полотне Тип 3 левая сторона проезжей части

АЛМАТЫ ҚАЛАСЫНЫҢ ӘКІМДІГІ

АКИМАТ ГОРОДА АЛМАТЫ

клупы 2021 ж. 16 кариша

постановление м 4/581

горад Админа

Алматы қаласының аумағында құрылыс салу, қайта жаңғырту және абаттандыру туралы

Казақстан Республикасының «Қазақстан Республикасындағы сәулет, қала құрылысы және құрылыс қызметі туралы» Запының 25 бабы 1 тармағының 12) тармақпасына сәйкес, Алматы қаласының әкімдігі ҚАУЛЫ ЕТЕДІ:

- Казақстан Республикасының зациамасымен белгіленген тәртіпте осы каулының қосымшасына сәйкес 10 (он) объектінің кұрылысын салу, құрылыстарды, инженерлік және көлік коммуникацияларын қайта жаңғырту, сондай-ақ абаттандыру туралы шешім кабылдансын.
- Алматы қаласы Қалалық жоспарлау және урбанистика басқармасы Қазақстан Республикасының заңнамасымен белгіленген тәртіпте осы қаулыдан тумидайтын шараларды қабылдасын.
- Осы каулының орындалуын бакылуу Алматы каласы әкімінің орынбасары С.Д. Құсайыновқа жүктерсін.

Алматы қаласының әкімі

Б. Сагыштвев

АЛМАТЫ ҚАЛАСЫНЫҢ ӘКІМДІГІ

АКИМАТ ГОРОДА АЛМАТЫ

КАУЛЫ 16 ноября 2021г. постановление » 4/381

О застройке, реконструкции и благоустройстве территории города Алматы

В соответствии с подпунктом 12) пункта 1 статьи 25 Закона Республики Казахстви «Об архитектурной, градостроительной и строительной деятельности в Республике Казахства», акимат города Алматы ПОСТАНОВЛЯЕТ:

- Пранять решение о застройке, реконструкции сооружений, инженерных и транспортных коммуникаций, а также благоустройстве
 (десять) объектов в установленном законодательством Республики Казахстви порядке, согласно приложению к настоящему постановлению.
- Управлению городского планирования и урбанистики города Алматы в установленном законодательством Республики Казакстан порядке принять меры, вытекающие из настоящего постановления.

 Контроль за исполнением настоящего постановления возложить на заместители акима города Алматы Кусайнова С.Д.

Аким города Алматы

Б. Сагинтаев

Алматы қаласының салуға, қайта жанғыртуға, сондай-ақ абаттандыруға жататын құрылыстары, инженерлік және келік коммуникациялары

No.	Нысанның атауы	Олшем бірлігі	Саны
1	Қажымұқан көшесін Назарбаев даңғылынан Сейфуллан даңғылына дейін Алдар Косе көшесін қайта жаңғырту мен қоса ұзарту	KM	8,0
2	Мұқанов көшесін Мақатаев көшесінен Райымбек даңғылы мен Бөкейханов көшесінің қиылысындағы көлік жолайрығына дейін ұларту	KM	0,6
3	Райымбек данғылын Жетісу көшесінен Шығыс айналық автомобиль жолына дейн ұзарту	КМ	2,5
4	Солтүстік айналма көшесін қала шекарасына дейін ұзарту	KM.	1,2
5	Хмельницкий көшесін «Қайрат» шағын ауданынан Құлжа тас жолына дейін ұзарту	KM	2
6	Тілендиев кошесін Рысқұлов данғылынан кала цвекарасына дейін ұзарту	E34	10
7	Түрксіб ауданы, «Маяк» шағын ауданындағы жолдардың құрылысы	KM	15
8	Түрксіб ауданы, Ержанов кошесі болындағы теміржолдар арқылы жерүсті жану жүргіншілер өткелінің құрылысы	дана	1
9	Алматы қаласының жол қозғалысын басқарудың автоматтандырылған жүйесінің кұрамына бейінді басқару рекимінде восу арқылы жиырма бес реттелмелі жану жүргіншілер өткеліп салу	дана	2.5
10		дана	16

That & Flavour Sweet

Приложение к постановлению акимата города Алматы от « 16 » но ябум 2021 года № 4/581

Сооружения, инженерные и транспортные коммуникации города Алматы, подлежащие строительству, реконструкции, а также благоустройству

M	Наименование объекта	Единица измерения	Количество
1	Пробивка улицы Кажымукана от проспекта Назарбаема до проспекта Сейфуллина с учетом реконструкции улицы Алдар Косе	KM	8,0
2	Пробивка улицы Муканова от улицы Макатаева до транспортной развязки на пересечении проспекта Райымбека с улицей Бокейханова	KM	0,6
3	Пробивка проспекта Райымбека от улицы Жетысуйской до Восточной объездной автомобильной дороги	KM	2,5
4	Пробивка улицы Северное кольцо до границы города	KM	1,2
5	Пробивка улицы Хмельницкого ет микрорайона «Кайрат» до Кульджинского тракта	KM	2
6	Пробивка улицы Тлендиева от проспекта Рыскулова до границы города	км	10
7	Строительство дорог в микрорайоне «Маяк», в Турксибском районе	км	15
8	Строительство надземного пешеходного перехода через жезелю-дорожные пути по улище Ержанова, в Турксибском районе	штук	1
9	Строительство двадцати пяти регулируемых пешеходных переходов с включением в состав автоматизированной системы управления дорожным движением города Алматы в режиме адаптивного управления	штук	25
10	The state of the s	штук	16

Alud & Berner Home

МАТЕРИАЛЫ

инвентаризации и лесопатологического обследования зеленых насаждений по объекту: «Строительство пробивки ул. Северное кольцо до границы города»

Руководитель КГУ «Управление городской мобильности г.Алматы»

Телибаев С.Т

ИП «Green-Balance»

Әділбай А.Т.

Пояснительная записка

ВНИМАНИЕ!

Данные материалы инвентаризации и лесопатологического обследования зеленых насаждений не являются основанием для вырубки и санитарной вырубки, без оформления разрешения в уполномоченном органе в области работы с зеленым Фондом (Управление экологии и окружающей среды города Алматы).

