ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ТУЗКОЛЬМУНАЙГАЗ ОПЕРЕЙТИНГ» ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «КАЗАХСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ НЕФТЯНОЙ ИНСТИТУТ» («КАЗНИГРИ»)

(Гос. лиц. № 23002295 от 25.01.2023г)

УТВЕРЖДАЮ:
Председатель правления
ТОО «ТМГО»
Абдукаримов Н.С.

« жамалитель председателя правления
оперейтину ТОО «ТМГО»
валитель председателя правления
оперейтину ТОО «ТМГО»
части в председателя правления
оперейтину тоо «ТМГО»

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ К ПРОЕКТУ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ ЖАНБЫРШЫ

(по состоянию на 01.07.2023г)

Договор № 23-024 от 26.06.2023

Директор ТОО «КазНИГРИ»:

ЮСУБАЛИЕВ Р.А.

Заместитель директора по проектной деятельности:

ТУЛЕНБАЕВА Б.Р.

СПИСОК ИСПОЛНИТЕЛЕЙ

ТОО «КазНИГРИ»

Государственная лицензия №01784Р от 01.10.2015 года.

Должность	Подпись	Ф.И.О.		
Ответственный исполнитель Руководитель отдела охраны окружающей среды	mbil.	Калемова Ж.Ж.		
Ведущий инженер отдела охраны окружающей среды	wohl	Ибраева А.Н.		
Техник-эколог отдела охраны окружающей среды	Koeeerf-	Колегова А.С.		

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	6
1.1. Общие сведения о месторождении	
1.2. Особо охраняемые природные территории	
1.2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ НА ПРЕДПОЛАГАЕМОЙ ЗАТРАГИВАЕМОЙ ТЕРРИТС	
МОМЕНТ СОСТАВЛЕНИЯ ОТЧЕТА (БАЗОВЫЙ СЦЕНАРИЙ)	12
1.2.1. Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, при	
АРЕАЛЫ РАСТЕНИЙ И ДИКИХ ЖИВОТНЫХ, ПУТИ МИГРАЦИИ ДИКИХ ЖИВОТНЫХ, ЭКОСИСТЕМЫ)	
1.2.2. ОБЩАЯ ХАРАКТЕРИСТИКА ПОЧВЕННО-РАСТИТЕЛЬНОГО ПОКРОВА РАЙОНА НА ТЕРРИТОРИИ ПРОЕКТИ	
СКВАЖИНЫ	
1.2.3. ОБЩАЯ ХАРАКТЕРИСТИКА ЖИВОТНОГО МИРА РАЙОНА	
1.3. ГЕОЛОГО-ФИЗИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ	
1.3.1. ХАРАКТЕРИСТИКА ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ	
1.3.2. Литолого-стратиграфическая характеристика	
Тектоника	
Тектоническое строение месторождения	
1.3.3. НЕФТЕГАЗОНОСНОСТЬ	24
2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ	
2.1. Климатические условия региона. Состояние воздушного бассейна	
2.2. Поверхностные и подземные воды	
3. ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОВ	
СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, СООТВЕТСТВУ	,
СЛЕДУЮЩИМ УСЛОВИЯМ	
3.1. Альтернативные технические и технологические решения. Вариант, выбранный иници	
намечаемой деятельности для применения, обоснование его выбора, в том числе рациона	
ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ) ЗДОРОВЬЯ	
ОКРУЖАЮЩЕЙ СРЕДЫ;	
3.2. Альтернативные решения по размещению скважин. Вариант, выбранный иници	
НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ДЛЯ ПРИМЕНЕНИЯ, ОБОСНОВАНИЕ ЕГО ВЫБОРА, В ТОМ ЧИСЛЕ РАЦИОНА	
ВАРИАНТА, НАИБОЛЕЕ БЛАГОПРИЯТНОГО С ТОЧКИ ЗРЕНИЯ ОХРАНЫ ЖИЗНИ И (ИЛИ) ЗДОРОВЬЯ	
ОКРУЖАЮЩЕЙ СРЕДЫ	
3.3. РАЗЛИЧНЫЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ ОБЪЕКТА	
3.3.1. РАЗЛИЧНЫЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ ОБЪЕКТА ВКЛЮЧАЯ ВИДЫ ТРАНСПОРТА, КОТОРЫЕ ИСПОЛЬЗОВАТЬСЯ ДЛЯ ДОСТУПА К ОБЪЕКТУ	, ,
3.3.2. Различные варианты, относящиеся к иным характеристикам намечаемой деятел	
ВЛИЯЮЩИЕ НА ХАРАКТЕР И МАСШТАБЫ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ	
3.3.3. Под возможным рациональным вариантом осуществления намечаемой деятел	
ПОНИМАЕТСЯ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ПРИ КОТОРОМ СОБЛЮДА	
СОВОКУПНОСТИ СЛЕДУЮЩИЕ УСЛОВИЯ	
3.3.4. Основные технико-экономические показатели	
3.4. Информация о компонентах природной среды и иных объектах, которые могут быть подв	
СУЩЕСТВЕННЫМ ВОЗДЕЙСТВИЯМ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
3.4.1. Жизнь и (или) здоровье людей, условия их проживания и деятельности	
3.4.2. БИОРАЗНООБРАЗИЕ (В ТОМ ЧИСЛЕ РАСТИТЕЛЬНЫЙ И ЖИВОТНЫЙ МИР, ГЕНЕТИЧЕСКИЕ РЕСУРСЫ, ПРИ	
АРЕАЛЫ РАСТЕНИЙ И ДИКИХ ЖИВОТНЫХ, ПУТИ МИГРАЦИИ ДИКИХ ЖИВОТНЫХ, ЭКОСИСТЕМЫ)	
3.4.3. ЗЕМЛИ (В ТОМ ЧИСЛЕ ИЗЪЯТИЕ ЗЕМЕЛЬ), ПОЧВЫ (В ТОМ ЧИСЛЕ ВКЛЮЧАЯ ОРГАНИЧЕСКИЙ СОСТАВ,	
УПЛОТНЕНИЕ, ИНЫЕ ФОРМЫ ДЕГРАДАЦИИ	
3.4.4. Воды (в том числе гидроморфологические изменения, количество и качество вод)	
3.4.5. АТМОСФЕРНЫЙ ВОЗДУХ (В ТОМ ЧИСЛЕ РИСКИ НАРУШЕНИЯ ЭКОЛОГИЧЕСКИХ НОРМАТИВОВ ЕГО КА	ЧЕСТВА,
ЦЕЛЕВЫХ ПОКАЗАТЕЛЕЙ КАЧЕСТВА, А ПРИ ИХ ОТСУТСТВИИ ОРИЕНТИРОВОЧНО БЕЗОПАСНЫХ У	
ВОЗДЕЙСТВИЯ НА НЕГО)	
4. ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬ В	ХОДЕ
СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВ.	ТЕНИЯ
НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
5. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВ.	
намечаемой деятельности, включая их мощность, габариты (пло	
ЗАНИМАЕМЫХ ЗЕМЕЛЬ, ВЫСОТА), ДРУГИЕ ФИЗИЧЕСКИЕ И ТЕХНИЧ	
ХАРАКТЕРИСТИКИ, ВЛИЯЮЩИЕ НА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ; СВЕ,	
О ПРОИЗВОДСТВЕННОМ ПРОЦЕССЕ, В ТОМ ЧИСЛЕ ОБ ОЖИДА	
производительности предприятия, его потребности в энергии, приро	
РЕСУРСАХ, СЫРЬЕ И МАТЕРИАЛАХ.	
5.1. ТЕХНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАНТОВ РАЗРАБОТКИ	13

6. ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНО ДЛЯ ОБЪЕКТОВ І КАТЕГОРИИ, ТРЕБУЮЩИХ ПОЛУЧЕНИЯ КОМПЛІ ЭКОЛОГИЧЕСКОГО РАЗРЕШЕНИЯ В СООТВЕТСТВИИ С ПУНКТОМ 1 СТАТЬИ 111 КОД	ЕКСНОГО
7. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТ	ГРОЕНИЙ,
сооружений, оборудования и способов их выполнения, если эти	
НЕОБХОДИМЫ ДЛЯ ЦЕЛЕЙ РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ	
8. ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ З	
В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВ ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ СО СТРОИТЕЛЬСТВОМ И ЭКСПЛУЛ	
ОБЪЕКТОВ ДЛЯ ОСУЩЕСТВЛЕНИЯ РАССМАТРИВАЕМОЙ ДЕЯТЕЛЬНОСТИ, Е	АТАЦИЕИ КИПЮЧЛЯ
ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ В	
ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ И РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ	
8.1. МЕТОДИКА ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ ПРИРОДНУЮ СРЕДУ	
8.1.1. МЕТОДИКА ОЦЕНКИ ВОЗДЕЙСТВИЯ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СФЕРУ	
8.2. ОЦЕНКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ	20
8.2.1. ХАРАКТЕРИСТИКА ОБЪЕКТА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА	
Источник №0001, 0002 Печь подогрева ПП-0,63	
Источник №0003 Факел	
Источник №0004 Дизельгенератор	
ИСТОЧНИК №0005 ЦЕМЕНТИРОВОЧНЫЙ АГРЕГАТ ЦА-320	
ИСТОЧНИК №0006 РЕЗЕРВУР ДЛЯ НЕФТИ	
ИСТОЧНИК №000/ ТЕХНОЛОГИЧЕСКАЯ ЕМКОСТЬ	
ИСТОЧНИК №0006 ПОДОГРЕВАТЕЛЬ НЕФТИ НА АГ 33 ИСТОЧНИК №0009 ЕМКОСТЬ ДИЗЕЛЬНОГО ТОПЛИВА	
ИСТОЧНИК №0010 ЕМКОСТЬ ДИЗЕЛЬНОГО ГОПЛИВА	
Источник №0011 Емкость отработанного отработанного масла	
Источник №0011 Парагенераторная установка	
Источник №6001 Насос для перекачки диз.топлива	
Источник №6002-6016 Скважины	
Источник №6017 Выкидные линие	
Источник №6018-6019 Насос-технологический	
Источник №6020 АГЗУ	
Источник №6021 Трехфазный сепаратор	
Источник №6022 Блок манифольд	
ИСТОЧНИК №6023 ГАЗОВЫЙ СКРУББЕР	
ИСТОЧНИК №6024 ГАЗОВЫЙ СЕПАРАТОР	
8.2.5. ВОЗМОЖНЫЕ ЗАЛПОВЫЕ И АВАРИЙНЫЕ ВЫБРОСЫ	
8.2.6. Предложения по установлению ориентировочных нормативов допустимых	
(НДВ)	
8.2.7. РАСЧЕТ РАССЕИВАНИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	
8.2.8. АНАЛИЗ РЕЗУЛЬТАТОВ РАСЧЕТА УРОВНЯ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ	
8.2.9. Уточнение размера санитарно-защитной зоны (области воздействия)	
8.2.10. ПРЕДЛОЖЕНИЯ ПО ОРГАНИЗАЦИИ МОНИТОРИНГА И КОНТРОЛЯ ЗА СОСТОЯНИЕМ АТМО	
воздуха	
8.2.11. Оценка воздействия на атмосферный воздух	
8.2.12. МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА	
8.3. Описание возможных существенных воздействий. Оценка воздействия на состояние в	
8.3.1. ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ВОЗДЕЙСТВИЯ НА ПОДЗЕМНЫЕ ВОДЫ ПРИ ПРОИЗВОДСТВЕ РАБОТ	
8.3.2. Оценка воздействия намечаемой деятельности на водные объекты, анализ вел	
ИХ ЗАГРЯЗНЕНИЯ И ПОСЛЕДСТВИЙ ВОЗМОЖНОГО ИСТОЩЕНИЯ ВОД	
8.3.4. Предложения по организации экологического мониторинга подземных вод	
8.3.5. Водопотребление и водоотведение	
8.4. Ожидаемое воздействие на геологическую среду	
8.4.1. Обоснование природоохранных мероприятий по сохранению недр	
8.5. Описание возможных существенных воздействий на земельные ресурсы и почвы	96
8.5.1. ХАРАКТЕРИСТИКА ПОЧВЕННОГО ПОКРОВА	
8.5.2. ОПИСАНИЕ ВОЗМОЖНЫХ СУЩЕСТВЕННЫХ ВОЗДЕЙСТВИЙ НА ЛАНДШАФТЫ	
8.5.3. Оценка воздействия на почвы	
8.5.4. МЕРОПРИЯТИЯ ПО ОХРАНЕ И РАЦИОНАЛЬНОМУ ИСПОЛЬЗОВАНИЮ ЗЕМЕЛЬНЫХ РЕСУРСОВ	
8.5.5. ОРГАНИЗАЦИЯ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ПОЧВ	
8.6. Описание возможных существенных воздействий на животный мир	101

8.7. Описание возможных существенных воздействий. Оценка воздействие вибрации, шумовых
ЭЛЕКТРОМАГНИТНЫХ, ТЕПЛОВЫХ И РАДИАЦИОННЫХ ВОЗДЕЙСТВИЙ
9. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ,
КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В
РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ107
9.1 ХАРАКТЕРИСТИКА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ПРЕДПРИЯТИЯ КАК ИСТОЧНИКОВ ОБРАЗОВАНИЯ ОТХОДОВ
107
9.1.1. РАСЧЕТ ОБРАЗОВАНИЯ ОТХОДОВ ПРИ РЕАЛИЗАЦИИ ПРОЕКТНЫХ РЕШЕНИЙ110
9.2. ПРОГРАММА УПРАВЛЕНИЯ ОТХОДАМИ
9.3. ОСОБЕННОСТИ ЗАГРЯЗНЕНИЯ ТЕРРИТОРИИ ОТХОДАМИ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ215
9.4. РЕКОМЕНДАЦИИ ПО ОБЕЗВРЕЖИВАНИЮ, УТИЛИЗАЦИИ И ЗАХОРОНЕНИЮ ВСЕХ ВИДОВ ОТХОДОВ
10. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ
ПРИРОДНЫХ ЯВЛЕНИЙ, ХАРАКТЕРНЫХ СООТВЕТСТВЕННО ДЛЯ НАМЕЧАЕМОЙ
ДЕЯТЕЛЬНОСТИ И ПРЕДПОЛАГАЕМОГО МЕСТА ЕЕ ОСУЩЕСТВЛЕНИЯ, ОПИСАНИЕ
возможных существенных вредных воздействий на окружающую среду.
СВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, С
учетом возможности проведения мероприятий по их предотвращению и
ЛИКВИДАЦИИ
10.1. Оценка риска возможных аварийных ситуаций и меры их предотвращения
10.2. Виды аварийных ситуаций, их причины и меры их предупреждения
10.3. Вероятность возникновения стихийных бедствий в предполагаемом месте осуществления
намечаемой деятельности и вокруг него
намечаемой деятельности и вокруг него
инцидентов, природных стихийных бедствий в предполагаемом месте осуществления
инцидентов, природных стихииных бедствии в предполагаемом месте осуществления НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ И ВОКРУГ НЕГО
10.5. Все возможные неблагоприятные последствия для окружающей среды, которые могут
возникнуть в результате инцидента, аварии, стихийного природного явления
10.6. Меры по предотвращению последствий инцидентов, аварий, природных стихийных бедствий
ВКЛЮЧАЯ ОПОВЕЩЕНИЕ НАСЕЛЕНИЯ, И ОЦЕНКА ИХ НАДЕЖНОСТИ
11. СОСТОЯНИЕ СОЦИАЛЬНОЙ СФЕРЫ И ЭКОНОМИКА РЕГИОНА224
11.1 Социально-экономические условия
11.2 СОЦИАЛЬНО-ДЕМОГРАФИЧЕСКИЕ ПОЛОЖЕНИЕ РЕГИОНА
11.3 САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКАЯ ОБСТАНОВКА РЕГИОНА
12. КОМПЛЕКСНАЯ ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ ПРОЕКТИРУЕМЫХ
РАБОТ
12.1. Оценка воздействия на окружающую среду при нормальном (без аварий) режиме реализации
ПРОЕКТНЫХ РЕШЕНИЙ
12.2. ОЦЕНКА ВОЗДЕЙСТВИЯ ОБЪЕКТА НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СРЕДУ232
13. ОЦЕНКА ВОЗМОЖНЫХ НЕОБРАТИМЫХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ И
ОБОСНОВАНИЕ НЕОБХОДИМОСТИ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛЕКУЩИХ ТАКИЕ
ВОЗДЕЙСТВИЯ, В ТОМ ЧИСЛЕ СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОТЕРЬ ОТ НЕОБРАТИМЫХ
ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЩИХ ЭТИ ПОТЕРИ, В
ЭКОЛОГИЧЕСКОМ, КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИАЛЬНОМ КОНТЕКСТАХ 234
14. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ
К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ
УПОЛНОМОЧЕННОМУ ОРГАНУ236
14. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ
СОСТАВЛЕНИИ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ237
ПРИЛОЖЕНИЕ 1. РАСЧЕТЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ ЭКСПЛУАТАЦИИ
месторождения жанбыршы238
ПРИЛОЖЕНИЕ 3. ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ НА ПРИРОДООХРАННОЕ

ВВЕДЕНИЕ

Отчет о возможных воздействиях выполнен к Проекту разработки месторождения Жанбыршы (по состоянию на 01.07.2023г.) представляет собой процесс выявления, изучения, описания и оценки возможных прямых и косвенных существенных воздействий реализации намечаемой деятельности на окружающую среду.

Отчет о возможных воздействиях на окружающую среду содержит описание намечаемой деятельности, включая: информацию об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных негативных антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности, включая воздействие на воды, атмосферный воздух, почвы, недра; информацию об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности; описание возможного воздействия на окружающую среду; описание предусматриваемых для периодов строительства и эксплуатации объекта мер по предотвращению, сокращению, смягчению выявленных существенных воздействий намечаемой деятельности на окружающую среду, в том числе предлагаемых мероприятий.

Экологическая оценка — процесс выявления, изучения, описания и оценки возможных прямых и косвенных существенных воздействий реализации намечаемой и осуществляемой деятельности или разрабатываемого документа на окружающую среду. Видами экологической оценки являются стратегическая экологическая оценка, оценка воздействия на окружающую среду, оценка трансграничных воздействий и экологическая оценка по упрощенному порядку.

Оценка воздействия на окружающую среду — процесс выявления, изучения, описания и оценки на основе соответствующих исследований возможных существенных воздействий на окружающую среду при реализации намечаемой деятельности, включающий в себя стадии, предусмотренные статьей 67 Экологического Кодекса Республики Казахстан.

Оценка воздействия на окружающую среду включает в себя следующие стадии:

- 1) рассмотрение заявления о намечаемой деятельности в целях определения его соответствия требованиям ЭК, а также в случаях, предусмотренных ЭК, проведения скрининга воздействий намечаемой деятельности;
 - 2) определение сферы охвата оценки воздействия на окружающую среду;
 - 3) подготовку отчета о возможных воздействиях;
 - 4) оценку качества отчета о возможных воздействиях;
- 5) вынесение заключения по результатам оценки воздействия на окружающую среду и его учет;
- 6) послепроектный анализ фактических воздействий при реализации намечаемой деятельности, если необходимость его проведения определена в соответствии с ЭК.

Для организации оценки возможных существенных воздействий намечаемой деятельности на окружающую среду:

- 1) инициатор намечаемой деятельности представляет проект отчета о возможных воздействиях в уполномоченный орган в области охраны окружающей среды в соответствии с пунктами 6-8 статьи 72 ЭК;
- 2) инициатор намечаемой деятельности распространяет объявление о проведении общественных слушаний в соответствии с пунктом 4 статьи 73 ЭК;
- 3) уполномоченный орган в области охраны окружающей среды в случае, предусмотренном пунктом 19 статьи 73 ЭК, создает экспертную комиссию;
- 4) уполномоченный орган в области охраны окружающей среды выносит заключение по результатам оценки воздействия на окружающую среду в соответствии со статьей 76 ЭК;
- 5) инициатор намечаемой деятельности организует проведение послепроектного анализа в соответствии со статьей 78 ЭК.

На этапе оценки воздействия на окружающую среду приведена обобщенная характеристика природной среды в районе намечаемой деятельности, рассмотрены основные

направления хозяйственного использования территории и определены принципиальные позиции по оценке воздействия на окружающую среду. Также даны рекомендации по минимизации воздействия на компоненты природной среды. Предложены мероприятия по снижению экологического риска.

Для разработки Отчета о возможных воздействиях были использованы исходные материалы:

- Проект разработки месторождения Жанбыршы (по состоянию на 01.07.2023г.)
- Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействия намечаемой деятельности KZ28VWF00199377 от 05.08.2024 года.

Разработчиком «Отчета о возможных воздействиях к - Проекту разработки месторождения Жанбыршы (по состоянию на 01.07.2023г.) является ТОО «КазНИГРИ», имеющий государственную лицензию № 23002295 от 25.01.2023г.

Разработчиком «Проект разработки месторождения Жанбыршы (по состоянию на 01.07.2023г.)» выполнен по договору № 23-024 от 26.06.2023 г. между ТОО «ТузкольМунайГаз Оперейтинг» (далее — недропользователь) и ТОО «КазНИГРИ», согласно Технического задания, Кодекса Республики Казахстан № 125-VI от «27» декабря 2017 г. «О недрах и недропользовании», «Единых правил по комплексному и рациональному использованию недр», «Методических рекомендаций по составлению проектов пробной эксплуатации нефтяных, газонефтяных и нефтегазовых залежей (совокупности залежей)».

Недропользователем месторождения Жанбыршы являются ТОО «Кольжан» и ТОО «SSM-Ойл» согласно Контракту №1057 от 11.12.2002г. на разведку и добычу углеводородного сырья. В рамках Дополнения №21 от 04.04.2023г (Государственный регистрационный № 5203-УВС) к Контракту закреплен подготовительный период на 3 года со сроком до 04.04.2026г.

В качестве представителя недропользователей ТОО "Кольжан" и ТОО "SSM-Ойл" при проведении операций по недропользованию с 06.12.2018г является компания ТОО «ТузкольМунайГаз Оперейтинг».

В административном отношении месторождение Жанбыршы относится к Сырдарьинскому району Кызылординской области Республики Казахстан.

1. ОПИСАНИЕ ПРЕДПОЛАГАЕМОГО МЕСТА ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

1.1. Общие сведения о месторождении

В административном отношении месторождение Жанбыршы расположено в Сырдарьинском районе Кызылординской области Республики Казахстан.

В географическом отношении структура занимает южную часть Тургайской впадины (рис. 1.1).

Площадь горного отвода составляет 78,13 км2, глубина – минус 750 м.

Ближайшими населенными пунктами являются г. Кызылорда (к югу 110 км), станция Теренозек (к юго-западу 100км) и нефтепромысел Кумколь (к северу 80 км).

Район представляет собой полупустынную равнину Центрального Казахстана с типичными растительностью и животным миром. Рельеф на юге и севере площади представляет собой равнину, ее поверхностная высота снижается к центру блока разведки. Пустыня проходит через центр от запада к востоку и в большинстве мест имеются маленькие песчаные дюны. Солончак в северо-западной части блока разведки негативно воздействует на производственную деятельность. Абсолютные высоты находятся выше уровня моря и изменяются в пределах от 100 м до 170 м от севера к югу.

Гидросеть и поверхностные источники водоснабжения отсутствуют. Источниками водоснабжения являются артезианские скважины, имеющие дебит от 5 до 15 л/сек, с минерализацией воды до 4 г/л.

Климат района резкоконтинентальный, сухой. Среднегодовое количество осадков выпадает в зимне-весенний период. Температура воздуха зимой в среднем — минус 15оС (до минус 40оС), летом — плюс 27оС (до плюс 45оС). Для района характерны сильные ветры, летом - западные, юго-западные, в остальное время года — северные и северовосточные.

Дорожная сеть представлена грунтовыми дорогами. Они труднопроходимы в зимний период из-за снежных заносов и непроходимы в период весенней распутицы.

На юго-западном направлении от месторождения имеется выход на экспортный маршрут по железной дороге через ст. Жосалы, где установлены два независимых нефтеналивных терминала, один из которых принадлежит компании "CNPC".

Нефтепровод «Кумколь-Каракоин-Шымкент» проходит в 80 км к северо-востоку. Южно-Торгайскую группу месторождений с железнодорожным терминалом на станции Жосалы соединяет также нефтепровод «Кызылкия-Арыскум-Майбулак», протяженностью 177 км. Выход на экспортный маршрут (в Китай) возможен по нефтепроводу «Кумколь-Атасу-Алашанькоу» с пунктом приема и подготовки нефти на нефтепромысле Кумколь.

Источники электроснабжения отсутствуют. Электричество обеспечивается автономными электростанциями, работающими на дизельном топливе, они же являются источниками теплоснабжения. Линии телефонной связи отсутствуют.

В административном отношении месторождение Жанбыршы расположено в Сырдарьинском районе Кызылординской области Республики Казахстан.

В географическом отношении структура занимает южную часть Тургайской впадины (рис. 1.1).

Площадь горного отвода составляет 78,13 км2, глубина – минус 750 м.

Ближайшими населенными пунктами являются г. Кызылорда (к югу 110 км), станция Теренозек (к юго-западу 100км) и нефтепромысел Кумколь (к северу 80 км).

Район представляет собой полупустынную равнину Центрального Казахстана с

типичными растительностью и животным миром. Рельеф на юге и севере площади представляет собой равнину, ее поверхностная высота снижается к центру блока разведки. Пустыня проходит через центр от запада к востоку и в большинстве мест имеются маленькие песчаные дюны. Солончак в северо-западной части блока разведки негативно воздействует на производственную деятельность. Абсолютные высоты находятся выше уровня моря и изменяются в пределах от 100 м до 170 м от севера к югу.

Гидросеть и поверхностные источники водоснабжения отсутствуют. Источниками водоснабжения являются артезианские скважины, имеющие дебит от 5 до 15 л/сек, с минерализацией воды до 4 г/л.

Климат района резкоконтинентальный, сухой. Среднегодовое количество осадков выпадает в зимне-весенний период. Температура воздуха зимой в среднем — минус 15оС (до минус 40оС), летом — плюс 27оС (до плюс 45оС). Для района характерны сильные ветры, летом - западные, юго-западные, в остальное время года — северные и северовосточные.

Дорожная сеть представлена грунтовыми дорогами. Они труднопроходимы в зимний период из-за снежных заносов и непроходимы в период весенней распутицы.

На юго-западном направлении от месторождения имеется выход на экспортный маршрут по железной дороге через ст. Жосалы, где установлены два независимых нефтеналивных терминала, один из которых принадлежит компании "CNPC".

Нефтепровод «Кумколь-Каракоин-Шымкент» проходит в 80 км к северо-востоку. Южно-Торгайскую группу месторождений с железнодорожным терминалом на станции Жосалы соединяет также нефтепровод «Кызылкия-Арыскум-Майбулак», протяженностью 177 км. Выход на экспортный маршрут (в Китай) возможен по нефтепроводу «Кумколь-Атасу-Алашанькоу» с пунктом приема и подготовки нефти на нефтепромысле Кумколь.

Источники электроснабжения отсутствуют. Электричество обеспечивается автономными электростанциями, работающими на дизельном топливе, они же являются источниками теплоснабжения. Линии телефонной связи отсутствуют.

Рис. 1.1 - Обзорная карта

1.2. Особо охраняемые природные территории

Барсакельмесский заповедник - единственный в Казахстане и один из нескольких в СНГ заповедников с экстремальными экологическими условиями, находящийся в зоне экологической катастрофы глобального масштаба (снижение уровня Аральского моря).

Это уникальная «природная лаборатория» для изучения процессов аридизации климата, опустынивания природных комплексов, перестройки состава и структуры экосистем, арена видообразования, формирования рельефа, ландшафтов, биоразнообразия. Все это имеет важное значение для понимания процессов эволюции и адаптации биоты к катастрофически изменяющимся факторам природной среды.

Территория получила статус заповедника в 1939 году и была взята под государственную охрану. Здесь произрастает 278 видов растений, среди которых преобладает полынь, лебеда Пратова, жузгуны и тюльпаны Борщова. Обитают редкие, занесенные в Красную книгу виды животных: кудрявый пеликан, белоглазый нырок, мраморный чирок, малая белая цапля, лебедь-кликун, малый лебедь, савка, змееяд, степной орёл, могильник, беркут, джек, кречетка, чернобрюхий рябок, белобрюхий рябок, саджа, бурый голубь, филин. Млекопитающие представлены джейраном, туркменским куланом, сайгаком, редкими карликовыми тушканчикам, ушастыми ежами и прочими. Заповедник имеет важное научное значение и является природной лабораторией, которая имеет значение для понимания процессов эволюции и адаптации биоты к катастрофически изменяющимся факторам природной среды.

Каргалинский заказник (каз.Қарғалы қорықшасы) - государственный природный зоологический заказник для охраны редких животных в Казахстане. Создан в 1970 году. Занимает площадь 13,2 га на территории Шиелийского и Жанакорганского районов Кызылординской области. Расположен вдоль реки Сырдарья (ширина полосы 7 км, длина 20 км). В пойме - густые заросли лоха, чингиля и тальника (около 15% площади заказника), луговые сенокосные участки (ок. 12%), пастбища (52%). Вне поймы — заросли тамариска. Водятся кабан, барсук, заяц-толай, лисица, реже - волк, сайгак, гусь, утка, лысуха. Один из основных объектов охраны - сырдарьинский фазан. Территория заказника круглогодично используется для выпаса крупного рогатого скота, зимой - овец, лошадей и верблюдов.

Памятники истории и культуры.

Кызылординская область является историческим центром Великого Шелкового пути, который сыграл большую роль в развитии края, об этом свидетельствуют памятники истории и культуры казахского народа. По области под охраной государства находятся 496 памятников истории и культуры, из них 21 республиканского, 274 местного значения.

Среди памятников Великого Шелкового пути выделяются исторические места городов Сауран и Сыганак, археологические памятники и мавзолеи СунакАта, Айкожаишан, мавзолей Карасопы, ОкшыАта, Досбол би, Есабыз, мечеть Актас, мемориальный комплекс КоркытАта. Джетыасар — группа городищ конца I тыс. до н.э — VIII в н.э., расположенных в северной части древней дельты Сырдарьи. Основная часть городищ расположены в полосе 45 — 90 км южнее современных города Байконыр и посёлка Жусалы. Наиболее значительны крепости: Алтынасар, Курайлыасар, Караасар, Базарасар, Томпакасар, Жалпакасар. Высота городищ над окружающей равниной от двух до десяти метров. Все городища Джетыасарской культуры находятся в русле рек, хорошо укреплены, в их основе лежат одна или несколько двух-трёхэтажных крепостей, по всей видимости выполнявших роль общинных домов.

Население занималась ирригационным земледелием, скотоводством и рыболовством, через район городищ проходил важный караванный путь от Тянь-Шаня к устью Волги. Наибольшее количество памятников прошлого (городищ, курганов, сторожевых башен, погребально-культовых комплексов) сохранилось в левобережной части Сырдарьинского региона. Именно здесь находятся памятники, сохранившие устойчивые традиции

национального зодчества в сооружениях, так называемой степной «сырцовой» архитектуры, с особенностями, характерными для сырдарьинского региона.

Памятники Сырдарьи представляют большой научный интерес и характеризуют культуру, которая интегрировала в себе достижения Согда, Хорезма, тюркский культурный комплекс и традиции земледельческо-скотоводческой культуры. Они являются научной базой для исследования истоков самобытной культуры казахстанского народа.

