Таблица 3.1

ЭРА v2.5 ИП Пасечная И.Ю.

Код	Наименование			алгарский р-он, Строительство мясоперерабатывающего завода, мощностью 6000 птиц/час						
	паименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс	
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,	
веще-				безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год	
ства		мг/м3	мг/м3	УВ,мг/м3						
1	2	3	4	5	6	7	8	9	10	
	елезо (II, III) оксиды (диЖелезо		0.04		3	0.0225845243	0.2341563471	5.8539	5.85390868	
	риоксид, Железа оксид) /в									
	ересчете на железо/ (274)									
	альций оксид (Негашеная известь)			0.3		0.015069832	0.000271257	0	0.00090419	
	535*)				_					
	арганец и его соединения /в	0.01	0.001		2	0.0024221557	0.0251129123	66.049	25.1129123	
	ересчете на марганца (IV) оксид/									
	327)		0.001		2	0 0000010201	0.0000200117	0	0.0200117	
	икель оксид /в пересчете на икель/ (420)		0.001			0.0000019301	0.0000200117	U	0.0200117	
	пово оксид /в пересчете на олово/		0.02		3	0.00001419036	0 0001471254	0	0.00735627	
	олово оксид /в пересчете на олово/		0.02		J	0.00001419030	0.00014/1234	O	0.00733027	
	винец и его неорганические	0.001	0.0003		1	0 0000258467	0.0002679793	0	0.89326431	
	рединения /в пересчете на свинец/	0.001	0.0003		_	0.0000200107	0.0002073733	Ü	0.03320131	
	513)									
0190 ди	Сурьма триоксид /в пересчете на		0.02		3	0.00000000011	0.0000000011	0	0.00000006	
	урьму/ (Сурьма трехокись, Сурьма									
(I	III) оксид) (533)									
	оом /в пересчете на хром (VI)		0.0015		1	0.0034585543	0.0358582901	220.5196	23.9055267	
	ссид/ (Хром шестивалентный) (647)									
	вота (IV) диоксид (Азота диоксид)	0.2	0.04		2	0.2844262057	7.109248572	840.8002	177.731214	
(4)	· ·									
	вот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.000321615			0.00463125	
	лерод (Сажа, Углерод черный)	0.15	0.05		3	0.037664676	0.9861506	19.723	19.723012	
	583)	0 5	0.05			0 0001 00000	0 4050500	0 0101	0.010056	
	ера диоксид (Ангидрид сернистый,	0.5	0.05		3	0.022162778	0.4959528	9.9191	9.919056	
	ернистый газ, Сера (IV) оксид)									
	ло) при	5	.3		4	0 1050226422	4.9401052164	1 5666	1.64670174	
	лерод оксид (окись углерода,	5	J		4	0.1939320433	4.9401032104	1.3000	1.040/01/4	
	ористые газообразные соединения	0.02	0.005		2	0.000002417	0.000025056	0	0.0050112	
	в пересчете на фтор/ (617)	0.02	0.005			0.00000241/	0.000023030	O O	0.0000112	
0344 Фт	гориды неорганические плохо	0.2	0.03		2	0.003624962	0.037583604	1.3404	1.2527868	
	астворимые - (алюминия фторид,	٠-١	0.00				1,00,000001	2.0101		
	альция фторид, натрия									
	ексафторалюминат) (Фториды									

Таблица 3.1

на период строительства с передвижными источниками

ЭРА v2.5 ИП Пасечная И.Ю.

Талгарский р-он, Строительство мясоперерабатывающего завода, мощностью 6000 птиц/час Кол Наименование ПДК ПЛК ОБУВ Класс Выброс Выброс Значение Выброс загр. вешества максим. среднеориентир. опасвещества вещества, КОВ вещества, разовая, суточная, безопасн. ности вешеr/c т/год (М/ПЛК) **а vсл.т/год ства мг/м3 мг/м3 УВ**,**мг/м3 6 8 10 неорганические плохо растворимые /в пересчете на фтор/) (615) 122.6977 122.697735 0616 Диметилбензол (смесь о-, м-, п-0.2 3 4.747712375 24.539546941 изомеров) (203) 0621 Метилбензол (349) 0.6 3 0.161732836 0.761915621 1.2699 1.26985937 1042 Бутан-1-ол (Бутиловый спирт) (102) 0.1 3 4.679471518 0.052536258 0.52536258 1061 Этанол (Этиловый спирт) (667) 4 0.013672223 0.006630186 Ω 0.00132604 5 1071 Гидроксибензол (155) 0.01 0.003 0.002775 0.000085914 0 0.028638 1078 Этан-1,2-диол (Гликоль, 1.1675552 0.00622035 Ω 0.00622035 1 Этиленгликоль) (1444*) 1112 2-(2-Этоксиэтокси) этанол 1.5 1.1675552 0.00622035 0 0.0041469 (Моноэтиловый эфир диэтиленгликоля, Этилкарбитол) (1500*) 0.7 1119 2-Этоксиэтанол (Этиловый эфир 0.00222222 0.00016128 Ω 0.0002304 этиленгликоля, Этилцеллозольв) (1497*)1210 Бутилацетат (Уксусной кислоты 0.1 4 0.030129069 0.327271762 2.9068 3.27271762 бутиловый эфир) (110) 1240 Этилацетат (674) 0.1 4 0.000079591 0.0034 0.00079591 1401 Пропан-2-он (Ацетон) (470) 0.35 4 0.032630317 0.618104983 1.6684 1.76601424 2732 Керосин (654*) 3.7674464 3.1395 3.13953867 1.2 0.06252 0.05 0.0000484737 0.0000047226 2735 Масло минеральное нефтяное 0.00009445 0 (веретенное, машинное, цилиндровое и др.) (716*) 2750 Сольвент нафта (1149*) 10.6667 10.6666732 0.2 0.026305556 2.133334636 2752 Уайт-спирит (1294*) 0.011691667 2.941829931 2.9418 2.94182993 2754 Алканы С12-19 /в пересчете на С/ 4 0.07549396 3.5591687263 0.0754939642 (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10) 2902 Взвешенные частицы (116) 0.5 0.15 3 0.0128 0.0290304 0 0.193536 2908 Пыль неорганическая, содержащая 0.3 0.1 3 3.3614439796 16.916381466 169.1638 169.163815 двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,

ЭРА v2.5 ИП Пасечная И.Ю. Таблица 3.1 Перечень загрязняющих веществ, выбрасываемых в атмосферу

на период строительства с передвижными источниками

Талгарский р-он, Строительство мясоперерабатывающего завода, мощностью 6000 птиц/час

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)								
	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0.04		0.008	0.0082944	0	0.20736
2936	Пыль древесная (1039*)			0.1		0.238	0.68544	6.8544	6.8544
	всего:					19.8765466932	66.741206803	1487.1	588.892085

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) 0.1*ПДКм.р. или (при отсутствии ПДКм.р.) 0.1*ОБУВ;"а" - константа, зависящая от класса опасности ЗВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 3.1

на период строительства без передвижных источников

ЭРА v2.5 ИП Пасечная И.Ю.

Талгар	алгарский р-он, Строительство мясоперерабатывающего завода, мощностью 6000 птиц/час б/п								
Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-				безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (диЖелезо		0.04		3	0.0225845243	0.2341563471	5.8539	5.85390868
	триоксид, Железа оксид) /в								
	пересчете на железо/ (274)								
0128	Кальций оксид (Негашеная известь)			0.3		0.015069832	0.000271257	0	0.00090419
	(635*)								
0143	Марганец и его соединения /в	0.01	0.001		2	0.0024221557	0.0251129123	66.049	25.1129123
	пересчете на марганца (IV) оксид/								
0164	(327) Никель оксид /в пересчете на		0.001		2	0 0000010201	0.0000200117	0	0.0200117
l l	никель/ (420)		0.001			0.0000019301	0.0000200117	U	0.0200117
	Олово оксид /в пересчете на олово/		0.02		3	0.00001419036	0 0001471254	0	0.00735627
0100	(Олово (II) оксид) (446)		0.02		3	0.00001413030	0.0001471234	O	0.00733027
0184	Свинец и его неорганические	0.001	0.0003		1	0.0000258467	0.0002679793	0	0.89326431
	соединения /в пересчете на свинец/				_				
	(513)								
0190	диСурьма триоксид /в пересчете на		0.02		3	0.00000000011	0.0000000011	0	0.00000006
	сурьму/ (Сурьма трехокись, Сурьма								
	(III) оксид) (533)								
0203	Хром /в пересчете на хром (VI)		0.0015		1	0.0034585543	0.0358582901	220.5196	23.9055267
	оксид/ (Хром шестивалентный) (647)								
0301	Азота (IV) диоксид (Азота диоксид)	0.2	0.04		2	0.0217862057	0.207069372	8.4776	5.1767343
0004	(4)	0 4	0.06			0 000001615			0 00460105
	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.000321615			0.00463125
0328	Углерод (Сажа, Углерод черный)	0.15	0.05		3	0.000144676	0.000125	0	0.0025
0330	(583)	0.5	0.05		3	0.003402778	0.00294	0	0.0588
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.5	0.05		3	0.003402778	0.00294	U	0.0388
	(516)								
0337	Углерод оксид (Окись углерода,	5	3		4	0 0083326433	0.0099772164	0	0.00332574
	Угарный газ) (584)	S	J		-	0.0003320133	0.0033772101	Ŭ	0.00002071
	Фтористые газообразные соединения	0.02	0.005		2	0.000002417	0.000025056	0	0.0050112
	/в пересчете на фтор/ (617)								
0344	Фториды неорганические плохо	0.2	0.03		2	0.003624962	0.037583604	1.3404	1.2527868
	растворимые - (алюминия фторид,								
	кальция фторид, натрия								
	гексафторалюминат) (Фториды								

Таблица 3.1

на период строительства без передвижных источников

ЭРА v2.5 ИП Пасечная И.Ю.

Талгар	ский р-он, Строительство мясоперераб	атывающего	завода, м	ющностью 6	000 пт	иц/час б/п			
Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	неорганические плохо растворимые /в								
	пересчете на фтор/) (615)								
0616	Диметилбензол (смесь о-, м-, п-	0.2			3	4.747712375	24.539546941	122.6977	122.697735
	изомеров) (203)								
0621	Метилбензол (349)	0.6			3	0.161732836			1.26985937
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.1			3	4.679471518	0.052536258	0	0.52536258
1061	Этанол (Этиловый спирт) (667)	5			4	0.013672223	0.006630186	0	0.00132604
1071	Гидроксибензол (155)	0.01	0.003		2	0.002775	0.000085914	0	0.028638
1078	Этан-1,2-диол (Гликоль,			1		1.1675552	0.00622035	0	0.00622035
	Этиленгликоль) (1444*)								
1112	2-(2-Этоксиэтокси) этанол			1.5		1.1675552	0.00622035	0	0.0041469
	(Моноэтиловый эфир диэтиленгликоля,								
	Этилкарбитол) (1500*)								
1119	2-Этоксиэтанол (Этиловый эфир			0.7		0.002222222	0.00016128	0	0.0002304
	этиленгликоля, Этилцеллозольв)								
	(1497*)								
1210	Бутилацетат (Уксусной кислоты	0.1			4	0.030129069	0.327271762	2.9068	3.27271762
	бутиловый эфир) (110)								
1240	Этилацетат (674)	0.1			4	0.0034	0.000079591	0	0.00079591
1401	Пропан-2-он (Ацетон) (470)	0.35			4	0.032630317	0.618104983	1.6684	1.76601424
2732	- Керосин (654*)			1.2		0.025	2.7814208	2.3179	2.31785067
2735	Масло минеральное нефтяное			0.05		0.0000484737	0.0000047226	0	0.00009445
	(веретенное, машинное, цилиндровое								
	и др.) (716*)								
2750	Сольвент нафта (1149*)			0.2		0.026305556	2.133334636	10.6667	10.6666732
2752	Уайт-спирит (1294*)			1		0.011691667	2.941829931	2.9418	2.94182993
2754	Алканы C12-19 /в пересчете на C/	1			4	3.5591687263	0.0754939642	0	0.07549396
	(Углеводороды предельные С12-С19 (в								
	пересчете на С); Растворитель								
	РПК-265П) (10)								
2902	Взвешенные частицы (116)	0.5	0.15		3	0.0128	0.0290304	0	0.193536
2908	Пыль неорганическая, содержащая	0.3	0.1		3	3.3614439796	16.916381466	169.1638	169.163815
	двуокись кремния в %: 70-20 (шамот,								
	цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								

ЭРА v2.5 ИП Пасечная И.Ю. Таблица 3.1 Перечень загрязняющих веществ, выбрасываемых в атмосферу

на период строительства без передвижных источников

Талгарский р-он, Строительство мясоперерабатывающего завода, мощностью 6000 птиц/час б/п

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)								
	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0.04		0.008	0.0082944	0	0.20736
2936	Пыль древесная (1039*)			0.1		0.238	0.68544	6.8544	6.8544
	всего:					19.3325066932	52.443835603	622.7	384.291773

Примечания: 1. В колонке 9: "М" - выброс ЗВ, τ /год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) 0.1*ПДКм.р. или (при отсутствии ПДКм.р.) 0.1*ОБУВ; "а" - константа, зависящая от класса опасности ЗВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 3.1 ЭРА v2.5 ИП Пасечная И.Ю. Перечень загрязняющих веществ, выбрасываемых в атмосферу

Талгарский р-он. Мясоперерабатывающего завола, мошностью 6000 птиц/час

Талгар	оский р-он, Мясоперерабатывающего зав	ода, мощно	стью 6000	птиц/час					
Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-			суточная,		ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид)	0.2	0.04		2	1.602997437	21.6841054	3583.4882	542.102635
	(4)								
0303	Аммиак (32)	0.2	0.04		4	0.031	0.8356608		
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.259245762	3.523488365	58.7248	58.7248061
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		3	0.07187533	0.11631163	2.3262	2.3262326
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.5	0.05		3	1.69050785	2.73564951	54.713	54.7129902
0333	Сероводород (Дигидросульфид) (518)	0.008			2	0.00239756444	0.0620055784	14.3266	7.75069729
0337	Углерод оксид (Окись углерода,	5	3		4	6.759215904	77.932045846	18.7558	25.9773486
	Угарный газ) (584)								
1039	Пентан-1-ол (Амиловый спирт) (453)	0.01			3	0.0006			
1071	Гидроксибензол (155)	0.01	0.003		2	0.0006			
1314	Пропаналь (Пропионовый альдегид,	0.01			3	0.0025	0.067392	6.7392	6.7392
	Метилуксусный альдегид) (465)								
1401	Пропан-2-он (Ацетон) (470)	0.35			4	0.0024			0.18484663
1519	Пентановая кислота (Валериановая кислота) (452)	0.03	0.01		3	0.0035	0.0943488	9.4349	9.43488
1525	2-Метокси-3,6-дихлорбензойной			0.015	5	0.0009	0.02426112	1.6174	1.617408
1020	кислоты диметиламиновая соль			0.010		0.0003	0.02120112	1.01/1	1.01/100
	(Дианат,								
	2-Метокси-3,6-дихлорбензойной								
	кислоты диметиламин) (855*)								
1707	Диметилсульфид (227)	0.08			4	0.0019	0.05121792	0	0.640224
1715	Метантиол (Метилмеркаптан) (339)	0.006			4	0.00012	0.003234816	0	0.539136
1716	Смесь природных меркаптанов /в	0.00005			3	0.0009	0.02426112	485.2224	485.2224
	пересчете на этилмеркаптан/								
	(Одорант СПМ - ТУ 51-81-88) (526)								
2754	Алканы С12-19 /в пересчете на С/	1			4	0.03474688	0.00175876	0	0.00175876
	(Углеводороды предельные С12-С19 (в								
	пересчете на С); Растворитель								
	РПК-265П) (10)								
2902	Взвешенные частицы (116)	0.5	0.15		3	0.0033		-	0.00792
2913	Пыль мясокостной муки /в пересчете			0.01	•	0.49616667	13.3750656	1337.5066	1337.50656
	на белок/ (1053*)								

