Номер: KZ22VVX00332712

Дата: 28.10.2024

«КАЗАКСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ ЭКОЛОГИЯЛЫК РЕТТЕУ ЖӘНЕ БАКЫЛАУ КОМИТЕТІНІН АЛМАТЫ ОБЛЫСЫ БОЙЫНШАЭКОЛОГИЯ ДЕПАРТАМЕНТІ» РЕСПУБЛИКАЛЫК МЕМЛЕКЕТТІК МЕКЕМЕСІ

РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ДЕПАРТАМЕНТ ЭКОЛОГИИ ПО АЛМАТИНСКОЙ ОБЛАСТИ КОМИТЕТА ЭКОЛОГИЧЕСКОГО РЕГУЛИРОВАНИЯ И КОНТРОЛЯ МИНИСТЕРСТВА ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН»

050000, Алматы облысы, Қонаев каласы, Сейфуллин көшесі, 36 үй, тел. 8 (72772) 2-83-83 БСН 120740015275 E-mail: almobl.ecodep@ecogeo.gov.kz

№

050000, Алматинская область, город Қонаев, ул. Сейфуллина, д. 36, тел. 8 (72772) 2-83-83 БИН 120740015275 E-mail: almobl.ecodep@ecogeo.gov.kz

Государственное учреждение «Управление сельского хозяйства Алматинской области»

Заключение по результатам оценки воздействия на окружающую среду к проекту отчета о возможных воздействиях «Строительство пруда в Аватском сельском округе Уйгурского района»

Сведения об инициаторе намечаемой деятельности

ГУ «Управление сельского хозяйства Алматинской области» Республика Казахстан, Алматинская область, Конаев Г.А., г. Конаев, Проспект Жамбыла, здание № 13. БИН: 950540000331, Руководитель Чункунов Куандык Сагатбаевич. 8-728-232-9091, obl ush@mail.ru.

предусмотренных Описание видов операций, намечаемой рамках деятельности, и их классификация

Согласно пункту 8.2. раздела 2 приложения 1 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI (далее - Кодекс) плотины и другие сооружения, предназначенные для задерживания или постоянного хранения воды, где новый или дополнительный объем задерживаемой или хранимой воды превышает 100 тыс. м3.

Заявление о намечаемой деятельности рассмотрено РГУ «Департамент экологии по Алматинской области», выдано Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействий намечаемой деятельности № KZ16VWF00179805 от 19.06.2024 года. Согласно данному заключению проведение оценки воздействия на окружающую среду по намечаемой деятельности является обязательным.

Намечаемая деятельность отсутствует в Приложении 2 к Кодексу. В случае отсутствия соответствующего вида деятельности в Приложении 2 к Кодексу определение категории осуществляется в соответствии с Инструкцией по определению категории объекта, оказывающего негативное воздействия на окружающую среду (далее Инструкция), утвержденной приказом Министра экологии, геологии и природных ресурсов РК от 13.07.2021 года №246 (с изменениями от 13.11.2023 года №317).

Согласно п. 13 Инструкции намечаемая деятельность относится к IV категории.

Предполагаемое место осуществление намечаемой Аватский с/о, Уйгурский район, Алматинская область. Проектируемый пруд будет располагаться на реке Ават в 2,5 километрах к югу от села Ават. Основание: Протокол по выбору земельного участка под строительство пруда выездной комиссии с представителями местных исполнительных органов от 10.10.2023 г. Возможности выбора других мест нет. Н, м. по GPS - 1422 Координаты по GPS: Широта. N 43°21'38.3" Долгота. Е 079°40'57.9" - Полная емкость пруда

— 1 387 тыс. м3; - Площадь зеркала при НПУ — 11,1 га; - Тип плотины — Насыпная, земляная; - Длина по гребню — 305 м; - Высота плотины, максимальная - 25 м; - Ширина гребня — 10 м; - Заложение откосов — 3; - Водовыпускное сооружение — Трубчатое; - Водосбросное сооружение — Открытое; - Класс капитальности — IV.

Предположительные сроки начала реализации намечаемой деятельности и ее завершения: III квартал 2026 г- II квартал 2028 г (21 месяц).

Для функционирования пруда как аккумулятора по накоплению воды в период ее изобилия и распределения в период дефицита на луга и поля, в ТЭО рассматривается устройство следующих основных и дополнительных гидротехнических сооружений: — однородная грунтовая плотина с креплением верхового откоса с парапетом и устройством дренажной призмы; — устройство противофильтрационного экрана из геомембраны t-1 мм в теле плотины; — шахтный трубчатый водовыпуск-водосброс на Q-14,5 м3/с; — открытый паводковый водосброс траншейного типа автоматического действия на пропуск Q-40 м3/с; — установка в теле плотины для наблюдений за ее состоянием пьезметров с электронными датчиками; — здания для службы эксплуатации и охраны и т.д. (по аналогу)

При отметке НПУ = 1455,00 полный объем воды в водохранилище составляет 1,4 млн. м³, а площадь зеркала воды 11.1 га. Компоновка узлов и сооружений водохранилищного гидроузла производилась, учитывая следующие основные требования:обеспечить создание требуемого объема воды в водохранилище— емкости для накопления воды;- обеспечить бесперебойную подачу требуемого количества воды на орошаемые земли и обеспечивать регулярный санитарный пропуск воды;- свободно пропускать через сбросное катастрофическое сооружение паводковые расходы, Q- 40 м3/с, P=1% обеспеченности;- имеет наиболее простое конструктивное решение при умеренной стоимости сооружений.

Грунтовая плотина Ават относится: - по конструкции поперечного профиля, однородные из суглинистого грунта; - по конструкции противофильтрационных устройствна откосе в ВБ с геомембраной и монолитным железобетонным покрытием; - по способу укладки грунта, отсыпанные насухо с послойным механическим уплотнением грунта. Согласно СП РК 3.04-105-2014, для возведения насыпных плотин используется все виды грунтов, за исключением грунтов, содержащих водорастворимые включения хлоридных солей более 5% или сульфатных и сульфато-хлоридных более 105 по массе. Не рекомендуется использовать для тела плотины тяжелые глины с количеством глинистых частиц более 60%.

В соответствии со СН РК 3.04-01-2013 назначение класса гидротехнических сооружений производится по приложению 2, по следующим критериям: 1. По таблице П2.1-Класс основных гидротехнических сооружений в зависимости от их высоты и типа грунтов оснований. 2. По таблице П2.2— Класс основных гидротехнических сооружений в зависимости от их социально-экономической ответственности и условий эксплуатации. Таблица П2.1-1. Плотины из грунтовых материалов в зависимости от типа грунтов оснований (песчаные, крупнообломочные и глинистые в твердом и полутвердом состоянии)— основание плотины Ават, соответствует этим критериям при высоте до 25 м, относится к IV классу. Таблица П.2.2-1. Подпорные сооружения гидроузлов при объеме водохранилища 50 млн. м³ и менее (объем водохранилища Ават составляет 1,0 млн. м³) относится к IV классу. Основываясь на положение СН РК 3.04-01-2013 класс сооружений (грунтовая плотина) принимаем равным его значение, определенное по таблицам П2.1, П2.2, и назначаем равным IV классу. Уровень ответственности проектируемого объекта согласно РДС РК 1.02- 04-2013 п.2.2.2 Гидротехнические сооружения IV класса относятся к Технически сложным объектам II (нормального) уровня ответственности.