На территории проектируемых работ, в настоящее время памятников материальной культуры, являющимися объектами охраны, не зарегистрировано.

1.2. Описание состояния окружающей среды на предполагаемой затрагиваемой территории на момент составления отчета (базовый сценарий)

1.2.1. Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

По ботанико-географическому районированию территория относится к Азиатской пустынной области, Ирано-туранской подобласти, Северотуранской провинции, полосе преобладанием многолетнесолянковой настоящих (средних) пустынь полукустарничковой растительностью. Пустынные черты растительности проявляются в абсолютном преобладании ксерофитных полукустарничков и кустарничков. Флора рассматриваемой территории ориентировочно включает около 180 видов высших растений представлена жизненными формами кустарников, полукустарников полукустарничков, травянистых однолетников и многолетников, эфемеров и эфемероидов. Анализ флористического состава показывает, что преобладающими семействами на данной территории следует считать Chenopodiaceae, Acteraceae, Brassicaceae, Poaceae, Fabaceae. На их долю приходится более 2/3 всего видового состава. В местах дополнительного увлажнения встречаются фрагменты луговой растительности, представленной видами семейств Poaceae, Fabaceae.

Территория характеризуется широким набором экологических условий, обусловленных различиями мезо- и микрорельефа, засоленности почвообразующих пород, условий увлажнения.

Существенной чертой растительного покрова территории является комплексность, которая развивается под влиянием ряда факторов: микрорельефа, различий в засоленности почвообразующих пород, условий увлажнения и жизнедеятельности самих растений.

Ландшафтное значение в структуре растительного покрова территории имеют виды родов полыней (Artemisia), солянок (Salsola), ежовника (Anabasis), тасбиюргуна (Nanophyton). На незасоленных или слабозасоленных почвах хорошо представлена синузия эфемеров и эфемероидов.

Наибольшее распространение в районе получили боялычники (Salsola arbusculiformis), образующие как монодоминантные сообщества, так и сообщества с полынями (Artemisia turanica, A. terrae-albae), кейреуком (Salsola orientalis) на серо-бурых нормальных и малоразвитых почвах, биюргуном (Anabasis salsa) на солонцах и псаммофитными видами на песках.

Формация биюргуна (Anabasis salsa) так же обладает широкой экологической амплитудой и распространена повсеместно по склонам чинков и делювиально-пролювиальным равнинам на солонцах пустынных, солончаках, серо-бурых эродированных и такыровидных почвах. По водораздельным поверхностям биюргунники имеют подчиненное значение и приурочены к пониженным формам рельефа на солонцах пустынных.

Полынники на территории представлены широко. Сообщества, образованные полынью туранской (Artemisia turanica) доминируют главным образом на аридноденудационных плато и водораздельных поверхностях и, несколько меньше, делювиально-

пролювиальных равнинах с серо-бурыми суглинистыми солонцеватыми почвами. Сообщества полыни белоземельной (Artemisia terrae-albae) имеют наибольшее распространение на серо-бурых легкосуглинистых и супесчаных почвах. К солонцам и серо-бурым эродированным почвам приурочена полынь черная (Artemisia pauciflora), которая обычно выступает в качестве субэдификатора в биюргуновых и кокпековых сообществах.

Кейреуковые (Salsola orientalis) и терескеновые (Ceratoides papposa) сообщества в районе исследования самостоятельных контуров практически не образуют и обычно являются субэдификаторами в полынных, кустарниковых сообществах на серо-бурых легкосуглинистых и малоразвитых почвах.

Структурно-денудационные плато обрываются чинками и переходит в делювиально-пролювиальные равнины с интенсивных эрозионным расчленением, являющиеся зоной накопления солей. Растительность делювиально-пролювиальных равнин сложена разреженными биюргуновыми (Anabasis salsa, A. truncata), тасбиюргуновыми (Hanophyton erinaceum), кокпековыми (Atriplex cana), сарсазановыми (Halocnemum strobilaceum) сообществами на солончаках, солонцах и серо-бурых эродированных почвах, местами щебнистых. В составе сообществ незначительно присутствуют солянки (Climacoptera lanata, Bassia hyssopifolia, Petrosimonia brachiata, Suaeda physophora) и эфемеры (Lepidium perfoliatum, Eremopyrum orientale). Значительные площади представлены пустошами.

Наклонные пролювиальные равнины занимают более приподнятые плоские территории, местами осложнены такырами и небольшими возвышенностями, и по сути являются водораздельными поверхностями второго уровня. Растительный покров достаточно полынно-боялычовыми, представлен полынно-черносаксауловыми, кейреуково-полынными сообществами с проективным покрытием 50-55% и хорошим жизненным состоянием на серо-бурых суглинистых, местами легкосуглинистых почвах. Полыни сложены белоземельной (Artemisia terrae-albae), туранской (A. turanica). Из ксерофитных многолетних солянок преобладают кейреук (Salsola orientalis), боялыч (Salsola arbusculiformis), кое-где изень (Kochia prostrata), терескен (Ceratoides papposa). сообществах характерно значительное присутствие эфемероидов и эфемеров (Ferula ferulaeoides, Rheum tataricum, Poa bulbosa, Carex pachystylis, Lepidium perfoliatum, Asparagus bresleranus, Eremopyron orientale). Распространение эфемерово-биюргуновых сообществ на солонцах пустынных незначительно. По небольшим понижениям среди слабо волнистой равнины встречаются пятна зарослей караганы (Caragana grandiflora) с участием полыни белоземельной и ковыля (Stipa sareptana). Для данной части района характерно большое наличие такыров с разреженными группировками солянок (Salsola foliosa), ежовника усеченного (Anabasis truncata).

Солончаковые понижения, делювиально-пролювиальные равнины с выходами третичных глин, равнины низкого гипсометрического уровня характеризуются значительной аккумуляцией солей, преобладанием рыхлых почв солончакового ряда. Растительный покров крайне разрежен (проективное покрытие не превышает 10 - 20%) и сложен сообществами, образованными галоксерофитными полукустарничками (Atriplex cana, р. Anabasis), многолетними (Halocnemum strobilaceum, Kalidium caspicum, K. foliatum) и однолетними сочными солянками (виды родов Salsola, Suaeda, Petrosimonia, Climacoptera).

Луговый тип растительности формируется в условиях дополнительного увлажнения и представлен фрагментарно в местах выклинивания грунтовых вод по водотокам чинков и хорошо выраженным руслам временных водотоков. Растительных покров сложен злаковыми (Aeluropus litoralis, Achnatherum splendens, Phragmites australis) с участием кустарников сообществами.

В хозяйственном отношении выше перечисленные сообщества представляет собой пастбищные угодья.

Полынные, боялычовые пастбища являются выпасами весенне-летне-осеннего использования. Средняя производственная урожайность полынных пастбищ составляет 1,7 - 2,4 ц/га, боялычовых - 2,0 - 3,0 ц/га. Биюргуновые, кокпековые, солянковые пастбища

используются для осенне-зимнего выпаса верблюдов и овец. Урожайность пастбищ колеблется от 1,0 до 2,5 ц/га.

Ксерофитнополукустарниковые сообщества водораздельных поверхностей (структурно-денудационных плато).

Комплекс эфемерово-боялычовых (Salsola arbusculiformis, Ferula ferulaeoides, Rheum tataricum, Dodartia orientalis, Trigonella arcuata), боялычово-полынных (Artemisia terrae-albae,

A. turanica, Salsola arbusculiformis, Anabasis aphylla), кейреуковобелоземельнополынных с караганой сообществ на серобурых легкосуглинистых, местами защебненных почвах и эфемерово-ежовниковых с тасбиюргуном (Anabasis salsa, A.brachiata, Taucheria lasiocarpa, Leptaleum filifolium, Nanophyton erinaceum) сообществ на солонцах пустынных щебнистых по плоскому плато.

Ксерофитнополукустарниковые и галофитнополукустарничковые сообщества приводораздельных склонов (чинки) плато

Серия сообществ: боялычовых (Anabasis brachiata, Anabasis salsa, Salsola arbusculiformis) полынно-кейреуковых с ломкоколосником (Salsola orientalis, Artemisia terrae-albae, A. turanica) по верхним частям склона на серо-бурых малоразвитых почвах, местами с выходами песчаников; разреженных группировок биюргуна (Anabasis salsa), ежовников (Anabasis salsa, A. turanica) и однолетних солянок на серо-бурых эродированных почвах и солончаках остаточных с выходами палеогеновых глин по средним и нижним частям расчлененных крутых склонов.

Галоксерофитнополукустарничковые, ксерофитнополукустарничковые сообщества пологих склонов и делювиально-пролювиальных равнин.

Комплекс разреженных солянково-биюргуновых, кокпековых (Atriplex cana), тасбиюргуновых, биюргуново-полынных с боялычом (Artemisia pauciflora, A. turanica, Anabasis salsa) сообществ на солонцах пустынных солончаковых и серо-бурых солончаковых почвах с выходами третичных глин по сильно эродированному склону в сочетании с кустарниково-полукустарничковыми (Artemisia aralensis, A. schrenkiana Aeluropus litoralis, Atraphaxis spinoza, Caragana balchaschensis, Hulthemia persica) сообществами по многочисленным сухим руслам.

Комплекс эфемерово-биюргуновых на солонцах солончаковых с участием ферулево-белоземельнополынных с боялычом (Artemisia terrae-albae, Ferula ferulaeoides), белоземельнополынно-саксауловых сообществ на серо-бурых легкосуглинистых почвах по слабонаклонному склону. Комплекс солянково-биюргуновых (Anabasis salsa, Climacoptera brachiata, Girgensohnia oppositiflora, Limonium, Eremopyrum orientale, Lepidium perfoliatum), полынно-кокпековых (Atriplex cana, Artemisia pauciflora, A. turanica) на солонцах пустынных солончаковых, полынных с боялычом (Artemisia terrae-albae, A. turanica, Anabasis aphylla, Salsola arbusculiformis) сообществ на серо-бурых суглинистых солонцеватых почвах по наклонной равнине.

Ксерофитнополукустарниковые, полукустарничковые сообщества наклонных водораздельных равнин второго уровня

Эфемерово-изенево-полынные (Artemisia terrae-albae, A. turanica, Kochia prostrate, Poa bulbosa, Rheum tataricum, Colpodium humilis), кейреуково-белоземельнополынные с боялычом или курчавкой (Artemisia terrae-albae, Salsola orientalis, Salsola arbusculiformis, Atraphaxis spinoza) сообществ на серо-бурых легкосуглинистых, солонцеватых почвах в сочетании с ковыльнобелоземельнополынно-карагановыми (Caragana grandiflora, Artemisia terrae-albae, Stipa sareptana) сообществами по редким западинам.

Комплекс полынно-боялычовых (Salsola arbusculiformis, Artemisia terrae-albae, A. turanica), эфемерово-изенево-полынных (Artemisia terrae-albae, A. turanica Kochia prostrate Poa bulbosa, Rheum tataricum) сообществ на серо-бурых суглинистых солонцеватых почвах и солянково-биюргуновых (Anabasis salsa, Climacoptera brachiata, Ceratocarpus urticulosus, Eremopyron orientale) сообществ на солонцах пустынных местами щебнистых в сочетании с такырами по слабонаклонной плоской равнине.

Редкие, эндемичные, реликтовые виды растений, занесенные в Красную книгу Казахстана

Анализ литературных источников не позволили выявить для территории редкие виды, занесенные в Красную Книгу Казахстана. Тем не менее, следует отметить наличие в данном регионе эндемиков.

Atriplex pungens Trautv. - лебеда колючая — Семейство Chenopodiaceae. Эндем Казахстана. В районе исследования обнаружен по оврагам приводораздельного склона (чинка).

Climacoptera kasakorum Botsch- климакоптера казахов - Семейство Chenopodiaceae. Эндем Казахстана. Вид приурочен к солончаковым почвам делювиально-пролювиальных равнин.

Petrosimonia hirsutissima (Bunge) Iljin – петросимония жестковолосистая- Семейство Chenopodiaceae. Эндем Казахстана. Может быть встречена по солончаковым понижениям.

Artemisia scopaeformis Ledeb. - полынь прутьевидная - Семейство Asteraceae. Эндем Казахстана. Может быть встречен по водотокам приводораздельных склонов (чинков) и вдоль хорошо выраженного русла реки Ащисай.

Artemisia aralensis Krasch. – полынь аральская - Семейство Asteraceae. Эндем Казахстана. Приурочен к временным водотокам приводораздельных склонов (чинков).

1.2.2. Общая характеристика почвенно-растительного покрова района на территории проектируемой скважины

Растительный покров здесь представлен комплексами полынных и многолетнесолянковых кокпековых пустынь, таких как чернобоялычевые, биюргуновые, тасбиюргуновые. По временным водотокам произрастает кустарниковая растительность – караганы, курчавки, тамариски.

На останцовых возвышенностях и каменистом плато преобладают комплексы туранскополынно-чернобоялычевых (Salsola arbusculaeformis + Artemisia turanica), биюргуновых (Anabasis salsa) и тасбиюргуновых (Nanophyton erinaceum) сообществ гипсоносных хрящевато-щебнистых почв.

По шлейфам плато на участках супесчаных и легко суглинистых почв встречаются комплексами биюргуновых, белоземельнополынных (Artemisia terrae-albae), кокпековых

(Atriplex сапа), белоземельнополынно-чернобоялычевых, итсегеково (Anabasis apnylla) – биюргуновых фитоценозов, при участии видов ферулы (Ferula ferulaeoides, F soongarica, F canescens).

Заросли *черного саксаула* (HaloxyIon aphyllum) с полынью белоземельной и кейреуком.

Доминирующей жизненной ландшафтной формой северных пустынь является ксерофитный полукустарник, как наиболее устойчивая форма в этих экстремальных условиях. На первом месте стоят полыни (виды рода Artemisia) и боялыч Salsola arbuscula в сочетании с биюргуном Anabasis salsa на серо-бурых почвах различной степени засоления, вплоть до солончаков.

Существенную роль в строении растительного покрова района играют полынники из Artemisia terrae-albae, также обильны многолетнесолянковые формации:

чернобоялычевые (Salsola arbusculiformis), биюргуновые (Anabasis salsa), кеурековые (Salsola orientalis), тасбиюргуновые (Nanophyton erinaceum), ежовниковые (Anabasis brachiata). На значительных пространствах распространены гемипетрофитные комплексы чернобоялычевых, белоземельнополынных и биюргуновых сообществ с доминированием то тех, то других. Господствуют многолетнесолянковые сообщества (около 62%).

На первом месте по распространенности находится полынная растительность в сочетании с солянковыми сообществами. Господствующими элементами, которой явились мезотермные и ксерофильные многолетние растения, представленные преимущественно полукустарничками.

Господствующие виды (эдификаторы, строители сообществ) полукустарничковых пустынь относятся к следующим родам: солянка (Salsola, исключительно многолетние виды), полынь (Artemisia), ежовник (Anabasis), саксаульник (Arthrophytum) и близкий к нему гамада (Hammada), лебеда (Atriplex), терескен (Eurotia), поташник (Kalidium), сарсазан (Halocnemum). Представители этих родов широко распространены в пределах пустынной области и создают сообщества, занимающие обширные пространства.

Заметно меньшее значение имеют сообщества, где эдификаторами выступают тасбиюргун (Nanophyton erinaceum), карабарак (Halostachys Belangeriana), полукустарниковые сведы (Suaeda), кермеки (Limonium suffruticosum), ромашник

(Pyrethrum achilleifolium), прутняк (Kochia prostrata), пижма (Tanacetum xylorrhizum) и некоторые другие.

На территории довольно широко представлены и эфемеры. Особенно богаты эфемерами сообщества на песках. Наиболее богато представлено семейство крестоцветных видов (Malcolmia, Lepidium, Euclidium, Tauscheria, Alyssum, Meniotis и др.), злаков (виды Eremopyrum, Bromus, Aegilops и др.), маковых (виды Papaver, Roemeria,

Glaucium, Hypecoum); имеются также представители многих других семейств (виды лютиковых, губоцветных, сложноцветных, бурачниковых, бобовых и др.).

Необходимо отметить, что в построении сообществ пустынь значительное участие принимают также споровые растения: мхи, лишайники, водоросли, грибы.

Из мхов наиболее известен карахарсанг (туркм.) - Tortula desertorum, обычно встречающийся под защитой кустов в различных сообществах, но в некоторых условиях образующий сплошное покрытие поверхности почвы.

Лишайники распространены гораздо более широко и представлены значительным числом видов. Их можно найти в небольших количествах на поверхности почвы в большинстве сообществ полукустарничковых пустынь. Некоторые виды поселяются на отмерших стволах и ветвях кустарников. Живущие на почве представлены двумя группами: прикрепленные к субстрату (виды Diploschistes, Acarospora, Psora, Collema и др.) и неприкрепленные, «кочующие» виды (Parmelia, Cetraria, Aspicilia и др.).

Растительный покров имеет сложную пространственную структуру, отличается значительной неоднородностью, пятнистостью или как это установлено называть, комплексностью. С явлением комплексности растительного покрова пустынь тесно связана и его мозаичность.

Почти все растения данного района имеют более или менее ярко выраженную ксероморфную структуру – мелкие и жесткие листья, часто сведенные колючками, опушение и другие признаки ксерофитов.

1.2.3. Общая характеристика животного мира района

Животный мир представлен типичными видами пустынной и полупустынной фауны. На контрактной территории встречаются широко распространенные пустынные виды, принадлежащие к монгольской и туранской фауне и южные пустынные – ирано- афганской и пустынной казахстанской фауне.

В пустыне много хищных (лисица-корсак, волк и др.) и копытных (сайгак) животных, а также грызунов, птиц (рябки и др.) в дельте Сырдарьи акклиматизирована ондатра.

Особую ценность эта территория имеет для бетбакдалинской группировки сайги. Здесь пролегают ее основные миграционные пути, располагаются места зимовок и летовок.

Пресмыкающие. Пресмыкающиеся играют заметную роль в биогеоценозах региона и характеризуются высокой степенью зависимости от окружающей среды. Некоторые виды могут служить индикаторами состояния среды и использоваться для мониторинга при освоении нефтегазового месторождения.

Из 49 видов пресмыкающихся, встречающихся на территории Казахстана, в Арыскумском плато обитает 22 вида: сухопутные черепахи – 1 вид, гекконовые – 4 вида,

агамовые -4 видов, ящерицы -5 видов, удавы -2 вид, ужи -4 вида, гадюки -1 вид, ямкоголовые -1 вид.

Земноводные. На территории Приаралья распространен лишь один вид амфибий – зеленая жаба.

Она имеет очень широкий диапазон приспособляемости, что позволяет ей переносить высокую сухость воздуха, а также использовать для икрометания временные водоемы, расположенные на значительном удалении от постоянных источников воды.

При дефиците воды использует лужи, образованные от таяния снега или прошедших дождей. Ведет преимущественно сумеречный и ночной образ жизни. Она активна 7 месяцев в году. В дневное время в качестве пастбищ использует покинутые норы грызунов или зарывается в мягкий грунт. Повсеместно является одним из полезнейших животных.

Птицы. Орнитофауна рассматриваемого района и сопредельных территорий насчитывает более 160 видов. Из них гнездящихся 47 видов, зимующих 18 видов и встречающихся на пролете 97 видов. Основная масса птиц встречается на пролете. Среди них имеются редкие и исчезающие птицы, внесенные в Красную книгу Казахстана.

Фоновыми видами птиц в данном районе являются малые жаворонки, пустынные славка и каменка, зеленые и золотистые щурки, в целом составляющие более половины населения птиц.

Из числа гнездящихся птиц в районе достаточно обычны, а местами многочисленны, зерноядно-насекомоядные виды жаворонков: малый, хохлатый, степной и двупятнистый. Эти виды обитают как в песчаных биотопах, так на глинистых участках, почти лишенных растительности.

Из насекомоядных птиц на глинистых участках обычны каменки (пустынная и плясунья), гнездящиеся преимущественно в покинутых норах грызунов и полевой конек.

Из дендрофильных видов, связанных с кустарниковой и древесной растительностью, характерны два вида славок (пустынная и славка-завирушка), а также тугайный соловей.

Из журавлеобразных в районе изредка гнездятся журавль-красавка и джек. Из хищных дневных птиц отмечено гнездование курганника и степного орла. Там где высока численность зайцев, гнездится могильник. Кроме того, в этом районе гнездятся мелкие соколиные – обыкновенная пустельга и луговой лунь. Обычными, рассматриваемом районе являются многочисленными видами, В представители ракшеобразных: зеленая и золотистая щурки, удод.

С постоянными и временными поселениями человека связаны полевой и домовой воробьи. Среди хищных ночных птиц здесь зарегистрирован филин, но более многочислен и характерен для этого района домовый сыч.

Млекопитающие. Современный состав териофауны района включает в себя 35 вида животных. Из них 3 вида относятся к отряду насекомоядных, $4 - \kappa$ рукокрылым, $7 - \kappa$ хищным, $1 - \kappa$ парнокопытным, $19 - \kappa$ грызунам, $1 - \kappa$ зайцеобразным.

Наиболее характерной чертой фауны млекопитающих рассматриваемого района является присутствие в ней большого количества типичных пустынных и полупустынных видов, обитающих как на песчаных территориях, так и на участках глинистой пустыни.

Из млекопитающих наиболее заметную роль в исследуемом районе играют ценные промысловые звери (сайгак, лисица, зайц, корсак и волк), а также животные являющиеся переносчиками инфекционных болезней (песчанки и другие виды тушканчиков).

При эксплуатации местрождений необходимо уделить особое внимание одному из наиболее обособленных представителей семейства полорогих сайгаку.

В Казахстанской части ареала сайгака в настоящее время выделяют три очага обитания животных. Обитающие вблизи рассматриваемой территории сайгаки относятся к бетпакдалинской популяции.

Районы сезонных скоплений и основные миграционные пути сайгаков привязаны к равнинам и впадинам с мягкими, оглаженными формами рельефа.

Эти животные ежегодно совершают весенние и осенние миграции между районами зимовок и летовок.

Вызваны они необходимостью смены пастбищ и влиянием глубокого снежного покрова. Бетпакдалинская популяция сайгаков мигрирует с мест зимовок в двух направлениях: северном и северо-западном.

Редкие, исчезающие и особо охраняемые виды

Пресмыкающиеся

- Краснополосый полоз Coluber rhodorhachis;
- Четырехполосый полоз Elaphe quatuorlineata.

Птицы

Встречи редких и находящихся под угрозой исчезновения видов птиц, включенных в Красную книгу Казахстана, наиболее вероятны в периоды сезонных миграций – весной и осенью.

- Дрофа Otis tarda;
- Cтрепет Otis tetrax;
- Скопа Pandion haliaetus;
- Степной орел Aquila rapax;
- Змееяд Circaetus gallicus;
- Могильник Aquila 383eliacal;
- Беркут Aquila chrysaetus;
- Балобан Faico cherrug;
- Сапсан Faico peregrinus;
- Журавль-красавка Anthropoides virgo;
- Серый журавль Grus grus;
- Джек Chlamydotis undulate;
- Белохвостая пигалица Vanellochtttusia leucura;
- Толстоклювый зуек Charadrius leschenaultia;
- Орлан-белохвост Haliaeetus albicilla;
- Чернобрюхий рябок Pterocles orientalis;
- Белобрюхий рябок Pterocles alchata;
- Саджа Syrrhaptes paradoxus;
- Кречетка Chettusia gregaria;
- Филин Bubo bubo.

Млекопитающие

- Пегий путорак Diplomesodon pulchellum;
- Кожанок Бобринского Eptesicus bobrinskii;
- Перевязка Vormela peregusna;
- Бледный карликовый тушканчик Salpingotus pallidus.

Из числа млекопитающих, не внесенных в Красную книгу республики, но требующих повсеместной охраны, следует отметить сайгак.

В связи с постоянной браконьерской охотой, это ценное, с научной и экономической точек зрения, животное в большом количестве истребляется как в период миграций, так и в местах отела.

1.3. Геолого-физическая характеристика месторождения

1.3.1. Характеристика геологического строения

Месторождение нефти и газа Жанбыршы расположено в южной части Арыскумского прогиба Южно-Тургайского нефтегазоносного бассейна.

В строении Южно-Торгайской впадины участвуют три резко отличных друг от друга структурных этажа: нижний — фундамент, средний — квазиплатформенный, верхний — платформенный. Схематизированный типовой разрез представлен на рисунке 4.1.1.

۱. ا	CXEMATI	13ирован	іный тип	овои разрез представ	злен на рисунке 4.1.
	Возраст	Мощность, м	Литология	Нефтегазоносные комплексы (НГК)	Палеонтологическая и палинологическая характеристика
	N ₂ -Q	До 150 м			
	۵	0-200		Зональный флюндоулор	Фораминиферы, остракоды, моллоски, зубы акул
	K ₁₋₂	500-1500	X X	Зональный флюндоулор (Klal3-K2s) Регнональный флюндоулор (K ₁ nc ₁)	Форазиниферы; Споры и пыльца: Sclaginellaceae, Rouscisporites, Aurosporites, Kuprilanipollis, Vacuopollis, Cicatricosisporites Gleicheniidites и др.
	<u>, c</u>	0-650		Средие-	Пыльца: Classopollis, Cyathidites minor Coup., Gleichenia lacta Bolch. и др. Споры: Cyathidites minor Coup. Cyathidites sp. и др.
	2ل	0-1100	X X X	верхнеюрский пефтегазопосный комплекс	Пыльца: Classopollis, Pinaceae, Spheripollenites psilatus psilatus Coup., Sph. scabratus Coup., Shizosporis sprigii Cook. Споры: Cyathidites minor Coup. 11 Др
	ا ر	0-1600		Инжнеюрский пефтегазопосный комплекс	Пыльца: Circulina-C. meyerlana Klaus, Circulina sp. (38-59%), Classopollis (до10%), а также Ріпассає п др. Споры: Cyathidites, Leiotriletes п др.
	RZ ₂₋₃	אז 400 ס-3000?		Верхнепалеозойский перепективный ПГК	Форахиниферы: Radiosphaera, Visinesphaera и др.
	A.	т 400	4/1/1/	Зональный ПГК коры выветривания метаморфитов	
L					

Рис. 4.1.1 – Схематизированный типовой разрез Арыскумского прогиба

Фундамент. Складчатый фундамент Южно-Торгайской впадины сложен метаморфизованными докембрийскими образованиями, выходящими на дневную поверхность в северо-восточной части региона – в предгорьях хр. Улытау и в г. Каратау к югу от Южно-Торгайской впадины.

Отложения домезозойского складчатого основания вскрыты большим числом скважин, неравномерно распределенных по площади Южно-Торгайской впадины. Изучением керна установлены литологический состав, степень метаморфизма и возраст слагающих фундамент

образований. К наиболее древним образованиям, датируемым нижнепротерозойским возрастом, относятся зеленовато-серые гнейсы, сопоставимые с лейкократовыми гнейсами бектурганской серии Улытау. Они установлены на ряде площадей Арыскумского прогиба (пл. Кумколь, Такырсай, скв. 2-с, 1, 4 — Дощан, 1-П Акшабулак, 2-П Арыскум и др.).

Осадочный чехол имеет трёхъярусное строение:

- 1. К нижнему структурному ярусу осадочного чехла относится квазиплатформенный, или промежуточный, комплекс пород (КПК), среднего верхнего палеозоя. В Южно-Торгайской впадине он сохранился фрагментарно в отдельных тектонических блоках.
- 2. Средний структурный ярус рифтогенный, сложен терригенными породами юры, выполняющими систему линейных грабен-синклиналей и присутствующими в редуцированных разрезах на горст-антиклиналях, разделяющих грабен-синклинали.
- 3. Верхний структурный этаж представлен ортоплатформенным комплексом мелкайнозойских пород. Он имеет сплошное распространение по всей территории впадины.

В настоящем проекте данные по скважинам, пробуренным за период до даты проектирования, позволили уточнить геологическое строение месторождения Жанбыршы, не изменив ранее представленный литолого-стратиграфический разрез месторождения.

1.3.2. Литолого-стратиграфическая характеристика

Литологическая, геофизическая характеристики стратиграфических единиц и палеонтологическое обоснование возраста пород вскрытого разреза представлены на сводном геолого-геофизическом разрезе (граф. прил. №1).

Палеозойская группа (РZ)

К палеозойской группе отнесены карбонатные образования, вскрытые скважинами №№ 1, 2, 3, 5, 6, 7, 8, 10, 11. Палеозойские отложения литологически сложены:

- известняками массивными темно-серыми, изредка светло-буровато серыми, твердыми, чешуйчатыми, с острыми краями, в основном доломитовыми, со следами песка, частично глинистыми, перекристаллизованными, криптокристаллическими, без видимой пористости, в нижней части разреза с прослоями массивных метаморфических пород.
- глинистыми известняками темно-серыми, от полумассивных до массивных, изредка чешуйчатыми, твердыми, криптокристаллическими, изредка с кальцитовыми прожилками, слегка метаморфизованными, без признаков нефти.
- известковыми аргиллитами темно-серыми, местами черными, от плотных до твердых, от полумассивных до массивных, изредка чешуйчатыми, частично глинистыми в большом количестве, слегка метаморфизованными.

Возраст палеозойских образований на месторождении предположительно относится к нерасчлененным отложениям средне—верхнего девона и турнейского яруса нижнего карбона. Вскрытые толщины палеозоя на месторождении Жанбыршы от 60 м (скв. №1) до 75 м (№3).

Мезозойская группа (МZ)

Мезозой в Арыскумском прогибе представлен отложениями юрской и меловой систем. На месторождении Жанбыршы выявлены в основном отложения мела, юрские отложения выклиниваются к выступу палеозоя. Отложения юры развиты на относительно глубоких частях поднятия.

Меловая система (К)

Меловые отложения в пределах Арыскумского прогиба в нижней части разреза по литологическому составу расчленяются на три свиты: даульскую апт-неокома, карачетаускую нижнего-среднего альба, кызылкиинскую верхнего альба-сеномана и верхние нерасчлененные отложения турон-сенона.

На площади месторождения Жанбыршы неокомские отложения нижнего мела расчленены в соответствии с представленными недропользователем геологическими и геофизическими материалами на следующие стратиграфические подразделения: верхнедаульская подсвита (K_1 nc₂), апт — альбский ярусы (K_1 a-al₂) - карачетауская свита, альбсеноманский ярусы (K_1 -2al₃-s) —кызылкиинская свита и нерасчлененные турон-сенон.

Нижний отдел (К1)

Толща верхнего неокома (K_1 nc₂) (по объему соответствует верхнедаульской подсвите) представлена:

- песчаниками темно- буровато-серыми, местами зеленовато-серыми среднезернистыми, полуокатанными, кварцевыми, с глинистым цементом, реже известковыми, со следами пирита, переслаивающимся с аргиллитами.
- аргиллиты темно-серые, от мягких до твердых, полумассивные, с прослоями конгломерата и гравия, слабыми признаками неоднородных микропримесей светло-желтого цвета, частично алевритистые, со следами песка. Толщина подсвиты варьирует от 6 до 52 м.

Anm-альбский ярусы (K_1 а-а l_{1+2}) карачетауская свита.

Отложения карачетауской свиты представлены:

- в нижней части песчаниками сероцветными, мелкозернистыми, слабосцементированными с прослоями гравелитов и конгломератов.
- в верхней части аргиллитами зеленовато-серыми, красновато-бурыми, полумассивными, с прослоями алевролитов. Толщина свиты 192-262м.