Административный район города: Жетысуский

Наименование объекта: «Строительство пробивки ул. Северное кольцо до границы города».

Категория насаждений: специального назначения Заказчик: КГУ «Управление городской мобильности

г.Алматы»

Исполнитель: ИП «Green-Balance»

Работы по инвентаризации и лесопатологическому обследованию зеленых насаждений на территории «Строительство пробивки ул. Северное кольцо до границы города», выполнены силами специалистов ИП «Green- Balance».

Работы по обследованию зеленых насаждений выполнены в полном соответствии с «Инструкцией по порядку проведения и оформления материалов инвентаризации и лесопатологического обследования зеленых насаждений г.Алматы» от 2006г. (далее Инструкция) и «Правил содержания и защиты зеленых насаждений города Алматы», утвержденных решением XXXIII сессии маслихата города Алматы IV созыва от 16 октября 2018 года №1504 (далее Правила) с целью получения данных по объему компенсационных восстановительных работ.

Согласно требованиям Правил содержания и защиты зеленых насаждений города Алматы, попадающих под вынужденный снос, необходимо проведение инвентаризации и лесопатологического обследования зеленых насаждений с учетом видового состава, количественного и качественного состояния, возраста и диаметра.

Ситуационный план заказчиком предоставлен. На план нанесены все обследованные деревья, кустарники с соответствующей нумерацией.

Согласно классификации, предусмотренной Инструкцией (2006г.), все зеленые насаждения города разделены на три категории: насаждения общего пользования, ограниченного пользования и специального назначения.

Насаждения, учтенные при инвентаризации данной территории, относятся к категории насаждений специального назначения (таблица№1).

Насаждения специального назначения — насаждения вдоль улиц, магистралей и проспектов от дорожного полотна, тротуара до границ землепользователя, зоологические сады (парки), парки-выставки, кладбищах, питомники и оранжереи, полоса отвода железных и автодорог (на границах города).

Таблица №1 Распределение по категориям насаждений

N₂	-	Категории насаждений	-
п/п	Порода	Специального назначения	Всего, шт.
1	2	3	4
	Į.	Іревесные породы	
1	Акация	6	6
2	Береза	3	3
3	Вишня	1	1
4	Вяз приземистый	551	551
5	Вяз шершавый	5	5
6	Ду6	2	2
7	Ель	2	2
8	Ива	53	53
9	Катальпа	31	31
10	Клен	136	136
11	Лох	148	148
12	Opex	1	1
13	Сумах	5	5
14	Тополь	3	3
15	Урюк	8	8
16	Черешня	6	6
17	Яблоня	52	52
18	Ясень	4	4
	Итого, шт.	1017	1017
	Kyc	тарниковые породы	
1	Сирень	3	3
	Итого, шт.	3	3

Примечание: 23 пней

Инвентаризация зеленых насаждений, произрастающих на территории обследованного участка, проведена методом натурной таксации (по деревный перечет) с нанесением на картографическую основу месторасположения каждого дерева, куртины, рядовой посадки, кустарников и т.п.

При описании каждого дерева определялись следующие таксационные показатели: порода, возраст, высота, диаметр, наличие болезней и вредителей, санитарное состояние дерева и козяйственные мероприятия, требуемые на момент обследования. При этом санитарное состояние объекта определялось посредством коэффициента состояния (жизнеспособности)объекта (КСО) - качественное состояние зеленых насаждений, определяющее жизнеспособность предлагаемого к вынужденному сносу, санитарной рубке объекта, его потенциальную способность к дальнейшему функционированию.

Подробное таксационное описание каждого дерева и кустарника приведено в Приложении №1 «Таксационное описание».

В результате проведенной инвентаризации учтено и описано:

1017 деревьев;

- 3 кустарника;
- 3694 кв.м. дикорастущей поросли;
- 53 кв.м.живой изгороди;
- 23 пней.

Распределение насаждений по породному составу приведено в Таблице №2, из которой видно, что основным, образующим насаждением, породой на обследованной территории является: вяз приземистый — 406 шт. (51 %).

Распределение насаждений по породному составу приведено в Таблице №2.

Таблица №2 Распределение насаждений по породам

№	Порода	Количество	% от общего					
п/п		деревьев, шт.	количества					
1	2	3	4					
	Древесные породы							
1	Акация	6	1					
2	Береза	3	1					
3	Вишня	1	1					
4	Вяз приземистый	551	54					
5	Вяз шершавый	5	1					
6	Ду6	2	1					
7	Ель	2	1					
8	Ива	53	5					
9	Катальпа	31	3					
10	Клен	136	13					
11	Лох	148	15					
12	Opex	1	1					
13	Сумах	5	1					
14	Тополь	3	1					
15	Урюк	8	1					
16	Черешня	6	5					
17	Яблоня	52	1					
18	Ясень	4	1					
	Итого, шт.	1017	100					
	%	100	100					
	K	устарниковые породы						
1	Сирень	3	100					
	Итого, шт.	3	100					

Для распределения деревьев и кустарников по группам возраста приняты возраста спелости в разрезе пород, приведенные в Инструкции 2006 года.

Возрастная карактеристика насаждений, произрастающих на территории обследованного участка, приведена в Таблице №3, из которой видно, что 659 экземпляров представлено молодняками, 331 экземпляра средневозрастными, 5 экземпляров приспевающим, 3

экземпляра спелыми, 19 экземпляров перестойными. Кустарники представлены 3 экземпляра представлены молодняками.