ЭРА v2.5 ИП Пасечная И.Ю. Таблица 3.1 Перечень загрязняющих веществ, выбрасываемых в атмосферу

на период эксплуатациим

Талгарский р-он, Мясоперерабатывающего завода, мощностью 6000 птиц/час

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0.04		0.0012	0.000432	0	0.0108
	всего:					10.9660733974	120.62947175	5598.8	2561.40013

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) 0.1*ПДКм.р. или (при отсутствии ПДКм.р.) 0.1*ОБУВ;"а" - константа, зависящая от класса опасности ЗВ 2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

строительство

1 Снятие плодородного слоя почвы толщиной 0.15м с перемещением в отвал

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли при работе роторных экскаваторов и одноковшовых экскаваторов с объемом ковша 5 м³ и более производится по формуле:

Mcek=
$$\frac{\text{m x qəj x Vjmax x k3 x k5 x (1- \mathfrak{y})}}{3600}, \Gamma/\text{cek}$$
 (3.1.3)

При использовании роторных экскаваторов и одноковшовых экскаваторов с объемом ковша 5м³ и более расчет валовых выбросов пыли производится по формуле:

Мгод= m x qэj x Vj x k3 x k5 x $(1- \eta)*10^{-6}$,т/год (3.1.4) где -

m — количество марок экскаваторов, работающих одновременно в течение часа; m = 1 qэj- удельное выделение пыли с 1m3 отгружаемого материала экскаватором j-той марки, r/m3 (таблица 3.1.9); q3 = 3.1

Vjmax- максимальный объем перегружаемого материала в час экскаваторами j-той марки, м³/час;

Vjmax= 6.2031

k3- коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

 k5- коэффициент, учитывающий влажность материала (таблица 3.1.4);
 k5=
 0.7

 ŋ- эффективность средств пылеподавления, в долях единицы.
 ŋ=
 0.85

Vj- объем перегружаемого материала за год экскаватором j-той марки, м³; Vj= 5955

Код	Наименование	Выбросы в атмосферу		
вещ-ва	загрязняющего			
	вещества	г/с	$_{ m T}/\Gamma$	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.0007852122	0.0027136935	

Источник выброса № Источник выделения № 6002 Строительные работы

1 Разработка с погрузкой на автомобили-самосвалы экскаваторами "Обратная лопата" с ковшом вместимостью 2,5 м3

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

$$Mce\kappa = \frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_{uac} \times 10^6}{3600} \times (1-\eta)$$
, \(\text{r/ce}\) \((3.1.1)

а валовой выброс по формуле:

$$M = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G = (3.1.2)$$

где

k1 – весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

k1 = 0.03

k2 — доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

k2 = 0.04

k3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3= 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k4= 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7 = 0.7

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k8= 1

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9= 0.1

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

B'= 0.6

Gчас-производительность узла пересыпки или количество перерабатываемого материала,

т/ч; Gчас= 61.5672056

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 177313.552

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

 $\eta = 0.85$

Код	Наименование	Выбросы в		
вещ-ва	загрязняющего	атмосферу		
	вещества	г/с	T/Γ	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.8447021	1.3136806441	

Источник выброса № Источник выделения № 6003 Строительные работы

1 Транспортировка плодородного слоя почв и грунта во временный отвал

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс рассчитывается по формуле:

Мсек= -	C1 x C2 x C3 x k5 x C7 x N x L x q1		E/ook
MICER—	3600	+C4 x C3 x k3 x q x 8 x II	,г/сек
			(3.3.1)

а валовый выброс рассчитывается по формуле:

Мгод= 0,0864 х Мсек х [365-(Тсп+Тд)] ,т/год (3.3.2)

где -

С1 — коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта (таблица 3.3.1). Средняя грузоподъемность определяется как частное от деления суммарной грузоподъемности всех действующих машин на их число (n) при условии, что максимальная грузоподъемность отличается не более чем в 2 раза;

C1=

C2 – коэффициент, учитывающий среднюю скорость передвижения транспорта (таблица 3.3.2). Средняя скорость транспортирования определяется по формуле: км/час;

Vcc=N x L/n = 0.07 км/час C2= 2

где -

N — число ходок (туда + обратно) всего транспорта в час; N = 2

L – средняя продолжительность одной ходки в пределах промплощадки, км;

L = 0.1

n – число автомашин, работающих на площадке; n=

n= 3

С3 – коэффициент, учитывающий состояние дорог (таблица 3.3.3);

C3= 1

1.3

C4 – коэффициент, учитывающий профиль поверхности материала на платформе и определяемый как соотношение: Sфакт./S

где -

Ѕфакт. - фактическая поверхность материала с учетом рельефа его сечения, м2;

S- поверхность пыления в плане, м2; S= 16.0 Значение C4 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

C5 — коэффициент, учитывающий скорость обдува (Voб) материала (таблица 3.3.4), которая определяется как геометрическая сумма скорости ветра и обратного вектора средней скорости движения транспорта по формуле: Voб= $\sqrt{V1} \times V2/3,6$, м/с

гле -

C5 = 1.38

v1 — наиболее характерная для данного района скорость ветра, м/с; v1 = 6

 v^2 – средняя скорость движения транспортного средства, км/ч; $v^2 = 30$

k5 – коэффициент, учитывающий влажность поверхностного слоя материала (таблица 3.1.4);

k5 = 0.7

С7 – коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный 0,01;

C7 = 0.01

q1 – пылевыделение в атмосферу на 1 км пробега при C1, C2, C3=1, принимается равным 1450 г/км;

q1 = 1450

q' –

пылевыделение с единицы фактической поверхности материала на платформе, г/м²хс (таблица 3.1.1);

q' = 0.002

Тсп – количество дней с устойчивым снежным покровом;

Тсп= 90

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\perp} = \frac{2xT_{\perp}^{\circ}}{24}$$
 $T_{\perp} = 6$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

Код	Наименование	Выбросы в		
вещ-ва	загрязняющего	атмосферу		
	вещества	г/с	$_{ m T}/_{ m \Gamma}$	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.1216845778	2.2604127168	

1 Разгрузка плодородного слоя почв во временный отвал

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

$$Mcek = \frac{k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{uac} x 10^6}{3600} x (1-η)$$
.г/cek

а валовой выброс по формуле:

$$Mroд = k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x Groд x (1-ŋ) , т/год$$
 (3.1.2)

где k1 — весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

k1 = 0.03

k2 — доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

k2 = 0.04

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3 = 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k4= 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7 = 0.7

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k8=

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9= 0.1

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

B'= 0.6

Gчас-производительность узла пересыпки или количество перерабатываемого материала,

 $_{\text{Т/ч}}$; $_{\text{Guac}}$ 61.56721

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 177313.552

ŋ - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

 $\eta = 0$

0001	COID TO THE MAIL							
К	Сод	Наименование	Выбросы в атмосферу					
вег	щ-ва	загрязняющего						
		вещества	г/с	$_{ m T}/_{ m \Gamma}$				
	2908	Пыль неорганическая: 70-20% двуокиси кремния	0.8447021	8.7578709604				

2 Поверхность пыления

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

$$Mcek = k_3 x k_4 x k_5 x k_6 x k_7 x q' x S$$
 , Γ/cek (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

$$M$$
год = 0,0864 x k_3 x k_4 x k_5 x k_6 x k_7 x q' x S x [365-(Тсп+Тд)] x (1-ŋ) , τ /год (3.2.5) где

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

$$k4=$$

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

$$k5 = 0.7$$

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

$$k7 = 0.7$$

k6 –коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

k6 = 1.3

Sфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2;

Значение к6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

q' - унос пыли с одного квадратного метра фактической поверхности, r/m2*c, в условиях когда k3=1; k5=1 (таблица 3.1.1);

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{A} = \frac{2x_1 \pi^3}{24}$$

$$T_{A} = 60$$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 насов

ŋ - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

ŋ= 0.85

B	енно получим:						
	Код	Наименование	Выбросы в				
	вещ-ва	загрязняющего	атмосферу				
		вещества	г/с	T/Γ			
	2008	Поли мааргаминаама; 70, 200/ приавила играмина	0.00010	0.249401152			
	2908	Пыль неорганическая: 70-20% двуокиси кремния	0.08918	0.248491152			

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

Mceκ =
$$\frac{k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{vac} x 10^{\epsilon}}{3600} x (1-η)$$
. Γ/ceκ (3.1.1)

а валовой выброс по формуле:

$$Mroд = k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{rog} x (1-\eta) , т/год$$
 (3.1.2)

где

k1 — весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

$$k1 = 0.06$$

k2 — доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

$$k2 = 0.03$$

k3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3 = 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k5 — коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7 = 0.7

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k8= 1

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9 = 0.2

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

B'= 0.6

Gчас-производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gчас= 1.656779939

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 1192.88155572

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

 $\eta = 0$

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу	
	вещества	г/с	$_{ m T}/_{ m \Gamma}$
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.068193062	0.176756417

2 Склад щебня, пемза шлаковая (щебень пористый из металлургического шлака) фр.5-10

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

$$Mсек = k_3 x k_4 x k_5 x k_6 x k_7 x q' x S$$
 , г/сек (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

$$Mrog = 0.0864 \times k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S \times [365-(Tcn+Tg)] \times (1-\eta)$$
, τ/rog (3.2.5)

где

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

$$k3 = 1.4$$

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

$$k4=$$
 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

$$k5 = 0.7$$

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

$$k7 = 0.7$$

k6 –коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

k6 = 1.3

Ѕфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2;

Sфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2,

S – поверхность пыления в плане, м2; S = 10.0 Значение k6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

q' - унос пыли с одного квадратного метра фактической поверхности, г/м2*с, в условиях когда k3=1; k5=1 (таблица

3.1.1); q'= 0.002

q = 0.002 Тсп – количество дней с устойчивым снежным покровом; Tсп= 90

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\mathcal{A}} = \frac{2xT_{\mathcal{A}}^{\circ}}{24}$$

$$T_{\mathcal{A}} = 60$$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

ŋ - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). ŋ= 0.85

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу	
	вещества	г/с	$_{ m T}/_{ m \Gamma}$
2908	В Пыль неорганическая: 70-20% двуокиси кремния	0.017836	0.04969823

6006 Строительные работы Разгрузка-погрузка щебня фр.10-20

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

Mceκ =
$$\frac{k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{uac} x 10^{\epsilon}}{3600} x (1-η)$$
, r/ceκ (3.1.1)

а валовой выброс по формуле:

$$M$$
год = $k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_{ron} \times (1-\eta)$, т/год (3.1.2)

где

k1 – весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

> k1=0.06

k2 – доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения к2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

> k2= 0.03

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k5 - коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d ≤ 1 мм);

0.7 k5=

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7= 0.5

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9=0.2

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7); B'=

0.7

Gчас-производительность узла пересыпки или количество перерабатываемого материала, т/ч;

0.55971041 **Gчас=**

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

402.991497 Gгол=

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η=

COOTBCTCT	COOTBETETBERING HOMY HAM.				
Код	Наименование	Выбросы в			
вещ-ва	загрязняющего	атмосферу			
	вещества	г/с	$_{ m T}/_{ m \Gamma}$		
2908	В Пыль неорганическая: 70-20% двуокиси кремния	0.019198067	0.04976139		

2 Склад щебня фр. 10-20мм

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

$$Mсек = k_3 x k_4 x k_5 x k_6 x k_7 x q' x S$$
 , г/сек (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

Мгод =
$$0.0864 \times k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S \times [365-(Тсп+Тд)] \times (1-\eta)$$
 , т/год (3.2.5)

где

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

$$k3 = 1.4$$

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

$$k5 = 0.7$$

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

$$k7 = 0.5$$

k6 –коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

Sфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2;

$$S$$
 – поверхность пыления в плане, м2; S = 50.0

Значение k6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения; q' - унос пыли с одного квадратного метра фактической поверхности, r/m2*c, в условиях когда k3=1; k5=1 (таблица 3.1.1);

q'= 0.002 Тсп – количество дней с устойчивым снежным покровом; Тсп= 90

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\mathcal{I}} = \frac{2xT_{\mathcal{I}}^{\circ}}{24}$$
 $T_{\mathcal{I}} = 60$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η= 0.85

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу	
	вещества	г/с	$_{ m T}/_{ m \Gamma}$
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.0637	0.17749368

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

$$Mcek = \frac{k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{uac} x 10^{\epsilon}}{3600} x (1-\eta)$$
,г/сек (3.1.1)

а валовой выброс по формуле:

$$M$$
год = $k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_{rog} \times (1-\eta)$, т/год (3.1.2)

где

k1 — весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

k1 = 0.04

k2 – доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

k2 = 0.02

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3 = 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k4= 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7 = 0.5

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k8= 1

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9= 0.2

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

B'= 0.7

Gчас-производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gчас= 0.1480527

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 106.597944

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η= 0

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу	
	вещества	г/с	$_{ m T}/_{ m \Gamma}$
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.002256981	0.0058500952

2 Склад щебня фр. 20-40мм

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

Mcek =
$$k_3 x k_4 x k_5 x k_6 x k_7 x q' x S$$
, r/cek (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

$$M$$
год = 0,0864 x k_3 x k_4 x k_5 x k_6 x k_7 x q' x S x [365-(Тсп+Тд)] x (1-ŋ) , т/год (3.2.5)

где

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

$$k3 = 1.4$$

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

$$k4=$$
 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

$$k5 = 0.7$$

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

$$k7 = 0.5$$

k6 –коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

Sфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2;

$$S$$
 – поверхность пыления в плане, м2; S = 50.0

Значение k6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения; q' - унос пыли с одного квадратного метра фактической поверхности, r/m2*c, в условиях когда k3=1; k5=1 (таблица 3.1.1);

q'= 0.002 Тсп – количество дней с устойчивым снежным покровом; Тсп= 90

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\mathcal{I}} = \frac{2xT_{\mathcal{I}}^{\circ}}{24}$$
 $T_{\mathcal{I}} = 60$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η= 0.85

Соответственно получим.				
Код	Наименование	Выбросы в		
вещ-ва	загрязняющего	атмосферу		
	вещества	г/с	$_{ m T}/_{ m \Gamma}$	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.0637	0.17749368	

6008 Строительные работы 1 Разгрузка-погрузка щебня фр.40-70

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

Mceκ =
$$\frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_{uac} \times 10^{\epsilon}}{3600} \times (1-\eta)$$
, Γ/ceκ (3.1.1)

а валовой выброс по формуле:

$$M$$
год = $k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G_{rog} \times (1-\eta)$, т/год (3.1.2)

где

k1 — весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

k1 = 0.04

k2 – доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

k2 = 0.02

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3 = 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k4= 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7= 0.4

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k8= 1

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9= 0.2

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

B'= 0.7

Gчас-производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gчас= 2.270997838781

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 6540.47377569

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

-					
	Код	Наименование	Выбросы в		
	вещ-ва	загрязняющего	атмосферу		
		вещества	г/с	$_{ m T}/_{ m \Gamma}$	
	2908	Пыль неорганическая: 70-20% двуокиси кремния	0.02769608	0.287152961	

2 Склад щебня фр. 40-70мм

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

Mcek = $k_3 x k_4 x k_5 x k_6 x k_7 x q' x S$, Γ/cek (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

Мгод = $0,0864 \text{ x k}_3 \text{ x k}_4 \text{ x k}_5 \text{ x k}_6 \text{ x k}_7 \text{ x q' x S x } [365-(Тсп+Тд)] \text{ x (1-ŋ)}$

, т/год (3.2.5)

где

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3 = 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k4=

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7 = 0.4

k6 -коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

где k6= 1.3

Sфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2;