При назначении конструкции плотины использованы следующие нормативные материалы и результаты водохозяйственного расчета:- СП РК 3.04-105-2014 «Плотины из грунтовых материалов»:- СН РК 3.04.01-2013 «Гидротехнические сооружения».- Типовые проектные решения 820-0-1. Секция грунтовых насыпных плотин высотой до 15 м с крепленым верховым откосом».- результаты водохозяйственных расчетов (приток,

водопотребление, потери, санпропуск и т.д). На основании полученных данных по вышеприведенным критериям, основные параметры грунтовой плотины характеризуются следующими показателями:- длина плотины по гребню составляет 305 м;- ширина гребня плотины составляет 10,0 м;- коэффициент заложения откосов плотины должен быть устойчивым, предварительно назначаются, основываясь на опыте строительства и эксплуатации аналогичных объектов, проверяя расчетом на устойчивость. В зависимости от высоты плотины и материала отсыпки принято постоянным заложением, равным: а) верхового 1:3,0 б) низового 1:3,0 Определение отметки гребня плотины По гребню плотины предусматривается эксплуатационная дорога V категории с черным покрытием и на напорной грани устраивается парапет из монолитного железобетона высотой 0,6 м. В соответствии с классификацией [3, тб. П 2.1.] для плотин из насыпных грунтовых материалов в зависимости от высоты и типа грунтов основание, проектируемая плотина относится к IV классу. Ширина гребня устанавливается равной 10 м.

Верховой откос плотины подвергается разрушительным воздействиям волн, льда, течений воды и др. Для защиты откосов от разрушения применяется крепление, состоящее из покрытия, воспринимающего силовые воздействия, и подготовки, укладываемые по типу обратных фильтров. Для защиты верхового откоса применяются в основном сборные и монолитные железобетонные покрытия. Изучая откосы эксплуатации аналогичных объектов, для защиты верхового откоса плотины в зависимости от высоты волны 1%обеспеченности, применено крепление монолитным железобетоном как наиболее долговечным типом и приемлемым при высоте волны до 1,5 м. В нашем случае высота волны 1% обеспеченности составляет 1,29 м, толщина льда менее 0,25 м, максимальная глубина промерзания равна 0,65 м. Толщина крепления принята 20 см, принятая от величин волновых воздействии на напорный откос и длины разгона волны. Облицовка монолитным железобетоном производится делением площади на карты, верховая часть (1200х2400 см), далее (1835x2400 см и по фактической длине откоса) с разделением деформационными швами из досок толщиной 2см, пропитанных битумом. Карты также по откосу разделяются температурными швами из досок толщиной 2 см, пропитанных битумом. Верхняя часть крепления на отметке ниже на 0,5 м от уровня гребня плотины и соединяется с парапетом из монолитного железобетона. Нижняя граница крепления на отметке ниже на 0,5 м от уровня мертвого объема и заканчивается железобетонным упором. Под крепление монолитным железобетоном предусматривается подготовка в виде обратного фильтра из местного гравийно-песчаного грунта толщиной 45 см.

Крепление низовых откосов выполняют с целью их защиты от атмосферных осадков и ветра. Наиболее распространенные виды крепления низовых откосов для плотин с небольшой высоты, это залужение, самый простой и дешевый способ крепление низовых откосов. Это искусственно созданный дерновой покров за счет посева многолетних трав. По плоскости откоса предварительно насыпают слой растительной земли толщиной 0,20 м, а по нему высевают семена многолетних трав, корневая структура обеспечивает однородность слоя.

Для того чтобы не допускать выходы фильтрационного потока на низовой откос и отводы воды фильтрующийся через тело плотины в нижний бьеф, предотвращения возникновения фильтрационных деформаций, при расчетном напоре более 5 метров плотины, как правило, оборудуются дренажом. Выбор типа дренажного устройства производится в зависимости от условий работы дренажа, наличии материалов. Применение дренажного банкета рекомендуется при наличии не месте дешевого крупнообломочного и песчано- гравелистого грунтов. Дренажное устройство принято в проекте в виде дренажного банкета, состоящего из каменной наброски с заложением наружного и внутреннего откоса 1:1,5. Ширина по верху 2 м. На контакте дренажа с телом плотины и основания устраивается 2-х слойный обратный фильтр из гравия и среднезернистого песка с общей толщиной 20 см.

Фильтрационный расход на рассматриваемом участке через тело плотины и основания при длине участка 305 м составляет $Q=q \times B = 2,580 \times 440 = 1135,20 \text{ м3/сут}$.

Для сброса расчетного сбросного расхода Q=40 м³/с проектом предусмотрено на правом борту грунтовой плотины сбросное сооружение автоматического действия. Конструкция паводкового водосброса принята по ТП решение 820-04-12.84 «Водосбросные сооружения при земляных плотинах на расход до 200 м3/с с напором до 15 м», а так же по аналогу: «Строительство водохранилище Жамбыл на реке Шаян для водообеспечения орошаемых земель площадью 1250 га в с/о Жамбыл, Байдибекского района ЮКО» на расчетный расход 118 м3/с. Построен и эксплуатируется в 2014 г. При выборе местоположения водосбросного тракта приняты во внимание следующие факторы:удобная топографическая местность;- отсутствие инженерных и других сооружений; свободная протяженность сбросного тракта;- пропуск паводковых вод в русло реки с сопрягающих сооружений. Паводковое водосбросное конструктивно состоит из следующих частей:- входная часть, выполнена в виде водослива с широким порогом;- траншейный– водоприемный сбросной тракт;- отводящий сбросной канал в русло р. Ават. Входная часть сооружений работает как водослив с широким порогом по типу незатопленного водослива. Отметка порога водослива расположена на отметке НПУ=1455,00 м. При повышении горизонтов воды излишний объем воды из водохранилища постепенно сбрасывается через порог в траншейный водоприемный сбросной тракт в автоматическом режиме. Водослив выполняется из монолитного железобетона кл. B20, F150, W6. Траншейный водоприемный сбросной тракт представляется как канал в выемке прямоугольной формы. Промежуточный подводящий канал служит как отводящий от траншейного сбросного тракта и подводящий к сопрягающему сооружению – быстротоку. Канал выполняется в трапециодальной форме из монолитного железобетона кл. B20, F150, W6. Сопрягающее сооружение – быстроток. Служит для сопряжения, то есть для осуществления плавного сброса воды с верхнего бьефа на нижний бьеф. Быстроток в плане прямолинейный, постоянной ширины, в поперечном сечении прямоугольный и выполняется из монолитного железобетона.

Одним из главных задач при организации территории гидроузла является: - компоновка пруда необходимыми объектами, сооружениями: - создание благоприятных условий и удобства для эксплуатации: На территории пруда предусматривается строительство следующих вспомогательных объектов, предназначенных для службы эксплуатации. 1. Здание для службы эксплуатации с хозпостройкой. Благоустройство и ограждение территории, освещение и т.д. 2. Освещение гребня плотины. Объекты по организации территории, электроснабжение их предусмотрено в соответствии с АПЗ.

Здание для службы эксплуатации. Хозпостройка. Объекты для службы эксплуатации состоит из следующих элементов: 1. Одноэтажное здание службы эксплуатации и охраны. 2. Хозпостройка-навес для угля. 3. Уборная на два очка. 4. Ограждение из сетки по типу М1А. 5. Ворота с калиткой по типу ВМ1 Б. 6. Калитка по типу КМ1 Б. Объемно-планировочные решения в соответствии с требованиями СНиПРК.3.02-02-2001 «Общественные здания и сооружения».

Технико-экономические показатели

№ п/п	Наименование показателей	Ед. изм	Количество	% от общей площади
1	Общая площадь	м2	1200	
	в том числе			
2	Площадь застройки	м2	150,09	13%
3	Площадь покрытий	м2	584,75	48,8%
4	Площадь отмоски	м2	67,04	6%
5	Площадь озеленения	м2	398,12	33%

На территории проектируемого участка отсутствуют здания, строения, сооружения и оборудования. Работы по постутилизации не требуются.

Сведения о документах, подготовленных в ходе оценки воздействия на окружающую среду

- 1) Заявление на проведение оценки воздействия на окружающую среду KZ91RVX01172757 от 16.09.2024 г.;
- 2) Заключение об определении сферы охвата отчета по оценке воздействия на окружающую среду и(или) скрининга воздействия намечаемой деятельности KZ16VWF00179805 от 19.06.2024 г.
- 3) Отчёт о возможных воздействиях к проекту «Строительство пруда в Аватском сельском округе Уйгурского района»;
 - 4) Сводная таблица замечаний и предложений от 28.10.2024 года;
- 5) Протокол общественных слушаний в форме открытого собрания по проекту Отчета о возможных воздействиях «Строительство пруда в Аватском сельском округе Уйгурского района» от 16.10.2024 года.