Таблица №3 Распределение насаждений по группам возраста

		Группа возраста							
№ п.п	Порода	Молодня- ки	Средневоз растные	Приспе вающие	Спелые	Перестой ные	Всего, шт.		
1	2	3	4	5	6	7	8		
	Древесные породы								
1	Акация	6					6		
2	Береза	3					3		
	Вишня	1					1		
3	Вяз приземистый	311	215	3	3	19	551		
4	Вяз шершавый	2	3				5		
5	Дуб	2					2		
	Ель	2					2 53		
6	Ива	42	11				53		
7	Катальпа	31					31		
8	Клен	132	4				136		
9	Лох	51	95	2			148		
10	Opex	1					1		
11	Сумах	5					5		
12	Тополь	3					3		
13	Урюк	8					8		
14	Черешня	3	3				6		
15	Яблоня	52					52		
16	Ясень	4					4		
	Итого, шт.	659	331	5	3	19	1017		
Кустарниковые породы									
1	Сирень		3				3		
	Итого, шт.		3				3		

Средняя высота древесных насаждений, произрастающих на территории обследованного участка — $8{,}05\,$ м. Кустарниковых насаждений — $2\,$ м.

Средняя высота основных, образующих древесных насаждений, пород равна: вяз приземистый -9.5 м. Кустарниковых насаждений: сирень -2 м.

Таблица №4 Распределение насаждений по группам высот

30		Группа высот, м						
№ п.п	Порода	0,2-4,0	4,1-9,0	9,1-15,0	15,1-	20,1 и	Всего,	
11.11		0,2-4,0	4,1-9,0	9,1-13,0	20,0	выше	ш1.	
1	2	3	4	5	6	7	8	
Древесные породы								
1	Акация	4	1	1			6	
2	Береза	1	2				3	

6

3	Вишня	1					1	
4	Вяз приземистый	130	131	262	28		551	
5	Вяз шершавый		2	2	1		5	
6	Ду6	2					2	
7	Ель	2					2	
8	Ива	16	25	12			53	
9	Катальпа	16	15				31	
10	Клен	9	53	74			136	
11	Лох	49	78	21			148	
12	Opex	1					1	
13	Сумах	5					5	
14	Тополь		3				3	
15	Урюк	5	3				8	
16	Черешня	6					6	
17	Яблоня	46	6				52	
18	Ясень		4				4	
	Итого, шт.	293	323	372	29		1017	
	Кустарниковые породы							
1	Сирень	3					3	
	Итого, шт.	3					3	

Общая картина распределения насаждений по диаметру ствола на высоте 1,3 м приведена в Таблице №5 настоящей записки, из которой видно, что средний диаметр древесных насаждений — 18,2 см. Кустарниковых насаждений — 2,6 м.

Средний диаметр основных, образующих насаждений, пород равен: вяз приземистый — 23,06 см. Кустарниковых насаждений: сирень — 2,6 м.

Санитарное состояние деревьев и кустарников на обследованной территории определялось исходя из их фактических (качественных) характеристик с применением КСО (коэффициента состояния объекта) следующими показателями:

Здоровые (КСО-1) - без признаков ослабления с нормальным развитием и без повреждений (нормальное облиствление кроны и высокая декоративность, интенсивный прирост побегов, вредители и болезни отсутствуют). По возрастной характеристике это в основном молодые и средневозрастные насаждения.

Ослабленные (КСО-2) - деревья и кустарники с незначительными повреждениями или с однобоким развитием кроны, средняя декоративность, до 10% сухих сучьев, слабое угнетение (меньше листовая пластина), поврежденные на 25% вредителями и болезнями. Характерно в основном для приспевающих насаждений.

Угнетенные (КСО-3) - часто суховершинные деревья, с наличием значительной депрессии в развитии и механических повреждений (дупел, сухих веток до 50%), слабо облиствление, недекоративные, поврежденные вредителями и болезнями до 50%. Наиболее часто встречаются в спелых насаждениях.

Усыхающие (КСО-4) - очень развит процесс отмирания, наблюдается массовое (более 50%) повреждение дерева вредителями и болезнями, суховершинные. Как правило, спелые и перестойные насаждения.

Сухостой (КСО-5) - полностью усохшее (погибшее) дерево или кустарник, подлежащий первоочередной вырубке.

Общее распределение насаждений по санитарному состоянию на момент обследования приведено в Таблице №6.

В результате проведенного обследования участка установлено, что 132 шт. - здоровые (КСО-1), 880 шт. - ослабленные (КСО-2), 5 шт. - сухостойные.

Кустарниковые породы 3 шт. - здоровые (КСО-1).

В целом, санитарное состояние зеленых насаждений обследованного участка удовлетворительное.

		Санитарное состояние							
№ п.п	Порода	Здоровые КСО-1	Ослаблен ные КСО-2	Угнетенн ые КСО-3	Усыхаю щие КСО-4	Сухостой, аварийные КСО-5	Всего, шт		
1	2	3	4	5	6	7	8		
	Древесные породы								
1	Акация	2	4				6		
2	Береза	1	2				3		
3	Вишня	1					1		
4	Вяз приземистый	41	507			3	551		
5	Вяз шершавый		5				5		
6	Ду6	2					2		
7	Ель	2					2		
8	Ива	14	39				53		
9	Катальпа	15	16				31		
10	Клен	12	124				136		
11	Лох	20	127			1	148		
12	Opex	1					1		
13	Сумах	1	4				5		
14	Тополь	1	2				3		
15	Урюк	5	3				8		
16	Черешня	2	4				6		
17	Яблоня	11	40			1	52		
18	Ясень	1	3				4		
	Итого, шт.	132	880			5	1017		
Древесные породы									
1	Сирень	3					3		
	Итого, шт.	3					3		

При проведении инвентаризационных работ осуществлялось и лесопатологическое обследование зеленых насаждений деревьев, зараженных вредителями или болезнями не выявлено (таблица №7).

Таблица №7 Распределение насаждений по наличию болезней и вредителей

№ п.п	Порода	Наличие болезней	Кол-во зараженных деревьев, шт.	Наличие вредителей	Кол-во пораженных деревьев, шт.
		Древесн	ные породы		
1	Акация				
2	Береза				
3	Вишня				
4	Вяз приземистый				
5	Вяз шершавый				
6	Ду6				

7	Ель			
8	Ива			
9	Катальпа			
10	Клен			
11	Лох			
12	Opex			
13	Сумах			
14	Тополь			
15	Урюк			
16	Черешня			
17	Яблоня			
18	Ясень			
	Итого, шт.	не обнаружено	не обнаружено	

Согласно Инструкции 2006 года, категории удовлетворительных соответствуют деревья, учтенные по своему санитарному состоянию, как «здоровые», «ослабленные» и «угнетенные» (КСО-1, 2 и 3).

