ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ПОЗИТИВ ИНВЕСТ» ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ПРОЕКТНЫЙ ИНСТИТУТ «ОРТІМИМ»

ПРОЕКТ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ КАМЕНСКОЕ по состоянию на 01.07.2024 г. Договор №23/07-02д

Генеральный директор
ТОО «Проектный институт «ОРТІМИМ»

Б.К. Құрманов

СПИСОК ИСПОЛНИТЕЛЕЙ

	И.о. заместителя генерального директора по науке	,
	ответственный исполнитель	
	<i></i>	(общее руководство)
	Руководитель службы разработки	
	ремой Р.А. Бекбаева	(разделы введение, 1, 3, 4, 8, 11)
	1.A. Berodeba	(разделы введение, 1, 3, 4, 6, 11)
	Divided of the survey of the s	
	Руководитель службы подсчета запасов	2 9 11)
	К.М. Абекеева	(разделы 2, 8, 11)
	Руководитель службы петрофизики	
	И.А. Драган	(разделы 2.2, 2.4, 8)
_		
	Руководитель службы техники и технологии	
	добычи нефти и газа	
	<u> Наир</u> Н.С. Пагуба	(разделы 6.1, 6.2, 6.3, 6.4, 6.5, 8)
	Главный специалист службы пректирования и	
	строительства скважин	
1	Инденен Ю.М. Кулиев	(разделы 7.1, 7.2)
100	10.W. Rysheb	(разделы 7.1, 7.2)
	Francis of account and the second account	
	Главный специалист службы подсчета запасов	(======================================
	А.С. Сисеналиева	(разделы 2.1, 2.2, 2.3, 2.5, 8)
	Ведущий специалист службы охраны и	
	окружающей среды	
	Д. Альдешева	(раздел 9)
	0	
	Специалист службы разработки	
	(экономист по ТЭО)	
	Ууши — Г.Ч. Султанова	(разделы 4.2, 5, 12)
	Специалист службы разработки	
	<i>Бт</i> Г.Т. Суйнешева	(раздел введение, 3.1,.3.2)
	- Jung	(4,)
	Старший специалист службы разработки	
	С.Ж. Кабаков	(графические приложения)
	C.K. Kaoakob	(графические приложения)
	C	
	Старший специалист службы подсчета запасов	
	Д. Н. Нурбергенова	(графические приложения)
	Руководитель слу жбы оформления проектов	
	О.Н. Баталова	оформление отчета
	Специалист службы оформления проектов	
	Мамури М.И. Диортгесова	оформление отчета
	1/	

РЕФЕРАТ

ПРОЕКТ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ КАМЕНСКОЕ

по состоянию на 01.07.2024 г.

Отчет содержит 148 страницы, в т.ч. 17 рисунка, 58 таблицы, 4 графических приложений.

Ключевые слова: МЕСТОРОЖДЕНИЕ, ГАЗ, КОНДЕНСАТ, ЗАЛЕЖЬ, ГОРИЗОНТ, СКВАЖИНА, ДЕБИТ, ГЕОЛОГИЧЕСКИЕ И ИЗВЛЕКАЕМЫЕ ЗАПАСЫ, РАЗРАБОТКА ЗАЛЕЖИ, РЕЖИМ ЭКСПЛУАТАЦИИ, ОБЪЕКТ РАЗРАБОТКИ, БУРЕНИЕ, ДОБЫЧА, ГАЗОГИДРОДИНАМИЧЕСКИЕ ИССЛЕДОВАНИЯ, ПРОЕКТ РАЗРАБОТКИ (ПР), ПРОЕКТНЫЕ ТЕХНОЛОГИЧЕСКИЕ И ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАНТОВ КОЭФФИЦИЕНТ ИЗВЛЕЧЕНИЯ РАЗРАБОТКИ, ГАЗА (КИГ), КОЭФФИЦИЕНТ ИЗВЛЕЧЕНИЯ КОНДЕНСАТА (КИК).

Объект исследования – система разработки месторождения Каменское, газоконденсатная залежь калиновской свиты казанского яруса в верхней перми.

Цель работы – проектирование рациональной системы разработки месторождения Каменское.

В настоящей работе приведены сведения: o геологическом строении месторождения, в том числе результаты исследований и опробования скважин, характеристика физико-химических свойств пластовых флюидов, газоносности продуктивных горизонтов, запасах газа и конденсата

Проведено обоснование выбора эксплуатационных объектов и расчётных вариантов разработки. Выделен один основной объект — І объект (калиновская свита казанского яруса в верхней перми). В рекомендуемом варианте 2 предусмотрено бурение 5 скважин с постоянной депрессией $\Delta P = 5$ МПа.

Все полученные варианты представлены в отчете согласно методическим рекомендациям по составлению проектов разработки газовых и газоконденсатных месторождений. На основе анализа технико-экономических показателей выбран рекомендуемый вариант реализации развития месторождения.

В проекте рассмотрены вопросы техники и технологии добычи, бурения и освоения скважин, мероприятия по контролю разработки, доразведки месторождения, охраны недр и окружающей среды.

Даны рекомендации по выполнению проектных решений.

Область применения – газоконденсатное месторождение Каменское «ПОЗИТИВ Инвест».

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	11
1. ОБЩИЕ СВЕДЕНИЯ О МЕСТОРОЖДЕНИИ	14
2. ГЕОЛОГО-ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ	16
2.1 Характеристика геологического строения	16
2.2 Характеристика толщин, коллекторских свойств продуктивных горизонтов и их неоднородности	
2.3 Свойства и состав пластового газа, конденсата и воды	23
2.3.1 Свойства и состав пластового газа и газа сепарации	23
2.3.2 Физико-химические свойства конденсата	24
2.3.3 Свойства и состав пластовых вод	25
2.4 Физико-гидродинамическая характеристика	31
2.5 Запасы газа и конденсата	31
З ПОДГОТОВКА ГЕОЛОГО-ПРОМЫСЛОВОЙ И ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ОСНОВЫ Д ПРОЕКТИРОВАНИЯ РАЗРАБОТКИ	
3.1 Анализ результатов газогидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов	35
3.2. Анализ текущего состояния разработки месторождения	42
3.2.1 Анализ структуры фонда скважин и текущих дебитов, технологических показателей разработки	42
3.2.2 Анализ выработки запасов углеводородов и текущего состояния разработки	44
3.3 Обоснование принятых расчетных геолого-физических моделей пластов	44
3.3.1 Обоснование расчетных геолого-физических моделей пластов-коллекторов, принятых для расчета технологических показателей разработки	44
3.4 Обоснование выделения объектов разработки и выбор расчетных вариантов разработки	45
3.4.1 Обоснование выделения объектов разработки	45
3.4.2 Обоснование расчетных вариантов разработки и их исходные характеристики	47
3.5 Обоснование нормативов капитальных вложений и эксплуатационных затрат, принятых для расчето экономических показателей	
4. ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАНТОВ РАЗРАБОТКИ	54
4.1 Технологические показатели вариантов разработки	54
4.2 Экономические показатели вариантов разработки	57
4.2.1. Капитальные затраты	61
4.2.2. Эксплуатационные затраты	62
4.2.3 Экономические показатели эффективности реализации проекта	69
4.2.4 Бюджетная эффективность проекта	73
5. ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПРОЕКТНЫХ РЕШЕНИЙ	78
5.1 Технико-экономический анализ вариантов разработки, обоснование выбора рекомендуемого к утверждению варианта	78
6. ТЕХНИКА И ТЕХНОЛОГИЯ ДОБЫЧИ ГАЗА И КОНДЕНСАТА	82
6.1. Обоснование выбора рекомендуемых способов эксплуатации скважин, устьевого и внутрискважин оборудования. Характеристика показателей эксплуатации скважин	
6.2 Мероприятия по предупреждению и борьбе с осложнениями при эксплуатации скважин и промысло объектов	
6.3 Рекомендации к системе сбора и промысловой подготовки продукции скважин	91

6.4. Рекомендации к разработке программы по переработке (утилизации) газа	96
6.5. Рекомендации к системе ППД, качеству используемого агента	96
7. РЕКОМЕНДАЦИИ К КОНСТРУКЦИЯМ СКВАЖИН И ПРОИЗВОДСТВУ БУРОВЫХ РАБОТ, МЕТОДАМ ВСКРЫТИЯ ПЛАСТОВ И ОСВОЕНИЯ СКВАЖИН	
7.1. Рекомендации к конструкциям скважин и производству буровых работ	97
7.2. Рекомендации к методам вскрытия продуктивных пластов и освоения скважин	100
8. КОНТРОЛЬ ЗА РАЗРАБОТКОЙ ПЛАСТОВ, СОСТОЯНИЕМ И ЭКСПЛУАТАЦИЕЙ СКВАЖИ И СКВАЖИННОГО ОБОРУДОВАНИЯ	
8.1 Газогидродинамические методы исследования скважин по контролю за процессом разработки	102
8.2 Контроль физико-химических свойств пластовых флюидов	106
9. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ	.109
11. МЕРОПРИЯТИЯ ПО ДОРАЗВЕДКЕ МЕСТОРОЖДЕНИЯ	110
11. ОПЫТНО-ПРОМЫШЛЕННЫЕ ИСПЫТАНИЯ НОВЫХ ТЕХНОЛОГИЙ И ТЕХНИЧЕСКИХ РЕШЕНИЙ	114
12. РАСЧЕТ СУММЫ ОБЕСПЕЧЕНИЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ НЕДРОПОЛЬЗОВАНИ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	146

СПИСОК ТАБЛИЦ

Таблица 2.2.1 – Каменское месторождение. Характеристика толщин залежи	21
Таблица 2.2.2-Статистические показатели характеристик неоднородности горизонтов	22
Таблица 2.2.3 - Характеристика коллекторских свойств и нефтенасыщенности месторождения Каменское	22
Таблица 2.2.4 - Ряды распределения проницаемости по объектам по керну	22
Таблица 2.3.1.1 - Свойства пластового газа	26
Таблица 2.3.1.2 - Состав пластового газа и газа сепарации	27
Таблица 2.3.1.3 - Состав газа сепарации по поверхностным пробам	28
Таблица 2.3.2.1 - Физико-химические свойства конденсата	29
Таблица 2.3.2.2 – Микрокомпонентный состав конденсатов (скв. Kmn5)	29
Таблица 2.3.3.1 – Свойства и состав подземных вод	29
Таблица 2.3.3.2 - Содержание микрокомпонентов в пластовых водах Каменского месторождения	30
Таблица 2.3.3.3 - Компонентный состав водорастворенного газа	30
Таблица 2.5.1 – Сводная таблица подсчета запасов газа и конденсата	33
Таблица 3.1.1 – Месторождение Каменское. Результаты испытания газоконденсатных объектов калиновской свиты	36
Таблица 3.1.2 – Месторождения Каменское. Основные продуктивные и технологические характеристики газовых скважин	39
Таблица 3.1.3 – Месторождение Каменское. Исследование кривое восстановление давление КВД	42
Таблица 3.2.1.1 – Месторождение Каменское. Техническое состояние пробуренных скважин по состоянию на 01.07.2024 г	43
Таблица 34.1.1 – Месторождение Каменское. Исходные геолого-физические характеритики I объекта разработки (газоконденсатной залежи калиновской свиты казанского яруса в верхней пер	,
Таблица 3.4.2.1 – Месторождение Каменское. І объект разработки (калиновской свиты казанского яруса верхней перми). Основные исходные технологические характеристики расчетных вариантогразработки	В
Таблица 3.4.2.2 – Основные исходные технологические характеристики газоконденсатного месторождения Каменское	49
Таблица 4.1.1 – Месторождение Каменское. Характеристика основного фонда и основных показател промышленной разработки по отбору газа и конденсата по рекомендуемому 2 варианту	
Таблица 4.2.1 – Расчет дохода от реализации продукции в рекомендуемом 2 варианте, тыс.тенге	59
Таблица 4.2.1.1 Расчет капитальных вложений, тыс. тенге по рекомендуемому 2 варианту	64
Таблица 4.2.2.1 - Расчет эксплуатационных затрат, включаемых в себестоимость продукции в рекомендуемом 2 варианте, тыс.тенге	65
Таблица 4.2.2.2 - Эксплуатационные затраты, включаемые в расходы периода в рекомендуемом 2 варианте, тыс.тенге	67
Таблица 4.2.3.1 – Расчет чистой прибыли в тыс. тенге по рекомендуемому 2 варианту	70
Таблица 4.2.3.2 – Расчет потоков денежной наличности в рекомендуемом 2 варианте, тыс.тенге	71
Таблица 4.2.4.1 – Расчет налогооблагаемого дохода в рекомендуемом 2 варианте, тыс.тенге	74
Таблица 4.2.4.2 – Расчет дохода от реализации продукции и бюджетной эффективности 2 варианта разработки, тыс. тенге	
Таблица 5.1.1 - Технико-экономические показатели основных вариантов разработки месторождені	ия81
Таблица 6.1.1 – Показатели эксплуатации скважин	82

Габлица 7.1.1 – Месторождение Каменское. Техническое состояние пробуренных скважин по состоянию на 01.07.2024 г	97
Габлица 7.1.2 – Рекомендуемая конструкция эксплуатационной скважины для месторождения Каменское.	98
Габлица 12.1 – Проектируемые отчисления в ликвидационный фонд по годам 2 варианта разработн	

СПИСОК РИСУНКОВ

Рис. 1.1 – Обзорная карта	15
Рис. 2.1.1 – Структурная карта по отражающему горизонту P ₂ kl	18
Рис. 3.1.1 – Месторождение Каменское. Скважина 2 (интервал 3032-3182). Определение коэффициентов фильтрационного сопротивления	39
Рис. 3.1.2 – Месторождение Каменское. Скважина 2 (интервал 3032-3171). Определение коэффициентов фильтрационного сопротивления	40
Рис. 3.1.3 – Месторождение Каменское. Скважина 6 (интервал 2805-2818). Определение коэффициентов фильтрационного сопротивления	40
Рис. 3.1.4 – Месторождение Каменское. Скважина 6 (интервал 2777-2878). Определение коэффициентов фильтрационного сопротивления	41
Рис. 3.1.5 – Месторождение Каменское. Скважина 6 (интервал 2754-2766). Определение коэффициентов фильтрационного сопротивления	41
Рис. 5.1.1 Чистые дисконтированные поступления при ставках дисконта 5; 7,5; 10%, по варианта за проектный рентабельный период	
Рис. 5.1.2 Сравнение экономических показателей по вариантам за проектный рентабельный пері	
Рис. 6.1.1 – Зависимость скорости потока от дебита газа (Рзаб = 40,0 МПа)	84
Рис. 6.1.2 – Зависимость скорости потока от дебита газа (Рзаб = 26,5 МПа)	85
Рис. 6.2.1 – Равновесные параметры гидратообразования для месторождения Каменское	88
Рис. 6.3.1 - Технологическая схема ГСП месторождения Каменское	94
Рис. 6.3.2 – Принципиальная схема системы сбора добываемой продукции по рекомендованному варианту разработки	95

СПИСОК ТАБЛИЧНЫХ ПРИЛОЖЕНИЙ

Приложение 1 – Расчет дохода от продажи продукции в тыс.тенге ценах по 1 варианту	118
Приложение 2 – Расчет капитальных вложений, тыс. тенге по 1 варианту	120
Приложение 3 – Расчет эксплуатационных затрат, включаемых в себестоимость продукции в 1 варианте, тыс.тенге	121
Приложение 4 – Эксплуатационные затраты, включаемые в расходы периода в 1 варианте, тыс.т	
Приложение 5 – Расчет бюджетной эффективности 1 варианта разработки, тыс. тенге	125
Приложение 6 – Расчет налогооблагаемого дохода в 1 варианте, тыс.тенге	127
Приложение 7 – Расчет чистой прибыли в 1 варианте, тыс.тенге	129
Приложение 8 - Расчет потоков денежной наличности в 1 варианте, тыс.тенге	131
Приложение 9 - Прогнозные отчисления в ликвидационный фонд по 1 варианту	133
Приложение 10 - Расчет дохода от продажи продукции в тыс.тенге ценах по 3 варианту	134
Приложение 11 - Расчет капитальных вложений, тыс. тенге по 3 варианту	135
Приложение 12 - Расчет эксплуатационных затрат, включаемых в себестоимость продукции в 3 варианте, тыс.тенге	136
Приложение 13 - Эксплуатационные затраты, включаемые в расходы периода в 3 варианте, тыс.	
Приложение 14 - Расчет бюджетной эффективности 3 варианта разработки, тыс. тенге	138
Приложение 15 - Расчет налогооблагаемого дохода в 3 варианте, тыс.тенге	139
Приложение 16 - Расчет чистой прибыли в 3 варианте, тыс.тенге	140
Приложение 17 - Расчет потоков денежной наличности в 3 варианте, тыс.тенге	141
Приложение 18 - Прогнозные отчисления в ликвидационный фонд по 3 варианту	142
Приложение 19 – Месторождение Каменское. Характеристика основного фонда и основных показателей промышленной разработки по отбору газа и конденсата по рекомендуемому 1 вариан	ту143
Приложение 20 – Месторождение Каменское. Характеристика основного фонда и основных показателей промышленной разработки по отбору газа и конденсата по рекомендуемому 1 вариан	ту145

СПИСОК ГРАФИЧЕСКИХ ПРИЛОЖЕНИЙ

№ п/п	Наименование приложения	Номер приложе-ния	Номер листа приложе- ния	Масштаб приложения	Степень секрет-ности прило-жения
1	2	3	4	5	6
1	Месторождение Каменское а) Структурная карта по кровле коллектора; б) Карта эффективных газонасыщенных толщин	1	1	1:50 000	н/с
2	Месторождение Каменское Схема расположения проектных и пробуренных скважин. Вариант 1	2	2	1:50 000	н/с
3	Месторождение Каменское Схема расположения проектных и пробуренных скважин. Вариант 2	3	3	1:50 000	н/с
4	Месторождение Каменское Схема расположения проектных и пробуренных скважин. Вариант 3	4	4	1:50 000	н/с

Всего 4 графических приложений. Из них: н/с – 4 приложений.

Введение 11

ВВЕДЕНИЕ

ТОО «ПОЗИТИВ Инвест» имеет Контракт № 25 от 3 марта 1995 года на добычу углеводородов для Района оценки «Каменское» и Района разработки «Каменско-Тепловско-Токаревское» в Западно-Казахстанской области Республики Казахстан. Период добычи закреплен Дополнением №3 к Контракту №25 сроком на 25 лет — до 13.12.2044 г. (№4773-УВС от 13.12.2019 г.). Горный отвод (Участок недр) предоставлен для осуществления операций по недропользованию на месторождении Каменское, на основании решения Компетентного органа МЭ РК Протокол №4/МЭ РК от 26.02.2019 г. Площадь горного отвода — 49,1 (сорок девять целых одна десятая) км².

Месторождение Каменское открыто в 1985 г.

Начало исследования северной бортовой зоны Прикаспийский впадины геофизическими методами относится к 1930 годам прошлого столетия и 1950 годов.

В 1950-1960 гг. северной бортвой зоны Прикаспийский впадины был планомерно покрыт сейсмической съемкой МОВ и КМПВ. По результатам МОВ составлены сводные структурные карты по основным отражающим горизонтам (S, Π_1 , Π_2 , Π), где по основному отражающему горизонту «S» (кровля филипповского горизонта нижней перми - $P_1 \kappa^{fl}$).

С 1955 г. по 1990 г. в пределах северной бортвой зоны Прикаспийский впадины проводились сейсморазведочные работы.

С 1970 г. началось второй этап сейсмических исследований, связанный с освоением ОГТ, который становится ведущим методом по решению региональных и поисковоразведочных работ.

В 1977 г. по данным детальных сейсморазведочные исследований рассматриваемого региона, в подсолевых отложениях были выделены две структуры: Токаревская и Каменская.

В 1980 г. завершились работы по общению геолого-геофизических материалов.

В 1981 г. был выполнен отчет «Проект глубокого поиского бурения на Каменской площади», предусматривавший бурение 7 глубоких скважин проектной глубиной 4200 м с целью изучения геологического строения и перспектив промышленной нефтегазоносности площади.

В 1985 г. был получен первый фонтан газа, в результате испытания поисковой скважины 2, заложенной для опоискования выявленной сейсморазведкой подсолевой структуры.

Введение 12

С 1981 г. по 1991 г. на площади Каменское пробурено 15 поисково-разведочных скважин (1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 19).

В 1996 г. был выполнен отчет «Подсчет запасов газа, конденсата и попутных компонентов в верхнепермских (калиновских) отложениях Каменского месторождения Западно-Казахстанской области по состоянию на 01.09.1996 г.» [1], и утвержден в ГКЗ РК (протокол № 50 от 26 декабря 1996 г. г. Алматы).

В 1999 г. институтом ЗАО «НИПИнефтегаз» был выполнен отчет «Проект опытно-промышленной эксплуатации Каменско-Тепловско-Токаревской группы нефтегазоконденсатных месторождений» [2] ЗАО «НИПИмунайгаз» (протокол ЦКР РК № 6 от 22 декабря 1999 г.). По проекту разработка месторождений Тепловское, Западно-

Тепловское и Каменского должна была начаться в 2000 г. На Тепловском и Западно- Тепловском месторождениях приоритетной запроектирована добыча нефти, на Каменском — добыча газа. Разработка остальных месторождения на тот период в соответствии с технико- экономической оценкой оказалась не рентабельной.

В 2003 г. институтом ЗАО «НИПИнефтегаз» был выполнен отчет «Авторский надзор за реализацией проекта опытно-промышленной разработки Каменско-Токаревско-Тепловской группы месторождений» [3].

В 2007 г. выполнен «Отчет о результатах сейсморазведочных исследований МОГТ 3D на Каменском газоконденсатном месторождении, выполненных в период 11.06-02.07 г.».

В 2012 г. институтом АО «КазНИПИмунайгаз» был выполнен отчет «Проект опытно- промышленной эксплуатации газоконденсатного месторождения Каменское» [4].

В 2019 г. АО «НИПИнефтегаз» были выполнены отчеты по 7-ми месторождениям «Проект разработки газоконденсатного месторождения Каменское» по состоянию на 01.01.2019 г. (протокол ЦКРР РК № 12/15 от 01 августа 2019 г.) [6].

В 2020 г. АО «НИПИнефтегаз» было выполнено «Дополнение к Проекту разработки газоконденсатного месторождения Каменское» по состоянию на 01.06.2020 г. (протокол ЦКРР РК № 8/11 от 26 ноября 2020 г.) [7], согласно протокола ЦККР РК рекомендован ввод месторождения в разработку с 2025 года.

В 2023 г. ТОО «ReservoirEvaluationServices» был выполнен отчет на основе переобработки и переинтерпретации имеющихся данных сейсморазведки 2Д (в объеме 840 пог.км по восточной части ТТГМ) и 3Д (в объеме 325 км² по западной части ТТГМ, и 116 км² по Меловой площади), отработанных в пределах Каменско-Тепловско-

Введение 13

Токаревской группы месторождений (КТТГМ), а также их интегрированной со скважинными данными структурной и динамической переинтерпретации.

В 2024 г. ТОО «Проектный институт «ОРТІМИМ» был составлен «Пересчет запасов газа, конденсата и попутных компонентов Каменского месторождения Западно-Казахстанской области Республики Казахстан» по состоянию изученности на 01.06.2024 г. и утвержден в ГКЗ РК (Протокол №2716-24-У от 30.10.2024 г.). Согласно протоколу ГКЗ РК по месторождению Каменское утверждены начальные геологические / извлекаемые запасы пластового газа и конденсата: по категории $C_1 - 10303$ / 8376 млн.м³ и по категории $C_2 - 1847$ / 1126 млн.м³ пластового газа, по категории $C_1 - 601$ / 360 тыс.т и по категории $C_2 - 107$ / 48 тыс.т конденсата.

На основе «Пересчета запасов...» составлен настоящий «Проект разработки месторождения Каменское» по состоянию на 01.07.2024 г., по договору № 23/07-02д от 13.07.2023 г., между ТОО «ПОЗИТИВ Инвест» и ТОО «Проектный институт «ОРТІМИМ» согласно «Методическим рекомендациям по составлению проектов разработки...» с учетом требований «Единых правил по рациональному и комплексному использованию недр» и экологического кодекса. В работе использованы фактические материалы, предоставленные геологической службой ТОО «ПОЗИТИВ Инвест».

1. ОБЩИЕ СВЕДЕНИЯ О МЕСТОРОЖДЕНИИ

Каменское газоконденсатное месторождение расположено в пределах северной бортовой зоны Прикаспийской впадины. В административном отношении площадь относится к территории Таскалинского района Западно-Казахстанской области РК.

Областной центр - город Уральск, находится в 100 км к востоку от месторождения. К югу от него проходит железнодорожная магистраль Саратов-Уральск, где в 10 км от рассматриваемой площади расположен районный центр пос. Таскала. Районный центр, помимо железной дороги, связан с городом Уральск дорогой с твердым покрытием (рис.1.1).

В 15 км южнее месторождения проходит действующий газопровод Оренбург-Ужгород, а в 60 км к востоку - нефтепровод Мангышлак-Самара.

В 35 км восточнее месторождения проходит ЛЭП - 220, в 20 км северо-восточнее - ЛЭП - 500 с Балаковской АЭС (Саратовская область).

В районе Каменской площади выявлен ряд месторождений строительных материалов, пригодных для производства кирпича, цемента, строительных растворов и т.д.

В пределах самого месторождения дороги грунтовые и в период весенне-осенней распутицы проходимы только для гусеничного транспорта.

Месторождение Каменское расположено в степной зоне, характеризующейся континентальным засушливым климатом. Среднемесячная температура колеблется от - $14.2~^{\circ}$ C (в январе) до $+22.8~^{\circ}$ C (в июле). Абсолютный минимум температуры воздуха -39 $^{\circ}$ C, абсолютный максимум - $+40~^{\circ}$ C.

Среднее годовое количество осадков составляет около 295 мм. Средняя высота снежного покрова - 15-25 см. Установление снежного покрова наблюдается в конце ноября. Устойчивый снежный покров обычно держится 125-130 дней.

В районе преобладают ветры южных направлений в зимние месяцы и северных направлений в весенне-летний период.

В орографическом отношении площадь месторождения расположена в пределах отрогов Общего Сырта, представляющего собой увалисто-холмистую равнину, рассеченную речными долинами и балками. Абсолютные отметки рельефа в пределах участка колеблются в диапазоне +90 - +180 м.

Гидрографическая сеть представлена рекой Деркул, протекающей по западной части месторождения, река Ермишкина - левый приток Деркула, проходит в восточной части месторождения.

Долины рек глубоко врезаны и выполнены аллювиальными отложениями. Вода в реках пригодна для технических нужд. Для питьевого водоснабжения могут использоваться подземные воды одноименного Каменского месторождения, расположенного в 8,5 км юго-восточнее пос. Таскала.

Животный мир представлен степными животными с преобладанием среди них грызунов. На прудах и реках повсеместно обитают водоплавающие птицы.

В народно-хозяйственном отношении рассматриваемая территория относится к типу сельскохозяйственных с зерноводческим уклоном.

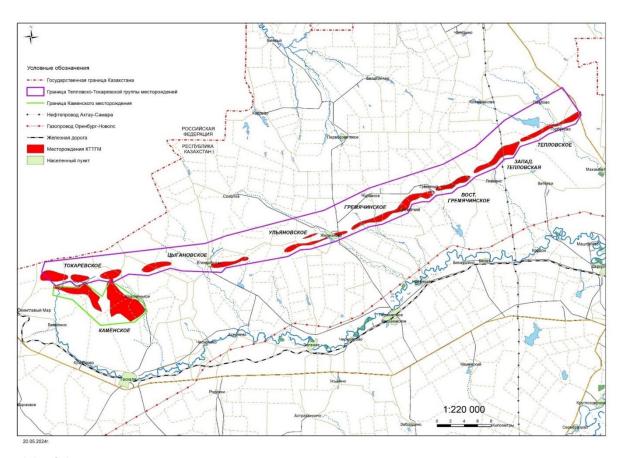


Рис. 1.1 – Обзорная карта

2. ГЕОЛОГО-ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

Месторождение Каменское открыто в 1985 году в результате испытания поисковой скважины Kmn2, в котором был получен первый фонтан газа.

Промышленная газоносность месторождения приурочена к межсолевым отложениям калиновской свиты казанского яруса верхней перми (P₂kz_kl).

На дату настоящего отчета на месторождении пробурено 15 скважин, из них в пределах горного отвода 8 ед. и за пределами горного отвода 7 ед. В пределах горного отвода числится 5 поисковых (Kmn2, Kmn5, Kmn6, Kmn8, Kmn9) и 3 разведочных (Kmn11, Kmn13, Kmn14) скважины. Все скважины ликвидированы.

Настоящий проект разрабатывается по всем геолого-геофизическим и промысловым данным всего фонда скважин, а также по результатам проведенных исследовательских работ.

2.1 Характеристика геологического строения

Литолого-стратиграфическая характеристика. На месторождении бурением вскрыты отложения палеозоя (каменноугольная и пермская система), мезозоя (триасовая, юрская и меловая системы) и кайнозоя (нерасчлененные неоген-четвертичные образования) на максимальную глубину 5020 м в скважине Kmn8_1.

В тектоническом отношении Каменская площадь расположена в области сочленения Волго-Уральской антеклизы и Прикаспийской впадины, в пределах ее Северной бортовой зоны.

Сейсморазведочные работы в регионе начались в 50-х годах, когда производилась сейсмическая съемка МОВ и КМПВ. Позднее, в 70-х и 80-х годах были проведены сейсмические исследований МОГТ и МОГТ-ШП, а также сейсмические исследования в скважинах.

В 2023 г. был выполнен отчет на основе переобработки и переинтерпретации имеющихся данных сейсморазведки 2Д и 3Д, отработанных в пределах Каменско-Тепловско-Токаревской группы месторождений, а также их интегрированной со скважинными данными структурной и динамической переинтерпретации. Были построены 7 структурных карт по отражающим горизонтам:

- ОГ III кровля юрских отложений;
- ОГ V кровля триасовых отложений;
- ОГ VI кровля кунгурских отложений;
- ОГ P_2 kl кровля калиновских карбонатов;
- ОГ S кровля подсолевых отложений, филипповских ангидритов;

- ОГ Π_1 кровля артинских отложений P_1 аг;
- ОГ Π_2 кровля верейских отложений C_2 vr.

По *V отражающему горизонту* в пределах площади Каменское субмеридиональная структура образована замкнутой изогипсой -575 м, сводовая часть структуры находится на глубине 300 м, высота структуры- 275 м.

По *III отражающему горизонту* в пределах рассматриваемого района субмеридиональная структура имеет свое продолжение и блоковое строение.

На карте *VI отражающего горизонта* поверхность кунгурской соли в пределах исследуемого участка, имеет субмеридиональную структуру, протягивающаяся на север в сторону участка Токаревское. Кунгурский галокинез привел к формированию валообразной структуры с активным подъемом соли по периферии площади. Каменский соляной купол сформирован, в основном, солью гидрохимической свиты казанского яруса.

Отражающий горизонт P_2kl характеризует строение калиновской свиты казанского яруса верхней перми. В связи с соляной тектоникой площадь сильно дислоцирована и осложнена тектоническими нарушениями различной ориентации и конфигурации, которые поделили месторождение на 9 блоков. Из них продуктивными являются блоки VI и VIII, где получили развитие коллекторы трещинно-порового и трещинного типов.

Структура представляет собой достаточно дислоцированную антиклинальную складку сложной изометричной формы с основным широтным куполом на севере на отметке 2100 м, большей частью, расположенной на Токаревском участке.

Южное крыло поднятия осложняет широтный крупный разлом, отделяя Каменскую часть в изолированную полуантиклинальную складку с размерами по изогипсе -2650 м 4,0x0,7 км и высотой 400 м. При чем от последней отходит гряда в юго-восточном направлении, которая переходит в отдельное поднятие, представляющее собой сильно дислоцированную полуантиклинальную складку высотой 450 м. Размеры этого поднятия по замыкающей изолинии -2650 м составляет 2,5x1,7 км (рис.2.1.1).

Структурная карта по *отражающему сейсмическому горизонтту S* характеризует строение филипповских продуктивных горизонтов. В пределах участка Каменское поверхность горизонта моноклинально погружается в южном направлении. Максимально приподнятая часть отмечается на глубине 3550 м, и наиболее пониженная часть отмечается на глубине 4450 м в районе скв.9.

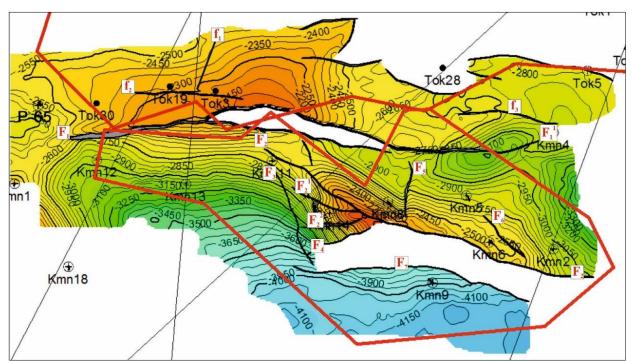


Рис. 2.1.1 – Структурная карта по отражающему горизонту P2kl

Газоносность. Газоконденсатная залежь приурочена к межсолевым отложениям калиновской свиты казанского яруса верхней перми, тип залежи пластовый, тектонически экранированный.

Калиновская залежь вскрыта всеми пробуренными скважинами. Газнасыщенность установлена в блоках VI и VIII, в остальных же блоках скважины являются водонасыщенными.

В блоке VI пробурены скважины Kmn11, Kmn14 и Kmn13_1.

В сентябре 1988 года скважина Kmn 11 была опробована в интервале 2869-2942 (-2713,8-2786,8) м, в результате которого получен приток газа дебитом 1963,2 тыс.м³/сут и конденсата дебитом 70,5 м³/сут. По данным интерпретации ГИС подошва газонасыщенного коллектора отбивается на абсолютной отметке – 2768,4 м.

В скважине Kmn13_1 по данным ГИС выделяются водонасыщенные коллектора с абсолютной отметки – 3135,1 м.

Из-за отсутствия методов ГИС в скважине Kmn14 определить границы коллекторов невозможно.

В блоке VIII пробурены скважины: Kmn2, Kmn5 и Kmn6.

В скважина Kmn 2 (10.02-15.08.86 г.) опробован интервал 3032-3182 (-2903,8-3053,7) м, где был получен приток газа дебитом 418,6 тыс. $\rm m^3/\rm cyr$, конденсата 16,2 $\rm m^3/\rm cyr$ и воды 0,26 $\rm m^3/\rm cyr$. позднее 16-27 апреля того же года при опробовании интервал 3032-3171 (-2903,8-3042,7) м, при 12 мм диаметр шайбы получен приток газа, конденсата и воды с дебитами 374,1 тыс. $\rm m^3/\rm cyr$, 18,5 $\rm m^3/\rm cyr$ и 2,35 $\rm m^3/\rm cyr$ соответственно. В сентябре 1986г. в

скважине была проведена соляно–кислотная обработка в интервале 3032-3120 (-2903,8-2991,8) м. В результате которого получен газ дебитом 6,4 тыс. м³/сут при 5 мм диаметре шайбы. По ГИС коллектора продуктивны до отметки -3031,2 м.

В период 26.01-31.03.87 г. в скважине Ктп 5 был опробован интервал 3104-3114 (-2961,0-29710) м, при котором получен приток газа дебитом 124,6 тыс. м³/сут, конденсата -4.9 м^3 /сут и воды 0.1 м^3 /сут. В апреле 1987 году опробован интервал 3071-3089 (-2928,0-2946,0) м, при котором получен приток газа с дебитом 50,1 тыс. м³/сут, кондесата -2,35 м^3 /сут и воды -1,4 м^3 /сут. В период 27.05-10.06.87 г. л опробованный интервал 3048-3052 (-2905,0-2909,0) м притока не дал. В июне 1987 года в интервале перфорации 3048-3052 (-2905,0-2909,0) м после СКО с продавкой в пласт 6 м³ 15% кислоты получено газопроявление дебитом до 100 м³/сут. К интервалу 3048-3052 (-2905,0-2909,0) м были достреляны интервалы 3018-3024 (-2875-2881,0) м, 3027-3036 (-2884,0-2893) м (28.06.-11.07.87г) в котором получены притоки газа, конденсата и воды с дебитами 86,5 тыс. $M^3/\text{сут}$, 1,4 $M^3/\text{сут}$ и 5,26 $M^3/\text{сут}$ соответственно. В скважине (12.07.–07.08.87г.) проперфорирован интервал 3012-3024 (-2869-2881,0) м, 3027-3036 (-2884,0-2893) м при котором получен газ с дебитом 26,90 тыс.м³/сут, конденсат -0,84 м³/сут и воды -1,30м³/сут. В июле 1987 году интервал 2992-3000 (-2849,1-2857,1) м был опробован и получен приток газа дебитом 53,63 тыс. m^3 /сут, воды Q =2,63 m^3 /сут и воды Q=2,85 m^3 /сут. В интервалах 2958-2980 (-2815,1-2837,1) м, 2957-2983 (-2814,1-2840,1) м при опробовании притоков не получено. По результатам интерпретации ГИС газонасыщенные коллектора выделены до абсолютной отметки -2970,6 м.

Скважина Кmn6 (17.03-14.06.87 г.) опробована в интервале 2805-2818 (-2662,6-2675,6) м получен дебит газа 481,2 тыс. м³/сут, конденсата 26,75 м³/сут при 12,2 мм диаметре шайбы. С июня до сентября 1987 г. в скважине опробован интервал 2777-2788 (-2634,7-2645,7) м при котором дебит газа составил 113,8 тыс. м³/сут, дебит конденсата 5,13 м³/сут. В опробованном интервале 2754-2766 (-2611,8-2623,8) м получен газ с конденсатом, дебиты которых составили 955,1 тыс. м³/сут и 119,4 м³/сут соответственно. С октября по декабрь месяц 1987 г. был опробован интервал 2718-2778 (-2575,9-2635,7) м дебиты газа и конденсата составили 12,42 тыс. м³/сут и 1,33 м³/сут, соответственно. В период 11.12.87-07.01.88 гг. при опробовании интервала 2678-2697 (-2536,0-2554,9) м получены притоки газа с дебитом 27,17 тыс. м³/сут и конденсата — 1,87 м³/сут. Позднее (08.01-10.02.88г.) к интервалу 2678-2697 (-2536,0-2554,9) м был выполнен дострел интервала2662-2673 (-2520,0 -2531,0) м с дебитами газа 31,46 тыс. м³/сут и конденсата 2,17 м³/сут. По данным интерпретации ГИС подошва газонасыщенного коллектора находится на отметке -2675,4

M.

В основу обоснования положения ГВК положены результаты испытаний скважин Kmn2 и Kmn13. Положение ГВК принимается на середине интервала неоднозначности между самым нижним газонасыщенным коллектором по ГИС и испытанию (сква. Kmn2) и самым верхним водонасыщенным интервалом по испытанию (скв. Kmn13) и равна — 3078 м.

Залежь пластовая, тектонический экранированная, площадь газоносности равна 19507 тыс. M^2 . Запасы газа оценены по категории C_1 и C_2 (граф. прил. 5).

2.2 Характеристика толщин, коллекторских свойств продуктивных горизонтов и их неоднородности

Залежь Каменского месторождения приурочено к межсолевым отложениям калиновской свиты казанского яруса верхней перми (P₂kz_kl).

Разрез продуктивной толщи сложен карбонатными породами органогенного генезиса, в основном, доломитового состава.

К отчету предоставлены сведения по керну, отобранному колонковым долотом в процессе бурения из 11 скважин из 15. Проходка с отбором керна составила 1134,5 м, линейный вынос 804,4 м (70,9% от проходки), изучено 1329 образцов.

По калиновской свите керн отобран в 11 скважинах месторождения (Kmn1, Kmn2, Kmn4-6, Kmn8, Kmn9, Kmn11-13, Kmn18). Проходка составила 1010,5 м, вынос керна – 705,0 м или 69,8%, проанализирован 1281 образец, из них определения проницаемости выполнены на 114 образцах.

Для характеристики коллекторских свойств и коэффициента нефтенасыщенности по ГИС использованы результаты интерпретации, выполненной по всем скважинам. Комплекс общих исследований в скважинах, состоял из стандартного каротажа (КС, ПС, КВ), радиоактивного каротажа (ГК+НК), инклинометрии. Детальные исследования в интервале продуктивных отложений дополнены методами: боковым фокусированным (БК одно-, двузондовые установки), микробоковым каротажом (МБК), микрозондированием (МКЗ). Для определения пористости и литологии проведены нейтронный каротаж (НК), акустический каротаж (АК) и гамма-гамма плотностной каротаж (ГГКП).

При выделении коллекторов и разделении по характеру насыщения руководствовались прямыми признаками, основанными на проникновении фильтрата в пласт и с помощью критических значений: Кгл≤0,10 д.ед., Кп≥0,04 д.ед, Кнг≥0,4 д.ед.

Интерпретация материалов ГИС проводилась с помощью программного обеспечения «GeoSolver» на основе алгоритма, разработанного при подсчёте запасов.

В основу интерпретации были положены теоретические уравнения связи глинистости и пористости с геофизическими параметрами, а для определения коэффициента нефтенасыщенности – петрофизические зависимости, полученные на керне из отложений продуктивной толщи.

Определение глинистости выполнялось по ГК с использованием зависимости для древних пород В.В. Ларионова. Пористость коллекторов рассчитывалась по стандартным зависимостям по методам АК, НК, ГГКП. Коэффициент нефтенасыщенности коллекторов рассчитывался по методу сопротивления.

Общая толщина залежей посчитана как разница между подошвой нижнего и кровлей верхнего коллекторов, а там, где выделен один коллектор, высчитывалась как разница между кровлей и подошвой этого коллектора. Общая толщина выделенных коллекторов изменяется от первых метров до десятков метров.

Эффективная толщина в скважине определялась как сумма эффективных толщин всех выделенных коллекторов. Следует отметить, что в терригенных коллекторах эффективная толщина всегда меньше общей толщины, так как при определении эффективной толщины из общей толщины вычитались плотные и глинистые прослои.

В таблице 2.2.1 дана характеристика общих, эффективных и газо(нефте)насыщенных толщин залежей выделенных горизонтов.

Залежь P2kz_kl. В разрезе залежи прослеживаются от 5 до 14 пластов. Общая толщина залежи изменяются в пределах от 54,6 м (скв. Kmn11, VI блок) до 141,0 м (скв. Kmn6, VIII блок). Эффективная толщина в VI блоке составляет 40,6 м, а в VIII блоке изменяется в пределах от 10,8 м (скв. Kmn2) до 48,8 м (скв. Kmn6), эффективная газонасыщенная толщина в VI блоке составляет 40,6 м, а в VIII блоке – от 10,8 м (скв. Kmn2) до 48,8 м (скв. Kmn6) (таблица 2.2.1).

Таблица 2.2.1 – Каменское месторождение. Характеристика толщин залежи

		Зоны пласта		D
Толщина	Наименование	Газовая	Газо- водяная	В целом по горизонту
1	2	3	4	5
	VI блок			
	Средние значение,м	54,6		54,6
Общая	Коэффициент вариации, д.ед.			
	Интервал изменения,м			
	Средние значение,м	40,6		40,6
Эффективная	Коэффициент вариации, д.ед.			
	Интервал изменения,м			
Газо-	Средние значение,м	40,6		40,6
	Коэффициент вариации, д.ед.			
насыщенная	Интервал изменения,м			
VIII блок			·	
Общая	Средние значение,м	122,7		122,7
Оощая	Коэффициент вариации, д.ед.	0,014		0,014

	Интервал изменения,м	105,1-141	105,1-141
	Средние значение,м	36,1	36,1
Эффективная	Коэффициент вариации, д.ед.	0,245	0,245
	Интервал изменения,м	10,8-48,8	10,8-48,8
Гара	Средние значение,м	36,1	36,1
Газо- насыщенная	Коэффициент вариации, д.ед.	0,245	0,245
	Интервал изменения,м	10,8-48,8	10,8-48,8

Средние значения в VIII блоке коэффициентов расчлененности составляет 10,7 д.ед. и распространения залежи равен 1 д.ед. В VI блоке участвует одна скважина Kmn11, где среднее значение коэффициента расчлененности равен 6 (таблица 2.2.2).

Таблица 2.2.2-Статистические показатели характеристик неоднородности горизонтов

	Кол-во Коэффициент расчлененности, д.ед.				
Блок	скважин, используемых для определе- ния	Среднее значе- ние	коэф. вариа- ции	Интервал изменения	Коэф. распространения, д.ед.
VI	1	6			1
VIII	3	10,7	0,143	5-14	1

Характеристика коллекторских свойств залежей, выполненная по данным керна и ГИС с учетом новых скважин приведена в таблице 2.2.3.

Таблица 2.2.3 - Характеристика коллекторских свойств и нефтенасыщенности месторождения Каменское

Метод определения	Наименование	Проницаемость. х10 ⁻³ мкм ²	Пористость, д. ед.	Насыщенность, д.ед.
	кол-во скважин	4	10	-
ПС	кол-во опред.	51	291	-
Лабораторные	средн.значение	2,32	0,067	-
исследования	коэф, вариации	11,9	0,78	-
	интервал изменен.	0,002-52,7	0,04-0,134	-
	кол-во скважин	-	4	4
Г. 1	кол-во опред.	-	70	70
Геофизические	среднее значение	-	0,071	0,374
исследования	коэф.вариации	-	0,39	0,174
	интервал изменен.	-	0,04-0,18	0,108-0,488

В таблице 2.2.4 приведены ряды распределения проницаемости, определённой на керне и ГИС.

Таблица 2.2.4 - Ряды распределения проницаемости по объектам по керну

Интервал изменения проницаемости, *10-3 мкм ²	Кол-во определений	Интервал изменения проницаемости, *10- ³ мкм ²	Кол-во определений
по кер	ну	По ГИ	C
< 0,01	56	<0,01	-
0,01-0,1	28	0,01-0,1	-
0,1-1,0	17	0,1-1,0	-
1,0-10,0	18	1,0-10,0	-
>10,0	3	>10,0	-

2.3 Свойства и состав пластового газа, конденсата и воды

Всего по месторождению Каменское по состоянию 01.07.2024г. отобрано 3 рекомбинированные пробы пластового газа и 5 проб стабильного конденсата. Все пробы были исследованы в лабораториях КазКНИЛ ВНИИГАЗ, ЦЛ КНГР, «ВНИИИГаз» и «НВ НИИГГ».

После работы «Дополнение к проекту разработки газоконденсатного месторождения Каменское» по состоянию 01.06.2020г. новые исследования по пластовому газу, конденсату и воде не проводились.

2.3.1 Свойства и состав пластового газа и газа сепарации

Свойства пластового газа

Лабораторные газоконденсатные исследования проведены по 3 рекомбинированным пробам пластового газа из скважин Kmn2 и Kmn6. Пробы составлялись из поверхностных образцов газа сепарации и сырого конденсата. По пробам проведена дегазация и дебутанизация конденсата с определением составов газов сепарации, дегазации, дебутанизации и сырого конденсата. Состав пластового газа рассчитан путем математической рекомбинации. По составу пластового газа рассчитаны потенциальное содержание C_{5+} в газе и коэффициенты сверхсжимаемости.