S – поверхность пыления в плане, м2; S = 50.0

Значение к6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

q' - унос пыли с одного квадратного метра фактической поверхности, r/m2*c, в условиях когда k3=1; k5=1 (таблица 3.1.1);

Тсп – количество дней с устойчивым снежным покровом;

q'= 0.002 Τcπ= 90

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

темпричество дней с осадками в виде дождя, рассчитывается по формуле

 $T_{\mathcal{I}} = \frac{2xT_{\mathcal{I}}^{\circ}}{24}$

Тл= 60

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

η=

0.85

CCCIBCICIE	Coorderenseling nony lum.			
Код	Наименование	Выбросы в		
вещ-ва	загрязняющего	атмосферу		
	вещества	г/с	$_{ m T}/_{ m \Gamma}$	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.05096	0.141994944	

Источник выброса № Источник выделения № 6009 Строительные работы

1 Разгрузка-погрузка песка природного, глина

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

Mceκ =
$$\frac{k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{\text{vac}} x 10}{3600} x (1-η)$$
, γ/ceκ (3.1.1)

а валовой выброс по формуле:

$$M$$
год = $k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G$ год $\times (1-\eta)$, τ /год (3.1.2)

где

k1 — весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

k1 = 0.05

k2 – доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения k2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

k2 = 0.03

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k3 = 1.4

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k4= 1

k5 — коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k5 = 0.7

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k7= 0.8

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k8= 1

k9 — поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 — свыше 10 т. В остальных случаях k9=1;

k9= 0.2

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

B'= 0.7

Gчас-производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gчас= 13.660041898822

Gгод − суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 9835.230167152

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η= 0

	collectivities nowly mail			
Код	Наименование	Выбросы в		
вещ-ва	загрязняющего	атмосферу		
	вещества	г/с	T/Γ	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.62471925	1.619272295	

2 Склад песка природного, глина

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

Мсек =
$$k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S$$
 ,г/сек (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

Мгод =
$$0.0864 \times k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S \times [365-(Тсп+Тд)] \times (1-\eta)$$
 , т/год (3.2.5)

гле

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

$$k4=$$
 1

k5 – коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

$$k5 = 0.7$$

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

$$k7 = 0.8$$

20.0

k6 –коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

Ѕфакт. – фактическая поверхность материала с учетом рельефа его сечения, м2;

Значение к6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

q' - унос пыли с одного квадратного метра фактической поверхности, г/м2*с, в условиях когда k3=1; k5=1 (таблица 3.1.1);

Тсп – количество дней с устойчивым снежным покровом;

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\mathcal{A}} = \frac{2x_1 \mathcal{A}}{24}$$

$$T_{\mathcal{A}} = 60$$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

ŋ - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). ŋ= 0.85

	Coordination in only in in.				
Код	Наименование	Выбросы в			
вещ-ва	загрязняющего	атмосферу			
	вещества	г/с	т/г		
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.040768	0.1135959552		

Источник выброса № Источник выделения №

6010 Строительные работы Разгрузка-погрузка ПГС

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

$$Mceк = \frac{k_1 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G_{vac} x 10^6}{3600} x (1-ŋ)$$
,г/сек (3.1.1)

а валовой выброс по формуле:

$$M$$
год = $k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G$ год $\times (1-\eta)$, τ /год (3.1.2)

где

k1 – весовая доля пылевой фракции в материале (таблица 3.1.1). Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

$$k1 = 0.03$$

k2 – доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1.1). Проверка фактического дисперсного состава пыли и уточнение значения к2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки тобора проб.

$$k2 = 0.04$$

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

$$k3 = 1.4$$

k4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

$$k4=$$
 1

k5 - коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d ≤ 1 мм);

$$k5 = 0.7$$

$$k7 = 0.7$$

k8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6). При использовании иных типов перегрузочных устройств k8=1;

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k9=0,2 при единовременном сбросе материала весом до 10 т, и k9=0,1 – свыше 10 т. В остальных случаях k9=1;

k9= 0.2

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

Gчас-производительность узла пересыпки или количество перерабатываемого материала, т/ч;

11.16954056 **Gчас=**

0.7

Gгод – суммарное количество перерабатываемого материала в течение года, т/год;

Gгод= 8042.0692

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η=

0001201212	coordinate Horizonia.			
Код	Наименование	Выбросы в		
вещ-ва	загрязняющего	атмосферу		
	вещества	г/с	т/г	
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.3575742250	0.9268323912	

2 Склад ПГС

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле:

Мсек =
$$k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q' \times S$$
 , г/сек (3.2.3)

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле:

$$M$$
год = 0,0864 x k_3 x k_4 x k_5 x k_6 x k_7 x q' x S x [365-(Тсп+Тд)] x (1- \mathfrak{g}) , \mathfrak{g} /год (3.2.5)

гле

к3 – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 настоящего документа;

$$k3 = 1.4$$

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

$$k4=$$
 1

k5 — коэффициент, учитывающий влажность материала (таблица 3.1.4). Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k6 –коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: Sфакт./S

Ѕфакт. – фактическая поверхность материала с учетом рельефа его сечения, м²;

$$S$$
 – поверхность пыления в плане, M^2 ;

Значение к6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

q' - унос пыли с одного квадратного метра фактической поверхности, r/m^2*c , в условиях когда k3=1; k5=1 (таблица 3.1.1);

Тсп – количество дней с устойчивым снежным покровом;

Тд – количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\mathcal{A}} = \frac{2x_1 \chi^2}{24}$$

$$T_{\mathcal{A}} = 60$$

Тд° - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам), 720 часов

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8). η= 0.85

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу	
	вещества	г/с	$_{ m T}/_{ m \Gamma}$
2908	2908 Пыль неорганическая: 70-20% двуокиси кремния		0.248491152

1 Асфальтирование территории. Слив битума

Литература: 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от Приложение №12 к приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года № 100-п асфальтобетонных заводов.

2. РНД 211.2.02.09-2004, "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров" Министерство охраны окружающей среды РК. РГП "Информационно-аналитический центр охраны окружающей среды" МООС РК

Котлы битумные передвижные, 1000 л

Q- производительность(мах), т/час. Q= 0.00624808 т/час T- время работы в течение года, час/год рж- плотность битума , т/м³ (рж) = 0.95 т/м³

 V_{p} - единовременная емкость резервуарного парка, M^{3} V_{p} = 7

Vчтах- максимальный объем ПВС, вытесняемой из резервуаров во время его закачки, м³/час

Vчmax= 62.4 м³/час

 t_{min} - минимальная температура жидкости, 100° C t_{max}^{min} = 100 t_{max} - максимальная температура жидкости , 140° C t_{max}^{max} = 140

В- количество жидкости закачиваемое в резервуар в течении года, т/год

В= **8.99723008** т/год

 M^3

Выбросы при хранении битума (гудрона, дегтя) в одном резервуаре:

Максимальные выбросы (М, г/сек)

$$\mathbf{M} = \frac{0.445 * \mathbf{P}_{t}^{\text{max}} * \mathbf{m} * \mathbf{K}_{p}^{\text{max}} * \mathbf{K}_{B} * \mathbf{V}_{q}^{\text{max}}}{10^{2} * (273 + \mathbf{t}_{x}^{\text{max}})} = 2.5032683913 \text{ r/c}$$
 (II1.3)

Годовые выбросы (G, т/год)

$$G = \frac{0,160 * ((P^{\max}_{t} * K_{B}) + P^{\min}_{t}) * m * K^{cp}_{p} * K_{o6} * B}{10^{4} * 0,95 (546 + t^{\max}_{\kappa} + t^{\min}_{\kappa})} = 0.001524892 \qquad (\Pi1.4)$$

где

m - молекулярная масса битума (принята по температуре начала кипения Ткип=280°С);

$$m = 187$$

Годовая оборачиваемость резервуаров

$$n_{o6} = \frac{B}{\rho \pi * Vp}$$
 $n_{o6} = 1.352966929$

следовательно:Коб= 2.5

Ptmin, Ptmax – по таблице П1.1 настоящей методики.

$$P_{t}^{min} = 4.26 P_{t}^{max} = 19.91$$

Кр(ср), Кр(мах) - Опытные коэффициенты прил.8

$$K_{p}^{cp} = 0.7$$
 $K_{p}^{max} =$

Кв- Опытный коэффициент, принимается по прил.10

Кв= 1

Соответственно получим:

	child holly him.						
	Код	Наименование	Выбросы в				
	вещ-ва	загрязняющего	атмосферу				
l		вещества	г/с т/г				
		Алканы С12-С19 (в пересчете на					
	2754	углерод)	2.5032683913	0.0001524892			

Источник выделения №

2 Асфальтирование территории. Розлив битума на поверхность

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п. Ссылки по тексту расчета даны на таблицы и графики данной Методики.

Источник выделения 002: Разлив битума на поверхности	
исходные данные, параметр	
qcp - количество углеводородов, испаряющихся с 1 м2 открытой поверхности (таблица 6.3 методики), г/м2*час	7.267
F - поверхность испарения, м2	29263
t - время проведения работ, дней	180

tч - количество часов в смену, час	8
п-количество слоев битума	1
2754 предельные углеводороды (С12-С19)	
Максимальный из разовых выброс M = qcp*F/t/3600, г/сек	0.328170094
Годовой выброс G=(qcp*F/t*tч)*t*0,000001*n, т/год	0.026581778

3 Асфальтирование территории. Укладка асфальта

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п. Ссылки по тексту расчета даны на таблицы и графики данной Методики.

Источник выделения 003: Укладка асфальта	
исходные данные, параметр	
qcp - количество углеводородов, испаряющихся с 1 м2 открытой поверхности (таблица 6.3	7.267
F - поверхность испарения, м2	29263
t - время проведения работ, дней	180
tч - количество часов в смену, час	8
п-количество слоев битума	1
2754 предельные углеводороды (С12-С19)	
Максимальный из разовых выброс M = qcp*F/t/3600, г/сек	0.328170094
Годовой выброс G=(qcp*F/t*tч)*t*0,000001*n, т/год	0.026581778

Источник выброса № 6012 Дорожная одежда Источник выделения № 1 Разгрузка асфальта

Литература: Министерство экологии и биоресурсов Республики Казахстан. Республиканский научно-производственный центр эколого-экономического анализа и лицензирования "КАЗЭКОЭКСП", Алматы 1996 г. «Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами».

Выброс пыли при погрузке, разгрузке и складировании минерального материала определяется по формуле:

$$\Pi c = \beta * M * G / 1000 = 0.3588133911 \text{ т/год}$$
 (6.4)

$$B = \Pi c * 10^6 / T * 3600 = 0.0346077731 \ r/cek$$

где

β- коэффициент, учитывающий убыль минерального материала в виде пыли. В соответствии с ГОСТ 9128-84 среднее содержание пылевидных частиц размером менее 0,5мм в минеральной составляющей асфальтобетонных смесей составляет 21%. Исходя из этого, коэффициент равен 0,21

$$\beta = 0.21$$

Vy-объем приготовленного за год битума из гудрона в реактивной установке, т

Vy=8.9972301 т M- убыль материалов, % табл. 6.4 (при разгрузке) M= 0.25 %

G-масса строительного материала, используемого в течение года, тонн

 $G\!=\!6834.5408$ т/год $T\!=\!2880$ час/год

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу г/с т/г	
	вещества		
2908 Пыль неорганическая: 70-20% двуокиси кремния 0.034607773		0.0346077731	0.3588133911

Источник выброса №

6013 Неорг.

1

Источник выделения №

Сварка стали проволока сварочная легированная для сварки (наплавки) с неомедненной поверхностью диаметром 2-4 мм

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004

Расчет выбросов загрязняющих веществ

$$M_{rog}$$
= $\frac{Brog * K m * (1-\eta)}{1000000}$,т/год M_{cek} = $\frac{Bvac * K m * (1-\eta)}{3600}$, г/сек

В -расход применяемого материала, кг/год

 $B_{\text{год}} = 285.8813$ кг/год $B_{\text{час}} = 0.099264326$ кг/час

К _т-удельный показатель выброса ЗВ на единицу массы расходуемых материалов, г/кг

 Диоксид железа
 К m= 6.61

 Оксиды марганца
 К m= 0.2

 Оксид никеля
 К m= 0.07

 Оксид хрома
 К m= 0.1

 Диоксид азота
 К m= 0.8

 Оксид углерода
 К m= 10.6

 Пыль неорганическая:

70-20% двуокиси К m= 0.02

кремния

 η - степень очистки воздуха в аппарате

Т- продолжительность работы, час/год

T= 2880

табл.1

Код ве-	Наименование загрязняющего	Выбросы в атмосферу	
щества	вещества	атмосферу	
		г/с	$_{ m T}/\Gamma$
123	Диоксид железа	0.0001822603	0.0018896751
143	Оксиды марганца	0.0000055147	0.0000571763
164	Оксид никеля	0.0000019301	0.0000200117
203	Оксид хрома	0.0000027573	0.0000285881
301	Диоксид азота	0.0000220587	0.0002287050
337	Оксид углерода	0.0002922783	0.0030303414
2908	Пыль неорганическая: 70- 20% двуокиси кремния	0.0000005515	0.0000057176

Литература: 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от, Приложение №12 к приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года № 100-п асфальтобетонных заводов.

2. РНД 211.2.02.09-2004, "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров" Министерство охраны окружающей среды РК. РГП "Информационно-аналитический центр охраны окружающей среды" МООС РК

Котел битумный 400 литров

Q- производительность(мах), т/час. Q= **0.062850605** т/час Т- время работы в течение года, час/год рж- плотность битума , т/м³ $(\rho x) = 0.95$ т/м³

 V_{p} - единовременная емкость резервуарного парка, м³ V_{p} = 4

Vчтах- максимальный объем ПВС, вытесняемой из резервуаров во время его закачки, м³/час

Vчmax= 12 м³/час

tжmin- минимальная температура жидкости, 100° C $t_{\text{ж}}^{\text{min}} = 100$ tжmax- максимальная температура жидкости , 140° C $t_{\text{ж}}^{\text{max}} = 140$

В- количество жидкости закачиваемое в резервуар в течении года, т/год

В= **181.0097431** т/год

 M^3

Выбросы при хранении битума (гудрона, дегтя) в одном резервуаре: Максимальные выбросы (М, г/сек)

$$\mathbf{M} = \frac{\mathbf{0.445 * P^{max} * m * K^{max} {}_{p} * K_{B} * V^{max} {}_{q}}}{\mathbf{10^{2} * (273 + t^{max} {}_{p})}} = 0.399560147 \text{ r/c}$$
 (II1.3)

Годовые выбросы (G, т/год)

$$\mathbf{G} = \frac{\mathbf{0,160} * ((\mathbf{P}^{\max}_{t} * \mathbf{K}_{B}) + \mathbf{P}^{\min}_{t}) * \mathbf{m} * \mathbf{K}^{\mathsf{cp}}_{p} * \mathbf{K}_{\mathsf{o6}} * \mathbf{B}}{\mathbf{10}^{4} * \mathbf{0,95} (\mathbf{546} + \mathbf{t}^{\max}_{x} + \mathbf{t}^{\min}_{x})} = 0.022177919 \quad \text{т/год} \quad (\Pi1.4)$$

где

m - молекулярная масса битума (принята по температуре начала кипения Ткип=280°С);

$$m = 187$$

Годовая оборачиваемость резервуаров

$$n_{o6} = \frac{B}{\rho \pi * Vp}$$
 $n_{o6} = 47.63414293$

следовательно:Коб= 2

Ptmin, Ptmax – по таблице П1.1 настоящей методики.