В ходе проведения инвентаризации намечены следующие лесохозяйственные мероприятия:

• требуется сохранение:

- 475 деревьев;
- 53 кв.м.живой изгороди;

под выпубку:

- 537 деревьев;
- 3694 кв.м. дикорастущей поросли;

под санитарную вырубку:

5 дерева;

• под корчевания:

23 пней;

При проведении инвентаризационных работ в зависимости от санитарного состояния деревьев и намечаемых строительных мероприятий, назначались следующие хозяйственные мероприятия (таблица №11), проведение которых необходимо с лесоводственной точки зрения:

- Вырубка деревьев работа по вырубке (пересадке) деревьев, осуществляемая по разрешению уполномоченного органа в соответствии с пунктом 159 приложения 2 к Закону Республики Казахстан "О разрешениях и уведомлениях" от 16 мая 2014 года.
- Сохранение зеленых насаждений комплекс мероприятий, направленный на сохранение особо ценных пород насаждений, попадающих под пятно благоустройства и строительных работ.

- Пересадка зеленых насаждений пересадка растущих деревьев и кустарников лиственных и хвойных пород с комом I класса возраста (до 10 лет для лиственных пород и до 20 лет для хвойных пород), реже II класса возраста (от 11 до 20 лет для лиственных пород и от 21 до 40 лет для хвойных пород) с соблюдением высоких технологий по пересадке с комом земли (от 1,8 и более метров) в зависимости от распределения корневой системы по вертикали или горизонтали.
- Санитарная обрезка удаление больных, усыхающих, сухих и поврежденных ветвей, создающих аварийные ситуации (лежащих на линиях электропередач, газовых трубах, разрушающих кровлю зданий, создающих угрозу безопасности дорожного движения).
- Уход уход за почвой и подземной частью растений (подкормка, полив, рыхление и прочие действия).
- Формирование кроны обрезка ветвей и побегов, отдельных деревьев, кустарников и линейных насаждений, поддающихся формовке, не приводящая их гибели, с целью придания им определенной эстетической формы и омолаживания зеленых насаждений.

Таблица №8 <u>Распределение насаждений, попадающих под сохранение, по диаметру и состоянию в разрезе пород</u>

№	Порода												Ступ	ени то	пщинь	ı												Всего, шт.
п.п		1	2	4	6	8	10	12	14	16	18	20	24	28	32	36	40	44	48	52	56	60	64	68	72	82	100	
												Древе	сные п	ороды														
1	Акация			1	2					1	1																	5
2	Береза				1																							1
3	Вишня				1																						<i></i>	1
4	Вяз приземистый		6	15	5	12	4	1	13	34	38	5	43	71	7	1	4		1				9	5				274
5	Вяз шершавый								1		1				1													3
6	Ду6			1	1																							2
7	Ель				2																						<i></i>	2
8	Ива	1	3		8	3		3		2	15	5	5															45
9	Катальпа		2		7	5			5	10	2																	31
10	Клен		1	2	8		2		14	42	3	1	2															75
11	Лох			2	12		7	1	7	11	3	16															<i></i>	59
12	Opex				1																							1
13	Сумах				1																						<u> </u>	1
14	Тополь					1						2															$\overline{}$	3
15	Урюк			5					2		1																	8
16	Черешня				2	1			3																		$\overline{}$	6
17	Яблоня		2	4	2	3		1		4																		16
18	Ясень					1				2	1																	4
	Итого, шт.	1	14	30	53	26	13	6	45	106	65	29	50	71	8	1	4		1				9	5				537
Кустаринковые породы																												
1	Сирень		2	1																								3
	Итого, шт.		2	1																								3

Таблица №9

Распределение насаждений, попадающих под вырубку, по диаметру и состоянию в разрезе пород

№ п.п	Порода													ени то														Всего, шт.
		1	2	4	6	8	10	12	14	16	18	20	24	28	32	36	40	44	48	52	56	60	64	68	72	82	100	
	Древесные породы																											
1	Акация					1																						1
2	Береза				1	1																						2
3	Вяз приземистый			10	10	63	20	1	1	40	11	19	16	62	4	7		1	1		3		4	1				274
4	Вяз шершавый													2														2
6	Ива											2	4	2														8
7	Клен			1	6		2		- 5	44	1		2															61
8	Лох			9	7	7	7	1	6	19	8	22	1	- 1														88
9	Сумах		1	3																								4
10	Яблоня			20	13	1		1																				35
	Итого, шт.		1	43	37	73	29	3	12	103	20	43	23	67	4	7		1	1		3		4	1				475

Таблица №10

Распределение насаждений, попадающих под санитарную вырубку, по диаметру и состоянию в разрезе пород

№	Порода												Стуг	пени то		I.												Всего, шт.
п.п		1	2	4	6	8	10	12	14	16	18	20	24	28	32	36	40	44	48	52	56	60	64	68	72	82	100	
	Древесные породы																											
1	Вяз				1				1	1																		3
	приземистый																											
2	Лох										1																	1
3	Яблоня					1																						1
	Итого, шт.				1	1			1	1	1																	5

Таблица №11 Распределение насаждений по хозяйственным мероприятиям

			Хоз мероприятия												
№ п.п	Порода	Вы- рубка	Сан. вырубк а	Пересад- ка	Уход	Сохранение	Всего, шт.								
1	2	3	4	5	7	8	9								
1	Акация	1				5	6								
2	Береза	2				1	3								
3	Вишня					1	1								
4	Вяз приземистый	274	3			274	551								
5	Вяз шершавый	2				3	5								
6	Ду6					2	2 2								
7	Ель					2	2								
8	Ива	8				45	53								
9	Катальпа					31	31								
10	Клен	61				75	136								
11	Лох	88	1			59	148								
12	Opex					1	1								
13	Сумах	4				1	5								
14	Тополь					3	3								
15	Урюк					8	8								
16	Черешня					6	6								
17	Яблоня	35	1			16	52								
18	Ясень					4	4								
	Итого, шт.	537	5			475	1017								

Заключение

В результате проведенных работ по инвентаризации и лесопатологическому обследованию зеленых насаждений на территории, «Строительство пробивки ул. Северное кольцо до границы города», учтено и описано:

- 1017 деревьев;
- 3 кустарника;
- 3694 кв.м. дикорастущей поросли;
- 53 кв.м.живой изгороди;
- 23 пней.