Исследованные пробы представляют отложения калиновской свиты казанского яруса верхней перми на разных интервалах продуктивной толщи. Средние параметры пластового газа следующие: КГФ по сырому конденсату $-86,4~{\rm cm}^3/{\rm m}^3$, потенциальное содержание C_{5+} в пластовом газе невысокое и изменяется в пределах $34,7-93,0~{\rm r/m}^3$ в среднем составляя $58,2~{\rm r}$ на $1~{\rm m}^3$ пластового газа. Коэффициент сверсжимаемости пересчитан исходя из термобарических условий, замеренных по скважинам с отбором проб, на уровне одной трети высоты залежи от ГВК и составил $1,094~{\rm д.ед.}$ Поправка на отклонение от закона Бойля-Мариотта составила $0,914~{\rm д.ед.}$ Молярная доля газа сепарации в пластовом газе составляет в среднем $0,9844~{\rm д.ед.}$, молярная доля «сухого» газа в пластовом газе $-0,9883~{\rm д.ед.}$ (таблица 2.3.1.1)

Состав пластового газа и сепарации

Всего в настоящем отчете состав пластового газа приводится по результатам анализов 3 проб из скважин Kmn2 и Kmn6.

<u>Газ сепарации</u> «сухой», содержание метана в среднем составляет 88,0 % мольн., этан-бутановой фракции — 2,01 % мольн., пентана и высших — 0,08 % мольн. По содержанию неуглеводородных компонентов газ низкоазотный (3,58 % мольн.), углекислый (5,12 % мольн.), сернистый (1,17 % мольн. сероводорода). Содержание

меркаптанов определено по пробе из скважины Kmn2 (интервал перфорации 3032-3182 м) и составило 288 мг/м³.

<u>Пластовый газ</u> также относится к «сухим», содержание метана составляет в среднем 86,83 % мольн., этан-бутановой фракции — 2,12 % мольн., пентана и высших — 1,17 % мольн. По содержанию неуглеводородных компонентов газ низкоазотный (3,52 % мольн.), углекислый (5,11 % мольн.), сернистый (1,24 % мольн. сероводорода). Содержание меркаптанов по пробе из скважины Kmn2 (интервал перфорации 3032-3182 м) составило 320 мг/м³.

Компонентные составы пластового газа и газа сепарации приведены в таблице 2.3.1.2.

В таблице 2.3.1.3 для информации приведены результаты анализов поверхностных проб газа сепарации, отобранных при разных условиях. Всего отобрано 7 проб из скважин Kmn2, Kmn5 и Kmn11. Как видно, состав газа различается в зависимости от точки и условий отбора: содержание метана по пробам колеблется от 86,27 до 93,79 % мольн, содержание гомологов метана – от 0,14 до 3,31 % мольн, азота – от 1,57 до 8,06 % мольн., углекислого газа – от 0,09 до 7,44 % мольн.

2.3.2 Физико-химические свойства конденсата

Физико-химические свойства конденсата изучены по 5 пробам, отобранным из 4 скважин (табл. 2.3.2.1). Пробы представляют собой дебутанизированные и дегазированные конденсаты, однако по своим свойствам они близки, что дает возможность совместного использования результатов анализов данных проб. Для большей части разреза как по разрезу, так и по площади физико-химические свойства конденсатов характеризуются однородностью.

Конденсат месторождения Каменское характеризуется, как особо легкий, малосернистый, малопарафинистый, малосмолистый, застывающий при отрицательной температуре и с высоким выходом светлых фракций. Плотность конденсата колеблется в диапазоне 0,7832-0,8105 г/см³, в среднем составляя 0,7979 г/см³. Кинематическая вязкость при температуре 20 °C составляет 1,17 мм²/м. Массовое содержание общей серы в конденсате составляет 0,32 %, парафинов – 0,34 %, смол силикагелевых – 0,22 %, асфальтенов – 0,04 %. Часть общей серы связана в сульфиды, содержание которых составляет 0,03 % масс. Незначительное содержание парафинов обусловило низкую температуру застывания конденсата (-39 °C). Молекулярный вес конденсата составил 125 г/моль.

По содержанию меркаптанов (среднее значение 0,08 % масс.) конденсат превышает

допустимые нормативы на сдачу товарной продукции, где максимально допустимо 100 ppm или 0.01 % масс, т.е. при подготовке продукции скважин рекомендуется ввести процесс демеркаптанизации.

Фракционный состав конденсатов легкий. Присутствуют, в основном, бензиновые и керосиновые фракции. Бензиновой фракции (до 200°С) содержится от 58 до 75%. До 300°С выкипает 87-96%.

Групповой углеводородный состав конденсата определен по одной пробе, отобранной в 1986 г со скважины Кmn2. По групповому углеводородному составу фракций, выкипающих до 300°С состоят примерно в равных соотношениях из нафтеновых (38%), ароматических (33,4%) и метановых (28,5%) углеводородов. Высокое количество ароматических углеводородов позволяет получать из конденсата высокооктановые бензины.

Из неорганических веществ в конденсатах в микроконцентрациях присутствуют ванадий, никель, железо, медь, кобальт, цинк (табл. 2.3.2.2), которые не имеют промышленного значения.

2.3.3 Свойства и состав пластовых вод

В гидрогеологическом отношении месторождение Каменское расположено в обширном Северо-Каспийском артезианском бассейне, занимающем юго-восточную территорию Русской пластформы. Его водонапорная система разделена региональным водоупором, сложенным соленосной толщей кунгурского яруса, на два гидрогеологических этажа, отличающихся друг от друга гидродинамическими и гидрогеологическими условиями.

Физико-химические свойства и состав пластовых вод газоконденсатной залежи практически не изучены. Имеются некоторые данные, которые характеризуют воды как высокоминерализованные. Практически все пробы калиновских отложений в той или иной степени содержат продукты раеакции соляно-кислотной обработки, что приводит к искажению ее химического состава. Здесь есть характерное отличие — это завышенные содержания кальция и магния.

Из всех результатов исследования наиболее представительными являются пробы отобранные из скважин Kmn2 (2 пробы), Kmn4 (1 проба) и Kmn5 (2пробы).

Оба анализа со скважины Kmn2 характеризуют воду как крепкий хлоркальциевый рассол с солесодержанием 134-162 г/л. Вода со скважины Kmn4 имеет минерализацию 296 г/л и относится к весьма крепкому хлоркальциевому рассолу. Минерализация вод по 2 пробам из скважины Kmn5 изменяется от 222 г/л до 287 г/л, в среднем составляя 254 г/л. В

целом воды очень жесткие, слабокислые и высокоминерализованные рассолы хлоркальциевого типа по В. А. Сулина (таблица 2.3.3.1).

Поземные воды содержат различные микрокомпоненты и минеральные вещества. Как видно из таблицы 2.3.3.2, промышленные концентрации превышают содержание таких ценных элементов, как литий (73 мг/л), стронций (560 мг/л), бром (872,9 мг/л), йод (38,9 мг/л). Помимо этих компонентов, в водах приутствуют кадмий, марганец, рубидий, цезий и др.

При рассмотрении водорастворенных газов пластовых вод были использованы анализы, исследованные в лабораториях КазКНИЛ ВНИИГАЗ'а и Нижневолжский НИИГГ (таблица 2.3.3.3). Характерной особенностью компонентного состава водорастворенного газа является высокая концентрация двуокиси углерода, составляющая до 25,8% мольн., азота - до 14,26 % мольн. Содержание углеводородов меняется от 60 до 71 %, из которых основную массу составляет метан (56-57% мольн.). Сероводород не определен. Тяжелые углеводороды фиксируются во всех пробах и их содержание колеблются в пределах 0,04-0,37% мольн.

Таблица 2.3.1.1 - Свойства пластового газа

Скважина	Kmn2	Kmn6	Kmn6	
Дата отбора	06.08.1986	21.10.1987	13.06.1987	Среднее
Место отбора	MTY	МТСУ	МТСУ	значение
Исполнитель	КазКНИЛ	КазКНИЛ	КазКНИЛ	по место-
	ВНИИГА3	ВНИИГА3	ВНИИГАЗ	рождению
Интервал перфорации, м	3032-3182	2754-2766	2805-2818	
Пластовое давление, МПа	46.9	45.2	45.4	45.8
Пластовая температура, °С	85	80	82	82
Количество выделившегося сырого конденсата (на газ сепарации), cm^3/m^3	47.7	150.6	61.0	86.4
Коэффициент сверхсжимаемости пласт. газа при начальных пластовых условиях, приведенных на 1/3 залежи	1.128	1.077	1.076	1.094
Поправка на отклонение от закона Бойля-Мариотта, д.ед.	0.887	0.929	0.929	0.914
Молярная доля газа сепарации в пластовом газе, д.ед	0.9925	0.9711	0.9895	0.9844
Молярная доля "сухого" газа в пластовом газе, д.ед	0.9926	0.9822	0.9900	0.9883
Содержание стабильного конденсата				
-на пластовый газ, г/м ³	34.7	93.0	47.0	58.2
-на газ сепарации, г/м 3	35.0	96.0	48.0	59.7
-на "сухой" газ, г/м ³	35.0	95.0	48.0	59.3
Плотность стаб. конденсата (C_{5+}) , г/см ³	0.7924	0.7832	0.8045	0.7934
Молекулярная масса стаб. конденсата (C_{5+}), $\Gamma/$ моль	114	129	116	120

Таблица 2.3.1.2 - Состав пластового газа и газа сепарации

Таолица	а 2.3.1.2 - Соста	B IIIac I U	BUIU I ASA H	l asa ce	парац	ии		~											
					1	1	1	Содер	жание	, % мо.	льные	ı	1	1	ı	/M ³	Плот	гность	
№ скв.	Интервал перфорации, м	Место отбора	Дата отбора	Метан	Этан	Пропан	Изо-бутан	Н-бутан	изо-Пентан	н-Пентан	С6+в	Азот	Углекислый газ	Сероводород	Меркаптаны	Меркаптаны, мг/м ³	абс. при 20°С кг/м ³	отн. по воздуху	Организация, проводившая исследования
		_							Газ сеп	араци	И								
Kmn2	3032-3182	МТУ	06.08.1986	88,18	1,20	0,78	0,09	0,10	0,00	0,00	0,08	4,20	4,43	0,94		288	0,7701	0,6398	КазКНИЛ ВНИИГАЗ
Kmn6	2754-2766		МТСУ	87,80	1,07	0,47	0,09	0,11	0,00	0,00	0,07	4,25	5,23	0,91			0,7749	0,6439	КазКНИЛ ВНИИГАЗ
	2805-2818		-	88,12	1,23	0,61	0,11	0,17	0,05	0,03	0,02	2,29	5,71	1,66			0,7814	0,6492	КазКНИЛ ВНИИГАЗ
	Средн	нее		88,03	1,17	0,62	0,10	0,13	0,02	0,01	0,06	3,58	5,12	1,17		288	0,7755	0,6443	
		_	T	1	1	r	Γ	аз дега	зации⊣	⊦дебута	низаці	ии	r	r	r	1			
Kmn2	3032-3182	МТУ	06.08.1986	72,99	4,42	4,05	0,86	1,23	0,50	0,29	0,21	0,30	12,45	2,70		314			КазКНИЛ ВНИИГАЗ
Kmn6	2754-2766	МТСУ	21.10.1987	30,46	6,88	13,54	4,71	6,50	2,30	1,15	0,44	0,09	13,44	20,49					КазКНИЛ ВНИИГАЗ
1111110	2805-2818	-	13.06.1987	74,74	4,48	3,68	0,86	0,78	0,31	0,18	0,10	0,42	11,60	2,85					КазКНИЛ ВНИИГАЗ
	Среді	нее		59,40	5,26	7,09	2,14	2,84	1,04	0,54	0,25	0,27	12,50	8,68		314			
ı		 	T	ı	1	Г	1	C	ырой к	сонденс	сат	Г	Г	Г	Г		· · · · · · · · · · · · · · · · · · ·		
Kmn2	3032-3182	МТУ	06.08.1986	8,26	0,53	0,40	0,13	0,13		88,95		0,00	1,33	0,27					КазКНИЛ ВНИИГАЗ
Kmn6	2754-2766	МТСУ	21.10.1987	12,92	2,92	5,77	2,01	2,75		59,18		0,03	5,70	8,72					КазКНИЛ ВНИИГАЗ
	2805-2818	-	13.06.1987	10,60	0,66	0,56	0,09	0,09		85,84		0,09	1,69	0,38					КазКНИЛ ВНИИГАЗ
	Среді	iee		10,59	1,37	2,24	0,74	0,99		77,99		0,04	2,91	3,12					
		1	T	1	ı	1	ı]	Газ пла	стовы	Й	1	1	1	1		1		
Kmn2	3032-3182	МТУ	06.08.1986	87,56	1,20	0,78	0,09	0,10		0,74		4,17	4,41	0,93	0,02	320	0,7862	0,6533	КазКНИЛ ВНИИГАЗ
Kmn6	2754-2766	МТСУ	21.10.1987	85,62	1,12	0,62	0,15	0,19		1,78		4,13	5,24	1,14	0,01		0,8244	0,6849	КазКНИЛ ВНИИГАЗ
	2805-2818	-	13.06.1987	87,30	1,22	0,61	0,11	0,17		1,00		2,27	5,67	1,65	0,00		0,8037	0,6677	КазКНИЛ ВНИИГАЗ
	Среді	нее		86,83	1,18	0,67	0,12	0,15		1,17		3,52	5,11	1,24	0,01	320	0,8048	0,6686	

Таблица 2.3.1.3 - Состав газа сепарации по поверхностным пробам

,			,	•				Содерж	ание, %	⁄6 молы	ње							Плотно	сть	
№ скв.	Интервал перфорации, м	Дата отбора	Место отбора	Метан	Этан	Пропан	изо-Бутан	н-Бутан	изо-Пентан	н-Пентан	Гексан+в	Азот	Углекислый газ	Сероводород	Гелий	Водород	Меркаптаны, мг/м ³	абсо- лютная, при 20 °C кг/м ³	отно- сит. по воздуху	Организация, проводившая исследования
Kmn2	откр ствол при забое 3182 м	18.10.1985	устье	88.90	0.85	0.33	0.06	0.06	0.06	0.04	0.03	1.57	7.44	0.66				0.7827	0.6502	КазКНИЛ ВНИИГАЗ
Kmn2	3032-3120	-	-	86.27	1.71	0.69	0.28	0.37	0.26	-	-	3.61	5.80	1.01				0.7988	0.6636	-
Kmn2	откр ствол при забое 3182 м	16.11.1985	устье	93.79	0.71	0.38	0.09	0.25	0.22	0.18	0.09	4.29	-	-				0.7171	0.5953	КазКНИЛ ВНИИГАЗ
Kmn2	3032-2182	24.08.1985	-	91.31	1.13	0.45	сл	сл	-	-	-	6.63	-	-	-	0.48		0.7102	0.5892	ЦЛ КНГР
Kmn5	3104-3114	24.03.1987	затруб.	91.47	0.12	0.02	следы	следы	следы	1	-	8.06	0.09	0.24			следы	0.7118	0.5909	КазКНИЛ ВНИИГАЗ
Kmn5	3104-3114	20.03.1987	-	88.07	1.03	0.44	0.09	0.11	0.04	0.02	0.02	4.61	4.63	0.94			34.00	0.7992	0.6634	КазКНИЛ ВНИИГАЗ
Kmn11	2869-2942	16.09.1988	МТСУ	86.38	1.24	0.55	0.11	0.15	0.05	0.02	0.01	3.94	5.91	1.64				0.7903	0.6565	КазКНИЛ ВНИИГАЗ

Таблица 2.3.2.1 - Физико-химические свойства конденсата

Параметры	Кол-во	исслед.	Диапазон	Среднее
Параметры	скв.	проб	изменения	значение
1	2	3	4	5
	Калиновсн	сая свита		
Плотность при температуре 20 °C, г/см 3	4	5	0,7832-0,8105	0,7979
Вязкость кинем-я при 20 °C, мм ² /с	4	5	1,02-1,32	1,17
Температура застывания, °С	3	4	(-59) - (-16)	-39
Массовое содержание, %				
-серы общей	4	5	0,15-0,53	0,32
-парафинов	3	4	0,018-0,50	0,34
-смолы	3	4	0,079-0,37	0,22
-асфальтенов	4	5	0,01-0,102	0,04
Температура начала кипения, °С	4	4	56-102	79
Отогнано, % об.				
- при 100 °C	3	4	5,0-11,5	8,0
- при 200 °C	4	5	58,0-71,0	67
- при 300 °C	4	5	87,0-96,0	92
Молекуларная масса	4	5	114-140	125

Таблица 2.3.2.2 – Микрокомпонентный состав конденсатов (скв. Kmn5)

Сирамина	Интервал			Содерж	кание, г/т		
Скважина	перфорации	V	Ni	Fe	Cu	Co	Zn
V 5	2990-3000	0,1	0,1	0,29	0,06	-	0,40
Kmn5	3018-3046	0,1	0,3	3,83	0,17	0,006	0,21

Таблица 2.3.3.1 – Свойства и состав подземных вод

Наименова	ние	Kmı	12	Kmn4	Kı	mn5
Дата отбора		23.08.1986	06.08.1986	01.02.1988	25.0:	5.1987
Горизонт				P ₂ kz_kl		
Интервал опробовани	ия, м	3032-3171	3032-3182	3172-3210	3071	1-3089
Плотность, $\Gamma/\text{см}^3$		1,113	1,136	1,204	1,195	1,200
Общая минерализаци	ия, г/дм ³	134	162	296	222	287
Водородный показато	ель (рН)	6,47	5,95	5,31	-	5,75
Общая жесткость, мг	-экв/дм ³	1875	2200	3950	3355	3510
	C1-	87992	106731	185854	168142	182520
	SO ₄ -	581,24	524,97	304,92	273,2	361,19
Содержание ионов,	HCO ₃ -	585,6	743,25	561,36	366	280,68
$M\Gamma/дM^3$	Ca ₂ ⁺	23647,2	20040	71142	29547	36072
	Mg_2^+	8755,2	14592	4864	22528,8	20793,6
	Na++K+	12350	19300	32500	32303,04	46085,86

Таблица 2.3.3.2 - Содержание микрокомпонентов в пластовых водах Каменского месторождения

№	Инторрад						Элемен	г/пром.ко	нцентр.,	мг/л					
л <u>е</u> скв.	Интервал перфорации	$\frac{\mathrm{Sr}^{2+}}{300}$	Li ⁺ 10	Br ⁺ 200	<u>I</u> ⁺ 10	Cd^{2+}	Mn ²⁺	Cu ²⁺	Rb ⁺ 3,0	Zn ²⁺	Pb ²⁺	$\mathbf{A}\mathbf{g}^{\scriptscriptstyle{+}}$	$\frac{\mathbf{C}\mathbf{s}^{+}}{0,5}$	Be	B ³⁺
Kmn1	2516-2529	157,0	73,0	783,4	29,6	0,75	7,4	0,6	0,4	140,0	3,1	0,15	0,2		59,6
Kmn1	2637-2651			171,57	23,688										131,09
Kmn2	3032-3171		14,5	25,366	1,4945										38,158
	3078-3102		34	87,38	26,44										423,805
	3126-3140	560,0		872,9	38,9	1,2	12,0	1,4	0,5	96	4,5	0,2	0,2		335,8
Kmn4	3143-3162	540,0		986	37,0	2,0	12,0	0,5	0,5	97,0	10,0	0,3	0,25		302,6
	2172 2210	400,0		199,1	24,3	5,0	28,0	0,3	3,0	85,0	0,8				345,6
	3172-3210	400,0		289,9	24,3	5,0	28,0	0,1	2,5	70,0	0,8				370,1

Таблица 2.3.3.3 - Компонентный состав водорастворенного газа

№ скв.	Harrison of Francisco					Состав га	за, % моль				
M2 CKB.	Интервал перфорации	CH ₄	C_2H_6	C_3H_8	i-C ₄ H ₁₀	$n-C_4H_{10}$	i-C ₅ H ₁₂	$n-C_5H_{12}$	N_2	CO_2	H_2S
Kmn1	2516–2529	56,23	7,87	6,46	0,95	1,51	0,59	0,37	3,12	25,45	-
Kmn13_1	3385-3395	57,12	1,92	0,53	0,09	0,15	0,06	0,04	14,26	25,81	Не опр.
Kmn18	2470-2490*	2,42	0,39	0,18	0,04	0,07	0,03	0,03	7,27	89,45	0,1
Kmn8	2875-2890*	19,16	0,15	0,1	0,13	0,18	0,13	0,05	20,5	59,58	Нет
Kmn8	2875-2890*	0,16	0,2	0,01	0,04	0,08	0,1	0,06	0,38	99,11	Не опр.

Примечание: *- отбракованные пробы

2.4 Физико-гидродинамическая характеристика

2.5 Запасы газа и конденсата

Пересчет запасов газа и конденсата месторождения Каменское был выполнен по состоянию на 01.06.2024г., согласно Протоколу ГКЗ РК за №2716-24-У от 30.10.2024г. запасы газа и конденсата были учтены в Государственном Балансе полезных ископаемых Республики Казахстан. В целом по месторождению геологические и извлекаемые запасы газа составляют: по категории $C_1 - 10303$ млн. $M^3/8376$ млн. M^3 ; по категории $C_2 - 1847$ млн. $M^3/1126$ млн. M^3 соответственно.

Геологические/извлекаемые запасы конденсата по месторождению составляют: по категории C_1-601 тыс. т./360 тыс. т.; по категории C_2-107 тыс. т./48 тыс. т. соответственно.

Геологические и извлекаемые запасы газа и конденсата в целом по месторождению в пределах горного отвода составляют:

газ пластовый

 $C_1 - 10220$ млн. M^3 геологические, в том числе извлекаемые 8309 млн. M^3 ;

 $C_2 - 1617 \ \text{млн.} \ \text{м}^3$ геологические, в том числе извлекаемые 986 млн. м^3 ;

газ сухой

 $C_1 - 10100$ млн. M^3 геологические, в том числе извлекаемые 8212 млн. M^3 ;

 $C_2 - 1598$ млн. м^3 геологические, в том числе извлекаемые 974 млн. м^3 ;

конденсат

 $C_1 - 595$ тыс. т. геологические, в том числе извлекаемые 357 тыс. т.;

 $C_2 - 94$ тыс. т. геологические, в том числе извлекаемые 43 тыс. т.

Геологические и извлекаемые запасы газа и конденсата в целом по месторождению за пределами горного отвода составляют:

газ пластовый

 $C_1 - 83$ млн. M^3 геологические, в том числе извлекаемые 67 млн. M^3 ;

 $C_2 - 230$ млн. M^3 геологические, в том числе извлекаемые 140 млн. M^3 ;

газ сухой

 $C_1 - 82$ млн. M^3 геологические, в том числе извлекаемые 66 млн. M^3 ;

 $C_2 - 227$ млн. M^3 геологические, в том числе извлекаемые 139 млн. M^3 ;

конденсат

 $C_1 - 5$ тыс. т. геологические, в том числе извлекаемые 3 тыс. т.;

 $C_2 - 13$ тыс. т. геологические, в том числе извлекаемые 6 тыс. т.

В таблице 2.5.1 представлены подсчитанные начальные геологические и извлекаемые запасы газа и конденсата по состоянию изученности на 01.06.2024 г.

Таблица 2.5.1 – Сводная таблица подсчета запасов газа и конденсата

Гори- зонт,	Тип коллек-	ная таблица р-н скважин	Зона насы- ще-	Ка-	Пло- щадь газо- нос-	Средне- взвеш. эффект. газонас.	Объем газона- сыщен.	Коэффиі д. 6		Пласт давле Мі	ение,	Поправ откл зако Бой. Мари	. от)на ля-	Поп- равка за темпе	Коэфф. перевода мегапас- калей в физичес-	Геолог. запасы пласто- вого	Коэф. извле- чения газа	Извле- каемые запасы пласто-	Потенц. содержа- ние	Нач. балан. запасы конден-	КИК, д.ед.	Извле- каемые запасы конден-	Мольная доля сухого газа в	Геологи- ческие запасы сухого	Извле- каемые запасы сухого
залежь	тора	CKBAMIII	ния	рия	ности, тыс.м ²	толщи- на, м	пород, тыс. м ³	от- крыт. порис- тости	газо- насы- щен- ности	на- чаль- ное	ко- неч- ное	на- чаль- ное	ко- неч- ное	ра-	кие атмосфе- ры	газа, млн.м ³	(КИГ), д. ед.	вого газа, млн. м ³	конден- сата, г/м ³	сата,	д.ед.	сата, млн.м ³	пласто- вом газе, д.ед.	газа, млн.м ³	газа, млн. м ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
		VI блок	ЧГ	C ₁	3378	24,4	82282	0,079	0,762	44,5	0,13	0,915	1,0	0,825	9,87	1637	0,813	1331	58,2	95	0,599	57	0,9883	1618	1315
		район	ГВ		398	13,1	5220	0,079	0,762	44,5	0,13	0,915	1,0	0,825	9,87	104	0,813	85	58,2	6	0,599	4	0,9883	103	84
		скв. Kmn 11 в		C ₁	3776	23,2	87502	0.050	0.742	44.5	0.10	0.015	1.0	0.025	0.07	1741	0.610	1416	50.2	101	0.450	61	0.0002	1721	1399
		пределах горного	ЧГ ГВ	C ₂	4145 552	10,7	44225 3560	0,079	0,762	44,5	0,13	0,915	1,0	0,825	9,87 9,87	880	0,610 0,610	537 43	58,2 58,2	51	0,450 0,450	23	0,9883	870 70	531
	ый	отвода	1 D	C ₂	4697	6,4 10,2	47785	0,079	0,702	44,5	0,13	0,915	1,0	0,825	9,87	71 951	0,610	580	36,2	55	0,430	25	0,9883	940	573
	поровый	VI блок	ЧГ	C ₂	225	12,6	2840	0,079	0,762	44,5	0,13	0,915	1,0	0,825	9,87	57	0,813	46	58,2	3	0,599	2	0,9883	56	45
P ₂ kz_kl	(ино-п	район скв. Ктп	41	C ₁	225	12,6	2840	0,079	0,702	44,3	0,13	0,913	1,0	0,823	9,07	57	0,613	46	36,2	3	0,399	2	0,9863	56	45
	Треп	11 за предела-	ЧГ	C ₂	650	13,5	8750	0,079	0,762	44,5	0,13	0,915	1,0	0,825	9,87	174	0,610	106	58,2	10	0,450	5	0,9883	172	105
		ми горного отвода		C ₂	650	13,5	8750									174		106		10		5		172	105
		VIII блок	ЧГ		8238	29,6	243500	0,084	0,830	44,5	0,13	0,915	1,0	0,825	9,87	5611	0,813	4562	58,2	327	0,599	196	0,9883	5545	4509
		район скв. Ктп	ГВ	C ₁	1921	11,9	22935	0,084	0,830	44,5	0,13	0,915	1,0	0,825	9,87	528	0,813	429	58,2	31	0,599	19	0,9883	522	424
		5		C ₁	10159	26,2	266435									6139		4991		358		215		6067	4933
Итого	в пределях	горного отво	пля	C ₁	13935	25,4	353937									7880		6407		459		276		7788	6332
111010	Бпределих	ториото отве	оди	C ₂	4697	10,2	47785									951		580		55		25		940	573
Итого	ва пределам	и горного оті	вода	C ₁	225	12,6	2840									57		46		3		2		56	45
				C ₂	650	13,5	8750									174		106		10		5		172	105
Bcei	го по трещи коллект	нно-поровым горам	М	C ₁	14160	25,2	356777									7937		6453		463 65		278		7844	6378 677
	Router	VI блок		C ₂	5347 3776	10,6 70,0	56535 264290	0,0097	0,65	46,14	0,13	0,889	1,0	0,826	9,87	1125 555	0,813	686 451	58	32	0,599	19	0,988	1112 548	446
		район скв. Ктп		C ₁	3776	70,0	264290	0,0077	0,00	.0,1.	0,10	0,007	1,0	0,020	7,07	555	0,010	451		32	0,077	19	0,500	548	446
		11 в пределах		C ₂	4697	67,5	317109	0,0097	0,65	46,14	0,13	0,889	1,0	0,826	9,87	666	0,610	406	58	39	0,450	18	0,988	658	401
		горного отвода		C ₂	4697	67,5	317109									666		406		39		18		658	401
	ный	VI блок		C ₁	225	54,4	12250	0,0097	0,65	46,14	0,13	0,889	1,0	0,826	9,87	26	0,813	21	58	2	0,599	1	0,988	26	21
P ₂ kz_kl	Грещинный	район скв. Ктп 11 за		C ₁	225	54,4	12250									26		21		2		1		26	21
	H.	пределам и горного		C ₂	650	41,0	26621	0,0097	0,65	46,14	0,13	0,889	1,0	0,826	9,87	56	0,610	34	58	3	0,450	1	0,988	55	34
		отвода		C ₂	650	41,0	26621									56		34		3		1		55	34
		VIII блок район		C ₁	10159	78,7	799880	0,0097	0,69	46,14	0,13	0,889	1,0	0,826	9,87	1785	0,813	1451	58	104	0,599	62	0,988	1764	1434
		скв. Kmn 5		C ₁	10159	78,7	799880									1785		1451		104		62		1764	1434

Продолжение таблицы 2.5.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	3	24	25	26
	<u>'</u>	•	l	C ₁	13935	76,4	1064170									2340		1902		136	8	1		2312	1880
Итог	го в предела	х горного (отвода	C ₂	4697	67,5	317109									666		406		39	1	8		658	401
11				C ₁	225	54,4	12250									26		21		2		L		26	21
Итого	за пределаг	ми горного	о отвода	C ₂	650	41	26621									56		34		3		l		55	34
Daara				C ₁	14160	76	1076420									2366		1923		138	8	2		2338	1900
Beero	по трещині	ным колле	екторам	C ₂	5347	64,3	343730									722		440		42	1	9		713	435
Итого	по месторох	ждению в г	пределах	C ₁	27870		1418107									10220		8309		595	3	57		10100	8212
		о отвода		C ₂	9394		364894									1617		986		94	4	3		1598	974
И	того по мест	горождени	ю за	C ₁	450		15090									83		67		5		3		82	66
П	ределами го	рного отв	ода	C ₂	1300		35371									230		140		13		5		227	139
D.				C ₁	28320		1433197									10303		8376		601	3	50		10182	8278
В	целом по мо	есторождеі	нию	C ₂	10694		400265									1847		1126		107	4	8		1825	1112

З ПОДГОТОВКА ГЕОЛОГО-ПРОМЫСЛОВОЙ И ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ОСНОВЫ ДЛЯ ПРОЕКТИРОВАНИЯ РАЗРАБОТКИ

3.1 Анализ результатов газогидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов

На месторождении Каменское при опробовании газонасыщенных интервалов пласта в период разведки месторождения выполнено исследований установившейся отборов (МУО) и кривых восстановления давлений (КВД) период с 1986 г. по 1991 г.

Исследования газоконденсатных объектов проводилось методом установившихся отборов (МУО) при стандартных режимах фильтрации после стаблизации дебита, устьевых и забойных давлений и температур. Перед исследованием ствола скважины очищался от механических примесей и технической воды в ходе работ на нескольких режимах в течение 0,5-2 суток. Исследование проводились на 3-4 режимах прямого и одном-двух режимах обратного хода (таблица 2.1). Запись кривой восстанавление давления (КВД) осуществлялся, в большинстве случаев, после цикла исследований и реже до их начала. Замеры пластовых давлений глубинными параметрами проводились после восстановления устьевых и забойных давлений.

Замеры дебита газа осуществляись с помощью ДИКТа. Противодавление на пласт в период проведения исследовательских работ создавалась установкой на ДИКТе диафрагме различного диаметра, что позволило регулировать депрессию на пласт от минимального до возможно допустимых. Давление на устье скважины замерялись техническим манометрам. Температура потока на устье и на ДИКТе замерялись с помощью ртутных термометров.

Продуктивность газоконденсатной залежи месторождения изучена по данным опробования и промысловым исследованиям скважин 1, 2, 4, 5, 6, 8, 13, промышленные притоки газа получены в скважинах 2, 5, 6, 11.

Скважина 2 в опробованных в интервалах: 3032-3182 м, 3032-3171 м, котором были получены фонтан газа с конденсатом, кроме интервала 3032-3120 м (таблица 2.1). Максимальный дебит получен 418,9 тыс.м³ /сут на штуцере 12 мм в интервале перфорации 3032-3182 м. Наименьший приток отмечен в интервале 3032-3120 м, дебит газа в которой составил 3,1 тыс.м³ /сут на штуцере 3 мм.

Получены результаты представлены в таблице 3.1.1.

Таблица 3.1.1 – Месторождение Каменское. Результаты испытания газоконденсатных объектов калиновской свиты

	кой свиты			Дебиты				
№ скв.	Интервал испытания/ абс. отметка, м		газа, тыс.м ³ /сут	стаб. конденс м ³ /сут	воды, м ³ /сут	стаб. конден. см ³ /м ³	Р заб., МПа	Рпл/Тпл МПа /⁰С
1	2	3	4	5	6	7	8	9
		8,0ж	198,5	8,1	0,13	41,0	34,0	46,90
	3032-3182	6,0	151,9	6,4	0,10	42,0	42,9	+85
2	-2903,8-3053,8	8,0жж	240,9	10,1	0,16	42,0	39,8	-
	-2703,0-3033,0	10,0	338,7	13,5	0,22	40,0	37,6	-
		12,0	418,9	16,2	0,26	38,7	35,1	-
			давление на					
			очистки сква:		абойное			
	-	давление на	шайбе 8 мм з		сле записи			
			КВД					
		6,0	143,3	5,7	0,09	40,0	36,4	46,85
2	<u>3032-317</u>	8,2	229,6	9,4	0,15	41,0	33,7	+85
2	-2903,8-3042,8	10,0	304,3	12,7	1,02	42,0	31,5	-
		12,0	374,4	15,7	2,35	42,0	20,0	-
	3032-3120	3,0	3,1				8,2	46,6
2	-2903,8-2991,8	4,0	4,8	-			7,6	+85
	после СКО	5,0	6,4				7,0	-
	2104 2114	8,7	124,7	4,9	0,1	40,0	0	46,85
5	3104-3114 -2961,1-2971,1	5,0	24,1	0,09	0,005	3,7	11,8	+82
3	-2961,1-2971,1 после СКО	7,4	38,3	0,16	0,021	4,3	11,6	-
	noche CRO	8,7	39,7	0,25	0,045	6,3	7,5	-
		4,4	37,2	0,89	0,45	24,0	16,8	46,8
	3071-3089	7,4	48,3	1,83	0,99	38,0	7,9	+82
5	-2928,1-2946,1	9,3	51,1	2,35	1,40	47,0	5,9	
	-2928,1-2940,1	7,4	26,4	0,50	0,20	19,0	7,3	-
		9,3	32,9	1,41	0,77	43,0	-	-
5	3048-3052 -2905,1-2909,1							
	3042-3046							
5	-2899,1-2903,1							
	после СКО							
	3018-3024	4,4ж	51,2	0,75	2,83	70,0		
	-2875,1-2881,	6,2ж	86,7	1,40	5,26	77,0	12,7	46.2
	3027-3036	4,4жж	26,7	0,09	0,33	16,0	1,0	46,2
5	-2884,1-2893,1	6,2жж	42,1	0,2	0,77	23,0		
3	дострел к инт	Ж	г дебита жидн				. жж	
	3042-3046 -		г деоита жидь при минимал					
	2899,1-2903,1	жидкости	при минимал	ьном давлен		тором отме	чался выно	эс жидкои
	после СКО				фазы			
	3012-3024							
	-2869,1-2881,1	6,2**	50,1	2,0	3,71	48,0	11,6	0
5	<u>3027-3036</u>	6,2 ^{жж}	26,9	0,70	1,30		11,0	<u>0</u> +82
	-2884,1-2893,1	0,2	20,9	0,70	1,50	26,0	_	+62
	после СКО							
	2992-3000	6.2	52.7	2.62	2 05	40.0	4.2	117
5	-2849,1-2857,1	6,2	53,7 25.1	2,63 0,70	2,85 0,76	49,0	4,2	$\frac{44,7}{+82}$
	после СКО	6,2	25,1	0,70	0,70	28,0	13,9	+82
	2958-2980	После перо	рорации, трех	кратного пр	оведения			
5	-2815,1-2837,1		ледований пр					
	после 3 СКО		Объект "с					

Продолжение таблицы 3.1.1

Продолжение таблицы 3.1.1											
1	<u>2</u>	3	4	5	6	7	8	9			
5	Дострел 2957-2983 -2814,1-2840,1 2958-2980 -2815,1-2837,1 после СКО	исследов	ерфорации, п аний по мето, а не получено								
6	2805-2818 -2663,0-2676,0 после СКО 12,2 482,0 26,75 7,4 277,0 14,74 9,3 335,9 17,76 12,2 386,1 21,43							45,4 +82			
6	<u>2777-2788</u> -2635,0-2646,0	6,3 8,5 9,3	104,1 112,1 114,0	4,92 5,05 5,13		47,3 45,1 44,3		<u>45,2</u> +81			
6	2754-2766 -2612,0-2624,0 после СКО	8,7 9,3 12,2 14,0 12,2	463,0 506,4 823,5 958,7 823,5	53,05 61,5 102,5 119,4 102,5		115,0 122,0 125,0 125,0 125,0		<u>45,2</u> +80			
6	2718-2728 -2576,0-2586,0 после СКО	6,2	12,46	1,33		107,0		<u>/-/</u> +81			
6	2678-2697 - 2536,0-2555,0 после СКО		27,19 олучены в на ины на режи			69,0	-	-			
6	2662-2673 -2520,0-2531,0 дострел к 2678-2697 -2536,0-2555,0 после СКО	4,4 4,4	31,52	2,17		69	17,2	<u>/-/</u> +74			
8	2786-2798 -2591,1-2603,1 дострел к 2798- 2826 -2603,1-2631,1 и уплотн. Перф 2798-2818 -2603,1-2623,1 после СКО										
8	2722-2757 -2527,1-2562,1 после СКО				1,4		34,4	<u>/-/</u> 78			
11	откр. Ствол <u>2869-2942</u> -2712,5-2785,5	15,1 20,0 30,0 50,8	774,7 1002,7 1281,3 1964,6	54,1 59,1 57,6 70,5		70,0 59,0 45,0 36,0	24,9 19,8 14,8	/-/ - - 46,2			

Скважина 5 опробована в интервалах: 3104-3114 м, 3071-3089 м, 3018-3024 м, 3027-3036 м дострел к 3042-3046 м, 3012-3024 м, 3027-3036 м, 2992-3000 м получен фонтан газа с конденсатом и воды, кроме интервалов 3048-3052 м, 2958-2980 м 2957-2983 м и 2958-2980 м притоков из пласта которых не получено, в интервале 3042-3046 м отмечено газопроявление дебитом до 100 м³ /сут. Максимальный и минимальный дебит газа и конденсата получен с интервала 3104-3114 м при опробвании на штуцере диаметром 8,7 мм (124,7 тыс.м³ /сут) и на штуцере диаметром 5 мм (24 тыс.м³ /сут).

Скважина 6 опробована в интервалах: 2805-2018 м, 2777-2788 м, 2754-2766 м, 2718-2728 м, 2678-2697 м и 2662-2673 м, котором был получен газа с конденсатом без пластовой воды. Дебит газа скважины изменяется от 958,7 тыс.м³ /сут на штуцере 14 мм в интервале опробования 2754-2766 м до 12,46 тыс.м3 /сут на штуцере 6,2 мм в интервале опробования 2718-2728 м.

В скважине 8 опробованы интревалы 2786-2816 м, 2722-2758 м котором были получены притоки воды. Объект перфорации подвержден замерами ГИС.

При опробовании *скважины 11* открытом стволе верхней перми продуктивной толщи интервала 2869-2942 м при опробовании на штуцере 50,8 мм был получен фонтанный приток газа с дебитом 1964,6 тыс.м³/сут, конденсата 70,5 м³/сут (таблица 2.1).

Результаты газогидродинамических исследований скважин

При исследовании методом установившихся отборов для замера дебита использовался диафрагменный измеритель критического значения (ДИКТ). Забойные и пластовые давления регистрировались глубинными манометрами типов МГН-3М-400, МГН-2-400, МГН-2-600. Исследования нефтяных и газоконденсатных объектов проводились методом малых отборов, так и методом промышленных отборов. Исследования методом малых отборов производились с помощью малых сепарационных установок МТСУ (малая термостатируемая сепарационная установка). Исследования методом промышленных отборов проводились с помощью трапных установок, а также через полнопоточную установку «Порта-Тест». Для определения соотношения жидкой и газовой фаз использовалась трапная установка низкого давления (0,8 МПа), а также большая сепарационная установка «Порта-Тест» типа Е-16-48-1440-3Р.

При обработке материалов ГДИ основное внимание уделено определению коэффициентов фильтрационного сопротивления (КФС), а также установлению основных зависимостей между дебитом, устьевым и забойным давлением, депрессией на пласт.

Основные результаты обработки ГДИ приведены в таблице 2.2, графические построения (индикаторные диаграммы) на рисунках 2.1 – 2.5. Значения коэффициентов фильтрационного сопротивления по скважинам изменяются:

- коэффициент «а» от 0,2112 (в скважине 6) до 1,7432 [сут*М Π а²/тыс.м³] (в скважине 2);
- коэффициент «b» от 0,0001 (в скважине 6) до 0,0004 [(cyт*кгс/см 2) 2 /(тыс.м 3) 2] (в скважине 2).

По материалам обработки исследований скважин и с учетом неоднородности опробованных интервалов, для прогнозирования добывных возможностей проектных

скважин получены следующие значения коэффициентов фильтрационного сопротивления «средней» скважины, которые использовались в дальнейших расчетах:

 $-a = 0.9773 \text{ (МПа)/(тыс.м}^3/\text{сут)};$

 $-b = 0.0002 (M\Pi a)^2/(тыс.м^3/сут)^2;$

-абсолютно-свободный дебит: Qa.c.= 1629,1 тыс.м³/сут;

-дебит при депрессии на пласт 5 MПа Q_5 = 411,3 тыс.м³/сут;

-дебит при депрессии на пласт 7,5 МПа $Q_{7,5}$ = 580,6 тыс.м³/сут;

-дебит при депрессии на пласт 10 МПа Q_{10} = 731,2 тыс.м³/сут.

таблице 3.1.2 приведены основные продуктивные и технологические характеристики газовых скважин.

Таблица 3.1.2 – Месторождения Каменское. Основные продуктивные и технологические

характеристики газовых скважин

				К	ФС	Д	[ебит газ	а, тыс.м	13/сут		
OTAB	Интервал перфорации, м		Рпл,	«a»	«b»					a/b	1
скв.			_		МПа	сут*Мпа2	(сут*МПа)2	dP=5	dP=7,5	dP=10	Q абс.св.
				/тыс.м3	/(тыс.м3)2						V
1	2	3	4	5	6	7	8	9	10	11	12
2	3032	3182	46,9	2,0394	0,0021	183	252	311	647,22	971,14	21,82
2	3032	3171	46,85	4,1114	0,0011	105	151	194	473,80	3737,64	30,15
2			46,88	1,7432	0,0004	242	346	439	1033,58		11,79
6	2805	2818	45,4	1,2556	0,0072	172	220	259	454,91	174,39	3,55
6	2777	2788	45,2	7,4801	0,0793	40	53	64	120,13	94,33	119,52
6	2754	2766	45,2	0,2501	0,00007	1262	1688	2045	3903,70	3572,86	
6			45,27	0,2112	0,0001	1466	1954	2361	4478,89		

Результаты графической обработки Определение материалов ГДИ. фильтрационного сопротивления скважин приведены на рисунках 3.1.1 – 3.1.5.

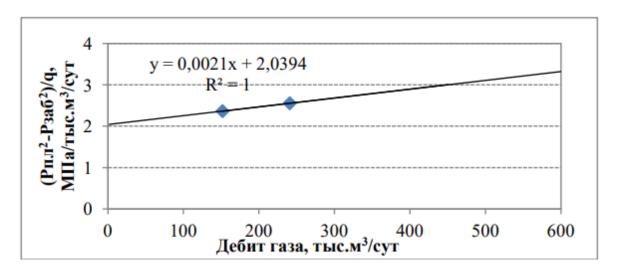


Рис. 3.1.1 – Месторождение Каменское. Скважина 2 (интервал 3032-3182). Определение коэффициентов фильтрационного сопротивления

Рис. 3.1.2 — Месторождение Каменское. Скважина 2 (интервал 3032-3171). Определение коэффициентов фильтрационного сопротивления

Рис. 3.1.3 – Месторождение Каменское. Скважина 6 (интервал 2805-2818). Определение коэффициентов фильтрационного сопротивления

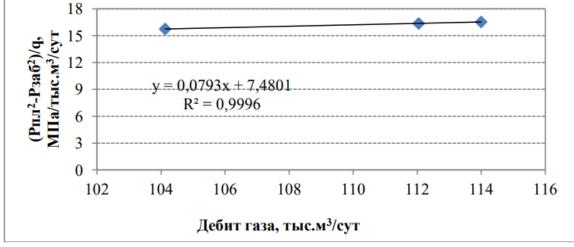


Рис. 3.1.4 – Месторождение Каменское. Скважина 6 (интервал 2777-2878). Определение коэффициентов фильтрационного сопротивления

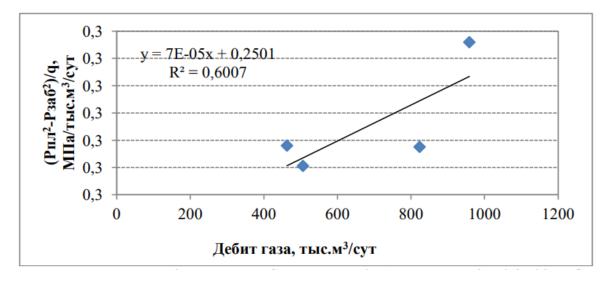


Рис. 3.1.5 – Месторождение Каменское. Скважина 6 (интервал 2754-2766). Определение коэффициентов фильтрационного сопротивления

По вышеуказанным графикам определены дебиты газа скважин при изменении от 5 МПа до 10 МПа.

После МУО данная скважина была закрыта на снятие КВД. Определены фильтрационно-емкостные свойства (ФЕС) (см. таблицу 2.3).

КВД проводилось в 4 скважинах (2, 5, 6 и 8), в скважине 2 запись КВД проведена на технической воде, в 5 скважине в интервалах 3104-3114 м и 3071-3089 м запись КВД была прекращена в связи с межколонным газопроявлением, в интервалах 3018-3024 м, 3027-3036 м и дострел к 3042-3046 запись КВД в связи медленным восстановлением

давления была прекращена через 175 часов после закртие скважины (скважина заполнена технической водой), в нтервале 2992-3000 м – запись КВД проведена на технической воде. В скважине 6 в интервале перфорации 2805-2018 м общая продолжительность записи КВД составила 35 мин., в т.ч врем записи после стабилизации давления 13 минут. В связи с наличием и быстрым ростом межколооного давления до 6,07 МПа запись была прекращена. Вторая запись пластового давления (Рпл) была произведена после задавки скважин технической водой, пластовое давление (Рпл) составило 46,7 МПа, в интервалах данной скважины 2777-2788 м и 2754-2766 м запись КВД проведена на технической воде из-за межколонного давления. Скважина 8 в интервале перфорации 2722-2758 м при провдении записи КВД через 102 часа после закрытие скважин забойное давление (Рзаб) составило 42,10 МПа через 126 часов- 42,18 МПа, т.е. давление пластовое давление (Рпл) не восстановилось.