Возраст свиты по споро-пыльцевому комплексу устанавливается апт-среднеальбским.

К песчаникам этой свиты приурочены продуктивные горизонты A-1 (пласты A-1-1, A-1-2, A-1-3, A-1-4) и A-2.

Альб-сеноманский ярусы (K_{1-2} al_{3-s}) кызылкиинская свита.

Отложения кызылкиинской свиты залегают согласно на отложениях карачетауской свиты и сложены:

- алевролитами пестроцветными, глинистыми и аргиллитами с прослоями мелкозернистых песчаников. Толщина свиты 56-109 м.

По споро-пыльцевому комплексу возраст устанавливается поздне- альб-сеноманским. К прослоям песчаников приурочены продуктивные горизонты AC-1, AC-2.

Верхний отдел (К2)

Нерасчлененный верхний турон–нижний сенон ($K_2 t_2$ -s n_1).

Отложения этой толщи залегают с размывом на породах балапанской свиты и представлены:

- аргиллитами коричневыми переслаивающимися пластами пестроцветных песчаников и алевролитов.

Возраст толщи обоснован комплексами спор и пыльцы. К прослоям песчаников приурочены водонасыщенные коллектора горизонта ТС.

Кайнозойская группа (КZ)

Кайнозойская группа представлена морскими и континентальными отложениями палеогеновой и неоген—четвертичной систем.

Отложения палеогена обнажаются в центральных частях Арыскумского прогиба и вскрыты скважинами. Палеоген представлен всеми отделами: палеоцен, эоцен и олигоцен, но при разведочных работах обычно выделяют нерасчлененную палеогеновую систему. В связи с этим, при описании этой системы использованы литературные данные.

Палеоцен (Р1)

Отложения палеоцена залегают с размывом на различных горизонтах верхнего мела и представлены кварц—глауконитовыми песками и песчаниками с желваками фосфоритов, часто группирующихся в виде пластов и линз. Толщина отложений составляют 0,5—12м. Из этих отложений определены типичные для палеоцена устрицы, фораминиферы.

Эоцен (Р2)

Эоцен представлен полным разрезом и расчленяется на нижний, средний и верхний эоцен.

Отложения нижнего эоцена (P_2^1) залегают с размывом и фосфоритовой галькой в основании на отложениях палеоцена и представлены зеленовато-серыми до черных глинами, с прослоями песчаников и алевролитов с галькой фосфоритов, а также включениями обугленных растительных остатков. Толщина отложений достигает 66 м. Возраст (ранний

эоцен) установлен на основании фораминифер и споро-пыльцевых комплексов. На геологической карте Средней Азии и Казахстана выделяются нерасчлененные нижнесреднеэоценовые отложения, представленные мергелями и глинистыми известняками с прослоями горючих сланцев. Толщина их не превышает 35-40 м, в толще нижнего эоцена – всего около 2 м.

Средний эоцен (P_2^2) представлен серыми, желтыми, коричневыми мергелями, известняками и карбонатными глинами, с тонкими прослоями песчаников и алевролитов, залегающими несогласно на отложениях палеоцена и сенона. Толщина их 35-55м. Возраст на основании обильных комплексов фораминифер, зубов акул и скатов, остракод, радиолярий и спорово - пыльцевых комплексов устанавливается как средне - эоценовый.

Верхний эоцен (P_2^3) залегает согласно на отложениях среднего эоцена и представлен серыми и зелеными монтмориллонитовыми, бентонитовыми, тонкослоистыми глинами с включением марказита, глауконита, зубов и чешуй рыб. Толщина достигает 245 м.

Нерасчлененные неоген – четвертичные отложения (N-Q)

К неоген-четвертичной системе отнесены пески, суглинки и супеси, покрывающие поверхность наиболее низких участков территории Арыскумского прогиба. Толщина их от 0 до $20~\mathrm{M}$.

В южной, северной и западной части $A\Pi$ на картах поверхности выделяются верхнеплиоценовые (N^2 ₂) отложения (Буклин В.В. и др.), представленные галечниками, гравийными песками, супесями и суглинками. Толщина их равна 5-20 м.

Тектоника

Тектоническое строение месторождения

В тектоническом отношении месторождение Жанбыршы расположено в пределах Южно-Тургайского прогиба за Главным Каратауским Разломом на склоне Южно-Аксайской горст антиклинали.

По результатам сейсмических работ 3Д и бурения построена структурно-тектоническая модель месторождения.

Структурные карты по отражающим горизонтам, увязанные с данными бурения использованы при построении карт по кровле, подошве коллекторов продуктивных горизонтов, в отложениях альба и нерасчленённого апт-альба.

В геологическом строении месторождения Жанбыршы принимают участие отложения двух структурных этажей: домезозойского складчатого и платформенного.

В строении домезозойского складчатого структурного этажа участвуют породы палеозоя, которые на месторождении вскрыты скважинами: №№ 1,2, 3, 5, 6, 7, 8, 10, 11.

В составе платформенного чехла участвуют сложенные терригенными образованиями отложения меловой, палеогеновой, неоген-четвертичной систем, которые на вскрыты всеми скважинами, пробуренными на месторождении Жанбыршы.

По кровле отражающего горизонта PZ (рис. 2.1.2) месторождение Жанбыршы представляет собой поднятие, вытянутое в северо-западном направлении и с северо-запада на юго-восток постепенно расширяется.

На изученной части поднятия выделяются локальные куполовидные структуры, которые между собой разделены более низкими по отметке седловинами и разрывными нарушениями.

В присводовых частях локальных структур пробурены скважины: №№ 1,2, 3, 5, 6, 7, 8, 10, 11.

Структура в районе скважин №№ 1, 6, 7, 9, 10 удлинена в северо-западном направлении, сводовая часть простирается в меридиональном направлении и осложнена с востока и запада разрывными нарушениями. Размеры структуры по оконтуривающей изогипсе -600 равны 2,5х1,25 км, амплитуда 60 м.

В районе скважин №2 и №11 структура удлинена в северо-восточном направлении, сводовая часть расширяется к востоку и с востока осложнена тектоническими разломами. Размеры структуры по оконтуривающей изогипсе -540 равны 2,5х1,2 км, амплитуда 45 м.

В северной части исследуемой площади выделяется ловушка, в своде которой пробурена скважина №5. Она простирается с юга на север, осложнена с востока разрывным нарушением и имеет размеры по замкнутой изогипсе -800 м 0,9х0,35км, с амплитудой 50 м.

Структура в районе скважины №3 находится в юго-восточной части Контрактной территории, простирается в восточном направлении, вероятно, она замыкается за пределами горного отвода. С запада поднятие осложнено разрывным нарушением.

Также на юго-восточной части рассматриваемой площади в присводовой части локальной ловушки пробурена скважина №8. С юго-востока эта ловушка осложнена разрывным нарушением. Размеры ловушки по изогипсе -580 м составили 1,5x0,75 км, амплитуда 30 м.

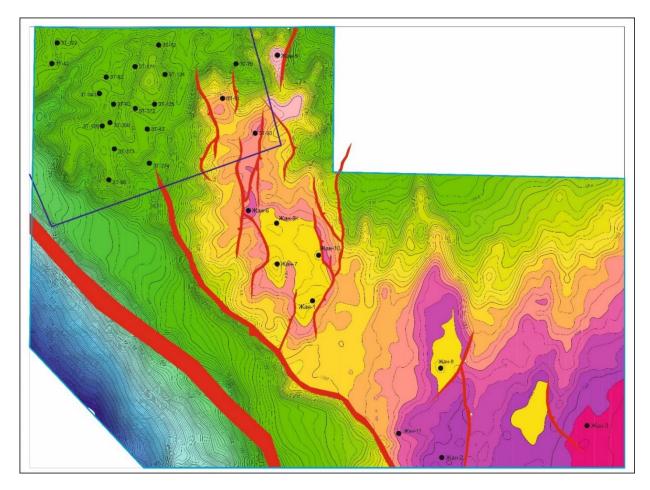


Рис. 4.1.2 - Структурная карта по кровле ОГ-РZ

На структурной карте по кровле отложений K_1 а-al (рис. 2.1.3) в юго-восточной части Контрактной территории наблюдается поднятие, которое постепенно понижается в северо-западном направлении.

Структура в районе скважин №№ 1, 6, 7, 9, 10 имеет унаследованный характер строения по отношению к ранее описанному по отражающему горизонту РZ. Так же

прослеживается сводовое поднятие субмеридионального простирания, восточный и западный склоны которого ограничены разрывными нарушениями. Размеры структуры по оконтуривающей изогипсе -400 равны 2,5х1,25 км, амплитуда 60 м.

В относительно приподнятой, юго-восточной части рассматриваемой площади наблюдается серия тектонических нарушений, к которым приурочены локальные ловушки, в районе которых пробурены скважины $N \ge N \ge 8$, 11, 2 и 3. Размеры структур колеблются от 2,5х0,75км до 1,0х0,95 амплитуда от 10 до 25 м.

1.3.3. Нефтегазоносность

На месторождении Жанбыршы по результатам 11 пробуренных скважин установлена нефтегазоносность меловых отложений. При этом, по результатам обработки материалов ГИС и опробования в разрезе скважин №№ 3, 4, 5 выделены водонасыщенные пласты.

По результатам пробуренных и продуктивных по ГИС и опробованию скважин (№№ 1, 2, 6, 7, 8, 9, 10, 11) во вскрытых отложениях выделены следующие горизонты: в аптальбском ($K_{1}a-al_{1-2}$) — A-2, A-1-1, A-1-2, A-1-3, A-1-4; альб-сеноманском ($K_{1-2}al_{3}$ -с) — AC-1, AC-2; в сенон-туронском (K_{1-2} sn-t) — горизонт СТ. Из них горизонты A-1-4 и СТ оказались водоносными (граф. прил. №3, папка 1).

Всего на месторождении Жанбыршы выявлены 18 залежей, из них 12 нефтяные, 5 газовые и 1 газонефтяная.

Поверхность продуктивных отложений разбита тектоническими нарушениями на 6 блоков (I, II, III, IV, V, VI).

Коллектора меловых горизонтов терригенные, поровые, литологически представлены песчано-алевритовыми породами.

Границами площадей продуктивности по каждому горизонту являются: принятые положения газонефтяных, водонефтяных контактов, тектонические нарушения.

Структурные карты по кровле коллекторов продуктивных горизонтов, карты эффективных нефтенасыщенных, газонасыщенных толщин приведены на графических приложениях N_2N_2 11-16 (папка 1). Геолого-литологические профили представлены на графических приложениях N_2N_2 1-2.

Ниже приведена геолого-промысловая характеристика продуктивных горизонтов.

Продуктивный горизонт АС-1. Общая толщина горизонта в среднем составляет 8,6 м и изменяется от 6 м (скв.№10) до 11 м (скв.№1).

В пределах горизонта по материалам ГИС установлены нефтяная залежь в разрезе скважин №№ 1, 10 и две газовые в разрезе скважин №№ 8, 2. Из них впервые выделена нефтяная залежь в разрезе скважин №1 и №10 и газовая залежь в районе скважины №8. В скважинах №№ 6, 7, 9, 11, 3 по данным интерпретации ГИС выделены водонасыщенные коллектора.

Нефтяные и газовые залежи установлены в блоках III, IV, VI.

<u>Блок III.</u> В данном блоке пробурены скважины №1 и №10, в которых по комплексу ГИС вскрыты нефтенасыщенные (0.8-1.2м) и водонасыщенные (1.2-3.1м) пласты.

Залежь, вскрытая скважинами №1 и №10, приурочена к полуантиклинали. Ловушка экранирована с севера-востока тектоническим нарушением F_{10} субмеридионального простирания. По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

Уровень ВНК принят на абсолютной отметке минус 236,2 м по подошве нефтенасыщенного коллектора в скв.№10 (граф. прил. №10, папка 1). Высота залежи составляет 16,2 м, размеры равны 1125x750 м, площадь - 759 тыс.м². Обоснование принятых контактов УВ приведено в таблице 2.1.1.

<u>Блок IV.</u> В пределах блока пробурена скважина №8. По данным интерпретации ГИС в разрезе скважины выделен газонасыщенный пласт толщиной 2,3 м.

Газовая залежь, вскрытая скважиной №8, локализована в юго-восточной части месторождения и представляет собой полусвод, примыкающий с востока к разлому F_{21} .

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УГВК принят на абсолютной отметке -177,6 м по подошве газонасыщенного коллектора в скв. №8, высота залежи составляет 5 м, размеры равны 650x375 м, площадь - 216 тыс.м².

<u>Блок VI.</u> В данном блоке выявлена газовая залежь по результатам бурения и испытания скважины №2. По данным интерпретации ГИС в разрезе скважины выделен газонасыщенный пласт толщиной 2,4 м.

Залежь установлена, когда при опробовании интервала 315-319 м в скважине №2 получили фонтанный приток газа дебитом 16878 м³/сут.

Газовая залежь, вскрытая скважиной №2, приурочена к полуантиклинали субмеридионального простирания, ограниченной с востока разломом F_{24} .

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УГВК в блоке VI принята на отметке -163,7 м, что соответствует самой низкой отметке нефтенасыщенного коллектора в скважине №2, высота залежи составляет 24,3 м, размеры равны 800x2250 м, площадь - 1597 тыс.м².

Продуктивный горизонт АС-2. В результате выполненной корреляции вновь пробуренных скважин с ранее пробуренными, в утвержденном отчете по подсчету запасов данный горизонт выделен впервые. Общая толщина горизонта в среднем составляет 25,2 м и изменяется от 16 м (скв. №11) до 37 м (скв. №6). В пределах горизонта по результатам интерпретации материалов ГИС и данных опробования установлены три нефтяные залежи в разрезе скважин №№ 6, 7, 9, 10 и газовая залежь в разрезе скважины № 8. В скважинах №11 и №3 по данным интерпретации ГИС выделены водонасыщенные коллектора, водоносность скважины №3 подтверждена испытанием, где получен приток пластовой воды объемом 9,97 м³. В разрезе скважин №1 и №2 по результатам обработки ГИС пласты-коллекторы замещены непроницаемыми породами.

Нефтяные и газовая залежи установлены в блоках I, II, III, IV.

<u>Блок I.</u> В пределах этого блока в результате бурения и испытания скважины №6 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины выделен нефтенасыщенный пласт толщиной 2,1 м и водонасыщенный - 0,6 м. Продуктивность залежи доказана опробованием данной скважины, где из интервала 462-465 м методом свабирования получили приток нефти объемом 4,76 м³.

Нефтяная залежь, вскрытая скважиной №6, приурочена к полуантиклинали и экранирована с северо-запада разломом F_7 и с востока разломом F_8 . Разломы F_7 и F_8 простираются в субмеридиональном направлении.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ВНК в блоке I принят на отметке -308,1 м, что соответствует самой низкой отметке опробованного нефтенасыщенного коллектора в скважине №6, высота залежи составляет 8,5 м, размеры равны 925x525 м, площадь -404 тыс.м².

<u>Блок II.</u> В данном блоке в результате бурения и испытания скважин №7 и №9 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины №7 выделены нефтенасыщенные пласты-коллектора общей толщиной 3 м, в разрезе скважины №9 выявлены нефтенасыщенные пласты-коллектора общей толщиной 8,8 м и водонасыщенный пласт 1,3 м. Продуктивность залежи подтверждена испытанием скважин №7 и №9. В результате опробования скважины №7 из интервала 431,5-433 м методом свабирования получен приток нефти объемом 0,62 м³, из интервала 453-455 м получен приток нефти объемом 0,04 м³. В результате испытания скважины №9 из интервала 425-437,2 м методом свабирования получен приток нефти объемом 1,59 м³ и приток воды объемом 5,39 м³.

Нефтяная залежь, вскрытая скважинами №7 и №9 приурочена к полуантиклинали, ограниченной с северо-запада разломом F_8 и с востока разломом F_9 субмеридионального направления.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ВНК в блоке II принят условно на отметке -297,9 м по подошве нефтенасыщенного коллектора в скв. №9, высота залежи составляет 27,9 м, размеры равны 1950x775 м, площадь -1473 тыс.м².

<u>Блок III.</u> В пределах блока в результате бурения скважины №10 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины прослежены нефтенасыщенные пласты-коллектора общей толщиной 2,1 м.

Нефтяная залежь, вскрытая скважиной №10, приурочена к полусводовому поднятию, ограниченному с северо-востока разломом F_{10} субмеридионального направления и с юго-запада — зоной литологического замещения. По типу резервуара залежь пластовая, сводовая, тектонически и литологически экранированная.

ВНК в блоке III принят условно на отметке -284,5 м по подошве нефтенасыщенного коллектора в скв. №10, высота залежи составляет 49,5 м, размеры равны 2025x1075 м, площадь -998 тыс. м^2 .

<u>Блок IV.</u> В пределах блока пробурена скважина №8. По данным интерпретации ГИС в разрезе скважины выделен газонасыщенный пласт-коллектор общей толщиной 3,6 м. Продуктивность залежи подтверждена опробованием данной скважины, в результате опробования из интервала 356-358 м на 7 мм штуцере получен фонтанный приток газа дебитом 9150,3 м $^3/с$ ут.

Газовая залежь, вскрытая скважиной №8, локализована в юго-восточной части месторождения и представляет собой полусвод субмеридионального простирания, примыкающий с востока к разлому F_{21} .

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УГВК принят на абсолютной отметке -214,6 м по подошве газонасыщенного коллектора в скв. №8, высота залежи составляет 22,1 м, размеры равны 1725×400 м, площадь - 765 тыс.м².

Продуктивный горизонт А-1-1

Общая толщина горизонта в среднем составляет 24,04 м и изменяется от 15 м (скв. №10) до 41 м (скв. №6).

В пределах горизонта по результатам интерпретации материалов ГИС и данным опробования установлены: одна газовая залежь в разрезе скважин №1 и №10 и одна нефтяная — в районе скважины №7.

В скважинах №№ 6, 9, 11, 2, 3 по данным интерпретации ГИС выделены водонасыщенные коллектора, водоносность скважин №2 и №3 подтверждена испытанием, где получены притоки пластовой воды в объеме 26,0 и 29,5 м³, соответственно. В разрезе скважины №8 по результатам обработки ГИС пласты-коллекторы замещены непроницаемыми породами.

Газовые залежи установлены в блоках II и III.

<u>Блок II.</u> В данном блоке в результате бурения и испытания скважины №7 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины прослежены нефтенасыщенные пласты-коллектора толщиной 2,1 м и водонасыщенные пласты общей толщиной 4 м. В скважине №7 при опробовании интервала 461,2-466 м фонтанированием на 7 мм штуцере получено 0,69 м³ нефти с газом и 13,51 м³ пластовой.

Нефтяная залежь, вскрытая скважиной №7 приурочена к полуантиклинали, ограниченной с востока разломом F₉ субмеридионального направления.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ВНК в блоке II принят на отметке -308,3 м по подошве нефтенасыщенного коллектора в скв. №7, высота залежи составляет 3,3 м, размеры равны 1075x525 м, площадь -473 тыс.м².

<u>Блок III.</u> В пределах блока в результате бурения и испытания скважин №1 и №10 выявлена газовая залежь. По данным интерпретации ГИС в разрезе скважин №1 и №10 прослежены газонасыщенные и водонасыщенные пласты-коллектора. Продуктивность залежи доказана опробованием скважин №1 и №10. Так, в скважине №10 из интервала 453-

457 м получили слабый приток газа, в скважине №1 из интервала 453-456 получили фонтанный приток газа дебитом 39903 м 3 /сут.

Газовая залежь вскрытая скважинами №1 и №10, приурочена к полусводовому поднятию, с северо-востока примыкает к разлому F_{10} субмеридионального направления. По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ГВК в блоке III принят на отметке -301,9 м по прямому контакту газ+вода в скв. №10, высота залежи составляет 16,9 м, размеры равны 1475×825 м, площадь -1025 тыс.м².

Продуктивный горизонт А-1-2

Общая толщина горизонта в среднем составляет 20 м и изменяется от 11 м (скв. №7) до 49 м (скв. №3).

В пределах горизонта по результатам интерпретации материалов ГИС и данным опробования установлены две нефтяные залежи в разрезе скважин №2 и №6 и одна газовая залежь в разрезе скважин №1 и №10.

В скважинах №№ 7, 9, 3 по данным интерпретации ГИС выделены водонасыщенные коллектора. В разрезе скважин №8 и №11 по результатам обработки ГИС пласты-коллекторы замещены непроницаемыми породами.

Нефтяные и газовая залежи установлены в блоках I, III, VI.

<u>Блок I.</u> В пределах этого блока в результате бурения и испытания скважины №6 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины выделен нефтенасыщенный пласт толщиной 2,2 м. Продуктивность залежи доказана опробованием данной скважины, где из интервала 541-543, 545-547 м методом свабирования получили приток нефти 3,62 м³.

Нефтяная залежь, вскрытая скважиной №6, приурочена к полуантиклинали и экранирована с северо-запада разломом F_7 и с востока разломом F_8 . Разломы F_7 и F_8 простираются в субмеридиональном направлении.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УВНК в блоке I принят условно на отметке -390,2 м, что соответствует самой низкой отметке нефтенасыщенного коллектора в скважине №6, высота залежи составляет 15,5 м, размеры равны 575×1275 м, площадь -690 тыс.м².

<u>Блок III.</u> В пределах блока в результате бурения и испытания скважин №1 и №10 выявлена газовая залежь. По данным интерпретации ГИС в разрезе скважины №10 прослежены газонасыщенные пласты-коллектора толщиной 3,4 м, в скважине №1 выделен газонасыщенный пласт-коллектор толщиной 6,8 м.

Продуктивность залежи установлена опробованием скважин №10 и №1. В скважине №10 из интервала 506,5-508 м на 8 мм штуцере получили фонтанный приток газа дебитом 20159,5 м³/сут. В результате испытания скважины №1 из интервала 485-493 м на 8 мм штуцере получили фонтанный приток газа дебитом 24760 м³/сут.

Газовая залежь, вскрытая скважинами №1 и №10 приурочена к полусводовому поднятию, ограниченному с северо-востока разломом F_{10} субмеридионального направления. По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УГВК в блоке III принят на отметке -351,5 м по подошве газонасыщенного коллектора в скв. №10, высота залежи составляет 22,2 м, размеры равны 1625x1225 м, площадь -2160 тыс.м².

<u>Блок VI.</u> В пределах блока выявлена нефтяная залежь по результатам бурения и испытания скважины №2. По данным интерпретации ГИС в разрезе скважины выделен нефтенасыщенный пласт-коллектор общей толщиной 11,4 м.

Залежь установлена, когда при опробовании интервала 403-408, 411-417 м в скважине №2 методом свабирования получили приток нефти дебитом 1,84 м³/сут.

Нефтяная залежь, вскрытая скважиной №2 приурочена к полуантиклинали субмеридионального простирания с востока примыкающей к разлому F_{24} .

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УВНК в блоке VI принят условно на отметке -262,0 м, что соответствует самой низкой отметке нефтенасыщенного коллектора в скважине №2, высота залежи составляет 27,3 м, размеры равны 2400x1050 м, площадь - 2123 тыс.м².

Продуктивный горизонт А-1-3

Общая толщина горизонта в среднем составляет 34,4 м и изменяется от 26 м (скв. №7) до 45 м (скв. №3).

В пределах горизонта по результатам интерпретации материалов ГИС и данным опробования выявлены три нефтяные залежи в разрезе скважин №№ 7, 9, 10, 1, 11 и одна нефтегазовая залежь в разрезе скважины №6.

В скважинах $N_{\mathbb{N}}$ 5, 2, 3, 8 по данным интерпретации ГИС выделены водонасыщенные коллектора, водоносность скважин $N_{\mathbb{N}}$ 2, 3 и 8 подтверждена испытанием, где получены притоки пластовой воды.

Нефтяные и нефтегазовая залежи установлены в блоках I, II, III, V.

<u>Блок I.</u> В пределах этого блока в результате бурения и испытания скважины №6 выявлена нефтегазовая залежь. По данным интерпретации ГИС в разрезе скважины выделены газонасыщенные пласты-коллекторы общей толщиной 6,5 м и нефтенасыщенный пласт толщиной 5,0 м. Продуктивность залежи доказана опробованием данной скважины, где из интервала 552-562,5 м на 8 мм штуцере получили фонтанный приток газа дебитом 22966 м³/сут и нефти дебитом 2,1 м³/сут.

Нефтяная залежь, вскрытая скважиной №6 приурочена к полуантиклинали и экранирована с северо-запада разломом F_7 и с востока разломом F_8 . Разломы F_7 и F_8 простираются в субмеридиональном направлении.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УВНК в блоке I принят условно на отметке -403,1 м по подошве нефтенасыщенного коллектора, ГНК на отметке -406,1 м по подошве газонасыщенного коллектора в скважине №6. Высота залежи составляет 20,7 м, размеры равны 1200x925 м, площадь -625 тыс.м².

<u>Блок II.</u> В этом блоке в результате бурения и испытания скважин №7 и №9 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины №9 выделены нефтенасыщенный пласт-коллектор толщиной 2 м и водонасыщенный — 1,7 м, в разрезе скважины №7 прослежены нефтенасыщенные пласты-коллектора общей толщиной 9 м. Продуктивность залежи доказана опробованием скважин №7 и №9. Так, в скважине №9 из интервала 535-537, 546,5-548 м методом свабирования получен приток нефти дебитом 16,34 м³/сут, в скважине №7 при совместном опробовании интервала 527-535, 724-728 м методом свабирования и СКО получен приток нефти дебитом 4,9 м³/сут и приток воды дебитом 248,8 м³/сут.

Нефтяная залежь, вскрытая скважинами №7 и №9 приурочена к полусводовой структуре, ограниченной с северо-запада разломом F_8 и с востока разломом F_9 субмеридионального направления.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ВНК в блоке II принят на отметке -382,2 м по подошве нефтенасыщенного коллектора в скв. \mathbb{N} 27, высота залежи составляет 17,2 м, размеры равны 1800×750 м, площадь — 1187 тыс.м².

<u>Блок III.</u> В пределах блока в результате бурения и испытания скважин №1 и №10 выявлена нефтяная залежь. По данным интерпретации ГИС в разрезе скважины №10 прослежены нефтенасыщенные пласты-коллектора общей толщиной 9,8 м и водонасыщенные пласты-коллектора общей толщиной 2,9 м, в разрезе скважины №1 выделены нефтенасыщенные пласты-коллекторы общей толщиной 8,9 м и водонасыщенный пласт 1,5м. Продуктивность залежи установлена опробованием скважин №1 и №10. В результате испытания скважины №10 из интервала 515-522 м свабированием получили

приток нефти дебитом 8 м³/сут, согласно данным опробования скважины №1 из интервала 513-527 получен приток нефти дебитом 6,71м³/сут.

Нефтяная залежь, вскрытая скважинами №1 и №10 приурочена к полусводовому поднятию, ограниченному с северо-востока разломом F_{10} и с запад разломом F_{9} субмеридионального направления. По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ВНК в блоке III принят на отметке -380,4 м по подошве нефтенасыщенного коллектора в скв. №10, высота залежи составляет 25,4 м, размеры равны 2400x1150 м, площадь -2135 тыс.м².

<u>Блок V.</u> В пределах блока выявлена нефтяная залежь по результатам бурения скважины №11. В результате интерпретации материалов ГИС в разрезе скважины выделен нефтенасыщенный пласт-коллектор общей толщиной 5,5 м.

Нефтяная залежь вскрытая скважиной №11 приурочена к полусводу, с юго-востока примыкающему к разлому F_{16} .

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

УВНК в блоке V принят условно на отметке -322,8 м, что соответствует подошве нефтенасыщенного коллектора в скважине №11, высота залежи составляет 17,2 м, размеры равны 800x625 м, площадь - 442 тыс.м².

Продуктивный горизонт А-2

Общая толщина горизонта в среднем составляет 39,1 м и изменяется от 23 м (скв. №5) до 53,6 м (скв. №1).

В пределах горизонта по результатам интерпретации материалов ГИС и данным опробования выявлена нефтяная залежь в разрезе скважины №6.

В скважинах №№ 1, 5, 7, 10 по данным интерпретации ГИС выделены водонасыщенные коллектора.

Нефтяная залежь установлена в блоке I.

<u>Блок I.</u> По данным интерпретации ГИС в разрезе скважины выделены нефтенасыщенный пласт толщиной 3.7 м и водонасыщенные пласты общей толщиной 10.5 м. Продуктивность залежи доказана опробованием данной скважины, где из интервала 680-687 м после СКО получили приток нефти дебитом 2.2 м 3 /сут и воды дебитом 158.3 м 3 /сут.

Нефтяная залежь, вскрытая скважиной №6 приурочена к полуантиклинали и экранирована с северо-запада разломом F_7 и с востока разломом F_8 . Разломы F_7 и F_8 простираются в субмеридиональном направлении.

По типу резервуара залежь пластовая, сводовая, тектонически экранированная.

ВНК в блоке I принят на отметке -528,1 м по подошве нефтенасыщенного коллектора. Высота залежи составляет 13,1 м, размеры равны 1075×625 м, площадь -491 тыс.м².

2. ОПИСАНИЕ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

2.1. Климатические условия региона. Состояние воздушного бассейна

Климат региона резко континентальный с жарким, сухим, продолжительным летом и холодной малоснежной зимой. Такой климатический режим обусловлен расположением региона внутри евроазиатского материка, южным положением, особенностями циркуляции атмосферы, характером подстилающей поверхности и другими факторами. Континентальность климата проявляется в больших колебаниях метеорологических элементов в их суточном, месячном и годовом ходе.

Температурный режим воздуха формируется под влиянием радиационного баланса, циркуляционных процессов и сложных условий подстилающей поверхности. Резких различий в температурах не наблюдается. Среднемесячная температура самого жаркого месяца июля 30,80С. Среднемесячная температура самого холодного месяца января -8,70С.Суточные колебания температуры воздуха достигают 14- 16оС. Период со средней суточной температурой воздуха выше нуля градусов наблюдается с 17-25 марта до 6-12 ноября, что составляет 226-239 дней в году.

Климат местности континентальный, с большими колебаниями сезонных и суточных температур. Лето жаркое, преобладающая температура воздуха от $+20^{\circ}$ до $+30^{\circ}$ С (максимальная достигала $+43^{\circ}$ С). Зима умеренно мягкая. Дневная температура от минус 3° до минус 8° С, ночная – от -14° до -18° С (минимальная -38° С). Осадков выпадает мало - около 120мм в год.

Гидрографическая сеть района развита слабо. Реки отсутствуют. Встречаются небольшие озера, образованные за счет самоизливающихся артезианских колодцев. Солончак Арыс, расположенный в 20 км к востоку от месторождения, весной имеет на поверхности соленую воду. Летом поверхность солончака превращается в грязь.

Влажность воздуха. Относительная влажность воздуха, характеризующая степень насыщения воздуха водяным паром, меняется в течение года в широких пределах. Относительная влажность 30% и более 80% считается дискомфортной. Так, в изучаемом районе среднемесячная относительная влажность летом достигает 28-34%, а зимой - 72-86% и составляет 153 дня с влажностью менее 30% и 60,3 дня с влажностью более 80%. Следовательно, 213,3 дней в году данный район дискомфортен для проживания человека.