 $P_{t}^{min} = 6.45 \qquad P_{t}^{max} = 19.91$

Кр(ср), Кр(мах) - Опытные коэффициенты прил.8

 $K_{p}^{cp} = 0.58 \qquad K_{p}^{max} = 0.83$

Кв- Опытный коэффициент, принимается по прил.10 Кв= 1

	Benno nony mai.						
I	Код	Наименование	Выбросы в				
	вещ-ва	загрязняющего	атмосферу				
		вещества	г/с т/г				
		Алканы С12-С19 (в пересчете на					
	2754	углерод)	0.399560147	0.022177919			

Наименование величин	Обозна-	Ед.изм.	Число-вые	Примечание
ИСХОДНЫЕ ДАННЫЕ	Ooosnu	ъд.нэм.	тиело выс	Применине
Вид топлива	Дизтопливо)		
Расход топлива	В	TH	0.5	
Время работы общее	Т	час	240	
Время работы в день	t	час	8	
Зольность топлива	A r		0.025	
Доля твердых улавливаемых				
частиц	n		0	
Коэфф.золы топлива в уносе	i		0.01	
Содержание серы в топливе	Sr	%	0.3	
Доля оксидов серы, связываемых				
летучей золой	n`so2		0.02	
Доля оксидов серы улавливаемых				
в золоуловителе	n "so2		0	
Потери теплоты из-за химической				
неполноты сгорания	q3	%	0.5	
Потери теплоты из-за				
механической неполноты				
сгорания	q4	%	0	
Низшая теплота сгорания	Q	МДж/м3	42.75	
Коэффициент,учитывающий				
долю потери теплоты из-за				
химической неполноты	R		0.65	
Коэффициент, характеризующий				
количество оксидов азота, обра-				
зующихся на 1 ГДж тепла	K NO	кг/ГДж	0.1	
Коэффициент, зависящий от				
степени снижения выбросов	g		0	
РАСЧЕТЫ				
Сажа	Мі тв.	г/сек		Mi=M * 1000000 / 3600 * T
	М тв.	т/год		M = B * Ar *j * (1-n)
Диоксид серы	Mi so2	г/сек		Mi=M * 1000000 / 3600 * T
	Mi so2	т/год		M = 0.02*B*Sr*(1-n`so2)*(1-n"so2)
Оксид углерода	Mi co	г/сек		Mi=M * 1000000 / 3600 * T
	Mi co	т/год		M = 0,001*B*q3*R*Q*(1-q4/100)
Оксиды азота	Mi Nox	г/сек		Mi=M * 1000000 / 3600 * T
П	M Nox	т/год		M = 0,001*B*Q*K Nox*(1-q)
Диоксид азота	Mi NO2	г/сек		Mi=Mi Nox * 0,8
0	M NO2	т/год		M=MNox * 0,8
Оксид азота	Mi NO	г/сек		Mi=Mi Nox * 0,13
	M NO	т/год	0.0002779	M=MNox* 0,13

Источник выброса № 6016 Строительные работы Источник выделения № 1 Гашение извести

Литература: "Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами". Пенинград, Гидрометеоиздат 1986 г.

Методика расчета величин эмиссий в атмосферу загрязняющих веществ от основного технологичнского оборудования предприятий агропромышленнного комплекса, перерабатывающих сырье животного происхождения (мясокомбинаты, клеевые и желатиновые заводы и т.п.) Приложение №10 к Приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008 года №100 -п

Расчет проводится по формулам годовой выброс M (т/год) = (Q * P * q)/1000000 секундный выброс M (г/сек) = (Q * P)/(t * 60)

где -

Q-	удельный выброс вредного вещества г/т	Q= 120	Γ/T
P-	масса гашенной извести за 1 раз в тоннах	P = 0.4520950	T
t-	продолжительность гашения извести за 1 раз в минутах	t= 60	МИН
q-	число циклов гашения за период, шт	q= 5	

Код	Наименование	Выбросы в	
вещ-ва	загрязняющего	атмосферу	
	вещества	г/с	$_{ m T}/_{ m \Gamma}$
128	Кальций оксид (гашенн	0.015069832	0.000271257

Источник выброса №

6017 Строительные работы

Источник выброса №

Газовая сварка стали ацетилен-кислородным пламенем

Расчет выбросов загрязняющих веществ

1

$$M_{rog} = \frac{Brog * K m * (1-\eta)}{1000000}$$
,т/год (5.1)

$$M_{cek} = \frac{B \text{час} * K \text{ m} * (1-\eta)}{3600}$$
, г/сек (5.2)

В -расход применяемого материала, кг/год

$$B_{\text{год}} = 7977.453934$$
 кг/год $B_{\text{час}} = 2.769949283$ кг/час

 $K_{\,\mathrm{m}}$ -удельный показатель выброса 3B на единицу массы расходуемых материалов, г/кг

Диоксид азота $m K \ m= 22 \ \ \, табл.3$

Код ве-	Наименование	Выбросы в	
щества	загрязняющего	атмосферу	
	вещества		
		г/с	т/г
301	Диоксид азота	0.016927468	0.175503987

Источник выброса № Источник выброса №

6018 Строительные работы

1 Газовая сварка стали пропан-бутановой смесью

табл.3

Расчет выбросов загрязняющих веществ

$$M_{rog} = \frac{Broд * K m * (1-\eta)}{1000000}$$
,т/год (5.1)

$$M_{cer} = \frac{B \text{час * K m * (1-\eta)}}{3600}$$
, г/сек (5.2)

В -расход применяемого материала, кг/год

$$B_{\text{год}} = 1975.112032$$
 кг/год
 $B_{\text{час}} = 0.685802789$ кг/час

 $K_{\,\mathrm{m}}$ -удельный показатель выброса 3B на единицу массы расходуемых материалов, г/кг

Код ве- щества	Наименование загрязняющего вещества	Выбросы в атмосферу	
		г/с	т/г
301	Диоксид азота	0.002857512	0.02962668

Источник выброса № 6019 Строительные работы Источник выделения № 1 Электросварка

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004

Расчет выбросов загрязняющих веществ

$$M_{rog}$$
= $\frac{Broд*Km*(1-\eta)}{1000000}$,т/год , т/сек M_{cek} = $\frac{Bvac*Km*(1-\eta)}{3600}$, г/сек

В -расход применяемого материала, кг/год

 $B_{\text{год}} = 25055.73588$ кг/год $B_{\text{час}} = 8.69990829$ кг/час

 ${\rm K}_{\rm m}$ -удельный показатель выброса 3B на единицу массы расходуемых материалов, г/кг

Диоксид железа К т 9.27 табл.1

Оксиды марганца K m = 1Оксид хрома K m = 1.43Фториды K m = 1.5Фтористый водород K m = 0.001

η - степень очистки воздуха в аппарате

Т- продолжительность работы, час/год Т= 2880

Код ве-	Наименование	Выбросы в	
щества	загрязняющего	атмосферу	
	вещества		
		г/с	T/Γ
123	Диоксид железа	0.022402264	0.232266672
143	Оксиды марганца	0.002416641	0.025055736
203	Оксид хрома	0.003455797	0.035829702
344	Фториды	0.003624962	0.037583604
342	Фтористый водород	0.000002417	0.000025056

Источник выброса № Источник выделения № 6020 Строительные работы

Пайка паяльником (Припои оловянно-свинцовые в чушках бессурьмянистые ПОС 30, 40, 61)

4.31

Методика расчета выбросов загрязняющих веществ в атмосферу от автотранспортных предприятий. Приложение №3 к приказу Министра охраны окружающей среды РК от 18 апреля 2008г. №100-п.

Расчет валовых выбросов проводится отдельно по свинцу и оксидам олова при пайке паяльником с косвенным нагревом по формуле:

1

$$M_{\text{год}}$$
= $q*m*10^{-6}$,т/год 4.28

т - масса израсходованного припоя за год, кг/год

 $m_{rog} = 525.3796$ кг/год

q -удельные показатель выброса ЗВ на единицу массы расходуемых материалов, г/кг (табл. 4.8)

 $egin{array}{lll} \mbox{Свинец} & q = 0.51 \ \mbox{Оксид олова} & q = 0.28 \ \label{eq:q} \end{array}$

t - время работы паяльником, час/год t = 2880

Соответсвенно получим:

mo nony rum.					
Код ве-	Наименование	Выбросы в			
щества	загрязняющего	атмосферу			
	вещества				
		г/с	т/г		
184	Свинец и его неорганич	2.58433E-05	0.000267944		
168	Олово оксид /в пересчет	1.418849E-05	0.000147106		

Методика расчета выбросов загрязняющих веществ в атмосферу от автотранспортных предприятий. Приложение №3 к приказу Министра охраны окружающей среды РК от 18 апреля 2008г. №100-п.

Расчет валовых выбросов проводится отдельно по свинцу и оксидам олова при пайке паяльником с косвенным нагревом по формуле:

$$M_{roд}$$
= $q*m*10^{-6}$,т/год 4.28
$$M_{cek}$$
= $\frac{Mroд*10^{6}}{t*3600}$, г/сек 4.31

т - масса израсходованного припоя за год, кг/год

 $m_{\text{год}}$ = 0.0692 кг/год

2880

t =

q-удельные показатель выброса ЗВ на единицу массы расходуемых материалов, г/кг (табл. 4.8)

 $egin{array}{lll} \mbox{Свинец} & q = 0.51 \ \mbox{Оксид олова} & q = 0.28 \ \mbox{Окись сурьмы} & q = 0.016 \ \label{eq:q} \end{array}$

t - время работы паяльником, час/год

Соответсвенно получим:

_	ino nony mm.					
	Код ве-	Наименование	Выбросы в			
	щества	загрязняющего	атмосферу			
		вещества				
			г/с	$_{ m T}/\Gamma$		
	184	Свинец и его неорганич	3.4039352E-09	3.529200E-08		
	168	Олово оксид /в пересчет	1.8688272E-09	1.937600E-08		
	190	диСурьма триоксид /в п	1.0679012E-10	1.107200E-09		

Источник выброса № 6022 Строительные работы Источник выделения № 1 Слив масла

Литература: РНД 211.2.02.09-2004, "Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров" Министерство охраны окружающей среды РК. РГП "Информационно-аналитический центр охраны окружающей среды" МООС РК

Категория ГСМ	Масло	
Вид резервуара	Резервуары наземные	
Количество резервуаров	резервуары 0,2м³ - 2шт.	
Объем хранения	0.7271062	
ГСМ за год в м3		

Vсл- Обьем слитого нефтепродукта, м ³ Vтрк- Макс.производительность ТРК, м ³ /час Ср(max) - Макс.концентрация паров нефтепродуктов при заполнении баков	Vсл= Vтрк=	0.72711 2.4
(приложение 15), г/м ³	Cp(max)=	0.24
Q - Объем слитого нефтепродукта, м ³	Q03=	0.363553
	Qвл=	0.363553
С - Концентрации паров паров нефтепродукта при заполнении баков		
(приложение 15), г/м ³	Сбоз=	0.25
	Сбвл=	0.24
J - Удельные выбросы при проливах, г/м³	J=	12.5

 $Mi(\Gamma/cek) = (Cб.a/м(max)*Vcл) / 3600 = 4.84737E-05$ $Mi(\tau/roд) = \{(Cбo3*Qo3+Cбвл*Qвл)/1000000) + (0,5*J*(Qo3+Qвл)/1000000)\} = 4.722555E-06$

Соответственно получим:

В	венно получим:					
	Код	Наименование	Выбросы в			
	вещ-ва	загрязняющего	атмосферу			
		вещества	г/с	$_{ m T}/_{ m \Gamma}$		
	2735	Масло минеральное (нефтяное)	4.84737E-05	4.72255E-06		

Источник выброса № 6023 Расворитель

Источник выделения № 1 Ксилол нефтяной марки A (по аналогу растворителя P - 10)

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

<i>T</i> -	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	0.85456526 т/год
fр	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	100 %
δpI	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

 $G = (m_M * fp * \delta p1 * \delta x/10000000 * 3,6) * (1-\eta), z/c,$

 $M = (m\phi * fp * \delta p 1 * \delta x / 1000000) * (1-\eta), m/200,$

При сушке

 $G = (m_M * fp * \delta p "* \delta x/1000000*3,6)*(1-\eta), z/c,$ $M = (m\phi * fp * \delta p "* \delta x/1000000)*(1-\eta), m/zod,$

Код загрязняющ его вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Ксилол нефтяной марки А (по аналогу рас		растворителя Р -	10)	
При покраск	е (летучая часть)			
1401	Ацетон	15	0.001167	0.03589
616	Ксилол	85	0.006611	0.20339
При сушке				
1401	Ацетон	15	0.0030	0.09229
616	Ксилол	85	0.0170	0.52299

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1401	Ацетон	0.004166667	0.128184789
616	Ксилол	0.023611111	0.726380471

Источник выброса № 6024 Покрасочные работы

Источник выделения № 1 Грунтовка глифталевая ГФ-021, грунтовка водно-дисперсионная акриловая глубокого проникновения для внутренних и наружных работ, грунтовка масляная, готовая к

применению, Грунтовка битумная

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	11.1266254 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	45 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	изделий производится в камере, сушка на улице.	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

G= $(m_M * fp * \delta p 1 * \delta x / 1000000 * 3,6) * (1-\eta), \Gamma/c,$

 $M = (m\phi * fp * \delta p 1 * \delta x / 1000000) * (1-\eta), т/год,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
616	Ксилол (смесь изомеров о-,	100	0.003500	1.40195

При сушке

G= $(m_M*fp*\delta p2*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$

 $M = (m\phi * fp * \delta p2 * \delta x/1000000)*(1-\eta), т/год,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
616	Ксилол (смесь изомеров о-,	100	0.009	3.605026623

616 Ксилол (сме	ь изомеров о-, м-, п-)	0.012500000	5.006981421
-----------------	------------------------	-------------	-------------

Источник выброса № 6025 Покрасочные работы Источник выделения № 1 Лак бакелитовые ЛБС-1, ЛБС-2

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
mф	Фактический годовой расход ЛКМ, т/год	0.00086 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	45 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
δρ2	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть) G= (mm*fp* δ p1* δ x/1000000*3,6)*(1- η), г/с, M= (m φ *fp* δ p1* δ x/1000000)*(1- η), т/год,

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Лак бакелитовые ЛБС-1, ЛБС-2				
1061	Спирт этиловый	77.8	0.002723	8.43041E-05
1071	Фенол	22.2	0.000777	2.40559E-05

При сушке

$$\begin{split} G&=(m_{M}*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \ \Gamma/c,\\ M&=(m_{\varphi}*fp*\delta p"*\delta x/1000000)*(1-\eta), \ \ \mathrm{T/rod}, \end{split}$$

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные	Валовый выброс, т/г
		δx	G	M
Лак бакелитов	вые ЛБС-1, ЛБС-2			
1061	Спирт этиловый	77.8	0.007002	0.000216782
1071	Фенол	22.2	0.001998	6.18581E-05

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1061	Спирт этиловый	0.009725	0.000301086
1071	Фенол	0.002775	0.000085914

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	1.6492126 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	100 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	1 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

G= $(m_M*fp*\delta p1*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$

 $M = (m\phi * fp * \delta p 1 * \delta x / 1000000) * (1-\eta), т/год,$

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл.2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Растворители	для лакокрасочных матер	иалов Р-4		
1401	Ацетон	26	7.2222E-05	0.004287953
1210	Бутилацетат	12	3.33333E-05	0.001979055
621	Толуол	62	0.000172222	0.010225118

При сушке

G= (m_M*fp*δp"*δx/1000000*3,6)*(1-η), Γ/c ,

 $M = (m\phi * fp * \delta p'' * \delta x/1000000) * (1-\eta), \ \tau/год,$

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Растворители	для лакокрасочных матер	иалов Р-4		
1401	Ацетон	26	0.005200	0.30873
1210	Бутилацетат	12	0.002400	0.14249
621	Толуол	62	0.012400	0.73621