Скважина **2** КВД проводили в интервале перфорации 3032-3182 м продолжительность записи КВД составило 4,5 часов. По результатам исследования пластовое давление составило 45,76 МПа, забойное давление — 45,26 МПа. Проницаемость 0,00138 Д, пьезопроводность - 0,15577 м²/с и проводимость — 1,82 \times 10⁻⁹ м³/Па·с.

Скважина 6 КВД проводили в интервале перфорации 2805-2018 м продолжительность записи КВД составило 2,5 часов. По результатам исследования пластовое давление составило 46,7 МПа, забойное давление — 46,3 МПа. Проницаемость $0,0326~\rm mkm^2$, пьезопроводность составила $0,50875~\rm m^2/c$ и проводимость — $6,34~\rm \times 10^{-9}~\rm m^3/\Pi a \cdot c$.

Таблица 3.1.3 – Месторождение Каменское. Исследование кривое восстановление давление КВД

Сква- жи на	испы-тания.	Проводи-мость, ×10 ⁻⁹ м ³ /Па·с	Прони-цаемость, Д	Пьезопроводность, м ² /с	Пластовое давление, МПа		Пластовая темпера-тура, ^о С
2	3032-3182	1,82	0,00138	0,15577	45,86	45,26	+ 85
6	2805-2018	6,34	0,0326	0,50875	46,7	46,3	

3.2. Анализ текущего состояния разработки месторождения

3.2.1 Анализ структуры фонда скважин и текущих дебитов, технологических показателей разработки

По состоянию на 01.07.2024 г. фонд пробуренных скважин на месторождении Каменское составляет 15 (1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 19) скважин, все пробуренные скважины находятся в ликвидации. В пределах горного отвода находятся 8 скважин (2, 5, 6, 8, 9, 11, 13, 14).

В таблице 3.2.1.1 приведено техническое состояние пробуренных скважин месторождения Каменское.

Таблица 3.2.1.1 – Месторождение Каменское. Техническое состояние пробуренных скважин по состоянию на 01.07.2024 г.

Nº	Дата	Дата		лубина ажины,м	Констр скваж	-	Состояние		
сква- жины	начала бурения	окончания бурения	проектная	фактическая	диаметр,мм	глубина спуска,м	скважин на 01.07.2024 г.		
1	2	3	4	5	6	7	8		
1	02.07.1987	12.11.1987	3000	2730	139,7	2050,45	ликвидирована		
1	02.07.1707	12.11.1707	3000	2730	137,7	2656,4	ликвидирована		
						265,28			
						1794,84			
2	17.07.1981	22.11.1985	4200	3182	139,7	2124,34	ликвидирована		
						2225,61	-		
						3002			
_						872,88	 -		
3	23.10.1987	30.06.1988	4400	3088	139,7	2514,4	ликвидирована		
						3069			
						11,84	 -		
					100 -	78	-		
4	27.02.1987	20.09.1987	3400	3297	139,7	88,92	ликвидирована		
						2258,98			
						3237,35			
						447,29	-		
		08.01.1987	4450		139,7	457,88			
5	01.01.1986			4201		1470,91	ликвидирована		
						2401,75	, , ,		
						2413,08			
						3148,2			
						345,59			
						402,15	_		
6	21.05.1986	15.01.1987	4200	2294,48	139,7		ликвидирована		
					1				
						2311,43	_		
0	00 02 1000	20.06.1000	5000	5020		2872,55			
8	08.02.1988	30.06.1990	5000	5020	-	2957,92	ликвидирована		
10	23.03.1987	19.12.1987 12.07.1987	3950 3950	4218 4020	-	-	ликвидирована		
11	21.05.1988	14.11.1988	3000	2942	-	-	ликвидирована		
12	14.05.1989	10.11.1989	3400	3252	-	-	ликвидирована		
14	14.05.1707	10.11.1709	3400	3434	-	211.7	ликвидирована		
						1285,77			
13	19.12.1989	21.03.1991	4050	3421	139,7	3350,83	ликвидирован		
						3419,46	-		
14	30.10.1992	-	3300	2537	-	- -	ликвидирована		
						1555,35	ликвидирована		
18	29.08.1988	29.03.1989	3000	3049	139,7	2560,9	ликвидирована		
				202,83					
						374,49	†		
19	24.07.1988	988 14.12.1988	3100	3038	139,7	1393,26	ликвидирована		
						3006	1		

3.2.2 Анализ выработки запасов углеводородов и текущего состояния разработки

В связи с отсутствием данных по текущему состоянию разработки проводить анализ выработки запасов УВ не представляется возможным.

3.3 Обоснование принятых расчетных геолого-физических моделей пластов

3.3.1 Обоснование расчетных геолого-физических моделей пластов-коллекторов, принятых для расчета технологических показателей разработки

Наиболее распространенным и экономически выгодным способом разработки газовых и газоконденсатных месторождений является разработка их на истощение пластового давления, которая предполагает использование только пластовой энергии.

На месторождении Каменское расчет технологических показателей с ППД не рассмотрен, т.к. содержание конденсата в газе составляет 58 г/м³, что меньше 100 г/м³.

Выбор расчетной геолого-физической модели, принятой для прогноза основных технологических показателей разработки газоконденсатной залежей продуктивного калиновской свиты казанского яруса верхней перми выполнено, исходя из наличия в залежах, преимущественно, газового режима.

Расчет основных прогнозных технологических параметров (режима работы скважин) разработки газовых и газоконденсатных месторождений, т.е. условий, при которых обеспечивается стабильная добыча газа, зависит от ограничивающих природных факторов: режима работы залежи, типа залежи, начальных пластовых давления и температуры, состава пластового газа, прочности пород коллектора и т.д. Влияние на систему разработки месторождения также оказывают следующие характеристики: потребность в газе; требования, предъявляемые к его кондиции; обустройство промысла и др.

Для расчета технологических показателей разработки по газоконденсатным залежам рассчитаны пластовые давления, забойные и устьевые давления за весь период разработки, фильтрационные коэффициенты, продуктивная характеристика газовых скважин.

В качестве прогнозных параметров, определяющих продуктивную характеристику скважин, приняты результаты статистической обработки исследования разведочных скважин калиновской свиты месторождения Каменское, которые приведены в таблице 3.1.

В период разведки опробование продуктивных пластов месторождения проводилось в вертикальных скважинах. Полученные результаты опробования указывают на возможность достижения относительно высоких уровней добычи с

применением вертикальных скважин при несложной технологии заканчивания и эксплуатации.

Поэтому в настоящей работе во всех вариантах разработки газоконденсатной залежи рассмотрено использование только вертикальных скважин.

Бурение многоствольных скважин не рассматривалось, т.к. аналогично вертикальным скважинам при небольших боковых стволах они не обеспечивают полноценное вскрытие двух и более пачек.

Технологический режим работы скважин был принят — режим постоянной депрессии (ΔP =Const).

Величина допустимой (максимальной) депрессии на пласт в скважинах месторождения Каменское принимается равной 7,5 МПа, т.к. увеличение депрессии сопровождается более интенсивным выпадением конденсата в призабойной зоне и стволе скважины, что ухудшает условия фильтрации газа. Также рассмотрен вариант с минимальной депрессией 5 МПа.

Режим постоянной депрессии рекомендуется для разработки газоконденсатной и газовой залежей поддерживать режим постоянной депрессии для устранения причин преждевременного обводнения скважин.

Залежь по типу природного резервуара в верхней перми пластовая, тектонически экранированная, тип коллектора – трещинный.

Для газонасыщенных отложений калиновской свиты казанского яруса верхней перми установлен трещинный тип коллектора. Проницаемость изменяется от 0 до $225 \cdot 10^{-3}$ мкм², пористость — $0,001 \cdot 0,134$ д.ед. Породы—коллекторы освещены 190 представительными образцами керна, средняя пористость которых составляет 0,029 д.ед., проницаемость $11,1 \cdot 10^{-3}$ мкм².

Начальное пластовое давление продуктивного горизонта калиновской свиты казанского яруса верхней перми – $46,1\,\mathrm{M}\Pi\mathrm{a}$.

3.4 Обоснование выделения объектов разработки и выбор расчетных вариантов разработки

3.4.1 Обоснование выделения объектов разработки

В соответствии с «Едиными Правилами ...» [7] эксплуатационный объект (объект разработки) — это отдельный продуктивный пласт или часть крупной насыщенной

углеводородами толщи, выделенные для разработки самостоятельной сетки скважин.

Выделение в разрезах месторождений углеводородов эксплуатационных объектов решается с учетом геологических, технических, экологических и экономических факторов в виде оптимизационной задачи.

В единые объекты разработки объединяют продуктивные пласты или горизонты, имеющие один этаж газоносности, с близкими физико-химическими свойствами газа и конденсата, коллекторскими свойствами, режимами работы залежей, величинами пластовых давлений.

Выделенный объект разработки должен располагать достаточными запасами на единицу площади залежи и достаточной продуктивностью с тем, чтобы обеспечить высокие дебиты скважин в течение продолжительного периода эксплуатации в безводный период и при обводненности.

По данным разведочного бурения на месторождении Каменское выявлен один газоконденсатный объект (отложения калиновской свиты). Суммарные геологические запасы газа составляют 12150 млн.м³ (в том числе по категории C_1 - 10303 млн.м³, по категории C_2 - 1847 млн.м³), геологические запасы конденсата 708 (в том числе по категории C_1 – 601 тыс.т., по категории C_2 – 107 млн.м³)

Промышленная продуктивность по газу и конденсату установлена по данным разведочного бурения на месторождении Каменское выявлен один газоконденсатный объект (отложения калиновской свиты).

Объектом разработки месторождения Каменское является газоконденсатная залежь в отложениях калиновской свиты казанского яруса верхней перми.

Основные исходные геолого-физические характеристики I объекта разработки месторождения Каменское приведена в таблице 3.4.1.1.

Таблица 3 4.1.1 — Месторождение Каменское. Исходные геолого-физические характеритики I объекта разработки (газоконденсатной залежи калиновской свиты казанского яруса в верхней перми)

Параметры	Значения
Глубина залегания, м	2802,2
Температура, 0С	82
Площадь газоносности, тыс.м ²	18956
Средневзвешенная газонасыщенная толщина, м	20,6
Средняя пористость по геофизике, д.ед.	-
Пористость по керну, д.ед.	0,06
Коэффициент газонасыщенности	0,805
Коэффициент проницаемости по керну, мкм2	-
Плотность газа при станд.условиях, г/л	0,8048
Плотность конденсата в поверхностных условиях, кг/м ³	0,7979
Вязкость кинематическая при станд.условиях, мм²/с	1,17
Начальное пластовое давление, МПа	45,8
Давление начала конденсации, МПа	-
Отметка ГВК, м	-3078
Конденсатогазовый фактор, г/м ³	58
Режим залежи	естественный
Средние параметры фильтрационного сопротивления:	
- (MII-)2/(3/)21. (MII-)2/(3/)2	0,9773
а, $(M\Pi a)^2/(\text{тыс.м}^3/\text{сут})^2$ b, $(M\Pi a)^2/(\text{тыс.м}^3/\text{сут})^2$	0,0002
Абсолютно-свободный дебит, тыс.м ³ /сут	1629,1
Геологические запасы пластового газа, млн.м ³	
в.т.ч. по категории C_1	10303
по категории С2	1847
Геологические запасы конденсата, тыс.т	
в.т.ч. по категории C_1	601
по категории С2	107

3.4.2 Обоснование расчетных вариантов разработки и их исходные характеристики

Как было отмечено ранее, продуктивная залежь калиновской свиты месторождения Каменское проектируется разрабатывать по 3 расчетным вариантам разработки на режиме истощения, различающиеся между собой количеством добывающих скважин, их размещением и темпами отбора газа.

В 1 варианте для разработки I объекта калиновской свиты предусмотрено бурение и ввод разработку 3 скважин с 2030 года по 2032 годы с постоянной депрессией $\Delta P = 5 \ M\Pi a$.

Во 2 варианте с 2030 г. предусмотрено бурение 5 добывающих скважин, с 2030-2036 гг. бурение и ввод в разработку по 1 добывающей скважине, с постоянной депрессией $\Delta P = 5$ МПа.

В 3 варианте с 2030 г. предусмотрено бурение 7 добывающих скважин, с 2030 г. по 2036 г. бурение и ввод в разработку по 1 добывающей скважине в год, с постоянной депрессией $\Delta P = 7.5 \ \mathrm{M}\Pi a$.

Общие положения для разработки І объекта калиновской свиты по вариантам:

Разработку планируется осуществлять на режиме истощения.

Коэффициент эксплуатации добывающих скважин – 0,95.

Технологический режим эксплуатации скважин — режим постоянной депрессии ($\Delta P = Const$) с заданным годовым отбором газа.

Ниже приведена характеристика расчетных вариантов.

Характеристика расчетных вариантов

Объект разработки (газоконденсатная калиновской свиты)

Вариант разработки 1

Фонд добывающих скважин составит 3 ед., которые будут введены в разработку в 2030 году с постоянной депрессией $\Delta P = 5.0 \ \mathrm{MHa}$.

Размещение проектных скважин – избирательная.

Период разработки 2030-2062 гг.

Вариант разработки 2

Фонд добывающих скважин составит 5 ед., которые будут введены в разработку с 2030 г. по 2036 г. по 1 добывающей скважине, с постоянной депрессией $\Delta P = 5$ МПа.

Размещение проектных скважин – избирательная.

Период разработки 2030-2070 гг.

Вариант разработки 3

Фонд добывающих скважин составит 7 ед., которые будут введены в разработку с 2030 г. по 2036 г. бурение и ввод в разработку по 1 добывающей скважине в год, с постоянной депрессией $\Delta P = 7,5$ МПа.

Размещение проектных скважин – избирательная.

Период разработки 2030-2054 гг.

Рекомендуемый для определения оптимальных КИГ вариант разработки

Рекомендуемый для определения оптимальных КИГ вариант разработки газоконденсатной калиновской свиты месторождения Каменское в соответствии с результатами технико-экономического анализа — это II вариант, предусматривающий использование 5 добывающих скважин.

Основные исходные технологические характеристики расчетных вариантов разработки I объекта разработки приведены в таблице 3.4.2.1.

Таблица 3.4.2.1 – Месторождение Каменское. І объект разработки (калиновской свиты казанского яруса верхней перми). Основные исходные технологические характеристики расчетных вариантов разработки

V	Варианты разработки								
Характеристики	I	П	Ш						
Режим разработки	режим истощения								
Система размещения скважин	избирательная								
Расстояние между скважинами, м	-	750	750						
Плотность сетки, $10^4 \mathrm{m}^2/\mathrm{ck}$ в (га/скв)	-	-	-						
Количество добывающих скважин, ед.	3	5	7						
Режим работы добывающих скважин	ΔР=5 МПа	ΔР=5 МПа	ΔР=7,5 МПа						
Коэффициент использования скважин, д.ед.	0,95								
Коэффициент эксплуатации скважин, д.ед.	0,95								

Таблица 3.4.2.2 – Основные исходные технологические характеристики газоконденсатного месторождения Каменское

N₂	Параметры	Каменское
1	Площадь, тыс.м ²	3603/7723
2	Кол-во доб.скважин, д.ед.	3
3	Плотность сетки, га/скв	36,03/38,6
4	Расстояние между скважинами, м	2000
5	КГФ тек., м ³ /т	58
6	Рпл.начальное, МПа	46,1
7	Рпл тек.	< Р нач. конденсации
8	Рзаб	Рзаб.нач.>Рнк., Рзаб.тек < Р нк.
9	Рнач.конденсации, МПа	31,3
10	Добыча УВ	не более 10%
11	Ввод новых скважин	5

3.5 Обоснование нормативов капитальных вложений и эксплуатационных затрат, принятых для расчетов экономических показателей

Экономическая эффективность разработки месторождения Каменское Западно-Республики Казахстан представляет Казахстанской области собой производственной деятельности, выражаемый в виде соотношения между доходами и расходами в ходе реализации проекта.

Нормативы затрат, использованные в расчетах определены в соответствии с фактическими затратами ТОО «ПозитивИнвест» за 2023 год. В расчетах экономических показателей разработки месторождения капитальные затраты проекта оценивались укрупнено по следующим направлениям: затраты в строительство скважин и затраты на надземное нефтегазопромысловое строительство. В целом, объемы капитальных вложений включают в себя:

- -Эксплуатационное бурение;
- -Бурение бокового ствола;
- -Перевод скважины под нагнетание (в ППД);
- -Перевод скважины с другого горизонта;
- -Выбытие скважин;
- -Обустройства устья скважин;
- -Строительство выкидных линий
- -Строительство ЛЭП-0, 4 кВ и монтаж КТП;
- -Строительство и ремонт автомобильных дорог;
- -Прочие объекты промысла.

Капитальные вложения в бурение скважин определялись на основе сметной стоимости 1 м проходки, установленной в зависимости от глубины и количества скважин. Нормативы для расчета капитальных затрат представлены в таблице 3.5.1.

Таблица 3.5.1. Нормативы для расчета капитальных затрат

1 40311	ица 3.3.1. Пормативы для расчета капитальных з	aipai			
№ <u>№</u> п/п	Наименование	Ед. изм.	Значение		
1	2	3	4		
	<u>Капитальные вложения</u>				
Ι	Строительство скважин				
1	Бурение газодобывающих вертикальных скважин	тыс.тенге	1 229 990,00		
II	Надземное строительство				
1	Обустройство скважины	тыс.тенге	189 410,00		
2	Наземное строительство	тыс.тенге	2 065 521,82		
3	Трубопровод 10"	тыс.тенге 1 459 5			
4	Прочие (приобретение прав землепользования)	тыс.тенге	206 800,00		
5	ПИР, экспертные заключения	тыс.тенге	82 250,00		

Результаты расчетов капитальных вложений по рекомендуемому варианту представлены в таблице 4.2.1.1. По остальным вариантам - в приложениях.

При расчете эксплуатационных затрат выделены две группы нормативов:

- нормативы для расчета затрат на производство;
- нормативы фиксированных платежей и цены продукции.

Нормативы, участвующие при определении эксплуатационных расходов, связанных с добычей и подготовкой газа, приведены в таблице 3.5.2.

Таблица 3.5.2. Нормативы для расчета эксплуатационных затрат

№	Наименование	Единица измерения	Значение
1	Коэффициент технологических потерь		
	Коэффициент потерь при добыче и транспортировке		
1.1.	нефти	%	98,00%
	Коэффициент потерь при добыче и транспортировке		
1.2.	газа	%	98,00%
	Коэффициент потерь при добыче и транспортировке		
1.3.	конденсата	%	98,00%
2	Среднегодовая оплата труда 1-го работника ППП	тыс. тенге	8 288,50
3	Среднегодовая оплата труда 1-го работника АУП	тыс. тенге	14 044,64
4	Расходы, относимые на себестоимость продукции		
4.1	Сырье и материалы	т.тенге/т.тн.	39 479,90
4.2	ГСМ	т.тенге/т.тн.	417,79
4.3	Работы и услуги произв. характера	т.тенге/т.тн.	31 516,79
4.4	Услуги сервисных компаний	т.тенге/т.тн.	546,79
4.5	Затраты по охране труда и окружающей среды	т.тенге/т.тн.	156,10
4.6	Затраты на страхование	т.тенге/чел.	2 350,00
5	Расходы периода:		
5.1	Содержание АУП (год)	т.тенге/год	52 387,61
5.2	Административные и общехозяйственные расходы	т.тенге/чел.	2 974,46
5.3	Затраты на страхование	т.тенге/на 1 АУП	2 350,00
6	Удельный вес реализации:		
6.1	Удельный вес продажи газа на внешний рынок	%	0%
6.2	Удельный вес продажи газа на внутренний рынок	%	100%
	Удельный вес продажи конденсата на внешний		
6.3	рынок	%	70%
	Удельный вес продажи конденсата на внутренний		
6.4	рынок	%	30%
6.5	Удельный вес продажи СУГ на внешний рынок	%	0%
6.6	Удельный вес продажи СУГ на внутренний рынок	%	100%
7	Коэффициент перевода с сырого газа на сухой газ	%	78%
	Коэффициент перевода с газа на СУГ (сжиженный		
8	углеводородный газ)	%	2%
	Инфляция цены на продукцию, капитальные		
9	вложения и эксплуатационные затраты	% в год	2,0%

Амортизационные отчисления включаемые в себестоимость продукции рассчитывались по производственному методу в соответствии со стандартом бухгалтерского учета РК № 20 «Учет и отчетность нефтегазодобывающей промышленности» и методическими рекомендациями к нему.

Экономика предприятия будет основываться на стандартной модели налогообложения с учетом особенностей контракта на недропользование, выданного ТОО «ПозитивИнвест». В связи с этим проектирование налоговых обязательств, которые несет предприятие, осуществлялось по принятым в качестве нормативов ставкам налогов и других обязательных платежей в бюджет с корректировкой по некоторым видам налогов.

Величина нормативов, связанных с налогообложением приведена в таблице 3.5.3.

Таблица 3.5.3 – Нормативы для расчета эксплуатационных затрат, связанные с налогообложением и ценой продукции

	и продукции	
№	Наименование	Значение
	Отчисления в Фонд государственного социального	
	страхования + ФСМС	11%+2%
2	Отчисления в пенсионный фонд	10%
	Амортизационные отчисления фиксированных	
	активов, подлежащих вычету при	
3	налогообложении	по Налоговому Кодексу РК
		По Контракту: в размере 1% от затрат на добычу,
		понесенных Недропользователем в период добычи
	Затраты на НИОКР	углеводородов по итогам предыдущего года
		По Контракту: в размере 1% от затрат на добычу,
		понесенных Недропользователем в период добычи
4	Затраты на обучение казахстанских специалистов	углеводородов по итогам предыдущего года
	warparin ita ooj isimo kasanteranan enegnamieron	По Контракту: в период добычи производятся
		недропользователем ежегодно в размере не менее 1
5	Перечисления в Ликвидационный фонд	% от ежегодных затрат на добычу
	пере теления в этиквидационный фонд	По Контракту: размере 1% от инвестиций по
	Сопиали по экономинеское пазвитие периона и	Контракту в период добычи углеводородов по
	развитие его инфраструктуры	итогам предыдущего года.
	Корпоративный подоходный налог	20%
	ндпи	по шкале
	Налог на добавленную стоимость при покупке	
	товаров и услуг	12%
	Налог на добавленную стоимость при реализации	
	продукции на внутреннем рынке	12%
	Налог на имущество	1,50%
12	Рентный налог	по ставке
13	Налог на сверхприбыль	по шкале
14	Прочие налоги и отчисления в бюджет	1,50%
15	Таможенная пошлина, тенге/тонну нефти	по шкале
	Цена реализации:	
	Цена реализации нефти на внутреннем рынке (без	
	учета НДС,), тенге/тонну	96 350
	Цена реализации нефти на внешнем рынке (без	
	учета НДС), тенге/тонну	235 000
	у юта 1142), тенге топпу Цена реализации газа на внутреннем рынке (без	
	цена реализации таза на внутреннем рынке (оез учета НДС), м3/тонну	65 000
	учета гідо), мэлонну Цена реализации конденсата на внешнем рынке	0.5 000
16 1	цена реализации конденсата на внешнем рынке (без учета НДС), тенге/тонну	238 290
	Цена реализации СУГ на внутреннем рынке (без	
16.5.	учета НДС), тенге/тонну	121 260
17	Стоимость транспортных расходов:	
	Стоимость транспортировки нефти на внешнем	
	рынке (без учета НДС,), тенге/тонну	10 434
	рынке (оез учета гіде,), тенге тонну Стоимость транспортировки нефти на внутреннем	
	стоимость транспортировки нефти на внутреннем рынке (без учета НДС), тенге/тонну	0
17.2.	рыпке (осэ учета гіде), тенге/тонну	U

	C	
	Стоимость транспортировки газа на внутреннем	
17.3.	рынке (без учета НДС), м3/тонну	866
	Стоимость транспортировки конденсата на	
17.4.	внешнем рынке (без учета НДС), тенге/тонну	1 105
	Стоимость транспортировки СУГ на внешнем	
17.5.	рынке (без учета НДС), тенге/тонну	1 550
18	Год начало проекта	2030
19	Курс доллара США, тенге/доллар	470

4. ТЕХНОЛОГИЧЕСКИЕ И ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАНТОВ РАЗРАБОТКИ

4.1 Технологические показатели вариантов разработки

Характеристика основного фонда и основных показателей разработки по отбору газа и конденсата рекомендуемого 2 варианта по I объекту разработки представлена в таблице 4.1.1, по другим вариантам – в табличных приложениях 19-20.

Схема расположения проектных и пробуренных скважин по рассчитанным вариантам разработки по I объекту разработки показаны на графических приложениях 2-3.

Таблица 4.1.1 – Месторождение Каменское. Характеристика основного фонда и основных показателей промышленной разработки по отбору газа и конденсата по рекомендуемому 2 варианту

Годы	Ввод скважин из бурения	Ввод скважин из консер- вации	всего ввод скважин	онта, ед.	Выбытие скважин	Эксплуа- тационное бурение с начала разра-ботки, тыс.м	Фонд скважин с начала разра- ботки	Добыча сырого газа, млн.м ³	добыча сырого газа, млн.м ³	д.ед.	Темп отбора от НИЗ, %	Дебит газа, тыс.м ³ /сут	сата, т/сут	МПа	МПа	МПа	тыс.т	Накоп- ленная добыча конден- сата, тыс.т	КИК, д.ед.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2030	1	0	1	0	0	3,2	1	35,7	36	0,003	0,5	411,5	23,9	46,1	41,1	41,0	2,1	2,1	0,003
2031	1	0	1	0	0	6,4	2	177,7	213	0,021	2,6	410,1	23,9	45,9	40,9	40,8	10,3	12,4	0,021
2032	1	0	1	0	0	9,6	3	313,6	527	0,051	4,5	401,9	23,4	45,0	40,0	39,9	18,2	30,7	0,051
2033	0	0	0	0	0	9,6	3	400,1	927	0,090	5,8	384,6	22,4	43,0	38,0	37,9	23,3	54,0	0,090
2034	1	0	1	0	0	12,8	4	405,4		0,129		359,8	20,9	40,2	35,2	35,1	23,6	77,6	0,129
2035	0	0	0	0	0	12,8	4	461,2	1794	0,174		332,5	19,4	37,2	32,2	32,1	26,8	104,4	0,174
2036	1	0	1	0	0	16	5	447,6	2241	0,218		303,7	17,7	34,0	29,0	28,9	26,1	130,4	0,217
2037	0	0	0	0	0	16	5	480,1	2721	0,264		276,9	16,1	31,1	26,1	26,0	27,9	158,4	0,264
2038	0	0	0	0	0	16	5	435,6	3157	0,306	6,3	251,3	14,6	28,3	23,3	23,2	25,4	183,7	0,306
2039	0	0	0	0	0	16	5	397,4	3554	0,345	5,8	229,2	13,3	26,0	21,0	20,9	23,1	206,9	0,344
2040	0	0	0	0	0	16	5	365,0	3919	0,380	5,3	210,6	12,3	24,0	19,0	18,9	21,2	228,1	0,380
2041	0	0	0	0	0	16	5	337,2	4257	0,413	4,9	194,5	11,3	22,3	17,3	17,2	19,6	247,7	0,412
2042	0	0	0	0	0	16	5	312,7	4569	0,444	4,5	180,4	10,5	20,8	15,8	15,7	18,2	265,9	0,442
2043	0	0	0	0	0	16	5	290,8	4860	0,472	4,2	167,7	8,6	19,5	14,5	14,4	15,0	280,9	0,467
2044	0	0	0	0	0	16	5	271,0	5131	0,498	3,9	156,3	6,6	18,3	13,3	13,2	11,5	292,4	0,487
2045	0	0	0	0	0	16	5	253,0	5384	0,523	3,7	145,9	5,1	17,2	12,2	12,1	8,9	301,3	0,501
2046	0	0	0	0	0	16	5	236,4	5621	0,546	3,4	136,3	4,0	16,2	11,2	11,1	7,0	308,3	0,513
2047	0	0	0	0	0	16	5	221,1	5842	0,567	3,2	127,5	3,2	15,3	10,3	10,2	5,6	313,9	0,522
2048	0	0	0	0	0	16	5	206,9	6049	0,587	3,0	119,3	2,6	14,4	9,4	9,3	4,5	318,4	0,530
2049	0	0	0	0	0	16	5	193,7	6242	0,606	2,8	111,7	2,2	13,7	8,7	8,6	3,7	322,2	0,536
2050	0	0	0	0	0	16	5	181,4	6424	0,623	2,6	104,6	1,8	12,9	7,9	7,8	3,2	325,3	0,541
2051	0	0	0	0	0	16	5	169,9	6594	0,640	2,5	98,0	1,6	12,3	7,3	7,2	2,8	328,1	0,546
2052	0	0	0	0	0	16	5	159,2	6753	0,655	2,3	91,8	1,4	11,6	6,6	6,5	2,5	330,5	0,550
2053	0	0	0	0	0	16	5	149,2	6902	0,670	2,2	86,0	1,3	11,1	6,1	6,0	2,2	332,8	0,554
2054	0	0	0	0	0	16	5	139,8	7042	0,683	2,0	80,6	1,2	10,5	5,5	5,4	2,1	334,9	0,557
2055	0	0	0	0	0	16	5	130,9	7173	0,696	1,9	75,5	1,1	10,0	5,0	4,9	2,0	336,8	0,560
2056	0	0	0	0	0	16	5	122,6		0,708		70,7	1,1	9,5	4,5	4,4	1,9	338,7	0,564
2057	0	0	0	0	0	16	5	114,9	7410	0,719		66,3	1,1	9,1	4,1	4,0	1,8	340,6	0,567
2058	0	0	0	0	0	16	5	107,6	7518	0,730		62,0	1,0	8,6	3,6	3,5	1,8	342,3	0,570

Продолжение таблицы 4.1.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2059	0	0	0	0	0	16	5	100,7	7618	0,739	1,5	58,1	1,0	8,2	3,2	3,1	1,7	344,1	0,572
2060	0	0	0	0	0	16	5	94,2	7713	0,749	1,4	54,4	1,0	7,9	2,9	2,8	1,7	345,7	0,575
2061	0	0	0	0	0	16	5	88,2	7801	0,757	1,3	50,9	1,0	7,5	2,5	2,4	1,6	347,4	0,578
2062	0	0	0	0	0	16	5	82,5	7883	0,765	1,2	47,6	0,9	7,2	2,2	2,1	1,6	349,0	0,581
2063	0	0	0	0	0	16	5	77,2	7961	0,773	1,1	44,5	0,9	6,9	1,9	1,8	1,6	350,6	0,583
2064	0	0	0	0	0	16	5	72,2	8033	0,780	1,0	41,6	0,9	6,6	1,6	1,5	1,5	352,1	0,586
2065	0	0	0	0	0	16	5	67,5	8100	0,786	1,0	38,9	0,9	6,3	1,3	1,2	1,5	353,6	0,588
2066	0	0	0	0	0	16	5	63,0	8163	0,792	0,9	36,4	0,8	6,1	1,1	1,0	1,4	355,0	0,591
2067	0	0	0	0	0	16	5	58,9	8222	0,798	0,9	34,0	0,8	5,8	0,8	0,7	1,4	356,4	0,593
2068	0	0	0	0	0	16	5	55,0	8277	0,803	0,8	31,7	0,8	5,6	0,6	0,5	1,3	357,7	0,595
2069	0	0	0	0	0	16	5	51,4	8328	0,808	0,7	29,6	0,7	5,4	0,4	0,3	1,3	359,0	0,597
2070	0	0	0	0	0	16	5	48,0	8376	0,813	0,7	27,7	0,7	5,2	0,2	0,1	1,2	360,2	0,599

4.2 Экономические показатели вариантов разработки

Оценка экономической эффективности вариантов разработки месторождения Каменское предполагает некоторые экономические и финансовые допущения, приведенные ниже.

Экономические и финансовые допущения, использованные в экономической модели, позволяют на этапе проектирования рассчитать уровень необходимых для оценки финансово-экономических показателей, сопоставить полученные результаты по вариантам, выбрать наиболее оптимальный вариант и определить рентабельный период разработки месторождения.

При оценке экономического эффекта применены также методы аналогии, то есть предполагается, что полученные нормативы и курс \$ США будут неизменны весь расчетный период.

Срок проекта по вариантам различен, однако первым годом реализации проекта принят 2030 год по всем вариантам. За интервал планирования принят промежуток времени, соответствующий одному календарному году.

Расчеты проводились на весь проектный срок. По результатам расчетов определен рентабельный период, который представляет собой период безубыточной добычи газа до момента, начиная с которого операционный доход принимает положительные значения.

Дисконтирование проводилось исходя из теории временной стоимости денег, то есть для получения суммы потока платежей, приведенной к настоящему моменту времени. Для определения дисконтированных потоков приняты следующие ставки:

5%;

7,5%;

10%.

Масштабы цен, приведенные в расчетах, позволяют сопоставить полученные результаты экономической оценки. Для снижения масштабов цен все стоимостные показатели переведены из национальной валюты тенге в доллары США. При проведении оценки принят курс \$ США на момент начала расчета. Предполагается, что на весь период расчета курс будет неизменным, и составит 1\$ США=470 тенге.

Реализация продукции согласно условиям контракта на разведку и добычу на проведение разведки и добычи углеводородного сырья ТОО «ПозитивИнвест» на Каменской месторождении, где Недропользователь обязуется:

- Удельный вес продажи газа на внутренний рынок составит – 100%

- Удельный вес продажи конденсата на внешний рынок составит 70%, на внутренний рынок-30%.
 - Удельный вес продажи СУГ на внутренний рынок составит 100%.

Прогнозная цена реализации нефти на внешний рынок составляет – 235 000 тенге/тонну. Транспортировка составляет 10 434 тенге/тонну.

Прогнозная цена реализации нефти на внутренний рынок составляет — 65 000 тенге/тонну с учетом транспортных расходов.

Прогнозная цена реализации сухого газа на внутренний рынок составляет – 23 030 тенге/тыс.м3. Транспортировка составляет 866 тенге/м3.

Прогнозная цена реализации конденсата на внешний рынок составляет – 238 290 тенге/тонну. На внутренний рынок- 67 000 тенге/тонну. Транспортировка составляет 1 105 тенге/тонну.

Прогнозная цена реализации СУГ на внешний рынок составляет 121 260 тенге/тонну. Транспортировка составляет 1 550 тенге/тонну.

Источники доходов. В расчетах принято, что обеспечение необходимых объемов финансирования капитальных вложений в обустройство и разработку месторождения будет осуществляться за счет собственных средств, получаемых от реализации проекта, реинвестирования чистой прибыли и использования амортизационных отчислений, в случае недостаточности средств, предприятие может использовать кредит. Экономика предприятия будет основываться на обычной модели по налогообложению.

Объемы реализации нефти приняты в 98%, т.е. технологические потери составляют 2% от добычи нефти и газа.

В таблице 4.2.1 приведен расчет дохода рекомендуемого 2 варианта от продажи реализации газа, продуктов выработки газа и конденсата. Остальные варианты представлены в Приложении.

Таблица 4.	2.1 – Расчет до	охода от реал	изации проду	кции в рекоме	ндуемом 2 вар	рианте, тыс.те	нге	ı								
			Расчет дох	ода от продажі	и конденсата				и сырого газа н.м3)	Расчет дох	ода от продажи	г сухого газа	Расчет д	охода от прода	ажи СУГ	
Годы	Объем добычи конденсат а (тыс.тонн)	Общий объем продажи конденсат а (тыс.тонн)	Общий объем продажи конденсат а на внешний рынок (тыс.тонн)	Общий объем продажи конденсата на внутренни й рынок (тыс.тонн)	Цена конденсат а на внешний рынок, тенге	Цена конденсата на внутренни й рынок, тенге	Доход от продажи конденсата , тыс.тенге	Объем добычи сырого газа (млн.м3)	Общий объем продажи газа (млн.м3)	Объем добычи сухого газа (млн.м3)	Цена газ на внутренни й рынок, тенге	Доход от продажи сухого, тыс.тенге	Объем добычи СУГ (тыс.тонн	Цена СУГ на внутренни й рынок, тенге	Доход от продажи СУГ, тыс.тенг е	Общий доход предприятия , тыс.тенге (без НДС)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2030	2,08	2,03	1,42	0,61	238 290	67 000	380 249	36	35	27	23 030	627 939	0,70	121 260	84 777	1 092 965
2031	10,34	10,14	7,10	3,04	238 290	67 000	1 894 829	178	174	136	23 030	3 129 100	3,48	121 260	422 453	5 446 382
2032	18,25	17,88	12,52	5,37	238 290	67 000	3 342 608	314	307	240	23 030	5 519 944	6,15	121 260	745 236	9 607 788
2033	23,29	22,82	15,97	6,85	238 290	67 000	4 265 052	400	392	306	23 030	7 043 259	7,84	121 260	950 895	12 259 206
2034	23,60	23,12	16,19	6,94	238 290	67 000	4 322 083	405	397	310	23 030	7 137 439	7,95	121 260	963 610	12 423 133
2035	26,84	26,30	18,41	7,89	238 290	67 000	4 916 390	461	452	353	23 030	8 118 870	9,04	121 260	1 096 111	14 131 372
2036	26,05	25,53	17,87	7,66	238 290	67 000	4 771 721	448	439	342	23 030	7 879 965	8,77	121 260	1 063 857	13 715 543
2037	27,94	27,38	19,17	8,21	238 290	67 000	5 117 941	480	470	367	23 030	8 451 709	9,41	121 260	1 141 047	14 710 697
2038	25,35	24,85	17,39	7,45	238 290	67 000	4 643 964	436	427	333	23 030	7 668 990	8,54	121 260	1 035 374	13 348 328
2039	23,13	22,67	15,87	6,80	238 290	67 000	4 236 330	397	389	304	23 030	6 995 828	7,79	121 260	944 492	12 176 649
2040	21,25	20,82	14,57	6,25	238 290	67 000	3 891 457	365	358	279	23 030	6 426 307	7,15	121 260	867 602	11 185 365
2041	19,63	19,23	13,46	5,77	238 290	67 000	3 594 642	337	330	258	23 030	5 936 150	6,61	121 260	801 427	10 332 219
2042	18,20	17,84	12,49	5,35	238 290	67 000	3 333 651	313	306	239	23 030	5 505 153	6,13	121 260	743 239	9 582 043
2043	14,96	14,66	10,26	4,40	238 290	67 000	2 740 379	291	285	222	23 030	5 119 822	5,70	121 260	691 216	8 551 417
2044	11,50	11,27	7,89	3,38	238 290	67 000	2 107 117	271	266	207	23 030	4 771 234	5,31	121 260	644 154	7 522 505
2045	8,92	8,74	6,12	2,62	238 290	67 000	1 634 311	253	248	193	23 030	4 453 183	4,96	121 260	601 215	6 688 708
2046	7,00	6,86	4,80	2,06	238 290	67 000	1 282 039	236	232	181	23 030	4 161 120	4,63	121 260	561 784	6 004 943
2047	5,57	5,46	3,82	1,64	238 290	67 000	1 020 431	221	217	169	23 030	3 891 582	4,33	121 260	525 394	5 437 407
2048	4,51	4,42	3,10	1,33	238 290	67 000	826 986	207	203	158	23 030	3 641 851	4,05	121 260	491 678	4 960 516
2049	3,74	3,66	2,56	1,10	238 290	67 000	684 681	194	190	148	23 030	3 409 745	3,80	121 260	460 342	4 554 769
2050	3,17	3,11	2,17	0,93	238 290	67 000	580 595	181	178	139	23 030	3 193 479	3,56	121 260	431 145	4 205 219
2051	2,76	2,70	1,89	0,81	238 290	67 000	504 909	170	167	130	23 030	2 991 566	3,33	121 260	403 885	3 900 359
2052	2,46	2,41	1,69	0,72	238 290	67 000	450 158	159	156	122	23 030	2 802 750	3,12	121 260	378 393	3 631 301
2053	2,24	2,20	1,54	0,66	238 290	67 000	410 680	149	146	114	23 030	2 625 958	2,92	121 260	354 525	3 391 163 3 174 605
2054 2055	2,09	2,04	1,43 1,35	0,61	238 290	67 000	382 192	140 131	137 128	107	23 030	2 460 259 2 304 839	2,74	121 260	332 154	
2056	1,97 1,89	1,93 1,85	1,30	0,56	238 290 238 290	67 000 67 000	361 469 346 103	123	120	100 94	23 030 23 030	2 158 977	2,57 2,40	121 260 121 260	311 171 291 479	2 977 480 2 796 559
2057	1,83	1,79	1,30	0,54	238 290	67 000	334 309	115	113	88	23 030	2 022 031	2,40	121 260	272 990	2 629 330
2057	1,77	1,74	1,23	0,52	238 290	67 000	324 783	108	105	82	23 030	1 893 421	2,23	121 260	255 627	2 473 831
2059	1,77	1,69	1,19	0,52	238 290	67 000	316 587	101	99	77	23 030	1 772 623	1,97	121 260	239 318	2 328 528
2060	1,69	1,65	1,16	0,50	238 290	67 000	309 062	94	92	72	23 030	1 659 156	1,85	121 260	223 999	2 192 216
2061	1,65	1,61	1,13	0,48	238 290	67 000	301 758	88	86	67	23 030	1 552 579	1,73	121 260	209 610	2 063 948
2062	1,61	1,58	1,10	0,47	238 290	67 000	294 385	83	81	63	23 030	1 452 485	1,62	121 260	196 097	1 942 967
2063	1,57	1,53	1,07	0,46	238 290	67 000	286 766	77	76	59	23 030	1 358 495	1,51	121 260	183 407	1 828 668
2064	1,52	1,49	1,04	0,45	238 290	67 000	278 810	72	71	55	23 030	1 270 255	1,41	121 260	171 494	1 720 560
2065	1,48	1,45	1,01	0,43	238 290	67 000	270 488	67	66	52	23 030	1 187 434	1,32	121 260	160 313	1 618 235
2066	1,43	1,40	0,98	0,42	238 290	67 000	261 809	63	62	48	23 030	1 109 722	1,24	121 260	149 821	1 521 353
2067	1,38	1,35	0,95	0,41	238 290	67 000	252 813	59	58	45	23 030	1 036 825	1,15	121 260	139 980	1 429 618
2068	1,33	1,30	0,91	0,39	238 290	67 000	243 554	55	54	42	23 030	968 468	1,08	121 260	130 751	1 342 773
2069	1,28	1,25	0,88	0,38	238 290	67 000	234 097	51	50	39	23 030	904 389	1,01	121 260	122 100	1 260 586
2070	1,23	1,20	0,84	0,36	238 290	67 000	224 511	48	47	37	23 030	844 341	0,94	121 260	113 993	1 182 845
Итого	360,20	353,00	247,10	105,90			65 976 699	8 376	8 209	6 403		147 459	164,18		19 908	233 344 099
2030-2070	,	, ,	, i	,								244	,		155	
2071	1,16	1,14	0,80	0,34	238 290	67 000	212 446	45	44	34	23 030	788 091	0,88	121 260	106 398	1 106 936
2072	1,12	1,09	0,77	0,33	238 290	67 000	204 313	42	41	32	23 030	735 417	0,82	121 260	99 287	1 039 017
2073	1,07	1,05	0,73	0,31	238 290	67 000	196 152	39	38	30	23 030	686 108	0,76	121 260	92 630	974 890

Итого 2030-2095	377,53	369,98	258,99	111,00			69 151 111	8 922	8 743	6 820		157 061 571	339,05		21 204 545	247 417 226
2095	0,33	0,32	0,23	0,10	238 290	67 000	60 719	8	8	6	23 030	143 113	0,16	121 260	19 321	223 153
2094	0,35	0,35	0,24	0,10	238 290	67 000	64 498	9	9	7	23 030	153 854	0,17	121 260	20 772	239 123
2093	0,37	0,37	0,26	0,11	238 290	67 000	68 484	9	9	7	23 030	165 391	0,18	121 260	22 329	256 203
2092	0,40	0,39	0,27	0,12	238 290	67 000	72 685	10	10	8	23 030	177 779	0,20	121 260	24 002	274 465
2091	0,42	0,41	0,29	0,12	238 290	67 000	77 108	11	11	8	23 030	191 081	0,21	121 260	25 797	293 986
2090	0.45	0.44	0,31	0.13	238 290	67 000	81 760	12	11	9	23 030	205 361	0.23	121 260	27 725	314 846
2089	0,47	0.46	0.32	0.14	238 290	67 000	86 647	13	12	10	23 030	220 689	0.25	121 260	29 795	337 130
2088	0,50	0,49	0,34	0,15	238 290	67 000	91 774	13	13	10	23 030	237 138	0,26	121 260	32 016	360 928
2087	0,53	0,52	0,36	0.16	238 290	67 000	97 145	14	14	11	23 030	254 789	0,30	121 260	34 398	386 332
2086	0,59	0,58	0,38	0.16	238 290	67 000	108 032	16	15	12	23 030	273 724	0,33	121 260	36 955	413 443
2085	0,63	0,58	0,43	0,18	238 290	67 000	108 632	17	16	13	23 030	294 033	0,33	121 260	39 697	442 362
2083 2084	0,66	0,65 0.61	0,45 0,43	0,19 0.18	238 290	67 000	121 117 114 751	19 18	19 18	15 14	23 030 23 030	339 160 315 812	0,38	121 260 121 260	45 789 42 637	473 199
2082	0,70	0,68	0,48	0,21	238 290 238 290	67 000	127 728	21	20	16	23 030	364 186	0,41	121 260	49 168	541 082 506 067
2081	0,73	0,72	0,50	0,22	238 290	67 000 67 000	134 577	22	22	17	23 030	391 003	0,44	121 260	52 788	578 369
2080	0,77	0,76	0,53	0,23	238 290	67 000	141 656	24	23	18	23 030	419 732	0,47	121 260	56 667	618 055
2079	0,81	0,80	0,56	0,24	238 290	67 000	148 952	26	25	20	23 030	450 501	0,50	121 260	60 821	660 274
2078	0,85	0,84	0,59	0,25	238 290	67 000	156 449	27	27	21	23 030	483 445	0,54	121 260	65 269	705 163
2077	0,90	0,88	0,61	0,26	238 290	67 000	164 130	29	29	23	23 030	518 708	0,58	121 260	70 030	752 867
2076	0,94	0,92	0,64	0,28	238 290	67 000	171 969	32	31	24	23 030	556 441	0,62	121 260	75 124	803 534
2075	0,98	0,96	0,67	0,29	238 290	67 000	179 942	34	33	26	23 030	596 804	0,66	121 260	80 573	857 319
2074	1,03	1,01	0,70	0,30	238 290	67 000	188 014	36	36	28	23 030	639 967	0,71	121 260	86 401	914 382

4.2.1. Капитальные затраты

В расчетах экономических показателей разработки месторождения капитальные затраты проекта оценивались укрупнено по следующим направлениям: затраты в строительство скважин; затраты на надземное нефтепромысловое строительство.

Капитальные вложения в строительство скважин включают в себя: затраты на бурение новых добывающих скважин; затраты на перевод добывающих скважин под нагнетание; затраты на перевод наблюдательных скважин под категорию добычи; затраты на выбытие скважин и т.п.

Надземное строительство состоит из капитальных затрат на: обустройство проектных скважин; затраты на сопутствующее скважинное оборудование; обустройства выкидных линий для проектных скважин и т.п.