Ветровой режим. Для изучаемого района, как и для всей области, характерны частые и сильные ветры северо-восточного и восточного направления. Наибольшую повторяемость за год имеют ветры северо-восточного направления.

Засушливость - одна из отличительных черт климата района. Осадков выпадает очень мало, и они распределяются по сезонам года крайне неравномерно: 60% всех осадков приходится на зимне-весенний период. Осадки летнего периода не имеют существенного значения, как для увлажнения почвы, так и для развития культурных растений.

Снежный покров незначителен и неустойчив; образуется он во второй - третьей декаде декабря. Средняя высота его 10-25 см. Устойчиво снег лежит 2,5 месяца. Средние запасы воды в снеге составляют 30-60 мм. Характер годового распределения месячных сумм осадков также неоднороден: летом 4-6 мм, зимой 15-17 мм. Осадки ливневого характера с грозами и градом наблюдаются в теплое время года. Зимой ливневые осадки наблюдаются значительно реже.

Снежный покров является фактором, оказывающим существенное влияние на формирование климата в зимний период, главным образом, вследствие большой отражательной способности поверхности снега. Небольшое количество солнечной радиации, поступающей зимой на подстилающую поверхность, почти полностью отражается.

Таблица 2.1 - Среднемесячная и годовое значение температуры воздуха, ⁰С

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
-8,7	-5,7	5,7	13,4	20,1	25,7	30,8	25,9	18,2	11,5	-0,5	-5,7	10,9

Таблица 2.2 - Средняя годовая повторяемость (%) направлений ветра и штилей

C	СВ	В	ЮВ	Ю	Ю3	3	C3	Штиль
12	33	12	5	12	7	10	9	12

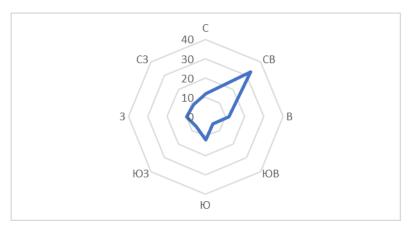


Рисунок 2.1 - Годовая роза ветров

2.2. Поверхностные и подземные воды

Гидрографическую сеть региона дополняют временные водотоки пустынных пространств и сеть озер, многие из которых летом полностью пересыхают.

В пределах Кызылординской области насчитывается более ста озер, большинство из которых приходится на пойменную часть р. Сырдарья. Заполняются они обычно разливом реки при максимальных уровнях во время весеннего паводка, поэтому, как правило, к осени озера с малой зеркальной площадью пересыхают или сильно мелеют.

Из общего числа озер 80 имеют площадь зеркала от 0,01 до 0,99 км2.

Телекольская система озер, подпитываемая малой рекой Сарысу, является приемником коллекторно-дренажных вод Шиелийского района, вода имеет повышенную минерализацию.

Озера вблизи Аральского моря – пресноводные.

Наблюдения за качеством поверхностных вод на территории региона осуществляются, в основном, системой Казгидромета. Гидрогеологическим режимным контролем охвачены только крупные реки. На озерах, малых и временных водотоках наблюдения не проводятся.

3. ОПИСАНИЕ ИЗМЕНЕНИЙ ОКРУЖАЮЩЕЙ СРЕДЫ, КОТОРЫЕ МОГУТ ПРОИЗОЙТИ В СЛУЧАЕ ОТКАЗА ОТ НАЧАЛА НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, СООТВЕТСТВУЮЩЕЕ СЛЕДУЮЩИМ УСЛОВИЯМ

3.1. Альтернативные технические и технологические решения. Вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды;

Целью составления Проекта разработки месторождения Жанбыршы является - обоснование рациональной системы разработки месторождения.

В проекте разработки приведены геолого-физическая характеристика месторождения, физико-химические свойства пластовых флюидов, запасы газа и конденсата.

Проанализировано состояние фонда скважин и эффективности применения методов повышения конечной газоотдачи.

Проведены расчеты вариантов технологических показателей разработки месторождения с рекомендуемыми геолого-техническими мероприятиями по совершенствованию системы разработки.

Экономический анализ позволяет оценить возможные финансовые и экономические последствия реализации рассмотренных вариантов разработки, измерить совокупные затраты инвестора и выгоды от реализации вариантов, определить наиболее выгодный вариант для недропользователя и для государства.

При выборе рекомендуемого варианта разработки анализировались: проектные уровни добычи газа и конденсата, накопленная добыча газа и конденсата за рентабельный срок, срок достижения экономического предела, срок окупаемости инвестиций, капитальные вложения, эксплуатационные затраты, чистая прибыль, накопленный поток денежной наличности и экономические показатели.

Исходя из результатов расчетов вариантов разработки более выгодным является первый вариант, по которому недропользователь и Государство получают большую выгоду.

Для рекомендуемого варианта разработки рассмотрены вопросы техники и технологии добычи, бурения и освоения скважин, мероприятия по контролю разработки, доразведки месторождения, охрана недр и окружающей среды.

3.2. Альтернативные решения по размещению скважин. Вариант, выбранный инициатором намечаемой деятельности для применения, обоснование его выбора, в том числе рационального варианта, наиболее благоприятного с точки зрения охраны жизни и (или) здоровья людей, окружающей среды

По состоянию на 01.07.2023г на месторождении пробуренный фонд скважин составляет 11 ед. Из них 4 поисковые скважины, 2 оценочные скважины и 5 разведочных скважин. В консервации находятся 10 скважин, 1 скважина ликвидирована по геологическим причинам.

При дальнейшей работе на месторождении недропользователю необходимо:

- продолжить отбор керна с проведением в них стандартных и специальных анализов;
- провести рациональный выбор коллекции образцов на проведение специальных исследований с учетом охвата всего диапазона коллекторов (от плохих до хороших коллекторов);
- провести качественный отбор и анализ глубинных и поверхностных проб пластового флюида дифференцированно по залежам для уточнения физикохимических свойств, компонентного состава и получения достоверных подсчетных параметров;

- выполнять мероприятия по ГИС-к на регулярной основе, с целью выделения работающих толщин, характера притока и ведения раздельного учета добычи по объектам разработки;
- провести исследования по уточнению проводимости выявленных тектонических разломов;
- провести работы по доизучению запасов месторождения по категории C_2 для дальнейшего перевода в промышленную категорию C_1 .
- для перевода запасов нефти с категории C₂ в категорию C₁ произвести опробование скважины №11 горизонта A-1-3 (инт. 460-477м).

3.3. Различные условия эксплуатации объекта

Согласно основным положениям вариантов систем разработки, произведены расчеты технологических показателей по эксплуатационным объектам и по месторождению в целом в 3 вариантах. В качестве рекомендуемого варианта предлагается к реализации 2 вариант разработки, в процессе реализации которого достигается максимальное извлечение запасов нефти.

В процессе намечаемой деятельности появляются временные источники выбросов, которые прекращают свою деятельность по завершению процесса.

3.3.1. Различные условия эксплуатации объекта включая виды транспорта, которые будут использоваться для доступа к объекту.

На период проведения проектируемых работ предусматривается проживание на вахтовом поселке, расположенном за пределами промлощадки скважины.

Численность вахты – 30 человек на период бурения и период испытания скважины.

Доставка грузов и вахт будет осуществляться автотранспортом с города Кызылорды. Заезд транспорта на буровую осуществляется по утвержденному маршруту, по подготовленным перед началом работ дорогам со снятым ПСП и твердым (щебеночным) покрытием.

При производстве работ используются машины и механизмы Подрядчиков.

Для размещения бурового оборудования подготавливается площадка 3,5 га под 1-ну скважину в соответствии с санитарными и экологическими требованиями.

Проведение монтажа буровой установки предусматривается в соответствии с унифицированными схемами, предусматривающими замкнутый цикл водопользования и гидроизоляцию площадок под вышечно-лебедочным, силовым и насосными блоками, а также под циркуляционной системой и блоком приготовления бурового раствора, складом ГСМ

Для предупреждения загрязнения поверхностных вод ливневыми и талыми водами, стекающими с участка буровой, необходимо:

- Оградить отведенный участок буровой нагорной канавой, предупреждающей попадание склонового поверхностного стока на участок.
- **В** нижней по склону части участка будут проведены канава и лотки для перехвата и аккумуляции всего стока, стекаемого с участка.
- Собираемые в лотки ливневые и талые воды можно использовать для технических целей.
- **У** Циркуляционная система будет в герметичном исполнении и не должна будет допускать переливов раствора на почву.

Площадки для хранения химреагентов будут иметь покрытие, а химреагенты храниться в закрытой таре. Площадка для склада ГСМ устраивается в наиболее низкой отметке рельефа, очищается от сухой травы и обваловывается вокруг высотой не менее 0,5 м и покрывается изоляционной пленкой во избежание растекания жидкости в случае аварии.

Расстояние от площадки ГСМ до жилых вагончиков, стоянок автотракторной техники, производственных помещений, передвижных электростанций и т.д. предусматривается не менее $50~\rm M$.

Буровая площадка обваловывается полностью по периметру земляным обвалом на территориях, где существует угроза затопления их паводковыми или нагонными водами.

3.3.2. Различные варианты, относящиеся к иным характеристикам намечаемой деятельности, влияющие на характер и масштабы антропогенного воздействия на окружающую среду

Энергоэффективность. Энергоэффективность — важная задача по сохранению природных ресурсов. К основным направлениям энергоэффективности относятся:

- экономия электрической энергии;
- экономия тепла;
- экономия воды;
- экономия газа.

Проектом предусматривается комплекс мероприятий по энергоэффективности, который включает экономию электрической энергии, экономия тепла, экономия воды.

Комплекс мероприятий по экономии электрической энергии включает: оптимальный подбор мощности электродвигателей; использование устройств регулировки температуры, в том числе устройств автоматического включения и отключения, снижения мощности в зависимости от температуры, временных таймеров.

Комплекс мероприятий по экономии тепла включает: использование теплосберегающих материалов при строительстве зданий; повышение эффективности источников теплоты за счет снижения затрат на собственные нужды; использование узлов учета тепловой энергии; снижение тепловых потерь в окружающую среду; оптимизация гидравлических режимов тепловых сетей; использование современных теплоизоляционных материалов; использование вторичных энергоресурсов.

3.3.3. Под возможным рациональным вариантом осуществления намечаемой деятельности понимается вариант осуществления намечаемой деятельности, при котором соблюдаются в совокупности следующие условия

Принятый вариант намечаемой деятельности является рациональным, поскольку на всех этапов намечаемой деятельности соответствует законодательству Республики Казахстан, в том числе в области охраны окружающей среды.

3.3.4. Основные технико-экономические показатели

Перечень видов затрат предприятия, осуществляемых в период поисковых работ определен согласно Закону РК «О недрах и недропользовании» и «Единых правил по рациональному и комплексному использованию недр при разведке и добыче полезных ископаемых».

В смету стоимости включаются все затраты на сопутствующее скважинное оборудование, ГИС, опробование, лабораторные исследования.

Потребность и стоимость в капитальных вложениях определялась, исходя из объемных показателей, связанных с проведением работ, бурением новых скважин и удельных затрат, их обустройству, прокладке выкидных линий и т.д. Предполагаемые объемы инвестиционных затрат базируются на укрупненных удельных показателях стоимости, связанных как с бурением скважин, так и исходя из характеристики и необходимого количества оборудования, необходимого на строительство намеченных объектов, которые включают в себя издержки по инвестициям в основной капитал.

В проекте «Дополнение к Проекту разработки месторождения Жанбыршы» представлены расчет затрат на ликвидацию месторождения включает:

- затраты на ликвидацию скважин;
- затраты на ликвидацию объектов нефтепромыслового обустройства;
- затраты на рекультивацию земли.

Таким образом, общие ликвидационные затраты по месторождению составят суммарные затраты на ликвидацию скважин, затраты на демонтажные работы объектов обустройства промысла и затраты по рекультивации земли.

Капитальные вложения рассчитаны с учетом того, что большая часть оборудования, материалов, сооружений будет приобретаться в Казахстане.

Однако также возможно приобретение оборудования и материалов у производителей из других стран при невозможности приобретения соответствующего оборудования в Казахстане, а также в случаях их неконкурентоспособности с другими аналогами по показателям качества и цены.

В расчетах предполагается, что обеспечение необходимых объемов финансирования капитальных вложений будет осуществляться за счет собственных средств Подрядчика. Разработанная документация для получения заключения по результатам оценки воздействия на окружающую среду через Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов РК, а также специальные разделы по обеспечению безопасности рабочего персонала, управления технологическими процессами, подтверждают полное соответствие принятых решений нормативным требованиям законодательства Республики Казахстан, в том числе в области охраны окружающей среды:

Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК; Водный кодекс Республики Казахстан от 9 июля 2003 года, № 481-II ЗРК (с изменениями и дополнениями по состоянию на 01.07.2021 г.);

Земельный Кодекс Республики Казахстан от 20 июня 2003 года, № 442-II ЗРК (с изменениями и дополнениями по состоянию на 06.07.2021 г.);

Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями от 01.07.2021 г.);

Кодекс Республики Казахстан от 07 июля 2020 № 360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 24.06.2021 г.).

Затраты на рекультивацию земли

Согласно пп.3 п.2 ст. 217 Экологического Кодекса Республики Казахстан: «Природопользователи при проведении операций по недропользованию, геологоразведочных, строительных и других работ обязаны проводить рекультивацию нарушенных земель».

Рекультивация земель — это комплекс работ, направленных на восстановление продуктивности и народнохозяйственной ценности нарушенных и загрязненных земель, а также на улучшение условий окружающей среды.

Работы по *технической рекультивации* земель необходимо проводить в следующей последовательности:

перед проведением работ снять плодородный слой почвы (20 см);

- ✓ сбор снятого плодородного слоя почвы на специально отведенном участке;
- ✓ очистить участок от металлолома и других материалов;
- ✓ снять загрязненные грунты, обезвредить их и вывезти на полигон промышленных отходов;
- ✓ провести планировку территории и взрыхлить поверхность грунтов в местах, где они сильно уплотнены;
- ✓ нанести плодородный слой почвы на поверхность участка, где он был снят (с планировкой территории).

3.4. Информация о компонентах природной среды и иных объектах, которые могут быть подвержены существенным воздействиям намечаемой деятельности

Основными объектами природной и социально-экономической среды, которые могут быть подвержены воздействиям при проведении работ, являются следующие компоненты:

Социально-экономические:

- жизнь и здоровье людей;
- условия проживания населения;
- экономические интересы сообщества;
- землепользование;
- транспортная инфраструктура;
- объекты научного и духовного значения (памятники истории и культуры, археологические объекты, заповедные территории, природные феномены).
 Природные:
- атмосферный воздух (загрязненность газами, пылью, уровень шума);
- водные ресурсы (загрязненность подземных вод);
- земельные ресурсы, почва;
- биологические ресурсы (растения, животные).

3.4.1. Жизнь и (или) здоровье людей, условия их проживания и деятельности

Объектами воздействия при проведении разработки месторождения, являются здоровье и безопасность населения.

Воздействия на местное население могут быть оказаны в связи с загрязнением атмосферного воздуха, акустическим воздействием и вибрацией при проведении строительных работ в рамках намечаемой деятельности.

Однако в связи с нахождением проектируемых скважин на значительном расстоянии от населенных пунктов значимого воздействия на здоровье и безопасность местного населения не ожидается.

На рассматриваемой территории промышленных зон, лесов, сельскохозяйственных угодий, транспортных магистралей, селитебных территорий, зон отдыха, территории заповедников, ООПТ, музеев, памятников архитектуры, санаториев, домов отдыха отсутствуют.

Строительная площадка скважины представляют риск в том случае, если доступ населения к ним не контролируется надлежащим образом.

Месторождения Жанбыршы расположен на достаточном расстоянии от населенных пунктов и, таким образом, данный объект не будут представлять непосредственной угрозы для постоянно проживающего в этих населенных пунктах жителей.

Оценка ожидаемых на рабочих местах уровней шума и вибрации будет приниматься на основании технической документации на оборудование, в которой будут указаны сведения о производимых шуме и вибрации, и расчетах уровня шума и вибрации на рабочих местах.

Негативного воздействия на здоровье населения прилегающих территорий не ожидается в связи со значительным удалением участка планируемых работ от населенных пунктов.

Ожидается положительное воздействие за счет улучшения здоровья членов семей местных специалистов, задействованных на строительных работах в связи с ростом доходов.

3.4.2. Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы)

Биологическое разнообразие означает вариабельность живых организмов из всех источников, в том числе наземных, морских и иных водных экосистем, и экологических комплексов, частью которых они являются, и включает в себя разнообразие в рамках вида, между видами и разнообразие экосистем.

Под экологической системой (экосистемой) понимается являющийся объективно существующей частью природной среды динамичный комплекс сообществ растений, животных и иных организмов, неживой среды их обитания, взаимодействующих как единое функциональное целое и связанных между собой обменом веществом и энергией, который имеет пространственно-территориальные границы. Под средой обитания понимается тип местности или место естественного обитания того или иного организма или популяции.

Под природным ландшафтом понимается территория, которая не подверглась изменению в результате деятельности человека и характеризуется сочетанием определенных типов рельефа местности, почв, растительности, сформированных в единых климатических условиях.

На участке проведения работ отсутствуют объекты историко-культурного наследия, месторождения полезных ископаемых. Воздействие на растительность в период эксплуатации будет выражаться лишь в вероятности прямого или опосредованного воздействия на растительность прилегающих территорий.

Существенный риск воздействия на растительность прилегающих территорий в первую очередь связан с особенностями эксплуатации объекта и опасностью загрязнения почв прилегающих территориях различными веществами.

Стадия строительства, связанная с безвозвратным и временным отчуждением земельных участков для реализации проектных решений по строительству (а значит, уничтожением мест обитания растений и животных) окажет наиболее существенное негативное воздействие на растительность.

Сильная деградация природных экосистем наблюдается при механическом воздействии, связанном со строительными работами. Особенно отрицательно этот фактор сказывается на состоянии почв и растительного покрова.

Основным, негативно влияющим на состояние животного мира процессом, является «фактор беспокойства», вызванный присутствием работающей техники и людей.

В период проведения разработки месторождения, строительных работ некоторые виды, вследствие фактора беспокойства, будут вытеснены с прилежащей территории.

Шум, производимый строительной техникой, выбросы загрязняющих веществ в атмосферу при работе автотранспорта, незнакомые запахи и присутствие людей, будут служить отпугивающим фактором для животных.

Во многих случаях это является даже положительным фактором, т.к. заставит животных держаться на безопасном расстоянии от техники и персонала, работающего на объектах строительства.

Одним из значимых факторов воздействия является искусственное освещение в ночное время. Поскольку кроме гибели насекомых, летящих к источникам освещения, в ночное время больший процент млекопитающих будет гибнуть под колёсами автомашин в результате ослепления светом фар.

Тем не менее, в случае выявления в ходе оценки возможных воздействий значимых воздействий на охраняемые виды растений и животных, в рамках Плана сохранения биоразнообразия будут разработаны мероприятия по недопущению суммарных потерь биологического разнообразия, а в случае идентификации критических местообитаний – обеспечения прироста биоразнообразия.

3.4.3. Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации

Территории постоянного или временного проживания населения в границах земельного участка, отводимого под строительство, а также в границах СЗЗ объекта, отсутствуют.

Реализация Проекта не приведет к необходимости переселения жителей.

Согласно классификации по целевому назначению и разрешенному использованию участок строительства не попадает в зону приоритетного природопользования, на нем

отсутствуют объекты историко-культурного наследия, месторождения полезных ископаемых.

Сильная деградация природных экосистем наблюдается при механическом воздействии, связанном со строительными работами.

Особенно отрицательно этот фактор сказывается на состоянии почв и растительного покрова.

Сколько-нибудь значимого дополнительного воздействия со стороны строительных площадок на почвенный покров и земли прилегающих территорий (возрастание фито токсичности, сброс загрязняющих веществ в грунтовые воды и др.) не ожидается.

Исходя из природных особенностей территории не ожидается значительного воздействия земляных работ на почвенно-растительный покров и грунты и активизации неблагоприятных геологических процессов –подтопления и заболачивания территории.

3.4.4. Воды (в том числе гидроморфологические изменения, количество и качество вод)

На территории месторождения Жанбыршы постоянные водотоки и водоемы отсутствуют. Имеются только небольшие овраги и промоины временных водотоков.

Воздействия от этого вида хозяйственной деятельности может быть оценено с позиции рационального водопотребления и водоотведения, возможного загрязнения существующих на ограниченном участке техногенных вод, временных водотоков и водосборной площади в случае аварийной ситуации.

Потенциальное воздействие планируемых работ может оказываться на геологическую среду в отношении развития неблагоприятных экзогенных геологических процессов, которые в результате проведения полевых могут быть усилены или спровоцированы и на подземные воды первого от поверхности водоносного горизонта.

Основными источниками потенциального воздействия на геологическую среду и подземные воды при проведении работ, строительных работ будут являться транспорт и спептехника.

Одним из потенциальных источников воздействия на подземные воды (их загрязнения) могут быть утечки топлива и масел в местах скопления и заправки спецтехники и автотранспорта в период работ.

3.4.5. Атмосферный воздух (в том числе риски нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутствии ориентировочно безопасных уровней воздействия на него)

Атмосферный воздух является основным объектом окружающей среды, на который окажет воздействие намечаемая деятельность строительства. Качество атмосферного воздуха, как одного из основных компонентов природной среды, является важным аспектом при оценке воздействия проектируемого объекта на окружающую среду и здоровье населения.

Факторами воздействия на объект природной среды — атмосферный воздух - являются выбросы загрязняющих веществ от стационарных и передвижных источников в период проведения работ, строительства объектов. Источниками выбросов 3В в атмосферу является работа строительных машин, оборудования в период проведения бурении.

Загрязненность атмосферного воздуха химическими веществами может влиять на состояние здоровья населения, на животный и растительный мир прилегающей территории. Воздействие на атмосферный воздух намечаемой деятельности оценивается с позиции соответствия законодательным и нормативным требованиям, предъявляемым к качеству воздуха.

На данной стадии выполнения отчета, когда имеются только общие предварительные технические решения, возможно получение только ориентировочных значений показателей, которые будут уточняться на последующих стадиях проектирования.

Для оценки уровня загрязнения атмосферного воздуха от источников выбросов при реализации проекта приняты следующие критерии: максимально-разовые концентрации (ПДК м.р.). Согласно санитарным нормам РК, на границе СЗЗ и в жилых районах приземная концентрация ЗВ не должна превышать 1 ПДК.

- 4. ИНФОРМАЦИЯ О КАТЕГОРИИ ЗЕМЕЛЬ И ЦЕЛЯХ ИСПОЛЬЗОВАНИЯ ЗЕМЕЛЬ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ
- 5. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ НАМЕЧАЕМОЙ **ОСУЩЕСТВ**ЛЕНИЯ деятельности, ВКЛЮЧАЯ ИХ МОЩНОСТЬ, ГАБАРИТЫ (ПЛОЩАДЬ ЗАНИМАЕМЫХ ЗЕМЕЛЬ, ВЫСОТА), ДРУГИЕ ФИЗИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ, ВЛИЯЮЩИЕ НА ОКРУЖАЮЩУЮ воздействия СВЕДЕНИЯ HA СРЕДУ; **ПРОИЗВОДСТВЕННОМ** ОБ ОЖИДАЕМОЙ процессе, В том числе производительности предприятия, его потребности в энергии, ПРИРОДНЫХ РЕСУРСАХ, СЫРЬЕ И МАТЕРИАЛАХ.

Проектом разработки рассмотрено 4 варианта дальнейшей разработки месторождения.

Рассмотренные три варианта разработки для каждого эксплуатационного объекта различаются режимами разработки залежей, плотностями сеток скважин, технологическими режимами эксплуатации скважин.

Так как на месторождении не реализован проект ППЭ, вопросы углубленного изучения геолого-промысловых характеристик, в т.ч. фильтрационно-емкостных параметров пласта, ожидаемого режима работы залежи, активности водоносной части пласта (законтурных и подошвенных вод) остались недоизученными. В связи с этим, разработка месторождения должна быть проведена в 2 этапа:

- І этап разработки, первый год прогнозного периода;
- II этап разработки, начиная с 2 года прогнозного периода.

На I этапе разработки для уточнения режима работы залежи необходимо выполнить: выявление характера изменения пластового давления в процессе эксплуатации залежи, оценку потенциала упругой энергии пластовой системы, оценку активности законтурной водоносной области, уточнить фильтрационно-емкостные свойства коллекторов, продуктивности скважин, оптимальную депрессию на продуктивные пласты, оптимальные режимы эксплуатации добывающих скважин по данным длительной эксплуатации, а также уточнить физико-химические свойства нефти. Также предусмотрены ОПИ виде проведения технологии ПТОС.

На основе полученных данных I этапа разработки, возможно, появится необходимость в уточнении исходных параметров для дальнейших расчетов прогнозной добычи нефти.

Ниже представлено описание рассмотренных вариантов разработки выделенных эксплуатационных объектов месторождения.

Вариант 1 является базовым, с вводом из консервации 6 нефтяных скважин (№№ 1, 2, 6, 7, 9, 10) и с разделением на 2 этапа разработки: на 1 этапе предусматривается подключение 2 скважин в добычу фонтанным способом с разработкой залежей на естественном режиме. На втором этапе, в рамках данного варианта предусматривается дополнительный ввод из бурения 11 скважин: №№ 40, 41, 42, 43, 44, 45, 46, 47, 48, 60, 61.

Вариант 2 (рекомендуемый) основан на проектных решениях 1 варианта разработки и отличается применением технологии паротепловой обработки скважин (ПТОС) во всех скважинах, дополнительной перфорацией и переводом скважин на другие эксплуатационные объекты после обводнения их продукции. При этом режим работы залежи — водонапорный, с применением ППД закачкой воды.

ПТОС предусмотрено проводить в 4 цикла в год во всех скважинах Продолжительность ПТОС – до конца разработки.

Вариант 3 в отличие от 2 варианта предусматривает применение технологии закачка горячей воды в качестве альтернативной технологии добычи нефти.

Вариант 4 основан на проектных решениях 2 варианта дополнительным бурением 5 добывающих скважин с применением технологий ПТОС.

С целью дальнейшего изучения строения залежей УВ, характера распространения пластов-коллекторов и уточнения положения газоводонефтяных контактов месторождения предусмотрено дострел ранее не опробованных горизонтов, для перевода запасов нефти с категории С2 в категорию С1 произвести опробование скважины №11 горизонта А-1-3 (инт. 460-477м).

В настоящее время месторождения не обустроено, планируется использовать следующее оборудование для системы сбора продукции скважин:

- 1. АГЗУ (автоматизированная групповая замерная установка) 1 ед.;
- 2. Трехфазный сепаратор (C-1) -1 ед;
- 3. Газосепаратор (ГС-1) 1 ед.;
- 4. Печь подогрева (ПП-063) 2 ед.;
- 5. Факел (Φ -1) 1 ед.;
- 6. Технологический емкость (E-1) 2 ед.;
- 7. Товарный емкость (E-2) 2 ед.;
- 8. Водяной емкость (E-3) 2 ед.;
- 9. Насосный блок (НБ).

На месторождении Жанбыршы сбор и транспортировка нефти будет осуществляться по следующей схеме (рис. 6.3):

Нефтегазовая смесь поступает на автоматизированную групповую замерную установку (АГЗУ), которая предназначена для автоматического индивидуального замера дебита скважин по нефти и газу.

После индивидуального замера, газожидкостная смесь поступает на трехфазный сепаратор (С-1).

Отделившийся от жидкости газ направляется на газосепаратор (ГС), и в нем отделяются сопутствующие капли и образованный конденсат, после чего часть газа используется для подогрева на печи в количестве 2 ед (ПП-063).

Нефть собирается в технологических емкостях объемом 60 м3 и затем перекачивается в товарные емкости. Далее посредством насоса транспортируется на месторождения Западный Тузколь «Спутник-6».

Вода, выделенная после сепарации, сбрасывается в водяную емкость («OB-V-60м3»-2 ед.), после чего используется на $\Pi\Pi$ Д.

5.1. Технологические показатели вариантов разработки

С учетом Технического задания на проектирование, глубин залегания, плана расположения, геолого-физических характеристик и добывных возможностей продуктивных пластов, принятых местоположений скважин и других параметров, обоснованных в предыдущих разделах, по 4 основным вариантам рассчитаны технологические показатели разработки.

Ниже в таблицах 5.1.1–5.1.6 представлены характеристика основного фонда и показателей разработки по трём вариантам разработки.

6. ОПИСАНИЕ ПЛАНИРУЕМЫХ К ПРИМЕНЕНИЮ НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ – ДЛЯ ОБЪЕКТОВ І КАТЕГОРИИ, ТРЕБУЮЩИХ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО ЭКОЛОГИЧЕСКОГО РАЗРЕШЕНИЯ В СООТВЕТСТВИИ С ПУНКТОМ 1 СТАТЬИ 111 КОДЕКСОМ

Основными технологическими процессами, предопределяющими выбор состава оборудования, являются процессы бурения.

Работы по бурению осуществляются высокопроизводительными буровым станком.

Перечень технологического оборудования, разрешенного Комитетом по государственному контролю за чрезвычайными ситуациями и промышленной безопасностью Министерства по чрезвычайным ситуациям Республики Казахстан. Утверждение (разрешение) данный перечень получил на основании Закона РК «О промышленной безопасности на опасных производственных объектах» утвержденный постановлением Правительства РК от 30.06.2006 года № 626, сертификатов соответствий.

При проведении работ предприятие старается использовать технологическое оборудование, соответствующее передовому научно-техническому уровню.

В настоящее время одним из основных показателей, предъявляемых к данному типу оборудования, является их производительность, высокая точность, многооперационность, управляемость, доступность и безопасность.

Использование в различных отраслях промышленности экономически развитых стран, данного типа оборудования и их аналогов, с учетом их соответствия требованиям международных стандартов, свидетельствует о их соответствии передовому научнотехническому уровню.

Надлежащее функционирование и соответствие техническим условиям применяемого на предприятии оборудования обеспечивается за счет регулярного ремонта и контроля исправности.

На данный момент все технологическое оборудование, используемое предприятием, находится в должном техническом состоянии, что создает необходимые условия для качественного решения всех производственных задач.

В соответствии с вышеизложенным, применяемые на предприятии технологии, учитывая специфику предприятия и характер производимых работ, вполне соответствуют предъявляемым к ним требованиям.

Используемые технологические оборудования при строительстве разведочноэксплуатационных скважин зарубежного и российского производства соответствуют стандарту ИСО 9001:2000, противопожарным, санитарным и экологическим требованиям и при использовании оборудований с соблюдением правил безопасности и согласно инструкции по эксплуатации гарантийный срок службы увеличивается в несколько раз.

Критериями для выбора оборудований являются:

- характер работ;
- производительность технологических оборудований;
- малоотходность или безотходность технологий;
- минимум затрат на приобретение и эксплуатацию оборудования.

На случай возникновения аварийной ситуации в скважине, грозящей газонефтеводопроявлением или открытым фонтанированием, на БУ устанавливается комплекс противовыбросового оборудования. Он включает в себя превенторную установку со станцией управления и штуцерный манифольд. Конструкция универсального превентора позволяет герметизировать скважину при наличии в ней труб любого диаметра при давлении скважин до 700 кгс/см2. Штуцерный манифольд с рабочим давлением 700 кгс/см позволяет плавно регулировать давление в скважине при проведении работ по глушению нефтегазопроявлений.