Вывод о возможных существенных воздействиях на окружающую среду при реализации намечаемой деятельности, сведения о характере таких воздействий, а также компонентах природной среды и иных объектах, которые могут быть подвержены таким воздействиям.

Ожидаемое воздействие на водные ресурсы

В период проведения строительных работ вода на питьевые нужды используется привозная, бутилированная. На технические нужды вода будет привозная автовозом из ближайших поселков. Питьевая вода будет доставляться из ближайшего населенного пункта. На период строительства хозбытовые сточные воды будут отводиться в биотуалет, который по завершении работ удаляется с площадки. Необходимо обеспечить вывоз хозбытовых сточных вод в период строительства согласно договору со специализированной организацией.

Баланс водопотребления и водоотведения

Вилине водонот респения и водостведения													
	Водопотребление, м ³					Водоотведение, м ³							
Производство	Всего	1	изводствен Гехническая Питьевог о качестка		Повторно используемая	На хоз. бытовые нужды (питьевого качества)	Всего	Производственные сточные воды	Хозяйственно бытовые сточные воды	Ливневые сточные волы	Другие		
1	2	3	4	5	6	7	8	9	10	11	12		
площадка строительства	5415,07	4 627,57	1,09	4 626,48		787,5	787,5	-	787,5	-	-		

Район работ, ввиду разнообразия физико-географических факторов и геологоструктурных особенностей, характеризуется сложными гидрогеологическими условиями. Сложность эта заключается в многообразии водоносных комплексов и горизонтов, в различных условиях питания, транзита и разгрузки.

Водоносный горизонт современных аллювиальных отложений (aIOiv)

Водоносный — горизонт — современных — аллювиальных — отложений распространен по право и левобережью рек Или, Чарын в пределах их низкой и высокой поймы. Поверхностные водопроявления встречаются в виде заболоченности. Водовмещающими породами являются, в основном, пески с прослоями глин, суглинков и супесей, за исключением долины р. Чарын, где они представлены в виде гравийногалечников или крупнозернистых песков с гравием. Воды современных аллювиальных отложений вскрыты, главным образом, скважинами и колодцами. Глубина залегания уровня грунтовых вод колеблется от 0,8м до 5м. Мощность обводненной толщи от 0,8м до

30,6м. Водообильность пород изменяется в широких пределах, в зависимости от литологическогосостава водовмещающих пород и условий питания водоносного горизонта. Так, в долине р. Или, где в составе аллювия преобладают пылеватые и глинистые пески, препятствующие инфильтрации речных вод, дебиты скважин не превышают 2-2,3л/сек при понижениях 4,8-8,8м., при преобладании гравия в составе аллювия удельные дебиты скважин увеличиваются и достигают 1-1,3л/сек. Минерализация грунтовых вод так же изменчива, как и водообильность пород. В зависимости от указанных выше факторов она варьирует от 0,4 до 11,8г/л.

Водоносный комплекс среднечетвертичных аллювиально — озерных и аллювиальных отложений (aIIOii)

Водоносный комплекс среднечетвертичных аллювиально-озерных и аллювиальных отложений пользуется широким распространением в Илийской впадине. Отложения слагают вторые и третьи надпойменные террасы р. Или и одну из высоких террас р. Чарын. Он получил распространение, как по правобережью, так и по левобережью р. Или полосами шириной от 4 до 20-25 км. и более. Воды, в основном, грунтовые со свободной поверхностью, лишь на левобережье р. Или водоносный горизонт за счет водонепроницаемых глинистых пород в кровельной части, становится напорным, и отдельные скважины само изливают с дебитом до 20-25 л/сек. Мощность — водоносного комплекса варьирует от 2 до 54 м. Водообильность пород в зависимости от — литологического — состава водовмещающих пород различная. Дебиты скважин колеблются от 0,4 до 25,1л/сек при понижении уровня от 0,2 до 15,4 м. Минерализация подземных вод колеблется от 0,2 до 7,27 г/л

Водоносный комплекс илийской свиты средне-верхне-плиоценовых отложений (N22-3iL)

Водоносный комплекс илийской свиты имеет широкое распространение в районе работ. Отложения выходят на поверхность в виде узкой полосы в широтном направлении в центральной части района и по северному обрамлению гор Улькун-Бугуты. В предгорьях хребта Кетмень они — перекрываются флювиогляциальными ОКВ Оне-четвертичными и аллювиально-пролювиальными ОКВОне-верхнечетвертичными отложениями. Всеверной части района указанные отложения резко погружаются и скважинами вскрываются на большой глубине. Мощность водоносного комплекса от 20-30м на юге и до 1000м в центральной части впадины. Водовмещающие породы у подножия хребта Кетмень представлены, в основном, конгломератами, песчаниками и галечниками, Воды илийской свиты вскрываются на глубинах от 1,2-15 до 372,5м на местах выхода отложений на поверхность и периферии предгорного шлейфа хребта Кетмень. В предгорье хребта Кетмень воды грунтовые с удалением от гор становятся напорными. Уровни устанавливаются от 101,3м до +49,9м выше поверхности земли. Дебиты скважин 0,8 20, л/сек при понижении уровня от 3,0 до 14м. Дебиты отдельных скважин достигают- 54л/сек при понижении 17,2м. Воды пресные с общей минерализацией от 0,2 до 0,6 г/л, лишь в редких случаях она достигает 1-1,7г/л.

Водоносный горизонт верхнемеловых отложений (К2)

Подземные воды верхнемеловых отложений приурочены к регионально выдержанным песчаным отложениям, широко и повсеместно распространенным во всей Восточно-Илийской впадине. Пески разнозернистые кварцевые с прослоями песчаников, глин и аргиллитов. Они лежат в основании рыхлых образований, выполняющих Восточно-Илийскую впадину и вскрываются скважинами в центральных ее частях на больших глубинах. На поверхность они выходят разрозненно у северного подножия хребта Кетмень и в юго-восточном предгорье гор. Актау. Дебиты скважин на самоизливе колеблются от 17 до 96 л/сек, по отдельным получены расходы 140-191л/сек. Воды пресные с общей минерализацией, не превышающей 0,6 г/л. По химическому — составу гидрокарбонатные натриево-кальциевые, гидрокарбонатно- сульфатные натриево-кальциевые. Исходя из вышеизложенного можно сделать следующие выводы. В геологическом строении района работ принимают —участие рыхлообломочные аллювиально-пролювиальные образования

средне четвертичного возраста, залегающие на размытой поверхности плиоцена — Илийская свита (N22-3iL). Илийская свита сложена плотными аргиллит подобными глинами с прослоями разнозернистых песков и гравийно галечников. По данным разведочного бурения, глины Илийской свиты залегают на глубине 100-110м. Мощность свиты более 100м. Средне- верхнечетвертичные — отложения, — слагающие — предгорную равнину, представлены гравийно-галечниковыми отложениями с включением валунов с супесчаным, реже песчаным заполнителем с прослоями и линзами песков, супесей и суглинков, мощность которых не превышает \$-10м. С поверхности средне верхнечетвертичные отложения перекрыты современными образованиями, представленными супесями, суглинками легкими и средними, редко тяжелыми с включением гравия и мелкой гальки до 25-45%.