Капитальные вложения для расчета амортизационных отчислений для целей налогообложения и для включения в себестоимость приняты в соответствии с данными раздела "Капитальные вложения" настоящего документа. В составе капитальных вложений, также учтен резерв средств на прочие затраты (на экспертизы, авторский надзор, сопровождение строительства и т.д.) в размере 5% от стоимости всего капитальных затрат на обустройство промысла. Бурение и количество скважин определялось согласно технологическим вариантам разработки данного проекта. Так же капитальные вложения рассчитаны с учетом того, что большая часть оборудования, материалов, сооружений будет приобретаться в Казахстане. Однако, также возможно приобретение оборудования и материалов у производителей из других стран при невозможности приобретения соответствующего оборудования в Казахстане, а также в случаях их неконкурентоспособности с другими аналогами по показателям качества и цены.

В данном рекомендуемом 2-м варианте проекта предусматривается бурение 5 газодобывающих скважин. В 1 варианте предусматривается бурение 3 газодобывающих скважин. В 3-м варианте планируется 7 скважин из бурения.

Смета капитальных затрат на данном этапе разработки проекта предполагает допустимую погрешность в стоимости +-15 %. Несмотря на это, расчеты основаны на реальной стоимости оборудования, полученной непосредственно от его поставщиков и стоимости строительно-монтажных работ, определенной по проектам-аналогам. Результаты расчетов капитальных вложений по рекомендуемому варианту представлены в таблице 4.2.1.1., по остальным вариантам - в приложениях.

4.2.2. Эксплуатационные затраты

Затраты на операционные и текущие расходы определялись в соответствии с основными эксплуатационными показателями, рассчитанными в соответствующих разделах настоящего проекта, исходя из технологии и техники добычи, подготовки и транспорта газа. Расходы, понесенные предприятием, (операционные затраты) разделяются на расходы, относимые на себестоимость продукции и на расходы периода.

Расходы относимые на себестоимость продукции включают в себя все эксплуатационные затраты, производимые непосредственно на промысле. Расходы периода в свою очередь включают в себя общие и административные расходы и расходы по реализации продукции.

Расходы, относимые на себестоимость продукции включают:

- обслуживание скважин;
- материальные производственные затраты;
- электроэнергию, потребляемую на промысле;
- внутри промысловый сбор и транспорт газа;
- технологическую подготовку газа и воды;
- затраты на поддержание пластового давления и мероприятия по интенсификации добычи;
- амортизационные отчисления производственных фондов;
- обслуживание, текущий и капитальный ремонт основных фондов;
- оплату труда промышленно-производственного персонала;
- налоги, отчисления и сборы в бюджет, входящие в себестоимость продукции;
- услуги сторонних организаций производственного и непроизводственного характера, необходимые на промысле (питание, содержание вахтового поселка и т.д.);
- прочие необходимые затраты.

Результаты расчетов расходов, относимые на себестоимость продукции рекомендуемого 2 варианта приведены в таблице 4.2.2.1., остальные варианты- в приложениях.

Косвенные затраты

Косвенные затраты — рассчитывались в соответствии с «Порядком определения сметной стоимости строительства в Республике Казахстан» СН РК 8.02-02-2011 и не могут быть напрямую отнесены в себестоимость продукции. В эти затраты включаются расходы периода.

Расходы периода состоят из:

- материальные затраты общепроизводственного назначения;
- оплату труда работников административно-управленческого персонала (АУП);
- -услуги непроизводственного характера, выполненные сторонними организациями;
- налоги и другие обязательные платежи в бюджет за исключением тех. налогов и платежей, что платятся из прибыли;
 - прочие затраты общепроизводственного назначения.

Согласно Контракту на осуществление разведки и добычи на месторождении Каменское предусматриваются следующие расходы: затраты на профессиональное обучение казахстанских специалистов составляют не менее 1% от затрат на добычу, понесенных Недропользователем в период добычи углеводородов по итогам предыдущего года; на затраты по социально-экономическому развитию региона размере 1% от инвестиций по Контракту в период добычи углеводородов по итогам предыдущего года. Затраты на НИОКР в размере 1% от затрат на добычу, понесенных Недропользователем в период добычи углеводородов по итогам предыдущего года.

Амортизационные отчисления для целей налогообложения определены по группам и подгруппам основных средств, в соответствии с Налоговым кодексом РК;

Амортизационные отчисления, включаемые в себестоимость, определены по производственному методу учета, за исключением амортизации нематериальных активов и исторических затрат, то есть в зависимости от извлекаемых запасов углеводородов, в соответствии со стандартом бухгалтерского учета РК № 20 «Учет и отчетность нефтегазодобывающей промышленности» и методическими рекомендациями к нему. Амортизационные отчисления по нематериальным активам и историческим затратам определяются, по линейному методу.

Результаты расчетов затрат, входящих в расходы периода рекомендуемого 2 варианта приведены в таблице 4.2.2.2, остальные варианты- в приложениях.

Таблица 4.2.1.1. - Расчет капитальных вложений, тыс. тенге по рекомендуемому 2 варианту

1 40.	лица 4.2.1.1 Расчет ка 	шитальных	вложен	ии, тыс. тенге	по рекоменду	емому 2 вар 	ианту																		
№	Наименование работ, объектов и затрат	Ед. изм.	Кол-во	Стоимость ед-цы, тыс.тенге	Стоимость всего, тыс.тенге					Pac	спределение	е капит	альных	х вложе	ений по	годам	строит	ельств	a						,
				TBIC.TCHI'C	тысленге	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049- 2095
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	7	8	9	10
I	Строительство скважин (подземное строительство)																								
1	Бурение газодобывающих вертикальных скважин	тыс.тенге	5	1 229 990	6 149 950	1 229 990	1 229 990	1 229 990	0	1 229 990	1 229 990	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин	тыс.тенге			6 149 950	1 229 990	1 229 990	1 229 990	0	1 229 990	1 229 990	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин с учетом инфляции	тыс.тенге			6 299 657	1 229 990	1 242 290	1 254 713	0	1 279 933	1 292 732	0	0	0	0	0	0	0	0	0	0	0	0	0	0
II	Наземное строительство																								
	Обустройство промысла																								
1	Обустройство скважины	тыс.тенге	5	189 410	947 050	189 410	189 410	189 410	0	189 410	189 410	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Наземное строительство	тыс.тенге			6 196 565	2 065 522	2 065 522	2 065 522	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Трубопровод 10"	тыс.тенге			5 838 152	1 459 538	1 459 538	2 919 076	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Прочие (приобретение прав землепользования)	тыс.тенге			620 400	206 800	206 800	206 800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	ПИР, экспертные заключения	тыс.тенге			82 250	16 450	24 675	41 125																	
	Итого надземное строительство	тыс.тенге			13 684 417	3 937 720	3 945 945	5 421 933	0	189 410	189 410	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого надземное строительство с учетом инфляции	тыс.тенге			13 850 210	3 937 720	3 985 404	5 530 914	0	197 101	199 072	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Всего со строительством скважин	тыс.тенге			19 834 367	5 167 710	5 175 935	6 651 923	0	1 419 400	1 419 400	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Всего со строительством скважин в ценах с учетом инфляции	тыс.тенге			20 149 867	5 167 710	5 227 694	6 785 626	0	1 477 033	1 491 804	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Таблица 4.2.2.1 - Расчет эксплуатационных затрат, включаемых в себестоимость продукции в рекомендуемом 2 варианте, тыс.тенге

1 аоли	ца 4.2.2.1 -	Расчет э	ссплуатаці	ионных затрат, в				кции в реком тоимость пр		г 2 вариант	ге, тыс.тенге	!		Нало	оги и плате	жи	Итого		
Год ы	Затраты на сырье и материа лы	ГСМ	Ремонт скважи н	Услуги производствен ного характера	Эколог.расх оды	Прочие расход ы	Затрат ы на оплату труда ОПП	Страхова ние по экологии	ниок Р	Услуги сервисн ых компан ий	Затраты на страхова ние работник ов	Перерабо тка УВ на мощност ях	Амортизацио нные отчисления	Налоги, отчисляе мые от ФОТ ППП	Налог на имущес тво	НДПИ по газу	налоги и платежи, включаем ые в себестоим ость продукции	Итого расходы, относимые на себестоим ость продукции	Производстве нная себестоимость 1 млн.м3 газа
2020	2	3	152.174	5 164 077	6 397	7	8	9	10	11 21 965	20.096	13 37 713	14 425 704	15	16	17	18	1509.246	20
2030	62 256 123 783	33 793 33 896	152 174 386 788	446 696	1 979	114 337 575 451	294 808 297 756	235 237	38 283 24 991	43 929	29 986 30 286	187 930	1 084 198	21 823 22 042	41 946 108 927	68 850 343 087	132 619 474 055	1 508 346 3 711 975	42 286 20 883
						1 025													
2032	183 805	34 000	615 663	722 401	3 490	286	300 733	240	42 225	65 894	30 589	331 522	1 872 066	22 262	178 344	605 229	805 835	6 033 749	19 243
2033	223 304	34 105	766 280	903 836	4 454	1 321 312	303 740	242	60 498	65 894	30 895	423 010	2 041 357	22 485	203 465	772 251	998 201	7 177 129	17 939
2034	227 448	34 211	782 083	922 872	4 513	1 352 370	306 778	245	56 598	65 894	31 204	428 666	2 193 466	22 709	187 663	782 578	992 951	7 399 298	18 250
2035	254 313	34 318	884 524	1 046 274	5 134	1 553 710	309 846	247	71 151	65 894	31 516	487 610	2 421 649	22 937	180 824	890 186	1 093 946	8 260 133	17 910
2036	250 225	81 426	868 935	1 027 495	4 983	1 523 071	312 944	249	78 005	65 894	31 831	473 262	2 442 426	23 166	161 788	863 991	1 048 945	8 209 691	18 341
2037	267 150	81 535	933 473	1 105 239	5 344	1 649 916	316 074	252	65 724	65 894	32 149	507 600	2 474 194	23 398	131 563	926 680	1 081 640	8 586 184	17 884
2038	248 759	81 646	863 346	1 020 763	4 849	1 512 087	319 234	254	68 935	65 894	32 471	460 591	2 430 707	23 632	101 338	840 859	965 829	8 075 365	18 537
2039	232 890	81 757	802 833	947 868	4 424	1 393 154	322 427	257	65 424	65 894	32 795	420 161	2 393 450	23 868	71 113	767 051	862 032	7 625 367	19 188
2040	219 465	81 870	751 640	886 200	4 064	1 292 537	325 651	260	62 403	65 894	33 123	385 957	2 362 033	24 106	40 888	704 606	769 601	7 240 695	19 835
2041	207 903	81 984	707 554	833 094	3 754	1 205 890	328 907	262	59 853	65 894	33 454	356 518	2 038 480	24 348	12 888	650 864	688 099	6 611 646	19 607
2042	197 713	35 098	668 697	786 286	3 481	1 129 519	332 196	265	54 697	65 894	33 789	330 633	296 440	24 591	0	603 607	628 198	4 562 907	14 591
2043	188 565	35 214	633 816	744 268	3 237	1 060 963	335 518	267	35 118	65 894	34 127	307 491	275 348	24 837	0	561 358	586 195	4 306 023	14 806
2044	180 246 172 608	35 332 35 450	602 092 572 965	706 054 670 967	3 017 2 816	998 614 941 366	338 874 342 262	270 273	33 396 31 834	65 894 65 894	34 468 34 813	286 555 267 453	256 308 238 969	25 085 25 336	0	523 137 488 265	548 223 513 601	4 089 342 3 891 271	15 088 15 383
2043			546 028	638 517	2 631	888 423		276	30 405		35 161	249 912	223 077	25 590	0	456 242	481 832	3 708 953	15 691
2047	158 973	35 690	520 975	608 339	2 461	839 184		278	29 087	65 894	35 513	233 724	208 435	25 845	0	426 689	452 534	3 540 228	16 015
2048	152 836	35 812	497 571	580 146	2 303	793 185		281	27 866	65 894	35 868	218 725	194 891	26 104	0	399 307	425 411	3 383 421	16 355
2049	147 081	35 935	475 628	553 714	2 156	750 059	356 160	284	26 730	65 894	36 226	204 785	182 321	26 365	0	373 858	400 223	3 237 198	16 713
2050	141 671	36 059	454 998	528 862	2 019		359 721	287	25 668	65 894	36 589	191 797	170 627	26 629	0	350 146	376 775	3 100 476	17 091
2051	136 572	36 185	435 555	505 440	1 892	671 297	363 318	290	24 673	65 894	36 955	179 670	159 723	26 895	0	328 007	354 902	2 972 366	17 491
2052	131 758	36 312	417 197	483 327	1 772	635 217	366 952	293	23 740	65 894	37 324	168 330	149 540	27 164	0	307 305	334 469	2 852 123	17 914
2053 2054	127 205 122 896	36 440 36 569	399 838 383 405	462 416 442 621	1 660 1 556	601 100 568 802	370 621 374 327	295 298	22 862 22 035	65 894 65 894	37 697 38 074	157 712 147 760	140 017 131 102	27 435 27 710	0	287 921 269 753	315 356 297 463	2 739 116 2 632 804	18 363 18 839
2055	118 812	36 700	367 834	423 864	1 457	538 199	378 071	301	21 256	65 894	38 455	138 426	122 749	27 987	0	252 712	280 699	2 532 717	19 345
2056	114 940	36 832	353 070	406 078	1 365	509 180		304	20 521	65 894	38 840	129 666	114 918	28 267	0	236 719	264 986	2 438 445	19 883
2057	64 267	36 965	339 063	389 205	1 279		385 670	307	19 828	65 894	39 228	121 441	107 573	28 549	0	221 704	250 253	2 302 624	20 047
2058	60 781	37 100	231 771	373 193	1 197	455 526		311	18 703	65 894	39 620	113 717	100 682	28 835	0	207 602	236 437	2 124 459	19 752
2059	57 473	13 736	266 154	263 995	1 121	430 729		314	17 145	65 894	40 016	106 462	94 215	29 123	0	194 358	223 481	1 974 154	19 606
2060	54 332	13 873	207 177	249 567	1 049	407 189	373 856	317	15 856	65 894	40 417	99 647	88 145	29 415	0	181 917	211 331	1 828 650	19 403
2061	51 350	14 012	195 807	235 872	982	290 843	377 830	320	14 600	65 894	40 821	93 246	82 449	29 709	0	170 231	199 940	1 663 966	18 867
2062	48 520	14 152	185 016	222 872	918		311 343	323	13 141	65 894	41 229	87 235	77 120	30 006	0	159 256	189 262	1 526 657	18 503
2063	45 834	14 294	104 274	210 534	859	249 503	315 396	326	11 945	65 894	41 641	81 590	72 102	30 306	0	148 951	179 257	1 393 449	18 057
2064	43 285	14 437	94 556	104 828	803	230 403	319 490	330	10 778	65 894	42 058	76 290	67 382	30 609	0	139 276	169 885	1 240 419	17 191
2065	40 868	14 581	85 337	93 723	751	212 285	323 625	333	9 403	18 894	42 478	71 316	62 968	30 915	0	130 195	161 110	1 137 672	16 866
2066	38 575	14 727	76 594	83 192	702	195 102	327 801	336	8 523	18 894	42 903	66 649	58 829	31 224	0	121 674	152 899	1 085 726	17 223
2067	36 402	14 874	68 306	73 208	656	178 812	299 119	340	8 137	18 894	43 332	62 271	54 949	31 536	0	113 682	145 218	1 004 517	17 056

2068	34 342	15 023	60 451	63 746	612	163 374	336 280	343	7 446	18 894	43 765	58 165	51 312	31 852	0	106 187	138 038	991 791	18 028
2069	32 390	15 173	53 010	54 781	572	148 748	326 482	346	7 434	18 894	44 203	54 317	47 905	32 170	0	99 161	131 331	935 587	18 211
2070	16 442	15 325	45 962	46 292	534	134 897	302 628	350	6 974	18 894	44 645	50 710	44 713	32 492	0	92 577	125 069	853 435	17 794
Ито го 2030	5 383 583	1 482 012	17 858 440	21 032 720	93 243	30 002 438	13 868 698	11 838	1 293 893	2 353 760	1 510 552	8 856 234	28 054 538	1 099 354	1 420 747	16 168 029	18 688 130	150 490 079	17 966
2070																			
2071	28 792	15 478	109 791	132 255	498	215 785	443 317	353	6 252	65 894	45 092	47 332	41 725	32 817	0	86 409	119 226	1 271 790	28 409
2072	27 137	15 633	103 477	124 650	465	203 376	447 751	357	10 530	65 894	45 542	44 168	38 928	33 145	0	80 634	113 779	1 241 686	29 723
2073	25 570	15 789	97 504	117 455	434	191 637	452 228	360	10 268	65 894	45 998	41 207	36 310	33 476	0	75 228	108 704	1 209 360	31 030
2074	24 089	15 947	91 857	110 652	405	180 537	456 750	364	10 024	65 894	46 458	38 436	33 862	33 811	0	70 169	103 980	1 179 254	32 439
2075	22 689	16 107	86 518	104 221	377	170 044	461 318	368	9 796	65 894	46 922	35 843	31 573	34 149	0	65 436	99 585	1 151 255	33 959
2076	21 366	16 268	81 473	98 144	352	160 129	465 931	371	9 584	65 894	47 392	33 419	29 432	34 491	0	61 010	95 501	1 125 256	35 600
2077	20 116	16 430	76 708	92 403	328	150 763	470 590	375	9 386	65 894	47 866	31 153	27 432	34 836	0	56 873	91 709	1 101 155	37 371
2078	18 936	16 595	72 208	86 983	306	141 919	475 296	379	9 203	65 894	48 344	29 035	25 564	35 184	0	53 007	88 191	1 078 853	39 285
2079	17 822	16 761	67 960	81 866	285	133 571	480 049	383	9 034	65 894	48 828	27 057	23 818	35 536	0	49 395	84 931	1 058 258	41 353
2080	16 771	16 928	63 952	77 037	265	125 692	484 850	386	8 877	65 894	49 316	25 209	22 189	35 891	0	46 021	81 912	1 039 280	43 589
2081	15 780	17 097	60 170	72 482	247	118 260	489 698	390	8 733	65 894	49 809	23 483	20 668	36 250	0	42 871	79 121	1 021 834	46 006
2082	14 844	17 268	56 604	68 186	230	111 251	494 595	394	8 600	65 894	50 307	21 873	19 248	36 613	0	39 931	76 544	1 005 839	48 621
2083	13 962	17 441	53 241	64 135	214	104 642	499 541	398	8 479	65 894	50 810	20 370	17 924	36 979	0	37 187	74 166	991 218	51 449
2084	13 131	17 616	50 072	60 317	200	98 412	504 537	402	8 368	65 894	51 318	18 967	16 688	37 349	0	34 627	71 975	977 898	54 510
2085	12 348	17 792	47 085	56 719	186	92 542	509 582	406	8 267	65 894	51 832	17 659	15 536	37 722	0	32 239	69 961	965 809	57 824
2086	11 610	17 970	44 271	53 330	173	87 012	514 678	410	8 175	65 894	52 350	16 440	14 461	38 099	0	30 012	68 112	954 885	61 412
2087	10 915	18 149	41 621	50 137	161	81 802	519 825	414	8 092	65 894	52 873	15 302	13 460	38 480	0	27 936	66 416	945 063	65 297
2088	10 260	18 331	39 125	47 130	150	76 897	525 023	419	8 018	65 894	53 402	14 242	12 527	38 865	0	26 001	64 866	936 284	69 506
2089	9 644	18 514	36 775	44 300	140	72 278	530 273	423	7 952	65 894	53 936	13 254	11 657	39 254	0	24 197	63 451	928 491	74 065
2090	9 064	18 699	34 563	41 635	130	67 931	535 576	427	7 893	65 894	54 475	12 334	10 847	39 646	0	22 517	62 163	921 631	79 005
2091	8 518	18 886	32 481	39 127	121	63 839	540 932	431	7 842	65 894	55 020	11 476	10 092	40 043	0	20 951	60 994	915 654	84 358
2092	8 004	19 075	30 522	36 768	112	59 989	546 341	436	7 798	65 894	55 570	10 677	9 389	40 443	0	19 492	59 936	910 511	90 161
2093	7 521	19 266	28 679	34 548	105	56 367	551 804	440	7 760	65 894	56 126	9 933	8 734	40 848	0	18 134	58 982	906 158	96 451
2094	7 066	19 459	26 946	32 459	97	52 960	557 322	444	7 728	65 894	56 687	9 240	8 124	41 256	0	16 869	58 125	902 553	103 271
2095	6 639	19 653	25 315	30 495	90	49 755	562 896	449	7 702	65 894	57 254	8 595	7 557	41 669	0	15 691	57 360	899 654	110 666
Ито го 2030	5 766 182	1 919 164	19 317 361	22 790 152	99 314	32 869 827	26 389 402	21 819	1 508 256	4 001 110	2 784 081	9 432 938	28 562 282	2 026 206	1 420 747	17 220 867	20 667 820	176 129 708	19 741
2095																			

Таблица 4.2.	.2.2 - Эксплуатаг 	ционные затраты	, включаемые в ра	асходы периода в рекомен		е, тыс.тенге		П				
	 			Расходы перио	да 		<u> </u>		10ГИ	Итого	Обучение	Отчисления в
Годы		Содержание		Административные	Социальное	Другие	Транспортные	Налоги и сборы,	Прочие налоги и	расходы	казахстанских	фонд
ТОДЫ	ФОТ АУП	АУП	Страхование	расходы	развитие	общехозяйственные	расходы	зависимые	отчисления в	периода	специалистов	ликвидации
				1 ''	региона	расходы	• ''	от ФОТ АУП	Бюджет	1 //	,	, , ,
1	2	3	4	5	6	7	8	9	10	11	12	13
2030	84 495	128 586	16 450	33 871	89 050	46 864	24 218	18 527	33	442 094	40 444	24 991
2031	85 340	129 872	16 615	34 210	64 752	47 332	120 681	18 712	67	517 580	24 991	42 225
2032	86 193	131 171	16 781	34 552	84 103	47 806	212 889	18 899	100	632 494	42 225	60 498
2033	87 055	132 482	16 948	34 898	119 407	48 284	271 640	19 088	100	729 902	60 498	56 598
2034	87 925	133 807	17 118	35 247	60 875	48 767	275 272	19 279	100	678 390	56 598	71 151
2035	88 805	135 145	17 289	35 599	77 956	49 254	313 123	19 472	100	736 743	71 151	78 005
2036	89 693	136 497	17 462	35 955	85 553	49 747	303 909	19 667	100	738 582	78 005	65 724
2037	90 590	137 862	17 637	36 315	70 509	50 244	325 960	19 863	100	749 079	65 724	68 935
2038	91 496	139 240	17 813	36 678	74 067	50 747	295 772	20 062	100	725 974	68 935	65 424
2039	92 411	140 633	17 991	37 045	70 081	51 254	269 810	20 263	100	699 587	65 424	62 403
2040	93 335	142 039	18 171	37 415	66 651	51 767	247 845	20 465	100	677 788	62 403	59 853
2041	94 268	143 459	18 353	37 789	63 756	52 284	228 941	20 670	100	659 621	59 853	54 697
2042	95 211	144 894	18 536	38 167	58 302	52 807	212 319	20 877	100	641 213	54 697	35 118
2043	96 163	146 343	18 722	38 549	38 462	53 335	197 458	21 085	100	610 217	35 118	33 396
2044	97 124	147 806	18 909	38 934	36 506	53 869	184 014	21 296	100	598 558	33 396	31 834
2045	98 096 99 077	149 284 150 777	19 098 19 289	39 324 39 717	34 733 33 110	54 407 54 951	171 747	21 509 21 724	100 100	588 298 579 229	31 834 30 405	0
2046 2047	100 067	150 777	19 482	40 114	31 616	55 501	160 483 150 088	21 724	100	579 229	29 087	0
2047	100 067	152 285	19 482	40 114	30 231	56 056	140 456	21 942	100	564 072	29 087	0
2048	102 079	155 346	19 873	40 920	28 943	56 616	131 505	22 383	100	557 765	26 730	0
2049	102 079	156 899	20 072	41 329	27 740	57 183	123 164	22 607	100	552 194	25 668	0
2050	103 100	158 468	20 273	41 743	26 614	57 754	115 377	22 833	100	547 293	24 673	0
2052	105 172	160 053	20 476	42 160	25 558	58 332	108 095	23 061	100	543 006	23 740	0
2053	106 224	161 653	20 680	42 582	24 566	58 915	101 276	23 292	100	539 288	22 862	0
2054	107 286	163 270	20 887	43 008	23 632	59 504	94 886	23 524	100	536 097	22 035	0
2055	108 359	164 903	21 096	43 438	22 752	60 100	88 891	23 760	100	533 398	21 256	0
2056	109 442	166 552	21 307	43 872	21 923	60 701	83 266	23 997	100	531 160	20 521	0
2057	110 537	166 807	21 520	44 311	21 141	61 308	77 984	24 237	100	527 945	19 828	0
2058	111 642	169 899	21 735	44 754	19 933	61 921	73 024	24 480	100	527 488	18 703	0
2059	112 758	171 598	21 953	45 201	18 297	62 540	68 365	24 724	100	525 537	17 145	0
2060	113 886	173 314	22 172	45 653	16 935	63 165	63 989	24 972	100	524 187	15 856	0
2061	115 025	175 048	22 394	46 110	15 610	63 797	59 879	25 221	100	523 184	14 600	0
2062	116 175	176 798	22 618	46 571	14 086	64 435	56 018	25 474	100	522 275	13 141	0
2063	117 337	178 566	22 844	47 037	12 830	65 079	52 393	25 728	100	521 915	11 945	0
2064	118 510	180 352	23 072	47 507	11 606	65 730	48 990	25 986	100	521 854	10 778	0
2065	119 695	182 155	23 303	47 982	10 177	66 387	45 796	26 245	100	521 842	9 403	0
2066	120 892	183 977	23 536	48 462	9 247	67 051	42 799	26 508	100	522 572	8 523	0
2067	122 101	185 817	23 772	48 947	8 814	67 722	39 988	26 773	100	524 032	8 137	0
2068	123 322	93 675	24 009	25 936	8 078	68 399	37 351	27 041	100	407 911	7 446	0
2069 2070	124 555 125 801	95 551 97 447	24 249 24 492	26 431 26 930	8 025 7 526	69 083 69 774	34 880 32 564	27 311 27 584	100 100	410 186 412 218	7 434 6 974	0
<u> 2070</u> Итого	123 001	7/ 44 /	24 472	20 930	/ 320	09 / /4	32 304	21 304	100	412 210	0 9 / 4	U
2030-2070	4 256 438	6 194 137	828 673	1 635 777	1 573 757	2 360 770	5 687 106	933 304	4 004	23 473 966	1 296 054	810 853
2071	127 059	193 361	24 737	50 934	6767	70 471	30 395	27 860	100	531 685	6 252	0
2072	128 330	195 295	24 984	51 443	11 012	71 176	28 363	28 139	100	538 842	10 530	0
2073	129 613	197 248	25 234	51 958	10 718	71 888	26 461	28 420	100	541 640	10 268	0
2074	130 909	199 220	25 486	52 477	10 444	72 607	24 682	28 704	100	544 630	10 024	0
2075	132 218	201 213	25 741	53 002	10 188	73 333	23 017	28 991	100	547 803	9 796	0
2076	133 540	203 225	25 999	53 532	9 950	74 066	21 460	29 281	100	551 153	9 584	0
2077	134 876	205 257	26 259	54 068	9 728	74 807	20 005	29 574	100	554 673	9 386	0
2078	136 224	207 310	26 521	54 608	9 522	75 555	18 645	29 870	100	558 355	9 203	0
2079	137 587	209 383	26 786	55 154	9 331	76 310	17 375	30 168	100	562 195	9 034	0

2095 Итого	161 331	245 518	31 409	64 673	7 800	89 480	5 519	35 375	100	641 205	7 702	0
2094	159 734	243 087	31 098	64 032	7 833	88 594	5 934	35 025	100	635 437	7 728	0
2093	158 152	240 680	30 790	63 398	7 872	87 717	6 379	34 678	100	629 767	7 760	0
2092	156 587	238 297	30 485	62 771	7 918	86 848	6 856	34 335	100	624 197	7 798	0
2091	155 036	235 938	30 184	62 149	7 971	85 989	7 369	33 995	100	618 730	7 842	0
2090	153 501	233 602	29 885	61 534	8 032	85 137	7 920	33 658	100	613 368	7 893	0
2089	151 981	231 289	29 589	60 925	8 100	84 294	8 511	33 325	100	608 114	7 952	0
2088	150 477	228 999	29 296	60 321	8 177	83 460	9 146	32 995	100	602 970	8 018	0
2087	148 987	226 731	29 006	59 724	8 262	82 633	9 827	32 668	100	597 939	8 092	0
2086	147 512	224 487	28 719	59 133	8 357	81 815	10 557	32 345	100	593 024	8 175	0
2085	146 051	222 264	28 434	58 547	8 462	81 005	11 340	32 024	100	588 229	8 267	0
2084	144 605	220 063	28 153	57 968	8 578	80 203	12 180	31 707	100	583 557	8 368	0
2083	143 173	217 884	27 874	57 394	8 704	79 409	13 080	31 393	100	579 012	8 479	0
2082	141 756	215 727	27 598	56 826	8 842	78 623	14 046	31 083	100	574 599	8 600	0
2081	140 352	213 591	27 325	56 263	8 992	77 844	15 080	30 775	100	570 322	8 733	0
2080	138 963	211 477	27 054	55 706	9 155	77 074	16 188	30 470	100	566 186	8 877	0

4.2.3 Экономические показатели эффективности реализации проекта

Эффективность проекта оценивалась системой рассчитываемых показателей, выступающих в качестве экономических критериев, соответствующих требованиям органов Республики Казахстан и принятой мировой практики.

Для оценки проекта использовались следующие основные показатели эффективности:

- чистая прибыль (прибыль валовая за минусом налоговых отчислений, выплачиваемых из прибыли);
- денежные потоки наличности. Годовой денежный поток наличности определяется как разница между полученным совокупным годовым валовым доходом и затратами, полученными и произведенными в рамках действия Контракта на недропользование;
- дисконтированный поток денежной наличности (Чистая приведенная стоимость) (NPV) при норме дисконта равной 5; 7,5 и 10-ти %;
- внутренняя норма доходности или внутренняя норма прибыли (IRR или ВНП)
 внутренней нормой доходности называется такое положительное число, что при норме дисконта = ВНП, чистый дисконтированный доход проекта обращается в ноль, при всех больших значениях нормы дисконта NPV отрицателен, при всех меньших значениях NPV положителен. Если не выполнено хотя бы одно из этих условий, считается, что ВНП не существует;
- удельные показатели по затратам.

Расчет показателей эффективности производился:

При определении денежных потоков применялось дисконтирование — метод приведения разновременных затрат и результатов к единому моменту времени, в данном случае к началу реализации проекта 2030 году, отражающий ценность прошлых и будущих поступлений (доходов) с современных позиций. Приведение делалось для того, чтобы, при вычислении значений интегральных показателей (IRR, NPV) исключить из расчета общее изменение масштаба цен, но сохранить (происходящее из-за инфляции) изменения в структуре цен. При выборе дифференцированной ставки процента (дисконтной) в процессе дисконтирования потока инвестиционного проекта учитывались следующие факторы:

70

- темп инфляции (или премии за инфляцию);
- премии за риск;
- премии за низкую ликвидность проекта.

Для данного проекта ставки дисконта принята на уровне 5; 7,5 и 10%. Потоки денежной наличность по проекту невелики, поэтому при дисконтировании денежный доход имеет отрицательные значения. Наилучшим признается вариант, имеющий лучшее значение NPV за рентабельный срок разработки.

Расчет чистой прибыли и потоков денежной наличности приведены в таблицах 4.2.3.1-4.2.3.2 и в Приложениях.

Таблица 4.2.3.1 – Расчет чистой прибыли в тыс. тенге по рекомендуемому 2 варианту

,		стой прибыли в ты	ic. Tenre no peko	Чистая	Барнанту	Чистая
	Налого-	Налого-	Корпора-	чистая прибыль		прибыль
	облагаемая	облагаемая	корпора- тивный	-	Налог на	приобіль
Годы	оолагаемая прибыль до	прибыль после	тивныи подоходный	после	сверх-	
	приоыль до переноса убытков			выплаты подоходного	прибыль	выплаты
	переноса убытков	переноса убытков	налог	подоходного налога		налога на сверхприбыль
1	2	3	4	5	6	7
2030	0	0	0	-885 245	0	-885 245
2030	0	0	0	1 337 494	0	1 337 494
2031	0	0	0	3 170 294	0	3 170 294
2032	3 287 293	3 287 293	657 459	4 000 581	0	4 000 581
2033		4 496 470	899 294			3 747 019
	4 496 470			3 747 019	0	
2035	5 789 662	5 789 662	1 157 932	4 314 968	0	4 314 968
2036	6 023 659	6 023 659	1 204 732	3 892 020	0	3 892 020
2037	7 131 345	7 131 345	1 426 269	4 322 056	0	4 322 056
2038	6 518 232	6 518 232	1 303 646	3 569 523	0	3 569 523
2039	5 971 764	5 971 764	1 194 353	2 949 625	0	2 949 625
2040	5 485 286	5 485 286	1 097 057	2 433 474	0	2 433 474
2041	5 048 107	5 048 107	1 009 621	2 293 246	0	2 293 246
2042	4 703 995	4 703 995	940 799	3 677 889	0	3 677 889
2043	3 997 433	3 997 433	799 487	3 074 614	0	3 074 614
2044	3 202 732	3 202 732	640 546	2 415 329	0	2 415 329
2045	2 604 868	2 604 868	520 974	1 923 730	0	1 923 730
2046	2 102 551	2 102 551	420 510	1 515 704	0	1 515 704
2047	1 698 148	1 698 148	339 630	1 190 936	0	1 190 936
2048	1 369 302	1 369 302	273 860	929 965	0	929 965
2049	1 098 949	1 098 949	219 790	718 016	0	718 016
2050	873 999	873 999	174 800	543 821	0	543 821
2051	684 383	684 383	136 877	398 762	0	398 762
2052	522 338	522 338	104 468	276 235	0	276 235
2053	381 875	381 875	76 375	171 175	0	171 175
2054	258 374	258 374	51 675	79 695	0	79 695
2055	148 272	148 272	29 654	-1 181	0	-1 181
2056	48 831	48 831	9 766	-73 729	0	-73 729
2057	6 356	6 356	1 271	-100 959	0	-100 959
2058	16 416	16 416	3 283	-86 448	0	-86 448
2059	11 512	11 512	2 302	-84 212	0	-84 212
2060	10 681	10 681	2 136	-79 030	0	-79 030
2061	37 413	37 413	7 483	-52 103	0	-52 103
2062	44 881	44 881	8 976	-40 912	0	-40 912
2063	54 766	54 766	10 953	-28 071	0	-28 071
2064	90 958	90 958	18 192	5 541	0	5 541
2065	83 424	83 424	16 685	3 884	0	3 884

2066	29 861	29 861	5 972	-34 859	0	-34 859
2067	10 024	10 024	2 005	-46 871	0	-46 871
2068	44 991	44 991	8 998	-15 277	0	-15 277
2069	9 500	9 500	1 900	-40 274	0	-40 274
2070	5 549	5 549	1 110	-40 252	0	-40 252
Итого						
2030-						
2070	73 904 202	73 904 202	14 780 840	51 346 172	0	51 346 172
2071	0	0	0	-655 530	0	-655 530
2072	0	0	0	-707 945	0	-707 945
2073	0	0	0	-745 244	0	-745 244
2074	0	0	0	-781 163	0	-781 163
2075	0	0	0	-815 765	0	-815 765
2076	0	0	0	-849 114	0	-849 114
2077	0	0	0	-881 269	0	-881 269
2078	0	0	0	-912 289	0	-912 289
2079	0	0	0	-942 233	0	-942 233
2080	0	0	0	-971 156	0	-971 156
2081	0	0	0	-999 115	0	-999 115
2082	0	0	0	-1 026 163	0	-1 026 163
2083	0	0	0	-1 052 353	0	-1 052 353
2084	0	0	0	-1 077 736	0	-1 077 736
2085	0	0	0	-1 102 364	0	-1 102 364
2086	0	0	0	-1 126 283	0	-1 126 283
2087	0	0	0	-1 149 542	0	-1 149 542
2088	0	0	0	-1 172 186	0	-1 172 186
2089	0	0	0	-1 194 257	0	-1 194 257
2090	0	0	0	-1 215 798	0	-1 215 798
2091	0	0	0	-1 236 850	0	-1 236 850
2092	0	0	0	-1 257 451	0	-1 257 451
2093	0	0	0	-1 277 637	0	-1 277 637
2094	0	0	0	-1 297 443	0	-1 297 443
2095	0	0	0	-1 316 903	0	-1 316 903
Итого						
2030-						
2095	73 904 202	73 904 202	14 780 840	25 582 383	0	25 582 383

Таблица 4.2.3.2 – Расчет потоков денежной наличности в рекомендуемом 2 варианте, тыс.тенге

Годы	Чистая прибыль с	Поток денежной	Накопленный поток	BHII (IRR)		ованный поток (NPV Чистая пр стоимость)	
	учетом всех выплат	наличности	денежной наличности	(IKK)	дисконт 5%	дисконт 7,5 %	дисконт 10 %
1	2	3	4	5	6	7	8
2030	-885 245	-5 201 547	-5 201 547	-77,4%	-4 953 854	-4 838 648	-4 728 679
2031	1 337 494	-1 721 805	-6 923 352	-20,9%	-1 561 728	-1 489 934	-1 422 980
2032	3 170 294	128 801	-6 794 552	1,1%	111 263	103 679	96 770
2033	4 000 581	6 384 323	-410 229	108,7%	5 252 398	4 780 584	4 360 579
2034	3 747 019	6 719 465	6 309 237	93,6%	5 264 877	4 680 502	4 172 259
2035	4 314 968	7 457 157	13 766 393	91,3%	5 564 645	4 831 951	4 209 371
2036	3 892 020	6 870 978	20 637 372	100,4%	4 883 076	4 141 516	3 525 898
2037	4 322 056	7 370 235	28 007 606	100,4%	4 988 465	4 132 507	3 438 269
2038	3 569 523	6 531 232	34 538 839	95,8%	4 210 091	3 406 583	2 769 880
2039	2 949 625	5 836 258	40 375 097	92,0%	3 582 956	2 831 717	2 250 130
2040	2 433 474	5 256 699	45 631 796	88,7%	3 073 483	2 372 575	1 842 441
2041	2 293 246	4 765 029	50 396 825	85,6%	2 653 347	2 000 617	1 518 285
2042	3 677 889	4 375 272	54 772 097	84,0%	2 320 300	1 708 815	1 267 360
2043	3 074 614	3 727 045	58 499 142	77,3%	1 882 411	1 354 086	981 447
2044	2 415 329	3 028 970	61 528 112	67,4%	1 456 986	1 023 689	725 111

2045	1 923 730	2 498 272	64 026 383	59,6%	1 144 487	785 424	543 697
2045	1 515 704	2 057 783	66 084 167	52,1%	897 804	601 805	407 121
2040	1 190 936	1 702 985	67 787 152	45,6%	707 625	463 296	306 297
2047	929 965	1 414 114	69 201 266	39,9%	559 613	357 869	231 219
2049	718 016	1 176 156	70 377 422	34,8%	443 281	276 883	174 828
2050	543 821	977 650	71 355 072	30,3%	350 920	214 095	132 110
2051	398 762	809 816	72 164 888	26,2%	276 836	164 968	99 483
2052	276 235	665 915	72 830 803	22,5%	216 803	126 190	74 368
2053	171 175	540 766	73 371 569	19,0%	167 674	95 325	54 902
2054	79 695	430 386	73 801 955	15,7%	127 094	70 574	39 723
2055	-1 181	331 712	74 133 667	12,5%	93 291	50 599	27 832
2056	-73 729	242 392	74 376 059	9,5%	64 924	34 395	18 489
2057	-100 959	193 710	74 569 769	8,0%	49 414	25 569	13 432
2058	-86 448	181 972	74 751 741	7,9%	44 209	22 344	11 471
2059	-84 212	161 567	74 913 308	7,5%	37 383	18 454	9 259
2060	-79 030	147 754	75 061 061	7,2%	32 559	15 699	7 698
2061	-52 103	150 798	75 211 859	7,9%	31 647	14 905	7 142
2062	-40 912	150 081	75 361 940	8,4%	29 997	13 799	6 462
2063	-28 071	143 234	75 505 175	8,5%	27 265	12 251	5 607
2064	5 541	154 963	75 660 138	9,9%	28 093	12 329	5 514
2065	3 884	137 648	75 797 786	9,3%	23 766	10 187	4 453
2066	-34 859	89 514	75 887 300	6,3%	14 719	6 163	2 632
2067	-46 871	68 705	75 956 005	5,0%	10 760	4 400	1 837
2068	-15 277	91 974	76 047 979	7,4%	13 718	5 479	2 235
2069	-40 274	59 215	76 107 194	4,9%	8 411	3 282	1 308
2070	-40 252	50 184	76 157 378	4,4%	6 789	2 587	1 008
Итого	51 346 172	76 157 378	76 157 378	46,6%	44 137 799	34 449 108	27 196 271
2030-2070				.,			
2071	-655 530	-613 805	75 543 573	-35,7%	-79 082	-29 436	-11 208
2072	-707 945	-669 017	74 874 556	-39,2%	-82 091	-29 845	-11 106
2073	-745 244	-708 934	74 165 622	-42,1%	-82 847	-29 419	-10 699
2074	-781 163	-747 301	73 418 321	-45,0%	-83 172	-28 848	-10 252
2075	-815 765	-784 193	72 634 129	-47,8%	-83 122	-28 160	-9 780
2076	-849 114	-819 681	71 814 447	-50,5%	-82 746	-27 381	-9 294
2077	-881 269	-853 837	70 960 611	-53,1%	-82 090	-26 532	-8 801
2078	-912 289	-886 726	70 073 885	-55,7%	-81 192	-25 632	-8 309
2079	-942 233	-918 414	69 155 471	-58,2%	-80 089	-24 695	-7 824
2080	-971 156	-948 967	68 206 503	-60,6%	-78 813	-23 737	-7 349
2081	-999 115	-978 447	67 228 056	-62,8%	-77 392	-22 767	-6 888
2082	-1 026 163	-1 006 915	66 221 141	-65,0%	-75 851	-21 794	-6 444
2083	-1 052 353	-1 034 429	65 186 712	-67,1%	-74 213	-20 828	-6 019
2084	-1 077 736	-1 061 048	64 125 664	-69,2%	-72 498	-19 873	-5 612
2085	-1 102 364	-1 086 828	63 038 836	-71,1%	-70 723	-18 936	-5 226
2086	-1 126 283	-1 111 822	61 927 014	-72,9%	-68 904	-18 020	-4 860
2087	-1 149 542	-1 136 082	60 790 931	-74,6%	-67 055	-17 128	-4 515
2088	-1 172 186	-1 159 659	59 631 272	-76,3%	-65 187	-16 264	-4 189
2089	-1 194 257	-1 182 600	58 448 672	-77,8%	-63 311	-15 429	-3 884
2090	-1 215 798	-1 204 952	57 243 720	-79,3%	-61 436	-14 624	-3 598
2091	-1 236 850	-1 226 758	56 016 962	-80,7%	-59 569	-13 850	-3 330
2092	-1 257 451	-1 248 062	54 768 900	-82,0%	-57 718	-13 107	-3 080
2093	-1 277 637	-1 268 902	53 499 998	-83,2%	-55 887	-12 396	-2 846
2094	-1 297 443	-1 289 319	52 210 679	-84,4%	-54 082	-11 717	-2 629
2095 Итого	-1 316 903	-1 309 346	50 901 333	-85,4%	-52 307	-11 069	-2 427
	25 582 383	50 901 333	50 901 333	25,1%	42 346 422	33 927 622	27 036 101

4.2.4 Бюджетная эффективность проекта

Анализ бюджетной эффективности инвестиционного проекта показывает влияние результатов осуществляемого проекта на доходы и расходы бюджета Республики Казахстан. В качестве основного показателя доходов государства от реализуемого проекта принимается бюджетный эффект, который выражается в увеличении бюджетных доходов или снижении бюджетных расходов в результате реализации проекта.

Основным документом, регламентирующим расчет бюджетной эффективности, является Налоговый кодекс РК. Проектирование налоговых обязательств, которые несет предприятие, осуществлялось по принятым в качестве нормативов ставкам налогов и других обязательных платежей в бюджет

Величина нормативов определена в соответствии с Налоговым кодексом РК, действующим на текущий момент. Все налоговые обязательства недропользователя рассчитываются и уплачиваются в национальной валюте тенге.

В расчете предусмотрены следующие налоги и платежи:

- НДС, при реализации продукции на внутреннем рынке 12% от облагаемого оборота. Предполагается, что возмещение налога на добавленную стоимость (НДС) из бюджета государства производится за счет всех налогов, уплачиваемых предприятием в бюджет РК;
- налоги и сборы, зависимые от фонда оплаты труда: обязательные выплаты в фонд государственного социального страхования (социальный налог), обязательного медицинского страхования и Пенсионный Фонд, ИПН у источника;
- налог на имущество 1,5% от среднегодовой остаточной стоимости основных фондов (балансовая стоимость с вычетом износа оборудования);
 - экспортная таможенная пошлина по шкале от курса продаж.
 - корпоративный подоходный налог 20% от налогооблагаемого дохода;

Результаты расчета налогооблагаемого дохода и бюджетной эффективности представлены в таблицах 4.2.4.1-4.2.4.2.