По возрастной карактеристике учтенные древесные породы представлены следующим образом: 659 экземпляров представлено молодняками, 331 экземпляра средневозрастными, 5 экземпляров приспевающим, 3 экземпляра спелыми, 19 экземпляров перестойными.

Кустарники представлены 3 экземпляра представлены молодняками.

Средняя высота древесных насаждений, произрастающих на территории обследованного участка — 8,05 м. Кустарниковых насаждений — 2 м.

По санитарному состоянию деревья распределились следующим образом: 132 шт. - здоровые (КСО-1), 880 шт. - ослабленные (КСО-2), 5 шт. - сухостойные.

Кустарниковые породы 3 шт. - здоровые (КСО-1).

В результате лесопатологического обследования зеленых насаждений деревьев, зараженных вредителями или болезнями не выявлено.

В целом, санитарное состояние зеленых насаждений обследованного участка удовлетворительное.

В ходе проведения инвентаризации намечены следующие лесохозяйственные мероприятия:

• требуется сохранение:

- 475 деревьев;
- 53 кв.м.живой изгороди;

под вырубку:

- 537 деревьев;
- 3694 кв.м. дикорастущей поросли;

под санитарную вырубку:

5 дерева;

• под корчевания:

23 пней;

Согласно «Правил содержания и защиты зеленых насаждений города Алматы» компенсационное восстановление зеленых насаждений за санитарную рубку, вынужденный снос, произведенный с разрешения уполномоченного органа акимата, производится путем посадки саженцев лиственных пород высотой не менее 3-х метров, а хвойных не менее 2-х метров (1-го и II-го класса качества).

Согласно «Правил содержания и защиты зеленых насаждений города Алматы» от 31 марта 2020 г. №173, при вырубке деревьев по разрешению уполномоченного органа компенсационная посадка восстанавливаемых деревьев производится в десятикратном размере.

ст.283 Республики Согласно п.1 Кодекса Казахстан административных правонарушениях «незаконная порубка и повреждение деревьев и кустарников, а также деревьев и кустарников, не входящих в лесной фонд и запрещенных к порубке, не содержащие признаков уголовно наказуемого деяния, - влечет предупреждение или штраф на физических лиц в размере от десяти до пятнадцати, на должностных лиц, индивидуальных предпринимателей, юридических лиц, являющихся субъектамималого или среднего предпринимательства или некоммерческими организациями, - в размере от тридцати до сорока, на юридических лиц, являющихся субъектами крупного предпринимательства, - в размере от ста до ста пятидесяти месячных расчетных показателей с конфискацией незаконно срубленных деревьев и кустарников, транспортных средств и иных предметов нарушителя, явившихся орудием совершения указанных нарушений, или без таковой.

Так же следует отметить, что данные материалы инвентаризации и лесопатологического обследования зеленых насаждений не являются основанием для сноса, санитарной рубки, санитарной обрезки и т.д., без оформления разрешения в уполномоченном органе в области охраны окружающей среды (Управление экологии и окружающей среды города Алматы).

КАК ВОЙНА В УКРАИНЕ ПОВЛИЯЛА НА ЛЮДЕЙ И КУЛЬТУРУ ЦЕНТРАЛЬНОЙ АЗИИ

3HAKOMCTBO 3AHOBO

страницы 2—5

KA3AXCTAH ЧЕТВЕРГ № 10 (939) 06.03. — 13.03.2025 г.

КЫРГЫЗСТАН — ХАБ ДЛЯ ОБХОДА САНКЦИЙ

ДРУЗЬЯ И РОДСТВЕННИКИ ПРЕЗИДЕНТА ЖАПАРОВА УЧАСТВУЮТВ КОНТРАБАНДЕ АВТОМОБИЛЕЙ КЛАССА ЛЮКС В РОССИЮ

РАССЛЕДОВАНИЕ КОРРЕСПОНДЕНТОВ «НОВОЙ ГАЗЕТЫ ЕВРОПА» В СОТРУДНИЧЕСТВЕ С ПРОЕКТАМИ FORBIDDEN STORIES, ОССЯР, ИЗДАНИЯМИ PAPERTRAIL MEDIA, SIENA И ISTORIES

СТРОНИЦЫ 6—7

ОБЪЯВЛЕНИЯ

(705) 335 63

Ваня ИнвестГрупп» ЖШС КР Экспотиялык колексінің 58-бей 2-тармагының халығ 73-бей 1-тармагының талығының талығының талығының бей 1-тармагының 1-тарма

ТОО «Азия МивестГрупп», в соответствии с требованиями пункта 2 статы 58 и пункта 1 статы 73 Экопопческого корека РК, сообщвет, что на Едином экопопческого порека РК, сообщвет, что на Едином экопопческого портале (Есорогаl к.г) с 14.03.2025 г. —20.03.2025 г. будут проводиться общественные слушания в форме публичных обсуждений по проекту раздел «Охрана окружающей среды» «Мноток вартирные жилые дома с объектами обслуживания и подземными парачитами в городе Алматы по адресу Медесуский район, южиее Кульджинского гракта. Dream Сity АRT-А (Без наружных инженерных сетей)». С пакетом проектной докупортале для предоставления замечаний и предложений https://ecoportal.kz.

ТОО «ЖБКGroup», в соответствии с требованиями пункта 2 статъи 58 и пункта 1 статъи 73 Экополического кодекса РК сообщает, что на Едином экопогического портале (Есоротаlкz) с 14.03.2025 г. − 20.03.2025 г. буду проводиться общественные слушания в форме публичных обсуждений по проекту раздел «Охрана окружающей среы» «Многокартирный жилой комплекс со встроенными помещениями и пархингом, расположенным по адресу. (Без наружных инженерных сетей). Корректировато С пакетом проектой документации можно ознакомиться на Едином экологическом портале для предоставления замечаний и предложений https://ecoportal.kz.