пределах рассматриваемой территории повсеместным распространением комплекс верхнечетвертичных пользуется водоносный средне пролювиальных отложений. Водоносный горизонт представляет грунтовый поток, движущийся с юга на север. Водоупором его являются глинистые отложения Илийской свиты. Водовмещающими отложениями являются гравийно-галечники с включением валунов с супесчаным и песчаным, реже с суглинистым заполнителем. Глубина залегания уровня подземных вод порядка 20-30м. Мощность обводненной толщи до 80м. Грунтовые воды пресные, с минерализацией до 1г/л, гидрокарбонатного кальциево-натриевого и гидрокарбонатно-сульфатного кальциево—магниевого состава. Питание водоносного горизонта осуществляется за счет атмосферных осадков и вод поверхностных водотоков в верхних частях конусов выноса. Разгрузка происходит путем подземного оттока на смежные участки и выклинивания в виде родников севернее участка. В отложениях Илийской свиты содержится ряд, этажно-расположенных водоносных горизонтов, содержащих напорные воды. Подземные воды приурочены к прослоям гравийногалечников и разнозернистых песков. Водообильность комплекса колеблется довольно в пределах. Верхние водоносные горизонты характеризуются водообильностью, дебиты скважин составляют 0,8 5,5л/сек при понижении уровня на 9-18м. Дебиты скважин, каптирующих нижние водоносные горизонты, достигают до- 25-45л/сек, при самоизливе. Воды в основном пресные, с минерализацией до 1г/л, реже до 1,5-1,7г/л, хорошего качества и являются перспективным источником для целей орошения и водоснабжения. Режим грунтовых вод предгорной равнины формируется под действием природных факторов. Здесь отмечается— КВ-нее- летний максимум и КВ-нее-зимний минимум стояния уровня грунтовых вод. На предгорной равнине сезонные колебания уровня подземных вод достигает 2м.

Сбросы в поверхностные водные источники не предусмотрены. Запрещается допускать пролив хозяйственно бытовых и производственных вод в почвогрунты при строительстве.

При строительстве предусматриваются следующие водооохранные мероприятия: недопущение захламления зоны участка строительства мусором и другими материалами, временное накопление отходов (осуществлять в установленные контейнеры и временные площадки складирования; строительные отходы собираются на площадке временного складирования расположенной в пределах строительной площадки и, по окончании строительства, вывозятся на объекты размещения отходов; отходы, являющиеся вторичным сырьем накапливаются: в отдельно установленные контейнеры на площадке для мусорных контейнеров, в непосредственной близости от места проводимых работ и по окончании строительства передаются специализированным организациям; накопление твердых бытовых отходов будет осуществляться в специальный контейнер с крышкой, установленный на площадке для мусорных контейнеров и, по мере накопления, отходы будут вывозиться на объекты размещения отходов; хозяйственно-бытовые стоки откачиваются спецмашиной из герметичных емкостей установленных на площадке септика и отвозятся для утилизации на ближайшие очистные сооружения; недопущение загрязнения территории строительства горюче-смазочными материалами, в подобных

случаях должны быть своевременно проведены работы по ликвидации негативных последствий; рациональное использование материальных ресурсов, снижение объемов отходов производства; очистку территории от образующихся отходов; использование герметичных резервуаров для сбора хоз-бытовых стоков и жидких отходов, контейнеров с крышками под ТБО; недопущение сброса неочищенных сточных вод в водные объекты; обустройство места временного складирования отходов и организация их утилизации; места стоянки, заправки, ремонта техники располагаются за пределами водоохранных зон; во избежание утечек горюче-смазочных материалов и их попадания на грунт не допускать использование технически неисправной техники. После завершения строительномонтажных работ предусматривается очистка территории строительства от мусора, строительных отходов.

Ожидаемое воздействие на атмосферный воздух

В период проведения строительных работ негативное воздействие на атмосферный воздух возможно при разработке и перемещении грунта спецтехникой, ссыпке инертных материалов, выполнении сварочных работ. На период строительства все источники выбросов загрязняющих веществ являются неорганизованными и временными. Основными источниками загрязнения воздушного бассейна при строительстве будут являться: при выполнении земляных работ; окрасочные работы; сварочные работы; при работе ДВС автотранспорта; разгрузочные работы инертных материалов;

Источник 6001 — Пылевыделение при разработке грунта. Количество отгружаемого (перегружаемого) материала 79 537 м3. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства- глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)

Источник 6002 — Пылевыделение при обратной засыпке грунта. Количество отгружаемого (перегружаемого) материала 175,6501 м3. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства- глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)

Источник 6003 — Сварочные работы, расход электродов марки АНО-6— 1 118,13 кг/период. Неорганизованно выделяются следующие загрязняющие вещества: Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274), Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327), Пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Источник 6004 - Газорезка. Вид резки: Газовая. Разрезаемый материал: Сталь углеродистая. Толщина материала 5 мм. Способ расчета выбросов: по времени работы оборудования. Время работы одной единицы оборудования 200 часов. Неорганизованно выделяются следующие загрязняющие вещества: Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274), Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327), Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6), Углерод оксид (Окись углерода, Угарный газ) (584)

Источник 6005 - Сварка ацетилен-кислородным пламенем. Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем. Расход сварочных материалов 31,4308868 кг/год. Неорганизованно выделяются следующие загрязняющие вещества: Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6)

Источник 6006 - Сварка пропан бутаном. Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси. Расход сварочных материалов 1 899,6532884 кг/год. Неорганизованно выделяются следующие загрязняющие вещества: Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6)

Источник 6007 - Пересыпка щебня, расход щебня 4 726 м3. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси

кремния (шамот, цемент, пыль цементного производства- глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Источник 6008 — Пересыпка ПГС, расход 7 128,85 м3. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства- глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494).

Источник 6009 — Битумные работы. Объем плавления битума 1,16 т. Неорганизованно выделяются следующие загрязняющее вещество: Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П).

Источник 6010 – Пайка припоями. Количество израсходованного припоя 18,64 кг. Неорганизованно выделяются следующие загрязняющее вещество: олово оксид (в пересчете на олово) (олово (II) оксид) (446), свинец и его неорганические соединения /в пересчете на свинец/ (513).

Источник 6011/001 - Покрасочные работы Краска масляная. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0888325654 тонны. Неорганизованно выделяются следующие загрязняющее вещество: Диметилбензол (смесь о-, м-, п- изомеров) (203)

Источник 6011/002 - Покрасочные работы Эмаль ПФ-115. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0271281 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Диметилбензол (смесь о-, м-, п- изомеров) (203), Уайт спирит.

Источник 6011/003 - Покрасочные работы Грунтовка ГФ-021. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,036644 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Диметилбензол (смесь о-, м-, π -, π - изомеров) (203).

Источник 6011/004 - Покрасочные работы лак БТ. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0638208 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Диметилбензол (смесь о-, м-, п- изомеров) (203), Уайт спирит.

Источник 6011/005 - Покрасочные работы Р-4. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0134907 тонны. Неорганизованно выделяются следующие загрязняющие вещества: метилбензол, бутилацетат (Уксусной кислоты бутиловый эфир) (110), пропан-2-он (Ацетон) (470).

Источник 6011/006- Покрасочные работы Эмаль XB-124. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,00864 тонны. Неорганизованно выделяются следующие загрязняющие вещества: пропан-2-он (ацетон), бутилацетат (Уксусной кислоты бутиловый эфир) (110), метилбензол.

Источник 6011/007- Покрасочные работы Уайт-спирит. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0032114 тонны. Неорганизованно выделяются следующие загрязняющие вещества: уайт-спирит.

Источник 6011/008- Покрасочные работы БТ-177. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0001692 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Диметилбензол (смесь о-, м-, п- изомеров) (203).

Источник 6011/009- Покрасочные работы ЭП-140. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,000182 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Диметилбензол (смесь о-, м-, п- изомеров) (203), Метилбензол (349), 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*), Пропан-2-он (Ацетон) (470)

Источник 6012 — Пересыпка асфальтобетонных смесей. Масса материала 10,04 т. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20%

двуокиси кремния (шамот, цемент, пыль цементного производства- глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)

Источник 6013 — Автотранспорт. Тип топлива: Дизельное топливо. Наибольшее количество автомобилей, выезжающих со стоянки в течении часа 2 Общ. количество автомобилей данной группы за расчетный период, 12 шт. Тип машины: Грузовые автомобили карбюраторные свыше 2 т до 5 т (СНГ). Выделяются ЗВ неорганизованно: Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)

На период эксплуатации:

Источник 0001 — Котел. Отопление здания службы эксплуатации принято от котла Z-25, установленного на кухне на металлическом листе. Котел производительностью 25 кВт работает на каменном угле и на электричестве. Годовой расход топлива 11,2 т/год. Выделяются через дымовую трубу следующие вещества: азота (IV) диоксид (азота диоксид), азот (II) оксид (азота оксид), сера диоксид (ангидрид сернистый, Сернистый газ, Сера (IV) оксид), углерод оксид (Окись углерода, Угарный газ), пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производстваглина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений).