В процессе проведения работ будут образовываться коммунальные и производственные отходы. Отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться в места утилизации или захоронения (или после переработки использоваться повторно).

Применение передовых технологий и надежного оборудования значительно снижают риск загрязнения окружающей среды вследствие аварий. Поэтому основным фактором воздействия на окружающую среду при проведении буровых работ остается сбор отходов и их утилизация. Применение малотоксичных реагентов для приготовления и обработки буровых растворов, безусловно, снижают отрицательное воздействие на окружающую среду. Учитывая особое значение экосистемы площади, буровая компания будет работать по принципу «безамбарный» метод.

Технологические оборудования (дизельный генератор и др.) приняты по всем рассматриваемым вариантам, исходя из оценки местных условий и возможностей по перечисленным критериям, концентрация вредных выбросов в пределах допустимого и дополнительные мероприятия по уменьшению выбросов загрязняющих веществ в атмосферу не требуются.

7. ОПИСАНИЕ РАБОТ ПО ПОСТУТИЛИЗАЦИИ СУЩЕСТВУЮЩИХ ЗДАНИЙ, СТРОЕНИЙ, СООРУЖЕНИЙ, ОБОРУДОВАНИЯ И СПОСОБОВ ИХ ВЫПОЛНЕНИЯ, ЕСЛИ ЭТИ РАБОТЫ НЕОБХОДИМЫ ДЛЯ ЦЕЛЕЙ РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ

Для целей реализации намечаемой деятельности выполнение работ по постутилизации существующих зданий, строений, сооружений, оборудования в связи с отсутствием таких объкетов, не требуется.

Работы будут выполняться вахтовым методом, круглосуточно, без выходных дней.

ИНФОРМАЦИЮ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ КОЛИЧЕСТВЕ ЭМИССИЙ В ОКРУЖАЮЩУЮ СРЕДУ, ИНЫХ ВРЕДНЫХ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ НА ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ ЭКСПЛУАТАЦИЕЙ СТРОИТЕЛЬСТВОМ И ОБЪЕКТОВ **ОСУЩЕСТВ**ЛЕНИЯ РАССМАТРИВАЕМОЙ деятельности, ВКЛЮЧАЯ ВОЗДЕЙСТВИЕ НА ВОДЫ, АТМОСФЕРНЫЙ ВОЗДУХ, ПОЧВЫ, НЕДРА, А ТАКЖЕ ВИБРАЦИИ, ШУМОВЫЕ, ЭЛЕКТРОМАГНИТНЫЕ, ТЕПЛОВЫЕ РАДИАЦИОННЫЕ ВОЗДЕЙСТВИЯ

Проведение оценки воздействия на окружающую среду является сложной задачей, поскольку приходится рассматривать множество факторов из различных сфер исследования. Кроме того, не все характеристики можно точно проанализировать и придать им количественную оценку. В этом случае прибегают к одному из методов экспертного оценивания, в соответствии с «Методическими указаниями по проведению оценки воздействия хозяйственной деятельности на окружающую среду» (Астана 2009, Приказ МООС РК №270-О от 29.10.2010 г.).

8.1. Методика оценки воздействия на окружающую природную среду

Значимость воздействия, являющаяся результирующим показателем оцениваемого воздействия на конкретный компонент природной среды, и оценивается по следующим параметрам:

- пространственный масштаб;
- временной масштаб;
- интенсивность.

Методика основана на балльной системе оценок. Здесь использовано четыре уровня оценки.

В таблице 8.1 представлены количественные характеристики критериев оценки.

Пространственный параметр воздействия определяется на основе анализа проектных технологических решений, математического моделирования процессов распространения загрязнения в окружающей среде или на основе экспертных оценок возможных последствий от воздействия намечаемой деятельности.

Приведенное в таблице разделение пространственных масштабов опирается на характерные размеры площади воздействия, которые известны из практики. В таблице также приведена количественная оценка пространственных параметров воздействия в условных баллах (рейтинг относительного воздействия).

Временной параметр воздействия на отдельные компоненты природной среды определяется на основе технического анализа, аналитических или экспертных оценок и выражается в четырёх категориях.

Величина (интенсивность) воздействия также оценивается в баллах.

Для определения значимости (интегральной оценки) воздействия намечаемой деятельности на отдельный элемент окружающей среды выполняется комплексирование полученных для данного компонента окружающей среды показателей воздействия.

Комплексный балл воздействия определяется путем перемножения баллов показателей воздействия по площади, по времени и интенсивности. Значимость воздействия определяется по трем градациям. Градации интегральной оценки приведены в таблице 8.2.

Результаты комплексной оценки воздействия производственных работ на окружающую среду в штатном режиме работ представляются в табличной форме. Для каждого вида деятельности определяются основные технологические процессы. Для каждого процесса определяются источники и факторы воздействия. С учетом природоохранных мер по уменьшению воздействия определяются ожидаемые последствия на ту или иную природную среду, и этим воздействиям дается интегральная оценка. В результате получается матрица, в которой в горизонтальных графах дается перечень природных сред, а по вертикали – перечень

видов деятельности и соответствующие им источники и факторы воздействия. На пересечении этих граф выставляется показатель интегральной оценки (воздействие высокой, средней и низкой значимости). Такая таблица дает наглядное представление о прогнозируемых воздействиях на компоненты окружающей среды.

Таблица 8.1.1 - Шкала масштабов воздействия и градация экологических последствий

Масштаб воздействия (рейтинг относительного воздействия и нарушения)	Показатели воздействия и ранжирование потенциальных нарушений
	гранственный масштаб воздействия
Локальный (1)	площадь воздействия до 1 км2, воздействие на удалении до 100 м от
	линейного объекта
Ограниченный (2)	площадь воздействия до 10 км2, воздействие на удалении до 1 км от линейного объекта
Территориальный (3)	площадь воздействия от 10 до 100 км2, воздействие на удалении от 1 до 10 км от линейного объекта
Региональный (4)	площадь воздействия более 100 км2, воздействие на удалении более 10 км от линейного объекта
F	ременной масштаб воздействия
Кратковременный (1)	Воздействие наблюдается до 6 месяцев
Средней продолжительности (2)	Воздействие отмечаются в период от 6 месяцев до 1 года
Продолжительный (3)	Воздействия отмечаются в период от 1 до 3 лет
Многолетний (постоянный) (4)	Воздействия отмечаются в период от 3 лет и более
Интенсивн	ость воздействия (обратимость изменения)
Незначительный (1)	Изменения в природной среде не превышают существующие пределы природной изменчивости
Слабый (2)	Изменения в природной среде превышают пределы природной изменчивости. Природная среда полностью самовосстанавливается
Умеренный (3)	Изменения в природной среде, превышающие пределы природной изменчивости, приводят к нарушению отдельных компонентов природной среды. Природная среда сохраняет способность к самовосстановлению
Сильный (4)	Изменения в природной среде приводят к значительным нарушениям компонентов природной среды и/или экосистемы. Отдельные компоненты природной среды теряют способность к самовосстановлению
	а воздействия (суммарная значимость воздействия)
Низкая (1-8)	Последствия испытываются, но величина воздействия достаточно низка (при смягчении или без смягчения), а также находится в пределах допустимых стандартов или рецепторы имеют низкую чувствительность/ценность
Средняя (9-27)	Может иметь широкий диапазон, начиная от порогового значения, ниже которого воздействие является низким, до уровня, почти нарушающего узаконенный предел.
Высокая (28-64)	Превышены допустимые пределы интенсивности нагрузки на компонент природной среды или отмечаются воздействия большого масштаба, особенно в отношении ценных/чувствительных ресурсов

Таблица 8.1.2 - Матрица оценки воздействия на окружающую среду в штатном режиме

	Категории воздействия,	Категории значимости			
Пространственный масштаб	Временной масштаб	Интенсивность воздействия	Баллы	Значимость	
<u>Локальное</u> 1	<u>Кратковременное</u> 1	<u>Незначительное</u> 1	1- 8	Воздействие низкой значимости	
Ограниченное	Средней продолжительности	<u>Слабое</u>		Sha mwooth	
2	2	2	9- 27	Воздействие средней	

Местное	Продолжительное	Умеренное		значимости
3	3	3		Воздействие высокой
<u>Региональное</u> 4	<u>Многолетнее</u> 4	<u>Сильное</u> 4	28 - 64	значимости

В отличие от социальной сферы, для природной среды не учитывается нулевое воздействие. Это связано с тем, что в отличие от социальной сферы, при любой деятельности будет оказываться воздействие на природную среду. Нулевое воздействие будет только при отсутствии планируемой деятельности.

8.1.1. Методика оценки воздействия на социально-экономическую сферу

При оценке изменений в состоянии показателей социально-экономической среды в данной методике используются приемы получения полуколичественной оценки в форме баллов.

Значимость воздействия непосредственно зависит от его физической величины.

Понятие величины охватывает несколько факторов, среди которых основными являются:

- масштаб распространения воздействия (пространственный масштаб);
- масштаб продолжительности воздействия (временной масштаб);
- масштаб интенсивности воздействия.

Для каждого компонента социально-экономической среды уровни значимых площадных, временных воздействий и воздействий интенсивности дифференцируются по градациям. Для оценки всей совокупности последствий намечаемой деятельности на социальные и экономические условия принимается пяти уровневая градация (с 1 до 5 баллов, с отрицательным и положительным знаком, ранжирующая как отрицательные, так и положительные факторы воздействия. Балл «0» проявляется в том случае, когда отрицательные воздействия компенсируются тем же уровнем положительных воздействий).

Каждую градацию воздействия проекта на компоненты социально — экономической среды определяют соответствующие критерии, представленные в таблице 8.3.

Характеристика критериев учитывает специфику социально-экономических условий республики и базируется на данных анализа многочисленных проектов, реализуемых на территории Республики Казахстан.

Таблица 8.1.3 - Шкала масштабов воздействия и градация экологических последствий на социально- экономическую среду

Масштаб воздействия (рейтинг	Показатели воздействия и ранжирование потенциальных
относительного воздействия и нарушения)	нарушений
Пространств	енный масштаб воздействия
Нулевое (0)	Воздействие отсутствует
Точечное (1)	Воздействие проявляется на территории размещения
	объектов проекта
Локальное (2)	Воздействие проявляется на территории близлежащих
	населенных пунктов
Местное (3)	Воздействие проявляется на территории одного или
	нескольких административных районов
Региональное (4)	Воздействие проявляется на территории области
Национальное (5)	Воздействие проявляется на территории нескольких смежных
	областей или республики в целом
Временн	ой масштаб воздействия
Нулевое (0)	Воздействие отсутствует
Кратковременное (1)	Воздействие проявляется на протяжении менее 3-х месяцев
Средней продолжительности (2)	Воздействие проявляется на протяжении от одного сезона
	(больше 3 – х месяцев) до 1 года

Долговременное (3)	Воздействие проявляется в течение продолжительного
долговременное (3)	
	периода (больше 1 года, но меньше 3-х лет). Обычно
	охватывает временные рамки строительства объектов проекта
Продолжительное (4)	Продолжительность воздействия от 3-х до 5 лет. Обычно
	соответствует выводу объекта на проектную мощность
Постоянное (5)	Продолжительность воздействия более 5 лет
Интенсив	ность воздействия (обратимость изменения)
Нулевое (0)	Воздействие отсутствует
Незначительное (1)	Положительные и отрицательные отклонения в социально-
	экономической сфере соответствуют существовавшим до
	начала реализации проекта колебаниям изменчивости этого
	показателя
Слабое (2)	Положительные и отрицательные отклонения в социально-
	экономической сфере превышают существующие тенденции
	в изменении условий проживания в населенных пунктах
Умеренное (3)	Положительные и отрицательные отклонения в социально-
•	экономической сфере превышают существующие условия
	среднерайонного уровня
Значительное (4)	Положительные и отрицательные отклонения в социально-
	экономической сфере превышают существующие условия
	среднеобластного уровня
Сильное (5)	Положительные и отрицательные отклонения в социально-
Carrottoc (3)	экономической сфере превышают существующие условия
	среднереспубликанского уровня

Интегральная оценка воздействия представляет собой 2-х ступенчатый процесс.

На первом этапе, в соответствии с градациями масштабов воздействия, суммируются баллы отдельно отрицательных и отдельно положительных пространственных, временных воздействий и интенсивности воздействий для получения комплексного балла по каждому выявленному виду воздействия для каждого рассматриваемого компонента. Получается итоговый балл отрицательных или положительных воздействий.

На втором этапе для каждого рассматриваемого компонента определяется интегрированный балл посредством суммирования итоговых отрицательных или положительных воздействий.

Балл полученной интегральной оценки позволяет определить интегрированный, итоговый уровень воздействия (высокий, средний, низкий) на конкретный компонент социально-экономической среды, представленный в таблице 8.4.

Таблица 8.1.4 - Матрица оценки воздействия на социально-экономическую сферу в штатном режиме

Итоговый балл	Итоговое воздействие
от плюс 1 до плюс 5	Низкое положительное воздействие
от плюс 6 до плюс 10	Среднее положительное воздействие
от плюс 11 до плюс 15	Высокое положительное воздействие
0	Воздействие отсутствует
от минус 1 до минус 5	Низкое отрицательное воздействие
от минус 6 до минус 10	Среднее отрицательное воздействие
от минус 11 до минус 15	Высокое отрицательное воздействие

8.2. Оценка воздействия на атмосферный воздух

8.2.1. Характеристика объекта как источника загрязнения атмосферного воздуха

Основные источники воздействия на окружающую среду при эксплуатации месторождения Жанбыршы 2031 год. 2 вариант (рекомендуемый)

Источник №0001, 0002 Печь подогрева ПП-0,63

Источник №0003 Факел

Источник №0004 Дизельгенератор

Источник №0005 Цементировочный агрегат ЦА-320

Источник №0006 Резервур для нефти

Источник №0007 Технологическая емкость

Источник №0008 Подогреватель нефти на АГЗУ

Источник №0009 Емкость дизельного топлива

Источник №0010 Емкость моторного масла

Источник №0011 Емкость отработанного отработанного масла

Источник №0011 Парагенераторная установка

Источник №6001 Насос для перекачки диз.топлива

Источник №6002-6016 Скважины

Источник №6017 Выкидные линие

Источник №6018-6019 Насос-технологический

Источник №6020 АГЗУ

Источник №6021 Трехфазный сепаратор

Источник №6022 Блок манифольд

Источник №6023 Газовый скруббер

Источник №6024 Газовый сепаратор

В настоящее время месторождения не обустроено, планируется использовать следующее оборудование для системы сбора продукции скважин:

АГЗУ (автоматизированная групповая замерная установка) – 1 ед.;

Трехфазный сепаратор (C-1) -1 ед;

Газосепаратор (ГС-1) - 1 ед.;

Печь подогрева (ПП-063) -2 ед.;

Факел (Φ -1) – 1 ед.;

Технологический емкость (E-1) - 2 ед.;

Товарный емкость (E-2) - 2 ед.;

Водяной емкость (E-3) -2 ед.;

Насосный блок (НБ).

Нефтегазовая смесь поступает на автоматизированную групповую замерную установку (АГЗУ), которая предназначена для автоматического индивидуального замера дебита скважин по нефти и газу.

После индивидуального замера, газожидкостная смесь поступает на трехфазный сепаратор (C-1).

Отделившийся от жидкости газ направляется на газосепаратор (Γ C), и в нем отделяются сопутствующие капли и образованный конденсат, после чего часть газа используется для подогрева на печи в количестве 2 ед ($\Pi\Pi$ -063).

Нефть собирается в технологических емкостях объемом 60 м3 и затем перекачивается в товарные емкости. Далее посредством насоса транспортируется на месторождения Западный Тузколь «Спутник-6».

Вода, выделенная после сепарации, сбрасывается в водяную емкость («ОВ-V-60м3»-2 ед.), после чего используется на ППД.

Перечень и характеристика загрязняющих веществ, выброс которых в атмосферу вероятен при бурении, испытании и эксплуатации скважин, от стационарных источников приведена в таблице 3-1.

ЭРА v4.0 ТОО "КазНИГРИ"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

АМС_Жалагаш_2023, Бурение_эксп.скв._гл.850(+/-250)м_Жанбыршы

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)
1	2	3	4	5	6	7	8	9	10	11
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,00848	0,001954	0,09328	0,021494
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,001502	0,000346	0,016522	0,003806
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	6,99288889	12,628536	76,92177779	138,913896
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	1,136344444	2,0521371	12,49978888	22,5735081
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,457083331	0,78953	5,027916641	8,68483
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	1,09055556	1,972955	11,99611112	21,702505
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,000825204	0,000808244	0,009077244	0,008890684
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	5,651388888	10,26128	62,16527777	112,87408
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,000347	0,00008	0,003817	0,00088
0410	Метан (727*)				50		0,00215	0,0111468	0,02365	0,1226148
0415	Смесь углеводородов предельных C1- C5 (1502*)				50		0,79880994	0,5257192	8,78690934	5,7829112
0416	Смесь углеводородов предельных С6-С10 (1503*)				30		0,3034412	0,215183	3,3378532	2,367013
0602	Бензол (64)		0,3	0,1		2	0,00463365	0,006559	0,05097015	0,072149

0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2			3	0,00145229	0,0020152	0,01597519	0,0221672
0621	Метилбензол (349)	0,6			3	0,00291858	0,0041204	0,03210438	0,0453244
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0,000001		1	0,000010928	0,000021704	0,000120208	0,000238744
1325	Формальдегид (Метаналь) (609)	0,05	0,01		2	0,109500001	0,197339	1,204500011	2,170729
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)			0,05		0,0008	0,00026208	0,0088	0,00288288
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1			4	2,72168736	4,914859956	29,93856096	54,06345952
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	0,688	0,21566	7,568	2,37226
	ВСЕГО:					19,97281926	33,80051268	219,7010119	371,8056395

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

отчет о возможных воздействиях 23

ЭРА v4.0 ТОО "КазНИГРИ" Таблица 3.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

АМС_Жалагаш_2023, Исп.скв.№11

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,0019	0,000586	0,01465
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,0003364	0,0001038	0,1038
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	2,364508462	6,15302259	153,825565
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,384232624	0,99986617	16,6644362
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,161090383	0,44035883	8,80717654
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,368000001	0,9501	19,002
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,000742772	0,00092548	0,115685
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	1,97890384	5,54370827	1,84790276
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,0000778	0,000024	0,0048
0410	Метан (727*)				50		0,011589263	0,09011971	0,00180239
0415	Смесь углеводородов предельных C1-C5 (1502*)				50		0,79890494	0,7893884	0,01578777
0416	Смесь углеводородов предельных С6-С10 (1503*)				30		0,2954762	0,291966	0,0097322
0602	Бензол (64)		0,3	0,1		2	0,00467965	0,010198	0,10198
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,00146729	0,0020684	0,010342
0621	Метилбензол (349)		0,6			3	0,00294758	0,0064158	0,010693

0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0,000001		1	0,000003681	1,0452E-05	10,452
1325	Формальдегид (Метаналь) (609)	0,05	0,01		2	0,036800001	0,09501	9,501
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)			0,05		0,0004	0,000176	0,00352
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	1			4	0,918690903	2,38105692	2,38105692
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	0,1459	0,02974	0,2974
	ВСЕГО:					7,4766518	17,784845	223,17133

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v4.0 ТОО "КазНИГРИ"

Таблица 3.1.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

АМС_Жалагаш_2023, Эксплуатация м/я_Жанбыршы_2 вар.

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности 3В	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	1,313833551	18,195762362	454,894059
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,213505327	2,956856384	49,2809397

						-,	, , ->	,
	ΒСΕΓΟ:					4,6854002	57,5425749	659,847472
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)				4	0,538961722	7,368979064	7,36897906
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)			0,05		0,0004	0,00009662	0,0019324
1325	Формальдегид (Метаналь) (609)	0,05	0,01		2	0,020708334	0,28185	28,185
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0,000001		1	0,000002072	0,000030854	30,854
0621	Метилбензол (349)	0,6			3	0,00488236	0,1443476	0,24057933
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2			3	0,00239718	0,0704988	0,352494
0602	Бензол (64)	0,3	0,1		2	0,0077806	0,229604	2,29604
0416	Смесь углеводородов предельных С6-С10 (1503*)			30		0,0658074	0,877334	0,02924447
0415	Смесь углеводородов предельных С1-С5 (1502*)			50		0,18572788	2,6180028	0,05236006
0410	Метан (727*)			50		0,126176018	3,406255659	0,06812511
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	1,846542922	17,388386348	5,79612878
0333	Сероводород (Дигидросульфид) (518)	0,008			2	0,00024686	0,003201736	0,400217
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,5	0,05		3	0,197250001	2,7735	55,47
0328	Углерод (Сажа, Углерод черный) (583)	0,15	0,05		3	0,161177959	1,227868635	24,5573727

25

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

8.2.4. Анализ расчетов выбросов загрязняющих веществ в атмосферу

Для количественной и качественной оценки выбросов загрязняющих веществ в атмосферу в период разработки месторождения Жанбыршы проведены предварительные расчеты с учетом максимальной проектной добычи углеводорода.

Расчеты выбросов вредных веществ в атмосферу выполнены в соответствие следующими действующими методиками:

- «Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей». Министерство охраны окружающей среды РК. РНД. Астана 2008г.;
- Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы, 1996. Раздел 5 Расчет выбросов вредных веществ при производстве нефтепродуктов.;
- Сборником методик по расчету выбросов вредных вещества в атмосферу различными производствами. Приказ МООС №324-п от 27 октября 2006 года;
- «Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004, Астана 2004 г.;
- Методикой расчета выбросов вредных веществ в окружающую среду от неорганизованных источников нефтегазового оборудования, РД 39.142-00;
- "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г., п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час. и др;
- техническими характеристиками применяемого оборудования.

Проведенные расчеты выбросов загрязняющих веществ от проектируемого и существующего оборудования в данном проекте, являются предварительными и ориентировочными, так как оценить точные объемы выбросов загрязняющих веществ на данном этапе разработки не представляется возможным. Более точные объемы выбросов загрязняющих веществ в атмосферу, образующиеся в период ввода скважин из консервации, в период проведения строительно-монтажных работ, в период бурения и испытания скважин, будут представлены в отдельных Технических проектах на строительство скважин, с учетом глубины скважин, типом буровой установки, условиями бурения и т.д.

Экологическая оценка проводилась по 3 представленным вариантам разработки, которые отличаются между собой количеством вводимых в эксплуатацию новых добывающих скважин (переводом с другого объекта или из бурения), конструкциями скважин и степенью воздействия на залежь.

Выполненные расчеты валовых выбросов в атмосферу показали, что годовое количество загрязняющих веществ, выбрасываемых в атмосферу при регламентированной эксплуатации месторождения, составит:

Ориентировочные минимальные выбросы загрязняющих веществ в атмосферу планируются по варианту 1, но по технико-экономической оценки рассмотренных вариантов разработки рекомендуется к реализации вариант 2.

В период реализации проекта предполагается ввод из бурения скважин по 2 варианту (рекомендуемый) разработки.

Ориентировочное количество выбросов загрязняющих веществ, при расконсервации и строительстве скважин, по аналогии с ранее разработанными проектными документами соседних месторождении, составит:

Согласно результатам расчетов выбросов вредных веществ в атмосферу, основной вклад в валовый выброс загрязняющих веществ в атмосферу вносят: диоксид азота, оксид углерода и углеводороды C12-C19.

Расчеты выбросов загрязняющих веществ выполнены для всех источников организованных и неорганизованных выбросов, по всем ингредиентам, присутствующим в выбросах и представлены в Приложении 1.

8.2.5. Возможные залповые и аварийные выбросы

Залповые выбросы в атмосферу являются специфической частью технологического процесса и происходят при проведении ремонтных работ, во время опорожнения и продувке технологических аппаратов.

Под аварийными выбросами понимают существенные отклонения от нормативнопроектных или допустимых эксплуатационных условий производственно-хозяйственной деятельности по причинам, связанным с действием человека или технических средств.

Аварийные выбросы возможны при нарушении герметичности трубопроводов. В составе выбросов будут присутствовать: углеводороды.

8.2.6. Предложения по установлению ориентировочных нормативов допустимых выбросов (НДВ)

Нормативы допустимых выбросов (НДВ) является нормативом, устанавливаемым для источника загрязнения атмосферы при условии, что выбросы вредных веществ от него и от совокупности других источников предприятия, с учетом их рассеивания и перспективы развития предприятия, не создадут приземные концентрации, превышающие установленные нормативы качества (ПДК) для населенных мест, растительного и животного мира.

Рассчитанные значения НДВ являются научно обоснованной технической нормой выброса промышленным предприятием вредных химических веществ, обеспечивающей соблюдение требований санитарных органов по чистоте атмосферного воздуха населенных мест и промышленных площадок. Основными критериями качества атмосферного воздуха при установлении НДВ для источников загрязнения атмосферы являются ПДК.

Расчеты рассеивания загрязняющих веществ в приземном слое атмосферы показали, что максимальные приземные концентрации ни по одному из ингредиентов, не создают превышения ПДК. Исходя из этого, предлагается принять объем эмиссий в атмосферу, рассчитанный в данном проекте, в качестве ориентировочных нормативов эмиссий.

Нормативы НДВ в период разработки месторождения Жанбыршы будут представлены в проектах НДВ.

8.2.7. Расчет рассеивания загрязняющих веществ в атмосферу

В соответствии с нормами проектирования, в Казахстане для оценки влияния выбросов загрязняющих веществ на качество атмосферного воздуха используется математическое моделирование. Расчет содержания вредных веществ в атмосферном воздухе должен проводиться в соответствии с требованиями «Методики расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий» Приложение №12 к приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014г. №221-ө.

Загрязнение приземного слоя воздуха, создаваемого выбросами промышленных объектов, зависит от объемов и условий выбросов загрязняющих веществ в атмосферу, природно-климатических условий и особенностей циркуляции атмосферы.

Моделирование рассеивания загрязняющих веществ в приземном слое атмосферы при эксплуатации месторождения, проводилось на программном комплексе «ЭРА-Воздух» версия 3.0., в котором реализованы основные зависимости и положения «Расчета полей концентраций вредных веществ в атмосфере без учета влияния застройки» (в соответствии с Приложением № 12).

Проведенные расчеты по программе позволили получить следующие данные:

- уровни концентрации загрязняющих веществ в приземном слое атмосферы по всем источникам, полученные в узловых точках контролируемой зоны с использованием средних метеорологических данных по 8-ми румбовой розе ветров и при штиле;
 - максимальные концентрации в узлах прямоугольной сетки;
 - степень опасности источников загрязнения;
 - поле расчетной площадки с изображением источников и изолиний концентраций.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосферном воздухе рассматриваемого района представлены в таблице 8.2.8.

Таблица 8.2.8 - Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города Кызылорда, р/н Жалагаш

Наименование характеристик	Величина			
Коэффициент, зависящий от стратификации атмосферы, А	200			
Коэффициент рельефа местности в городе	1.00			
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, град.С	30.2			
Средняя температура наружного воздуха наиболее холодного месяца (для котельных, работающих по отопительному графику), град С Среднегодовая роза ветров, %	-10.8			
С	11.0			
CB	21.0			
В	20.0			
ЮВ	7.0			
Ю	7.0			
ЮЗ	9.0			
3	14.0			
C3	10.0			
Среднегодовая скорость ветра, м/с	4.7			
Скорость ветра (по средним многолетним	12.0			
данным), повторяемость превышения которой составляет 5 %, м/с				

Расчет приземных концентраций в атмосферном воздухе вредных химических веществ проведен в полном соответствии с методикой расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий.

Значение коэффициента А, зависящего от стратификации атмосферы соответствующего неблагоприятным метеорологическим условиям, принято в расчетах равным 200.

Для проведения расчета рассеивания загрязняющих веществ при эксплуатации месторождения взят расчетный прямоугольник размером 11500х7750 м, с шагом сетки 250 м.

Размеры расчетного прямоугольника и шаг расчетной сетки выбраны с учетом взаимного расположения оборудования площадки.

Так как район характеризуется относительно ровной местностью с перепадами высот, не превышающими 50 м на 1 км, то поправка на рельеф к значениям концентраций загрязняющих веществ не вводилась.

Координаты расчетных площадок на карте-схеме приняты относительно основной системы координат.

При выполнении расчетов учитывались метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере, фоновые концентрации загрязняющих веществ в атмосферном воздухе района расположения предприятия.

Для предприятия на основании расчетов рассеивания в исходный период определены выбросы с учетом фона.

Расчет рассеивания максимальных приземных концентраций загрязняющих веществ, образующихся от источников загрязнения на месторождении, произведен без учета фоновых концентраций вредных веществ в атмосфере и показал, что при разработки месторождения, концентрация на уровне СЗЗ не превысила допустимых нормативов.

Расчет рассеивания проводился для рекомендуемого 2 варианта разработки месторождения на 2027 год.

Результаты проведенных расчетов рассеивания, показали, что разработка месторождения Жанбыршы при рассматриваемой организации системы сбора и подготовки добываемой продукции не приведет к превышению предельно- допустимой концентрации. По каждому загрязняющему веществу в приземном слое атмосферного воздуха на границе санитарно-защитной зоны превышений не предполагается, следовательно, и за ее пределами не окажет отрицательного воздействия.

Графические результаты расчетов рассеивания в виде карт-схем изолиний представлены в приложении 2.

8.2.8. Анализ результатов расчета уровня загрязнения атмосферы

Предварительный анализ результатов расчетов показывает, что превышение ПДК загрязняющих веществ при разработке месторождения Жанбыршы по рекомендуемому варианту, на границе нормативной СЗЗ не наблюдается.

В результате проведенных расчетов рассеивания загрязняющих веществ был определен радиус область воздействия (по концентрации 1 ПДК группы суммации 6007 (азота диоксид и сера диоксид), который составил 700 м от крайних источников.

Приземные концентрации на границе СЗЗ по всем веществам при разработке месторождения приведены в таблице 8.2.9.

Расчет уровня загрязнения атмосферы района проведения работ, при эксплуатации месторождения Жанбыршы выявил, что на границе СЗЗ приземные концентрации по всем загрязняющим веществам не превышают 1 ПДК.