Таблица 4.2.4.1 – Расчет налогооблагаемого дохода в рекомендуемом 2 варианте, тыс.тенге

			гаемого дох	ода в рекомендуемо	м 2 варианте, тыс.т	енге
	Всего расходы,					
	связанные с	расходы		_	Всего вычитаемые	
	обычной	(включаемые	Балансовая	отчисления,	затраты, налоги и	
	деятельностью	B C/C +	прибыль	относимые на	специальные	Налого-
Годы	предприятия	расходы	(+),	вычеты при	фонды,	облагаемый
	(расходы,	периода)	νδι ιτοι: (-)	определении	определяемые для	доход
	включаемые в	приходящиеся	yobitok (-)	налогооблагаемого	Налогооблагаемого	
	с/с + расходы	на 1 млн.м3		дохода	дохода	
	периода)	газа				
1	2	3	4	5	6	7
2030	2 015 876	56 515	-885 245	1 482 661	533 215	0
2031	4 296 771	24 173	1 337 494	2 531 270	1 765 500	0
2032	6 768 967	21 587	3 170 294	3 722 490	3 046 477	0
2033	8 024 128	20 056	4 658 039	2 680 193	5 343 935	3 287 293
2034	8 205 438	20 238	4 646 313	2 343 308	5 862 130	4 496 470
2035	9 146 032	19 831	5 472 900	2 104 887	7 041 145	5 789 662
2036	9 092 003	20 312	5 096 752	1 515 519	7 576 485	6 023 659
2037	9 469 922	19 725	5 748 325	1 091 173	8 378 749	7 131 345
2038	8 935 699	20 512	4 873 169	785 645	8 150 054	6 518 232
2039	8 452 781	21 270	4 143 978	565 664	7 887 117	5 971 764
2040	8 040 739	22 027	3 530 531	407 278	7 633 461	5 485 286
2041	7 385 817	21 903	3 302 868	293 240	7 092 577	5 048 107
2042	5 293 936	16 929	4 618 688	211 133	5 082 802	4 703 995
2043	4 984 754	17 140	3 874 100	152 016	4 832 738	3 997 433
2044	4 753 130	17 537	3 055 876	109 451	4 643 679	3 202 732
2045	4 511 403	17 834	2 444 703	78 805	4 432 598	2 604 868
2046	4 318 586	18 270	1 936 214	56 740	4 261 847	2 102 551
2047	4 140 510	18 730	1 530 565	40 853	4 099 657	1 698 148
2048	3 975 359	19 216	1 203 826	29 414	3 945 946	1 369 302
2049	3 821 692	19 731	937 806	21 178	3 800 514	1 098 949
2050	3 678 338	20 277	718 621	15 248	3 663 090	873 999
2051	3 544 332	20 857	535 639	10 979	3 533 354	684 383
2052	3 418 870	21 474	380 703	7 905	3 410 965	522 338
2053	3 301 266	22 131	247 550	5 691	3 295 575	381 875
2054	3 190 936	22 832	131 370	4 098	3 186 838	258 374
2055	3 087 371	23 581	28 474	2 950	3 084 421	148 272
2056	2 990 127	24 381	-63 963	2 124	2 988 002	48 831
2057	2 850 397	24 816	-99 688	1 529	2 848 867	6 356
2058	2 670 650	24 830	-83 164	1 101	2 669 548	16 416
2059	2 516 837	24 995	-81 910	793	2 516 044	11 512
2060	2 368 694	25 133	-76 893	571	2 368 123	10 681
2061	2 201 750	24 965	-44 620	416	2 201 335	37 413
2062	2 062 073	24 992	-31 936	303	2 061 770	44 881
2063	1 927 310	24 975	-17 118	218	1 927 092	54 766
2064	1 773 051	24 572	23 733	157	1 772 894	90 958
2065	1 668 916	24 742	20 568	113	1 668 803	83 424
2066	1 616 821	25 649	-28 887	81	1 616 739	29 861
2067	1 536 687	26 091	-44 866	59	1 536 628	10 024
2068	1 407 148	25 578	-6 279	42	1 407 106	44 991
2069	1 353 207	26 340	-38 374	30	1 353 177	9 500
2070	1 272 627	26 534	-39 142	22	1 272 605	5 549
Итого			-/ - 12			
2030-	176 070 952	21 020	66 127 012	20 277 349	155 793 603	73 904 202
2070						
2071	1 809 726	40 425	-655 530	11	1 809 715	0
2072	1 791 059	42 874	-707 945	8	1 791 051	0
2073	1 761 269	45 191	-745 244	6	1 761 263	0
				·		-

2095						
2030-	216 482 578	24 264	40 363 223	20 277 390	196 205 188	73 904 202
Итого						
2095	1 548 562	190 487	-1 316 903	0	1 548 562	0
2094	1 545 718	176 863	-1 297 443	0	1 545 718	0
2093	1 543 685	164 310	-1 277 637	0	1 543 685	0
2092	1 542 506	152 743	-1 257 451	0	1 542 506	0
2091	1 542 226	142 084	-1 236 850	0	1 542 226	0
2090	1 542 893	132 261	-1 215 798	0	1 542 893	0
2089	1 544 557	123 208	-1 194 257	0	1 544 557	0
2088	1 547 272	114 863	-1 172 186	0	1 547 272	0
2087	1 551 094	107 170	-1 149 542	0	1 551 094	0
2086	1 556 084	100 077	-1 126 283	0	1 556 084	0
2085	1 562 304	93 537	-1 102 364	0	1 562 304	0
2084	1 569 823	87 506	-1 077 736	0	1 569 823	0
2083	1 578 709	81 943	-1 052 353	0	1 578 709	0
2082	1 589 039	76 811	-1 026 163	0	1 589 038	0
2081	1 600 889	72 077	-999 115	0	1 600 889	0
2080	1 614 343	67 708	-971 156	1	1 614 342	0
2079	1 629 487	63 675	-942 233	1	1 629 486	0
2078	1 646 412	59 952	-912 289	1	1 646 411	0
2077	1 665 214	56 515	-881 269	2	1 665 212	0
2076	1 685 993	53 340	-849 114	2	1 685 991	0
2075	1 708 854	50 407	-815 765	3	1 708 851	0
2074	1 733 908	47 696	-781 163	4	1 733 904	0

Таблица 4.2.4.2 – Расчет дохода от реализации продукции и бюджетной эффективности 2 варианта разработки, тыс. тенге

						доход госу	ДАРСТВА, тыс. т	енге				
				Апонта		Прочие				Дискон	тированный доход	РК при
Годы	Социальный налог	ИПН	Налог на имущество	Аренда земельных участков	ндпи	налоги и платежи в бюджет	кпн	НСП	Суммарный доход РК	5%	7,5%	10%
1	2	3	4	5	6	7	8	9	10	11	12	13
2030	21 136	19 214	41 946	33	68 850	33	0	0	151 212	812 358	793 466	775 433
2031	21 347	19 407	108 927	67	343 087	67	0	0	492 901	1 222 665	1 166 458	1 114 040
2032	21 561	19 601	178 344	100	605 229	100	0	0	824 935	1 738 932	1 620 411	1 512 420
2033	21 776	19 797	203 465	100	772 251	100	657 459	0	1 674 948	1 864 420	1 696 943	1 547 855
2034	21 994	19 995	187 663	100	782 578	100	899 294	0	1 911 724	1 913 153	1 700 802	1 516 117
2035	22 214	20 195	180 824	100	890 186	100	1 157 932	0	2 271 551	2 232 707	1 938 727	1 688 929
2036	22 436	20 397	161 788	100	863 991	100	1 204 732	0	2 273 544	1 997 033	1 693 757	1 441 987
2037	22 661	20 600	131 563	100	926 680	100	1 426 269	0	2 527 973	2 099 494	1 739 247	1 447 063
2038	22 887	20 806	101 338	100	840 859	100	1 303 646	0	2 289 737	1 818 242	1 471 225	1 196 248
2039	23 116	21 015	71 113	100	767 051	100	1 194 353	0	2 076 848	1 577 746	1 246 940	990 839
2040	23 347	21 225	40 888	100	704 606	100	1 097 057	0	1 887 324	1 373 100	1 059 965	823 123
2041	23 581	21 437	12 888	100	650 864	100	1 009 621	0	1 718 591	1 198 228	903 461	685 644
2042	23 816	21 651	0	100	603 607	100	940 799	0	1 590 074	1 055 854	777 597	576 713
2043	24 055	21 868	0	100	561 358	100	799 487	0	1 406 967	901 043	648 153	469 784
2044	24 295	22 087	0	100	523 137	100	640 546 520 074	0	1 210 266	754 019	529 779	375 260
2045	24 538	22 307	0	100	488 265	100	520 974	0	1 056 284	637 605	437 567	302 899
2046	24 783	22 530	0	100	456 242	100	420 510	0	924 266	542 415	363 585	245 965
2047	25 031	22 756	0	100	426 689	100	339 630	0	814 306	464 500	304 117	201 060
2048 2049	25 282 25 534	22 983	0	100	399 307	100	273 860	0	721 633	400 027	255 814	165 282
		23 213	0	100	373 858 350 146	100	219 790 174 800	0	642 596	346 125	216 197	136 510
2050 2051	25 790 26 048	23 445 23 680	0	100 100	328 007	100 100	136 877	0	574 381	300 629 261 891	183 412 156 063	113 177 94 112
2052	26 308	23 917	0	100	307 305	100	104 468	0	514 812 462 197	228 647	133 084	78 431
2053	26 571	24 156	0	100	287 921	100	76 375	0	415 223	199 918	113 656	65 459
2054	26 837	24 397	0	100	269 753	100	51 675	0	372 862	174 941	97 143	54 677
2055	27 105	24 641	0	100	252 712	100	29 654	0	334 313	153 112	83 045	45 680
2056	27 376	24 888	0	100	236 719	100	9 766	0	298 949	133 954	70 964	38 147
2057	27 650	25 137	0	100	221 704	100	1 271	0	275 962	118 113	61 117	32 107
2058	27 927	25 388	0	100	207 602	100	3 283	0	264 400	104 977	53 057	27 239
2059	28 206	25 642	0	100	194 358	100	2 302	0	250 708	93 068	45 944	23 051
2060	28 488	25 898	0	100	181 917	100	2 136	0	238 639	83 129	40 083	19 654
2061	28 773	26 157	0	100	170 231	100	7 483	0	232 844	74 137	34 916	16 731
2062	29 061	26 419	0	100	159 256	100	8 976	0	223 912	67 507	31 054	14 542
2063	29 351	26 683	0	100	148 951	100	10 953	0	216 138	60 020	26 968	12 342
2064	29 645	26 950	0	100	139 276	100	18 192	0	214 262	53 710	23 572	10 542
2065	29 941	27 219	0	100	130 195	100	16 685	0	204 240	47 481	20 353	8 896
2066	30 241	27 491	0	100	121 674	100	5 972	0	185 579	41 288	17 287	7 384
2067	30 543	27 766	0	100	113 682	100	2 005	0	174 196	36 770	15 037	6 277
2068	30 848	28 044	0	100	106 187	100	8 998	0	174 277	34 332	13 713	5 595
2069	31 157	28 324	0	100	99 161	100	1 900	0	160 742	30 156	11 765	4 691
2070	31 468	28 608	0	100	92 577	100	1 110	0	153 963	27 010	10 293	4 010
Итого 2030- 2070	1 064 725	967 932	1 420 747	4 004	16 168 029	4 004	14 780 840	0	34 410 282	27 274 456	21 806 736	17 895 918
2071	31 783	28 894	0	100	86 409	100	0	0	147 287	29 293	10 903	4 152
2072	32 101	29 183	0	100	80 634	100	0	0	142 118	26 877	9 771	3 636
2073	32 422	29 475	0	100	75 228	100	0	0	137 324	24 629	8 746	3 180
2074	32 746	29 769	0	100	70 169	100	0	0	132 884	22 595	7 837	2 785
2075	33 074	30 067	0	100	65 436	100	0	0	128 777	20 755	7 031	2 442
2076	33 404	30 368	0	100	61 010	100	0	0	124 983	19 088	6 316	2 144
2077	33 738	30 671	0	100	56 873	100	0	0	121 483	17 578	5 681	1 884
2078	34 076	30 978	0	100	53 007	100	0	0	118 261	16 208	5 117	1 659

2079	34 417	31 288	0	100	49 395	100	0	0	115 299	14 965	4 614	1 462
2080	34 761	31 601	0	100	46 021	100	0	0	112 583	13 836	4 167	1 290
2081	35 108	31 917	0	100	42 871	100	0	0	110 096	12 810	3 768	1 140
2082	35 459	32 236	0	100	39 931	100	0	0	107 826	11 876	3 412	1 009
2083	35 814	32 558	0	100	37 187	100	0	0	105 759	11 026	3 094	894
2084	36 172	32 884	0	100	34 627	100	0	0	103 883	10 251	2 810	794
2085	36 534	33 213	0	100	32 239	100	0	0	102 186	9 543	2 555	705
2086	36 899	33 545	0	100	30 012	100	0	0	100 656	8 897	2 327	628
2087	37 268	33 880	0	100	27 936	100	0	0	99 285	8 305	2 121	559
2088	37 641	34 219	0	100	26 001	100	0	0	98 061	7 763	1 937	499
2089	38 017	34 561	0	100	24 197	100	0	0	96 976	7 267	1 771	446
2090	38 397	34 907	0	100	22 517	100	0	0	96 021	6 810	1 621	399
2091	38 781	35 256	0	100	20 951	100	0	0	95 188	6 391	1 486	357
2092	39 169	35 608	0	100	19 492	100	0	0	94 470	6 005	1 364	320
2093	39 561	35 965	0	100	18 134	100	0	0	93 860	5 648	1 253	288
2094	39 957	36 324	0	100	16 869	100	0	0	93 350	5 320	1 152	259
2095	40 356	36 687	0	100	15 691	100	0	0	92 935	5 015	1 061	233
Итого 2030- 2095	1 962 383	1 783 984	1 420 747	6 507	17 220 867	6 507	14 780 840	0	37 181 836	27 603 207	21 908 654	17 929 082

5. ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПРОЕКТНЫХ РЕШЕНИЙ

5.1 Технико-экономический анализ вариантов разработки, обоснование выбора рекомендуемого к утверждению варианта.

Были рассмотрены технико-экономические показатели 3 вариантов разработки.

По первому варианту разработки месторождения расчетный период составляет 66 года. А рентабельный период-33 года. За прибыльный период суммарная добыча товарного газа составит 6 557,6 млн.м3 газа и достигается КИГ 63,6%. Чистые дисконтированные поступления, рассчитанные при ставках дисконта 5; 7,5; 10%, составят за рентабельный период после налогообложения, соответственно: 33 242, 164 млн.тенге, 25 776, 603 млн.тенге и 20 251, 597 млн.тенге. Капитальные вложения составят 17 367,9 млн.тенге. Суммарные поступления, за 33 лет рентабельного периода составят 190 618,4 млн.тенге. Средняя себестоимость 1 млн.м3 газа составит 21 164,6 тенге.

По третьему варианту разработки месторождения вводится в действие 7 скважин. Расчетный период составляет 27 лет, а прибыльный период составляет—25 лет, в котором будет добыто 8 355,0 млн.м3 товарного газа. Чистые дисконтированные поступления, рассчитанные при ставках дисконта 5; 7,5; 10% составят за рентабельный период после налогообложения, соответственно: 37 379, 116 млн.тенге, 29 443, 515 млн.тенге, 23 011, 277 млн.тенге. Капитальные вложения составят 23 576,1 млн.тенге. . Суммарные поступления, за 25 лет рентабельного периода составят 233 875,1 млн.тенге. Средняя себестоимость 1 млн.м3 газа составит 21 855,7 тенге.

По второму рекомендуемому варианту разработки месторождения предполагается бурение 5 скважин. Расчетный период составляет 66 лет, а прибыльный составляет 41 лет. Суммарные поступления за 41 лет рентабельного периода составят 233 344,1 млн.тенге. За этот период будет добыто 8 376,4 млн.м3 газа. Достигается КИГ-81,3%. Чистые дисконтированные поступления, рассчитанные при ставках дисконта 5; 7,5; 10%, составят за рентабельный проектный период после налогообложения 44 137, 799 млн.тенге, 34 449, 108 млн.тенге и 27 196, 271 млн.тенге. Средняя себестоимость 1 млн.м3 газа составит 19 962,9 тенге. Внутренняя норма доходности (IRR) составляет 47%. Индекс доходности компании по 2 варианту положительный и больше, чем у других вариантах (PI = 0,921 при дисконте 5%), что указывает на экономически привлекательный вариант. По сравнению с рассмотренными вариантами разработки месторождения, данный вариант имеет наиболее привлекательные показатели.

Таким образом, 2 вариант с точки зрения экономического анализа и сравнения основных показателей обеспечивает наибольшую экономическую выгоду, что наглядно видно на рис.5.1.1.-5.1.2. В связи с этим данный вариант рекомендован к реализации.

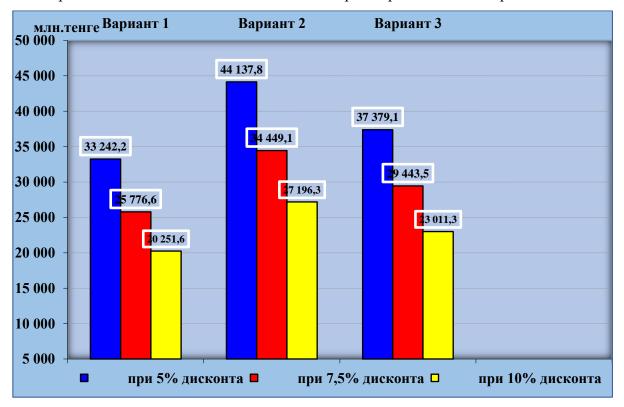


Рис. 5.1.1. - Чистые дисконтированные поступления при ставках дисконта 5; 7,5; 10%, по вариантам за проектный рентабельный период

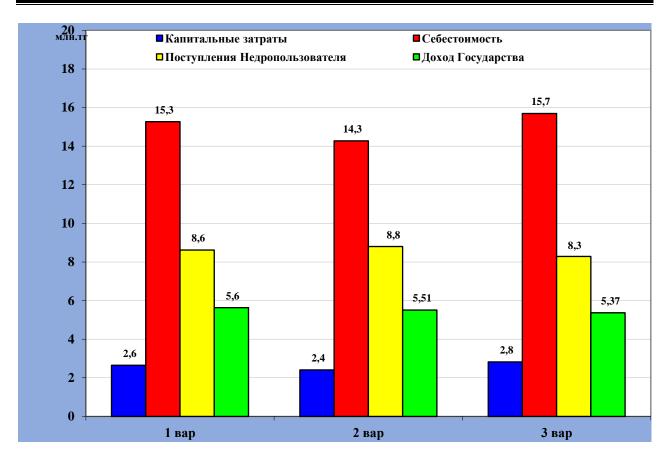


Рис. 5.1.2. - Сравнение экономических показателей по вариантам за проектный рентабельный период

Полученные результаты расчетов экономических показателей проекта приведены в таблице 5.1.1.

Таблица 5.1.1 - Технико-экономические показатели основных вариантов разработки месторождения

	ица 5.1.1 - Технико-экономические показатели	Вари			комендуемый)	Вариант 3		
№	Наименование показателей	Расчетный	Прибыльный	Расчетный	Прибыльный	Расчетный	Прибыльный	
1	Период расчета, годы					2030-2056 (27 лет)		
2	Ввод газодобывающих скважин, шт.	3	3	5	5	7	7	
3	Выбытие скважин, шт.	0	0	0	0	0	0	
4	Суммарная добычи газа, млн.м3	8 392,2	6 557,6	8 921,9	8 376,4	8 449,3	8 355,0	
5	Добыча конденсата, тыс.тонн	358,6	325,3	377,5	360,2	367,9	365,4	
6	Суммарная выручка от реализации товарной продукции, млн.тенге	233 363,0	190 618,4	247 417,2	233 344,1	236 212,4	233 875,1	
7	Эксплуатационные затраты ,без амортизации, млн.тенге	214 777,2	115 912,5	178 491,7	139 162,5	154 509,9	150 186,0	
8	- прямые затраты	140 790,6	79 006,2	118 277,5	95 702,0	115 818,8	112 898,3	
9	- налоги и платежи, относимые на вычеты	20 405,0	14 922,1	20 678,7	18 694,5	18 690,3	18 463,7	
10	- расходы периода	53 581,7	21 984,1	39 535,5	24 766,0	20 000,8	18 824,0	
11	в т.ч. налоговые платежи от ФОТ АУП	2 496,5	854,3	1 720,2	933,3	630,9	593,4	
12	Эксплуатационные затраты с учетом амортизации, млн.тенге	239 124,5	138 789,0	207 054,0	167 217,1	186 987,3	182 603,7	
13	Себестоимость на 1 млн.м3 газа, тенге/т, с учетом амортизации	28 493,8	21 164,6	23 207,5	19 962,9	22 130,6	21 855,7	
14	Капитальные вложения (без НДС), млн.тенге	17 367,9	17 367,9	20 149,9	20 149,9	23 576,1	23 576,1	
15	- в строительство скважин	3 764,3	3 764,3	6 299,7	6 299,7	9 144,1	9 144,1	
16	- в нефтепромысловое строительство	13 603,6	13 603,6	13 850,2	13 850,2	14 432,0	14 432,0	
17	Удельные капитальные вложения, тенге/т	2 069,5	2 648,5	2 258,5	2 405,6	2 790,3	2 821,8	
18	Налогооблагаемая балансовая прибыль, млн.тенге	57 211,0	57 211,0	73 904,2	73 904,2	60 000,5	60 000,5	
19	Корпоративный подоходный налог, млн.тенге	11 442,2	11 442,2	14 780,8	14 780,8	12 000,4	12 000,4	
20	Налог на сверхприбыль, млн.тенге	0,0	0,0	0,0	0,0	0,0	0,0	
21	Внутренняя норма прибыли (ВНП или IRR), %	1%	43%	25%	47%	20%	42%	
22	Чистая приведенная стоимость (NPV) при ставке 7,5%, млн.тенге	24 406,62	25 776,60	33 927,62	34 449,11	9 411,38	29 443,5	
23	Накопленный поток денежной наличности, млн.тенге	2 267,3	58 387,3	50 901,3	76 157,4	49 778,4	71 505,0	
	Суммарные выплаты Государству в виде налогов, млн.тенге	34 343,7	27 218,7	37 181,8	34 410,3	31 373,8	31 057,5	
25	Коэффициент извлечения нефти КИГ, %	81,5%	63,6%	86,6%	81,3%	82,0%	81,1%	

6. ТЕХНИКА И ТЕХНОЛОГИЯ ДОБЫЧИ ГАЗА И КОНДЕНСАТА

6.1. Обоснование выбора рекомендуемых способов эксплуатации скважин, устьевого и внутрискважинного оборудования. Характеристика показателей эксплуатации скважин

По состоянию на 01.07.2024 г. фонд пробуренных скважин на месторождении Каменское составляет 15 (N1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 19) единиц, все пробуренные скважины находятся в ликвидации.

Технологические условия эксплуатации скважин

Условия эксплуатации скважин определены с учётом физико-химических свойств газа и конденсата по данным опробования скважин 1, 2, 4, 5, 6, 8, 13. По результатам испытаний промышленные газоконденсатные притоки получены в скважинах 2, 5, 6 и 11.

Максимальный дебит газа и конденсата в объеме 1964,6 тыс.м³/сут и 70,5 м³/сут соответственно получен на штуцере 50 мм в интервале открытого ствола в скважине 11, минимальный дебит газа в объёме 3,1 тыс.м³/сут получен в скважине 2 с интервала 3120-3032 м на штуцере 3 мм. Породами коллекторами продуктивных отложений представлены в нижней части глинистыми, песчано-глинистыми трещиноватыми известковистыми породами, а в верхней части (80 % разреза) известняками и доломитами.

Покрышкой служит соленосная толща казанского яруса, карбонатные породы хемогенные и биохемогенные, иногда с прослойками органогенно-детритовых разностей. Коллекторы порового и порово-трещинного типов преимущественно связаны с доломитами.

Добыча газа и конденсата будет производиться фонтанным способом, обусловленным запасом пластовой энергии и режимом разработки залежи (Рпл = 46,1 МПа). Правильность эксплуатации и обеспечение длительного и бесперебойного фонтанирования скважин заключается в том, чтобы обеспечить оптимальный дебит при возможно меньших гидравлических и технологических потерях. Для создания таких условий фонтанирования необходимо выбрать и обосновать фонтанный подъёмник (компоновку лифта) учитывая проектные параметры (Qг, Qконд, Ру, Рзаб, A, B), а также подобрать соответствующее наземное и подземное оборудование.

Проектные технологические условия разработки месторождения

Показатели эксплуатации скважин на проектируемый период приведены в таблице 6.1.1.

Таблица 6.1.1 – Показатели эксплуатации скважин

Поморожно	Годы разработки								
Показатели	2030	2031	2032	2033	2034	2035	2036		
Ввод скважин из бурения	1	1	1	0	1	0	1		
Фонд добывающих скважин	1	2	3	3	4	4	5		

Дебит газа, тыс.м ³ /сут,	411,5	410,1	401,9	384,6	359,8	332,5	303,7
Дебит конденсата, т/сут	5,7	28,3	50,0	63,8	64,6	73,5	71,4

Обоснование устьевых и забойных давлений, выбор режимов эксплуатации скважин. Обоснование выбора подъёмного лифта

В скважине будут создаваться условия движения двухфазного потока. При выпадении из потока конденсата возможны осложнения при добыче, связанные с накоплением его на забое, что может привести к снижению дебита газа. Для выявления осложнений такого рода и разработки мероприятий по их предупреждению и устранению, в условиях разработки данного месторождения, необходимо рассмотреть характер и условия выпадения и возможного накопления конденсата на забое.

Для расчёта критической скорости выноса жидкости с забоя можно использовать формулу, выведенную на основе статистической обработки экспериментальных данных с учётом промысловых исследований [8].

$$V_{\rm Kp} = 10 * (45 - 0.0455 * P_{\rm 3a6})^{1/4} * P_{\rm 3a6}^{-1/2}$$

где Рзаб – забойное давление (атм).

По рекомендуемому к реализации 2 варианту, скважины месторождения Каменское в период с 2030-2033 гг. должны эксплуатироваться при среднем значении забойного давления 40,0 МПа, далее в период 2034-2040 гг. – при среднем значении Рзаб= 26,5 МПа. Скорость газового потока необходимая для выноса конденсата с забоя, с учётом коэффициента запаса 1.2, при Рзаб = 40,0 МПа составит 1,14 м/с, при Рзаб = 26,5 МПа составит 1,47 м/с.

Начальное пластовое давление для месторождения Каменское достаточно высоко и приняты равным 46,1 МПа. Таким образом, добыча газа и конденсата на месторождении будет производиться фонтанным способом, обусловленным запасом пластовой энергии и режимом разработки залежи. Правильность эксплуатации и обеспечение длительного и бесперебойного фонтанирования скважин заключается в том, чтобы обеспечить оптимальный дебит при возможно меньших гидравлических и технологических потерях. Для создания таких условий фонтанирования необходимо выбрать и обосновать фонтанный подъёмник (компоновку лифта), учитывая проектные параметры (Qг, Qконд, Ру, Рзаб, A, B), а также подобрать соответствующее наземное и подземное оборудование.

Решение задачи по определению и установлению оптимального режима работы скважин, а также выбор необходимого оборудования для его обеспечения связаны с проведением гидродинамических расчётов движения газожидкостного потока в

подъёмных трубах с условием минимальных потерь давления в стволе скважины при заданном дебите.

Кроме того, выбор оборудования и режима работы скважин, для данного месторождения, проводится с учётом выноса с забоя скважины твёрдых и жидких частиц и возможной минимизации скоростного эрозионного потока.

На рисунках 6.1.1-6.1.2 приведены графики зависимости скорости потока от дебита газа для забойных (вынос твёрдых и жидких частиц) условий в НКТ диаметром 60,3 мм, 73 и 89 мм.

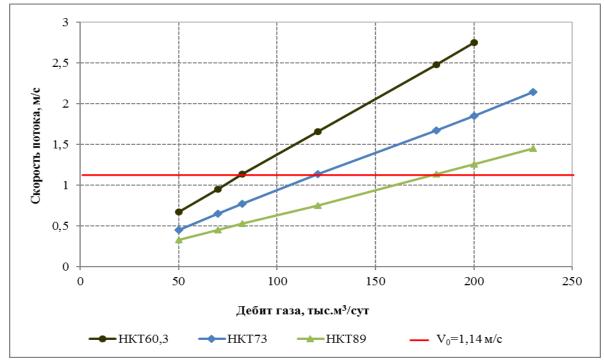


Рис. 6.1.1 – Зависимость скорости потока от дебита газа (Рзаб = 40,0 МПа)

Как видно из графика на рисунке 6.1.1 при забойном давлении 40,0 МПа жидкость (конденсат) с забоя скважин в подъёмниках с наружным диаметром 60,3 мм, 73 мм и 89 мм будет полностью выноситься при дебитах более 82,3 тыс. м³/сут, 120,7 тыс. м³/сут и 179,4 тыс. м³/сут, соответственно.

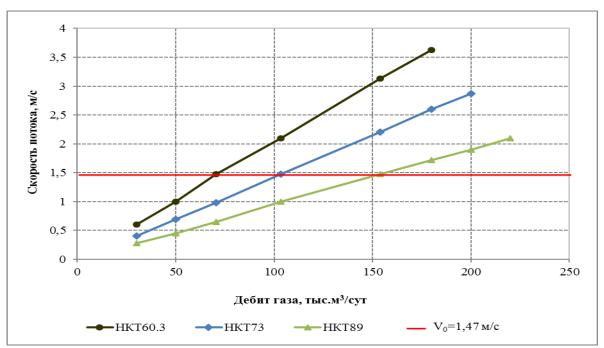


Рис. 6.1.2 – Зависимость скорости потока от дебита газа (Рзаб = 26,5 МПа)

Как видно из графика на рисунке 6.1.2 при забойном давлении 26,5 МПа жидкость (конденсат) с забоя скважин в подъёмниках с наружным диаметром 60,3 мм, 73 мм и 89 мм будет полностью выноситься при дебитах более 70,5 тыс. м³/сут, 103,4 тыс. м³/сут и 153,7 тыс. м³/сут, соответственно.

Принимая во внимание проектируемые средние дебиты газа и конденсата в качестве подъемника для разработки рекомендуется применять НКТ диаметром 89 мм.

Обоснование выбора устьевого и внутрискважинного оборудования

Устьевое оборудование

Начальное пластовое давление для месторождения принято равным 46,1 МПа.

Условиям эксплуатации скважин месторождения, с учетом максимального ожидаемого давления залежи и для обеспечения 1,5 кратного предела прочности соответствует фонтанная арматура крестового типа, рассчитанная на рабочее давление 70 МПа, с проходным диаметром стволовой части ёлки-80 мм и проходным диаметром боковых отводов 60 мм с ручным и автоматическим способом управления задвижками. Боковые выкиды арматуры оборудуются штуцеродержателями для установки штуцеров, фонтанными клапанами или дроссельными устройствами. Фонтанная арматура должна изготавливаться в антикоррозионном исполнении, обусловленным наличием СО2 и H2S в продукции скважин и для холодной климатической зоны.

Внутрискважинное оборудование

Условия эксплуатации газоконденсатной залежи (глубина залегания продуктивных объектов и наличие углекислого газа и сероводорода) определяют выбор подземного оборудования скважины.

Для предохранения эксплуатационной колонны от абразивного износа, агрессивного влияния углекислотной среды, высокого давления и для создания достаточных скоростей потока в эксплуатационную колонну спускается колонна НКТ, предназначенная для скважин с углекислотной и сероводородной средами. Насосно-компрессорные трубы спускаются на забой, не перекрывая интервалы перфорации, что обусловлено наименьшей скоростной эрозией за счёт повреждением башмака труб прямым воздействием механических примесей, поступающих с пластовым флюидом.

В качестве разобщителя затрубного пространства и пласта, а также для защиты эксплуатационной колонны и НКТ от воздействия высокого давления, температуры и агрессивной среды применяются гидравлические съёмные пакеры, обеспечивающие наибольший внутренний диаметр для беспрепятственного проведения геофизических и других технологических операций. Надпакерная зона в затрубье заполняется раствором ингибированной жидкости для дополнительной герметизации и защиты кольцевого пространства.

В процессе эксплуатации скважин средством защиты при аварийных ситуациях является скважинный клапан-отсекатель. Клапаны-отсекатели предназначены для автоматического перекрытия колонны лифтовых труб и отсечения потока добываемой продукции скважины при нарушении установленного технологического режима ее результате повреждения эксплуатации или полного разрушения устьевого оборудования, нарушения герметичности эксплуатационной колонны скважины. Клапаны-отсекатели гидравлическим управлением линией c (c управления, расположенной в затрубном пространстве и подключением к системе управления на устье), устанавливаются при помощи замка в посадочном ниппеле на глубине 50 - 70 м от устья, для более удобного их обслуживания и управления ими.

Система скважинного ингибирования, включающая инжекционные клапаны, камеры и замки для их посадки и фиксирования, необходима в условиях присутствия в добываемой продукции свободной воды. Необходимо исключить возможность образования гидратов в стволе скважины и на устье, применяя меры профилактики гидратообразования методом ввода в поток ингибиторов.

6.2 Мероприятия по предупреждению и борьбе с осложнениями при эксплуатации скважин и промысловых объектов

В процессе разработки месторождения Каменское возможны осложнения, связанные с:

- Образованием кристаллогидратов.
- Обострением коррозионной ситуации.

Гидратообразование

Основными гидратообразующими компонентами, входящими в состав сырого газа газоконденсатного месторождения Каменское, являются: метан, этан, пропан, бутан, углекислый газ и сероводород. При содержании в газе даже небольшого количества сероводорода температура начала гидратообразования заметно повышается. Несмотря на то, что гидраты являются неустойчивыми соединениями углеводорода с водой, отлагаясь в стволе скважины, в системе сбора и транспорта добываемой продукции приводят к нарушению технологического режима работы скважин и установки комплексной подготовки продукции к транспортировке.

При разработке профилактических мероприятий по предупреждению образования гидратов в работающих скважинах необходимо знать равновесные условия гидратообразования газа заданного состава.

Газ месторождения Каменское (калиновская свита) преимущественно метанового состава, содержит метана в среднем 86,83% мол., этана в среднем 1,18% мол., пропана - 0,67%, двуокиси углерода CO₂ – 5,11% мол., сероводорода до 1,24% мол.

Согласно экспериментальным исследованиям [9] температура гидратообразования газовой смеси с содержанием сероводорода и двуокиси углерода определяется выражением:

$$T_{\mathcal{C}} = T_{\mathcal{C}} H_{\Lambda} + \Delta T$$

где: $T_{C\!H_4}$ — температура гидратообразования чистого метана при заданном давлении, $^0\mathrm{C}$;

 ΔT — повышение температуры образования гидратов в смеси CH₄-H₂S-CO₂ по сравнению с чистым метаном, 0 C.

Аналитическая зависимость для расчета параметров гидратообразования метана определяется по формуле:

$$T_{CH_4} = \frac{273,15 \times (IgP - 0,415)}{13,71 - IgP}$$

Величина повышения температуры образования гидратов в смеси по сравнению с чистым метаном описывается уравнением:

$$\Delta T = \frac{Z}{(a + \delta Z)}$$

где: Z – объемное суммарное содержание H2S и CO2 в смеси, %;

a, δ — коэффициенты, зависящие от значения параметра C, определяются по рисунку 3.12 [9]:

$$C = \frac{ZH_2s}{ZH_2s + Zco_2}$$

где: $Z_{H_2}s, Z_{CO_2}$ — объемное содержание компонентов в смеси, %.

Задаваясь величиной давления, рассчитываем и строим равновесную кривую гидратообразования газа (рисунок 6.2.1).

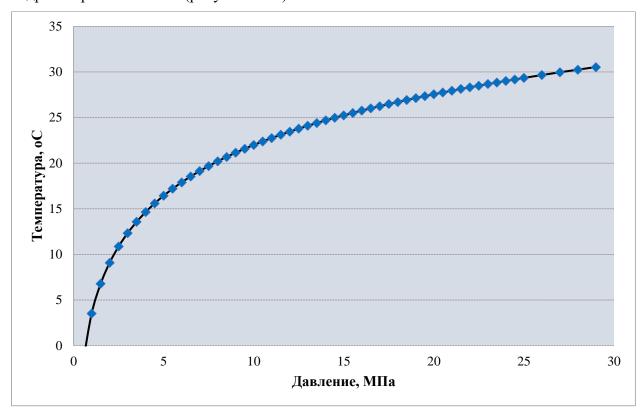


Рис. 6.2.1 – Равновесные параметры гидратообразования для месторождения Каменское

Область существования гидратов на представленных графиках располагается ниже кривой гидратообразования.

Вероятность образования гидратов наиболее высока в местах, где имеются местные сопротивления, т.е. в местах установки клапанов различного назначения и

запорной арматуры. В случае образования гидратов для их удаления используются прогрев оборудования до полного разрушения гидратов, либо закачка метанола.

Для предупреждения процесса гидратообразования в мировой практике широко используется способ введения в поток газа спиртов или гликолей.

Метод ввода ингибиторов в поток добываемой продукции эффективен, как при борьбе с гидратами в стволе скважин, так и при предупреждении их образования в промысловой системе сбора и подготовки газа.

По результатам расчета равновесной температуры гидратообразования рекомендуется предусмотреть стационарные установки по вводу ингибиторов гидратообразования.

Защитные мероприятия по предупреждению и борьбе с коррозией в системах добычи, сбора, транспорта и подготовки продукции

Сырой газ месторождения Каменское характеризуются сложным составом со значительным содержанием коррозионно-агрессивных компонентов.

В состав пластовой газовой смеси входят кислые газы, в том числе CO_2 – до 5,67% (среднее значение 5,11%), H_2S –до 1,65% мол. (среднее значение 1,24%).

Коррозионное растрескивание под действием растягивающих напряжений в сероводородсодержащей среде в трубах, работающих под давлением, представляет серьезную проблему.

В связи с тем, что H_2S будет присутствовать в большинстве технологических установок выбор материалов для оборудования и трубопроводов рекомендовано проводить в соответствии с требованиями СТ РК ИСО 15156-1,2,3-2011 [10].

Технологические факторы, влияющие на степень коррозионной угрозы

Оценку степени коррозионного воздействия на углеродистые стали (УС) скважин и наземного оборудования определяют по парциальному давлению – pCO2.

При максимальном пластовом давлении 46,1 МПа для объекта разработки месторождения Каменское парциальное давление CO₂ составит 2,614 МПа.

Степень углекислотной коррозии можно оценить в соответствии с классификацией АНИ, парциальное давление p(CO2) которого не должно превышать 0,048 МПа.

На месторождении Каменское степень углекислотной (CO2) коррозии оценивается, как высокая.

Присутствие сероводорода (H2S) в компонентном составе проб газа месторождения Каменское создаст среду для образования коррозии с водородным

растрескиванием под напряжением в сероводородсодержащей газоконденсатной среде. Эти механизмы не создают проблем общей потери материала, связанной с СО2, но являются во многом более серьезными, поскольку они могут привезти к быстрому разрушению.

При максимальном пластовом давлении 46,1 МПа парциальное давление сероводорода H_2S составит 0,76 МПа.

Коррозия под воздействием H_2S начинается при превышении порога парциального давления сероводорода в увлажненном газе в $0,0003~\text{M}\Pi a$.

Степень сероводородной (H₂S) коррозии оценивается, как высокая.

Минерализация пластовых вод составляет от 222 до 287 г/л. Тип воды по химическому составу хлоркальциевый.

По компонентному составу и степени воздействия пластовые воды должны вызывать общую и локальную виды коррозии.

Рекомендуемый комплекс противокоррозионных мероприятий

Комплекс противокоррозионных мероприятий включает в себя:

- 1. Обеспечение надежной эксплуатации промыслового оборудования месторождения:
- оборудование скважин и всё действующее оборудование изготавливается из материалов, устойчивых к коррозионному растрескиванию в соответствии с требованиями СТ РК ИСО 15156-1,2,3-2011 [10].
- Промысловые трубопроводы оборудовать камерами пуска и приема очистных устройств.
- Конструкции участков промысловых трубопроводов не должны допускать возможность образования застойных зон, способствующих накоплению осадков, а также вызывать процессы коррозионной эрозии.
- Для повышения надежности работы шлейфов, промысловых трубопроводов рекомендуется проводить периодическую очистку внутренней поверхности трубопроводов с помощью очистных устройств.
- Возникновение коррозии возможно в условиях выноса из пласта механических примесей и введения кислородсодержащих жидкостей в скважины, или в условиях проникновения кислорода воздуха в системы сбора.
- Использование эффективных ингибиторов коррозии в сочетании с рациональной технологией ингибиторной защиты.

• Надпакерное межтрубное пространство, в целях защиты внутренней поверхности эксплуатационной колонны и наружной НКТ, заполняется жидкостью (желательно, на углеводородной основе), обработанной ингибитором коррозии.

2. Мониторинг коррозии:

- визуальный осмотр и оценку коррозионного состояния подземного оборудования скважин в процессе КРС с регистрацией результатов осмотра;
- периодический анализ физико-химических характеристик пластовой воды с обязательным проведением анализов на содержание в воде СВБ, H₂S, кислорода, органических кислот, Fe2+, Fe3+ и др.;
- регистрацию случаев коррозионного износа и отказов оборудования и трубопроводов с подробным описанием или фотографированием повреждения.

3. Защита от коррозии подземного и наземного газопромыслового оборудования:

- Пассивная защита. Заключается в нанесении на поверхность трубы защитного изоляционного покрытия на основе битума, полимерных лент или напыленного полимера. Изоляционные покрытия должны обладать сплошностью, высокой диэлектрической способностью, адгезией, механической прочностью, водонепроницаемостью, эластичностью, биостойкостью, термостойкостью, долговечностью и недефицитностью. Пассивная защита не может оставаться эффективной на весь период эксплуатации трубопровода. Поэтому через некоторое время (6-10 лет) сооружают катодную или протекторную (активную) защиту трубопроводов.
- Введение в металл компонентов, повышающих коррозионную стойкость. Метод применяется на стадии изготовления металла. Одновременно из металла удаляются примеси, понижающие коррозионную устойчивость.
- Введение ингибиторов коррозии для дезактивации агрессивной среды.

Активная защита, а именно катодная, протекторная и электродренажная защита. При активной защите процессы коррозии переносятся с трубопровода на заземляющие устройства (аноды).

6.3 Рекомендации к системе сбора и промысловой подготовки продукции скважин

Система внутрипромыслового сбора и подготовки добываемой продукции месторождения предназначена для сбора, обеспечения поскважинного замера и промыслового транспорта добываемой продукции к объекту подготовки товарной нефти и газа и сдачи потребителю.

По состоянию на 01.07.2024 г. на месторождении Каменское наземное обустройство объектами сбора, транспорта и подготовки добываемой продукции отсутствует.

Разработка системы обустройства месторождения Каменское велась соответствии с общей концепцией обустройства Тепловско-Токаревского месторождения. Учитывались сложившаяся региональная инфраструктура, размещение поднятий относительно друг друга, удаленности от населенных пунктов, наличие в регионе действующих производственных объектов (мощностей) по подготовке/переработке нефти, газа и конденсата, прогнозных объемов добычи нефти, газа и конденсата, а также потребности в товарных продуктах подготовки/переработки нефти, газа и конденсата на внутреннем и внешнем рынках.

Проектные решения

По рекомендованному варианту разработки предусмотрено:

- 1) Начиная с 2026 г. будет прокладываться сборный трубопровод диаметром 10" для сбора продукции с поднятий Тепловско-Токаревского месторождения и Каменского месторождения (увеличивается по протяженности по мере подключения новых скважин).
- 2) Прокладка трубопровода 12" от ЦПС Тепловское до месторождения Чинаревское, для подготовки продукции скважин Тепловско-Токаревского и Каменского месторождений до товарного качества на объектах подготовки месторождения Чинаревское.
- 3) К 2030 г. прокладка сборного коллектора 10" до месторождения Каменское протяженностью ~ 40 км.
- 4) К 2030 г. строительство газосборного пункта (ГСП) месторождения Каменское. Технологическая схема ГСП представлена на рисунке 6.3.1. На первоначальном этапе планируется эксплуатировать скважины под собственным давлением, поэтому на газосборном пункте (ГСП) месторождения Каменское предусматривается монтаж газокомпрессорной станции при условии падения пластового давления и по мере ввода остальных скважин и месторождений.
- 5) Прокладка трубопровода 8" от ГСП месторождения Каменское до общего коллектора 10" протяженностью ~ 5 км.
- 6) Бурение и ввод в эксплуатацию скважин на месторождении Каменское: Kmn-110 в 2030-м г., Kmn-111 в 2031 г., Kmn-112 в 2032 г., Kmn- в 2034 г., Kmn- в 2036 г.

- 7) Прокладка трубопроводов от скважин Kmn-110 в 2030-м г., Kmn-111 в 2031 г., Kmn-112 в 2032 г., Kmn- в 2034 г., Kmn- в 2036 г.
- 8) Вывод из ликвидации в 2035 г. скважины Uln-63 Ульяновского поднятия и прокладка трубопровода от скважины Uln-63 до ГСП месторождения Каменское.
- 9) Бурение и ввод в эксплуатацию трех скважин на поднятиях Ульяновское, Токаревское и Цыгановское: Uln-114 в 2038 году, Ток -116 в 2039 г. и Tsg-115 в 2040 г., прокладка трубопроводов от скважин Uln-114, Tok -115, Tsg -116 до ГСП месторождения Каменское.
- 10) Прокладка трубопроводов от скважин Токаревского и Ульяновского поднятий Tok-19 (в 2042 г.), Uln-47 (в 2043 г.), Uln-17 (в2045 г.), Tok-71 (в 2049 г.) и Tok-28 (в 2050 г.) до ГСП месторождения Каменское.

Принципиальная схема сбора представлена на рисунке 6.3.2.

Подготовка добываемой продукции до товарного качества предусматривается на УПН и УКПГ месторождения «Чинаревское».

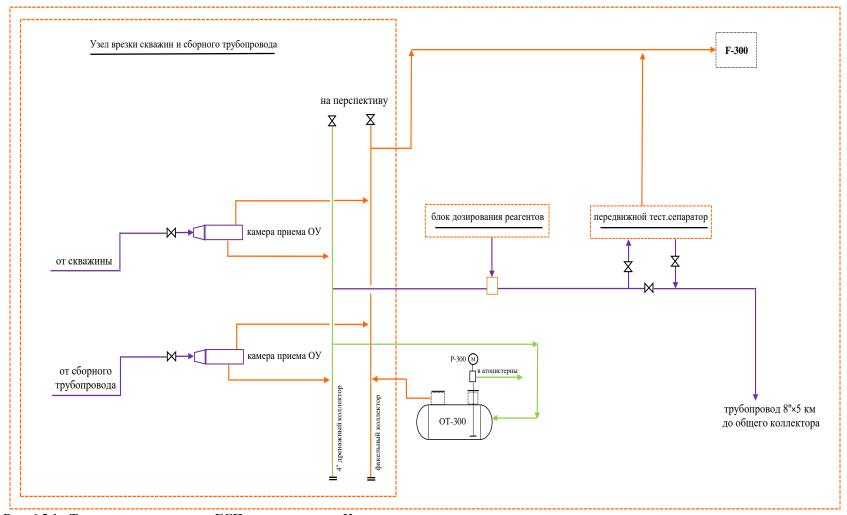


Рис. 6.3.1 - Технологическая схема ГСП месторождения Каменское

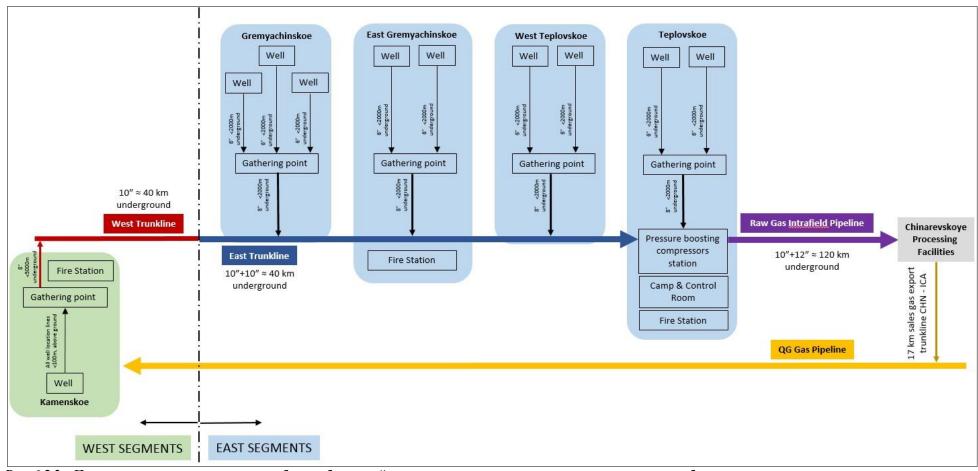


Рис. 6.3.2 – Принципиальная схема системы сбора добываемой продукции по рекомендованному варианту разработки

6.4. Рекомендации к разработке программы по переработке (утилизации) газа

Регулирование вопросов использования сырого газа в Казахстане осуществляется нормативными документами, законами, постановлениями, приказами Правительства РК.

В соответствии с требованиями нормативно-законодательной базы РК недропользователи в целях рационального использования сырого газа и снижения вредного воздействия на окружающую среду обязаны разрабатывать по утверждаемой уполномоченным органом в области углеводородов форме Программы развития переработки сырого газа. Программы развития переработки сырого газа подлежат утверждению уполномоченным органом в области углеводородов и должны обновляться каждые три года.