Источник 6001— Закрытый склад угля. Поверхность пыления в плане 10 м2. Неорганизованно выделяются следующие загрязняющие вещества: Пыль неорганическая, содержащая двуокись кремния в %: менее 20.

Источник 6002— Закрытый склад золы. Поверхность пыления в плане 1 м2. Неорганизованно выделяются следующие загрязняющие вещества: Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (494).

Валовый выброс загрязняющих веществ в амосферный воздух на период строительства составит 6,442795668000 тонн/год.

Валовый выброс загрязняющих веществ в амосферный воздух на период эксплуатации составит 8,34593199 тонн/год.

Область воздействия на период строительства и эксплуатации не будет выходить за область земельного отвода и будет составлять 30-35 м

Максимальные значения наблюдаются на границе жилой зоны по следующим веществам: 0328 Углерод (Сажа, Углерод черный) (583) - 0,017072 ПДК; 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) - 0,010358 ПДК; 1119 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*) - 0,021736 ПДК; 2732 Керосин (654*) - 0,011888 ПДК; 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства -глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) - 0,03696 ПДК.

Максимальные значения наблюдаются на границе СЗЗ по следующим веществам на период эксплуатации: 0330 Сера диоксид (Ангидрид сернистый, Сернистыйг аз, Сера(IV)оксид)(516)-0,0838739 ПДК; 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства -глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)-0,1051449 ПДК.

В периоды неблагоприятных метеорологических условий (НМУ) предприятие обязано осуществлять временные мероприятия по дополнительному снижению выбросов вредных веществ в атмосферу. Мероприятия осуществляются после заблаговременного получения предупреждения от органов гидрометеослужбы, в котором указываются продолжительность НМУ, ожидаемое увеличение приземных концентраций вредных веществ. Настоящие мероприятия разработаны для предприятия при двух режимах работы. При первом режиме работ мероприятия должны обеспечить уменьшение концентраций веществ в приземном слое атмосферы примерно на 15-20%. Эти мероприятия носят

организационно-технический характер: ужесточение контроля за точным соблюдением технологического регламента производства; прекращение работы оборудования в форсированном режиме; усиление контроля за выбросами автотранспорта путём проверки состояния и работы двигателей; запрещение продувки и очистки оборудования, вентиляционных систем и емкостей; ограничение погрузочно-разгрузочных работ, связанных со значительным выделением в атмосферу загрязняющих веществ; влажная помещений; прекращение испытаний уборка производственных оборудования, приводящих к увеличению выбросов вредных веществ. При втором режиме работ предприятия мероприятия должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы примерно на 20-40%. Эти мероприятия включают в себя мероприятия первого режима, а также мероприятия на технологические процессы, сопровождающиеся незначительным снижением производительности предприятия. Мероприятия общего характера: снизить производительность отдельных агрегатов и технологических линий, работа которых связана со значительным выделением в атмосферу вредных веществ; в случае, если сроки начала планово-предупредительных работ по ремонту оборудования и наступления НМУ достаточно близки, следует произвести остановку оборудования; ограничить использование автотранспорта и других передвижных источников выброса; При третьем режиме работы предприятия мероприятия должны обеспечить сокращение концентраций загрязняющих веществ в приземном слое атмосферы примерно на 40- 60 % и в некоторых особо опасных условиях предприятию следует полностью прекратить выбросы. Мероприятия третьего режим полностью включают в себя условия первого и второго режимов, а также мероприятия, осуществление которых позволяет снизить выбросы загрязняющих веществ за счёт временного сокращения производительности предприятия, Мероприятия общего характера: снизить нагрузку или остановить производства, сопровождающиеся значительным выделением загрязняющих веществ; снизить нагрузку или остановить производства, не имеющие газоочистных сооружений.

Ожидаемое воздействие на земельные ресурсы

По данному объекту на стадии ТЭО были получены предварительные правоустанавливающие документы: - Постановление №KZ12VBM02274666 от 14.03.2024 г. При строительстве проектируемого объекта значительного воздействия на почвы, растительность и животный мир в районе проведения работ не прогнозируется. После завершения строительства провести техническую рекультивацию, которая включает: передислокацию всех временных сооружений, техники, транспортных средств с территории; очистку территории от строительного мусора. Мероприятия во время строительства будут направлены на защиту почвенных ресурсов и включать в себя: осуществлять регулярный полив водой зоны движения строительных машин и автотранспорта в летний период; не допускать разлива ГСМ; хранить производственные отходы в строго определенных местах; проведение технического осмотра профилактических работ строительных машин, механизмов и автотранспорта, с контролем выхлопных газов ДВС для проверки токсичности не реже одного раза в год (плановый), а также после каждого ремонта и регулирования двигателей; содержание производственной территории в должном санитарном состоянии. Необходимо соблюдение установленных норм указанных в ст. 140 (Охрана земель) Земельного Кодекса Республики Казахстан, в том числе:- рекультивацию нарушенных земель, восстановление их плодородия и других полезных свойств земли и своевременное вовлечение в хозяйственный оборот;- снятие, сохранение и использование плодородного слоя почвы при проведении работ, связанных с нарушением земель. Мероприятия во время строительства будут включать направленные на защиту почвенных ресурсов будут включать в себя: сброс промывочных и дренажных вод организовать через существующую систему городской и ливневой канализации.

В соответствии с п.1 ст. 140 «Охрана земель» Земельного Кодекса Республики Казахстан собственники земельных участков и землепользователи обязаны проводить

мероприятия, направленные на защиту земель от загрязнения отходами производства и потребления, химическими, биологическими и другими веществами, проводить рекультивацию нарушенных земель, восстанавливать их плодородие и другие полезные свойства и своевременно вовлекать земли в хозяйственный оборот.

Технический этап рекультивации

Рабочим проектом необходимо предусмотреть рекультивацию нарушенных земель, после окончания работ привести земли в состояние, пригодное для дальнейшего использования. Технический этап рекультивации включает в себя выполнение следующих работ: определение объемов земляных работ, определение потребности в технике, организация производства работ, составление рабочих чертежей по производству работ; планировка поверхностей; выполаживание откоса верхнего уступа карьера с восточной стороны; затопление карьера; возведение оградительного вала из вскрышных пород; выполаживание откосов отвалов; нанесение плодородного слоя (ПСП) (по результатам лабораторных исследований).

Биологический этап рекультивации

Завершающим этапом восстановления нарушенных земель является проведение биологического этапа рекультивации. Работы по биологическому восстановлению земель ведутся для создания растительных сообществ декоративного и озеленительного назначения с целью создания на подготовленной поверхности корнеобитаемого слоя, предотвращающего эрозию почв, снос мелкозема с восстановленной поверхности. Исходя из почвенных и природно-климатических условий района размещения земель и принятого санитарно-гигиенического направления рекультивации, в составе биологического этапа необходимо предусматривать посев многолетних трав. Работы, входящие в состав биологического этапа рекультивации, должны проводиться с учетом рекомендаций по зональной агротехнике. Плодородный слой почв, снимаемый в процессе производства горных работ, относится к пригодным грунтам для биологического этапа рекультивации. На биологическом этапе выполняются работы по подготовке почвы, включающие: дискование на глубину до 10 см; внесение основного удобрения в соответствии с нормой, с последующим боронованием в 2 следа; предпосевное прикатывание. Затем производится посев подготовленной смеси трав. Посев многолетних трав следует проводить зернотуковой сеялкой. Смесь трав состоит из двух, трех и более компонентов. Подбор трав обеспечивать хорошее задернение территории полигона, морозоустойчивость, быстрое отрастание после скашивания. При посеве травосмеси из двух компонентов норма высева снижается на 35%, а при посеве трехкомпонентной травосмеси – на 50% от нормы высева по видам трав. Глубина заделки семян 1-1,25 см, а крупных семян– 3-4 см. Расстояние между одноименными рядками принимается равным 45 см, а между общими рядками 22,5 см.