 Таблица 8.2.9 - Сводная таблица результатов расчетов рассеивания загрязняющих веществ

Код ЗВ	Наименование загрязняющих веществ и состав групп суммаций	Cm	РΠ	С33	Граница области возд.	Территория предприятия	Колич. ИЗА	ПДКмр (ОБУВ) мг/м3	ПДКсс мг/м3	Класс опасн.
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,7367	0,194034	0,00031	0,029999	0,213954	1	0.4*	0,04	3
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	5,1539	1,357534	0,002171	0,209887	1,496902	1	0,01	0,001	2
0301	Азота (IV) диоксид (Азота диоксид) (4)	54,6988	3,736045	0,171947	0,843171	30,92173	11	0,2	0,04	2
0304	Азот (II) оксид (Азота оксид) (6)	33,7331	2,340003	0,092999	0,490315	20,00557	10	0,4	0,06	3
0328	Углерод (Сажа, Углерод черный) (583)	36,1918	1,082484	0,035894	0,192867	17,91128	9	0,15	0,05	3
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	13,2337	0,779904	0,0318	0,167327	4,463925	10	0,5	0,05	3
0333	Сероводород (Дигидросульфид) (518)	0,0446	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	2	0,008	0.0008*	2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	2,6989	0,193972	0,012074	0,047207	1,111043	10	5	3	4
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,1982	0,114936	0,000495	0,019375	0,123542	1	0,02	0,005	2
0410	Метан (727*)	0,0015	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	2	50	5.0*	-
0415	Смесь углеводородов предельных C1-C5 (1502*)	0,2034	0,017903	0,000321	0,011957	0,0264	33	50	5.0*	-
0416	Смесь углеводородов предельных С6-С10 (1503*)	0,0054	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	3	30	3.0*	-
0602	Бензол (64)	0,0069	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	2	0,3	0,1	2
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0033	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	2	0,2	0.02*	3
0621	Метилбензол (349)	0,0022	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	2	0,6	0.06*	3
1052	Метанол (Метиловый спирт) (338)	0,1624	0,018268	0,000313	0,002405	0,1601	1	1	0,5	3
1097	1-(n-Метоксифенил)-2,2-дифенилэтанол-1 (Карбинол) (861*)	0,009	Cm<0.05	Cm<0.05	Cm<0.05	Cm<0.05	1	0,05	0.005*	-
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	13,7345	0,955327	0,037828	0,199733	8,201931	6	0,03	0,01	2
1325	Формальдегид (Метаналь) (609)	8,2407	0,573196	0,022697	0,11984	4,921158	6	0,05	0,01	2
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	4,1203	0,286598	0,011348	0,05992	2,460579	6	1	0.1*	4
6007	0301 + 0330	67,9325	4,509766	0,203412	1,010471	35,38566	13			
6037	0333 + 1325	8,2853	0,573196	0,022778	0,120032	4,92116	8			
6041	0330 + 0342	13,4319	0,779904	0,03191	0,167327	4,463926	11			
6044	0330 + 0333	13,2783	0,779904	0,03188	0,167855	4,463926	12			
Примеч										
	1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ									
	2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) - только для модели MPK-2014									
	3. "Звездочка" (*) в графе "ПДКмр(ОБУВ)" означает, что соответствующее значение взято как 10ПДКсс.									
	4. "Звездочка" (*) в графе "ПДКсс" означает, что соответствующее значение взято как ПДКмр/10.									
5.	5. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), на границе области воздействия и зоне "Территория предприятия" приведены в долях ПДКмр.									

8.2.9. Уточнение размера санитарно-защитной зоны (области воздействия)

Согласно Экологического кодекса республики Казахстан Кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК виды намечаемой деятельности и иные критерии, на основании которых осуществляется отнесение объектов, оказывающих негативное воздействие на окружающую среду, согласно Приложение 2 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI ЗРК к объектам I категории пункт 1.3. разведка и добыча углеводородов, переработка углеводородов.

Нормативная санитарно-защитная зона для месторождений Жанбыршы принимается равной 1000 м от территорий предприятия (I класс опасности).

Результаты проведенных расчетов рассеивания, показали, что в период эксплуатации месторождения, при рассматриваемой системе сбора, не приведет к превышению предельно-допустимой концентрации (ПДК) загрязняющих веществ в атмосфере по всем ингредиентам на границе санитарно-защитной зоны.

По каждому загрязняющему веществу в приземном слое атмосферного воздуха на границе санитарно-защитной зоны превышений не предполагается, следовательно, и за ее пределами не окажет отрицательного воздействия.

На территории СЗЗ предприятия отсутствуют населенные пункты, зоны заповедников, санаториев, курортов, к которым предъявляются повышенные требования к качеству атмосферного воздуха.

8.2.10. Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха

В рамках экологического мониторинга решаются сложные и многоплановые задачи, связанные с определением комплексной техногенной нагрузки и выявлением экологически неблагополучных территорий.

Основной целью экологического мониторинга является предотвращение необратимых изменений окружающей среды на основе изучения тенденций изменения компонентов природной среды, выявления причинно-следственных связей и оперативного прогноза их будущего состояния в зависимости от фактического техногенного воздействия, путем создания системы наблюдения и контроля воздействия на окружающую среду.

Согласно «Экологического кодекса Республики Казахстан», природопользователи обязаны осуществлять производственный экологический контроль, основным элементом которого является производственный мониторинг, выполняемый для получения объективных данных с установленной периодичностью.

Производственный мониторинг осуществляется в соответствии с требованиями законодательных актов Республики Казахстан, а также правил и норм, устанавливаемых подзаконными и иными актами, принятыми в развитие законов Республики Казахстан.

Производственный мониторинг проводится природопользователем (оператором) на основе программы производственного экологического контроля, разрабатываемой природопользователем.

В программе производственного экологического контроля устанавливаются обязательный перечень параметров, отслеживаемых в процессе производственного экологического контроля, критерии определения его периодичности, продолжительность и частота измерений, используемые инструментальные или расчетные методы.

При ведении производственного мониторинга решаются следующие задачи:

- проверка выполнения требований законодательных актов, нормативных и других подобных документов, предъявляемых к состоянию природных объектов;
- своевременное выявление изменений состояния природной среды на основе наблюдений;
- оценка выявленных изменений окружающей среды, прогноз ее возможных изменений, сравнение фактических и прогнозируемых воздействий на природные объекты;
- проверка эффективности экологически обоснованных конструктивных решений и природоохранных мероприятий на основе получаемых результатов мониторинга;
- изучение последствий аварий, приведших к загрязнению природной среды, уничтожению флоры и фауны;
- выработка рекомендаций по предупреждению и устранению последствий негативных процессов.

Мониторинг окружающей среды должен проводиться специализированной организацией, уполномоченной осуществлять данный вид деятельности на основании свидетельства Технического комитета по стандартизации, метрологии и сертификации.

Организация контроля за выбросами

В соответствии со статьей 182 Экологического кодекса Республики Казахстан, операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль

Целями производственного экологического контроля являются:

- 1) получение информации для принятия оператором объекта решений в отношении внутренней экологической политики, контроля и регулирования производственных процессов, потенциально оказывающих воздействие на окружающую среду;
- 2) обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- 3) сведение к минимуму негативного воздействия производственных процессов на окружающую среду, жизнь и (или) здоровье людей;
- 4) повышение эффективности использования природных и энергетических ресурсов;
 - 5) оперативное упреждающее реагирование на нештатные ситуации;
- 6) формирование более высокого уровня экологической информированности и ответственности руководителей и работников оператора объекта;
 - 7) информирование общественности об экологической деятельности предприятия;
 - 8) повышение эффективности системы экологического менеджмента.

Порядок проведения производственного экологического контроля:

- ✓ производственный экологический контроль проводится операторами объектов I и II категорий на основе программы производственного экологического контроля, являющейся частью экологического разрешения, а также программы повышении экологической эффективности.
- ✓ экологическая оценка эффективности производственного процесса в рамках производственного экологического контроля осуществляется на основе измерений и (или) расчетов уровня эмиссий в окружающую среду, вредных производственных факторов, а также фактического объема потребления природных, энергетических и иных ресурсов.

Производственный мониторинг является элементом производственного экологического контроля, а также программы повышения экологической эффективности.

В рамках осуществления производственного мониторинга выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

Мониторингом эмиссий в окружающую среду является наблюдение за количеством, качеством эмиссий и их изменением.

Производственный мониторинг эмиссий в окружающую среду и мониторинг воздействия осуществляются лабораториями, аккредитованными в порядке, установленном законодательством Республики Казахстан об аккредитации в области оценки соответствия.

Лицо, осуществляющее производственный мониторинг, несет ответственность в соответствии с Кодексом Республики Казахстан об административных правонарушениях за предоставление недостоверной информации по результатам производственного мониторинга.

Данные производственного мониторинга используются для оценки состояния окружающей среды в рамках ведения Единой государственной системы мониторинга окружающей среды и природных ресурсов.

Мониторинг воздействия является обязательным в следующих случаях:

- 1) когда деятельность затрагивает чувствительные экосистемы и состояние здоровья населения;
 - 2) на этапе введения в эксплуатацию технологических объектов;
 - 3) после аварийных эмиссий в окружающую среду.

Мониторинг воздействия может осуществляться оператором объекта индивидуально, а также совместно с операторами других объектов по согласованию с уполномоченным органом в области охраны окружающей среды.

Производственный мониторинг эмиссий в окружающую среду и мониторинг воздействия осуществляются лабораториями, аккредитованными в порядке, установленном законодательством Республики Казахстан об аккредитации в области оценки соответствия.

Лицо, осуществляющее производственный мониторинг, несет ответственность в соответствии с Кодексом Республики Казахстан об административных правонарушениях за предоставление недостоверной информации по результатам производственного мониторинга.

Данные производственного мониторинга используются для оценки состояния окружающей среды в рамках ведения Единой государственной системы мониторинга окружающей среды и природных ресурсов.

Оператор объекта ведет внутренний учет, формирует и представляет периодические отчеты по результатам производственного экологического контроля в электронной форме в Национальный банк данных об окружающей среде и природных ресурсах Республики Казахстан в соответствии с правилами, утверждаемыми уполномоченным органом в области охраны окружающей среды.

Периодические отчеты по результатам производственного экологического контроля должны быть опубликованы на официальном интернет-ресурсе уполномоченного органа в области охраны окружающей среды.

Лицо, ответственное за проведение производственного экологического контроля, обязано обеспечить ведение на объекте или отдельных участках работ журналов производственного экологического контроля, в которые работники должны записывать обнаруженные факты нарушения требований экологического законодательства Республики Казахстан с указанием сроков их устранения.

Лица, ответственные за проведение производственного экологического контроля, обнаружившие факт нарушения экологических требований, в результате которого возникает угроза жизни и (или) здоровью людей или риск причинения экологического ущерба, обязаны незамедлительно принять все зависящие от них меры по устранению или локализации возникшей ситуации и сообщить об этом руководству оператора объекта.

8.2.11. Оценка воздействия на атмосферный воздух

Анализируя ориентировочные данные о количестве выбросов загрязняющих веществ в атмосферу и используя шкалу масштабов воздействия, можно сделать вывод, что воздействие на атмосферный воздух в период разработки месторождения Жанбыршы по каждому из вариантов разработки будет следующим:

- ✓ пространственный масштаб воздействия *территориальный* (3) площадь воздействия от 10 до 100 км 2 для площадных объектов или на удалении от 1 до 10 км от линейного объекта;
- ✓ временной масштаб воздействия *многолетний* (постоянный) (4) продолжительность воздействия более 3 лет;
- ✓ интенсивность воздействия (обратимость изменения) *слабый* (2) изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, интегральная оценка составляет 24 баллов, категория значимости воздействия на атмосферный воздух присваивается средней (9-27). Последствия испытываются, но величина воздействия достаточна низка в пределах допустимых стандартов.

8.2.12. Мероприятия по предотвращению загрязнения атмосферного воздуха

В данном разделе перечислены основные мероприятия по снижению количества выбросов загрязняющих веществ в атмосферу при разработке месторождения Жанбыршы, разработанных для данного проекта.

Для безаварийной разработки месторождения в соответствии с «Едиными правилами по рациональному и комплексному использованию недр при разработке и добыче полезных ископаемых» должны быть предусмотрены следующие мероприятия организационно-технического характера:

- использование современного нефтяного оборудования с минимальными выбросами в атмосферу;
- предупреждение открытого фонтанирования скважин в процессе бурения и проведения технологических и ремонтных работ в скважине;
- установка на устье скважин противовыбросового оборудования;
- внедрение методов испытания скважин, исключающих выброс вредных веществ в атмосферу;
- подбор оборудования, запорной арматуры, предохранительных и регулирующих клапанов в строгом соответствии с давлениями, под которым работает данное оборудование;
- автоматизация технологических процессов подготовки нефти, обеспечивающая стабильность работы всего оборудования с контролем и аварийной сигнализацией при нарушении заданного режима, что позволит обслуживающему персоналу предотвратить возникновение аварийных ситуаций;
- применение на всех резервуарах с нефтепродуктами устройств, сокращающих испарение углеводородов в атмосферу;
- усиление мер контроля работы основного технологического оборудования и проведение технологического ремонта;
- контроль эффективности работы систем газообнаружения и пожарной сигнализации;
- строгое соблюдение всех технологических параметров;
- осуществление постоянного контроля за ходом технологического процесса (измерение расхода, давления, температуры);
- обеспечение защитными устройствами и системами, автоматическим управлением и регулированием, а также иными техническими средствами, предупреждающими возникновение и развитие аварийных ситуаций при нарушении технологических параметров процесса;
- осуществление постоянного контроля за изменением параметров качества природной среды: воздуха в рабочей зоне, почвы, грунта на промышленных площадках и прилегающей территории;
- антикоррозионная защита оборудования и трубопроводов;
- обеспечение электрохимической катодной защитой металлических конструкций;
- своевременное проведение планово-предупредительного ремонта и профилактики технологического оборудования;
- наличие и постоянное функционирование систем аварийного оповещения и связи, контроля качества воздуха;
- целью обучения персонала методам реагирования на аварийную ситуацию и борьбе с последствиями этих аварий;
- трапы, сепараторы и другие аппараты, работающие под давлением, должны эксплуатироваться в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением»;

- при наступлении неблагоприятных метеорологических условий осуществление комплекса мероприятий с целью снижения объемов выбросов;
- обучение обслуживающего персонала реагированию на аварийные ситуации;
- проверка готовности систем извещения об аварийной ситуации;
- при нарастании неблагоприятных метеорологических условий прекращение работ, которые могут привести к нарушению техники безопасности (работа на высоте, работа с электрооборудованием и т.д.);
- озеленение территорий объектов месторождения и санитарно-защитной зоны;
- пылеподавление при использовании сыпучих материалов и цемента, при выполнении земляных работ с эффективностью 90%;
- систематический контроль за состоянием горелочных устройств печей, согласно графика режимно-наладочных работ;
- проведение производственного экологического контроля состояния атмосферного воздуха.

8.3. Описание возможных существенных воздействий. Оценка воздействия на состояние вод

8.3.1. Характеристика источников воздействия на подземные воды при производстве работ

Источниками воздействия на подземные воды, являются прежде всего, сами скважины, нарушающие целостность геологической среды. Загрязнение грунтовых и подземных вод может происходить в результате утечек жидких нефтепродуктов и попутных вод при испытании и эксплуатации скважин, при нарушении правил обращения с отходами. Углеводороды, просачивающиеся в подземные воды, вступают в физикохимическое, геохимическое и биогенное взаимодействие с системой порода-почва-водавоздух. Следствием этого является изменение химического состава и качества воды.

Проведение буровых работ включает следующие операции, которые могут оказать негативное влияние на состояние поверхностных и подземных вод:

- бурение скважин, в результате которого может произойти нарушение естественной защищённости водоносных горизонтов и загрязнение их буровыми растворами и пластовыми флюидами;
- испытание скважин, когда в случаях аварийных ситуаций может произойти
- утечки горюче-смазочных веществ, случайные проливы буровых растворов;
- смыв загрязнений с территории буровой площадки ливневыми водами.

8.3.2. Оценка воздействия намечаемой деятельности на водные объекты, анализ вероятности их загрязнения и последствий возможного истощения вод

В процессе осуществления намечаемой деятельности, с учетом принятых проектных решений и мероприятий по охране и рациональному использованию водных ресурсов, загрязнения и истощения поверхностных и подземных вод не ожидается. Вода из поверхностных источников использоваться не будет. Пересечение водных объектов проектом также не предусмотрено.

Таким образом, негативное воздействие на поверхностные воды в процессе проведения проектируемых работ не предполагается.

Качество подземных вод изменяется под воздействием природных и техногенных факторов.

В целом при разработке месторождении при соблюдении запланированных технологий и мероприятий, не предвидится сильных воздействий на водные ресурсы. Комплекс водоохранных мероприятий, предусмотренных во время буровых операций, в значительной мере смягчит возможные негативные последствия.

В целом на период разработки месторождения Жанбыршы при соблюдении технологического регламента, техники безопасности и природоохранных мероприятий, не ожидается крупномасштабных воздействий на подземные воды.

Комплекс водоохранных мер, предусматриваемый в период работ по разработке месторождении Жанбыршы значительной мере при соблюдении проектных природоохранных требований, можно оценить:

- ✓ пространственный масштаб воздействия *территориальный* (3) площадь воздействия от 10 до 100 км² для площадных объектов или на удалении от 1 до 10 км от линейного объекта;
- ✓ временной масштаб воздействия *многолетний* (постоянный) (4) продолжительность воздействия более 3 лет;
- ✓ интенсивность воздействия (обратимость изменения) *слабый* (2) изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, интегральная оценка составляет 24 баллов, категория значимости воздействия на подземные воды присваивается средней (9-27). Последствия испытываются, но величина воздействия достаточна низка в пределах допустимых стандартов.

8.3.3. Мероприятия по охране водных ресурсов

Для предотвращения загрязнения подземных вод предпринят ряд проектных решений, обеспечивающий их безопасность:

- гидроизоляция синтетической пленкой и укладка железобетонных плит под вышечным блоком, блоком приготовления раствора, буровыми насосами;
- цементирование заколонного пространства до земной поверхности до устья;
- применение качественного цемента с улучшающими химическими добавками;

Для предотвращения загрязнения подземных вод предпринят ряд проектных решений, обеспечивающий их безопасность:

- гидроизоляция синтетической пленкой и укладка железобетонных плит под вышечным блоком, блоком приготовления раствора, буровыми насосами;
- цементирование заколонного пространства до земной поверхности до устья;
- применение качественного цемента с улучшающими химическими добавками;
- транспортировка и хранение химических реагентов в закрытой таре (мешки, бочки);
- четкая организация учета водопотребления и водоотведения;
- сбор хозяйственно-бытовых стоков в обустроенный септик, с последующим вывозом на очистные сооружения;
- использование воды для технических целей во время буровых работ повторно по замкнутому циклу;
- обустройство мест локального сбора и хранения отходов;
- раздельное хранение отходов в соответственно маркированных контейнерах и емкостях;
- устройство насыпи и обваловки у склада ГСМ;
- хранение ГСМ в специальных закрытых емкостях, от которых по герметичным топливопроводам производится питание ДВС;
- предотвращение разливов ГСМ.

8.3.4. Предложения по организации экологического мониторинга подземных вод

К важнейшему виду работ в области охраны подземных вод относится выявление очагов их загрязнения. Под очагом загрязнения подземных вод понимается приуроченная

к антропогенному объекту область водоносного горизонта, содержащая воды существенно иного качества по сравнению с фоновым качеством вод этого горизонта и сформировавшаяся вследствие утечек стоков с поверхности земли.

Поступающие с поверхности земли загрязняющие вещества попадают, прежде всего, в горизонт грунтовых вод. Поэтому при изучении загрязнения подземных вод первоочередное и основное внимание должно быть уделено грунтовым водам.

В целях определения влияния производственной деятельности на подземные воды предлагается ведение мониторинга состояния подземных вод, поэтому первоочередной задачей является наличие наблюдательной сети.

Поскольку создание специализированной наблюдательной сети требует бурения скважин, с чем связаны существенные материальные затраты, на начальных этапах рекомендуется максимально использовать для этих целей уже имеющиеся близлежащие водозаборные скважины или колодцы от производственного объекта.

Нужно провести обследование состояния существующих скважин и колодцев и определить ее пригодность для решения задач охраны подземных вод.

Точками отбора проб на изучение подземных вод будут являться места расположения существующих скважин или колодцев. Периодичность наблюдений – 1 раз в квартал.

В последующем, при дальнейшем осуществлении производственной деятельности для своевременного выявления и проведения оценки происходящих изменений окружающей среды рекомендуется организовать собственную сеть гидронаблюдательных скважин и осуществлять мониторинг качества грунтовых вод.

Результаты мониторинга позволят своевременно выявить и провести оценку происходящих изменений окружающей среды при осуществлении производственной деятельности.

Мониторинговые работы по изучению состояния подземных вод должны включать в себя следующие виды и объемы работ:

- ✓ обследование территории месторождения;
- ✓ замеры уровней и температуры воды;
- ✓ промер глубин;
- ✓ прокачка скважин перед отбором проб;
- ✓ отбор проб и лабораторные исследования.
 В рамках мониторинговых исследований рекомендуется определение следующих веществ:
- ✓ рН, общая минерализация (сухой остаток);
- ✓ макрокомпонентный состав подземных вод (HCO3-, Cl-, SO42-, Na+K+, Ca2+,Mg2+);
- ✓ окисляемость перманганатная, жесткость общая;
- ✓ суммарные нефтяные углеводороды, фенолы;
- ✓ аммоний, нитриты, нитраты;
- ✓ СПАВ, БПК, ХПК;
- ✓ тяжелые металлы (Cu, Ni, Cd, Co, Pb, Zn, Fe).

Химические анализы проб подземных вод должны проводиться в сертифицированных Госстандартом РК лабораториях, по утвержденным в Республике Казахстан методикам. Результаты анализов записываются в бланки установленной формы.

По результатам анализов производится нормирование качества грунтовых вод, которое заключается в установлении допустимых значений показателей состава и свойств

воды, в пределах которых надежно обеспечиваются необходимые условия водопользования и благополучное состояние водного объекта.

В связи с тем, что нормативы качества сильноминерализованных грунтовых вод в Республике Казахстан не разработаны, рекомендуем основное внимание уделять динамике изменения содержания загрязняющих компонентов в подземных водах.

8.3.5. Водопотребление и водоотведение

Строительство и бурение скважин характеризуется большим потреблением воды. Вода будет использоваться на хозяйственно-бытовые, питьевые и производственно-технологические нужды.

Участок работ характеризуется отсутствием сетей водопровода. Для целей питьевого, хозяйственного водоснабжения планируется привозить воду из ближайшего населённого посёлка. По согласованию с районной СЭС автоцистерны обеззараживаются не менее одного раза в 10 дней.

Вода для производственных нужд предназначена для приготовления бурового раствора, тампонажного раствора, обмыва бурового оборудования и рабочей площадки, затворения цемента и для других технических нужд.

Водоснабжение водой буровой бригады для технических нужд осуществляется из пробуренной на территории расположения буровой площадки водозаборной скважины.

Водоснабжение буровой бригады для питьевых и хозяйственно-бытовых нужд осуществляется привозной бутилированной водой из г.Кызылорда.

Техническая вода при строительстве скважин необходима для приготовления бурового, тампонажного, цементного раствора, обмыва бурового оборудования и т. д.

Для хранения воды технического качества предусмотрена одна емкость объемом 40 m^3 .

удовлетворяющей Работаюшие будут обеспечены водой, «Санитарноэпидемиологическим требованиям водоисточникам, местам водозабора К хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», утвержденный приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209.

Предварительный расчет норм водопотребления и водоотведения при разработке месторождения представлены в таблице 8.3.1-8.3.2.

Потребитель	Количество К дней	Количество, чел	Норма	Водопотребление		Водоотведение			
			водопотреб- ление, <i>м</i> ³	м ³ /сут.	м ³ /период	м ³ /сут.	м ³ /период		
Эксплуатационная скважина, гл. 2100 м									
Хоз-питьевые нужды	178	35	0,15	5,25	934,5	4,2	747,6		
Всего				5,25	934,5	4,2	747,6		
Непредвиденные расходы, 5%				0,2625	46,725	0,21	37,38		
Итого: на 1 скважину	-	-	-	5,5125	981,225	4,41	784,98		
Итого: на 3 скважину				16,5375	2943,675	13,23	2354,94		

Таблица 8.3.1 - Баланс водопотребления и водоотведения

Таблица 8.3.2 - Ориентировочный баланс водопотребление и водоотведение по рекомендуемому варианту разработки

При эксплуатации месторождения

Хоз-питьевые нужды	365	45	0,15	6,75	2463,75	5,4	1971
Всего				6,75	2463,75	5,4	1971
Непредвиденны е расходы, 5%				0,3375	123,1875	0,27	98,55
Итого:	-	-	-	7,0875	2586,9375	5,67	2069,55

Потребитель		К олицостро	ичество Норма водопотреб	Водопо	требление	Водоотведение			
		, чел		м ³ /сут	м ³ /перио	м ³ /сут	м ³ /перио		
			-ление, <i>м</i> ³	•	Д	•	Д		
	доразведка								
Хоз-питьевые нужды	270	20	0,15	3	810	2,4	648		
Всего				3	810	2,4	648		
Непредвиденны е расходы, 5%				0,15	40,5	0,12	32,4		
Итого: на 1 скважину	-	-	-	3,15	850,5	2,52	680,4		
Итого: на 3 скважину				9,45	2551,5	7,56	2041,2		

Водоотведение.

В процессе хозяйственно-бытовой и производственной деятельности образуются следующие виды сточных вод:

- ✓ хозяйственно-бытовые сточные воды;
- ✓ производственные стоки.

За отсутствием центральной канализационной сети, для отвода хозбытовых сточных предусмотрен бетонированный септик достаточного объема. Наполнения стоки будут откачиваться, и вывозиться автоцистернами на очистные сооружения специализированной компании по договору. Септики после окончания работ очищается, дезинфицируются и могут использоваться повторно.

Территория расположения септиков подлежит засыпке и рекультивации. Сбросы сточных вод от производственных объектов непосредственно в водные объекты или на рельеф местности отсутствуют.

8.4. Ожидаемое воздействие на геологическую среду

Основным объектом воздействия проектируемых работ на недра являются продуктивные нефтегазоносные горизонты.

На стадии разработки месторождения воздействие на недра может сопровождаться следующими видами влияния:

- нарушением температурного режима экзогенных геологических процессов (термокарст, термоэрозия, просадки и другие) с их возможным негативным проявлением (открытое фонтанирование, грифонообразование, обвалы стенок скважин) в техногенных условиях при бурении и эксплуатации скважин;
- загрязнением недр и подземных вод в результате внутрипластовых перетоков;
- исключением из сельскохозяйственного оборота значительных земельных ресурсов;
- аварийными разливами нефти и пластовой воды.

Согласно законодательству Республики Казахстан в области охраны недр, применительно к нефтяной промышленности следует выделить следующие аспекты:

- максимально возможное снижение потерь запасов нефти и газа при разведке и эксплуатации месторождения (выбросы и открытое фонтанирование, внутрипластовые перетоки);
- выбор, обоснование прогрессивных способов разработки и методов повышения нефтеотдачи, технологии добычи по экономическим и экологическим показателям, обеспечивающим оптимальную полноту и комплексность извлечения из недр нефти и газа;
- предотвращение открытых нефтяных и газовых фонтанов;
- исключение обводнения месторождения;
- предотвращение загрязнения подземных вод;
- сведение к минимуму потерь добытой нефти, нефтяного и природного газа при эксплуатации, подготовке и транспорте нефти и газа;
- извлечение запасов нефти и газа при минимальных затратах;
- предотвращение загрязнения, заражения, опасной деформации и сейсмического воздействия на недра при бурении, эксплуатации, исследовании скважин, сооружении или эксплуатации подземных хранилищ нефти и газа, захоронении и тл

Большое значение, с точки зрения охраны недр имеет контроль за состоянием эксплуатации месторождения, особенно за передвижением контуров нефтегазоводоносности, пластовым давлением, гидродинамической связью между пластами и т.д. Работа добывающих скважин должна вестись на установленных технологических режимах. Так как добывающие скважины являются капитальными сооружениями, рассчитанными на длительный срок эксплуатации, необходимо принимать меры по защите от коррозионного и эрозионного воздействия среды основного элемента скважин — эксплуатационных колонн. Нарушение герметичности колонн может привести к образованию грифонов, межпластовых перетоков, открытому фонтанированию и другим последствиям.

К основным источникам загрязнения и воздействия на окружающую среду при разработке нефтегазовых месторождений относятся: неплотности сальников устьевой арматуры, насосов, фланцевых соединений, задвижек; продукты сжигания газа в факелах, химреагенты, пластовая вода, промышленные отходы.

Часто отмечаемое повышение сейсмичности и проседание земной поверхности на территории, где активно ведется разработка газа и конденсата, обусловлено масштабным отбором пластовых жидкостей в процессе эксплуатации месторождения без проведения соответствующих компенсационных мероприятий. Это приводит к постепенному падению пластовых давлений и, как следствие, - к увеличению сжатия и пористости пород, уплотнению пород и к возникновению просадок, приращению сейсмической интенсивности.

Неблагоприятные изменения геологической среды в процессе проходки ствола скважины могут проявляться в виде неконтролируемых межпластовых перетоках в скважинах с негерметизированными колоннами. Поступление высокоминерализованных вод и пластовых жидкостей из продуктивных горизонтов в водоносные комплексы может привести к их загрязнению и невозможности использования в целях питьевого и технического водоснабжения в будущем.

В связи с этим необходимо предусмотреть:

- использование промывочных жидкостей, затрудняющих поглощения, без токсичных добавок;
- надежная изоляция в пробуренных скважинах нефтеносных и водоносных горизонтов по всему вскрытому разрезу;

- надежная герметичность обсадных колонн, спущенных в скважину, их качественное цементирование.
- Принятая проектом конструкция скважин исключат возможность межпластовых перетоков.

Воздействие на другие компоненты недр будет очень незначительным ввиду того, что почти весь технологический цикл протекает в закрытом скважинном пространстве, надежно изолированном от остальной геологической среды стальными трубами и цементацией нарушенных при проходке интервалов горных пород.

Воздействие на другие компоненты недр будет очень незначительным ввиду того, что почти весь технологический цикл протекает в закрытом скважинном пространстве, надежно изолированном от остальной геологической среды стальными трубами и цементацией нарушенных при проходке интервалов горных пород.

В целом, воздействие на недра при проведении основного комплекса проектируемых работ оценивается как значительное по отношению к продуктивным горизонтам, и незначительное по отношению к другим компонентам геологической среды контрактной территории.

Учитывая особенности геологического строения и принятых проектных решений месторождения, можно отметить следующие моменты:

- возникновение опасных геодинамических явлений, при проведении проектных решений, не ожидается;
- передвижение автотранспорта в значительной мере предусматривается в пределах, нарушенных в процессе предшествующей деятельности зон, нарушение почвенно-растительного слоя на других участках будет минимальным;
- существенного влияния на рельеф и почвообразующий субстрат, проектируемые работы не окажут.

В целом воздействие в процессе разработки на недра (геологическую среду), при соблюдении проектных природоохранных требований, можно оценить:

- ✓ пространственный масштаб воздействия *территориальный* (3) площадь воздействия от 10 до 100 км² для площадных объектов или на удалении от 1 до 10 км от линейного объекта;
- ✓ временной масштаб воздействия *многолетний* (постоянный) (4) продолжительность воздействия более 3 лет;
- ✓ интенсивность воздействия (обратимость изменения) *слабый* (2) изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, интегральная оценка составляет 24 баллов, категория значимости воздействия на геологическую среду месторождения присваивается средней (9-27). Последствия испытываются, но величина воздействия достаточна низка в пределах допустимых стандартов.

8.4.1. Обоснование природоохранных мероприятий по сохранению недр

Мероприятия по охране недр являются важным элементом и составной частью всех основных технологических процессов на всех этапах бурения скважины.