Вопрос утилизации газа месторождения Каменское детально должен быть рассмотрен в рамках отдельного документа в соответствии с «Методикой расчетов нормативов и объемов сжигания сырого газа при проведении операций по недропользованию» [11] утвержденной приказом Министра Энергетики РК №164 от 05 мая 2018 года после утверждения технологических показателей разработки данного документа.

6.5. Рекомендации к системе ППД, качеству используемого агента

7. РЕКОМЕНДАЦИИ К КОНСТРУКЦИЯМ СКВАЖИН И ПРОИЗВОДСТВУ БУРОВЫХ РАБОТ, МЕТОДАМ ВСКРЫТИЯ ПЛАСТОВ И ОСВОЕНИЯ СКВАЖИН

7.1. Рекомендации к конструкциям скважин и производству буровых работ

Требования к конструкции скважин вытекают из горно-геологических условий проводки скважин и их назначения.

Глубина спуска обсадных колонн определяется геологическими условиями, в которых бурится скважина. Фактическая глубина башмака обсадной колонны различна для разных скважин - она зависит от залегания продуктивного пласта. Однако для большинства скважин глубина будет определяться одним и тем же фактором - свойствами встретившегося разреза.

По состоянию на 01.07.2024 г. фонд пробуренных скважин на месторождении Каменское составляет 15 (1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 19) скважин, все пробуренные скважины находятся в ликвидации. В пределах горного отвода находятся 8 скважин (2, 5, 6, 8, 9, 11, 13, 14).

В таблице 7.1.1 приведено техническое состояние пробуренных скважин месторождения Каменское.

Таблица 7.1.1 – Месторождение Каменское. Техническое состояние пробуренных скважин по состоянию на 01.07.2024 г.

Nº	Дата	Дата		лубина ажины,м	Констр сквах	-	Состояние скважин на	
сква- жины	начала бурения	окончания бурения	проектная	фактическая	диаметр,мм	глубина спуска,м	01.07.2024 г.	
1	2	3	4	5	6	7	8	
1	02.07.1987	12.11.1987	3000	2730	139,7	2050,45	ликвидирована	
_	0210711707	1211111707	2000		10,,,	2656,4	типалдиревана	
						265,28		
						1794,84		
2	17.07.1981	22.11.1985	4200	3182	139,7	2124,34	ликвидирована	
						2225,61		
						3002		
						872,88		
3	23.10.1987	30.06.1988	4400	3088	139,7	2514,4	ликвидирована	
						3069		
						11,84		
						78		
4	27.02.1987	20.09.1987	3400	3297	139,7	88,92	ликвидирована	
						2258,98		
						3237,35		
						447,29		
						457,88		
5	01.01.1986	08.01.1987	4450	4201	139,7	1470,91	ликвидирована	
3	01.01.1700	00.01.1707	1150	1201	137,7	2401,75	ликвидирована	
						2413,08		
						3148,2		
6	21.05.1986	15.01.1987	4200	3318	139,7	345,59	ликвидирована	

						402,15		
						1094,51		
						2294,48		
						2311,43		
						2872,55		
8	08.02.1988	30.06.1990	5000	5020	-	2957,92	ликвидирована	
9	23.03.1987	19.12.1987	3950	4218	-	-	ликвидирована	
10	10.12.1987	12.07.1987	3950	4020	-	-	ликвидирована	
11	21.05.1988	14.11.1988	3000	2942	-	-	ликвидирована	
12	14.05.1989	10.11.1989	3400	3252	-	-	ликвидирована	
		12 1000 21 02 1001		2421		211.7		
12	10 12 1000		01 4050		120.7	1285,77		
13	19.12.1989	21.03.1991	4050	3421	139,7	3350,83	ликвидирован	
						3419,46		
14	30.10.1992	-	3300	2537	-	-	ликвидирована	
10	20.00.1000	20.02.1000	2000	2040	120.7	1555,35		
18	29.08.1988	29.03.1989	3000	3049	139,7	2560,9	ликвидирована	
						202,83		
10	24.07.1000	14121000		2020	120 7	374,49		
19	24.07.1988	14.12.1988 31	3100	3038	139,7	1393,26	ликвидирована	
						3006		
	1	I			I	2000		

На месторождении Каменское с 2030 г. предусмотрено бурение 5 добывающих скважин (№№ 110, 111, 112, 121, 122) и 1 оценочной скважины (№ R-1).

В соответствии с этим, а также с учетом конкретных геолого-физических характеристик залегаемых пород и условий вскрытия продуктивных пластов для месторождений ТТГМ и Каменское рекомендуются следующие варианты конструкций скважин в зависимости от применяемой технологии:

Таблица 7.1.2 – Рекомендуемая конструкция эксплуатационной скважины для месторождения Каменское.

Наименование колонны	Диаме	тр, мм	Глубина спуска	Высота подъема
паименование колонны	долота колонны		колонны, м	цемента, м
Направление	609,6	508	50	0
Кондуктор	444,5	339.7	500	0
Промежуточная колонна	311,1	244.5	1800	0
Хвостовик	215,9	193,7	1700-2880	1700
Эксплуатационный	165 1	120 7/177 9	1600-3150	0
колонна	165,1	139,7/177,8	0-1600	U

Примечания

Примечание - В таблице приведены усредненные глубины спуска обсадных колонн, на каждой проектной скважине глубину спуска обсадных колонн устанавливают в соответствии с интервалами залегания перекрываемых ими отложений.

Глубина установки головы хвостовика корректируется по фактическим условиям бурения скважин с учетом перекрытия интервала текучих солей двумя обсадными колоннами.

1. <u>Направление -</u> цементируется до устья с целью перекрытия верхних неустойчивых отложений, обвязки устья скважины с циркуляционной системой буровой установки.

- 2. <u>Кондуктор</u> цементируется до устья прямым способом с целью недопущения гидроразрыва пород при ликвидации ГНВП и установки противовыбросового оборудования перед вскрытием газонефтяного горизонта.
- 3. <u>Промежуточная колонна</u> спускается для перекрытия солевых отложений и цементируется до устья с целью недопущения гидроразрыва пород при ликвидации ГНВП и установки противовыбросового оборудования перед вскрытием газонефтяного горизонта.
- 4. <u>Эксплуатационный хвостовик спускается</u> до проектной глубины для вскрытия всех продуктивных горизонтов добычи продукции .

Как показал анализ и оценка качества, цементирование скважин является одной из основных задач, требующих решения при строительстве и освоении скважин.

Результатом цементирования должно быть предотвращение межпластовых перетоков и формирование герметичного цементного кольца.

На практике выполнение этой задачи трудноразрешимо, из-за недостаточной изученности всех факторов, влияющих на образование цементного камня и идеализации процессов, происходящих в затрубном пространстве.

Существенное влияние на герметичность заколонного пространства оказывает оснастка, подготовка ствола скважины к проведению тампонажных работ, составы тампонажных смесей и буферных жидкостей, средства и технологические способы цементирования.

Следует отметить влияние субъективных факторов на качество цементирования:

-несоблюдение требований технологических проектов на строительство скважин в части технологии цементирования и параметров растворов (недостаточное количество технологической оснастки, применение буровых растворов с повышенной водоотдачей, снижение плотности тампонажного раствора за счет избыточной воды, закачка нестабильного по плотности цементного раствора);

-отсутствие необходимых тампонажных материалов (качественных цементов, химреагентов) и современной цементировочной техники.

Качество цементирования обсадных колонн зависит от многих факторов.

Влияние каждого из этих факторов однозначно оценить невозможно, поэтому для улучшения качества цементирования в целом необходимо свести к минимуму негативное воздействие некоторых из них, возможно имеющих место на анализируемых скважинах.

К таким факторам можно отнести:

-неустойчивый кавернозный ствол скважин и низкое качество бурового раствора, параметры которого не всегда соответствуют проектным;

-эксцентричное расположение обсадных колонн из-за недостаточного количества применяемой технологической оснастки, приводящее к образованию застойных зон и неполному вытеснению бурового раствора цементным;

-несоответствующее качество тампонажных растворов.

7.2. Рекомендации к методам вскрытия продуктивных пластов и освоения скважин

С целью предотвращения возможных осложнений в процессе бурения, первичное вскрытие продуктивных пластов предполагается осуществить на химически обработанном буровом растворе, строго соблюдая его проектные параметры. При этом репрессия на пласт не должна превышать 5% пластового давления. С этой целью, вскрытие поглощающего горизонта производить только после полного выравнивания параметров бурового раствора. В противном случае, неизбежно потеря бурового раствора, потеря циркуляции, особенно в интервале с низким градиентом пластового давления.

<u>Основные требования</u>, предъявляемые к жидкостям для вторичного вскрытия продуктивных пластов являются:

- в создании противодавления на пласт, достаточное для предупреждения нефтегазопроявлений после вторичного вскрытия перфорацией, не вызывая при этом поглощений этих жидкостей пластом;
- недопущение кольматации перфорационных каналов и околоствольной зоны пласта (ОЗП).

Для снижения вредного воздействия, оказываемого буровым раствором на продуктивный пласт во время бурения, и исключения вредного воздействия перфорационной жидкости во время перфорации при репрессии, рекомендуется перфорировать продуктивные пласты, в среде чистой жидкости перфораторами, спускаемыми на насосно-компрессорных трубах.

Поэтому в процессе бурения под эксплуатационную колонну и освоение скважины в качестве промывочной и перфорационной жидкости бурение данного интервала, с целью сохранения коллекторских характеристик (пористость, проницаемость) продуктивного пласта и предупреждения негативных явлений, производились с использованием ингибированного полимерно-хлоркалиевого бурового раствора с низким содержанием твердой фазы с ведением дополнительных полимерных реагентов для усиления ингибирующих свойств.

В качестве ингибирующей добавки в буровой раствор, с использованием которого бурился предыдущий интервал, вводится 3-4 % КСІ (хлористого калия) и ХВ-полимер (типа Родопол-23П).. Для регулирования щелочности бурового раствора рекомендуется использовать едкий калий КОН (или NaOH). С целью максимального сохранения коллекторских свойств продуктивных пластов в качестве утяжеляющей и временно закупоривающей добавки предлагается использовать кислоторастворимый карбонат кальция. В целом система бурового раствора, предусмотренная программой, должна полностью отвечать основным требованиям, предъявляемым к нему при вскрытии продуктивных пластов.

Для участков с карбонатными отложениями, рекомендуется при вторичном вскрытии продуктивного пласта, произвести соляно-кислотную обработку под давлением, как наиболее перспективный и рациональный метод очистки призабойной зоны скважин.

Из всех известных методов вызова притока и освоения скважин предлагается использовать свабирование — понижение уровня в скважине, в которую спущена колонна НКТ. Это наиболее производительный способ и может осуществляться с использованием фонтанной арматуры со специальным лубрикатором.

При слабом притоке жидкости производится плавный перевод скважины на механизированный способ эксплуатации.

8. КОНТРОЛЬ ЗА РАЗРАБОТКОЙ ПЛАСТОВ, СОСТОЯНИЕМ И ЭКСПЛУАТАЦИЕЙ СКВАЖИН И СКВАЖИННОГО ОБОРУДОВАНИЯ

С целью контроля за процессом разработки и получения необходимой информации о гидродинамических параметрах продуктивных пластов, фильтрационно-емкостных свойств пластов-коллекторов, техническом состоянии скважин необходимо проведение комплекса гидродинамических, промыслово-геофизических методов исследований пластов и скважин в сочетании с лабораторными исследовательскими работами.

Контроль разработки эксплуатационных объектов осуществляется в целях:

- выявления фактической технологической эффективности как системы разработки объектов целом, так и отдельных технологических решений, используемых в этой системе, включая мероприятия по их регулированию;
- получение информации, необходимой для оптимизации осуществляемых процессов разработки и проектирования мероприятий по их усовершенствованию.

Для месторождения Каменское контроль разработки предлагается вести по следующим направлениям:

- газогидродинамические исследования;
- промыслово-геофизические методы исследования скважин;
- контроль дебита газа, устьевых (буферного и затрубного) давлений, температуры;
 - контроль состояния скважинного оборудования и эксплуатации скважин;
 - контроль за физико-химическими свойствами газа и конденсата.

8.1 Газогидродинамические методы исследования скважин по контролю за процессом разработки

Информация, получаемая при газогидродинамических исследованиях, может быть разделена на три группы:

- исследования, позволяющие определить термобарические параметры
- скважины;
- исследования, позволяющие определить фильтрационные и емкостные
- параметры и коэффициенты фильтрационного сопротивления;
- исследования, позволяющие установить режим эксплуатации скважин.

В целом исследования газовых скважин делятся на 3 группы: первичные, текущие испециальные.

Первичные исследования проводятся во всех разведочных и эксплуатационных вновь пробуренных скважинах [13, 16]. Эти исследования являются основными и обязательными, проводятся в полном объеме и позволяют определить:

- параметры пласта;
- продуктивную характеристику;
- установить режим эксплуатации скважины;
- связь между дебитом, забойным и устьевым давлением и температурой;
- количество жидких и твердых примесей при различных режимах работы
- скважины;
- пластовое давление;
- влияние степени и характера вскрытия на производительность;
- коэффициенты фильтрационного сопротивления.

При первичных исследованиях газовых скважин определяются:

- статическое давление на устье;
- пластовое давление по устьевым замерам расчетным путем или измерением с помощью глубинных манометров или комплексов;
- забойное давление на различных режимах работы скважины, так же как и пластовое давление, по данным замера давления в трубном или затрубном пространстве или измерение с помощью глубинных манометров или комплексов;
- дебит скважины по данным диафрагменного измерителя критического течения или диафрагменного измерителя дифманометра докритического течения в замерном пункте;
- процессы восстановления и стабилизации давления и дебита;
- температура газа на забое и устье на различных режимах, а также процессы восстановления и стабилизации температуры;
- количество выносимой воды, конденсат и твердых примесей на различных режимах;
- физико-химические свойства газа и воды по отобранным на различных режимах работы скважины пробам.

Текущие исследования проводятся на эксплуатационных и переведенных в фонд эксплуатации разведочных скважинах в процессе разработки месторождения. Основная задача текущих исследований сводится к получению информации обо всех или о

частипараметров, определяемых в процессе первичных исследований для анализа и контроля за разработкой. Объем текущих исследований диктуется конкретными условиями каждого месторождения, изменчивостью контролируемых параметров, необходимостью установить характер изменения этих параметров в процессе разработки. Частично эти изменения устанавливаются по данным эксплуатации скважин.

Специальные исследования проводятся, как правило, для определения тех или иных параметров, обусловленных специфическими условиями рассматриваемого месторождения.

К числу специальных исследований относятся работы по определению положения контакта газ-вода в специально выбранных для этой цели скважинах, изучение степени коррозии скважинного оборудования при различных режимах работы, определение степени истощения отдельных пластов в процессе разработки и возможного перетока газа из одного горизонта в другой при их совместном вскрытии, изучение влияния значительного количества влаги и разрушения призабойной зоны на производительность скважины, проведение работ по интенсификации (дополнительная перфорация, СКО, укрепление призабойной зоны, установка цементых мостов и др.).

В настоящее время используются два метода исследования газовых скважин при нестационарных режимах фильтрации:

- 1. снятие кривых восстановления забойного давления после закрытия скважины;
- 2. снятие кривых стабилизации забойного давления и дебита при пуске скважины на определенном режиме

Эти методы позволяют определить проводимость, пьезопроводность, пористость пласта, а также выявить зоны с резко выраженной неоднородностью, находящиеся в области дренирования исследуемой скважины. Совместное использование кривых восстановления и стабилизации давления позволяет оценивать также изменение параметров пласта в процессе работы скважины (очищение призабойной зоны и т.д.).

Замеры дебитов газа, устьевого и затрубного давлений, температуры. По всему фонду добывающих скважин необходимо проводить ежесуточные замеры дебита газа, динамических устьевых (буферного и затрубного) давлений, температуры на устье.

Замер статических и динамических устьевых давлений

Измерение статических устьевых давлений по действующему добывающему фонду скважин необходимо проводить при каждой остановке скважины, но не реже одного раза в квартал. Замеры статических устьевых давлений в бездействующих скважинах необходимо проводить не реже одного раза в месяц.

Тестовый замер дебитов газа

Рекомендуется проведение тестовых замеров дебитов газа до и после проведения мероприятий по скважинам, на которых проводились смена оборудования или режима, геолого-технические мероприятия (ГТМ) (обработка призабойной зоны, изоляционные работы и др.).

Замер пластового давления и пластовой температуры

Необходимо замерять начальные пластовые давления по всем вводимым избурения скважинам.

Измерение пластового давления и пластовой температуры в скважинах эксплуатационного действующего фонда в период промышленной разработки необходимо проводить не реже одного раза в квартал.

Пластовые давления в скважинах определяются путём прямого замера глубинными манометрами на забое скважины в период её остановки или по данным исследования методом восстановления давления.

Замер забойного давления

Замер забойного давления должен выполняться не реже 1 раза в квартал. Обязательно проведение контрольных замеров забойных давлений по скважинам, на которых проводились смена оборудования или режима, ГТМ, после проведения мероприятий.

При помощи исследований методом МУО определяют:

- зависимость дебита скважин газа, конденсата и воды от депрессии на пласт;
- зависимость дебита скважины от температуры;
- распределение давления и температуры в пласте и в скважине при различных
 - режимах эксплуатации;
- коэффициенты фильтрационных сопротивлений, несовершенство по степени и характеру вскрытия, а также гидравлического сопротивления забойных оборудований и лифтовых труб;
- эффективность проведения работ по интенсификации притока газа к скважине;
 - технологический режим эксплуатации скважин;
 - фильтрационные параметры газоводонасыщенных интервалов;
 - потенциальные возможности скважин по дебиту.

Исследования скважин при нестационарных режимах фильтрации позволяют получить ряд важных параметров пласта, которые методом МУО определить невозможно.

Исследование скважин при нестационарных режимах фильтрации заключается в снятии и обработке кривых восстановления давления после остановки скважины и стабилизации забойного и устьевого давлений и дебита скважины после пуска в эксплуатацию.

Газогидродинамические исследования скважин при стационарных режимах (методом режимных исследований с замером давления глубинным манометром на забое) и при нестационарных режимах фильтрации (методом восстановления давления (КВД)) обязательно проводятся при вводе каждой новой скважины в эксплуатацию, а также после проведения геолого-технических мероприятий, в последующем – по мере необходимости.

При исследовании скважин методом МУО необходима полная стабилизация устьевых, забойных давлений и дебита на каждом режиме, которых должно быть не менее 6 (4 режима прямого хода и 2 режима обратного).

Запись КВД производится на забое с помощью глубинных электронных манометров. Одновременно с регистрацией КВД на устье скважины регистрируются изменения буферного и затрубного давления скважины для учёта дополнительного притока в скважину.

Для получения более достоверной информации о состоянии объектов, газогидродинамические методы следует выполнять в комплексе с другими методами исследований.

Газогидродинамические исследования, входящие в комплекс геолого-промысловых исследований скважин по контролю за разработкой месторождения приведены в таблице 8.1.1.

8.2 Контроль физико-химических свойств пластовых флюидов

Свойства пластового флюида месторождения Каменское охарактеризованы исследованиями, полученными на этапе разведки. Исследования проводились более 20 лет назад, в связи с этим для уточнения физико-химических свойств пластовых флюидов необходимо продолжить исследования глубинных и поверхностных проб газа и конденсата.

Согласно «Единым правилам...» в обязательный комплекс промысловых исследований входят, в том числе, и отбор и лабораторные исследования глубинных и поверхностных проб продукции скважин.

Поверхностные и глубинные пробы отбираются из продуктивной части разреза разведочных и эксплуатационных скважин для последующих лабораторных определений физико-химических свойств и состава пластовых флюидов. Отобранные образцы должны быть представительными, по которым можно охарактеризовать состав и свойства

насыщающих пласт флюидов: газа, конденсата.

Представительной глубинной пробой пластового флюида следует считать газоконденсатную смесь, отобранную в потоке с однофазным состоянием этой смеси в скважине в глубинные пробоотборники, обеспечивающие сохранность флюидов. Однофазность потока обеспечивается при установившемся режиме работы скважины, когда давление отбора проб превышает давление начала конденсации.

При невозможности отбора глубинных проб по технологическим или техническим причинам отбор проб флюидов может осуществляться на поверхности для последующей их лабораторной рекомбинации и дальнейших PVT исследований.

Представительной пробой конденсата для рекомбинирования следует считать пробу конденсата, отобранную под давлением в транспортный контейнер из сепаратора или с устья скважины, работающей на установившемся режиме. Пробы газа для рекомбинирования следует отбирать из тех же мест, что и пробы конденсата, пд давлением и в количествах, достаточных для обеспечения точности рекомбинирования.

Пробы газа и конденсата следует отбирать только после того, как установятся стабильные условия истечения газа из скважины. Скважина, обвязанная фонтанными трубами с сепарационной установкой, должна обеспечивать возможность:

- установления различных режимов давления сепарации газа;
- проведения замеров давления и температуры газа как на входе в установку, так и в самом сепараторе;
- проведения замеров количества жидкой фазы (воды и конденсата) при заданных давлении и температуре;
 - проведение замеров дебитов газа после сепаратора.

Сепаратор установки должен быть рассчитан на такую производительность и эффективность отделения, чтобы практически вся жидкая фаза, выделяющаяся при данных условиях сепарации, была отделена.

Все пробы должны быть доставлены в лабораторию на дальнейшие исследования без изменений их компонентного состава.

Термодинамические исследования, проводимые на установке фазовых равновесий (PVT), выполняются методами контактной и дифференциальной конденсации и включают

определение давления начала конденсации, давление максимальной конденсации, динамики пластовых потерь конденсата при снижении пластового давление и коэффициента извлечения конденсата из недр, а также определение компонентного состава пластового флюида методом материального баланса.

В полный комплекс также входят исследования физико-химических свойств поверхностных пробы конденсата с определением таких параметров, как плотность, кинематическая вязкость, температуры начала кипения и застывания, температура насыщения нефти парафином, процентное содержание парафинов, асфальтенов, силикагелевых смол, серы, фракционный состав, содержание металлов и др.

За анализируемый период 2020-2024 гг. отбор и исследования проб газа и конденсата на месторождении Каменское не проводились.

В период разведки месторождения Каменское были отобраны 3 рекомбинированные пробы пластового газа и 5 проб стабильного конденсата.

Учитывая то, что объем изученности по пластовым флюидам не значителен и получен в 1986-1988 гг., рекомендуется продолжить исследования физико-химических свойств пластового флюида месторождения Каменское.

Исходя из малой изученности пластовых вод месторождения необходимо при любом водопроявлении скважинной продукции проводить аналитические исследования состава вод. В комплекс исследований должно входить:

- определение общего компонентного состава вод;
- определение растворенных газов (сероводород, углекислый газ, углеводородные газы);
- определение микрокомпонентного состава (йод, бром, бор, барий, стронций, литий и тяжелые металлы).

9. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ

11. МЕРОПРИЯТИЯ ПО ДОРАЗВЕДКЕ МЕСТОРОЖДЕНИЯ

С учетом данных переобработки и переинтерпретации сейсмики был произведен пересчет запасов газа, конденсата и попутных компонентов в 2024 г (протокол ГКЗ РК N2716-24-У от 30.10.2024 г.).

Утвержденные геологические и извлекаемые запасы газа и конденсата по месторождению, подсчитанные по состоянию на 01.06.2024 г., составляют:

```
В целом по месторождению:
```

```
газ пластовый
```

 $C_1 - 10303$ млн. M^3 геологические, в том числе извлекаемые 8376 млн. M^3 ;

 $C_2 - 1847$ млн. ${\rm M}^3$ геологические, в том числе извлекаемые 1126 млн. ${\rm M}^3$;

газ сухой

 $C_1 - 10182$ млн. M^3 геологические, в том числе извлекаемые 8278 млн. M^3 :

 $C_2 - 1825$ млн. ${\rm M}^3$ геологические, в том числе извлекаемые 1112 млн. ${\rm M}^3$;

конденсат

 $C_1 - 601$ тыс. т. геологические, в том числе извлекаемые 360 тыс. т.;

 $C_2 - 107$ тыс. т. геологические, в том числе извлекаемые 48 тыс. т.

В пределах горного отвода:

газ пластовый

 $C_1 - 10220$ млн. M^3 геологические, в том числе извлекаемые 8309 млн. M^3 ;

 $C_2 - 1617 \ \text{млн.} \ \text{м}^3$ геологические, в том числе извлекаемые 986 млн. м^3 ;

газ сухой

 $C_1 - 10100$ млн. M^3 геологические, в том числе извлекаемые 8212 млн. M^3 ;

 $C_2 - 1598$ млн. m^3 геологические, в том числе извлекаемые 974 млн. m^3 ;

конденсат

 $C_1 - 595$ тыс. т. геологические, в том числе извлекаемые 357 тыс. т.;

 $C_2 - 94$ тыс. т. геологические, в том числе извлекаемые 43 тыс. т.

За пределами горного отвода:

газ пластовый

 $C_1 - 83$ млн. M^3 геологические, в том числе извлекаемые 67 млн. M^3 ;

 $C_2 - 230 \ \text{млн.} \ \text{м}^3$ геологические, в том числе извлекаемые 140 млн. м 3 ;

газ сухой

 $C_1 - 82$ млн. M^3 геологические, в том числе извлекаемые 66 млн. M^3 ;

 $C_2 - 227$ млн. M^3 геологические, в том числе извлекаемые 139 млн. M^3 ;

конденсат

```
C_1 - 5 тыс. т. геологические, в том числе извлекаемые 3 тыс. т.;
```

 $C_2 - 13$ тыс. т. геологические, в том числе извлекаемые 6 тыс. т.

По трещинно-поровому типу коллектора:

газ пластовый

 $C_1 - 7937$ млн. M^3 геологические, в том числе извлекаемые 6453 млн. M^3 ;

 $C_2 - 1125$ млн. M^3 геологические, в том числе извлекаемые 686 млн. M^3 ; газ сухой

 $C_1 - 7844$ млн. M^3 геологические, в том числе извлекаемые 6378 млн. M^3 ;

 $C_2 - 1112$ млн. M^3 геологические, в том числе извлекаемые 677 млн. M^3 ; конденсат

 $C_1 - 463$ тыс. т. геологические, в том числе извлекаемые 278 тыс. т.;

 $C_2 - 65$ тыс. т. геологические, в том числе извлекаемые 29 тыс. т.

По трещинному типу коллектора:

газ пластовый

 $C_1 - 2366$ млн. M^3 геологические, в том числе извлекаемые 1923 млн. M^3 ;

 $C_2 - 722$ млн. M^3 геологические, в том числе извлекаемые 440 млн. M^3 ; газ сухой

 $C_1 - 2338$ млн. M^3 геологические, в том числе извлекаемые 1900 млн. M^3 ;

 $C_2 - 713 \ \text{млн.} \ \text{м}^3$ геологические, в том числе извлекаемые 435 млн. м^3 ;

конденсат

 $C_1 - 138$ тыс. т. геологические, в том числе извлекаемые 82 тыс. т.;

 $C_2 - 42$ тыс. т. геологические, в том числе извлекаемые 19 тыс. т.

Рекомендации недропользователю при дальнейшей работе на месторождении, отраженные в Протоколе ГКЗ РК №2716-24-У от 30.10.2024 г. содержат следующее:

- продолжить исследования на керне с целью уточнения петрофизической модели, граничных значений Φ EC пластов-коллекторов, построения петрофизических зависимостей для оценки Кнг, изучения физико-гидродинамических характеристик (Φ ГХ) пород-коллекторов;
- определить структуру пустотного пространства методом нагнетания ртути, кривые капиллярного давления методом центрифугирования, остаточную водонасыщенность (Sво=f(Кп), Sво=f(Кпр)), электрическое сопротивление пород при 100% и изменяющейся до Sво водонасыщенности (Pп=f(Кп), Pн=f (Sво)), оценить уменьшение Кп пород в пласте, относительно замеренной по керну;

- выполнить определение остаточной нефтенасыщенности, коэффициента вытеснения нефти водой, определение относительной фазовой проницаемости для нефти и воды, для нефти и газа;
- в проектных скважинах (открытый ствол) проводить комплекс ГИС, включающий методы: стандартный каротаж (КВ, ГК, НГК); электрические –боковой (БК); индукционный каротаж (ИК); радиоактивные спектральный гамма каротаж (СГК), нейтронный (ННК с регистрацией водородосодержания), литоплотностной (ГГКП+ФЭ); акустический (АК); термометрию, резистивиметрию;
- для повышения эффективности оценки ФЕС применять специальные геофизические и гидродинамические методы ядерно-магнитного каротажа (CMR), сканеров FMI (электрический имиджер), BAK (SonicScanner); ВДМ (DielectricScanner) в комплексе с результатами опробования, PLT и MDT (модульный динамический пластоиспытатель);
- использовать результаты специальных геофизических исследований в комплексе с промысловыми данными
- бурение скважин сопровождать геолого-технологическими исследованиями, включающими замеры технологических параметров бурения, газоаналитические исследования и экспресс анализ шлама;
- в закрытом стволе (при выводе скважины из консервации или при переходе эксплуатации на другой горизонт) проводить комплекс ГИС, содержащий импульсные виды нейтронного каротажа или углеродно-кислородный каротаж (ИННК, ННК УКК-С/О) и ГК.

-доразведать запасы, оцененные по категории C_2 с целью перевода в категорию C_1 .

Всего по месторождению по сумме промышленной категории C_1 оценено начальных балансовых геологических запасов пластового газа 84,5 %, сухого газа 84,8 %, конденсата 84,9 %.

Газоконденсатная залежь P_2kz_kl в VI блоке имеет участок, оцененный по категории C_2 , но не освещенный бурением. Газонасыщенные толщины на этом блоке получены путем интерполяции изопахит соседних скважин Kmn11 и Kmn13_1. В целях дальнейшего доизучения месторождения недропользователю рекомендуется продолжить работы по доизучению запасов, оцененных по категории C_2 бурением оценочной скважины R-1.

Скважину R-1 предлагаем пробурить в 2036 году на западе от скважины Kmn11 на расстоянии 1,3 км. Целью бурения является определение границ и характера насыщения

резервуара, уточнение уровней межфлюидных контактов и получения необходимых данных для перевода запасов газа из категории C_2 в категорию C_1 . Проектные координаты оценочной скважины R-1: X-9 441 674,94, Y-5 677 197,57, проектная глубина - 3100 м.

На проектную оценочную скважину возлагаются следующие мероприятия: отбор керна из продуктивной толщи, изучение коллекторских свойств на образцах керна, опробование интервалов, получивших по ГИС положительную характеристику; отбор и анализ глубинных и дегазированных проб газа.

На образцах керна вмещающих пород и коллекторов выполнить стандартные и специальные исследования для уточнения петрофизической модели месторождения.

11. ОПЫТНО-ПРОМЫШЛЕННЫЕ ИСПЫТАНИЯ НОВЫХ ТЕХНОЛОГИЙ И ТЕХНИЧЕСКИХ РЕШЕНИЙ

На начальном этапе реализации разработки газоконденсатного месторождения Каменское внедрение новых технологии не предусматривается.

12. РАСЧЕТ СУММЫ ОБЕСПЕЧЕНИЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ НЕДРОПОЛЬЗОВАНИЯ

После окончания разработки месторождения углеводородного сырья на его территории остается ряд стационарных объектов, дальнейшая эксплуатация которых не планируется. В действующем законодательстве предусмотрены особенности ликвидации последствий операций по недропользованию, с учетом их видов, которые определяются Особенной частью Кодекса «О Недрах и недропользовании» Республики Казахстан.

Ликвидацией последствий недропользования является комплекс мероприятий, проводимых с целью приведения производственных объектов и земельных участков в состояние, обеспечивающее безопасность жизни и здоровья населения, охраны окружающей среды.

Кроме того, финансирование ликвидации последствий недропользования проводится за счет недропользователя или лица, непосредственно являющегося недропользователем до прекращения соответствующей лицензии или контракта на недропользование.

Основой для расчета стоимости строительства явились расчетные показатели по затратам на добычу нефти и газа, а также данные по климатическим характеристикам района проведения работ, рассчитанные на основе проектов-аналогов, выполненных для промышленных объектов Республики Казахстан (РК).

Расчет затрат на ликвидацию скважин

По данному проекту расчет затрат на ликвидацию скважин был рассчитан на основании контрактных обязательств, согласно которому отчисления в ликвидационный фонд в период добычи производятся недропользователем в размере 1% от затрат на добычу на специальный депозитный счет в любом банке на территории Республики Казахстан. В таблице 12.1. представлены проектируемые отчисления в ликвидационный фонд по 2 варианту разработки, по остальным вариантам в Приложениях.

Расчет сделан до 2044 года включительно-срока действия Контракта недропользования согласно статье 54 Главы 8 «Кодекса о недрах и недропользования от 27.12.2017 г.»

Рекомендуем ТОО «ПозитивИнвест» для расчета планируемых отчислений в ликвидационный фонд составить Проект ликвидации и консервации объектов недропользования.

Согласно п.9 ст.126 Кодекса «О недрах и недропользовании» сумма обеспечения исполнения обязательств по ликвидации последствий деятельности недропользования подлежит пересчету не реже одного раза в три года в рамках анализа разработки на основании рыночной стоимости работ по ликвидации последствий добычи углеводородов.

Таблица 12.1 – Проектируемые отчисления в ликвидационный фонд по годам 2 варианта разработки

Год	Отчисления в ликвидационный фонд, тыс.тенге
2030	24 991,03
2031	42 224,86
2032	60 498,39
2033	56 598,29
2034	71 151,11
2035	78 005,19
2036	65 724,17
2037	68 934,75
2038	65 424,37
2039	62 402,73
2040	59 852,89
2041	54 697,06
2042	35 118,43
2043	33 395,87
2044	31 834,13
Итого 2030-2044	810 853,28

ТАБЛИЧНЫЕ ПРИЛОЖЕНИЯ

Приложение 1 – Расчет дохода от продажи продукции в тыс.тенге ценах по 1 варианту

Приложен	ие 1 – Расчет,	дохода от про	одажи продук	ции в тыс.тенг	е ценах по 1 в	арианту		I = -					T			
			Расчет дох	кода от продаж	и конденсата				и сырого газа н.м3)	Расчет дох	ода от продажи	сухого газа	Расчет д	дохода от прода	ажи СУГ	
Годы	Объем добычи конденсата (тыс.тонн)	Общий объем продажи конденсата (тыс.тонн)	Общий объем продажи конденсата на внешний рынок (тыс.тонн)	Общий объем продажи конденсата на внутренний рынок (тыс.тонн)	Цена конденсата на внешний рынок, тенге	Цена конденсата на внутренний рынок, тенге	Доход от продажи конденсата, тыс.тенге	Объем добычи сырого газа (млн.м3)	Общий объем продажи газа (млн.м3)	Объем добычи сухого газа (млн.м3)	Цена газ на внутренний рынок, тенге	Доход от продажи сухого, тыс.тенге	Объем добычи СУГ (тыс.тонн)	Цена СУГ на внутренний рынок, тенге	Доход от продажи СУГ, тыс.тенге	Общий доход предприятия, тыс.тенге (без НДС)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2030	2,08	2,03	1,42	0,61	238 290	67 000	380 249	35,67	34,96	27,27	23 030	627 939	0,70	121 260	84 777	1 092 965
2031	10,34	10,14	7,10	3,04	238 290	67 000	1 894 829	177,75	174,19	135,87	23 030	3 129 100	3,48	121 260	422 453	5 446 382
2032	18,25	17,88	12,52	5,37	238 290	67 000	3 342 608	313,56	307,29	239,68	23 030	5 519 944	6,15	121 260	745 236	9 607 788
2033	23,29	22,82	15,97	6,85	238 290	67 000	4 265 052	400,09	392,09	305,83	23 030	7 043 259	7,84	121 260	950 895	12 259 206
2034	21,78	21,35	14,94	6,40	238 290	67 000	3 989 615	374,25	366,77	286,08	23 030	6 588 405	7,34	121 260	889 486	11 467 507
2035	20,21	19,80	13,86	5,94	238 290	67 000	3 701 246	347,20	340,26	265,40	23 030	6 112 195	6,81	121 260	825 194	10 638 635
2036	18,76	18,39	12,87	5,52	238 290	67 000	3 436 792	322,39	315,95	246,44	23 030	5 675 479	6,32	121 260	766 234	9 878 504
2037	17,51	17,16	12,01	5,15	238 290	67 000	3 207 735	300,91	294,89	230,01	23 030	5 297 218	5,90	121 260	715 166	9 220 119
2038	16,44	16,11	11,28	4,83	238 290	67 000	3 011 778	282,53	276,87	215,96	23 030	4 973 616	5,54	121 260	671 477	8 656 871
2039	15,52	15,21	10,64	4,56	238 290	67 000	2 842 217	266,62	261,29	203,80	23 030	4 693 605	5,23	121 260	633 674	8 169 496
2040	14,70	14,41	10,08	4,32	238 290	67 000	2 692 707	252,59	247,54	193,08	23 030	4 446 706	4,95	121 260	600 340	7 739 753
2041	13,97	13,69	9,58	4,11	238 290	67 000	2 558 555	240,01	235,21	183,46	23 030	4 225 168	4,70	121 260	570 431	7 354 153
2042	13,30	13,04	9,13	3,91	238 290	67 000	2 436 537	228,56	223,99	174,71	23 030	4 023 670	4,48	121 260	543 227	7 003 435
2043	12,69	12,44	8,71	3,73	238 290	67 000	2 324 431	218,05	213,69	166,68	23 030	3 838 539	4,27	121 260	518 233	6 681 203
2044	12,12	11,88	8,32	3,56	238 290	67 000	2 220 639	208,31	204,15	159,23	23 030	3 667 138	4,08	121 260	495 092	6 382 870
2045	11,60	11,36	7,95	3,41	238 290	67 000	2 123 967	199,24	195,26	152,30	23 030	3 507 495	3,91	121 260	473 539	6 105 002
2046	11,10	10,88	7,62	3,26	238 290	67 000	2 033 489	190,76	186,94	145,81	23 030	3 358 080	3,74	121 260	453 367	5 844 935
2047	10,64	10,43	7,30	3,13	238 290	67 000	1 948 465	182,78	179,12	139,72	23 030	3 217 673	3,58	121 260	434 411	5 600 549
2048	9,12	8,94	6,26	2,68	238 290	67 000	1 671 112	175,26	171,75	133,97	23 030	3 085 284	3,44	121 260	416 538	5 172 934
2049	7,82	7,66	5,36	2,30	238 290	67 000	1 431 879	168,15	164,78	128,53	23 030	2 960 095	3,30	121 260	399 636	4 791 611
2050	6,71	6,58	4,61	1,97	238 290	67 000	1 229 669	161,41	158,18	123,38	23 030	2 841 421	3,16	121 260	383 614	4 454 704
2051	5,78	5,67	3,97	1,70	238 290	67 000	1 058 945	155,00	151,90	118,48	23 030	2 728 679	3,04	121 260	368 393	4 156 017
2052	5,00	4,90	3,43	1,47	238 290	67 000	914 985	148,91	145,93	113,82	23 030	2 621 374	2,92	121 260	353 906	3 890 265
2053	4,33	4,25	2,97	1,27	238 290	67 000	793 766	143,10	140,23	109,38	23 030	2 519 075	2,80	121 260	340 095	3 652 936
2054	3,78	3,70	2,59	1,11	238 290	67 000	691 853	137,55	134,80	105,14	23 030	2 421 410	2,70	121 260	326 909	3 440 172
2055	3,31	3,70	2,27	0,97	238 290	67 000	606 319	132,24	129,60	101,09	23 030	2 328 050	2,59	121 260	314 305	3 248 675
2056	2,92	2,86	2,00	0,86	238 290	67 000	534 667	127,17	124,63	97,21	23 030	2 238 707	2,49	121 260	302 243	3 075 617
2057	2,52	2,54	1,78	0,76	238 290	67 000	474 764	122,31	119,86	93,49	23 030	2 153 123	2,49	121 260	290 689	2 918 576
2058	2,32	2,27	1,59	0,68	238 290	67 000	424 790	117,65	115,30	89,93	23 030	2 071 071	2,31	121 260	279 611	2 775 471
2059	2,09	2,05	1,44	0,62	238 290	67 000	383 191	113,17	110,91	86,51	23 030	1 992 343	2,22	121 260	268 982	2 644 516
2060	1,90	1,87	1,31	0,56	238 290	67 000	348 640	108,88	106,70	83,23	23 030	1 916 755	2,13	121 260	258 777	2 524 173
2061	1,75	1,71	1,20	0,51	238 290	67 000	320 008	104,76	102,66	80,08	23 030	1 844 139	2,13	121 260	248 973	2 413 120
2062	1,62	1,71	1,11	0,48	238 290	67 000	296 328	100,79	98,78	77,04	23 030	1 774 342	1,98	121 260	239 550	2 310 220
Итого 2030-2062	325,35	318,84	223,19	95,65	238 290	07 000	59 591 828	6 557,61	6 426,46	5 012,64	23 030	115 441 097	128,53	121 200	15 585 454	190 618 379
2063	1,51	1,48	1,04	0,44	238 290	67 000	276 778	96,98	95,04	74,13	23 030	1 707 224	1,90	121 260	230 489	2 214 491
2064	1,42	1,39	0,98	0,42	238 290	67 000	260 660	93,31	91,44	71,33	23 030	1 642 657	1,83	121 260	221 772	2 125 089
2065	1,35	1,32	0,93	0,40	238 290	67 000	247 379	89,78	87,99	68,63	23 030	1 580 524	1,76	121 260	213 383	2 041 286
2066	1,29	1,26	0,89	0,38	238 290	67 000	236 431	86,38	84,66	66,03	23 030	1 520 714	1,69	121 260	205 308	1 962 453
2067	1,24	1,22	0,85	0,36	238 290	67 000	227 388	83,11	81,45	63,53	23 030	1 463 127	1,63	121 260	197 534	1 888 048
2068	1,20	1,18	0,83	0,35	238 290	67 000	219 890	79,96	78,36	61,12	23 030	1 407 669	1,57	121 260	190 046	1 817 606
2069	1,17	1,14	0,80	0,34	238 290	67 000	213 635	76,93	75,39	58,80	23 030	1 354 252	1,51	121 260	182 835	1 750 721
2070	1,14	1,11	0,78	0,33	238 290	67 000	208 367	74,00	72,52	56,57	23 030	1 302 793	1,45	121 260	175 887	1 687 047
2071	1,14	1,09	0,76	0,33	238 290	67 000	203 873	71,19	69,76	54,42	23 030	1 253 216	1,40	121 260	169 194	1 626 282
2072	1,09	1,07	0,75	0,32	238 290	67 000	199 976	68,48	67,11	52,34	23 030	1 205 447	1,34	121 260	162 745	1 568 168
2072	1,07	1,07	0,73	0,32	238 290	67 000	196 531	65,86	64,54	50,34	23 030	1 159 418	1,29	121 260	156 531	1 512 480
2073	1,07	1,03	0,74	0,31	238 290	67 000	193 416	63,34	62,07	48,42	23 030	1 115 064	1,24	121 260	150 542	1 459 023
2075	1,04	1,03	0,72	0,31	238 290	67 000	190 534	60,91	59,69	46,56	23 030	1 072 323	1,19	121 260	144 772	1 407 629
2013	1,04	1,02	0,71	0,31	230 290	0 / 000	170 334	00,91	J9,09	40,30	23 030	1 012 323	1,19	121 200	144 //2	1 40 / 029

2076	1,03	1.00	0,70	0.30	238 290	67 000	187 805	58,57	57,40	44,77	23 030	1 031 137	1,15	121 260	139 212	1 358 154
2077	1,01	0,99	0.69	0,30	238 290	67 000	185 166	56,32	55,19	43,05	23 030	991 449	1,10	121 260	133 853	1 310 469
2078	1,00	0,98	0,68	0,29	238 290	67 000	182 568	54,15	53,06	41,39	23 030	953 207	1,06	121 260	128 690	1 264 465
2079	0,98	0,96	0,67	0,29	238 290	67 000	179 971	52,05	51,01	39,79	23 030	916 359	1,02	121 260	123 716	1 220 046
2080	0,97	0,95	0,66	0,28	238 290	67 000	177 347	50,04	49,04	38,25	23 030	880 857	0,98	121 260	118 923	1 177 127
2081	0,95	0,93	0,65	0,28	238 290	67 000	174 675	48,09	47,13	36,76	23 030	846 653	0,94	121 260	114 305	1 135 633
2082	0,94	0,92	0,64	0,28	238 290	67 000	171 940	46,22	45,30	35,33	23 030	813 703	0,91	121 260	109 856	1 095 499
2083	0,92	0,90	0,63	0,27	238 290	67 000	169 133	44,42	43,53	33,95	23 030	781 963	0,87	121 260	105 571	1 056 668
2084	0,91	0,89	0,62	0,27	238 290	67 000	166 250	42,68	41,83	32,63	23 030	751 392	0,84	121 260	101 444	1 019 086
2085	0,89	0,87	0,61	0,26	238 290	67 000	163 288	41,01	40,19	31,35	23 030	721 950	0,80	121 260	97 469	982 707
2086	0,87	0,86	0,60	0,26	238 290	67 000	160 251	39,40	38,61	30,12	23 030	693 597	0,77	121 260	93 641	947 489
2087	0,86	0,84	0,59	0,25	238 290	67 000	157 140	37,85	37,09	28,93	23 030	666 297	0,74	121 260	89 955	913 392
2088	0,84	0,82	0,58	0,25	238 290	67 000	153 962	36,36	35,63	27,79	23 030	640 013	0,71	121 260	86 407	880 382
2089	0,82	0,81	0,56	0,24	238 290	67 000	150 724	34,92	34,22	26,69	23 030	614 711	0,68	121 260	82 991	848 426
2090	0,80	0,79	0,55	0,24	238 290	67 000	147 432	33,54	32,86	25,63	23 030	590 356	0,66	121 260	79 703	817 491
2091	0,79	0,77	0,54	0,23	238 290	67 000	144 096	32,20	31,56	24,62	23 030	566 917	0,63	121 260	76 538	787 551
2092	0,77	0,75	0,53	0,23	238 290	67 000	140 723	30,92	30,30	23,64	23 030	544 360	0,61	121 260	73 493	758 576
2093	0,75	0,73	0,51	0,22	238 290	67 000	137 323	29,69	29,10	22,69	23 030	522 656	0,58	121 260	70 563	730 542
2094	0,73	0,72	0,50	0,21	238 290	67 000	133 903	28,50	27,93	21,79	23 030	501 776	0,56	121 260	67 744	703 422
2095	0,71	0,70	0,49	0,21	238 290	67 000	130 472	27,36	26,82	20,92	23 030	481 690	0,54	121 260	65 032	677 193
Итого 2030-2095	358,59	351,42	245,99	105,43			65 680 855,51	8 392,15	8 224,31	6 414,96		147 736 568,34	164,49		19 945 596,35	233 363 020,19