Ожидаемое воздействие на ресурсы растительного и животного мира

При строительстве и эксплуатации объекта не предполагается использование растительных и животных ресурсов. Редкие животные, занесенные в Красную Книгу отсутствуют. Редкие растения, занесенные в Красную Книгу, отсутствуют. Растительный покров области разнообразен и сложен, что обусловлено различными климатическими условиями и рельефом. Естественный растительный покров подвергается в пределах области значительным изменениям под влиянием хозяйственной деятельности человека. Рассматриваемая территория не относится к заповедной, древние культурные и исторические памятники, подлежащие охране, отсутствуют. На участке строительства пруда территории охотничьих угодий отсутствуют и в связи с этим учёт краснокнижных видов животных не проводится. На указанных точках географических координат земель государственного лесного фонда и ООПТ не имеется. Необратимых негативных воздействий на растительный покров в результате производственной деятельности не ожидается. Выкорчевка зеленых насаждений отсутствует.

Ожидаемые виды и объемы образования отходов

На период строительства:

Всего: - 6,51807 тонн/год. В т.ч. отходы производства: - 0,04507 тонн/год, отходы потребления: - 6,473 тонн/год.

Опасные отходы: Отходы красок и лаков, содержащие органические растворители или другие опасные вещества (Тара из-под лакокрасочных материалов) - 0,0072 тонн/год; Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами (ветошь промасленная) - 0,0211 тонн/год.

Неопасные отходы: Отходы сварки (огарки сварочных электродов) - 0,01677 тонн/год; Смешанные коммунальные отходы (Коммунальные отходы) - 6,473 тонн/год.

На период эксплуатации:

Всего: 2,76219 тонн/год. В т.ч. отходы производства: 2,61219 тонн/год, отходы потребления: 0,15 тонн/год.

Опасные отходы: Люминесцентные лампы и другие ртутьсодержащие отходы 0,03619 тонн/год.

Неопасные отходы: Смешанные коммунальные отходы 0,15 тонн/год, Зольный остаток, котельные шлаки и зольная пыль (исключая зольную пыль в 10 01 04) 2,576 тонн/год.

На период проведения работ должны предусматриваться мероприятия по предотвращению и смягчению негативного воздействия отходов на окружающую среду:подрядчик несет ответственность за сбор и утилизацию отходов, а также за соблюдение всех норм и требований РК в области ТБ и ООС;-все отходы, образованные при проведении работ, должны идентифицироваться по типу, объему, раздельно собираться и храниться на спецплощадках и в спецконтейнерах; -по мере накопления будет осуществляться сбор мусора и остатков всех видов отходов, а также вывоз контейнеров с ними для утилизации в согласованные места по договору с соответствующими организациями;-в процессе проведения работ налажен контроль над выполнением требований ООС. Правильная организация хранения, удаления отходов максимально предотвращает загрязнение окружающей среды. Это предполагает исключение, изменение или сокращение видов работ, приводящих к загрязнению отходами почвы, атмосферы или водной среды. Планирование операций по снижению количества отходов, их повторному использованию, утилизации, регенерации создают возможность минимизации воздействия на компоненты окружающей среды.

Мероприятия по снижению воздействия на окружающую среду отходов производства и потребления включают следующие эффективные меры: размещение отходов только на специально предназначенных для этого площадках и емкостях; принимать меры предосторожности и проводить ежедневные профилактические работы для исключения утечек и проливов сырья и топлива; повторное использование отходов производства, этим достигается снижение использования сырьевых материалов; содержание территории промплощадки в должном санитарном состоянии. Принятие мер по сокращению объемов отходов, которые предполагают применение безотходных технологий либо уменьшение, по мере возможности, количества или относительной токсичности отходов путем применения альтернативных материалов, технологий, процессов, приемов. Мониторинг обращения с отходами включает учет образовавшихся, использованных, обезвреженных, переданных сторонним организациям, в том числе: ведение унифицированного перечня (каталога) отходов; учет объемов каждого вида отходов; определение опасности отхода для окружающей среды и здоровья человека; отслеживание влияния объектов захоронения, временного и длительного хранения отходов на окружающую среду. При производственной деятельности предприятия будут образовываться твердые производственные и бытовые отходы. Твердые бытовые и промышленные отходы будут временно накапливаться в пределах промплощадки, а затем будут вывозиться специализированными предприятиями на полигоны для захоронения

токсичных отходов. Временное хранение этих отходов на территории промплощадок при нормальной эксплуатации не приведет к каким-либо потерям нефтепродуктов или других загрязняющих веществ в окружающую среду, а потому загрязнение окружающей среды в результате временного хранения отходов будет минимальным. В связи с вышеизложенным, мониторинг твердых отходов производства и потребления будет сводиться к учету движения (поступление, хранение и вывоз) всех видов отходов, с указанием даты образования, краткой характеристики (тип), маркировки с учетом класса опасности, даты и способа хранения, утилизации и захоронения.

Физические воздействия

Современное состояние по оценке физического воздействия в пределах физического воздействия в пределах рассматриваемой территории приводится по шуму, вибрации, электромагнитному излучению.

Шум

К источникам шума техногенного происхождения относятся все применяемые в оборудование и транспорт, которые создают современной технике механизмы, значительное шумовое загрязнение окружающей среды. Нормативные документы устанавливают определенные требования к методам измерений и расчетов интенсивности шума в местах нахождения людей, допустимую интенсивность фактора и зависимость интенсивности от продолжительности воздействия шума. Уровень шума на открытых рабочих площадках зависит от расстояния до работающего агрегата, а также от того, где находится само работающее оборудование в помещении или вне его, от наличия ограждения, положения места измерения относительно направленного источника шума, метеорологических условий и др. На исследуемых производственных объектах технологические процессы эксплуатации не являются источниками шумового воздействия на здоровье человека, непосредственно принимающих участие в технологических процессах, а также на флору и фауну. Допустимый уровень звука на постоянных рабочих местах на территории предприятия определен в размере 80дБа. Измерение шума на рабочих местах выполняются в соответствии с утвержденными Минздравом «Методическими указаниями по проведению измерений и гигиенической оценки шумов на рабочих местах». Для контроля уровня шума используют шумомеры Ш-70, ИВШ-1. Снижение звукового давления на производственном участке может быть достигнуто при разработке следующих специальных мероприятий: оптимизация и регулирование транспортных потоков; уменьшение, по мере возможности, движения грузовых автомобилей грузоподъемности; уменьшение шума в его источнике (замена шумных технологических процессов и механизмов бесшумными или менее шумными); применение смазки соударяющихся деталей вязкими жидкостями; агрегаты, создающие чрезмерный шум вследствие выхлопа или газов снабжать специальными глушителями; уменьшение шума на пути его распространения (устройство звукоизолирующих ограждений, экранов); применение для защиты органов слуха средств индивидуальной защиты (беруши, наушники, шлемы).

Вибрация

Основными источниками вибраций являются различные технологические установки двигатели), строительная техника (молоты, пневмовибрационная техника), насосные станции и т.д. Особенность действия вибраций заключается в том, что эти механические упругие колебания распространяются по грунту и оказывают своё воздействие на фундаменты различных сооружений, вызывая затем звуковые колебания в виде шума. Нормируемыми параметрами вибрации квадратичные величины и уровни колебательной скорости или амплитуды перемещений горизонтальной и вертикальной вибрации в октавах полосах частот от 2 до 63Гц, работой оборудования передаваемые И рабочие производственных помещениях. Общая вибрация подразделяется на 3 категории: транспортная; транспортно-технологическая; технологическая.