Код	Наименование загрязняющего вещества	Мах.выбросы,	Валовый
вещества	ттаименование загрязняющего вещества	г/с,	выброс, т/г
1401	Ацетон	0.005272222	0.313020546
1210	Бутилацетат	0.002433333	0.144471021
621	Толуол	0.012572222	0.746433609

Источник выделения ${\it N}_{\it 2}$ 1 Растворители для лакокрасочных материалов N 646

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	0.02 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	100 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть) G= (mm*fp* δ p1* δ x/1000000*3,6)*(1- η), г/с, M= (m φ *fp* δ p1* δ x/1000000)*(1- η), т/год,

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Растворители для лакокрасочных материалов N 646				
1401	Ацетон	7	0.000544444	0.000392
1042	Спирт н-бутиловый	15	0.001166667	6.53333E-08
1061	Спирт этиловый	10	0.000155556	0.00056
1210	Бутилацетат	10	0.000777778	0.00056
1119	Этилцеллозольв	8	0.000622222	0.000448
621	Толуол	50	0.003888889	0.0028

При сушке

G= $(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$ M= $(m_\Phi*fp*\delta p"*\delta x/1000000)*(1-\eta), T/rod,$

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Растворители для лакокрасочных материалов N 646		иалов N 646		
1401	Ацетон	7	0.001400	0.00101
1042	Спирт н-бутиловый	15	0.003000	0.00216
1061	Спирт этиловый	10	0.002000	0.00144
1210	Бутилацетат	10	0.002000	0.00144
1119	Этилцеллозольв	8	0.001600	0.00115
621	Толуол	50	0.010000	0.00720

Код	Наименование загрязняющего вещества	Мах.выбросы,	Валовый
вещества		г/с,	выброс, т/г
1401	Ацетон	0.001944444	0.001400000
1042	Спирт н-бутиловый	0.004166667	0.000217735
1061	Спирт этиловый	0.002155556	0.000201600
1210	Бутилацетат	0.002777778	0.000201600
1119	Этилцеллозольв	0.002222222	0.000161280
621	Толуол	0.013888889	0.001008000

Источник выброса № 6028 Покрасочные работы

Источник выделения № 1 Керосин для технических целей марок КТ-1, КТ-2, Контакт Петрова керосиновый

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

<i>T</i> -	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
$m\phi$	Фактический годовой расход ЛКМ, т/год	3.09046753 т/год
ſр	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	90 %
$\delta p1$	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	35 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	65 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

 $G = (m_M *fp *\delta p1 *\delta x/1000000 *3,6) *(1-\eta), z/c,$ $M = (m\phi *fp *\delta p1 *\delta x/1000000) *(1-\eta), m/zod,$

При сушке

 $G = (m_M *fp *\delta p "*\delta x/1000000*3,6)*(1-\eta), \ z/c, \\ M = (m\phi *fp *\delta p "*\delta x/1000000)*(1-\eta), \ m/zod, \\$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максималь ные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Керосин для	я технических целей марок	КТ-1, КТ-2, Кон	такт Петрова	керосиновый
При покрасі	ке (летучая часть)			
2732	Керосин	100	0.0087500	0.97349727
При сушке			·	·
2732	Керосин	100	0.016	1.8079235

Код вещества	Наименование загрязняющего вещества	Мах.выбро сы, г/с,	Валовый выброс, т/г
2732	Керосин	0.025000	2.7814208

Источник выброса № 6029 Покрасочные работы Источник выделения № 1 Уайт-спирит

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

Т-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	1.19183147 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	15 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

$$\begin{split} G&=(m_M * fp * \delta p 1 * \delta x / 1000000 * 3,6) * (1-\eta), \ \Gamma/c, \\ M&=(m_\Phi * fp * \delta p 1 * \delta x / 1000000) * (1-\eta), \ \ \mathrm{T/rod}, \end{split}$$

При сушке

$$\begin{split} G&=(m \text{M*fp*\delta p"*\delta x}/1000000*3,6)*(1-\eta), \text{ Γ/c,} \\ M&=(m \varphi \text{*fp*\delta p"*\delta x}/1000000)*(1-\eta), \text{ $T/ro \mu$,} \end{split}$$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Уайт-спири	Уайт-спирит			
При покрасі	ке (летучая часть)			
2752	Уайт-спирит	100	0.001166667	0.050056922
При сушке				
2752	Уайт-спирит	100	0.003	0.128717799

Код	Наименование загрязняющего вещества	Мах.выбросы,	Валовый
вещества	ттаименование загрязняющего вещества	г/с,	выброс, т/г
2752	Уайт-спирит	0.004166667	0.178774721

Источник выброса № 6030 Покрасочные работы Источник выделения № 1 Олифа натуральная, олифа "Оксоль" (по аналогу лак ПЭ-220)

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г.

<i>T</i> -	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
$m\phi$	Фактический годовой расход ЛКМ, т/год	0.076324 т/год
fр	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	35 %
δpI	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл.2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

 $G = (mm*fp*\delta p1*\delta x/1000000*3,6)*(1-\eta), z/c,$ $M = (m\phi*fp*\delta p1*\delta x/1000000)*(1-\eta), m/zod,$

Код загрязняющ его вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальны е выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Олифа натура				
1401	Ацетон	88.57	0.002411072	0.006624854
616	Ксилол	4.29	0.000116783	0.000320883
621	Толуол	7.14	0.000194367	0.000534057

При сушке

 $G = (mm*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), z/c,$ $M = (m\phi*fp*\delta p"*\delta x/1000000)*(1-\eta), m/zod,$

Код загрязняющ его вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальны е выбросы, г/с,	Валовый выброс, т/г	
		δx	G	M	
Олифа натуральная, олифа "Оксоль" (по аналогу лак ПЭ-220)					
1401	Ацетон	88.57	0.0061999	0.01703534	
616	Ксилол	4.29	0.0003003	0.00082513	
621	Толуол	7.14	0.0004998	0.00137329	

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1401	Ацетон	0.00861097	0.02366019
616	Ксилол	0.00041708	0.00114601
621	Толуол	0.00069417	0.00190735

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
mф	Фактический годовой расход ЛКМ, т/год	0.0006503 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	76.5 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

G= $(m_M*fp*\delta p1*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$

 $M = (m\phi * fp * \delta p 1 * \delta x / 1000000) * (1-\eta), т/год,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальны е выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль эпок	Эмаль эпоксидная ЭП-51			
1401	Ацетон	4	0.000238	0.00000557134
1042	Спирт н-бутиловый	4	0.000238	0.00000557134
1210	Бутилацетат	33	0.0019635	0.00004596357
1240	Этилацетат	16	0.000952	0.00002228537
621	Толуол	43	0.03315816	0.00005989193

При сушке

G= $(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$ $M = (m\phi * fp * \delta p"* \delta x/1000000)*(1-\eta), т/год,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальны е выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль эпок	сидная ЭП-51			
1401	Ацетон	4	0.000612000	0.000014326
1042	Спирт н-бутиловый	4	0.000612000	0.000014326
1210	Бутилацетат	33	0.005049000	0.000118192
1240	Этилацетат	16	0.002448000	0.000057305
621	Толуол	43	0.085263840	0.0001540078

Код	Наименование загрязняющего	Мах.выбросы	Валовый
вещества	вещества	, r/c,	выброс, т/г
1401	Ацетон	0.000850000	0.000019898
1042	Спирт н-бутиловый	0.000850000	0.000019898
1210	Бутилацетат	0.007012500	0.000164156
1240	Этилацетат	0.003400000	0.000079591
621	Толуол	0.118422000	0.000213900

1 Краска водоэмульсионная (по аналогу АК-1102)

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
mф	Фактический годовой расход ЛКМ, т/год	0.647253 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	80.5 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
δp2	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть) G= (mм*fp* δ p1* δ x/1000000*3,6)*(1- η), г/c,

 $M=(m\varphi *fp*\delta p1*\delta x/1000000)*(1-\eta),$ т/год,

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Краска вод	оэмульсионная (по ана.	логу АК-1102)		
1042	Спирт н-бутиловый	2.91	0.000182198	0.004245423
1401	Ацетон	29.13	0.001823862	0.042497998
	Ацетон Бутилацетат	29.13 29.13	0.001823862 0.001823862	0.042497998 0.042497998

При сушке

 $G = (m_{\text{M}} f_{\text{p}} \delta_{\text{p}} \delta_{\text{p}} \delta_{\text{x}} 1000000 \delta_{\text{3},6}) (1-\eta), \ \Gamma/c,$

 $M = (m\phi * fp * \delta p" * \delta x/1000000) * (1-\eta), т/год,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Краска вод	Краска водоэмульсионная (по аналогу АН			
1042	Спирт н-бутиловый	2.91	0.00046851	0.01091680
1401	Ацетон	29.13	0.00468993	0.10928057
1210	Бутилацетат	29.13	0.00468993	0.10928057
616	Ксилол	38.83	0.00625163	0.14566991

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1042	Спирт н-бутиловый	0.000650708	0.015162225
	Ацетон	0.006513792	0.151778563
1210	Бутилацетат	0.006513792	0.151778563
616	Ксилол	0.008682819	0.202319314

Источник выброса № 6033 Покрасочные работы

Источник выделения № 1 Эмаль пентафталевая ПФ-115, Краска масляная земляные МА-0115, Краска масляная густотертая цветная МА-015, Краска водно-дисперсионная акриловая, Краска масляная

MA-15

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
$m\phi$	Фактический годовой расход ЛКМ, т/год	7.9730817 т/год
fр	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	45 %
$\delta p I$	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0

При покраске (летучая часть) $G = (mM*fp*\delta p1*\delta x/1000000*3,6)*(1-\eta), z/c,$ $M = (m\phi*fp*\delta p1*\delta x/1000000)*(1-\eta), m/zod,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальн ые выбросы, г/с,	Валовый выброс, т/г	
		δx	G	M	
	Эмаль пентафталевая ПФ-115, Краска масляная земляные МА-0115, Краска масляная				
густотертая цветная МА-015, Краска водно-дисперсионная акриловая, Краска					
2752	Уайт-спирит	50	0.00175	0.502304	
616	Ксилол	50	0.00175	0.502304	

При сушке

 $G = (mm*fp*\delta p2*\delta x/1000000*3,6)*(1-\eta), z/c,$ $M = (m\phi*fp*\delta p2*\delta x/1000000)*(1-\eta), m/zod,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл.2	Максимальн ые выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль пентафталевая ПФ-115, Краска масляная земляные МА-0115, Краска масляная густотертая цветная МА-015, Краска водно-дисперсионная акриловая, Краска				
2752	Уайт-спирит	50	0.0045	1.29163924188
616	Ксилол	50	0.0045	1.29163924188

Код	Наименование загрязняющего вещества	Мах.выброс	Валовый выброс,
вещества	паименование загрязняющего вещества	ы, г/с,	$_{ m T}/_{ m \Gamma}$
2752	Уайт-спирит	0.00625	1.793943392
616	Ксилол	0.00625	1.793943392

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	0.000216 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	73 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
δρ2	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть) G= ($mm*fp*\delta p1*\delta x/1000000*3,6$)*(1- η), г/с, M= ($m\phi*fp*\delta p1*\delta x/1000000$)*(1- η), т/год,

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль ХВ-	124, Эмаль ХВ-785			
1401	Ацетон	26	0.001476222	1.14791E-05
1210	Бутилацетат	12	0.000681333	5.29805E-06
621	Толуол	62	0.003520222	2.73732E-05

При сушке

G= $(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$ M= $(m_\Phi*fp*\delta p"*\delta x/1000000)*(1-\eta), T/\Gamma O J,$

		Содержание		
Код загрязняю щего вещества	Наименование загрязняющего вещества	компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль ХВ-	124, Эмаль XB-785			
1401	Ацетон	26	0.003796	0.0000295177
1210	Бутилацетат	12	0.001752	0.0000136236
621	Толуол	62	0.009052	0.0000703884

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1401	Ацетон	0.005272222	0.000040997
1210	Бутилацетат	0.002433333	0.000018922
621	Толуол	0.012572222	0.000097762

Источник выброса № 6032 Покрасочные работы *Источник выделения №* 1 Эмаль термостойкая КО-811

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	0.095 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	64.5 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
δp2	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 3	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски , потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

$$\begin{split} G&=(m_{}^*fp^*\delta p1^*\delta x/1000000^*3,6)^*(1-\eta), \ \Gamma/c,\\ M&=(m_{}^*fp^*\delta p1^*\delta x/1000000)^*(1-\eta), \ \ \tau/r_{}^{}O_{}^{}J, \end{split}$$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль термо	остойкая КО-811			
1210	Бутилацетат	50	0.002508333	0.0085785
1042	Спирт н-бутиловый	20	0.001003333	0.0034314
1061	Спирт этиловый	10	0.000501667	0.0017157
621	Толуол	20	0.001003333	0.0034314

При сушке

G= $(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), r/c,$ M= $(m_\Phi*fp*\delta p"*\delta x/1000000)*(1-\eta), r/r_{O,d},$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Эмаль термо	остойкая КО-811			
1210	Бутилацетат	50	0.00645000	0.02205900
1042	Спирт н-бутиловый	20	0.00258000	0.00882360
1061	Спирт этиловый	10	0.00129000	0.00441180
621	Толуол	20	0.00258000	0.00882360

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1210	Бутилацетат	0.008958333	0.030637500
	Спирт н-бутиловый	0.003583333	0.012255000
1061	Спирт этиловый	0.001791667	0.006127500
621	Толуол	0.003583333	0.012255000

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/гол
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	382.10897514 кг/час
тф	Фактический годовой расход ЛКМ, т/год	0.565486 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	11 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
δρ2	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл.2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Лоля краски , потерянной в виде аэрозоля. (% мас.) Табл. 3	0 %

При покраске (летучая часть) G= (mm*fp* δ p1* δ x/1000000*3,6)*(1- η), г/c, M= (m φ *fp* δ p1* δ x/1000000)*(1- η), т/год,

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Шпатлевка,	смеси сухие шпатлевочные			
	смеси сухие шпатлевочные Спирт н-бутиловый	40	1.307661826	0.006966791
1042		40 40	1.307661826 1.307661826	0.006966791 0.006966791
1042 616	Спирт н-бутиловый			

При сушке

$$\begin{split} G&=(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \ \Gamma/c,\\ M&=(m_\Phi*fp*\delta p"*\delta x/1000000)*(1-\eta), \ \ \mathrm{T/rod}, \end{split}$$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Шпатлевка,	смеси сухие шпатлевочные			
1042	Спирт н-бутиловый	40	3.362559	0.017914604
616	Ксилол	40	3.362559	0.017914604
1078	Этиленгликоль	10	0.840640	0.004478651
1112	Этилкарбитол	10	0.840640	0.004478651

Код	Наименование загрязняющего вещества	Мах.выбросы,	Валовый
вещества	ттаименование загрязняющего вещества	г/с,	выброс, т/г
1042	Спирт н-бутиловый	4.67022081	0.02488140
616	Ксилол	4.67022081	0.02488140
1078	Этиленгликоль	1.16755520	0.00622035
1112	Этилкарбитол	1.16755520	0.00622035

Источник выброса № Источник выделения № 6037 Покрасочные работы

Лаки канифольные КФ-965, Лак меламинный МЛ-248, Лак битумный БТ-577, Лак битумный БТ-783, Лак битумный БТ-123, Лак перхлорвиниловый ХВ-784, Лак нитроцеллюлозный НЦ-62, Лак пропиточный без растворителей АС-9115, Лак электроизоляционный 318

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
тф	Фактический годовой расход ЛКМ, т/год	1.9706251467 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	56 %
δ p 1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	28 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	72 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г	
		δx	G	M	
Лаки канифол	ьные КФ-965, Лак мела	аминный МЛ-24	48, Лак битумный	і БТ-577, Лак	
битумный БТ-	-783, Лак битумный БТ	-123, Лак перхл	порвиниловый ХІ	3-784, Лак	
нитроцеллюло	нитроцеллюлозный НЦ-62, Лак пропиточный без растворителей АС-9115, Лак				
2752	Уайт-спирит	4	0.000174222	0.012359761	
616	Ксилол	96	0.004181333	0.296634262	