Приложение 2 – Расчет капитальных вложений, тыс. тенге по 1 варианту

№	Наименование работ, объектов и затрат			Стоимость ед- цы, тыс.тенге				1]	Распред	еление і	сапиталі	ьных вл	ожений	по годам	и строит	ельства						
						2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049- 2095
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	7	8	9	10
I	Строительство скважин (подземное строительство)																								
1	Бурение газодобывающих вертикальных скважин	тыс.тенге	3	1 229 990	3 689 970	1 229 990	1 229 990	1 229 990	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин	тыс.тенге			3 689 970	1 229 990	1 229 990	1 229 990	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин с учетом инфляции	тыс.тенге			3 764 261	1 229 990	1 254 590	1 279 682	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
II	Наземное строительство																								
	Обустройство промысла																								
1	Обустройство скважины	тыс.тенге	3	189 410	568 230	189 410	189 410	189 410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Наземное строительство	тыс.тенге			6 196 565	2 065 522	2 065 522	2 065 522	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Трубопровод 10"	тыс.тенге			5 838 152	1 459 538	1 459 538	2 919 076	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Прочие (приобретение прав землепользования)	тыс.тенге			620 400	206 800	206 800	206 800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	ПИР, экспертные заключения	тыс.тенге			82 250	16 450		41 125																	
	Итого надземное строительство				13 305 597	3 937 720	3 945 945	5 421 933	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого надземное строительство с учетом инфляции				13 603 562	3 937 720	4 024 864	5 640 979	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Всего со строительством скважин				16 995 567	5 167 710	5 175 935	6 651 923	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Всего со строительством скважин в ценах с учетом инфляции				17 367 824	5 167 710	5 279 454	6 920 661	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Приложение 3 – Расчет экспл	іуатационных затрат	, включаемых в себ	бестоимость продукции	в 1 варианте, тыс,тенге

			<i>J</i>	ционных затрат, в				стоимость пр						Нало	ги и плате	жи	Итого		
Годы	Затраты на сырье и материал ы	ГСМ	Ремонт скважин	Услуги производственно го характера	Эколог.расход		Затраты на оплату труда ОПП		ниокр	Vелуги	e	Переработк а УВ на мощностях	Амортизационн ые отчисления	Налоги,	Налог на	нлпи	налоги и платежи, включаемые в себестоимост	Итого расходы, относимые на себестоимост ь продукции	Производственна я себестоимость 1 млн.м3 газа
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2030	15 256	10 293	58 174	70 077	397	114 337	294 808	235	38 283	21 965	29 986	37 713	425 704	21 823	41 946	68 850	132 619	1 249 846	35 039
2031	77 543	10 499	295 687	356 188	1 979	581 149	300 704	240	22 406	43 929	30 586	187 930	1 089 373	22 260	109 276	343 087	474 623	3 472 835	19 538
2032	139 527	10 709	532 044	640 906	3 490	1 045 689		244	39 851	65 894	31 197	331 522	1 891 485	22 705	179 916	605 229	807 850	5 847 127	18 648
2033	181 593	10 923	692 448	834 130	4 454	1 360 949		249	58 630	65 894	31 821	423 010	2 063 492	23 159	205 769	772 251	1 001 179	7 041 623	17 600
2034		18 191	895 684	1 030 867	4 166	1 298 520		254	55 223	65 894	32 458	428 666	2 042 020	23 622	179 717	722 379	925 719	7 299 435	19 504
2035		11 364	625 188	753 109	3 865	1 228 756		259	58 529	65 894	33 107	487 610	2 019 589	24 095	153 666	670 166	847 926	6 624 643	19 080
2036		11 592	592 129	713 285	3 589	1 163 781		265	51 933	65 894	33 769	473 262	1 999 065	24 577	127 614	622 282	774 473	6 370 321	19 759
2037	147 834	11 823	563 718	679 061	3 350	1 107 941	338 641	270	50 330	65 894	34 444	507 600	1 981 324	25 068	101 562	580 808	707 439	6 199 669	20 603
2038	141 579	12 060	539 866	650 329	3 145	1 061 063	345 414	275	48 962	65 894	35 133	460 591	1 966 173	25 569	75 510	545 327	646 407	5 976 892	21 155
2039	136 280	12 301	519 662	625 990	2 968	1 021 353	352 322	281	47 824	65 894	35 836	420 161	1 953 083	26 081	49 459	514 626	590 165	5 784 121	21 694
2040	131 694	12 547	502 172	604 922	2 812	986 979	359 369	286	46 869	65 894	36 553	385 957	1 941 557	26 602	23 407	487 555	537 564	5 615 175	22 230
2041	127 635	12 798	486 697	586 280	2 672	956 563	366 556	292	46 051	65 894	37 284	356 518	886 511	27 135	5 190	463 265	495 590	4 427 341	18 446
2042	123 979	13 054	472 756	569 487	2 544	929 163	373 887	298	34 889	65 894	38 029	330 633	185 060	27 677	0	441 172	468 849	3 608 524	15 788
2043		13 315	460 024	554 150	2 427	904 140	381 365	304	27 333	65 894	38 790	307 491	176 446	28 231	0	420 873	449 104	3 501 424	16 058
2044		13 581	448 273	539 994	2 319	881 043	388 992	310	26 760	65 894	39 566	286 555	168 478	28 795	0	402 080	430 875	3 410 200	16 371
2045		13 853	437 333	526 816	2 218	859 542	396 772	316	26 238	65 894	40 357	267 453	161 064	29 371	0	384 576	413 947	3 326 495	16 696
2046		14 130	427 077	514 462	2 123	839 385	404 708	323	25 760	65 894	41 164	249 912	154 131	29 959	0	368 193	398 152	3 249 221	17 033
2047	109 464	14 413	417 405	502 810	2 035	820 375	412 802	329	25 318	65 894	41 988	233 724	147 621	30 558	0	352 799	383 357	3 177 533	17 385
2048	107 059	14 701	408 236	491 765	1 951	802 354	421 058	336	24 908	65 894	42 827	218 725	141 487	31 169	0	338 283	369 452	3 110 752	17 749
2049	104 769	14 995	399 504	481 247	1 872	785 193	429 479	342	24 526	65 894	43 684	204 785	135 691	31 792	0	324 557	356 349	3 048 332	18 129
2050		15 295	391 158	471 193	1 797	768 788	438 068	349	24 168	65 894	44 558	191 797	130 201	32 428	0	311 545	343 973	2 989 817	18 524
2051		15 601	383 150	461 547	1 725	753 050	446 830	356	23 832	65 894	45 449	179 670	124 988	33 077	0	299 183	332 260	2 934 832	18 934
2052	98 459	15 913	375 444	452 264	1 658	737 905	455 766	363	23 515	65 894	46 358	168 330	120 030	33 738	0	287 418	321 156	2 883 057	19 361
2053	96 509	16 231	368 008	443 307	1 593	723 290	464 882	371	23 217	65 894	47 285	157 712	115 307	34 413	0	276 202	310 615	2 834 221	19 806
2054	94 623	16 556	360 815	434 642	1 531	709 153	474 179	378	22 934	65 894	48 231	147 760	110 800	35 101	0	265 493	300 595	2 788 092	20 270
2055 2056	92 794 91 018	16 887 17 224	353 842 300 068	426 242 371 082	1 472 1 416	695 447 682 133	483 663 493 336	386 393	22 667 22 413	65 894 65 894	49 195 50 179	138 426 129 666	106 494 102 376	35 803 36 520	0	255 257 245 461	291 060 281 980	2 744 469 2 609 178	20 753 20 517
2057	32 889	17 569	246 476	339 641	1 361	669 177	503 203	401	20 785	65 894	51 183	129 000	98 433	37 250	0	236 077	273 327	2 441 780	19 964
2058		17 920	99 051	331 901	1 310	656 549	513 267	409	19 733	65 894	52 206	113 717	94 655	37 230	0	227 081	265 075	2 272 291	19 315
2059	1	18 279		324 347	1 260	503 224		417	18 198	65 894	53 250	106 462	91 031	38 755	0	218 449		2 094 837	18 510
2060		18 644	86 651	316 964	1 212	397 178		426	16 580	65 894	54 315	99 647	87 554	39 530	0	210 161	249 691	1 966 112	18 057
2061		19 017	80 654	309 741	1 166	291 393		434	15 442	65 894	55 402	93 246	84 216	40 320	0	202 199	242 519	1 839 587	17 561
2062		19 398		302 666	1 122		555 577	443	14 314		9 510	87 235	81 030	41 127	0	194 546		1 752 332	17 386
Итог о 2030- 2062	3 397 891	481 676	12 086	16 711 414	72 997	26 662 413	13 594 037	10 836	1 048 421		1 335 702	8 334 927	22 876 467	1 006 307	1 253 031	12 657 430	14 916 768	124 492 113	18 984
2063	79 730	19 786	210 025	295 732	1 080	362 536	566 688	452	14 040	18 894	10 640	81 590	77 944	41 949	0	187 187	229 136	1 968 271	20 296
2064		20 181	204 377	288 928	1 039	351 436	578 022	461	16 313	18 894	11 793	76 290	74 961	42 788	0	180 108	222 896	1 943 840	20 832
2065	76 795	20 585	198 833	282 250	999	340 539		470	16 150	18 894	12 969	71 316	72 109	43 644	0	173 295	216 939	1 918 430	21 368
2066		20 997	193 387	275 689	962	329 835		479	15 996	18 894	14 168	66 649	69 365	44 517	0	166 737	211 254	1 894 414	21 930
2067		21 416	188 034	269 241	925	319 314		489	15 849	18 894	15 391	62 271	66 724	45 407	0	160 423	205 831	1 871 744	22 521
2068		21 845	182 770	262 901	890	308 970		499	15 710	18 894	16 639	58 165	64 182	46 316	0	154 343	200 658	1 850 375	23 141
2069		22 282	177 593	256 664	856	298 794		509	15 578	18 894	17 912	54 317	61 734	47 242	0	148 486	195 728	1 830 268	23 792
2070		22 727	172 499	250 527	824	288 781		519	15 454	18 894	19 210	50 710	59 377	48 187	0	142 844	191 030	1 811 388	24 477
2071		23 182	261 484	314 987	792	513 926		529	15 336	65 894	67 534	47 332	57 107	49 150	0	137 408	186 558	2 287 202	32 129
2072		23 646	256 548	309 040	762	504 223	677 245	540	19 691	65 894	68 885	44 168	54 920	50 133	0	132 170	182 304	2 275 145	33 226
2073		24 118	251 687	303 185	733	494 669		551	19 588	65 894	70 263	41 207	52 814	51 136	0	127 123	178 259	2 259 762	34 311
2074			246 899	297 418	705	485 261		562	19 492	65 894	71 668	38 436	50 785	52 159	0	122 260	174 419	2 245 493	35 451
2075	63 512	25 093	242 184	291 738	678	475 994	718 698	573	19 402	65 894	73 101	35 843	48 830	53 202	0	117 574	170 776	2 232 317	36 648

2076	62 294	25 595	237 540	286 143	652	466 866	733 072	584	19 319	65 894	74 564	33 419	46 948	54 266	0	113 058	167 324	2 220 214	37 905
2077	61 095	26 107	232 965	280 633	627	457 874	747 733	596	19 244	65 894	76 055	31 153	45 134	55 351	0	108 707	164 058	2 209 166	39 226
2078	59 913	26 629	228 459	275 204	603	449 017	762 688	608	19 174	65 894	77 576	29 035	43 386	56 458	0	104 513	160 972	2 199 158	40 615
2079	58 749	27 161	224 020	269 857	579	440 293	777 942	620	19 112	65 894	79 127	27 057	41 703	57 588	0	100 473	158 061	2 190 175	42 075
2080	57 602	27 705	219 648	264 590	557	431 699	793 500	633	19 056	65 894	80 710	25 209	40 082	58 739	0	96 581	155 320	2 182 204	43 612
2081	56 473	28 259	215 341	259 402	535	423 235	809 370	645	19 007	65 894	82 324	23 483	38 521	59 914	0	92 830	152 745	2 175 234	45 229
2082	55 360	28 824	211 100	254 293	515	414 899	825 558	658	18 965	65 894	83 971	21 873	37 017	61 112	0	89 218	150 330	2 169 255	46 931
2083	54 265	29 400	206 923	249 261	494	406 690	842 069	671	18 929	65 894	85 650	20 370	35 568	62 335	0	85 738	148 072	2 164 257	48 723
2084	53 186	29 988	202 810	244 307	475	398 606	858 910	685	18 901	65 894	87 363	18 967	34 174	63 581	0	82 386	145 967	2 160 232	50 611
2085	52 124	30 588	198 760	239 429	457	390 647	876 088	698	18 879	65 894	89 110	17 659	32 831	64 853	0	79 157	144 010	2 157 175	52 601
2086		31 200	194 773	234 626	439	382 811	893 610	712	18 864	65 894	90 893	16 440	31 538	66 150	0	76 049	142 199	2 155 077	54 698
2087		31 824	190 849	229 899	421	375 098	911 482	727	18 855	65 894	92 710	15 302	30 293	67 473	0	73 056	140 529	2 153 935	56 909
2088		32 460	186 987	225 247	405	367 508	929 712	741	18 854	65 894	94 565	14 242	29 095	68 822	0	70 174	138 996	2 153 743	59 241
2089	48 040	33 109	183 187	220 669	389	360 038	948 306	756	18 859	65 894	96 456	13 254	27 942	70 199	0	67 399	137 598	2 154 498	61 701
2090	47 060	33 772	179 447	216 164	373	352 689	967 272	771	18 872	65 894	98 385	12 334	26 833	71 603	0	64 729	136 332	2 156 198	64 297
2091	46 095	34 447	175 769	211 733	358	345 460	986 618	786	18 891	65 894	100 353	11 476	25 765	73 035	0	62 159	135 194	2 158 840	67 037
2092		35 136	172 151	207 375	344	338 349	1 006 350	802	18 918	65 894	102 360	10 677	24 737	74 496	0	59 686	134 182	2 162 421	69 931
2093	44 213	35 839	168 593	203 089	330	331 356	1 026 477	818	18 951	65 894	104 407	9 933	23 749	75 986	0	57 306	133 292	2 166 942	72 987
2094	43 296	36 556	165 095	198 875	317	324 480	1 047 007	835	18 992	65 894	106 495	9 240	22 798	77 505	0	55 017	132 522	2 172 402	76 216
2095	42 394	37 287	161 656	194 732	305	317 721	1 067 947	851	19 040	65 894	108 625		21 884	79 055	0	52 814	131 870	2 178 800	79 628
Итог о 2030- 2095	5 363 279	1 394 018	19 729 349	25 175 242	93 418	39 512 026	39 724 921	31 666	1 646 704	3 860 110	3 617 574	9 432 938	24 347 318	2 940 661	1 253 031	16 198 436	20 392 128	194 320 691	23 155

Приложение 4 – Эксплуатационные затраты, включаемые в расходы периода в 1 варианте, тыс.тенге

				Расходы перио	да			Ha	логи			
Годы	ФОТ АУП	Содержание АУП	Страхование	Административные расходы	Социальное развитие региона	Другие общехозяйственные расходы	Транспортные расходы	Налоги и сборы, зависимые от ФОТ АУП	Прочие налоги и отчисления в Бюджет	Итого расходы периода	Обучение казахстанских специалистов	Отчисления в фонд ликвидации
1	2	3	4	5	6	7	8	9	10	11	12	13
2030	84 495	128 586	16 450	33 871	89 050	46 864	24 218	18 527	33	442 094	40 444	22 406
2031	86 185	131 158	16 779	34 549	62 167	47 801	120 681	18 898	67	518 283	22 406	39 851
2032	87 908	133 781	17 115	35 240	82 247	48 757	212 889	19 276	100	637 312	39 851	58 630
2033	89 666	136 456	17 457	35 945	118 889	49 732	271 640	19 661	100	739 546	58 630	55 223
2034	91 460	139 186	17 806	36 663	59 500	50 727	254 097	20 054	100	669 593	55 223	58 529
2035	93 289	141 969	18 162	37 397	62 860	51 741	235 731	20 455	100	661 705	58 529	51 933
2036	95 155	144 809	18 525	38 145	56 851	52 776	218 888	20 864	100	646 113	51 933	50 330
2037	97 058	147 705	18 896	38 908	55 101	53 832	204 299	21 282	100	637 180	50 330	48 962
2038	98 999	150 659	19 274	39 686	54 075	54 908	191 819	21 707	100	631 227	48 962	47 824
2039	100 979	153 672	19 659	40 479	52 464	56 006	181 020	22 142	100	626 521	47 824	46 869
2040	102 999	156 746	20 052	41 289	51 103	57 127	171 497	22 584	100	623 497	46 869	46 051
2041	105 058	159 880	20 454	42 115	49 942	58 269	162 953	23 036	100	621 808	46 051	34 889
2042	107 160	163 078	20 863	42 957	38 484	59 435	155 182	23 497	100	610 755	34 889	27 333
2043	109 303	166 340	21 280	43 816	30 668	60 623	148 042	23 967	100	604 138	27 333	26 760
2044	111 489	169 666	21 705	44 693	29 862	61 836	141 432	24 446	100	605 229	26 760	26 238
2045	113 719	173 060	22 140	45 586	29 130	63 072	135 275	24 935	100	607 016	26 238	0
2046	115 993	176 521	22 582	46 498	28 460	64 334	129 512	25 434	100	609 434	25 760	0
2047	118 313	180 051	23 034	47 428	27 841	65 620	124 097	25 942	100	612 428	25 318	0
2048	120 679	183 652	23 495	48 377	27 269	66 933	118 991	26 461	100	615 957	24 908	0
2049	123 093	187 325	23 965	49 344	26 736	68 272	114 163	26 990	100	619 987	24 526	0
2050	125 555	191 072	24 444	50 331	26 238	69 637	109 586	27 530	100	624 492	24 168	0
2051	128 066	194 893	24 933	51 338	25 771	71 030	105 238	28 081	100	629 449	23 832	0
2052	130 627	198 791	25 431	52 364	25 333	72 450	101 099	28 642	100	634 839	23 515	0
2053	133 240	202 767	25 940	53 412	24 920	73 899	97 154	29 215	100	640 647	23 217	0
2054	135 904	206 822	26 459	54 480	24 531	75 377	93 387	29 800	100	646 861	22 934	0
2055	138 622	210 959	26 988	55 570	24 163	76 885	89 787	30 396	100	653 469	22 667	0
2056	141 395	215 178	27 528	56 681	23 815	78 423	86 341	31 003	100	660 464	22 413	0
2057	144 223	219 482	28 078	57 815	22 546	79 991	83 040	31 624	100	666 898	21 231	0
2058	147 107	223 871	28 640	58 971	20 965	81 591	79 876	32 256	100	673 377	19 733	0
2059	150 049	228 349	29 213	60 150	19 353	83 223	76 839	32 901	100	680 177	18 198	0
2060	153 050	232 916	29 797	61 353	17 662	84 887	73 924	33 559	100	687 248	16 580	0
2061	156 111	237 574	30 393	62 580	16 455	86 585	71 123	34 230	100	695 152	15 442	0
2062	159 234	242 325	31 001	63 832	15 262	88 317	68 432	34 915	100	703 417	14 314	0
Итого 2030-2062	3 896 181	5 929 299	758 535	1 561 861	1 319 713	2 160 959	4 452 252	854 311	3 204	20 936 315	1 051 028	641 829
2063	162 418	247 172	31 621	65 109	14 929	90 083	65 843	35 613	100	712 887	14 040	0
2064	165 667	252 115	32 253	66 411	17 145	91 885	63 353	36 326	100	725 253	16 313	0
2065	168 980	257 158	32 898	67 739	16 928	93 722	60 957	37 052	100	735 534	16 150	0
2066	172 360	262 301	33 556	69 094	16 724	95 597	58 650	37 793	100	746 174	15 996	0
2067	175 807	267 547	34 227	70 476	16 530	97 509	56 429	38 549	100	757 173	15 849	0
2068	179 323	272 898	34 912	71 885	16 347	99 459	54 290	39 320	100	768 533	15 710	0
2069	182 909	278 356	35 610	73 323	16 174	101 448	52 230	40 106	100	780 256	15 578	0
2070	186 568	283 923	36 322	74 789	16 011	103 477	50 245	40 908	100	792 343	15 454	0
2070	190 299	289 601	37 049	76 285	15 857	105 477	48 333	41 727	100	804 797	15 336	0
2071	194 105	295 393	37 790	77 811	20 178	107 657	46 491	42 561	100	822 086	19 691	0
2072	197 987	301 301	38 545	79 367	20 178	107 037	44 716	43 412	100	835 282	19 588	0
2073	201 947	307 327	39 316	80 954	19 917	112 007	43 005	44 281	100	848 854	19 492	0
2074	201 947	313 474	40 103	82 573	19 799	112 007	41 357	45 166	100	862 804	19 492	0
2075	210 105	319 743	40 103	84 225	19 690	116 532	39 768	46 070	100	877 138	19 319	0
2076	210 103	326 138	40 903	85 909	19 590	118 862	38 238	46 991	100	891 859	19 244	0
2077	214 507	320 138	41 723	83 909 87 628	19 498	121 240	36 763	47 931	100	906 971	19 244	
												0
2079	222 965	339 314	43 408	89 380	19 414	123 664	35 342	48 889	100	922 478	19 112	0

2080	227 425	346 100	44 277	91 168	19 339	126 138	33 972	49 867	100	938 386	19 056	0
2081	231 973	353 022	45 162	92 991	19 271	128 661	32 653	50 864	100	954 698	19 007	0
2082	236 613	360 083	46 065	94 851	19 212	131 234	31 382	51 882	100	971 421	18 965	0
2083	241 345	367 284	46 987	96 748	19 160	133 858	30 158	52 919	100	988 560	18 929	0
2084	246 172	374 630	47 926	98 683	19 116	136 536	28 979	53 978	100	1 006 120	18 901	0
2085	251 095	382 123	48 885	100 656	19 080	139 266	27 844	55 057	100	1 024 107	18 879	0
2086	256 117	389 765	49 863	102 670	19 052	142 052	26 750	56 158	100	1 042 527	18 864	0
2087	261 240	397 561	50 860	104 723	19 031	144 893	25 697	57 282	100	1 061 386	18 855	0
2088	266 464	405 512	51 877	106 817	19 018	147 791	24 684	58 427	100	1 080 691	18 854	0
2089	271 794	413 622	52 915	108 954	19 013	150 746	23 708	59 596	100	1 100 447	18 859	0
2090	277 230	421 894	53 973	111 133	19 016	153 761	22 768	60 788	100	1 120 663	18 872	0
2091	282 774	430 332	55 052	113 356	19 026	156 836	21 864	62 004	100	1 141 345	18 891	0
2092	288 430	438 939	56 153	115 623	19 044	159 973	20 995	63 244	100	1 162 500	18 918	0
2093	294 198	447 718	57 277	117 935	19 070	163 173	20 157	64 508	100	1 184 136	18 951	0
2094	300 082	456 672	58 422	120 294	19 103	166 436	19 352	65 799	100	1 206 260	18 992	0
2095	306 084	465 806	59 591	122 700	19 144	169 765	18 577	67 115	100	1 228 881	19 040	0
Итого 2030-2095	11 385 543	17 326 785	2 216 616	4 564 118	1 930 179	6 314 822	5 697 802	2 496 493	6 507	51 938 865	1 649 311	641 829

Приложение 5 – Расчет бюджетной эффе	и 1 варианта разработки, тыс. тенге
--------------------------------------	-------------------------------------

	1		1		1		ДАРСТВА, тыс. т	енге				
Годы	Социальный налог	ипн	Налог на имущество	Аренда земельных участков	ндпи	Прочие налоги и платежи в бюджет	кпн	НСП	Суммарный доход - РК	Дискоі 5,0%	нтированный доход 7,5%	РК при 10,0%
1	2	3	4	5	6	7	8	9	10	11	12	13
2030	21 136	19 214	41 946	47	68 850	33	0	0	151 226	782 520	764 322	746 951
2031	21 559	19 599	109 276	48	343 087	67	0	0	493 635	1 224 334	1 168 050	1 115 560
2032	21 990	19 991	179 916	49	605 229	100	0	0	827 274	1 732 615	1 614 524	1 506 926
2033	22 430	20 391	205 769	50	772 251	100	811 236	0	1 832 227	1 887 650	1 718 086	1 567 141
2034	22 878	20 798	179 717	51	722 379	100	780 123	0	1 726 047	1 703 210	1 514 162	1 349 744
2035	23 336	21 214	153 666	52	670 166	100	868 310	0	1 736 844	1 607 999	1 396 274	1 216 369
2036	23 802	21 639	127 614	53	622 282	100	843 748	0	1 639 238	1 447 695	1 227 843	1 045 330
2037	24 278	22 071	101 562	54	580 808	100	808 648	0	1 537 523	1 302 286	1 078 830	897 593
2038	24 764	22 513	75 510	55	545 327	100	770 672	0	1 438 941	1 164 775	942 474	766 322
2039	25 259	22 963	49 459	56	514 626	100	731 824	0	1 344 288	1 041 527	823 150	654 089
2040	25 765	23 422	23 407	57	487 555	100	692 659	0	1 252 965	930 630	718 400	557 879
2041	26 280	23 891	5 190	58	463 265	100	654 192	0	1 172 976	834 480	629 196	477 502
2042	26 805	24 369	0	60	441 172	100	619 279	0	1 111 784	755 576	556 454	412 700
2043	27 342	24 856	0	61	420 873	100	580 756	0	1 053 987	685 145	492 849	357 219
2044	27 888	25 353	0	62	402 080	100	539 246	0	994 730	619 791	435 469	308 457
2045	28 446	25 860	0	63	384 576	100	504 203	0	943 249	561 559	385 380	266 773
2046	29 015	26 377	0	65	368 193	100	465 312	0	889 063	507 906	340 453	230 317
2047	29 595	26 905	0	66	352 799	100	427 847	0	837 312	459 301	300 713	198 809
2048	30 187	27 443	0	67	338 283	100	352 359	0	748 439	399 648	255 572	165 125
2049	30 791	27 992	0	68	324 557	100	285 003	0	668 511	348 144	217 458	137 306
2050	31 407	28 552	0	70	311 545	100	225 592	0	597 265	303 871	185 390	114 398
2051	32 035	29 123	0	71	299 183	100	173 030	0	533 543	265 697	158 331	95 480
2052	32 676	29 705	0	73	287 418	100	126 371	0	476 343	232 678	135 430	79 814
2053	33 329	30 299	0	74	276 202	100	84 798	0	424 802	204 029	115 993	66 805
2054	33 996	30 905	0	76	265 493	100	47 606	0	378 176	179 095	99 450	55 975
2055	34 676	31 523	0	77	255 257	100	14 188	0	335 821	157 329	85 332	46 938
2056	35 369	32 154	0	79	245 461	100	2 821	0	315 984	140 289	74 320	39 951
2057	36 077	32 797	0	80	236 077	100	1 398	0	306 529	126 170	65 286	34 297
2058	36 798	33 453	0	82	227 081	100	3 525	0	301 038	113 931	57 582	29 563
2059	37 534	34 122	0	83	218 449	100	9 637	0	299 925	103 355	51 022	25 599
2060	38 285	34 804	0	85	210 161	100	8 193	0	291 628	93 215	44 946	22 038
2061	39 050	35 500	0	87	202 199	100	8 006	0	284 943	84 183	39 647	18 998
2062	39 831	36 210	0	89	194 546	100	1 625	0	272 402	75 554	34 756	16 276
ого 2030-2062		886 008	1 253 031	2 167	12 657 430	3 204	11 442 207	0	27 218 656	22 076 183	17 727 142	14 624 244
2063	40 628	36 935	0	90	187 187	100	0	0	264 940	75 434	33 893	15 511
2064	41 441	37 673	0	92	180 108	100	0	0	259 414	70 263	30 836	13 791
2065	42 269	38 427	0	94	173 295	100	0	0	254 185	65 430	28 047	12 259
2066	43 115	39 195	0	96	166 737	100	0	0	249 243	60 962	25 524	10 903
2067	43 977	39 979	0	98	160 423	100	0	0	249 243	56 828	23 240	9 701
2068	44 857	40 779	0	100	154 343	100	0	0	240 178	53 001	21 171	8 637
2069	45 754	41 594	0	102	148 486	100	0	0	236 036	49 459	19 296	7 693
2070	46 669	42 426	0	102	142 844	100	0	0	230 030	46 178	17 597	6 856
2070	47 602	43 275	0	104	137 408	100	0	0	232 143	50 768	18 897	7 195
2071	48 554	44 140	0	108	132 170	100	0	0	225 073	47 653	17 325	6 447
2072	49 525	45 023	0	110	132 170	100	0	0	223 073	44 691	17 323	5 771
2073	50 516	45 924	0	110	127 123	100	0	0	218 912	41 936	14 545	5 169
2074	51 526	45 924	0	112	117 574	100	0	0	216 157	39 371	13 338	4 633
2075	52 557	40 842	Ů	117	117 374						13 338	4 154
2076	52 557	48 734	0	117	108 707	100	0	0	213 611 211 268	36 983 34 759	12 238	3 727
2077					108 707	100		0				3 345
	54 680	49 709	0	122		100	0	0	209 124	32 686	10 319	
		50.702	Λ	104	100 472	100	0	Λ	1 207 174	20.754	0.402	2 00 4
2078 2079 2080	55 774 56 889	50 703 51 717	0	124 127	100 473 96 581	100 100	0	0	207 174 205 414	30 754 28 952	9 483 8 720	3 004 2 700

2082	59 187	53 807	0	132	89 218	100	Ι ο	0	202 444	25 703	7 385	2 184
-			U				0	U				
2083	60 371	54 883	0	134	85 738	100	0	0	201 226	24 238	6 803	1 966
2084	61 579	55 981	0	137	82 386	100	0	0	200 182	22 870	6 269	1 770
2085	62 810	57 100	0	140	79 157	100	0	0	199 308	21 592	5 781	1 596
2086	64 066	58 242	0	142	76 049	100	0	0	198 600	20 397	5 334	1 439
2087	65 348	59 407	0	145	73 056	100	0	0	198 056	19 280	4 925	1 298
2088	66 655	60 595	0	148	70 174	100	0	0	197 672	18 234	4 549	1 172
2089	67 988	61 807	0	151	67 399	100	0	0	197 445	17 256	4 205	1 059
2090	69 347	63 043	0	154	64 729	100	0	0	197 374	16 339	3 889	957
2091	70 734	64 304	0	157	62 159	100	0	0	197 455	15 481	3 599	865
2092	72 149	65 590	0	160	59 686	100	0	0	197 686	14 676	3 333	783
2093	73 592	66 902	0	164	57 306	100	0	0	198 064	13 921	3 088	709
2094	75 064	68 240	0	167	55 017	100	0	0	198 588	13 213	2 863	642
2095	76 565	69 605	0	170	52 814	100	0	0	199 255	12 548	2 655	582
Итого 2030-2095	2 848 033	2 589 121	1 253 031	6 333	16 198 436	6 507	11 442 207	0	34 343 669	23 225 313	18 131 417	14 775 190

Прило	жение 6 – Расчо	ет налогооблаг	аемого доход	да в 1 варианте, ты	с.тенге	
	Всего расходы,	Общие				
	связанные с	расходы		Амортизационные	Всего вычитаемые	
	обычной	(включаемые	Балансовая	отчисления,	затраты, налоги и	
	деятельностью	в с/с +	валансовая прибыль	относимые на	специальные	Налого-
Годы	предприятия	расходы	приоыль (+) ,	вычеты при	фонды,	облагаемый
	(расходы,	периода)	убыток (-)	определении	определяемые для	доход
	включаемые в	приходящиеся	yobitok (-)	налогооблагаемого	Налогооблагаемого	
	с/с + расходы	на 1 млн.м3		дохода	дохода	
	периода)	газа				
1	2	3	4	5	6	7
2030	1 754 791	49 195	-624 160	1 482 661	272 130	0
2031	4 053 375	22 804	1 580 889	2 545 763	1 507 612	0
2032	6 582 920	20 994	3 356 341	3 770 734	2 812 186	0
2033	7 895 022	19 733	4 787 145	2 714 929	5 180 093	4 056 181
2034	8 082 780	21 597	3 813 343	1 954 749	6 128 031	3 900 614
2035	7 396 811	21 304	3 729 382	1 407 419	5 989 392	4 341 552
2036	7 118 698	22 081	3 233 016	1 013 342	6 105 356	4 218 739
2037	6 936 142	23 051	2 791 524	729 606	6 206 536	4 043 241
2038	6 704 905	23 732	2 412 501	525 316	6 179 589	3 853 358
2039	6 505 335	24 399	2 084 266	378 228	6 127 107	3 659 122
2040	6 331 592	25 066	1 794 061	272 324	6 059 268	3 463 294
2041	5 130 090	21 374	2 580 524	196 073	4 934 016	3 270 961
2042	4 281 501	18 732	3 052 507	141 173	4 140 328	3 096 394
2043	4 159 655	19 077	2 828 978	101 644	4 058 010	2 903 779
2044	4 068 427	19 531	2 600 936	73 184	3 995 243	2 696 231
2045	3 959 749	19 874	2 412 643	52 692	3 907 057	2 521 014
2046	3 884 415	20 363	2 210 368	37 939	3 846 476	2 326 561
2047	3 815 278	20 874	2 018 929	27 316	3 787 962	2 139 234
2048	3 751 617	21 406	1 639 975	19 667	3 731 950	1 761 795
2049	3 692 845	21 962	1 303 483	14 160	3 678 684	1 425 014
2050	3 638 477	22 542	1 007 953	10 196	3 628 282	1 127 958
2051	3 588 113	23 149	747 503	7 341	3 580 772	865 151
2052	3 541 411	23 783	517 112	5 285	3 536 126	631 856
2053	3 498 085	24 446	312 489	3 805	3 494 279	423 990
2054	3 457 887	25 140	129 970	2 740	3 455 147	238 030
2055	3 420 605	25 866	-33 581	1 973	3 418 632	70 940
2056	3 292 054	25 887	-86 850	1 420	3 290 634	14 105
2057	3 129 909	25 590	-90 419	1 023	3 128 886	6 991
2058	2 965 401	25 206	-76 295	736	2 964 664	17 624
2059	2 793 212	24 681	-42 319	530	2 792 682	48 183
2060	2 669 941	24 522	-46 207	382	2 669 559	40 966
2061	2 550 182	24 344	-43 903	281 207	2 549 901	40 032
2062 Итого	2 470 063	24 507	-72 698	207	2 469 856	8 125
2030-	147 121 284	22 435	51 829 407	17 494 839	129 626 445	57 211 035
2030-	14/121204	4433	JI 047 407	1 / 474 037	147 040 443	37 211 033
2063	2 695 199	27 792	-399 209	108	2 695 091	0
2064	2 685 406	28 779	-484 119	77	2 685 329	0
2065	2 670 114	29 740	-557 607	56	2 670 059	0
2066	2 656 584	30 753	-627 578	40	2 656 544	0
2067	2 644 766	31 821	-694 545	29	2 644 737	0
2068	2 634 618	32 948	-758 947	21	2 634 597	0
2069	2 626 102	34 137	-821 166	15	2 626 087	0
2070	2 619 185	35 392	-881 531	11	2 619 174	0
2071	3 107 335	43 649	-1 433 827	8	3 107 328	0
2072	3 116 922	45 519	-1 504 694	6	3 116 917	0
2073	3 114 632	47 291	-1 561 056	4	3 114 628	0
2074	3 113 839	49 160	-1 616 493	3	3 113 836	0
2075	3 114 524	51 131	-1 671 166	2	3 114 522	0
	<u> </u>			<u> </u>		7

2030- 2095	248 550 696	29 617	-5 761 518	17 495 226	231 055 471	57 211 035
Итого	3 120 721	123 233	2 7 11 103		3 120 721	Ü
2095	3 426 721	125 235	-2 741 103	0	3 426 721	0
2094	3 397 654	119 202	-2 685 159	0	3 397 654	0
2093	3 370 030	113 509	-2 629 718	0	3 370 030	0
2092	3 343 839	108 137	-2 574 746	0	3 343 839	0
2091	3 319 076	103 065	-2 520 206	0	3 319 076	0
2090	3 295 733	98 277	-2 466 062	0	3 295 733	0
2089	3 273 805	93 755	-2 412 277	0	3 273 805	0
2088	3 253 287	89 485	-2 358 811	0	3 253 287	0
2087	3 234 176	85 450	-2 305 626	0	3 234 176	0
2086	3 216 467	81 637	-2 252 682	0	3 216 467	0
2085	3 200 160	78 033	-2 199 934	0	3 200 160	0
2083	3 185 253	74 626	-2 147 337	0	3 185 253	0
2082	3 171 747	71 405	-2 094 844	0	3 171 746	0
2082	3 159 641	68 358	-2 042 401	0	3 159 641	0
2080	3 148 940	65 475	-1 989 953	0	3 148 939	0
2080	3 131 703	62 747	-1 937 437	1 1	3 139 645	0
2079	3 131 765	60 164	-1 884 786	<u>1</u> 1	3 131 764	0
2078	3 125 303	57 719	-1 831 924	1	3 125 302	0
2077	3 120 269	55 403	-1 778 766	1	3 120 268	0
2076	3 116 672	53 210	-1 725 216	2	3 116 670	0

Приложение 7 – Расчет чистой прибыли в 1 варианте, тыс. тенге

прилод	кение 7 – Расчет чист		т варианте, ты	•		17
		Налого-	TC	Чистая		Чистая
	Налогооблагаемая	облагаемая	Корпора-	прибыль	11	прибыль
Годы	прибыль до	прибыль	тивный	после	Налог на	после
	переноса убытков	после	подоходный	выплаты	сверхприбыль	выплаты
		переноса	налог	подоходного		налога на
1	2	убытков	4	налога 5	6	сверхприбыль
2030	0	0	0	_	0	-624 160
2030	0	0	0	-624 160 1 580 889	0	1 580 889
2031	0	0	0	3 356 341	0	3 356 341
2032	4 056 181	4 056 181	811 236	3 975 908	0	3 975 908
2033	3 900 614	3 900 614	780 123	3 033 220	0	3 033 220
2035	4 341 552	4 341 552	868 310	2 861 072	0	2 861 072
2036	4 218 739	4 218 739	843 748	2 389 268	0	2 389 268
2037	4 043 241	4 043 241	808 648	1 982 875	0	1 982 875
2038	3 853 358	3 853 358	770 672	1 641 830	0	1 641 830
2039	3 659 122	3 659 122	731 824	1 352 442	0	1 352 442
2040	3 463 294	3 463 294	692 659	1 101 402	0	1 101 402
2041	3 270 961	3 270 961	654 192	1 926 331	0	1 926 331
2042	3 096 394	3 096 394	619 279	2 433 228	0	2 433 228
2043	2 903 779	2 903 779	580 756	2 248 222	0	2 248 222
2044	2 696 231	2 696 231	539 246	2 061 690	0	2 061 690
2045	2 521 014	2 521 014	504 203	1 908 440	0	1 908 440
2046	2 326 561	2 326 561	465 312	1 745 056	0	1 745 056
2047	2 139 234	2 139 234	427 847	1 591 082	0	1 591 082
2048	1 761 795	1 761 795	352 359	1 287 616	0	1 287 616
2049	1 425 014	1 425 014	285 003	1 018 480	0	1 018 480
2050	1 127 958	1 127 958	225 592	782 362	0	782 362
2051	865 151	865 151	173 030	574 473	0	574 473
2052	631 856	631 856	126 371	390 740	0	390 740
2053	423 990	423 990	84 798	227 691	0	227 691
2054	238 030	238 030	47 606	82 364	0	82 364
2055	70 940	70 940	14 188	-47 769	0	-47 769
2056	14 105	14 105	2 821	-89 671	0	-89 671
2057	6 991	6 991	1 398	-91 817	0	-91 817
2058	17 624	17 624	3 525	-79 819	0	-79 819
2059	48 183	48 183	9 637	-51 955	0	-51 955
2060	40 966	40 966	8 193	-54 400	0	-54 400
2061	40 032	40 032	8 006	-51 909	0	-51 909
2062	8 125	8 125	1 625	-74 323	0	-74 323
Итого 2030- 2062	57 211 035	57 211 035	11 442 207	40 387 200	0	40 387 200
2063	0	0	0	-399 209	0	-399 209
2064	0	0	0	-484 119	0	-484 119
2065	0	0	0	-557 607	0	-557 607
2066	0	0	0	-627 578	0	-627 578
2067	0	0	0	-694 545	0	-694 545
2068	0	0	0	-758 947	0	-758 947
2069	0	0	0	-821 166	0	-821 166
2070	0	0	0	-881 531	0	-881 531
2071	0	0	0	-1 433 827	0	-1 433 827
2072	0	0	0	-1 504 694	0	-1 504 694
2073	0	0	0	-1 561 056	0	-1 561 056
2074	0	0	0	-1 616 493	0	-1 616 493
2075	0	0	0	-1 671 166	0	-1 671 166
2076	0	0	0	-1 725 216	0	-1 725 216
2077	0	0	0	-1 778 766	0	-1 778 766
2078	0	0	0	-1 831 924	0	-1 831 924

2079	0	0	0	-1 884 786	0	-1 884 786
2080	0	0	0	-1 937 437	0	-1 937 437
2081	0	0	0	-1 989 953	0	-1 989 953
2082	0	0	0	-2 042 401	0	-2 042 401
2083	0	0	0	-2 094 844	0	-2 094 844
2084	0	0	0	-2 147 337	0	-2 147 337
2085	0	0	0	-2 199 934	0	-2 199 934
2086	0	0	0	-2 252 682	0	-2 252 682
2087	0	0	0	-2 305 626	0	-2 305 626
2088	0	0	0	-2 358 811	0	-2 358 811
2089	0	0	0	-2 412 277	0	-2 412 277
2090	0	0	0	-2 466 062	0	-2 466 062
2091	0	0	0	-2 520 206	0	-2 520 206
2092	0	0	0	-2 574 746	0	-2 574 746
2093	0	0	0	-2 629 718	0	-2 629 718
2094	0	0	0	-2 685 159	0	-2 685 159
2095	0	0	0	-2 741 103	0	-2 741 103
Итого						
2030-	57 211 035	57 211 035	11 442 207	-17 203 725	0	-17 203 725
2095				,,,,,,		,,,,,,
)						T.