Электромагнитное излучение

Производственные объекты, связанные с электромагнитным излучением на промысле это: линия электропередач, трансформаторные станции, электродвигатели, персональные компьютеры, радиотелефоны. Воздействие электромагнитного излучения происходит от различного электрооборудования и линейных источников, специальные меры защиты от электромагнитных излучений применяются в случае использования на предприятии электроустановок промышленной частоты напряжением выше 330. Защита от воздействия электрического поля напряжением 220В и ниже не требуется. Применение современного оборудования для всех технологических процессов и предпринимаемые меры по минимизации воздействия шума и практическое отсутствие источников электромагнитного излучения, позволяют говорить о том, что на рабочих местах не будут превышаться установленные нормы. В связи с этим, сверхнормативное воздействие данных физических факторов на людей и другие живые организмы за пределами СЗЗ предприятия не ожидается. Интенсивность воздействия оценивается как незначительная.

Радиационное воздействие

Природная радиационная обстановка соответствует относительно низкому уровню радиоактивности, характерному для селитебных территорий равнинных ландшафтов. Предприятие на балансе не имеет источников радиационного воздействия, следственно на радиационную обстановку не воздействует.

Основные аргументы и выводы, послужившие основой для вынесения заключения

Представленный проект Отчёта о возможных воздействиях «Строительство пруда в Аватском сельском округе Уйгурского района» выполнен в соответствии с требованиями ст.72 Экологического кодекса Республики Казахстан и Инструкции по организации и проведению экологической оценки. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280.

Все замечания и предложения общественности к проекту отчета о возможных воздействиях, в том числе полученные в ходе общественных слушаний, были сняты, что соответствует ст.76 Экологического кодекса Республики Казахстан.

Информация о проведении общественных слушаний

Дата размещения проекта отчета о возможных воздействиях на интернет ресурсе Уполномоченного органа в области охраны окружающей среды: 17.09.2024 года.

Объявление о проведении общественных слушаний на официальных интернетресурсах уполномоченного органа: https://ecoportal.kz/ 12.09.2024 года.

На официальном интернет-ресурсе местного исполнительного органа (областей, городов республиканского значения, столицы) или официальном интернет-ресурсе государственного органа-разработчика: https://www.gov.kz/memleket/entities/almobl-tabigat 12.09.2024 года.

В средствах массовой информации:

- газета ««Қарадала тынысы Қарадала нәпәси», №39 (599) от 06.09.2024 г.
- ТОО "Телеканал "Жетысу", размещение в эфире 11.09.2024 г.

Электронная версия газеты и эфирная справка представлены в приложении к протоколу общественных слушаний.

Размещение текстового объявления на информационной доске акимата Аватского сельского округа, с.Ават, улица ул. Розыбакиева, 28, и информационной доске с.Ават, по ул. Тауелсіздік. Фотоматериалы представлены в приложении к протоколу общественных слушаний.

Электронный адрес и номер телефона, по которым общественность могла получить дополнительную информацию о намечаемой деятельности, проведении общественных слушаний, а также запросить копии документов, относящихся к намечаемой деятельности:

ИП «Темиргалиева Д.Р.», 010000, г.Астана, БЦ «Алтын Орда», пр. Мәнгілік Ел дом 8, Офис 1801, ИИН: 830 620 450 620, 8 701 439 6651, 8 702 328 27186 dinara temir@mail.ru.

Электронный адрес и почтовый адрес уполномоченного органа или его структурных подразделений, по которым общественность могла направлять в письменной или электронной форме свои замечания и предложения к проекту отчета о возможных воздействиях: dep_eco.almatyobl@mail.ru, 050000, Алматинская область, город Қонаев, ул. Сейфуллина, 36.

Общественные слушания проведены 16 октября 2024 года в 10:00 часов, по адресу: Алматинская область, Уйгурский район, село Ават, в здании акимата Аватского с/о, ул. Розыбакиева, 28, посредством открытых собраний, а также в онлайн формате, посредством видеоконференцсвязи на платформе Zoom, присутствовали 21 человек, «за» - 21, «против» - 0, «воздержались» - 0

При проведении общественных слушаний проводилась видеозапись.

Председателем избран — Анадуллаев Р.М., Аким Аватского сельского округа, секретарем избран — Боранбаев Б.Ж., представитель ТОО «Исследовательский центр «ЮПИТЕР»».

Все замечания и предложения общественности к проекту отчета о возможных воздействиях, в том числе в ходе общественных слушаний, были сняты.

Обобщение информации, полученной В консультаций результате заинтересованными государственными органами, проведения общественных трансграничных воздействий (в случае ее слушаний, оценки проведения), рассмотрения проекта отчета о возможных воздействиях экспертной комиссией, с пояснением о том, каким образом указанная информация была учтена при вынесении заключения по результатам оценки воздействия на окружающую среду

ΡГУ «Балхаш-Алакольская бассейновая инспекция регулированию использования и охране водных ресурсов Комитета водного хозяйства Министерства водных ресурсов и ирригации Республики Казахстан» ранее было отказано в согласовании Технико-экономическое обоснование (ТЭО) «Строительство пруда в Аватском сельском округе Уйгурского района» разработанной ТОО «Юпитер», за № KZ68VRC000019792 от 26.06.2024 года, в связи с тем, что согласно представленной ситуационной схеме на территории рассматриваемого земельного участка расположены земельные участки Магаева 3. площадью 6,24 га (кадастровый №03-052-050-208), площадью 3,28 га (кадастровый №03-052-050-207) и земельные участки Халиев А. площадью 3,28 га (кадастровый №03-052-050-425), площадью 0,9430 га (кадастровый №03-052-050-426), то есть идет накладка на вышеуказанные земельные участки. Настоящим заключением в условиях, при которых реализация намечаемой деятельности признается допустимой, предусмотрены наличие постановления акимата о выделении земельного участка под строительство пруда и получение согласования размещения предприятий и других сооружений, а также условий производства строительных и других работ на водных объектах, водоохранных зонах и полосах при строительстве объектов, в том числе в черте населенного пункта в РГУ «Балхаш-Алакольская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета водного хозяйства Министерства водных ресурсов и ирригации Республики Казахстан».

санитарно-эпидемиологического Департамент контроля Алматинской области в пределах своей компетенции сообщает следующее: Согласно подпункту 29) пункта 3 приказа Министра здравоохранения Республики Казахстан № КР ДСМ-220/2020 от 30 ноября 2020 года «Об утверждении перечня продукции и объектов с эпидемиологическим значением, подлежащих государственному контролю и надзору в области санитарно-эпидемиологического благополучия населения», виды деятельности, относящиеся к 1 и 2 классам опасности по санитарной классификации производственных эпидемиологическое объектов, значение. Для них высокое эпидемиологическое заключение является разрешительным документом

подпункту 1) пункта 1 статьи 19 Кодекса Республики Казахстан № 360-VI от 7 июля 2020 года «О здоровье народа и системе здравоохранения». На основании вышеизложенного, государственное учреждение «Управление сельского хозяйства Алматинской области» должно обратиться в государственные или аккредитованные экспертные организации для проведения комплексной вневедомственной экспертизы В составе эпидемиологической экспертизы строительного проекта «Строительство пруда в сельском округе Ават, Уйгурского района» с установлением размеров санитарно-защитной зоны согласно статье 46 пункта 3 подпункта 1 Кодекса Республики Казахстан от 7 июля 2020 года. Настоящим заключением одним из условий, при котором реализация намечаемой признается допустимой, предусмотрено проведение деятельности санитарноэпидемиологической экспертизы проекта в соответствии со статьей 46 Кодекса Республики Казахстан «О здоровье народа и системе здравоохранения» от 7 июля 2020 года № 360-VI.