При сушке

G= $(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \Gamma/c,$ M= $(m_\Phi*fp*\delta p"*\delta x/1000000)*(1-\eta), T/\Gamma O J,$

Код загрязняюще го вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г	
		δx	G	M	
Лаки канифол	Лаки канифольные КФ-965, Лак меламинный МЛ-248, Лак битумный БТ-577, Лак				
битумный БТ-	783, Лак битумный БТ	-123, Лак перхл	порвиниловый ХІ	В-784, Лак	
нитроцеллюлозный НЦ-62, Лак пропиточный без растворителей АС-9115, Лак					
2752	Уайт-спирит	4	0.000448	0.031782242	
616	Ксилол	96	0.010752	0.762773817	

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
2752	Уайт-спирит	0.000622222	0.044142003
616	Ксилол	0.014933333	1.059408079

Краска огнезащитная X-FLAME (по аналогу эмаль AC-182)

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
mф	Фактический годовой расход ЛКМ, т/год	39.360418 т/год
fp	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	47 %
δp1	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	25 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	75 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть) G= (mm*fp* δ p1* δ x/1000000*3,6)*(1- η), г/c,

 $M = (m\phi * fp * δp1 * δx/1000000)*(1-η), τ/год,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Краска огнезащитная X-FLAME (по аналогу эмаль AC-182)				
616	Ксилол	85	0.002774306	3.931121713
2752	Уайт-спирит	5	0.000163194	0.231242454
2750	Сольвент	10	0.000326389	0.462484907

При сушке

$$\begin{split} G&=(m_M*fp*\delta p"*\delta x/1000000*3,6)*(1-\eta), \ \Gamma/c,\\ M&=(m_\Phi*fp*\delta p"*\delta x/1000000)*(1-\eta), \ \ \mathrm{T/fog}, \end{split}$$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс,
Vnaora oru	<u>l</u> езащитная X-FLAME (по	дх	C 192)	M
		з аналогу эмаль А	C-162)	
616	Ксилол	85	0.008322917	11.793365140
2752	Уайт-спирит	5	0.000489583	0.693727361
2750	Сольвент	10	0.000979167	1.387454722

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, $_{\mathrm{T/\Gamma}}$
616	Ксилол	0.011097222	15.724486854
2752	Уайт-спирит	0.000652778	0.924969815
2750	Сольвент	0.001305556	1.849939630

Источник выброса № 6039 Покрасочные работы Источник выделения № 1 Сольвент каменноугольный технический, марка Б

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004 Утверждена приказом Министра охраны окружающей среды от 20.12.2004г. №328р.

T-	время работы покрасочного цеха	2880 ч/год
тм	Фактический максимальный часовой расход ЛКМ, с учетом дискретности работы, кг/час	0.1 кг/час
$m\phi$	Фактический годовой расход ЛКМ, т/год	0.31488334 т/год
fр	Доля летучей части (растворителя) в ЛКМ, % мас., табл. 2	90 %
$\delta p1$	Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, % мас., табл. 3	35 %
$\delta p2$	Доля растворителя в ЛКМ, выделившегося при сушке покрытия, % мас., табл. 3	65 %
δx	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	
η	Степень очистки воздуха газоочистным оборудованием (в доля единицы), покраска	
	и сушка изделий	0
δa	Доля краски, потерянной в виде аэрозоля, (% мас.) Табл. 3	0 %

При покраске (летучая часть)

 $G = (m_M *fp *\delta p 1 *\delta x/1000000 *3,6) *(1-\eta), \ z/c,$ $M = (m\phi *fp *\delta p 1 *\delta x/1000000) *(1-\eta), \ m/zod,$

При сушке

 $G = (mM*fp*\delta p "*\delta x/1000000*3,6)*(1-\eta), z/c,$ $M = (m\phi*fp*\delta p "*\delta x/1000000)*(1-\eta), m/zod,$

Код загрязняю щего вещества	Наименование загрязняющего вещества	Содержание компонента в летучей части ЛКМ, % мас. Табл. 2	Максимальные выбросы, г/с,	Валовый выброс, т/г
		δx	G	M
Сольвент ка	менноугольный техническ	ий, марка Б		
При покрасі	ке (летучая часть)			
2750	Сольвент	100	0.00875	0.0991882521
При сушке				
2750	Сольвент	100	0.01625	0.1842067539

Код вещества	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, $_{\mathrm{T/\Gamma}}$
2750	Сольвент	0.025000	0.283395006

Источник выброса № 6040 Строительные работы Источник выброса № 1 Сверлильные машины

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработки металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004 Астана, 2004

Взвешенные вещества

секундный выброс

 $M(\Gamma/\text{сек}) = k \times Q \times n = 0.0008 \Gamma/\text{сек}$ (1)

годовой выброс

 $M(\tau/\tau \circ J) = (3600 \text{ x k x Q x T x N})/1000000 = 0.0165888 \text{ T/год}$ (2)

k - коэффициент гравитационного оседания (см.п.5.3.2); k = 0.2

Q - удельное выделение пыли технологическим оборудованием, г/с (табл.6);

Взвешенные вещества Q = 0.0004 г/сек

Т - фактический годовой фонд времени работы одной единицы оборудования, час;

T= 2880 час/год

n - число одновременно работающих станков, шт; $n=10\,$ шт.

Соответственно получим:

Код	Наименование	Выбросы ЗВ	
вещества	вещества	г/с	т/год
2902	Взвешенные вещества	0.0008	0.0165888

Источник выброса № 6041 Строительные работы Источник выброса № 1 Болгарка d=100 мм

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработки металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004 Астана, 2004

D - диаметр шлифовального круга, г/с; 100 мм

k - коэффициент гравитационного оседания (см.п.5.3.2); k = 0.2

Q - удельное выделение пыли технологическим оборудованием, г/с (табл.1-5);

Наименование вещества	Q
	г/сек
Пыль абразивная	0.004
Взвешенные вещества	0.006

Т -фактический годовой фонд времени работы

одной еденицы оборудования, час; T=2880 час/год n - число одновременно работающих станков, шт; 10 шт. N - число станков на балансе предприятия, шт; 20 шт.

Пыль абразивная секундный выброс

 $M(\Gamma/\text{сек}) = k \times Q \times n = 0.008 \Gamma/\text{сек}$ (1)

годовой выброс

 $M(\tau/\Gamma \circ J) = (3600 \text{ x k x Q x T})/1000000 = 0.0082944 \text{ т/год}$ (2)

Взвешенные вещества секундный выброс

 $M(\Gamma/\text{сек}) = k \times Q \times n = 0.012 \Gamma/\text{сек}$ (1)

годовой выброс

 $M(\tau/\Gamma \circ \pi) = (3600 \text{ x k x Q x T})/1000000 = 0.0124416 \tau/\Gamma \circ \pi$ (2)

Соответственно получим:

Код	Наименование	Выбросы	
вещества	вещества	г/с	т/год
293	Пыль абразивная	0.008	0.0082944
290	2 Взвешенные вещества	0.012	0.0124416

Источник выброса № 6042 Строительные работы Источник выделения № 1 Пилы электрические цепные

Литература: Методические указания по расчету выбросов загрязняющих веществ в атмосферный воздух предприятиями деревообрабатывающей промышленности РНД 211.2.02.08-2004. Утверждены приказом Министра охраны окружающей среды от 20.12.2004г. №328-р.

Исходные данные:

Т -фактический годовой фонд времени работы 1 единицы оборудования, час/год;

800 час/год

Qi - удельный показатель пылеобразования на 1 оборудования, г/с;

1.19 г/с

K - коэфициент гравитационного оседания, принимается равным $0,\!2$

K = 0.2

η - степень очистки воздуха пылеулавливающим оборудованием

 $\eta = 0$

(в долях еденицы)

Пыль древесная

годовой выброс

 $M_T = (K * Q * T * 3600) * (1-\eta)/1000000 =$

0.68544 т/год

секундный выброс

 $M_{\Gamma} = (K *Q) * (1-\eta) =$

0.238 г/сек

Соответсвенно получим:

into newly min.				
Код	Код		Выбросы ЗВ	
вещества	Наименование			
	вещества	г/с	т/год	
2936	Пыль древесная	0.238	0.68544	

Источник загрязнения *N*

6043 Строительные работы

Источник выделения *N*

1 Дымовые газы автотранспорта

Валовый выброс ЗВ от автопогрузчика в день определяется по формуле:

Mi = ki*Qk*p*Tcm, грамм (5.1)

где ki - удельный выброс i-того вещества на 1 кг израсходованного топлива

Qk - средний часовой расход топлива автотранспортом данной марки, л/час

- плотность топлива, кг/л

Тст - средняя продолжительность работы автопогрузчиков данной марки в день, часов

Валовый выброс ЗВ от автотранспорта в год определяется по формуле:

 $_{M}$ = Mi*Dp*Nk*10-6, т/год (5.2)

где Dp - среднее количество рабочих дней в году

Nk - количествоавтотранспорта данной марки

Выбросы одноименных загрязняющих веществ от разных моделей автотранспорта суммируются.

Максимальный из разовых выброс определяется по формуле:

 $G = Mi*Nk1/(Tcm*3600), \Gamma/c (5.4)$

где Nk1- количество одновременно работающих автотранспорта данной марки

Список литературы:

1. Дополнение к "Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для				
автотранспортных предприятий (расчетным методом)", М.: НИИАТ, 1992	NIIZ	~		
Количество автотранспорта данной модели,	NK =	5		
Количество автотранспорта данной модели работающих одновременно,	NK1 =	2		
Средняя продолжительность работы автотранспорта в день, час,	TCM =	8		
Среднее количество дней работы автотранспорта в год,	DP =	365		
Вид топлива: диз.топливо	-	0.04		
Плотность топлива, кг/л,	P =	0.84		
Средний часовой расход топлива, л/ч,	QK =	13.4		
Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)		• 0		
Удельное выделение ЗВ г/кг израсходованного топлива,	KI =	30		
Валовый выброс ЗВ одним авто в день, г,				
$MI = KI \cdot QK \cdot P \cdot TCM =$	MI =	2701.44		
Валовый выброс 3B, т/год, $M = MI \cdot DP \cdot NK \cdot 10^{4} = MI \cdot DP \cdot D$	$\mathbf{M} =$	4.930128		
Максимальный разовый выброс 3В, г/с,				
$G = MI \cdot NK1 / (TCM \cdot 3600) =$	G =	0.1876		
Примесь: 2732 Керосин (654*)				
Удельное выделение ЗВ г/кг израсходованного топлива,	KI =	6		
Валовый выброс ЗВ одним авто в день, г,				
$MI = KI \cdot QK \cdot P \cdot TCM =$	MI =	540.288		
Валовый выброс 3B, т/год, $M = MI \cdot DP \cdot NK \cdot 10^{\circ} - 6 =$	$\mathbf{M} =$	0.9860256		
Максимальный разовый выброс ЗВ, г/с,				
$G = MI \cdot NK1 / (TCM \cdot 3600) =$	G =	0.03752		
Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)				
Удельное выделение ЗВ г/кг израсходованного топлива,	KI =	42		
Валовый выброс ЗВ одним авто в день, г,				
$MI = KI \cdot QK \cdot P \cdot TCM =$	MI =	3782.016		
Валовый выброс 3B, т/год, $M = MI \cdot DP \cdot NK \cdot 10^{\circ} = 10^{\circ}$	$\mathbf{M} =$	6.9021792		
Максимальный разовый выброс 3В, г/с,				
$G = MI \cdot NK1 / (TCM \cdot 3600) =$	G =	0.26264		
Примесь: 0328 Углерод (Сажа, Углерод черный) (583)				
Удельное выделение ЗВ г/кг израсходованного топлива,	KI =	6		
Валовый выброс ЗВ одним авто в день, г,				
$MI = KI \cdot QK \cdot P \cdot TCM =$	MI =	540.288		
Валовый выброс 3B, т/год, $M = MI \cdot DP \cdot NK \cdot 10^{\circ} = 10^{\circ}$	$\mathbf{M} =$	0.9860256		
Максимальный разовый выброс 3В, г/с,				
$G = MI \cdot NK1 / (TCM \cdot 3600) =$	G =	0.03752		
Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)				
Удельное выделение ЗВ г/кг израсходованного топлива,	KI =	3		
Валовый выброс ЗВ одним авто в день, г,				
$MI = KI \cdot QK \cdot P \cdot TCM =$	MI =	270.144		
Валовый выброс 3B, т/год, $M = MI \cdot DP \cdot NK \cdot 10^{-6} =$	$\mathbf{M} =$	0.4930128		
Максимальный разовый выброс 3В, г/с,				
1 / /				

Итоговая таблица:

			Выброс
Код	Примесь	Выброс г/с	т/год
301	Азота (IV) диоксид (Азота диоксид) (4)	0.26264000	6.90217920
328	Углерод (Сажа, Углерод черный) (583)	0.03752000	0.98602560
330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.01876000	0.49301280
	(IV) оксид) (516)		
337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.18760000	4.93012800
2732	Керосин (654*)	0.03752000	0.98602560

эксплуатация

Список литературы: "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час.

Вид топлива, $K3 = \Gamma a3$ (природный)

Расход топлива одного котла, м3/ч. 339.277951396157

Число котлов данного типа, шт. , _**KOLIV**_= 1

Расход топлива, тыс.м 3 /год , BT = 2421.10917495187

Расход топлива, л/с , BG = 94.2438753878214

Плотность газа, $\kappa \Gamma / M^3$ 0.758

Расход топлива, т/год , BT = 1835.20075461352Расход топлива, г/с , BG = 71.4368575439687

Месторождение, $M = _NAME_ =$ Бухара-Урал

Теплота сгорания, ккал/кг, ккал/м³(прил.2.1),QR = 6648Пересчет в МДж , QR = QR * 0.004187 = 27.835176

Зольность топлива, %(прил. 2.1) , AR = 0 Сернистость топлива, % (для газа в мг/м3)(прил. 2.1) , SR = 0 Время работы котельной установки, час/год, T = 7488

КПД котла % = **95.3**

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь:0301 Aзот (IV) оксид (Азота диоксид)

Номинальная тепловая мощность котлоагрегата кBт/час,QN = 2500

Фактическая мощность котлоагрегата, кBт/час, **Q**F = 2500

Кол-во окислов азота, кг/1 Гдж тепла (рис 2.1 или 2.2),KNO = 0.0891

Коэфф. снижения выбросов азота в результате техн. решений , B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а),

$$KNO = KNO * (QF / QN) ^ 0.25$$

KNO = 0.0891

Выброс окислов азота, т/год (ф-ла 2.7),

MNOT = 0.001 * BT * QR * KNO * (1-B)

MNOT = 4.55150742

Выброс окислов азота, г/с (ф-ла 2.7),

MNOG = 0.001 * BG * QR * KNO * (1-B)

MNOG = 0.17717156

Выброс азота диоксида (0301), т/год , $_{-}M_{-}$ = 0.8 * MNOT

M = 3.64120593

Выброс азота диоксида (0301), г/с , $_G_$ = **0.8** * **MNOG**

 $_{\mathbf{G}} = 0.14173725$

Примесь:0304 Aзот (II) оксид (Азота оксид)

Выброс азота оксида (0304), т/год , $_M_ = 0.13 * MNOT$

M= 0.59169596

Выброс азота оксида (0304), г/с , $_G_$ = 0.13 * MNOG

 $_{G} = 0.02303230$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид

Потери тепла от механической неполноты сгорания, %(табл.2.2), Q4 =

0 0.5

Потери тепла от химической неполноты сгорания, %(табл.2.2), Q3 =

Коффициент, учитывающий долю потери теплоты, R=

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3', CCO = QR * Q3*R

0.5

$$C_{co} = 6.958794$$

Выбросы окиси углерода, т/год (ф-ла 2.4),

$$_M_ = 0.001 * BT * CCO * (1-Q4/100)$$

Выбросы окиси углерода, г/с (ф-ла 2.4),

$$_G_ = 0.001 * BG * CCO * (1-Q4/100)$$

$$_{\mathbf{G}} = 0.49711438$$

ИТОГО:

Код	Примесь	Выброс г/сек	Выброс т/год
	Азот (IV) оксид (Азота		
0301	диоксид)	0.14173725	3.64120593
	Азот (II) оксид (Азота		
0304	оксид)	0.02303230	0.59169596
0337	Углерод оксид	0.49711438	12.77078400

Список литературы: "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час.