«В Акап Corporation» ЖШС КР Экологиялык кодексінің 58-айы 2-тармалының және 73-айы 1-тармагының талаптарына сайке бірынгай экологиялық порталад (Ссоротата кг) 14.03.2025 ж. бастап «коршаган ортаны кортау» бөлімі «өнеркесіптік нысандардың құрылысы» жобасы бойынша жария талқылау нысанында қоғамдық талқылау нысанында қоғамдық талқылау нысанында қоғамдық талқылау насанында қоғамдық бастаған Қазақстан Республикасы, Астана қаласы, Байкосныр ауданы, 101 квше, №135 ж жер учаскесі, қадастрық көмірің жөлігер-жайы бойынша 21:324.063.563, (сыртың інкенерілік жөлігер-жайы бойынша 21:324.063.563, (сыртың інкенерілік жөлігер-такетімен ескертулер мең қызыната беру үшін бірынғай экологиялық порталда танысуға болады https://ecoportal.kz

ТОО - В Акап Corporation», в соответствии с требованиями пункта 2 статы 58 и пункта 1 статы 73 Экологического коркса РК, сообщает что на Едином экологическом портале (Есорога1кг) с 14.03.2025 г. - 20.03.2025 г. будут проводиться общественные слушания в форме публиныка обсуждений по проекту раздел «Охрана окружающей среды» «Строительство объектов промышленного и пражданского назачаения по адресу Республика Казакстан, прод Астана, район Байконыр 13.13.24.003.53. (Вез наружным иженерыська сетяй и Бес выстной документации)». С пакетом проектной документации можно ознакомиться на Едином экологическом портале для предоставления замечаний и предложений https://ecoporal.kz

«Апатау Жарық Компаниясы» АҚ «Карасай АЭК 6-100, 4 кВ электр желіперін реконструкциялау» ЖСҚ тузету жумсы жобасы бойышы арғамдық талырылаула насынында колямдық тындаулар өткізу туралы хабарлайды. Талсырыс берушіне «АЖК», АҚ екіп, байланыс телефон»: 8-707-400-122. Жобалы, кужатама пакетімен брыңчай экологиялық порталда талысуға балады https://ecoportal.kz/

АО «Алатау Жарык Компаниясы» сообщает, о проведении общественных слушаний в форме губличных обсуждений по рабочему проекту Короектирока ПСД «Ревоиструим» алектрических сегей 6-10/0.48 Карасайского РЭС». Представитель от Заказиная АО «АЖ», «интактыный телефон. 8-707-400-0654. Разработчих проекта Димбаева А.Р. контактыний телефон. 8-705-18-3-122. С паветом проектной докуменный телефон. 8-705-18-3-122. С паветом проектной докуменных проектной докум

гортагда кабылданады https://ecoportal.kz/ 18.03.20.25 ж. оастап 5 жумыс күні шінде.

«Алматы қаласы қалалық мобилділік басқармасы КММ
«Алматы қаласықалалық мобилділік басқармасы КММ
«Алматы қаласықалалық мобилділік басқармасы КММ
«Алматы қаласықалалық мененді кеу құрылысы.
Түзету» ЖК ықтимал есергер туралы есел жобасы бойында жайпы жабыралайды. Учес-кейін географиялық координаттары; жайпы жабыралайды. Учес-кейін географиялық координаттары; жайпы жабыралайды. Учес-кейін географиялық координаттары; жайпы жабыралайды. Күрел жайпы жа

майотся на Едином Экологическом подтале https://ecoportal.kz/
в срок с 1803/2025 г. в течению рабочих дней.

КГУ «Управление городской мобильности города Алматы» сообщает, что, проведятся общественные слушания в форме открытого собрания по проекту «Отчет о
возможных воздействиях» к РП «Строительство пробизмоулицы Жиельницкого от миноровном «Кайрат» до Талмеские координаты участка и географические координаты
территории воздействия. 1 - 43 193 377 - 67 591 895 в.
2. 4318 14 93°С, 77 0 28 05 В. 3. 4317 29 33°С, 77
47 53 В. Общественные слушания будут проводиться:
1 айон, мар. Кайрат 10 упиць, 26 уг., г. Аленату присобский
территории приня п

Қазақстан Республикасының Денсаулық сактау министрлігінің Астана қаласындағы Ұлттақ шуғыл медицинаны Ұлтақ шуғыл медицинаны Ұлтақ шуғыл медицинаны Ұлтақ шуғыл қодаксінің 96-шы бабы және 26-10.2021 ж. Қоғамдық кодаксінің 96-шы бабы және 26-10.2021 ж. Қоғамдық нандауларды өткізу ержексі №425 буйрықа қосымшаның 41-т. талаптарына сейиес, 2025 ж. наурыз айының 13-ы мен 19-сы аралығында Бірынғай эмологиялық порталында (есоротаі Аст) Қазақстан Республикасының Денсаулық сақтау министрлігінің Астана қаласындағы Ұлттық шуғыл қатақ жақтақ жақтақ

армаглан Бірынғай экологиялық поталында толык жобалық ұхматтармен танысуға болады.

Alliance LLP ЖШС кезделіп отырған қызметтің бастамашысы ретінде (ҚР Астана қ, Байқоныр әуданы, Жаңажол к-б, 1711 уй. БСН 14064002053, ете. 1* 7715*14-12-001, кТүсті және қара металдарың сыныктарын сатыл алу және сату және қара металдарын сыныктарын сатыл алу және сату және қара металдарын сыныктарын сатыл алу және сату және қара металдарын сыныктарын сатыл алу және сату сыныктарын сатыл алу және сату және қара жән

ММ 01000 Астана на посис серьюрка двировить (3, е-mail doskulov@astana.kz.