Приложение 8 - Расчет потоков денежной наличности в 1 варианте, тыс.тенге

Призтожени		lo Tokob Zenex	ной наличности	в т вири		ванный поток	ленежной
	Чистая	Поток	Накопленный			уванный поток NPV Чистая п	
Годы	прибыль с		поток денежной	ВНП	наличности (стоимость)	риведенная
1 Оды	учетом всех	наличности	наличности	(IRR)		, , , , , , , , , , , , , , , , , , ,	дисконт 10
	выплат	nasin moeth	masin moeth		дисконт 5 %	дисконт 7,5 %	%
1	2	3	4	5	6	7	8
2030	-624 160	-4 940 462	-4 940 462	-76,5%	-4 705 202	-4 595 779	-4 491 329
2031	1 580 889	-713 425	-5 653 887	-9,8%	-647 097	-617 350	-589 607
2032	3 356 341	218 651	-5 435 236	1,9%	188 879	176 005	164 275
2033	3 975 908	6 469 813	1 034 577	111,8%	5 322 731	4 844 600	4 418 970
2034	3 033 220	5 604 579	6 639 156	95,6%	4 391 334	3 903 918	3 480 003
2035	2 861 072	5 298 689	11 937 846	99,2%	3 953 964	3 433 347	2 990 972
2036	2 389 268	4 786 146	16 723 992	94,0%	3 401 425	2 884 873	2 456 050
2037	1 982 875	4 350 746	21 074 738	89,3%	2 944 756	2 439 473	2 029 655
2038	1 641 830	3 976 009	25 050 748	84,9%	2 562 971	2 073 821	1 686 216
2039	1 352 442	3 657 775	28 708 523	81,1%	2 245 557	1 774 730	1 410 231
2040	1 101 402	3 381 688	32 090 211	77,6%	1 977 203	1 526 302	1 185 261
2041	1 926 331	3 138 471	35 228 682	74,4%	1 747 618	1 317 700	1 000 014
2042	2 433 228	2 931 255	38 159 937	72,0%	1 554 507	1 144 837	849 080
2043	2 248 222	2 727 220	40 887 157	69,0%	1 377 432	990 836	718 162
2044	2 061 690	2 523 940	43 411 097	65,4%	1 214 058	853 006	604 211
2045	1 908 440	2 352 069	45 763 166	62,7%	1 077 510	739 460	511 879
2046	1 745 056	2 174 255	47 937 421	59,2%	948 620	635 867	430 165
2047	1 591 082	2 006 753	49 944 175	55,8%	833 847	545 936	360 932
2048	1 287 616	1 690 554	51 634 728	48,5%	669 010	427 827	276 419
2049	1 018 480	1 409 389	53 044 117	41,7%	531 184	331 789	209 497
2050	782 362	1 161 871	54 205 988	35,3%	417 045	254 437	157 004
2051	574 473	943 152	55 149 140	29,4%	322 416	192 130	115 862
2052	390 740	749 103	55 898 243	23,8%	243 886	141 954	83 658
2053	227 691	576 208	56 474 451	18,7%	178 664	101 572	58 500
2054	82 364	421 466	56 895 917	14,0%	124 460	69 112	38 900
2055	-47 769	282 315	57 178 232	9,5%	79 398	43 064	23 688
2056	-89 671	220 482	57 398 714	7,7%	59 056	31 286	16 818
2057	-91 817	194 687	57 593 401	7,1%	49 663	25 698	13 500
2058	-79 819	182 751	57 776 152	7,0%	44 399	22 439	11 520
2059	-51 955	185 845	57 961 996	7,6%	43 000	21 227	10 650
2060	-54 400	164 538	58 126 535	7,0%	36 258	17 483	8 572
2061	-51 909	148 489	58 275 024	6,6%	31 163	14 677	7 033
2062	-74 323	112 316	58 387 340	5,1%	22 449	10 327	4 836
Итого 2030-2062	40 387 200	58 387 340	58 387 340	43,0%	33 242 164	25 776 603	20 251 597
2063	-399 209	-321 265	58 066 075	-12,7%	-61 154	-27 477	-12 575
2064	-484 119	-409 159	57 656 917	-16,1%	-74 176	-32 553	-14 560
2065	-557 607	-485 498	57 171 419	-19,2%	-83 825	-35 932	-15 705
2066	-627 578	-558 213	56 613 206	-22,1%	-91 790	-38 431	-16 416
2067	-694 545	-627 820	55 985 386	-25,0%	-98 320	-40 208	-16 785
2068	-758 947	-694 765	55 290 621	-27,7%	-103 623	-41 391	-16 886
2069	-821 166	-759 432	54 531 189	-30,3%	-107 874	-42 087	-16 780
2070	-881 531	-822 154	53 709 034	-32,8%	-111 222	-42 384	-16 514
2071	-1 433 827	-1 376 720	52 332 314	-45,8%	-177 376	-66 022	-25 139
2072	-1 504 694	-1 449 774	50 882 541	-48,0%	-177 894	-64 675	-24 067
2073	-1 561 056	-1 508 242	49 374 299	-49,9%	-176 255	-62 589	-22 761
2074	-1 616 493	-1 565 707	47 808 592	-51,8%	-174 258	-60 441	-21 480
2075	-1 671 166	-1 622 335	46 186 257	-53,5%	-171 962	-58 257	-20 234
2076	-1 725 216	-1 678 268	44 507 988	-55,3%	-169 420	-56 061	-19 029
2077	-1 778 766	-1 733 632	42 774 356	-57,0%	-166 675	-53 870	-17 869
2078	-1 831 924	-1 788 538	40 985 818	-58,6%	-163 766	-51 699	-16 759
2079	-1 884 786	-1 843 083	39 142 735	-60,2%	-160 724	-49 559	-15 700

2080	-1 937 437	-1 897 355	37 245 380	-61,7%	-157 578	-47 459	-14 693
2081	-1 989 953	-1 951 432	35 293 948	-63,2%	-154 351	-45 406	-13 738
2082	-2 042 401	-2 005 384	33 288 563	-64,7%	-151 065	-43 406	-12 835
2083	-2 094 844	-2 059 275	31 229 288	-66,1%	-147 738	-41 463	-11 981
2084	-2 147 337	-2 113 163	29 116 125	-67,5%	-144 385	-39 579	-11 177
2085	-2 199 934	-2 167 103	26 949 022	-68,8%	-141 019	-37 758	-10 421
2086	-2 252 682	-2 221 144	24 727 878	-70,1%	-137 653	-35 999	-9 709
2087	-2 305 626	-2 275 333	22 452 545	-71,4%	-134 297	-34 305	-9 042
2088	-2 358 811	-2 329 716	20 122 829	-72,6%	-130 959	-32 674	-8 417
2089	-2 412 277	-2 384 334	17 738 495	-73,8%	-127 647	-31 107	-7 831
2090	-2 466 062	-2 439 230	15 299 265	-74,9%	-124 367	-29 603	-7 283
2091	-2 520 206	-2 494 442	12 804 823	-76,0%	-121 126	-28 161	-6 771
2092	-2 574 746	-2 550 009	10 254 814	-77,1%	-117 928	-26 780	-6 292
2093	-2 629 718	-2 605 969	7 648 845	-78,1%	-114 777	-25 458	-5 846
2094	-2 685 159	-2 662 360	4 986 484	-79,1%	-111 677	-24 195	-5 429
2095	-2 741 103	-2 719 219	2 267 265	-80,1%	-108 630	-22 987	-5 041
Итого 2030-2095	-17 203 725	2 267 265	2 267 265	1,0%	28 846 654	24 406 624	19 795 832

Приложение 9 - Прогнозные отчисления в ликвидационный фонд по 1 варианту

Год	Отчисления в ликвидационный фонд, тыс.тенге
2030	22 406,03
2031	39 850,62
2032	58 629,63
2033	55 222,80
2034	58 529,48
2035	51 933,46
2036	50 330,31
2037	48 962,36
2038	47 823,78
2039	46 868,86
2040	46 051,34
2041	34 889,34
2042	27 332,81
2043	26 759,75
2044	26 238,15
Итого 2030-2044	641 828,72

Приложение 10 - Расчет дохода от продажи продукции в тыс.тенге ценах по 3 варианту

приложение 10 - 1	петег долоди	от продажи	_	ода от продажі	•	,			ычи сырого илн.м3)	Расчет дохо	да от продажи	сухого газа	Расчет д	охода от прода	жи СУГ	
Годы	Объем добычи конденсата (тыс.тонн)	Общий объем продажи конденсата (тыс.тонн)	Общий объем продажи конденсата на внешний рынок (тыс.тонн)	Общий объем продажи конденсата на внутренний рынок (тыс.тонн)	Цена конденсата на внешний рынок, тенге	Цена конденсата на внутренний рынок, тенге	Доход от продажи конденсата, тыс.тенге	Объем добычи сырого газа (млн.м3)	Общий объем продажи газа (млн.м3)	Объем добычи сухого газа (млн.м3)	Цена газ на внутренний рынок, тенге	Доход от продажи сухого, тыс.тенге	Объем добычи СУГ (тыс.тонн)	Цена СУГ на внутренний рынок, тенге	Доход от продажи СУГ, тыс.тенге	Общий доход предприятия, тыс.тенге (без НДС)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2030	2,93	2,87	2,01	0,86	238 290	67 000	536 849	50	49	38	23 030	886 547	0,99	121 260	119 691	1 543 087
2031	14,58	14,29	10,00	4,29	238 290	67 000	2 671 131	251	246	192	23 030	4 411 076	4,91	121 260	595 530	7 677 736
2032	25,51	25,00	17,50	7,50	238 290	67 000	4 671 734	438	429	335	23 030	7 714 848	8,59	121 260	1 041 565	13 428 146
2033	34,60	33,90	23,73	10,17	238 290	67 000	6 336 694	594	583	454	23 030	10 464 345	11,65	121 260	1 412 769	18 213 808
2034	40,90	40,08	28,06	12,02	238 290	67 000	7 491 464	703	689	537	23 030	12 371 318	13,77	121 260	1 670 225	21 533 007
2035	44,12	43,24	30,27	12,97	238 290	67 000	8 082 125	758	743	580	23 030	13 346 730	14,86	121 260	1 801 913	23 230 768
2036	44,76	43,86	30,70	13,16	238 290	67 000	8 197 626	769	754	588	23 030	13 537 466	15,07	121 260	1 827 664	23 562 756
2037	42,13	41,29	28,90	12,39	238 290	67 000	7 716 336	724	709	553	23 030	12 742 669	14,19	121 260	1 720 360	22 179 364
2038	35,33	34,62	24,24	10,39	238 290	67 000	6 470 876	607	595	464	23 030	10 685 931	11,90	121 260	1 442 685	18 599 492
2039	21,73	21,30	14,91	6,39	238 290	67 000	3 980 714	516	506	395	23 030	9 091 021	10,12	121 260	1 227 359	14 299 094
2040	12,97	12,71	8,90	3,81	238 290	67 000	2 375 469	444	435	339	23 030	7 818 281	8,70	121 260	1 055 529	11 249 280
2041	8,31	8,15	5,70	2,44	238 290	67 000	1 522 353	384	376	294	23 030	6 761 843	7,53	121 260	912 902	9 197 097
2042	5,82	5,70	3,99	1,71	238 290	67 000	1 065 996	333	326	255	23 030	5 864 434	6,53	121 260	791 745	7 722 174
2043	4,48	4,39	3,08	1,32	238 290	67 000	821 107	289	283	221	23 030	5 092 453	5,67	121 260	687 521	6 601 081
2044	3,75	3,68	2,57	1,10	238 290	67 000	687 176	251	246	192	23 030	4 423 548	4,93	121 260	597 214	5 707 938
2045	3,33	3,26	2,28	0,98	238 290	67 000	609 295	218	214	167	23 030	3 841 557	4,28	121 260	518 640	4 969 492
2046	3,05	2,99	2,09	0,90	238 290	67 000	557 913	189	186	145	23 030	3 334 093	3,71	121 260	450 129	4 342 135
2047	2,83	2,77	1,94	0,83	238 290	67 000	517 711	164	161	126	23 030	2 891 238	3,22	121 260	390 340	3 799 289
2048	2,63	2,58	1,80	0,77	238 290	67 000	481 290	142	139	109	23 030	2 504 781	2,79	121 260	338 165	3 324 236
2049	2,43	2,38	1,67	0,72	238 290	67 000	445 548	123	121	94	23 030	2 167 751	2,41	121 260	292 663	2 905 962
2050	2,24	2,19	1,53	0,66	238 290	67 000	409 601	106	104	81	23 030	1 874 121	2,09	121 260	253 021	2 536 743
2051	2,04	2,00	1,40	0,60	238 290	67 000	373 610	92	90	70	23 030	1 618 617	1,80	121 260	218 526	2 210 753
2052	1,85	1,81	1,27	0,54	238 290	67 000	338 138	79	78	61	23 030	1 396 589	1,55	121 260	188 550	1 923 278
2053	1,66	1,63	1,14	0,49	238 290	67 000	303 817	68	67	52	23 030	1 203 920	1,34	121 260	162 539	1 670 275
2054	1,48	1,45	1,02	0,44	238 290	67 000	271 194	59	58	45	23 030	1 036 956	1,15	121 260	139 997	1 448 147
Итого 2030-2054	365,44	358,13	250,69	107,44			66 935 768	8 355	8 188	6 387		147 082 129	163,76		19 857 242	233 875 139
2055	1,31	1,29	0,90	0,39	238 290	67 000	240 670	51	50	39	23 030	892 460	0,99	121 260	120 489	1 253 619
2056	1,16	1,14	0,80	0,34	238 290	67 000	212 498	44	43	33	23 030	767 565	0,85	121 260	103 627	1 083 690
Итого 2030-2056	367,91	360,56	252,39	108,17			67 388 936,25	8 449,28	8 280,29	6 458,63		148 742 153,88	165,61		20 081 358,29	236 212 448,42

Приложение 11 - Расчет капитальных вложений, тыс. тенге по 3 варианту

№	Наименование работ, объектов и затрат	Ед. изм.	Кол-	Стоимость ед-цы, тыс.тенге	Стоимость всего, тыс.тенге					Ι	<u>-</u>	капитальні		I		- 	Ι	I	I						2049-
						2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040		2042	2043	2044	2045	2046	2047	2048	2056
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	7	8	9	10
I	Строительство скважин (подземное строительство)																								
1	Бурение газодобывающих вертикальных скважин	тыс.тенге	7	1 229 990	8 609 930	1 229 990	1 229 990	1 229 990	1 229 990	1 229 990	1 229 990	1 229 990	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин	тыс.тенге			8 609 930	1 229 990	1 229 990	1 229 990	1 229 990	1 229 990	1 229 990	1 229 990	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого строительство скважин с учетом инфляции	тыс.тенге			9 144 094	1 229 990	1 254 590	1 279 682	1 305 275	1 331 381	1 358 008	1 385 169	0	0	0	0	0	0	0	0	0	0	0	0	0
II	Наземное строительство																								
	Обустройство промысла																								
1	Обустройство скважины		7	189 410	1 325 870	189 410	189 410	189 410	189 410	189 410	189 410	189 410	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Наземное строительство	тыс.тенге			6 196 565	189 410	189 410	189 410	189 410	189 410	189 410	189 410	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Трубопровод 10"	тыс.тенге			5 838 152	2 065 522	2 065 522	2 065 522	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Прочие (приобретение прав землепользования)	тыс.тенге			620 400	1 459 538	1 459 538	2 919 076	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	ПИР, экспертные заключения	тыс.тенге			82 250	16 450	24 675	41 125																	
	Итого надземное строительство	тыс.тенге			14 063 237	3 937 720	3 945 945	5 421 933	189 410	189 410	189 410	189 410	0	0	0	0	0	0	0	0	0	0	0	0	0
	Итого надземное строительство с учетом инфляции	тыс.тенге			14 432 020	3 937 720	4 024 864	5 640 979	201 003	205 023	209 124	213 306	0	0	0	0	0	0	0	0	0	0	0	0	0
	Всего со строительством скважин	тыс.тенге			22 673 167	5 167 710	5 175 935	6 651 923	1 419 400	1 419 400	1 419 400	1 419 400	0	0	0	0	0	0	0	0	0	0	0	0	0
	Всего со строительством скважин в ценах с учетом инфляции	тыс.тенге			23 576 114	5 167 710	5 279 454	6 920 661	1 506 279	1 536 404	1 567 132	1 598 475	0	0	0	0	0	0	0	0	0	0	0	0	0

Приложение 12 - Расчет эксплуатационных затрат, включаемых в себестоимость продукции в 3 варианте, тыс.тенге

			, , , , , , , , , , , , , , , , , , ,	топпых затрат,				стоимость						Нало	ги и платех	ки	TT		
Годы	Затраты на сырье и материалы	ГСМ	Ремонт скважин	Услуги производ- ственного характера	Эколог. расходы	Прочие расходы	Затраты на оплату труда ОПП	Страхо- вание по экологии	ниокр	сервисных	Затраты на страхование работников	I I	Амортиза- ционные отчисления	Налоги, отчисляемые от ФОТ ППП	Налог на имущество	НДПИ по	Итого налоги и платежи, включаемые в себестоимость продукции	Итого расходы, относимые на себестоимость продукции	Производ- ственная себестоимость 1 млн.м3 газа
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2030	21 539	10 293	82 132	98 938	561	161 424	294 808	235	38 283	21 965	29 986	37 713	425 983	21 823	41 946	97 205	160 973	1 384 833	27 499
2031	109 312	10 499	416 828	502 116	2 789	819 242	300 704	240	23 471	43 929	30 586	187 930	1 107 915	22 260	109 276	483 648	615 184	4 170 745	16 645
2032	195 008	10 709	743 602	895 751	4 878	1 461 488		244	45 405	65 894	31 197	331 522	1 954 732	22 705	179 916	845 887	1 048 508	7 095 656	16 191
2033	504 797		1 122 787	1 333 288	100 617	2 256 995		249	68 639	181 859	31 821	1 363 010	2 379 838	23 159	215 936	1 147 353	1 386 449	11 148 123	18 754
2034	560 343		1 334 593	1 588 432	101 823	2 673 284		254	94 273	203 823	32 458	1 368 666	2 678 102	23 622	209 293	1 356 441	1 589 357	12 649 659	18 000
2035	593 014		1 459 175	1 738 505	102 440	2 918 140		259	106 928	203 823	33 107	1 427 610	2 946 177	24 095	200 778	1 463 390	1 688 263	13 648 297	18 002
2036	605 393		1 506 379	1 795 367	102 560			265	115 197	203 823	33 769	1 413 262	3 180 891	24 577	190 355	1 484 303	1 699 234	14 104 646	18 342
2037	590 620		1 450 046	1 727 507	102 058	2 900 196		270	119 703	203 823	34 444	1 447 600	3 194 261	25 068	166 980	1 397 158	1 589 206	13 804 199	19 071
2038	539 185		1 253 916	1 491 247	100 757	2 514 719		275	105 109	203 823	35 133	1 400 591	3 054 558	25 569	131 615	1 171 649	1 328 834	12 479 622	20 559
2039	498 960		1 100 530	1 306 478	99 749	2 213 253		281	95 089	203 823	35 836	1 360 161	2 947 387	26 081	96 251	996 776	1 119 109	11 439 280	22 151
2040	466 546	106 547	976 929	1 157 586	98 944	1 970 324		286	87 291	203 823	36 553	1 325 957	2 862 612	26 602	60 887	857 228	944 718	10 597 484	23 862
2041	439 264	106 798	872 896	1 032 267	98 276	1 765 857	366 556	292	81 037	203 823	37 284	356 518	2 792 760	27 135	25 523	741 396	794 053	8 947 682	23 295
2042	415 698	107 054	783 034	924 018	97 708	1 589 240		298	75 802	203 823	38 029	330 633	898 909	27 677	3 920	643 000	674 598	6 512 733	19 550
2043	395 049	107 315	704 298	829 172	97 220	1 434 491	381 365	304	52 957	203 823	38 790	307 491	325 749	28 231	0	558 357	586 588	5 464 611	18 891
2044	376 807	107 581	634 737	745 377	96 797	1 297 774		310	43 813	203 823	39 566	286 555	282 261	28 795	0	485 016	513 811	5 018 205	19 971
2045	219 613	107 853	572 986	670 991	96 429	1 176 407	396 772	316	40 374	109 823	40 357	267 453	244 590	29 371	0	421 204	450 575	4 394 540	20 138
2046	205 200	61 130	518 027	604 787	96 108	927 390	404 708	323	34 990	109 823	41 164	249 912	211 870	29 959	0	365 563	395 522	3 860 954	20 386
2047	98 358	14 413	375 059	451 800	1 828	737 147	412 802	329	30 429	109 823	41 988	233 724	183 416	30 558	0	317 007	347 565	3 038 681	18 502
2048	86 916	14 701	331 425	399 238	1 584	651 389	421 058	336	23 828	109 823	42 827	218 725	158 661	31 169	0	274 634	305 803	2 766 315	19 442
2049	76 725	14 995	292 567	352 429	1 371	575 016	429 479	342	21 732	109 823	43 684	87 285	137 132	31 792	0	237 681	269 473	2 412 055	19 588
2050	67 659	15 295	210 996	263 785	1 185	507 071	438 068	349	19 882	109 823	44 558	0	118 420	32 428	0	205 486	237 914	2 035 006	19 115
2051	59 604	15 601	156 780	203 283	1 023	305 699	423 330	356	17 311	109 823	45 449	48 070	102 171	33 077	0	177 472	210 549	1 699 049	18 479
2052	28 956	15 913	129 525	170 453	883	252 134	432 266	363	13 763	39 323	46 358	0	88 078	33 738	0	153 128	186 866	1 404 882	17 709
2053	36 724	16 231	105 379	141 366	761	204 676	441 382	371	11 566	109 823	47 285	0	75 869	34 413	0	132 003	166 416	1 357 848	19 855
2054	40 522	16 556	84 017	115 633	656	162 691	450 679	378	11 314	39 323	48 231	0	65 303	35 101	0	113 696	148 797	1 184 101	20 102
Итого 2030- 2054	7 231 813			20 539 816		34 486 962		7 527		3 512 937	960 461	14 050 389	32 417 643	699 007	1 632 677			162 619 209	19 464
2055	35 573	16 887	135 646	163 400	564	266 600	483 663	386	9 747	109 823	49 195	218 725	56 171	35 803	0	97 853	133 656	1 680 037	33 139
2056	31 206	17 224	118 996	143 344	485	233 877	493 336	393	12 678	109 823	50 179	218 725	3 635	8 320	0	84 159	92 478	1 526 381	35 008
Итого 2030- 2056	7 298 593	1 632 799	17 473 285	20 846 560	1 410 054	34 987 440	10 325 772	8 306	1 400 613	3 732 583	1 059 835	14 487 840	32 477 449	743 130	1 632 677	16 308 693	18 684 500	165 825 627	19 626

Приложение 13 - Эксплуатационные затраты, включаемые в расходы периода в 3 варианте, тыс.тенге

	<i>J</i> ,	, ,	<u> </u>	<u>рды периода в 3 варианте,</u> Расходы перио				На	логи			
Годы	ФОТ АУП	Содержание АУП	Страхование	Административные расходы	Социальное развитие региона	Другие общехозяйственные расходы	Транспортные расходы	Налоги и сборы, зависимые от ФОТ АУП	Прочие налоги и отчисления в Бюджет	Итого расходы периода	Обучение казахстанских специалистов	Отчисления в фонд ликвидации
1	2	3	4	5	6	7	8	9	10	11	12	13
2030	84 495	128 586	16 450	33 871	89 050	46 864	34 192	18 527	33	452 068	40 444	23 471
2031	86 185	131 158	16 779	34 549	63 233	47 801	170 123	18 898	67	568 792	23 471	45 405
2032	87 908	133 781	17 115	35 240	87 810	48 757	297 541	19 276	100	727 526	45 405	68 639
2033	89 666	136 456	17 457	35 945	128 912	49 732	403 582	19 661	133	881 545	68 639	94 273
2034	91 460	139 186	17 806	36 663	111 675	50 727	477 128	20 054	167	944 866	94 273	106 928
2035	93 289	141 969	18 162	37 397	124 700	51 741	514 747	20 455	167	1 002 628	106 928	115 197
2036	95 155	144 809	18 525	38 145	133 871	52 776	522 104	20 864	167	1 026 416	115 197	119 703
2037	97 058	147 705	18 896	38 908	138 549	53 832	491 450	21 282	167	1 007 846	119 703	105 109
2038	98 999	150 659	19 274	39 686	120 608	54 908	412 128	21 707	167	918 136	105 109	95 089
2039	100 979	153 672	19 659	40 479	110 105	56 006	350 616	22 142	167	853 826	95 089	87 291
2040	102 999	156 746	20 052	41 289	101 892	57 127	301 530	22 584	167	804 386	87 291	81 037
2041	105 058	159 880	20 454	42 115	95 289	58 269	260 786	23 036	167	765 055	81 037	75 802
2042	107 160	163 078	20 863	42 957	80 353	59 435	226 175	23 497	167	723 684	75 802	52 957
2043	109 303	166 340	21 280	43 816	57 243	60 623	196 402	23 967	167	679 140	52 957	43 813
2044	111 489	169 666	21 705	44 693	47 863	61 836	170 604	24 446	167	652 469	43 813	40 374
2045	113 719	173 060	22 140	45 586	44 210	63 072	148 159	24 935	167	635 047	40 374	0
2046	115 993	176 521	22 582	46 498	38 632	64 334	128 587	25 434	167	618 748	34 990	0
2047	118 313	180 051	23 034	47 428	33 893	65 620	111 507	25 942	167	605 956	30 429	0
2048	120 679	183 652	23 495	48 377	26 187	66 933	96 603	26 461	167	592 553	23 828	0
2049	123 093	187 325	23 965	49 344	23 939	68 272	83 604	26 990	167	586 699	21 732	0
2050	125 555	191 072	24 444	50 331	20 772	69 637	72 280	27 530	167	581 787	19 882	0
2051	128 066	194 893	24 933	51 338	17 327	71 030	62 426	28 081	167	578 259	17 311	0
2052	130 627	198 791	25 431	52 364	14 257	72 450	53 863	28 642	167	576 594	13 763	0
2053	109 740	61 767	25 940	6 412	11 579	73 899	46 432	29 215	167	365 151	11 566	0
2054	41 904	65 822	26 459	7 480	11 326	75 377	39 993	29 800	167	298 328	11 314	0
Итого 2030-2054	2 588 889	3 836 646	526 898	990 909	1 733 276	1 501 058	5 672 562	593 426	3 838	17 447 503	1 380 349	1 155 088
2055	138 622	210 959	26 988	55 570	9 758	76 885	34 420	30 396	167	583 763	9 747	0
2056	141 395	215 178	27 528	56 681	14 874	78 423	29 603	7 033	167	570 882	12 678	0
Итого 2030-2056	2 868 906	4 262 783	581 414	1 103 160	1 757 908	1 656 366	5 736 585	630 855	4 171	18 602 148	1 402 774	1 155 088

Приложение 14 - Расчет бюджетной эффективности 3 варианта разработки, тыс. тенге

•				KH, I BIC. ICHI C		доход госу	ДАРСТВА, тыс. то	енге				
				Anouse		Прочие				Дискої	нтированный доход l	РК при
Годы	Социальный налог	ИПН	Налог на имущество	Аренда земельных участков	ндпи	налоги и платежи в бюджет	кпн	НСП	Суммарный доход РК	5,0%	7,5%	10,0%
1	2	3	4	5	6	7	8	9	10	11	12	13
2030	21 136	19 214	41 946	47	97 205	33	0	0	179 581	821 801	802 689	784 446
2031	21 559	19 599	109 276	48	483 648	67	286 285	0	920 482	1 648 161	1 572 394	1 501 734
2032	21 990	19 991	179 916	49	845 887	100	452 083	0	1 520 015	2 429 988	2 264 366	2 113 460
2033	22 430	20 391	215 936	50	1 147 353	133	1 052 866	0	2 459 159	2 879 050	2 620 430	2 390 208
2034	22 878	20 798	209 293	51	1 356 441	167	1 545 345	0	3 154 974	3 384 633	3 008 955	2 682 221
2035	23 336	21 214	200 778	52	1 463 390	167	1 785 850	0	3 494 786	3 536 516	3 070 865	2 675 194
2036	23 802	21 639	190 355	53	1 484 303	167	1 844 070	0	3 564 389	3 438 044	2 915 931	2 482 491
2037	24 278	22 071	166 980	54	1 397 158	167	1 756 694	0	3 367 402	2 992 893	2 479 350	2 062 833
2038	24 764	22 513	131 615	55	1 171 649	167	1 387 541	0	2 738 304	2 372 040	1 919 329	1 560 600
2039	25 259	22 963	96 251	56	996 776	167	793 148	0	1 934 621	1 711 315	1 352 503	1 074 722
2040	25 765	23 422	60 887	57	857 228	167	392 378	0	1 359 905	1 251 987	966 472	750 521
2041	26 280	23 891	25 523	58	741 396	167	340 561	0	1 157 876	983 536	741 584	562 794
2042	26 805	24 369	3 920	60	643 000	167	191 062	0	889 383	765 560	563 807	418 153
2043	27 342	24 856	0	61	558 357	167	93 972	0	704 754	611 395	439 799	318 768
2044	27 888	25 353	0	62	485 016	167	15 896	0	554 382	490 254	344 456	243 989
2045	28 446	25 860	0	63	421 204	167	6 377	0	482 117	402 418	276 167	191 172
2046	29 015	26 377	0	65	365 563	167	0	0	421 187	332 916	223 156	150 965
2047	29 595	26 905	0	65	317 007	167	49 884	0	423 623	280 481	183 637	121 407
2048	30 187	27 443	0	66	274 634	167	3 349	0	335 846	222 222	142 109	91 817
2049	30 791	27 992	0	67	237 681	167	0	0	296 698	183 099	114 367	72 213
2050	31 407	28 552	0	68	205 486	167	0	0	265 680	148 801	90 783	56 019
2051	32 035	29 123	0	70	177 472	167	0	0	238 866	121 161	72 201	43 540
2052	32 676	29 705	0	71	153 128	167	301	0	216 048	97 596	56 806	33 478
2053	33 329	30 299	0	73	132 003	167	0	0	195 871	85 819	48 789	28 100
2054	33 996	30 905	0	74	113 696	167	2 760	0	181 598	72 030	39 997	22 513
Итого 2030- 2054	676 989	615 444	1 632 677	1 494	16 126 681	3 838	12 000 420	0	31 057 544	31 263 717	26 310 941	22 433 357
2055	34 676	31 523	0	76	97 853	167	0	0	164 294	80 177	43 486	23 920
2056	35 369	32 154	0	77	84 159	167	0	0	151 926	56 835	30 109	16 185
Итого 2030- 2056	747 034	679 121	1 632 677	1 647	16 308 693	4 171	12 000 420	0	31 373 764	31 400 728	26 384 536	22 473 462

Приложение 15 - Расчет налогооблагаемого дохода в 3 варианте, тыс.тенге

	Всего расходы,		тисмого дол	ода в 5 варианте, ть	ACTION C	
	связанные с	расходы		Амортизанионные	Всего вычитаемые	
	обычной	(DICTIONIONI IO		отинолония	затраты, налоги и	
	деятельностью	`	Балансовая	относимые на	специальные	Налого-
Годы	,	расходы	прибыль	вычеты при	фонды,	облагаемый
Годы	(расходы,	периода)	(+),	определении	определяемые для	доход
	включаемые в	- /	убыток (-)		Налогооблагаемого	Aonog
	с/с + расходы	на 1 млн.м3		дохода	дохода	
	периода)	газа				
1	2	3	4	5	6	7
2030	1 900 816	37 744	-357 776	1 482 661	418 155	0
2031	4 808 413	19 190	2 869 276	2 545 763	2 262 650	16 973
2032	7 937 227	18 112	5 490 871	3 770 734	4 166 492	3 674 868
2033	12 192 580	20 512	6 021 178	3 136 687	9 055 893	5 264 329
2034	13 795 727	19 631	5 387 230	2 688 608	11 107 119	7 726 724
2035	14 873 050	19 617	6 007 666	2 374 595	12 498 456	8 929 248
2036	15 365 962	19 982	5 846 740	2 157 281	13 208 681	9 220 350
2037	15 036 858	20 774	4 792 452	1 553 242	13 483 616	8 783 471
2038	13 597 956	22 401	2 651 481	1 118 334	12 479 622	6 937 704
2039	12 475 486	24 158	1 823 552	805 201	11 670 285	3 965 738
2040	11 570 198	26 052	-320 975	579 745	10 990 453	1 961 892
2041	9 869 576	25 695	-672 538	417 416	9 452 160	1 702 806
2042	7 365 176	22 109	356 939	300 540	7 064 636	955 308
2043	6 240 521	21 573	360 499	216 389	6 024 132	469 859
2044	5 754 860	22 902	-46 984	155 800	5 599 060	79 478
2045	5 069 960	23 233	-100 531	112 176	4 957 785	31 883
2046	4 514 693	23 838	-172 623	80 767	4 433 926	0
2047	3 675 067	22 377	124 156	58 152	3 616 915	207 902
2048	3 382 697	23 774	-58 528	41 869	3 340 828	58 264
2049	3 020 485	24 529	-114 592	30 146	2 990 339	0
2050	2 636 674	24 767	-100 001	21 705	2 614 969	0
2051	2 294 620	24 956	-83 938	15 628	2 278 992	0
2052	1 995 239	25 150	-72 034	11 252	1 983 987	0
2053	1 734 566	25 363	-64 364	8 101	1 726 464	0
2054	1 493 743	25 359	-45 672	5 833	1 487 910	13 707
Итого		-				
2030-	182 602 149	21 855	39 521 485	23 688 623	158 913 526	60 000 504
2054						
2055	2 273 548	44 847	-1 020 005	4 200	2 269 348	0
2056	2 109 941	48 392	-1 026 330	3 024	2 106 917	0
Итого						
2030-	186 985 638	22 130	37 475 150	23 695 847	163 289 791	60 000 504
2056						

Приложение 16 - Расчет чистой прибыли в 3 варианте, тыс.тенге

прилог	жение 16 - Расчет ч	истои приоыли в э	варианте, тыс.т			
				Чистая		Чистая
	По токооб токоомоя	 Налогооблагаемая	I <i>l</i> on on o 	прибыль		прибыль
Годы	палогооолагаемая прибыль до	палогооолагаемая прибыль после	корпоративныи подоходный	после	Налог на	после
1 ОДЫ		переноса убытков	подоходныи налог	выплаты	сверхприбыль	выплаты
	переноса убытков	переноса убытков	налог	подоходного		налога на
				налога		сверхприбыль
1	2	3	4	5	6	7
2030	0	0	0	-357 776	0	-357 776
2031	16 973	16 973	286 285	2 582 990	0	2 582 990
2032	3 674 868	3 674 868	452 083	5 038 788	0	5 038 788
2033	5 264 329	5 264 329	1 052 866	4 968 312	0	4 968 312
2034	7 726 724	7 726 724	1 545 345	3 841 885	0	3 841 885
2035	8 929 248	8 929 248	1 785 850	4 221 816	0	4 221 816
2036	9 220 350	9 220 350	1 844 070	4 002 670	0	4 002 670
2037	8 783 471	8 783 471	1 756 694	3 035 758	0	3 035 758
2038	6 937 704	6 937 704	1 387 541	1 263 940	0	1 263 940
2039	3 965 738	3 965 738	793 148	1 030 404	0	1 030 404
2040	1 961 892	1 961 892	392 378	-713 354	0	-713 354
2041	1 702 806	1 702 806	340 561	-1 013 099	0	-1 013 099
2042	955 308	955 308	191 062	165 877	0	165 877
2043	469 859	469 859	93 972	266 527	0	266 527
2044	79 478	79 478	15 896	-62 879	0	-62 879
2045	31 883	31 883	6 377	-106 908	0	-106 908
2046	0	0	0	-172 623	0	-172 623
2047	207 902	207 902	49 884	74 272	0	74 272
2048	58 264	58 264	3 349	-61 877	0	-61 877
2049	0	0	0	-114 592	0	-114 592
2050	0	0	0	-100 001	0	-100 001
2051	0	0	0	-83 938	0	-83 938
2052	0	0	301	-72 335	0	-72 335
2053	0	0	0	-64 364	0	-64 364
2054	13 707	13 707	2 760	-48 432	0	-48 432
Итого						
2030-	60 000 504	60 000 504	12 000 420	27 521 064	0	27 521 064
2054						
2055	0	0	0	-1 020 005	0	-1 020 005
2056	0	0	0	-1 026 330	0	-1 026 330
Итого						
2030-	60 000 504	60 000 504	12 000 420	25 474 729	0	25 474 729
2056						

Приложение 17 - Расчет потоков денежной наличности в 3 варианте, тыс.тенге

Приложени	10 17 - 1 ac 401	потоков дене	жнои наличност	и в э вар								
	Чистая	_			Дисконтированный поток денежной наличности (NPV Чистая приведенная							
_	прибыль с	Поток	Накопленный	ВНП								
Годы	учетом всех	денежной	поток денежной	(IRR)		стоимость)						
	выплат	наличности	наличности	, ,	дисконт 5 %	дисконт 7,5 %	дисконт 10 %					
1	2	3	4	5	6	70	8					
2030	-357 776	-4 673 520	-4 673 520	-70,4%	-4 450 972	-4 347 461	-4 248 655					
2031	2 582 990	415 982	-4 257 538	5,0%	377 308	359 963	343 787					
2032	5 038 788	3 320 590	-936 948	27,5%	2 868 451	2 672 944	2 494 809					
2033	4 968 312	8 388 494	7 451 546	74,0%	4 551 235	3 931 309	3 379 454					
2034	3 841 885	10 034 758	17 486 304	77,0%	5 512 495	4 639 797	3 880 795					
2035	4 221 816	10 762 477	28 248 781	76,7%	5 681 126	4 623 671	3 725 138					
2036	4 002 670	10 806 845	39 055 626	75,3%	5 330 223	4 163 879	3 195 620					
2037	3 035 758	9 634 483	48 690 109	76,8%	4 170 998	3 052 076	2 144 558					
2038	1 263 940	7 610 006	56 300 115	69,2%	4 905 478	3 969 253	3 227 386					
2039	1 030 404	4 830 722	61 130 837	51,0%	2 965 644	2 343 837	1 862 452					
2040	-713 354	2 930 677	64 061 514	35,2%	1 713 506	1 322 741	1 027 184					
2041	-1 013 099	2 388 075	66 449 589	35,1%	1 329 769	1 002 643	760 914					
2042	165 877	1 618 982	68 068 571	26,5%	858 581	632 313	468 961					
2043	266 527	1 098 043	69 166 613	20,0%	554 586	398 934	289 149					
2044	-62 879	684 204	69 850 817	13,6%	329 114	231 238	163 793					
2045	-106 908	533 994	70 384 811	12,0%	244 629	167 881	116 213					
2046	-172 623	39 248	70 424 059	0,9%	17 124	11 478	7 765					
2047	74 272	509 076	70 933 135	15,5%	211 532	138 494	91 562					
2048	-61 877	322 480	71 255 615	10,7%	127 616	81 610	52 728					
2049	-114 592	22 540	71 278 155	0,8%	8 495	5 306	3 350					
2050	-100 001	18 418	71 296 573	0,7%	6 611	4 033	2 489					
2051	-83 938	18 233	71 314 806	0,8%	6 233	3 714	2 240					
2052	-72 335	99 464	71 414 270	5,5%	32 383	18 848	11 108					
2053	-64 364	11 504	71 425 774	0,7%	3 567	2 028	1 168					
2054	-48 432	79 190	71 504 965	5,8%	23 385	12 986	7 309					
Итого 2030-2054	27 521 064	71 504 965	71 504 965	41,6%	37 379 116	29 443 515	23 011 277					
2055	-1 020 005	-10 833 835	60 671 130	-43,5%	-10 141 070	-10 017 022	-9 950 871					
2056	-1 026 330	-10 892 694	49 778 435	-48,6%	-10 143 927	-10 015 117	-9 948 009					
Итого 2030-2056	25 474 729	49 778 435	49 778 435	20,0%	17 094 119	9 411 376	3 112 397					

Приложение 18 - Прогнозные отчисления в ликвидационный фонд по 3 варианту

Год	Отчисления в ликвидационный фонд, тыс.тенге
2030	23 470,71
2031	45 405,36
2032	68 638,91
2033	94 273,28
2034	106 928,18
2035	115 196,81
2036	119 703,49
2037	105 109,18
2038	95 089,23
2039	87 290,56
2040	81 037,36
2041	75 802,21
2042	52 956,64
2043	43 812,62
2044	40 373,53
Итого 2030-2044	1 155 088,07

Приложение 19 – Месторождение Каменское. Характеристика основного фонда и основных показателей промышленной разработки по отбору газа и конденсата

по рекомендуемому 1 варианту

Годы	Ввод скважин из буре- ния	из консер- вации	Всего ввод сква- жин	Перевод с нижеле- жащего гори- зонта, ед.	тие сква- жин	бурение с начала разра-ботки, тыс.м	Фонд скважин с начала разра- ботки	Добыча сырого газа, млн.м ^з	Накоплен- ная добыча сырого газа, млн.м ³	КИГ, д.ед.	%	газа, тыс.м ³ /сут	т/сут	МПа	МПа	МПа	сата, тыс.т	ленная добыча конденсата тыс.т	КИК, д.ед.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2030	1	0	1	0	0	3,2	1	35,7	36	0,003	0,6	411,5	23,9	46,1	41,1	41,0	2,1	2,1	0,003
2031	1	0	1	0	0	6,4	2	177,7	213	0,021	3,2	410,1	23,9		40,9	40,8	10,3	12,4	0,021
2032	1	0	1	0	0	9,6	3	313,6	527	0,051	5,7	401,9	23,4		40,0	39,9	18,2	30,7	0,051
2033	0	0	0	0	0	9,6	3	400,1	927	0,090	7,3	384,6	22,4		38,0	37,9	23,3	54,0	0,090
2034	0	0	0	0	0	9,6	3	374,3	1301	0,126	6,8	359,8	20,9	40,2	35,2	35,1	21,8	75,7	0,126
2035	0	0	0	0	0	9,6	3	347,2	1649	0,160	6,3	333,8	19,4		32,3	32,2	20,2	95,9	0,160
2036	0	0	0	0	0	9,6	3	322,4	1971	0,191	5,9	309,9	18,0		29,7	29,6	18,8	114,7	0,191
2037	0	0	0	0	0	9,6	3	300,9	2272	0,221	5,5	289,3	16,8		27,4	27,3	17,5	132,2	0,220
2038	0	0	0	0	0	9,6	3	282,5	2554	0,248	5,1	271,6	15,8		25,5	25,4	16,4	148,7	0,247
2039	0	0	0	0	0	9,6	3	266,6	2821	0,274	4,9	256,3	14,9		23,9	23,8	15,5	164,2	0,273
2040	0	0	0	0	0	9,6	3	252,6	3074	0,298	4,6	242,8	14,1		22,4	22,3	14,7	178,9	0,298
2041	0	0	0	0	0	9,6	3	240,0	3314	0,322	4,4	230,7	13,4		21,1	21,0	14,0	192,9	0,321
2042	0	0	0	0	0	9,6	3	228,6	3542	0,344	4,2	219,7	12,8	,	19,9	19,8	13,3	206,2	0,343
2043	0	0	0	0	0	9,6	3	218,0	3760	0,365	4,0	209,6	12,2		18,9	18,8	12,7	218,8	0,364
2044	0	0	0	0	0	9,6	3	208,3	3968	0,385	3,8	200,3	11,7		17,9	17,8	12,1	231,0	0,384
2045	0	0	0	0	0	9,6	3	199,2	4168	0,405	3,6	191,5	11,1	22,0	17,0	16,9	11,6	242,6	0,404
2046	0	0	0	0	0	9,6	3	190,8	4358	0,423	3,5	183,4	10,7	21,1	16,1	16,0	11,1	253,7	0,422
2047	0	0	0	0	0	9,6	3	182,8	4541	0,441	3,3	175,7	10,2	20,3	15,3	15,2	10,6	264,3	0,440
2048	0	0	0	0	0	9,6	3	175,3	4717	0,458	3,2	168,5	8,8	19,5	14,5	14,4	9,1	273,4	0,455
2049	0	0	0	0	0	9,6	3	168,1	4885	0,474	3,1	161,6	7,5	18,8	13,8	13,7	7,8	281,2	0,468
2050	0	0	0	0	0	9,6	3	161,4	5046	0,490	2,9	155,2	6,5	18,1	13,1	13,0	6,7	288,0	0,479
2051	0	0	0	0	0	9,6	3	155,0	5201	0,505	2,8	149,0	5,6	17,5	12,5	12,4	5,8	293,7	0,489
2052	0	0	0	0	0	9,6	3	148,9	5350	0,519	2,7	143,1	4,8	16,9	11,9	11,8	5,0	298,7	0,497
2053	0	0	0	0	0	9,6	3	143,1	5493	0,533	2,6	137,6	4,2	16,3	11,3	11,2	4,3	303,1	0,504
2054	0	0	0	0	0	9,6	3	137,5	5631	0,547	2,5	132,2	3,6	15,8	10,8	10,7	3,8	306,8	0,511
2055	0	0	0	0	0	9,6	3	132,2	5763	0,559	2,4	127,1	3,2		10,2	10,1	3,3	310,2	0,516
2056	0	0	0	0	0	9,6	3	127,2	5890	0,572	2,3	122,2	2,8	14,7	9,7	9,6	2,9	313,1	0,521
2057	0	0	0	0	0	9,6	3	122,3	6012	0,584	2,2	117,6	2,5	14,3	9,3	9,2	2,6	315,7	0,525
2058	0	0	0	0	0	9,6	3	117,6	6130	0,595	2,1	113,1	2,2	13,8	8,8	8,7	2,3	318,0	0,529

ПРОЕКТ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ КАМЕНСКОЕ

Продолжение приложения 19

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2059	0	0	0	0	0	9,6	3	113,2	6243	0,606	2,1	108,8	2,0	13,4	8,4	8,3	2,1	320,1	0,533
2060	0	0	0	0	0	9,6	3	108,9	6352	0,617	2,0	104,7	1,8	12,9	7,9	7,8	1,9	322,0	0,536
2061	0	0	0	0	0	9,6	3	104,8	6457	0,627	1,9	100,7	1,7	12,5	7,5	7,4	1,7	323,7	0,539
2062	0	0	0	0	0	9,6	3	100,8	6558	0,636	1,8	96,9	1,6	12,2	7,2	7,1	1,6	325,3	0,541

Приложение 20 – Месторождение Каменское. Характеристика основного фонда и основных показателей промышленной разработки по отбору газа и конденсата

по рекомендуемому 1 варианту

Годы	Ввод скважин из бурения	из консе- рвации	Всего ввод	жащего горизонта, ед.	Выбытие сква- жин	Эксплуа- тационное бурение с начала разра- ботки, тыс.м	Фонд скважин с начала разра- ботки	газа, млн.м ³	Накоп- ленная добыча сырого газа, млн.м ³	КИГ, д.ед.	%	газа, тыс.м ³ /сут	теут	МПа	Рзаб, МПа	МПа	сата, тыс.т	Накоп- ленная добыча конден- сата, тыс.т	д.ед.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2030	1	0	1	0	0	3,2	1	50,4	50	0,005	0,6	580,9	33,8	46,1	38,6	38,5	2,9	2,9	0,005
2031	1	0	1	0	0	6,4	2	250,6	301	0,029	3,0	578,1	33,6	45,9	38,4	38,3	14,6	17,5	0,029
2032	1	0	1	0	0	9,6	3	438,2	739	0,072	5,3	561,7	32,7	44,6	37,1	37,0	25,5	43,0	0,072
2033	1	0	1	0	0	12,8	4	594,4	1334	0,129	7,2	527,5	30,7	41,8	34,3	34,2	34,6	77,6	0,129
2034	1	0	1	0	0	16	5	702,8	2036	0,198	8,5	476,9	27,8	37,9	30,4	30,3	40,9	118,5	0,197
2035	1	0	1	0	0	19,2	6	758,2	2795	0,271	9,1	416,5	24,2	33,2	25,7	25,6	44,1	162,6	0,271
2036	1	0	1	0	0	22,4	7	769,0	3564	0,346	9,3	354,8	20,7	28,5	21,0	20,9	44,8	207,4	0,345
2037	0	0	0	0	0	22,4	7	723,8	4287	0,416	8,7	298,2	17,4	24,4	16,9	16,8	42,1	249,5	0,415
2038	0	0	0	0	0	22,4	7	607,0	4894	0,475	7,3	250,1	14,6	20,9	13,4	13,3	35,3	284,9	0,474
2039	0	0	0	0	0	22,4	7	516,4	5411	0,525	6,2	212,8	9,0	18,2	10,7	10,6	21,7	306,6	0,510
2040	0	0	0	0	0	22,4	7	444,1	5855	0,568	5,4	183,0	5,3	16,1	8,6	8,5	13,0	319,6	0,532
2041	0	0	0	0	0	22,4	7	384,1	6239	0,606	4,6	158,2	3,4	14,4	6,9	6,8	8,3	327,9	0,546
2042	0	0	0	0	0	22,4	7	333,1	6572	0,638	4,0	137,2	2,4	12,9	5,4	5,3	5,8	333,7	0,555
2043	0	0	0	0	0	22,4	7	289,3	6861	0,666	3,5	119,2	1,8	11,7	4,2	4,1	4,5	338,2	0,563
2044	0	0	0	0	0	22,4	7	251,3	7113	0,690	3,0	103,5	1,5	10,6	3,1	3,0	3,8	341,9	0,569
2045	0	0	0	0	0	22,4	7	218,2	7331	0,712	2,6	89,9	1,4	9,7	2,2	2,1	3,3	345,2	0,574
2046	0	0	0	0	0	22,4	7	189,4	7520	0,730		78,0	1,3	8,9	1,4	1,3	3,0	348,3	0,580
2047	0	0	0	0	0	22,4	7	164,2	7685	0,746	2,0	67,7	1,2	8,2	0,7	0,6	2,8	351,1	0,584
2048	0	0	0	0	0	22,4	7	142,3	7827	0,760	1,7	58,6	1,1	7,6	0,1	0,0	2,6	353,7	0,589
2049	0	0	0	0	0	22,4	7	123,1	7950	0,772	1,5	50,7	1,0	7,1	-0,4	-0,5	2,4	356,2	0,593
2050	0	0	0	0	0	22,4	7	106,5	8056	0,782	1,3	43,9	0,9	6,6	-0,9	-1,0	2,2	358,4	0,596
2051	0	0	0	0	0	22,4	7	91,9	8148	0,791	1,1	37,9	0,8	6,2	-1,3	-1,4	2,0	360,5	0,600
2052	0	0	0	0	0	22,4	7	79,3	8228	0,799	1,0	32,7	0,8	5,9	-1,6	-1,7	1,8	362,3	0,603
2053	0	0	0	0	0	22,4	7	68,4	8296	0,805	0,8	28,2	0,7	5,6	-1,9	-2,0	1,7	364,0	0,606
2054	0	0	0	0	0	22,4	7	58,9	8355	0,811	0,7	24,3	0,6	5,3	-2,2	-2,3	1,5	365,4	0,608

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. «Подсчет запасов газа, конденсата и попутных компонентов в верхнепермских (калиновских) отложениях Каменского месторождения Западно-Казахстанской области по состоянию на 01.09.1996 г.», АО «Уральскнефтегазгеология», Г.Н.Матолошинский, С.Н.Финкельштейн, В.Г.Хуснуллин и др., г. Уральск, 1996 г
- 2. «Проект опытно-промышленной эксплуатации (разработки) Каменско-Токаревско Тепловской группы месторождений», НИПИмунайгаз, 1999 г.
- 3. «Авторский надзор за реализацией проекта опытно-промышленной разработки Каменско-Токаревско-Тепловской группы месторождений», 2003 г.
- 4. «Проект опытно-промышленной эксплуатации (разработки) газоконденсатного месторождения Каменское», АО «КазНИПИмунайгаз», 2012 г.
- 5. «Технико-экономическое обоснование развития Каменско-Тепловско-Токаревской группы месторождений», АО «КазНИПИмунайгаз», 2013 г.
- 6. «Проект разработки газоконденсатного месторождения Каменское по состоянию на 01.01.2019 г., АО «НИПИнефтегаз», 2019 г. [6]
- 7. «Дополнение к Проекту разработки газоконденсатного месторождения Каменское» по состоянию на 01.06.2020 г., АО «НИПИнефтегаз», 2020 г.
- 8. Ширковский А.И. Разработка и эксплуатация газовых и газоконденсатных месторождений. Москва, Недра, 1979 г.
- 9. Г.С.Степанова, И.Ю.Зайцев "Разработка сероводородсодержащих месторождений углеводородов". Москва, Недра. 1986 г.
- 10. СТК РК ИСО 15156–1,2,3-2011 «Материалы для применения в средах, содержащих сероводород, при нефте- и газодобыче» Части 1, 2 и 3.
- 11. «Методика расчетов нормативов и объемов сжигания сырого газа при проведении операций по недропользованию» приказ Министра Энергетики РК №164 от 05.05.2018г.».