Вид топлива, $K3 = \Gamma$ аз (природный)

Расход топлива одного котла, м3/ч. 339.277951396157

Число котлов данного типа, шт., _*KOLIV*_=

Расход топлива, тыс.м 3 /год , BT = 2421.10917495187

Расход топлива, л/с , BG = 94.2438753878214

Плотность газа, $\kappa \Gamma/M^3$ 0.758

Расход топлива, т/год , BT = 1835.20075461352 Расход топлива, г/с , BG = 71.4368575439687

Месторождение, $M = _NAME_ = Бухара-Урал$

Теплота сгорания, ккал/кг, ккал/м³(прил.2.1), QR = 6648Пересчет в МДж , QR = QR * 0.004187 = 27.835176

Зольность топлива, %(прил. 2.1), AR = 0

Сернистость топлива, % (для газа в мг/м3)(прил. 2.1) , SR = 0

Время работы котельной установки, час/год, T= 7488

КПД котла % = 95.

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь:0301 Aзот (IV) оксид (Азота диоксид)

Номинальная тепловая мощность котлоагрегата кBт/час,QN = 2500

Фактическая мощность котлоагрегата, кBт/час, QF = 2500

Кол-во окислов азота, кг/1 Гдж тепла (рис 2.1 или 2.2),KNO = 0.0891

Коэфф. снижения выбросов азота в результате техн. решений , B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а),

$$KNO = KNO * (QF / QN) ^ 0.25$$

$$KNO = 0.0891$$

Выброс окислов азота, т/год (ф-ла 2.7),

$$MNOT = 0.001 * BT * QR * KNO * (1-B)$$

$$MNOT = 4.55150742$$

Выброс окислов азота, г/с (ф-ла 2.7),

$$MNOG = 0.001 * BG * QR * KNO * (1-B)$$

$$MNOG = 0.17717156$$

Выброс азота диоксида (0301), т/год , $_{-}M_{-}$ = 0.8 * MNOT

M = 3.64120593

Выброс азота диоксида (0301), г/с , $_G_$ = **0.8** * **MNOG**

 $_{\mathbf{G}}$ = 0.14173725

Примесь:0304 Aзот (II) оксид (Азота оксид)

Выброс азота оксида (0304), т/год , $_M_ = 0.13 * MNOT$

M= 0.59169596

Выброс азота оксида (0304), г/с , $_G_$ = 0.13 * MNOG

 $_{G} = 0.02303230$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь:0337 Углерод оксид

Потери тепла от механической неполноты сгорания, %(табл.2.2), Q4 =

0 0.5

Потери тепла от химической неполноты сгорания, %(табл.2.2), Q3 =

Коффициент, учитывающий долю потери теплоты, R=

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3', CCO = QR * Q3*R

0.5

$$C_{co} = 6.958794$$

Выбросы окиси углерода, т/год (ф-ла 2.4),

$$_M_ = 0.001 * BT * CCO * (1-Q4/100)$$

Выбросы окиси углерода, г/с (ф-ла 2.4),

$$_G_ = 0.001 * BG * CCO * (1-Q4/100)$$

$$_{\mathbf{G}} = 0.49711438$$

ИТОГО:

Код	Примесь	Выброс г/сек	Выброс т/год
	Азот (IV) оксид (Азота		
0301	диоксид)	0.14173725	3.64120593
	Азот (II) оксид (Азота		
0304	оксид)	0.02303230	0.59169596
0337	Углерод оксид	0.49711438	12.77078400

Список литературы: "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час.

Вид топлива, КЗ = Дизтопливо

Расход топлива одного котла, кг/ч. 220.909134802031

Число котлов данного типа, шт., _KOLIV_= 1

Расход топлива, т/год , BT = 101.052674623841

Расход топлива, r/c, **BG** = 61.3636485561197

Теплота сгорания, ккал/кг, ккал/м 3 (п.2.1), QR = 10210.17

Пересчет в МДж ,*QR* * 0.004187

QR = 42.75

Зольность топлива, %(прил. 2.1), AR = 0.025

Сернистость топлива, % (для газа в мг/м3)(прил. 2.1) , SR = 0.3

Эффективность ПГУУ, % КПД =

Время работы котельной установки, час/год, T=

КПД котла % = **95.3**

Примесь:0301 Азот (IV) оксид (Азота диоксид)

Номинальная тепловая мощность котлоагрегата, квт , QN = 2500

Фактическая мощность котлоагрегата, квт , QF = 2500

Кол-во окислов азота, кг/1 Γ дж тепла(рис.2.1 или 2.2) **KNO** = 0.0803

Коэфф. снижения выбросов азота в рез-те техн. решений, В= 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а),

 $KNO = KNO * (QF / QN) ^ 0.25$

KNO = 0.08030000

Выброс окислов азота, т/год (ф-ла 2.7),

MNOT = 0.001 * BT * QR * KNO * (1-B)

MNOT = 0.34689600

Выброс окислов азота, г/с (ф-ла 2.7),

MNOG = 0.001 * BG * QR * KNO * (1-B)

MNOG = 0.21065058

Выброс азота диоксида (0301), т/год , $_{-}M_{-}$ = 0.8 * MNOT

 $_{\mathbf{M}_{-}} = 0.27751680$

Выброс азота диоксида (0301), г/с , $_G_$ = 0.8 * MNOG

 $_{G} = 0.16852046$

<u>Примесь:0304 Азот (II) оксид (Азота оксид)</u>

Выброс азота оксида (0304), т/год,

 $_{M} = 0.13 * MNOT$

 $_{\mathbf{M}_{-}} = 0.04509648$

Выброс азота оксида (0304), г/с,

 $_G_ = 0.13 * MNOG$

 $_{\mathbf{G}} = 0.02738458$

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Доля окислов серы, связываемых летучей золой топлива(п.2.2),*NSO*2=

0.02

Содержание серы в топливе, %(прил. 2.1) , H2S=

Выбросы окислов серы, т/год (ф-ла 2.2),

 $_M_ = 0.02 * BT * SR * (1-NSO2)$

 $_{M} = 0.59418973$

Выбросы окислов серы, г/с (ф-ла 2.2),

 $_G_ = 0.02 * BG * SR * (1-NSO2)$

Примесь:0337 Углерод оксид

Потери тепла от механической неполноты сгорания, % (табл.2.2), Q4 =

0 0.5

Потери тепла от химической неполноты сгорания, % (табл.2.2), Q3 =

Коффициент, учитывающий долю потери теплоты, R = 0.

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3' , CCO = QR * Q3 * R

$$C_{CO} = 13.68$$

Выбросы окиси углерода, т/год (ф-ла 2.4),

$$_M_ = 0.001 * BT * CCO * (1-Q4/100)$$

$$_{\mathbf{M}} = 1.38240059$$

Выбросы окиси углерода, г/с (ф-ла 2.4),

$$_G_ = 0.001 * BG * CCO * (1-Q4/100)$$

$$_{\mathbf{G}} = 0.83945471$$

Примесь: 0328 Углерод (Сажа)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_{M}$ = BT * AR * F * (1-КПД/100)

$$_{M} = 0.02526317$$

Выброс твердых частиц, г/с (ф-ла 2.1), $_{\bf G}$ = ${\it BG}$ * ${\it AR}$ * ${\it F}$ * (1-КПД/100)

$$_{G}$$
 = 0.01534091

ИТОГО:

Код	Примесь	Выброс г/сек	Выброс т/год
301	Азот (IV) оксид (Азота диоксид)	0.16852046	0.27751680
304	Азот (II) оксид (Азота оксид)	0.02738458	0.04509648
337	Углерод оксид	0.83945471	1.38240059
330	Сера диоксид (Ангидрид сернистый)	0.36081825	0.59418973
328	Углерод (Сажа)	0.01534091	0.02526317

Литература: РНД 211.2.02.09-2004 «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров» МООС РК.

Категория ГСМ	Дизтопливо
Вид резервуара	Резервуары горизонтальный наземный
Количество резервуаров	резервуар 1м³ - 1шт.
Объем хранения ГСМ за год в м ³	120.30080312

Исходные данные:

где -

Np - Количество емкостей (расчет на 1 емк. при полном объеме)

Np = 1 шт.

t - Время хранения нефтепродукта, час

t = 8760 час

С1 - Концентрация паров нефтепродукта в резервуаре, г/м³, (прил.12)

C1 = $3.92 \quad \Gamma/M^3$

Кр(мах) - Опытный коэффициент прил.8

Kp(max) = 1

Vч(мах) - Макс.объем паровоздушной смеси, вытесняемой из резервуара во время его закачки, м³/час

 $V_{4}(Max) = 16 M^{3}/4ac$

Уоз, Увл - Средние удельные выбросы из резервуара соответственно в оз.и вл.периоды года, г/т (пр.12)

 $y_{03} = 2.36 \Gamma/T y_{BJI} = 3.15 \Gamma/T$

Воз, Ввл - Количество закачиваемой жидкости в резервуар, м³

 $B_{03} = 60.15040$

 M^3

 $B_{BJ} = 60.15040$

 $K_{\rm H\Pi} = 0.0029$

Кнп - Опытный коэффициент прил.12

Gxp - выбросы паров нефтепродуктов при хранении дизтоплива в одном резервуаре, т/год (прил.13)

Gxp = 0.041 т/год

секундный выброс

M = C1 * Kp(max) * Vu(max) / 3600=

0.017422222 г/сек

годовой выброс

 $G = ((Уо3*Во3+Увл*Ввл)*Кр(мах)*10^(-6))+(Gxp*Кнп*Np) =$

0.00045033 т/год

 M^3

Идентификация состава выбросов

	Выброс	Предельные угле-	
Определяемый параметр	углево-	водороды С12-С19	Сероводород
	доро	В % от общего	
	дов	выброса+аромати-	
	суммар-	ческие (условно	
	ный	отнесены к С12-С19)	
Слив на хранение			
Сі, мас % от общего		99.72	0.28
Выброс в граммах г/сек	0.017422222	0.01737344	0.00004878222
Выброс в тоннах т/год	0.000450329	0.000449068	0.00000126092

Источник загрязнения *N* Источник выделения *N*

0004 Котельная паровая 0005 Труба котла марки ТТ - 200

Список литературы: "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час.

Вид топлива, $K3 = \Gamma a3$ (природный)

Расход топлива одного котла, м3/ч. 1250.309145

Число котлов данного типа, шт. , _**KOLIV**_= 1

Расход топлива, тыс.м 3 /год , BT = 8725.6775

Расход топлива, л/с , BG = 347.31Плотность газа, кг/м³ 0.758

Расход топлива, т/год , BT = 6614.0635196

Расход топлива, г/с , BG = 263.260

Месторождение, $M = _NAME_ = Бухара-Урал$

Теплота сгорания, ккал/кг, ккал/м³(прил.2.1),QR = 6648

Пересчет в МДж, QR = QR * 0.004187 = 27.835176

Зольность топлива, %(прил. 2.1) , AR = 0Сернистость топлива, % (для газа в мг/м3)(прил. 2.1) , SR = 0

Время работы котельной установки, час/год, T= 7488

КПД котла % = **93**.

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь:0301 Aзот (IV) оксид (Азота диоксид)

Номинальная тепловая мощность котлоагрегата кВт/час, QN = 9010Фактическая мощность котлоагрегата, кВт/час, QF = 9010

Кол-во окислов азота, кг/1 Гдж тепла (рис 2.1 или 2.2),KNO = 0.0891Коэфф. снижения выбросов азота в результате техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а),

 $KNO = KNO * (QF/QN) ^ 0.25$

KNO = 0.0891

Выброс окислов азота, т/год (ф-ла 2.7),

MNOT = 0.001 * BT * QR * KNO * (1-B)

MNOT = 16.40363273

Выброс окислов азота, г/с (ф-ла 2.7),

MNOG = 0.001 * BG * QR * KNO * (1-B)

MNOG = 0.65291371

Выброс азота диоксида (0301), т/год , $_{-}M_{-}$ = 0.8 * MNOT

M = 13.12290619

Выброс азота диоксида (0301), г/с , $_G_$ = 0.8 * MNOG

 $_{\mathbf{G}}$ = 0.522330968

Примесь:0304 Aзот (II) оксид (Азота оксид)

Выброс азота оксида (0304), т/год , $_M_ = 0.13 * MNOT$

M= 2.132472255

Выброс азота оксида (0304), г/с , $_G_$ = 0.13 * MNOG

 $_{G} = 0.084879$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь:0337 Углерод оксид

Потери тепла от механической неполноты сгорания, %(табл.2.2), Q4 =

Потери тепла от химической неполноты сгорания, %(табл.2.2), Q3 =

0 0.5 Коффициент, учитывающий долю потери теплоты, R= 0.5

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3', CCO = QR * Q3*R

$$C_{co} = 6.958794$$

Выбросы окиси углерода, т/год (ф-ла 2.4),

$$_M_ = 0.001 * BT * CCO * (1-Q4/100)$$

Выбросы окиси углерода, г/с (ф-ла 2.4),

$$_G_ = 0.001 * BG * CCO * (1-Q4/100)$$

$$_{\mathbf{G}} = 1.831968884$$

ИТОГО:

Код	Примесь	Выброс г/сек	Выброс т/год
	Азот (IV) оксид (Азота		
0301	диоксид)	0.522330968	13.12290619
	Азот (II) оксид (Азота		
0304	оксид)	0.084878782	2.132472255
0337	Углерод оксид	1.831968884	46.025905536

0.02

0

Список литературы: "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час.