На стадии разработки проекта разрабатываются и внедряются следующие технологические решения и природоохранные мероприятия, позволяющие минимизировать экологический вред недрам при реализации проектных решений:

 конструкции скважины в части надежности, технологичности и безопасности должны обеспечивать условия охраны недр и окружающей природной среды, в первую очередь за счет прочности и долговечности крепи скважин, герметичности обсадных колонн и перекрываемых ими кольцевых пространств, а также изоляции флюидосодержащих горизонтов друг от друга, от проницаемых пород и дневной поверхности;

- обеспечение комплекса мер по предотвращению выбросов, открытого фонтанирования, грифонообразования, обвалов стенок скважин, поглощения промывочной жидкости и других осложнений. Для этого нефтяные, газовые и водоносные интервалы изолируются друг от друга, обеспечивается герметичность
- колонн, крепление ствола скважин кондуктором, промежуточными эксплуатационными колоннами с высоким качеством их цементажа;
- внедрение мероприятий по предотвращению загрязнения недр при проведении работ по недропользованию, подземном хранении нефти, газа, захоронении вредных веществ и отходов производства, сбросе сточных вод в недра;
- инвентаризация, консервация и ликвидация источников негативного воздействия на недра;
- работа скважин на установленных технологических режимах, обеспечивающих
- сохранность скелета пласта и не допускающих преждевременного обводнения
- скважин;
- предотвращение загрязнения недр при проведении операций по недропользованию, особенно при подземном хранении нефти, газа, конденсата или иных веществ и материалов, захоронении вредных веществ и отходов, сбросе сточных вод в недра;
- обеспечение экологических требований при складировании и размещении промышленных и бытовых отходов в целях предотвращения их накопления на площадях водосбора и в местах залегания подземных вод;
- выполнение противокоррозионных мероприятий;
- предотвращения загрязнения подземных водных источников вследствие межпластовых перетоков нефти, воды и газа в процессе проводки, освоения и последующей эксплуатации скважин;
- проведение мониторинга недр на месторождении;
- при нефтегазопроявлениях герметизируется устье скважины, и в дальнейшем работы ведутся в соответствии с планом ликвидации аварий.

Организационные мероприятия включают тщательное планирование размещения различных сооружений, контроль транспортных путей, составление детальных инженерногеологических карт территории с учетом карт подземного пространства, смягчение последствий стихийных бедствий.

8.5. Описание возможных существенных воздействий на земельные ресурсы и почвы

8.5.1. Характеристика почвенного покрова

Основное негативное воздействие на земли при реализации проектных решений будет выражаться в изъятии (отчуждении) земель под размещение площадных и линейных объектов.

Изменения статуса земель, изменения условий землепользования местного населения не будет.

Изъятие земель сельскохозяйственного назначения для нужд промышленности производиться не будет, поскольку изымаемый под размещение объектов участок до начала реализации в сельском хозяйстве не использовался — территория является промышленно освоенной территорией.

Земли малопригодны для использования в сельскохозяйственном обороте. Ландшафтно-климатические условия и месторасположение территории исключают ее рентабельное использование, для каких-либо хозяйственных целей, кроме реализации прямых целей производства.

При этом деятельность предприятия позволяет в какой-то мере улучшить транспортную инфраструктуру окрестностей контрактной территории.

8.5.2. Описание возможных существенных воздействий на ландшафты

Ожидаемое воздействие на ландшафты. В результате отвода земель под строительство в границах землеотвода, охранных и противопожарных полос площадь будет полностью замещена застройкой, покрытиями.

Часть проектируемых сооружений (например, объекты транспорта) непосредственно затронут периферию жилых зон.

Однако, в совокупности это не приведет к существенной трансформации и фрагментации местного ландшафта.

В результате отчуждения земель под строительство краткосрочные (в период строительства) и долгосрочные отрицательные визуальные воздействия на ландшафты будут несущественными для местного населения, поскольку объекты строительства расположены вне зон прямой видимости со стороны ближайших жилых и рекреационных территорий.

Таким образом, реализация проектных решений не приведет к формированию в границах землеотвода сильно измененных ландшафтов.

8.5.3. Оценка воздействия на почвы

Основными источниками воздействия на почвенный покров в ходе реализации проектных решений будут являться:

- транспорт и механизмы, задействованные в ликвидации скважин;
- весь комплекс технологического оборудования, при условии нарушения технологии, возможных аварийных проливов и утечек нефтепродуктов;
- отходы производства и потребления.

К факторам негативного потенциального воздействия на почвенный покров при проектируемых работах относятся:

- механические нарушения почвенного покрова при обустройстве основных и вспомогательных площадных сооружений; при прокладке подводящих и отводящих коммуникации;
- дорожная дегрессия;
- загрязнение промышленными, строительными и хозяйственно-бытовыми отходами.

При передвижении строительной техники в пределах строительной полосы возможно частичное или полное уничтожение почвенного покрова.

На территории с нарушенным почвенным покровом не исключено развитие процессов ветровой и водной эрозии почв.

Загрязнение почвенного покрова может произойти в результате спровоцированной строительными работами вторичной миграции загрязняющих веществ, уже присутствующих в почвенном покрове и геологической среде, а также в результате рассредоточенного (с атмосферными выпадениями) или сосредоточенного (разливы, утечки и т.п.) поступления ЗВ в ходе осуществления подготовительных, строительномонтажных и сопутствующих работ.

Не предполагается какого-либо существенного дополнительного воздействия со стороны строительных площадок на почвенный покров и земли прилегающих территорий, такого как увеличение фитотоксичности, сброс загрязняющих веществ в грунтовые воды и другие аналогичные явления.

В целом воздействие в процессе проведения разработки месторождения Жанбыршы на почву при соблюдении проектных природоохранных требований, можно оценить:

- ✓ пространственный масштаб воздействия *территориальный* (3) площадь воздействия от 10 до 100 км² для площадных объектов или на удалении от 1 до 10 км от линейного объекта;
- ✓ временной масштаб воздействия *многолетний* (постоянный) (4) продолжительность воздействия более 3 лет;
- ✓ интенсивность воздействия (обратимость изменения) *слабый* (2) изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, интегральная оценка составляет 24 баллов, категория значимости воздействия на почву присваивается средней (9-27). Последствия испытываются, но величина воздействия достаточна низка в пределах допустимых стандартов.

8.5.4. Мероприятия по охране и рациональному использованию земельных ресурсов.

Мероприятиями по охране почв и грунтов при разработке месторождении предусматриваются:

- планировка и обваловка площадок
- рациональное использование земельного фонда;
- полная утилизация отходов, образовавшихся в процессе строительства скважин;
- регламентация передвижения транспорта; проезд транспортной техники по бездорожью исключается;
- установление научно обоснованных нормативов образования и лимитов размещения отходов;
- обязательное проведение работ по рекультивации нарушенных земель.
 оздоровление экологической обстановки предполагает в первую очередь проведение рекультивационных работ на поврежденном участке.
- использование современной и надежной системы сбора сточных вод;
- пылеподавление посредством орошения территории;
- устройство временных площадок для мытья колес автомобилей и строительной техники;
- оперативная ликвидация загрязнений на площадках строительства;
- освещение прожекторами рабочих мест (в темное время суток);
- оснащение временных сооружений первичными средствами пожаротушения в соответствии с типовыми правилами пожарной безопасности на весь период строительства;
- очистка территории от мусора, металлолома и излишнего оборудования;
- восстановление земель, нарушенных при строительстве и эксплуатации объектов;
- выделение и оборудование специальных мест для приготовления и дозировки химических реагентов, исключающих попадание их на рельеф;
- необходимо неукоснительное соблюдение санитарно-гигиенических требований, норм по хранению ГСМ, утилизации отходов, хранения и транспортировки бытовых и промышленных отходов.

Все твердые отходы складируются в контейнеры для дальнейшей транспортировки к полигонам захоронения.

Одним из мероприятий по охране подстилающей поверхности является проведение технической рекультивации.

В соответствии со ст.238 ЭК РК №400-VI от 02.01.2021 г. «Недропользователи при проведении операций по недропользованию, а также иные лица при выполнении строительных и других работ, связанных с нарушением земель, обязаны:

- 1) содержать занимаемые земельные участки в состоянии, пригодном для дальнейшего использования их по назначению;
- 2) до начала работ, связанных с нарушением земель, снять плодородный слой почвы и обеспечить его сохранение и использование в дальнейшем для целей рекультивации нарушенных земель;
 - 3) проводить рекультивацию нарушенных земель».

При проведении операций по недропользованию, выполнении строительных и других работ, связанных с нарушением земель, запрещается:

- 1) нарушение растительного покрова и почвенного слоя за пределами земельных участков (земель), отведенных в соответствии с законодательством Республики Казахстан под проведение операций по недропользованию, выполнение строительных и других соответствующих работ;
- 2) снятие плодородного слоя почвы в целях продажи или передачи его в собственность другим лицам.

С целью снижения негативного воздействия, после окончания разработки месторождения должны быть проведены рекультивационные мероприятия.

Рекультивации подлежат нарушенные земли всех категорий, и прилегающие к ним земельные участки, полностью или частично утратившие сельскохозяйственную продуктивность в результате техногенного воздействия.

Рекультивация нарушенных и загрязненных земель проводится в соответствии с требованиями «Инструкции по разработке проектов рекультивации нарушенных земель». (Приказ и.о. Министра национальной экономики Республики Казахстан от 17 апреля 2015 года №346) по отдельным, специально разрабатываемым проектам.

Сроки и этапность рекультивации намечаются в соответствии с предполагаемым уровнем загрязнения для данной природной зоны и состоянием биогеоценоза. Из-за очень низкой гумусированности и легкого механического состава почв, снятие и сохранение плодородного слоя при проведении земляных работ не требуется.

Основным направлением рекультивации земель является сельскохозяйственное, в качестве пастбищных угодий.

При проведении технического этапа рекультивации земель должны быть выполнены следующие работы:

- уборка строительного мусора, удаление с территории строительной полосы всех временных устройств;
- засыпка ликвидируемых амбаров, канав, траншей грунтом, с отсыпкой валика, обеспечивающего создание ровной поверхности после уплотнения грунта;
- распределение оставшегося грунта по рекультивируемой площади месторождения равномерным слоем или транспортирование его в специально отведенные места, указанные в проекте рекультивации;
- оформление откосов кавальеров, насыпей, выемок, засыпка или выравнивание рытвин и ям;
- мероприятия по предотвращению эрозионных процессов.

Если на данном этапе работ будут обнаружены нефтезагрязненные участки почвы, то необходимо провести очистку территории. Все большее значение в последнее время приобретают биологические методы очистки загрязненной почвы от нефтеотходов – отработанных масел и др. в обычных условиях этот процесс протекает медленно – в

течение столетий. Основными условиями, обеспечивающими биоразложение нефтепродуктов, являются присутствие воды, минеральных солей, источников азота и свободного кислорода. Оптимальная температура биоразложения $20-35^{\circ}$ C, т.е. метод биологической очистки проводят в летний период. Процесс ускоряется при диспергировании.

Для его интенсификации микроорганизмам необходима дополнительная питательная среда. Биологический этап рекультивации проводится после технического этапа и включает комплекс агротехнических и фитомелиоративных мероприятий, направленных на восстановление плодородия земель. Однако в связи с тем, что почвы месторождения относятся к малопродуктивным пастбищам, к биологическому этапу будут относиться только полив и посев районированной растительности. Биологическая рекультивация будет произведена после окончания разработки месторождения.

Рекультивируемые земли и прилегающая к ним территория после завершения всего комплекса работ должны представлять собой оптимально организованный и экологически сбалансированный устойчивый ландшафт.

При осуществлении комплекса природоохранных мероприятий, соблюдение технологического регламента ведения работ, при отсутствии аварийных ситуаций, можно свести негативное воздействие до минимума.

С учетом мероприятий по защите почвенного покрова от загрязнения, при строгом соблюдении технологических требований на контрактной территории, намечаемая деятельность не приведет к значительному загрязнению почво-грунтов.

8.5.5. Организация экологического мониторинга почв

Мониторинг состояния почв - система наблюдений за состоянием техногенного загрязнения почв и грунта.

Литомониторинг заключается в контроле показателей состояния грунтов на участках, подвергнувшихся техногенному нарушению, на предмет определения их загрязнения суммарными нефтяными углеводородами, солями тяжелых металлов и т.д.

Отбор проб и изучение почвогрунтов проводится по сети станций, размещение которых проводится относительно источников воздействия, с учетом реальной возможности проведения наблюдений и обеспечивает объективную оценку происходящих изменений.

Производственный мониторинг почвенно-растительного покрова должен проводиться в соответствии с «Программой производственного экологического контроля...» на стационарных экологических площадках (СЭП).

Сеть стационарных постов (пункты мониторинга почв) на месторождении должны располагаться в типичном месте ландшафта с учетом пространственного распространения основных почвенных разностей, направления их производственного использования и характера техногенных нарушений, с таким расчетом, чтобы полученная информация характеризовала процессы, происходящие в почвах на территории месторождения, его объектах и прилегающих участках.

Отбор проб и изучение состояния почв проводятся согласно ГОСТ 17.4.4.02-84 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа».

Состояние химического состава почв измеряется по следующим ингредиентам: нефтепродукты, тяжелые металлы (никель, медь, свинец, цинк, кобальт).

Для характеристики свойств, определяющих агропроизводственную ценность и устойчивость почв к техногенным нагрузкам, из почвенного разреза проводят отбор проб на общие химические анализы. Для общей физико-химической характеристики почв определяются следующие показатели: валовые формы основных элементов питания (азот, фосфор), карбонаты, рН, сульфаты, хлориды.

Периодичность наблюдений за загрязнением почв – 2 раза в год.

Анализы проб почв проводят в лабораториях, аккредитованных в порядке, установленном законодательством РК.

Интерпретация полученных аналитических данных проводится путем сравнения с нормативными показателями действующими на территории Республики Казахстан.

8.6. Описание возможных существенных воздействий на животный мир

Осуществление строительства проектируемых объектов окажет определенное воздействие на животный мир. Данное воздействие можно рассматривать, как совокупность механического воздействия и химического загрязнения.

Механическое воздействие на фауну связано с нанесением беспокойства и возможно причинением физического ущерба, также выражается во временной потере мест обитания и мест кормления травоядных животных и, в свою очередь, утраты мест охоты хищных животных. И все это вследствие повышенного уровня шума, наличия техники, искусственного освещения и физической деятельности людей.

Причинами механического воздействия на животный мир или беспокойства представителям фауны становится движение транспорта, погребение флоры (и некоторых представителей фауны — насекомых, пресмыкающихся) при строительстве подъездных дорог и площадок. За исключением погребения, остальные виды воздействия носят временный и краткосрочный характер.

Химическое загрязнение может иметь место при случайном или аварийном разливе углеводородов.

До минимума сократить химическое воздействие на животный мир можно строжайшим соблюдением норм и правил, технологии производства, профилактическим осмотром и ремонтом оборудования.

Практика многолетних наблюдений показывает, что распределение животных на территории месторождения неравномерное.

Особое место в распространении животных занимают преобразованные ландшафты (насыпи дорог, линии электропередач, нефтепроводы, промышленные сооружения), которые в целом имеют положительное значение, обогащая порой безжизненные пространства (особенно солончаковой пустыни) новыми экологическими нишами для обитания некоторых представителей животного мира (ящериц, змей). Плотность населения пресмыкающихся в преобразованных ландшафтах, как правило, выше. Однако здесь животные подвержены угрозе загрязнения нефтью (трубопроводы) при разливах, травмирования и гибели на автомобильных дорогах.

Для мелких грызунов и пресмыкающихся, работы по строительству автодороги могут грозить физической гибелью в незначительных пределах.

В целом воздействие в период строительства скважин на животный мир, при соблюдении проектных природоохранных требований, можно оценить:

- ✓ пространственный масштаб воздействия *территориальный* (3) площадь воздействия от 10 до 100 км² для площадных объектов или на удалении от 1 до 10 км от линейного объекта;
- ✓ временной масштаб воздействия *многолетний* (постоянный) (4) продолжительность воздействия более 3 лет;

✓ интенсивность воздействия (обратимость изменения) — *слабый* (2) — изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, интегральная оценка составляет 24 баллов, категория значимости воздействия средняя (9-27). Последствия испытываются, но величина воздействия достаточна низка в пределах допустимых стандартов.

Охрана растительного и животного мира

В ходе проведения производственных работ должны выполняться и соблюдаться требования статьи 17 Закона Республики Казахстан от 09 июля 2004 года №593 «Об охране, воспроизводстве и использовании животного мира»:

- ✓ При размещении, проектировании и строительстве населенных пунктов, предприятий, сооружений и других объектов, осуществлении производственных транспортных эксплуатации средств, совершенствовании существующих и внедрении новых технологических процессов, введении в хозяйственный оборот неиспользуемых, прибрежных, заболоченных, занятых кустарниками территорий, мелиорации земель, пользовании лесными ресурсами и водными объектами, проведении геолого-разведочных работ, добыче полезных ископаемых, определении мест выпаса и прогона сельскохозяйственных животных, разработке туристских маршрутов и организации мест массового отдыха населения должны предусматриваться и осуществляться мероприятия по сохранению среды обитания и условий размножения объектов животного мира, путей миграции и мест концентрации животных, а также обеспечиваться неприкосновенность участков, представляющих особую ценность в качестве среды обитания диких животных.
- ✓ При эксплуатации, размещении, проектировании и строительстве железнодорожных, шоссейных, трубопроводных и других транспортных магистралей, линий электропередачи и связи, каналов, плотин и иных водохозяйственных сооружений должны разрабатываться и осуществляться мероприятия, обеспечивающие сохранение среды обитания, условий размножения, путей миграции и мест концентрации животных.

Субъекты, осуществляющие хозяйственную и иную деятельность, указанную в пунктах 1 и 2 настоящей статьи, обязаны:

- 1) по согласованию с уполномоченным органом при разработке техникоэкономического обоснования и проектно-сметной документации предусматривать средства для осуществления мероприятий по обеспечению соблюдения требований подпунктов 2) и 5) пункта 2 статьи 12 настоящего Закона;
- 2) возмещать компенсацию вреда, наносимого и нанесенного рыбным ресурсам и другим водным животным, в том числе и неизбежного, в размере, определяемом в соответствии с методикой, утвержденной уполномоченным органом, путем выполнения мероприятий, предусматривающих выпуск рыбохозяйственные водоемы рыбопосадочного материала, восстановление нерестилищ, рыбохозяйственную мелиорацию водных объектов, строительство инфраструктуры воспроизводственного комплекса или реконструкцию действующих комплексов по воспроизводству рыбных ресурсов и других водных животных, финансирование научных исследований, а также создание искусственных нерестилищ в пойме рек и морской среде (рифы), на основании договора, заключенного с ведомством уполномоченного органа.

Мероприятия, обеспечивающие защиту почвы, флоры и фауны складываются из организационно технологических, проектно-конструкторских, санитарно-противоэпидемических.

Организационно-технологические:

- ✓ организация упорядоченного движения автотранспорта и техники по территории, согласно разработанной и утвержденной оптимальной схеме движения;
- ✓ тщательная регламентация проведения работ, связанных с загрязнением рельефа при производстве земляных работ; технической рекультивации. Проектно-конструкторские:
- ✓ согласование и экспертиза проектных разработок в контролирующих природоохранных органах и СЭС;
- ✓ проектно-конструкторские решения, направленные на снижение загрязнения почв. Санитарно-противоэпидемические обеспечение противоэпидемической защиты персонала от особо опасных инфекций. В районе проведения запроектированных работ необходимо обеспечение следующих мероприятий по охране животного мира:
 - ✓ ограждение всех технологических площадок, исключающее случайное попадание на них животных;
 - ✓ движение автотранспорта осуществлять только по отсыпанным дорогам с небольшой скоростью, с ограничением подачи звукового сигнала;
 - ✓ ввести на территории участка запрет на охоту; строгое запрещение кормления диких животных персоналом, а также надлежащее хранение отходов, являющихся приманкой для диких животных;
 - ✓ проведение работ по технической рекультивации после окончания работ. Основными требованиями по сохранению объектов флоры и фауны является:
 - ✓ сохранение фрагментов естественных экосистем, предотвращение случайной гибели животных и растений, создание условий производственной дисциплины исключающих нарушения законодательства по охране животного и растительного мира со стороны производственного персонала.
- В целях предупреждения нарушения почвенно-растительного покрова и для охраны животного мира при консервации и ликвидации скважин намечаются нижеследующие мероприятия:
 - ✓ ограничения техногенной деятельности вблизи участков с большим биологическим разнообразием;
 - ✓ принятие административных мер в целях пресечения браконьерства на территории участка; захоронение промышленных и хозяйственно-бытовых отходов производить только на специально оборудованных полигонах;
 - ✓ проведение на заключительном этапе ликвидации технической рекультивации; использование экономичного и экологического оборудования;
 - ✓ своевременное проведение технического обслуживания и проверки автотранспорта и оборудования, ремонтных работ;
 - ✓ обеспечение недопустимости залповых сбросов сточных вод на рельеф местности или водные объекты;
 - ✓ разработка плана ликвидации аварийных ситуаций;
 - ✓ проведение всех видов деятельности в соответствии с требованиями экологических положений РК и т.д.
 - ✓ организация и проведение мониторинговых работ.
 Мероприятия должны включать следующие положения:
 - ✓ пропаганда охраны животного мира;
 - ✓ ограничения техногенной деятельности вблизи участков с большим биологическим разнообразием;
 - ✓ маркировка и ограждение опасных участков;

- ✓ создание ограждений для предотвращения попадания животных на производственные объекты;
- ✓ запрет на охоту в районе контрактной территории;
- ✓ разработка оптимальных маршрутов движения автотранспорта;
- ✓ ограничение скорости движения автотранспорта и снижение интенсивности движения в ночное время на месторождении.

8.7. Описание возможных существенных воздействий. Оценка воздействие вибрации, шумовых, электромагнитных, тепловых и радиационных воздействий

Из физических факторов воздействия на окружающую среду и людей в период проведения работ можно выделить:

- воздействие шума;
- воздействие вибрации;
- электромагнитное излучение.

Шум. При проведении разработки месторождения, строительства скважин источниками шумового воздействия на здоровье людей, непосредственно принимающих участие в планировочных работах, а также - на флору и фауну, являются буровая установка ДЭС, строительные машины и автотранспорт.

Интенсивность внешнего шума зависит от типа оборудования, его рабочего органа, вида привода, режима работы и расстояние от места работы.

Снижение уровня звука от источников при беспрепятственном распространении происходит примерно НВ 3дб при каждом двукратном увеличении расстояния, снижение пиковых уровней звука происходит примерно на 6 дб.

Поэтому с увеличением расстояния происходит постепенное снижение среднего уровня звука.

При удалении от источника шума на расстоянии до двухсот метров происходит быстрое затухание шума, при дальнейшем увеличении расстояние снижения уровня звука происходит медленнее.

Также следует учитывать изменение уровня звука в зависимости от направления и скорости ветра, характера и состояния прилегающей территории рельфа.

Общие требования безопасности. Шумовые характеристики оборудования должны быть указаны в их паспортах. Вибрация.

Вибрация. По своей физической природе вибрация тесно связана с шумом. Вибрация представляет собой колебания твердых тел или образующихся их частиц.

В отличие от звука вибрации воспринимаются различными органами и частями При низкочастотных колебаниях вибрации воспринимаются отолитовым и вестибулярным аппаратом человека, нервными окончаниями кожного покрова, а вибрация подобно частот воспринимаются шуму, приводит производительности труда, нарушает деятельность центральной и вегетативной нервной системы, приводит к заболеваниям сердечно-сосудистой системы. Вибрации возникают образом, вследствие вращательного поступательного движения главным неуравновешенных масс двигателя и механических систем машин.

Борьба с вибрационными колебаниями заключается в снижении уровня вибрации самого источника возбуждения. Для снижения вибрации, которая может возникнуть при работе строительной техники и транспорта, предусмотрено: установка гибких связей, упругих прокладок и пружин, сокращение времени пребывания в условиях вибрации; применение средств индивидуальной защиты.

Электромагнитное излучение. Линии электропередач со своими подстанциями создают в окружающем пространстве электромагнитное поле, напряженность которого снижается по мере удаления от источников.

Источниками электромагнитных полей объекта строительства - являются машины, механизмы, высоковольтные линии и средства связи.

При проведении проектируемых работ предусмотрено использование оборудования и транспорта, эксплуатация которых обеспечит уровень шума, вибрации и электромагнитного излучения в пределах, установленных санитарными нормами РК.

Радиационная обстановка Согласно закону РК от 23.04.1998 г. № 219-I «О радиационной безопасности населения» (с изменениями и дополнениями по состоянию на 14.05.2020 г.), при планировании и принятии решений в области обеспечения радиационной безопасности при проектировании новых объектов, должна проводиться оценка радиационной безопасности.

В соответствии с нормативными требованиями было проведено радиационное обследование площадки проектируемого объекта. Оценка уровня радиоактивного загрязнения площадки под объектом расширения была осуществлена в целях

- оценки уровня радиоактивного загрязнения для принятия решения о возможности размещения проектируемого объекта;
 - организации безопасных условий труда в период строительства
- обеспечения своевременного вмешательства в случае обнаружения превышения установленных радиационно-гигиенических нормативов;
- соблюдения действующих норм по ограничению облучения персонала и населения от природных и техногенных источников ионизирующего облучения

В соответствии с действующими методическими рекомендациями и регламентом радиационного контроля, исследовался такой радиационный фактор, как мощность экспозиционной и эквивалентной дозы гаммы-излучения на территории с целью выявления участков с аномальными значениями гамма-фона и неучтенных источников ионизирующего излучения.

Поверхностных радиационных аномалий на территории не выявлено.

По результатам гамма съемки на участке выявлено, что мощность гаммыизлучения не превышает допустимое значение - локальные радиационные аномалии обследованной территории отсутствуют.

Максимальное значение мощности дозы гамма-излучения в точках с максимальными показаниями поискового прибора 0,17 мкЗв/ч.

Превышений мощности дозы гаммы-излучений на участке не зафиксировано.

Фактор ионизирующих излучений в производственном процессе отсутствует. Радиационное обследование территории позволяет сделать общее заключение: обследуемый участок для проведения разработки месторождения, размещения скважин соответствует санитарно-гигиеническим требованиям по ионизирующему излучению, радоновому излучению, по электромагнитному излучению с точки зрения воздействия на жилую зону. Проведения противорадиационных мероприятий не требуется.

При строительстве проектируемых объектов при соблюдении технологического регламента, техники безопасности, запланированных технологий и мероприятий, масштаб воздействия физических факторов на окружающую среду можно оценить как:

- ✓ пространственный масштаб воздействия *территориальный* (3) площадь воздействия от 10 до 100 км² для площадных объектов или на удалении от 1 до 10 км от линейного объекта;
- ✓ временной масштаб воздействия *многолетний* (постоянный) (4) продолжительность воздействия более 3 лет;
- ✓ интенсивность воздействия (обратимость изменения) *слабый* (2) изменения в природной среде не превышают существующие пределы природной изменчивости.

Таким образом, интегральная оценка составляет 24 баллов, категория значимости воздействия средняя (9-27). Последствия испытываются, но величина воздействия достаточна низка в пределах допустимых стандартов.

9. ИНФОРМАЦИЯ ОБ ОЖИДАЕМЫХ ВИДАХ, ХАРАКТЕРИСТИКАХ И КОЛИЧЕСТВЕ ОТХОДОВ, КОТОРЫЕ БУДУТ ОБРАЗОВАНЫ В ХОДЕ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ В РАМКАХ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ.

9.1 Характеристика технологических процессов предприятия как источников образования отходов

В процессе производственной деятельности образуется определенное количество отходов производства и потребления, которые могут оказывать негативное влияние на компоненты природной среды: воздушную и водную среду, почвенный покров.

Характеристика отходов производства и потребления, их качественный и количественный состав определены в соответствии с «Классификатором отходов», утвержденным и.о. министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

Отходы производства и потребления — это остатки сырья, материалов, химических соединений, образовавшиеся при производстве продукции, выполнении технологических работ и утратившие полностью или частично исходные потребительские свойства, необходимые для применения в соответствующем производстве, включая техногенные минеральные образования и отходы сельскохозяйственного производства.

К отходам производства относятся остатки сырья, материалов, веществ, предметов, изделий, образовавшиеся в процессе производства продукции, выполнения работ (услуг) и утратившие полностью или частично исходные потребительские свойства. К отходам производства относятся как отходы, образующиеся при основном производстве, так и отходы вспомогательного производства.

К отходам потребления относятся остатки веществ, материалов, предметов, изделий, товаров частично или полностью утративших свои первоначальные потребительские свойства для использования по прямому или косвенному назначению в результате физического или морального износа в процессах общественного и личного потребления (жизнедеятельности), использования и эксплуатации.

Определение объемов образования отходов выполнено на основании приложения № 16 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.

Проживание персонала будет организовано в полевом лагере. В полевом лагере будут функционировать столовая и пункт оказания первичной медицинской помощи.

В процессе строительства разработки скважин образуется значительное количество промышленных и коммунальных отходов. Основными отходами в процессе строительства скважин являются:

- буровой шлам,
- отработанный буровой раствор,
- отработанные масла,
- использованная тара;
- промасленная ветошь,
- металлолом,
- огарки сварочных электродов,
- коммунальные (ТБО) отходы;

В процессе эксплуатации на месторождении Жанбыршы образуется следующие виды отходов производства и потребления:

- промасленная ветошь;
- отработанные масла,
- отработанные аккумуляторы;
- твердо бытовые отходы;
- металлолом;

- огарки сварочных электродов;
- строительные отходы;
- отработанная бочка тара;
- медицинские отходы;
- промасленная ветошь.

Отходы производства и потребления

Отворы бурения. Основные компоненты отходов (85,52%): вода - 26,01%, кальцит- 11,1%, минеральное масло 9,46%, барит 9,1%, слюдистоглинистые минералы – 11,2%, нефтяные смолы - 5,15%, доломит – 5,1%, калиевый полевой шпат – 2,6%, кварц – 1,8%. В отходе присутствуют также Cu, Zn, Pb, Cd, Cr, Co, Ca, Ni, Mg, Hg, фураны, магнетит, фенолы, нефтяные смолы, меркаптаны. Основным видом отходов при бурении скважин являются буровой шлам и отработанный буровой раствор.

Для предотвращения загрязнения почвенного покрова и подземных вод отходы бурения (буровой шлам и отработанный буровой раствор) после вибросита должны сбрасываться в шламовую емкость, вторая пустая (резервная) емкость находится рядом. Емкости устанавливаются на специально отведённой площадке. По мере заполнения первой емкости она ставится на платформу трейлера-контейнеровоза, на место первой емкости ставится резервная емкость.

Перечень опасных свойств отходов: НР14 - экотоксичные вещества.

Наименование процесса, в котором образовались отходы: образуются в результате бурения скважин.

Реакционная способность: нереакционноспособные (бурная реакция с водой – отсутствует; образование взрывчатых смесей при смешении с водой - не образует; образование токсичных газов, аэрозолей, дымов при смешении с водой - не образует).

Отработанный буровой раствор (ОБР) — один из видов отходов при строительстве скважины. О загрязняющей способности отработанного бурового раствора судят по содержанию в нем нефти и органических примесей, оцениваемых по показателю ХПК, по значению водородного показателя рН и минерализации жидкой фазы. Именно эти показатели свидетельствуют о том, что ОБР является опасным среди других отходов бурения загрязнителем окружающей природной среды.