**EARMATH қаласы қалалық мобилділік басқармасы кММ «Алматы қаласының шекарасына дейін Северное кольцо киешесінің тесу құрылысы» ЖЖ китимал өсерлер туралы есен жобасы бойынша ашық жиналыс түрінде кольцо киешесінің тесу құрылысы» ЖЖ китимал өсерлер туралы есен жобасы бойынша ашық жиналыс түрінде когамдық тындаула өткілінің жалал жабарлайды. Учасынің кординаттары: 1 432 138.31 N 7655 25 0°T. Когамдық тындаулар 18.04.25 ж., сағат 11.02 дей жабасының кординаттары: 1 432 138.31 N 7655 25 0°T. Когамдық тындаулар, 18.04.25 ж., сағат 11.02 дей жабасы жабасының кординаттары: 1 432 138.31 N 7655 25 0°T. Когамдық тындаулар, 18.04.25 ж., сағат 11.02 дей жабасының жабасының

РГП на ПХВ «Национальный координационный центр экстренной медицины» МЗ РК», в соответствии с требованиями статьи 96 Экопогического кодекса РК и пункта 41 Приложения к Приказ» № 425 от 26 10.2021 г. Правил проведения общественных слушаний, сообщает, что с 13 по 19 марта 2025 года на Едином экспотическом портале (Сероната К.) брудт проводиться общественные слушания в форме публичного обсуждения по проекту Раздел «Охрана охружающей среды» для РГП на ПХВ «Национальный ко-ординационный центр экстренной медицины» МЗ РК. Тел. 8701 105 ТСЭС. С пакетом проектной рукументации можно ознакомиться на Едином эксполическом портале для предоставления замечаний и предложений.

ознакомиться аме чанном экологическом портале для предоставления амерациюм экологическом портале для предоставления амерационами (РК, г. Астана, район Байкуныр, ул. Жанажол, д. 177.1 БМН 10460022053, тел. т. +7.75-141-20-10, сообщает о проведении общественных слушаний по проекту Отчета о проведении общественных слушаний по проекту Отчета о проведении общественных слушаний по проекту Отчета о защим лома цветных и череных металлов, а также обсра ббу аккумуляторов по адресу г. Астана, район Байконыр, ул. Жанажол, 195. Геритория воздействии: с. Астана, район Байконыр, ул. Жанажол, 195. Геритория воздействия: с. Астана, район Байконыр, ул. Жанажол, 195. Геритория воздействия: с. Астана, район Байконыр, ул. Жанажол, 195. Геритория воздействия: с. Астана, район Байконыр, ул. Жанажол, 195. Геритория воздействия: с. Астана, р. Найоны, 191. № 1172. № 171. № 195. № 191. № 1

дорме. 17 «Управление охрана окружающей среды и природогользования города Астань» (1000), г. Астана, пр. Сарварка, 13, е-тан. deskilov@astana.kz.

КУ «Управление городской мобильности города Алматык сообщает что, проводятся общественные стушания в форме открытого собрания по проеку «Стчета о возможных воздействиях» к РП «Строительство пробиви улицы-северное кольщо до границы города Алматы». Егорафические координаты участка и географические координаты сучаство тородоваты и пределения и предоставенные слушания будут порводиться 18.04.25 г. в 1.100 часов по адресу г. Алиаты. Жетысуский район, минородион Кокомек, 63 (актовый зал школы-гимназии №177). Срок проведения открытого собрания проекуский район, минородион Кокомек, 63 (актовый зал школы-гимназии №171). Срок проведения открытого собрания проекуский район, минородион карантина, чрезвычайных ситуаций социального, придокто и пределения странаты от положения и (игм) отражительных мероприяты, в том числе карантина, чрезвычайных ситуаций социального, придокто и пределения странаты от пределения странаты предоставляющий проводятся в онлайн-режиме с сыпка на подключение к общественным слушания проводятся в онлайн-режиме с сыпка на подключение к общественным слушания проводятся в онлайн-режиме на патебомы с ситуаций социального, придокто и карантина, чрезвычайных ситуаций социального, придокто и карантина, чрезвычайных ситуаций социального, придокто и карантина, чрезвычайных ситуаций социального, придокто и предолжения в ситуаций социального, придокто и предолжения в ситуаций социального, придокто и предолжения в ситуаций социального предолжения с собраба бытуаций с социального пред

ПОДПИСКА-2025

«НОВАЯ ГАЗЕТА» — KAЗAXCTAH» УДАЧНОЕ ВЛОЖЕНИЕ В ЦЕННУЮ БУМАГУ

друзья!

Сегодня найти газету в киоске проще, чем киоск в городе. Поэтому самый удобный, эффективный и, кстати, дешевый способ не пропускать ни одного номера «Новой газеты»— Казахстан» это оформить подписку.

Если вы не успели подписаться, не расстраивайтесь, теперь вы можете это сделать с АПРЕЛЯ на 9 месяцев.

НАПОМИНАЕМ.

что в каталогах «Газеты и журналы KAZPOST 2025 г.» у «Новой газеты» — Каз индекс: 32120. - Казахстан»

Этот каталог -Казахстана. По этому индексу можете оформить подписку

в любом отделении KAZPOST. Стоимость подписки на 2025 год:

АО «Казпочта»:

Для физических лиц: 1 м-ц — 1632, 50 тенге;

3 м-ца — 4897, 50 тенге; 6 м-цев — 9795 тенге;

9 м-цев — 14 692,50 тенге.

Для юридических лиц:

для юридических л 1 м-ц — 1888, 31 тенге; 3 м-ца — 5664, 93 тенге; 6 м-цев — 11 326,86 тенге; 9 м-цев — 16 994,79 тенге.

KPOME TOFO,

мы традиционно проводим альтернативную подписку, которая не предусматривает доставку газеты на дом. Ее нужно забирать у нас в представительстве (только для жителей

Алма-Аты) по адресу: ул. Казыбек би, 50 каб. 73.