Вид топлива, КЗ = Дизтопливо

Расход топлива одного котла, кг/ч. 814.0956709

Число котлов данного типа, шт., _*KOLIV*_= 1

Расход топлива, т/год , BT = 364.19384

Расход топлива, г/с, BG = 226.1376864

Теплота сгорания, ккал/кг, ккал/м 3 (п.2.1), *QR* = 10210.17

Пересчет в МДж ,QR * 0.004187 = 42.75

Зольность топлива, %(прил. 2.1) , AR = 0.025

Сернистость топлива, % (для газа в мг/м3)(прил. 2.1), SR = 0.3

Эффективность ПГУУ, % *КПД* = 0

Время работы котельной установки, час/год, T= 480

КПД котла % = **93.2**

Примесь:0301 Aзот (IV) оксид (Азота диоксид)

Номинальная тепловая мощность котлоагрегата, квт , QN = 9010

Фактическая мощность котлоагрегата, квт , QF = 9010

Кол-во окислов азота, кг/1 Γ дж тепла(рис.2.1 или 2.2) **KNO** = 0.0803

Коэфф. снижения выбросов азота в рез-те техн. решений, В= 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а),

$$KNO = KNO * (QF/QN) ^ 0.25$$

KNO = 0.08030000

Выброс окислов азота, т/год (ф-ла 2.7),

MNOT = 0.001 * BT * QR * KNO * (1-B)

MNOT = 1.25021318

Выброс окислов азота, г/с (ф-ла 2.7),

MNOG = 0.001 * BG * QR * KNO * (1-B)

MNOG = 0.77629077

Выброс азота диоксида (0301), т/год , $_{-}M_{-}$ = 0.8 * MNOT

M = 1.00017055

Выброс азота диоксида (0301), г/с , $_G_$ = 0.8 * MNOG

 $_{G}$ = 0.62103262

Примесь:0304 Азот (II) оксид (Азота оксид)

Выброс азота оксида (0304), т/год,

$$_{M} = 0.13 * MNOT$$

$$_{\mathbf{M}_{-}} = 0.16252771$$

Выброс азота оксида (0304), г/с,

 $_G_ = 0.13 * MNOG$

 $_{G}$ = 0.10091780

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Доля окислов серы, связываемых летучей золой топлива(п.2.2),*NSO2*=

Содержание серы в топливе, %(прил. 2.1) , H2S=

Выбросы окислов серы, т/год (ф-ла 2.2),

$$_M_ = 0.02 * BT * SR * (1-NSO2)$$

$$_{\boldsymbol{M}_{-}} = 2.14145978$$

Выбросы окислов серы, г/с (ф-ла 2.2),

$$_G_ = 0.02 * BG * SR * (1-NSO2)$$

 $_{G}$ = 1.32968960

Примесь:0337 Углерод оксид

Потери тепла от механической неполноты сгорания, %(табл.2.2), Q4 =

0

Потери тепла от химической неполноты сгорания, %(табл.2.2),Q3 =

Коффициент, учитывающий долю потери теплоты, R=

0.5

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3', CCO = QR * Q3 * R

$$C_{CO} = 13.68$$

Выбросы окиси углерода, т/год (ф-ла 2.4),

$$_{M}$$
 = 0.001 * BT * CCO * (1-Q4 / 100)

$$_{\mathbf{M}} = 4.98217172$$

Выбросы окиси углерода, г/с (ф-ла 2.4),

$$_G_ = 0.001 * BG * CCO * (1-Q4/100)$$

$$_{\mathbf{G}} = 3.09356355$$

Примесь: 0328 Углерод (Сажа)

Коэффициент(табл. 2.1) , F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT*AR*F*(1-K\Pi \cancel{L}/100)$

$$_{M} = 0.09104846$$

Выброс твердых частиц, г/с (ф-ла 2.1), $_{\bf G}$ = BG * AR * F * (1-КПД/100)

$$_{G}$$
 = 0.05653442

ИТОГО:

Код	Примесь	Выброс г/сек	Выброс т/год
301	Азот (IV) оксид (Азота диоксид)	0.62103262	1.00017055
304	Азот (II) оксид (Азота оксид)	0.10091780	0.16252771
337	Углерод оксид	3.09356355	4.98217172
330	Сера диоксид (Ангидрид сернистый)	1.32968960	2.14145978
328	Углерод (Сажа)	0.05653442	0.09104846

Емкость хранения ГСМ Емкость хранения дизтоплива

Литература: РНД 211.2.02.09-2004 «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров» МООС РК.

Категория ГСМ	Дизтопливо
Вид резервуара	Резервуары горизонтальный наземный
Количество резервуаров	резервуар 1м³ - 1шт.
Объем хранения	433.56409446
ГСМ за год в м ³	

Исходные данные:

где -

Np - Количество емкостей (расчет на 1 емк. при полном объеме)

Np = 1 шт.

t - Время хранения нефтепродукта, час

t = 8760 час

С1 - Концентрация паров нефтепродукта в резервуаре, г/м³, (прил.12)

 $C1 = 3.92 \quad \Gamma/M^3$

Кр(мах) - Опытный коэффициент прил.8

Kp(max) = 1

Vч(мах) - Макс.объем паровоздушной смеси, вытесняемой из резервуара во время его закачки, м³/час

 $V_{4}(Max) = 16 M^{3}/4ac$

Уоз, Увл - Средние удельные выбросы из резервуара соответственно в оз.и вл.периоды года, г/т (пр.12)

 $y_{03} = 2.36 \Gamma/T y_{BJI} = 3.15 \Gamma/T$

Воз, Ввл - Количество закачиваемой жидкости в резервуар, м³

Воз = 216.78205 м

Bвл = 216.78205 м³

Кнп - Опытный коэффициент прил.12

 $K_{H\Pi} = 0.0029$

Gxp - выбросы паров нефтепродуктов при хранении дизтоплива в одном резервуаре, т/год (прил.13)

Gxp = 0.041 т/год

секундный выброс

M = C1 * Kp(max) * Vu(max) / 3600=

0.017422222 г/сек

годовой выброс

 $G = ((Уо3*Во3+Увл*Ввл)*Кр(мах)*10^(-6))+(Gxp*Кнп*Np) =$

0.00131337 т/год

Идентификация состава выбросов

	Выброс	Предельные угле-	
Определяемый параметр	углево-	водороды С12-С19	Сероводород
	доро	В % от общего	
	дов	выброса+аромати-	
	суммар-	ческие (условно	
	ный	отнесены к С12-С19)	
Слив на хранение			
Сі, мас % от общего		99.72	0.28
Выброс в граммах г/сек	0.017422222	0.01737344	0.00004878222
Выброс в тоннах т/год	0.001313369	0.001309692	0.00000367743

Источник выброса N Источник выделения N

0006 Холодильно-компрессорный цех 008 Аммиачная холодильная установка (АХУ)

Список литературы:

Приложение № 10 к приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п. Методика расчета величин эмиссий в атмосферу загрязняющих веществ от основного технологического оборудования предприятий агропромышленного комплекса, перерабатывающих сырье животного происхождения (мясокомбинаты, клеевые и желатиновые заводы и т.п.)

Для обеспечения безопасных условий труда в компрессорных действуют системы приточно – вытяжной вентиляции. Производительность вентиляторов рассчитывается из условий обеспечения в производственных помещениях концентрации аммиака, непревышающей предельно допустимую концентрацию ПДКр.з. = 20 мг/м3. Многочисленные анализы воздуха рабочей зоны аммиачных компрессорных показали, что это условие практически всегда и везде соблюдается (за исключением аварийных ситуаций). В связи с указанным для расчета массового выброса аммиака из помещений компрессорной необходимо исходить из производительности вытяжной вентиляции, приняв концентрацию аммиака в выбрасываемом вентиляционном воздухе = 20 мг/м3. Расчет массового выброса М (г/с) производится по формуле:

Максимальный (сек.) выброс аммиака, Γ/C ; **М**=

Производительность вентиляционной вытяжной системы, Q_{BM}^3/\mathbf{q} ; = 4500

Максимально возможные концентрации аммиака

в выбросах вытяжной вентсистемы, мг/м3, $C_{NH3} = 20$

Время работы оборудования $\frac{4}{\Gamma}$ 7488

Примесь: 0303 Аммиак

Валовый выброс, т/год

G =**MNH3*3600*T/10^6**= 0.673920

Максимальный из разовых выброс, г/с

 $M_{NH3} = C_{NH3} * Q_B / 1000 * 3600 = 0.025$

ИТОГО:

	Код	Примесь	Выброс г/с	Выброс т/год
I	303	Пары аммиака	0.0250000	0.673920

Список литературы:

Приложение № 10 к приказу Министра охраны окружающей среды Республики Казахстан от 18 апреля 2008 года № 100-п. Методика расчета величин эмиссий в атмосферу загрязняющих веществ от основного технологического оборудования предприятий агропромышленного комплекса, перерабатывающих сырье животного происхождения (мясокомбинаты, клеевые и желатиновые заводы и т.п.)

Массовый выбос M (Γ /с) зависит от количества котлов, одновременно работающих в режиме сушки сырья, и расчитывается по формуле:

$$M(r/c) = (K * n) * 10^{-3}, r/cek$$
 (6.4.1)

Годовой массовый выброс ресчитывается по формуле:

$$M (T/год) = (Mr/c * T * 3600) / 1000000$$

где

- К удельный показатель выброса вредного вещества, поступающего в атмосферу в процессе выработки конкретного типа кормовой муки, по табл. 6.4.2, мг/с;
- n количество котлов, работающих одновременно в режиме сушки и выбрасывающих определенный тип кормовой муки;
- Т Время работы установки, час/год;

Код	Примесь	Мясокостная мука 1сорта, К =	n =	T =	Выброс г/с	Выброс т/год
1716	Этилмеркаптан	0.3	1	7488	0.0003	0.00808704
303	Аммиак	3.5	1	7488	0.0035	0.0943488
333	Сероводород	0.8	1	7488	0.0008	0.02156544
1314	Пропаналь	2.3	1	7488	0.0023	0.06200064
1525	Диметиламин	0.6	1	7488	0.0006	0.01617408
1039	Пентан-1-ол	0.4	1	7488	0.0004	0.01078272
1519	Валериановая кислота	3	1	7488	0.003	0.0808704
1707	Диметилсульфид	0.7	1	7488	0.0007	0.01886976
1401	Ацетон	2	1	7488	0.002	0.0539136
1071	Фенол	0.4	1	7488	0.0004	0.01078272
1715	Метилмеркаптан	0.04	1	7488	0.00004	0.001078272

Код	Примесь	Кровяная мука	n =	T =	Выброс г/с	Выброс т/год
1716	Меркаптаны	0.6	1	7488	0.0006	0.01617408
303	Аммиак	2.5	1	7488	0.0025	0.067392
333	Сероводород	1.5	1	7488	0.0015	0.0404352
1314	Пропаналь	0.2	1	7488	0.0002	0.00539136
1525	Диметиламин	0.3	1	7488	0.0003	0.00808704
1039	Пентанол	0.2	1	7488	0.0002	0.00539136
1519	Валериановая кислота	0.5	1	7488	0.0005	0.0134784
1707	Диметилсульфид	1.2	1	7488	0.0012	0.03234816
1401	Ацетон	0.4	1	7488	0.0004	0.01078272
1071	Фенол	0.2	1	7488	0.0002	0.00539136
1715	Метилмеркаптан	0.08	1	7488	0.00008	0.002156544

Пыль животного происхождения

Расчет выбросов пыли костной муки проводится по формуле:

$$M(r/c) = \frac{E * i}{3600}$$
 $r/cek (6.4.3)$

$$M (T/год) = (Mr/c * T * 3600) / 1000000$$

где:

- Е производительность системы вытяжной вентиляции, м³/час
- i удельный показатель выбросов костной пыли по табл. 6.4.3, г/м³
- Т Время работы установки, час/год;

Примесь: 2913 Пыль мясокостной муки /в пересчете на белок/

Источник выброса пыли	E =	i =	T =	Выброс г/с	Выброс т/год
Помещение аппаратного					
отделения	6870	0.04	7488	0.07633333	2.0577024

Помещение сырьевого отделения	6870	0.02	7488	0.03816667	1.0288512
Помещение участка дробления и					
просеиваня кормовой муки	6870	0.1	7488	0.19083333	5.144256
Помещение участка затаривания					
кормовой муки	6870	0.1	7488	0.19083333	5.144256
	·			0.49616667	13.3750656

Код веществ а	Наименование загрязняющего вещества	Мах.выбросы, г/с,	Валовый выброс, т/г
1716	Этилмеркаптан	0.0009	0.02426112
303	Аммиак	0.006	0.1617408
333	Сероводород	0.0023	0.06200064
1314	Пропаналь	0.0025	0.067392
1525	Диметиламин	0.0009	0.02426112
1039	Пентан-1-ол	0.0006	0.01617408
1519	Валериановая кислота	0.0035	0.0943488
1707	Диметилсульфид	0.0019	0.05121792
1401	Ацетон	0.0024	0.06469632
1071	Фенол	0.0006	0.01617408
1715	Метилмеркаптан	0.00012	0.003234816
2913	Пыль мясокостной муки /в пересчет	0.49616667	13.3750656

Источник выброса №

010 Газовая сварка стали ацетилен-кислородным пламенем

Расчет выбросов загрязняющих веществ

$$M_{rog} = \frac{Brog * K m * (1-\eta)}{1000000}$$
,т/год (5.1)

$$M_{cek} = \frac{B \text{час} * K \text{ m} * (1-\eta)}{3600}$$
, г/сек (5.2)

В -расход применяемого материала, кг/год

$$egin{array}{lll} B_{\text{rod}} = & 50 & \text{кг/год} \\ B_{\text{час}} = & 1.25 & \text{кг/чаc} \end{array}$$

 $K_{\,\mathrm{m}}$ -удельный показатель выброса 3B на единицу массы расходуемых материалов, г/кг

Диоксид азота K m= 22 табл.3 η - степень очистки воздуха в аппарате $\eta = 0$

Соответственно получим:

Код ве-	Наименование	Выбросы в	
щества	загрязняющего	атмосферу	
	вещества		
		г/с	T/Γ
301	Диоксид азота	0.007638889	0.0011

Источник выделения №

011 Токарный станок

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке материалов (по величинам удельных выбросов), РНД 211.2.02.06-2004 Астана 2004г

Валовый выброс для источников выделения, не обеспеченных местными отсосами:

$$M$$
год = $\frac{3600 * k * Q * T * N}{1000000}$, т/год (1)

Mгод = 0.0004536 т/год

k - коэффициент гравитационного оседания (см.п.5.3.2); k=0.2 Q - удельный выброс пыли технологическим оборудованием, г/с (табл. 1-5); Q=0.0063 T - фактический годовой фонд времени работы одной единицы оборудования, час; T=100 N - число станков на балансе предприятия, шт; N=1 n - число одновременно работающих станков, шт; n=1

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами:

$$Mce\kappa = k * Q* n , \Gamma/c (2)$$

 $Mce\kappa = 0.00126 \Gamma/ce\kappa$

Соответственно получим:

Код вещества	Наименование вещества	Выбросы ЗВ		
		г/с	т/год	
2902	Взвешенные вещества	0.00126	0.0004536	

Источник выделения №

012 Заточной станок

Литература: Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке материалов (по величинам удельных выбросов), РНД 211.2.02.06-2004 Астана 2004г

Валовый выброс для источников выделения, не обеспеченных местными отсосами:

$$M$$
год = $\frac{3600 * k * Q * T * N}{1000000}$, т/год (1)

Пыль абразивная Mгод = 0.000432 т/год Bзвешенные вещества Mгод = 0.000576 т/год

k - коэффициент гравитационного оседания (см.п.5.3.2); k = 0.2

Q - удельный выброс пыли технологическим оборудованием, г/с (табл. 1-5);

Пыль абразивная Q = 0.006 Взвешенные вещества Q = 0.008

T - фактический годовой фонд времени работы одной единицы оборудования, час; T=100

N - число станков на балансе предприятия, шт; N=1

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами:

$$Mcek = k * Q* n, \Gamma/c$$
 (2)

Пыль абразивная Мсек = 0.0012 г/сек Взвешенные вещества Мсек = 0.0016 г/сек

Соответственно получим:

Код вещества	Наименование вещества	Выбро	осы ЗВ
		г/с	т/год
2930	Пыль абразивная	0.0012	0.000432
2902	Взвешенные вещества	0.0016	0.000576

Источник выделения №

013 Сверлильный станок

Валовый выброс для источников выделения, не обеспеченных местными отсосами:

$$M$$
год = $\frac{3600 * k * Q * T * N}{1000000}$, т/год (1)

Mгод = 0.0001584 т/год

k - коэффициент гравитационного оседания (см.п.5.3.2);	k = 0.2
Q - удельный выброс пыли технологическим оборудованием, г/с (табл. 1-5);	Q = 0.0022
Т - фактический годовой фонд времени работы одной единицы оборудования, час;	T = 100
N - число станков на балансе предприятия, шт;	N = 1
n- число одновременно работающих станков, шт;	n = 1

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами:

Mceκ =
$$k * Q* n$$
, r/c (2)
Mceκ = 0.00044 $r/ceκ$

Соответственно получим:

В	венно получим.						
	Код		Выбросы ЗВ				
	вещества	Наименование вещества					
			г/с	т/год			
	2902	Взвешенные вещества	0.00044	0.0001584			