Условия, при которых реализация намечаемой деятельности признается допустимой

- 2. Наличие постановления акимата о выделении земельного участка под строительство пруда.
- 3. Получение согласования размещения предприятий и других сооружений, а также условий производства строительных и других работ на водных объектах, водоохранных зонах и полосах при строительстве объектов, в том числе в черте населенного пункта в РГУ «Балхаш-Алакольская бассейновая инспекция по регулированию использования и охране водных ресурсов Комитета водного хозяйства Министерства водных ресурсов и ирригации Республики Казахстан»;
- 4. Проведение санитарно-эпидемиологической экспертизы проекта в соответствии со статьей 46 Кодекса Республики Казахстан «О здоровье народа и системе здравоохранения» от 7 июля 2020 года № 360-VI;
- 5. Не превышать указанные в настоящем заключении объемы выбросов загрязняющих веществ в атмосферный воздух, а также объемы образования отходов.
- 6. Соблюдать экологические требования по сбору, накоплению и управлению отходами, предусмотренные ст. 319, 320, 321 Экологического кодекса Республики Казахстан от 2 января 2021 года № 400-VI 3PK;
- 7. Для исключения перемещения (утечки) загрязняющих веществ в воды и почву должна предусматриваться инженерная система организованного накопления и хранения отходов производства с гидроизоляцией площадок;
- 8. Соблюдать мероприятия, предусмотренные в периоды неблагоприятных метеорологических условий;
- 9. Соблюдать общие положения об охране земель, экологические требования при использовании земель и оптимальному землепользованию, предусмотренные ст. 228, 237, 238 Экологического кодекса Республики Казахстан;
- 10. Обеспечить соблюдение мероприятий по охране земель, предусмотренных ст. 140 Земельного Кодекса Республики Казахстан
- 11. Обеспечить соблюдение мероприятий, направленных на защиту растительного и животного мира от негативных воздействий намечаемой деятельности, а также требований по сохранению биоразнообразия в соответствии со ст. 240 Кодекса;
- 12. Соблюдать установленные настоящим заключением мероприятия, по предотвращению, сокращению и (или) смягчению негативных воздействий на окружающую среду при реализации намечаемой деятельности;
- 13. Обеспечить проведение послепроектного анализа фактических воздействий при реализации намечаемой деятельности в соответствии со статьей 78 Экологического кодекса Республики Казахстан.
- 14. В соответствии со ст. 77 Кодекса составитель отчета о возможных воздействиях, инициатор несут ответственность, предусмотренную законами Республики Казахстан, за сокрытие полученных сведений о воздействиях на окружающую среду и

представление недостоверных сведений при проведении оценки воздействия на окружающую среду.

Предельные количественные и качественные показатели эмиссий, физических воздействий на природную среду

Лимиты выбросов загрязняющих веществ

Согласно п. 11 ст. 39 Экологического Кодекса Республики Казахстан от 2 января 2021 года № 400-VI 3PK нормативы эмиссий не устанавливаются для объектов III и IV категорий.

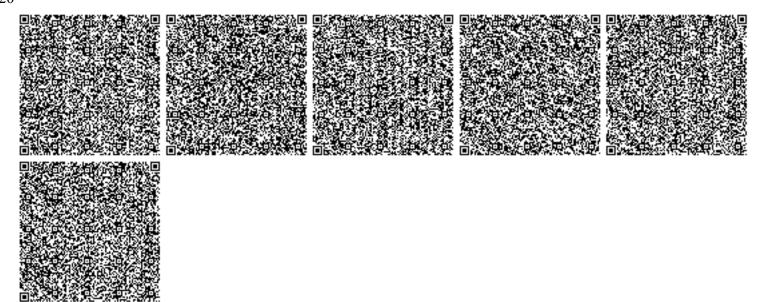
Лимиты накопления отходов

Согласно п. 8 ст. 41 Экологического Кодекса Республики Казахстан от 2 января 2021 года № 400-VI ЗРК лимиты накопления отходов и лимиты захоронения отходов не устанавливаются для объектов III и IV категорий.

Обязанности инициатора по предотвращению, сокращению и (или) смягчению негативных воздействий на окружающую среду при реализации намечаемой деятельности, включая меры по сохранению биоразнообразия, а также устранению возможного экологического ущерба, если реализация намечаемой деятельности может стать причиной такого ущерба

- Размещение отходов только на специально предназначенных площадках и в контейнерах.
- Накопление строительных отходов на временных площадках в пределах строительной территории, их сбор и вывоз по окончании строительства на объекты утилизации.
- Отходы, являющиеся вторичным сырьем, собираются раздельно в специальные контейнеры и передаются специализированным организациям для переработки.
- Твердые бытовые отходы (ТБО) накапливаются в контейнерах с крышками, установленных на специально отведенных площадках, с регулярным вывозом на полигоны для утилизации.
- Хозяйственно-бытовые стоки откачиваются спецтехникой из герметичных резервуаров и отправляются на очистные сооружения.
- Принятие мер предосторожности для исключения утечек и проливов сырья и топлива.
- Недопущение загрязнения территории строительства горюче-смазочными материалами (ГСМ), своевременное проведение работ по ликвидации негативных последствий.
- Регулярные профилактические работы для проверки технического состояния техники и недопущения утечек ГСМ.
- Места стоянки, заправки и ремонта техники размещаются вне водоохранных зон для предотвращения загрязнения водных объектов.
 - Применение безотходных технологий для минимизации объема отходов.
- Использование альтернативных материалов и технологий для сокращения количества и токсичности отходов.
- Организация повторного использования отходов производства, что способствует снижению потребления сырьевых материалов.
- Ведение учета образовавшихся, использованных, обезвреженных и переданных сторонним организациям отходов.
- Учет объемов каждого вида отходов и их опасности для окружающей среды и здоровья человека.
- Отслеживание воздействия объектов временного хранения и захоронения отходов на окружающую среду.
- Регулярный полив зоны движения строительных машин в летний период для предотвращения пылеобразования.

- Проведение технического осмотра и профилактических работ для контроля выхлопных газов строительной техники и их токсичности.
- Снятие, сохранение и использование плодородного слоя почвы при проведении работ, связанных с нарушением земель.
 - Рекультивация нарушенных земель и восстановление их плодородия.
 - Недопущение сброса неочищенных сточных вод в водные объекты.
- Сброс промывочных и дренажных вод через существующую систему городской и ливневой канализации.
- Оптимизация транспортных потоков для уменьшения движения грузовых автомобилей.
- Использование звукоизолирующих ограждений и глушителей на шумных агрегатах.
- Применение средств индивидуальной защиты (беруши, наушники) для работников на шумных участках.
 - Ограничение перемещения техники по специально отведенным дорогам.
- Установка информационных табличек в местах произрастания редких и исчезающих растений и гнездования птиц.
- Контроль за недопущением разрушения гнезд и сбором яиц без разрешения уполномоченных органов.
- Проведение информационной кампании для персонала и населения по вопросам сохранения редких видов растений и гуманного отношения к животным.
- После завершения строительных работ проводится очистка территории от мусора, строительных и производственных отходов.
- Все отходы, образованные при проведении работ, собираются и передаются для утилизации в соответствии с договором с профильными организациями.
- Разработка специализированного плана аварийного реагирования по ограничению, ликвидации и устранению последствий возможных аварий;
- Проведение исследований по различным сценариям развития аварийных ситуаций на различных производственных объектах;- обеспечение готовности систем извещения об аварийной ситуации;
- Обеспечение объекта оборудованием и транспортными средствами по ограничению очага ликвидации аварии;
- Обеспечение безопасности используемого оборудования; использование системы пожарной защиты, которая позволит осуществить современную доставку надлежащих материалов и оборудования, а также привлечение к работе необходимого персонала для устранения очага возникшего пожара на любом участке предприятия;
- Обеспечение готовности обслуживающего персонала и технических средств к организованным действиям при аварийных ситуациях и предварительное планирование их действий.


Вывод о допустимости реализации намечаемой деятельности при соблюдении условий, указанных в настоящем заключении

Представленный проект Отчёта о возможных воздействиях «Строительство пруда в Аватском с/о Уйгурского района Алматинской области» допускается к реализации намечаемой деятельности при соблюдении условий, указанных в настоящем заключении.

Руководитель департамента

Байедилов Конысбек Ескендирович