Стоимость подписки: м-ц — 1500 тенге;

3 м-ца — 4500 тенге; 6 м-цев — 9000 тенге; 9 м-цев — 13 500 тенге;

9 м-цев — 13 зоот тенге;
По вопросам распространения обращаться по тел.:
(8-727) 272-20-75.
Любую информацию о подписке

вы можете получить в отделе распространения

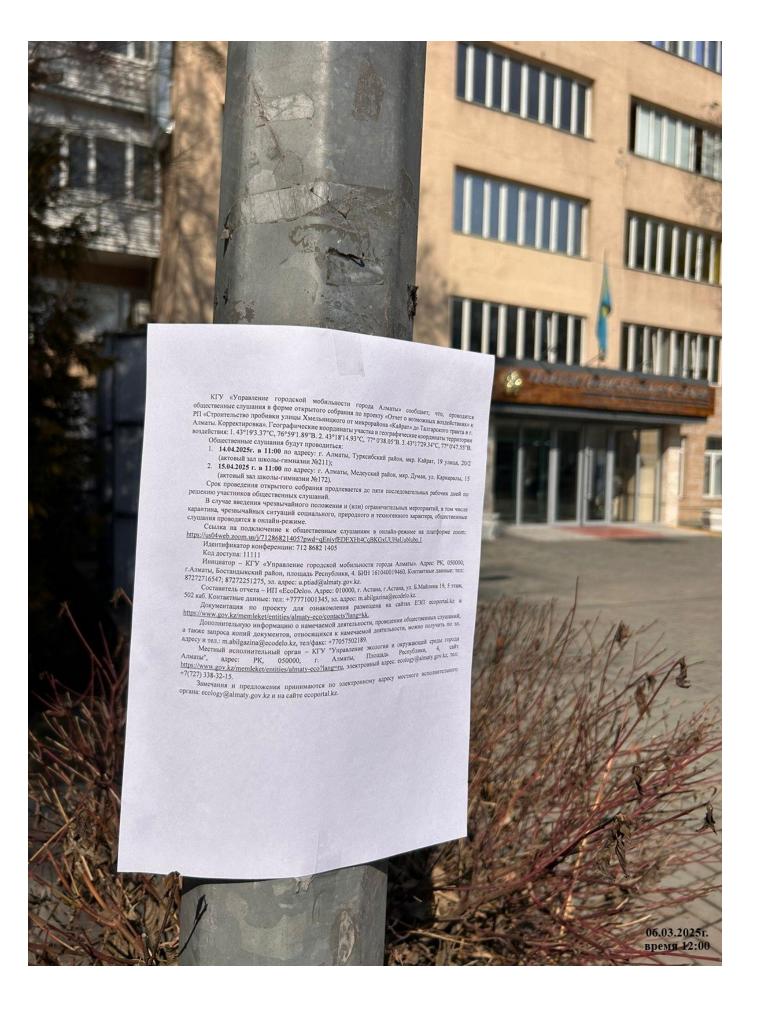
«Новой газеты» — Казахстан» «повои газеты» — казахстану по телефонам:8 (727) 272-20-75, контакт-центр АО «Казпочта» по Казахстану — 1499 (звонок —бесплатный)

> Ваша «Новая газета» -Казахстан» Всё, как вы любите!

«Жетісу» телераднокомпаннясы» ЖШС Жетісу облысы, Талдықорған қ, Балапанов көш. 28, тел.: 8 (7282) 40-00-83 www.zhetysutv.kz

ТОО «Телерадиокомпания «Жетысу» Область Жетісу, г.Талдыкорган, ул. Балапанова 28, тел.: 8 (7282) 40-00-83 www.zhetysutv.kz

ЭФИРНАЯ СПРАВКА


Настоящим, ТОО «телерадиокомпания Жетісу» подтверждает, что 11/03/2025г в эфире телеканала, в рубрике бегущая строка прошло объявление на рус и каз языках следующего содержания:

КГУ «Управление городской мобильности города Алматы» сообщает, что, проводятся общественные слушания в форме открытого собрания по проекту «Отчета о возможных воздействиях» к РП «Строительство пробивки улицы Северное кольцо до границы города Алматы». Географические координаты участка и географические координаты территории воздействия: 1. 43°19'3.37"С, 76°59'1.89"В; 2. 43°18'14.93"С, 77° 0'38.05"В; 3. 43°17'29.34"С, 77° 0'47.55"В. Общественные слушания будут проводиться 18.04.25 г., в 11.00 часов по адресу г.Алматы, Жетысуский район, микрорайон Кокжиек, 63 (актовый зал школы-гимназии №177). Документация по проекту для ознакомления размещена на сайтах ЕЭП есорогtаl.kz и https://www.gov.kz/memleket/entities/almaty-eco/contacts?lang=kk. Дополнительную информацию можно получить по эл. адрес: m.abilgazina@ecodelo.kz, тел/факс: 87057502189.Замечания и предложения принимаются по электроиному адресу местного исполнительного органа: ecology@almaty.gov.kz и на сайте ecoportal.kz.

«Алматы каласы қалалық мобилділік басқармасы» КММ «Алматы қаласының шекарасына дейін Северное кольцо көшесінің тесу құрылысы» ЖЖ ықтимал әсерлер туралы есен жобасы бойынша ашық жиналыс түрінде когамдық тыңдау өткізілетіні жайлы хабарлайды. Учаскенің географиялық координаттары және әсер ету аумагының географиялық координаттары: 1: 43°21'38.3"N, 76°55'25.0"E. 2. 43°21'23.9"N, 76°55'36.2"E. 3. 43°21'06.3"N 76°55'42.7"E.Қогамдық тыңдаулар 18.04.25 ж., сағат 11.00-де Алматы қаласы. Жетісу ауданы, Көкжиек шағын ауданы, 63 (№177 мектеп-гимназиясының ақт залы) мекен-жайында өтетін болады Жоба бойынша құжаттамамен БЭК-те есорогіаl.kz https://www.gov.kz/memleket/entities/almaty-есо/contacts/lang-LL сайттарында таныса аласыздар. Қосымша ақпаратты төмендегі электронды мекенжайлар бойынша алуға болады ш. abilgazіна/десоdelo.kz, тел.: +77057502189.Ескертулер мен ұсыныстар төмендегі жергілікті атқарушы органның электронды мекенжайлар бойынша қабылданады: есоlоду/паlmaty gov.kz және есорогіаl.kz сайтында.

/ Директор ТОО «телералиокомпания Жетісу Алтынбекұлы.Д