Буровой шлам (БШ) — выбуренная порода, отделенная от буровой промывочной жидкости очистным оборудованием. Буровой шлам по минеральному составу нетоксичен. Удельная плотность бурового шлама в среднем равна - $2,1\,\,\text{т/m}^3$, при соприкосновении с буровым раствором происходит разбухание выбуренной породы согласно РНД 03.1.0.3.01-96 и удельная плотность уменьшается на величину коэффициента разбухания породы — 1,2.

$$2,1:1,2=1,75 \text{ T/M}3$$

Буровые сточные воды (БСВ) – по своему составу являются многокомпонентными суспензиями, содержащими до 80% мелкодисперсных примесей, обеспечивающими высокую агрегатную устойчивость. Загрязняющие вещества, содержащиеся в БСВ, подразделяются на взвешенные, растворимые органические примеси и нефтепродукты. По мере накопления буровые отходы передаются специализированному предприятию по договору, имеющая соответствующую лицензию.

Промасленная ветошь относится к опасным видам отходов. Основные компоненты отходов (95,15%): тестиль -67,8, минеральное масло -16,2%, SiO2 -1,85%, смолистый остаток -9,3%. Класс опасности 4.

Перечень опасных свойств отходов: НР3 - огнеопасные вещества.

Наименование процесса, в котором образовались отходы: эксплуатация различного вида автотранспорта, спецтехники и оборудования, а также проведение различного вида производственных операций.

Реакционная способность: нереакционноспособные (бурная реакция с водой - отсутствует; образование взрывчатых смесей при смешении с водой - не образует; образование токсичных газов, аэрозолей, дымов при смешении с водой - не образует).

Отходы планируется складировать в металлическом контейнере для промасленной ветоши.

Металлолом – Процесс, при котором происходит образование отходов: различные строительные работы, техническое обслуживание и демонтаж, бурение скважины. К этому виду отходов относятся металлические отходы в виде обрезков труб, балок, швеллеров, проволока, отработанные долота. Основные компоненты отходов (91,75%): Fe2O3 - 89,12%, Al2O3 - 0,1%, MgO - 0,85%, Cu - 1,7%. В отходе присутствуют также TiO2, MnO, Na2O, V2O5, Cr, Co, Mo. Класс опасности 4.

Реакционная способность: нереакционноспособные (бурная реакция с водой - отсутствует; образование взрывчатых смесей при смешении с водой - не образует; образование токсичных газов, аэрозолей, дымов при смешении с водой - не образует).

При сдаче металлолом должен в обязательном порядке пройти радиометрический контроль на наличие радиационного фона, характерного для инструментов и материалов, задействованных в контакте с нефтепродуктами.

Отходы планируется складировать в специальный контейнер с маркировкой для мелкого металлолома, большие куски помещать на специальную площадку временного хранения с последующим вывозом на дальнейшую утилизацию.

Огарки сварочных электродов - остатки неиспользованных электродов при сварке. Основные компоненты отходов (95,53%): Fe2O3 - 79,2%, Al2O3 - 6,13%, MgO - 8,9% Cu -1,3%. Класс опасности 4.

Реакционная способность: нереакционноспособные (бурная реакция с водой - отсутствует; образование взрывчатых смесей при смешении с водой - не образует; образование токсичных газов, аэрозолей, дымов при смешении с водой - не образует).

Отходы планируется складировать в специальный контейнер с маркировкой для мелкого металлолома на временной площадке.

Отработанные масла являются продуктом отходов транспортных средств и дизельных установок, собираются в емкость, с повторным использованием на предприятии. Основные компоненты отходов (95,89%): масло минеральное -91,2%, механические примеси 2,3%, смолистый остаток 0,84%, Fe -0,75%, Zn -0,80%. Класс опасности 3.

Реакционная способность: нереакционноспособные (бурная реакция с водой - отсутствует; образование взрывчатых смесей при смешении с водой - не образует; образование токсичных газов, аэрозолей, дымов при смешении с водой - не образует).

Коммунальные отходы. Основные компоненты коммунальных отходов (96,35%): полиэтилен -65,4; целлюлоза -27,5%, Fe2O3 - 1,85%, SiO2 -1,6%. Класс опасности 5. К данному виду отходов относятся тара от пищевых продуктов - бумага, пластмассовые, стеклянные банки и бутылки, и пищевые отходы.

Реакционная способность: нереакционноспособные (бурная реакция с водой - отсутствует; образование взрывчатых смесей при смешении с водой - не образует; образование токсичных газов, аэрозолей, дымов при смешении с водой - не образует).

Сбор пищевых и твердо-бытовых отходов предусмотрено производить раздельно в соответственно маркированные металлические контейнеры с указанием «Пищевые отходы» или «Бытовые отходы» на специально отведённой площадке.

Вывоз осуществляется по мере заполнения контейнера, но не реже 1 раза в неделю летом и двух раз в месяц зимой. В летнее время предусмотрена ежедневная, а в зимнее время периодическая обработка отходов в контейнере хлорной известью.

Все образованные отходы будут храниться в контейнерах с маркировкой с указанием содержимого, в соответствии с нормативными требованиями по хранению, а также в соответствии с рекомендациями поставщика или изготовителя. Контейнеры будут

храниться в специально отведенных местах на достаточном удалении от любого взрыво- и пожароопасного участка.

9.1.1. Расчет образования отходов при реализации проектных решений

<u>Расчет количества образующихся отходов при строительстве эксплуатационных скважин</u>

Буровой шлам

Буровой шлам — это выбуренная порода, отделенная от буровой промывочной жидкости очистным оборудованием, образуется при проведении спускоподъемных операций; при мытье циркуляционной системы, рабочей площадки у ротора, самого ротора, бурильной колонны, трубопроводов. Класс опасности бурового шлама — IV. Объем образования отходов бурения зависит от диаметра бурения и глубины скважины.

Расчет объемов отходов, образовавшихся при бурении скважины, произведен согласно «Методике расчета объемов образования эмиссий (в части отходов производства) от бурения скважин, Утверждена приказом Министра охраны окружающей среды Республике Казахстан от 3 мая 2012 года № 129-е.

Объем выбуренной породы при строительстве одной скважины

Интервал	k	$\pi/4$	Д∂, м	$D\partial^2*k$	<i>V</i> , м ³
1	2	3	4	5	6
0-60	1,15	0,785	0,3937	0,155	8,396
60-250	1,15	0,785	0,2953	0,087	14,957
250-950	1,20	0,785	0,2159	0,047	30,736
Итого	54.	,089			

Объем бурового шлама определяется по формуле:

 $Vu = Vn \times K_1 = 54,089 \times 1,2 = 64,9 \text{м}^3$ или **113,57 т.**

где $K_1 = 1.2$ - коэффициент, учитывающий разупрочнение выбуренной породы.

Отработанный буровой раствор

Объем отработанного бурового раствора (ОБР) согласно «Методике расчета объемов образования эмиссий (в части отходов производства, сточных вод) от бурения скважин» от 03.05.2012г № 129-ө, определяется по формуле:

$$V_{OBP} = K_1 \times K_2 \times V_n + 0.5 \times V_{II}$$

где:

 K_1 – коэффициент, учитывающий разуплотнение выбуренной породы, $K_1 = 1,2$

 K_2 – коэффициент, учитывающий потери бурового раствора, уходящего со шламом на вибросите 1,052

Vц – объем циркуляционной системы БУ

 $\rho_{\text{обр}}$ - удельный вес отработанного бурового раствора, 1,26 т/м³

Voбp.п = $1.2 \times 1.052 \times 54.089 + 0.5 \times 34.76 = 85.662$ м или 107.93 т.

Объем буровых сточных вод (БСВ) с учетом повторного использования

VбcB = 2*Vобр.п

 $V6cB = 2 \times 91,4 = 182,8 \text{ m}^3$

Промасленная ветошь

Образуется в процессе использования тряпья для протирки механизмов, деталей, станков и машин. Вывозится согласно договору со специализированной организацией.

Согласно «Методике разработки проектов нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г. Количество промасленной ветоши определяется по формуле:

 $N = M_0 + M + W,$

Где:

N – количество промасленной ветоши, т/год;

Мо – поступающее количество ветоши, 0,05 т/период;

М – норматив содержания в ветоши масел, т/год;

 $M = 0.12 * M_0$

W – норматива содержания в ветоши влаги, т/год.

 $W = 0.15 * M_o$

N = 0.05 + 0.006 + 0.0075 = 0.0635 Tohh.

Использованная тара (мешки, пластиковая канистра из-под химреагентов)

Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г. № 100-п. По классификации отход относится к опасному виду отходов.

Количества использованной тары, рассчитывается по формуле:

 $Motx = N*m, \tau/ckB$

где: m – масса мешка, 0,003 т.

N – количество мешков, 70 шт/ пер.;

т – масса пластиковой канистры, 0,015 т.

N – количество пластиковой канистры, 70 шт/ пер.;

Motx = (70 * 0.003) + (70*0.015) = 1.26 tohh/nep.

Количество отработанного масла

В работе двигателей дизельных установок и генераторов, используемых при бурении и испытании, применяется циркуляционная принудительная система маслоснабжения, которая обеспечивает смазку подшипников оборудования, уплотнение нагнетателя и работу системы регулирования. Для работы оборудования используется моторное масло. Частота замены масла по паспортным данным составляет каждые 500 мото/часов.

Расчет количества отработанного моторного и трансмиссионного масла выполнен по «Методике разработки проектов нормативов предельно размещения отходов производства и потребления» Приложение 16 к Приказу МООС РК №100-п от 18.04.08 г. по формуле:

 $N_{M.M} = N_d * 0.25, T,$

 $N_{T.M} = N_d * 0.3, T$

где N_d – количество израсходованного моторного масла при работе установок, работающих на дизельном топливе, т;

0,25 – доля потерь моторного масла от общего его количества.

0,3 – доля потерь трансмиссионного масла от общего его количества.

 $N_d = Y_d * H_d * \rho, T,$

где Y_d – расход дизельного топлива за год, M^3 ;

 H_d — норма расхода моторного масла, при использовании дизтоплива — $0{,}032\,$ л/л топлива;

 H_d — норма расхода трансмиссионного масла, при использовании дизтоплива — $0,004\,\,\mathrm{n/n}$ топлива;

р – плотность моторного масла - 0,93 т/м3

плотность трансмиссионного масла - 0,885 т/м3

Наименование топлива	Количество топлива Y _d м3/период	Норма расхода моторного масла,л/л топлива Н _d	Плотност ь масла, т/м ³	Расход моторного масла N _d т/период	Отработанно е масло N т/период
Дизельное топливо	550	0,032	0,93	16,4	4,1

Расчет объемов отработанного моторного масла

Металлолом

Данный вид отходов образуется при монтаже и демонтаже технологического оборудования, при ремонте автотранспорта, при инструментальной обработке металлов. На предприятии проводят сортировку металлолома, хранение предусмотрено на специальной площадке, в отдельном контейнере, с последующей сдачей специализированной организации на договорной основе по мере накопления. Количество металлолома, образующегося в процессе производственных работ на месторождении, ориентировочно составит — 2,02 тонн. (Количество металлолома принято ориентировочно и будет корректироваться предприятием по фактическому образованию).

Огарки сварочных электродов

Представляют собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Вывозится согласно договору со специализированной организацией.

Расчет образования огарков сварочных электродов производится по формуле «Методики разработки проектов нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г.

Количество огарков электродов определяется по формуле:

 $N = M_{ocr} *Q$,

где:

N – количество огарков электродов, т/год;

 M_{oct} – расход электродов, 0,3 т/год;

 ${\bf Q}$ - остаток электрода, 0,015 от массы электрода.

N = 0.3 * 0.015 = 0.0045 тонн.

Коммунальные отходы (ТБО)

Норма образования бытовых отходов (m_1 , т/год) принимается с учетом средних норм накопления образования отходов в благоустроенном секторе — 1,06 м 3 /год на 1 человека, списочной численности работающих и средней плотности отходов, которая составляет 0,25 т/м 3 (РНД 03.1.0.3.01-96. Алматы — 1996 год. «Порядок нормирования объёмов образования и размещения отходов производства»).

Количество образования коммунальных отходов определяется по формуле:

$$Q_{Kom} = (P*M*N*\rho)/365,$$

где:

P — норма накопления отходов на 1 чел в год, 1,06 м 3 /чел;

М – численность работающего персонала, чел;

N – время работы, сут;

 ρ – плотность отходов, 0,25 т/м³.

 $\mathbf{O}_{Kom} = 1.06 *35*42 * 0.25 / 365 = 1.067 \text{ T}.$

Лимиты накопления отходов, при бурении 6 эксплуатационных скважин на месторождении Жанбыршы.

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления от 1 скв, тонн/год	Лимит накопления от 11 скв, тонн/год			
1	2	3	4			
Всего	-	230,015	2530,165			
в т.ч. отходов производства	-	228,948	2518,428			
отходов потребления	-	1,067	11,737			
	Опасные от	гходы				
Буровой шлам	-	113,57	1249,27			
Отработанный буровой раствор	-	107,93	1187,23			
Промасленная ветошь	-	0,0635	0,6985			
Использованная тара	-	1,26	13,86			
Отработанные масла	-	4,1	45,1			
	Неопасные (отходы				
Металлолом	-	2,02	22,22			
Огарки сварочных электродов	-	0,0045	0,0495			
Коммунальные отходы	-	1,067	11,737			
Зеркальные						

Расчет количества образующихся отходов при вводе в эксплуатацию 11 скважин из консервации

Буровой шлам

Буровой шлам — это выбуренная порода, отделенная от буровой промывочной жидкости очистным оборудованием, образуется при проведении спускоподъемных операций; при мытье циркуляционной системы, рабочей площадки у ротора, самого ротора, бурильной колонны, трубопроводов. Класс опасности бурового шлама — IV. Объем образования отходов бурения зависит от диаметра бурения и глубины скважины.

Расчет объемов отходов, образовавшихся при бурении скважины, произведен согласно «Методике расчета объемов образования эмиссий (в части отходов производства) от бурения скважин, Утверждена приказом Министра охраны окружающей среды Республике Казахстан от 3 мая 2012 года № 129-е.

Интервал, м	k	π	R _{д,} м	R ² д	V, м ³
1	2	3	4	5	6
0-10	1,2	3.14	0,245	0,060025	2,262
10-50	1,2	3.14	0.19685	0,03875	5,84
50-300	1,15	3,14	0,14765	0,02180	19,8
300-900	1,15	3.14	0.10795	0,01165	21,03
Итого объем по	скважине	м ³		48 93	

Объем выбуренной породы при строительстве одной скважины

Объем бурового шлама определяется по формуле:

 $Vu = Vn \times K_I = 48,93 \times 1,2 = 58,72 \text{м}^3$ или **102,76 т.**

где K_1 = 1.2 - коэффициент, учитывающий разупрочнение выбуренной породы.

Отработанный буровой раствор

Объем отработанного бурового раствора (ОБР) согласно «Методике расчета объемов образования эмиссий (в части отходов производства, сточных вод) от бурения скважин» от 03.05.2012г № 129-ө, определяется по формуле:

$$\mathbf{V}_{\mathrm{OBP}} = \mathbf{K}_1 \times \mathbf{K}_2 \times \mathbf{V} + \mathbf{0.5} \times \mathbf{V}_{\mathrm{II}},$$

где:

 K_1 – коэффициент, учитывающий разуплотнение выбуренной породы, K_1 = 1,2

 K_2 – коэффициент, учитывающий потери бурового раствора, уходящего со шламом на вибросите 1,052

Vц – объем циркуляционной системы БУ

 $\rho_{\text{обр}}$ - удельный вес отработанного бурового раствора, 1,26 т/м³

Voбp. $\pi = 1.2 \times 1.052 \times 150.61 + 0.5 \times 59.3 = 91.4 \text{м}^3 \text{м}$ или **115.16** тонн.

Объем буровых сточных вод (БСВ) с учетом повторного использования

VбcB = 2*Vобр.п $VбcB = 2 \times 91,4=182,8 M^3$

Промасленная ветошь

Образуется в процессе использования тряпья для протирки механизмов, деталей, станков и машин. Вывозится согласно договору со специализированной организацией.

Согласно «Методике разработки проектов нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК № 100-п от

18.04.2008 г. Количество промасленной ветоши определяется по формуле:

$$N = M_0 + M + W,$$

Где:

N – количество промасленной ветоши, т/год;

 M_{o} – поступающее количество ветоши, 0,05 т/период;

М – норматив содержания в ветоши масел, т/год;

 $M = 0.12 * M_o$

W – норматива содержания в ветоши влаги, т/год.

 $W = 0.15 * M_o$

N = 0.05 + 0.006 + 0.0075 = 0.0635 Tohh.

Использованная тара (мешки, пластиковая канистра из-под химреагентов)

Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г. № 100-п. По классификации отход относится к опасному виду отходов.

Количества использованной тары, рассчитывается по формуле:

Motx =N*m, T/ckB

где: m – масса мешка, 0,003 т.

N – количество мешков, 70 шт/ пер.;

т – масса пластиковой канистры, 0,015 т.

N – количество пластиковой канистры, 70 шт/ пер.;

Motx = (70 * 0.003) + (70*0.015) = 1.26 тонн/пер.

Количество отработанного масла

В работе двигателей дизельных установок и генераторов, используемых при бурении и испытании, применяется циркуляционная принудительная система маслоснабжения, которая обеспечивает смазку подшипников оборудования, уплотнение нагнетателя и работу системы регулирования. Для работы оборудования используется моторное масло. Частота замены масла по паспортным данным составляет каждые 500 мото/часов.

Расчет количества отработанного моторного и трансмиссионного масла выполнен по «Методике разработки проектов нормативов предельно размещения отходов производства и потребления» Приложение 16 к Приказу МООС РК №100-п от 18.04.08 г. по формуле:

 $N_{M.M} = N_d * 0.25, T,$

 $N_{T.M} = N_d * 0.3, T$

где N_d – количество израсходованного моторного масла при работе установок, работающих на дизельном топливе, т;

0,25 – доля потерь мотрного масла от общего его количества.

0,3 – доля потерь трансмиссионного масла от общего его количества.

 $N_d = Y_d * H_d * \rho, T,$

где Y_d – расход дизельного топлива за год, M^3 ;

 H_d — норма расхода мотоного масла, при использовании дизтоплива — 0,032 л/л топлива;

 H_d — норма расхода трансмиссионного масла, при использовании дизтоплива — $0.004\,\mathrm{n/n}$ топлива;

 ρ — плотность моторного масла - 0,93 т/м3

плотность трансмиссионного масла - 0,885 т/м3

Наименование топлива	Количество топлива Ү _d м3/период	Норма расхода моторного масла,л/л топлива Н _d	Плотнос ть масла, т/м ³	Расход моторного масла N _d т/период	Отработанн ое масло N т/период
Дизельное топливо	342,95	0.032	0,93	10,21	2,553

Расчет объемов отработанного моторного масла

Металлолом

Данный вид отходов образуется при монтаже и демонтаже технологического оборудования, при ремонте автотранспорта, при инструментальной обработке металлов.

На предприятии проводят сортировку металлолома, хранение предусмотрено на специальной площадке, в отдельном контейнере, с последующей сдачей специализированной организации на договорной основе по мере накопления.

Количество металлолома, образующегося в процессе производственных работ на месторождении, ориентировочно составит -2,02 тонн. (Количество металлолома принято ориентировочно и будет корректироваться предприятием по фактическому образованию).

Огарки сварочных электродов

Представляют собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования.

Вывозится согласно договору со специализированной организацией.

Расчет образования огарков сварочных электродов производится по формуле «Методики разработки проектов нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г.

Количество огарков электродов определяется по формуле:

 $N = M_{oct} *Q$,

где:

N – количество огарков электродов, т/год;

 $M_{\text{ост}}$ – расход электродов, 0,3 т/год;

О - остаток электрода, 0.015 от массы электрода.

N=0.3 * 0.015 = 0.0045 TOHH.

Коммунальные отходы (ТБО)

Норма образования бытовых отходов (m_1 , т/год) принимается с учетом средних норм накопления образования отходов в благоустроенном секторе — 1,06 м 3 /год на 1 человека, списочной численности работающих и средней плотности отходов, которая составляет 0,25 т/м 3 (РНД 03.1.0.3.01-96. Алматы — 1996 год. «Порядок нормирования объёмов образования и размещения отходов производства»).

Количество образования коммунальных отходов определяется по формуле:

$$Q_{Kom} = (P*M*N*\rho)/365,$$

где:

P – норма накопления отходов на 1 чел в год, 1,06 м³/чел;

М – численность работающего персонала, чел;

N – время работы, сут;

 ρ – плотность отходов, 0,25 т/м³.

 $\mathbf{Q}_{\mathbf{Kom}} = 1,06 *35*71 * 0,25 / 365 = 1,804 \text{ T}.$

Лимиты накопления отходов, при вводе в эксплуатацию 11 скважин из консервации

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления от 1 скв, тонн/год	Лимит накопления от 11 скв, тонн/год	
1	2	3	4	
Всего	1	225,625	2481,875	
в т.ч. отходов производства	-	223,821	2462,031	
отходов потребления	-	1,804	19,844	
	Опасные отходы			
Буровой шлам	-	102,76	1130,36	
Отработанный буровой	1	115,16	1266,76	
Промасленная ветошь	1	0,0635	0,6985	
Использованная тара	-	1,26	13,86	
Отработанные масла	-	- 2,553		
	Неопасные отходы			
Металлолом	-	2,02	22,22	
Огарки сварочных электродов	-	0,0045	0,0495	
Коммунальные отходы	-	1,804	19,844	
	Зеркальные			
-	-	-		

Расчет количества образующихся отходов при бурении и испытании оценочной скважины Буровой шлам

Eуровой шлам — это выбуренная порода, отделенная от буровой промывочной жидкости очистным оборудованием, образуется при проведении спускоподъемных операций; при мытье циркуляционной системы, рабочей площадки у ротора, самого ротора, бурильной колонны, трубопроводов. Класс опасности бурового шлама — IV. Объем образования отходов бурения зависит от диаметра бурения и глубины скважины.

Расчет объемов отходов, образовавшихся при бурении скважины, произведен согласно «Методике расчета объемов образования эмиссий (в части отходов производства) от бурения скважин, Утверждена приказом Министра охраны окружающей среды Республике Казахстан от 3 мая 2012 года № 129-е.

	U			U	
Объем выбур	ленили плпл	лы ппи ст	MOUTETLCTRE	олнои	CKBAЖИНЫ
O O D C M D DIO J	pennon nopo	ды при ст	pomicuberbe	однон	CRDUMIIIDI

Интервал, м	k	π	$R_{\text{д}}$,м	R ² д	V, м ³
1	2	3	4	5	6
0-10	1,2	3.14	0,245	0,060025	2,262
10-50	1,2	3.14	0.19685	0,03875	5,84
50-300	1,15	3,14	0,14765	0,02180	19,8
300-900	1,15	3.14	0.10795	0,01165	21,03
Итого объем по с	кважине м ³			48,93	

Объем бурового шлама определяется по формуле:

 $Vu = Vn \times K_1 = 48.93 \times 1.2 = 58.72 \text{м}^3$ или **102.76** т.

где K_1 = 1.2 - коэффициент, учитывающий разупрочнение выбуренной породы.

Отработанный буровой раствор

Объем отработанного бурового раствора (ОБР) согласно «Методике расчета объемов образования эмиссий (в части отходов производства, сточных вод) от бурения скважин» от 03.05.2012г № 129-ө, определяется по формуле:

$$V_{OBP} = K_1 \times K_2 \times V_n + 0.5 \times V_{II}$$
,

где:

 K_1 – коэффициент, учитывающий разуплотнение выбуренной породы, K_1 = 1,2

 K_2 – коэффициент, учитывающий потери бурового раствора, уходящего со шламом на вибросите 1,052

Vц – объем циркуляционной системы БУ

 $\rho_{\text{обр}}$ - удельный вес отработанного бурового раствора, 1,26 т/м³

Voбp. $\pi = 1.2 \times 1.052 \times 150.61 + 0.5 \times 59.3 = 91.4 \text{м}^3 \text{м}$ или **115.16** тонн.

Объем буровых сточных вод (БСВ) с учетом повторного использования

VбcB = 2*Vобр.п

 $V6cB = 2 \times 91,4 = 182,8 \text{ m}^3$

Промасленная ветошь

Образуется в процессе использования тряпья для протирки механизмов, деталей, станков и машин. Вывозится согласно договору со специализированной организацией.

Согласно «Методике разработки проектов нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г. Количество промасленной ветоши определяется по формуле:

$$N = M_0 + M + W,$$

Где:

N – количество промасленной ветоши, т/год;

 M_{o} – поступающее количество ветоши, 0,05 т/период;

М – норматив содержания в ветоши масел, т/год;

 $M = 0.12 * M_o$

W – норматива содержания в ветоши влаги, т/год.

 $W = 0.15 * M_o$

N = 0.05 + 0.006 + 0.0075 = 0.0635 Tohh.

Использованная тара (мешки, пластиковая канистра из-под химреагентов)

Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 г. № 100-п. По классификации отход относится к опасному виду отходов.

Количества использованной тары, рассчитывается по формуле:

 $Motx = N*m, \tau/cкв$

где: m – масса мешка, 0,003 т.

N – количество мешков, 70 шт/ пер.;

т – масса пластиковой канистры, 0,015 т.

N – количество пластиковой канистры, 70 шт/ пер.;

Motx = (70 * 0.003) + (70*0.015) = 1.26 tohh/nep.

Количество отработанного масла

В работе двигателей дизельных установок и генераторов, используемых при бурении и испытании, применяется циркуляционная принудительная система маслоснабжения, которая обеспечивает смазку подшипников оборудования, уплотнение нагнетателя и работу системы регулирования. Для работы оборудования используется моторное масло. Частота замены масла по паспортным данным составляет каждые 500 мото/часов.

Расчет количества отработанного моторного и трансмиссионного масла выполнен по «Методике разработки проектов нормативов предельно размещения отходов производства и потребления» Приложение 16 к Приказу МООС РК №100-п от 18.04.08 г. по формуле:

 $N_{M.M} = N_d * 0.25, T,$

 $N_{T.M} = N_d * 0.3, T$

где N_d – количество израсходованного моторного масла при работе установок, работающих на дизельном топливе, т;

0,25 – доля потерь моторного масла от общего его количества.

0,3 – доля потерь трансмиссионного масла от общего его количества.

 $N_d = Y_d * H_d * \rho, T,$

где Y_d – расход дизельного топлива за год, M^3 ;

 H_d — норма расхода моторного масла, при использовании дизтоплива — $0{,}032\,$ л/л топлива;

 H_d — норма расхода трансмиссионного масла, при использовании дизтоплива — $0{,}004\,\,\mathrm{n/n}$ топлива;

 ρ — плотность моторного масла - 0,93 т/м3

плотность трансмиссионного масла - 0.885 т/м3

Расчет объемов отработанного моторного масла

Наименование топлива	Количество топлива Ү _d м3/период	Норма расхода моторного масла,л/л топлива Н _d	Плотност ь масла, т/м ³	Расход моторного масла N _d т/период	Отработанно е масло N т/период
Дизельное топливо	342,95	0,032	0,93	10,21	2,553

Металлолом

Данный вид отходов образуется при монтаже и демонтаже технологического оборудования, при ремонте автотранспорта, при инструментальной обработке металлов. На предприятии проводят сортировку металлолома, хранение предусмотрено на специальной площадке, в отдельном контейнере, с последующей сдачей специализированной организации на договорной основе по мере накопления.

Количество металлолома, образующегося в процессе производственных работ на месторождении, ориентировочно составит -2,02 тонн. (Количество металлолома принято ориентировочно и будет корректироваться предприятием по фактическому образованию).

Огарки сварочных электродов

Представляют собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Вывозится согласно договору со специализированной организацией.

Расчет образования огарков сварочных электродов производится по формуле «Методики разработки проектов нормативов предельного размещения отходов производства и потребления», Приложение 16 к Приказу МООС РК № 100-п от 18.04.2008 г.

Количество огарков электродов определяется по формуле:

 $N = M_{oct} *Q$,

где:

N – количество огарков электродов, т/год;

 $\mathbf{M}_{\mathbf{ocr}}$ – расход электродов, 0,3 т/год;

 ${f Q}$ - остаток электрода, 0,015 от массы электрода.

N=0.3*0.015=0.0045 Tohh.

Коммунальные отходы (ТБО)

Норма образования бытовых отходов (m_1 , т/год) принимается с учетом средних норм накопления образования отходов в благоустроенном секторе — 1,06 м 3 /год на 1 человека, списочной численности работающих и средней плотности отходов, которая составляет 0,25 т/м 3 (РНД 03.1.0.3.01-96. Алматы — 1996 год. «Порядок нормирования объёмов образования и размещения отходов производства»).

Количество образования коммунальных отходов определяется по формуле:

$$Q_{Kom} = (P*M*N*\rho)/365,$$

где:

P – норма накопления отходов на 1 чел в год, 1,06 м³/чел;

М – численность работающего персонала, чел;

N – время работы, сут;

 ρ – плотность отходов, 0,25 т/м³.

 $\mathbf{Q}_{Kom} = 1,06 *35*130 * 0,25 / 365 = 3,303 \text{ T}.$

Лимиты накопления отходов, при бурении и испытании одной оценочной скважины

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления от 1 скв, тонн/год					
1	2	3					
Всего	-	229,621					
в т.ч. отходов производства	-	226,318					
отходов потребления	-	3,303					
Опасные отходы							

Буровой шлам	-	102,76				
Отработанный буровой	-	115,16				
Промасленная ветошь	-	0,0635				
Использованная тара	-	1,26				
Отработанные масла	-	5,05				
	Неопасные отходы					
Металлолом	-	2,02				
Огарки сварочных электродов	-	0,0045				
Коммунальные отходы	-	3,303				
Зеркальные						
-	-	-				

отчет о возможных воздействиях 115

Таблица 9.1.2 - Характеристика отходов, образующихся при реализации проекта разработки месторождения

		Характеристика отходов							
№ п.п.	Наименование отходов	Код по новому Классификатору	Расшифровка кода	Агрегатное состояние	Опасные свойства согласно ст. 342 ЭКРК и Классификатору отходов	Процесс образования отходов	Морфологический (химический) состав отхода	Период накопления отхода	Способ накопления
			l		Опасные отх	КОДЫ			
1	Буровой шлам	01 05 06*	Буровой расвор и прочие буровые отходы (шлам), содержащие опасные вещества	Шлам	HP14 экотоксичность	Образуется при бурении скважины	выбуренная порода, отделенная от буровой промывочной жидкости очистным оборудованием.	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	В металлических герметичных емкостях объемом 3,6 м ³
2	Отработанный буровой раствор (ОБР)	01 05 06*	Буровой расвор и прочие буровые отходы (шлам), содержащие опасные вещества	Шлам	HP14 экотоксичность	Образуется при бурении скважины	органические примесей, оцениваемых по показателю ХПК, по значению водородного показателя рН и минерализации жидкой фазы.	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	В металлических герметичных емкостях объемом 3,6 м ³
3	Промасленная ветошь	15 02 02*	Ткани для вытирания, защитная одежда, загрязненные опасными материалами	Твердое	HP3 огнеопасность	Обслуживание/ обтирка производственн ого оборудования	ткань (ткань -73%, масло 12%, влага - 15%)	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	Металлическая емкость 0,2 м ³
4	Отработанные масла	13 02 08*	Другие моторные, трансмиссионные и смазочные масла	жидкое	HP3 огнеопасность	Замена масла при работе спецтехники	масло - 78%, продукты разложения - 8%, вода - 4%, механические примеси - 3%, присадки - 1%, горючее – до 6%	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	Металлическая емкость 0,2 м³ Отдельно забетонированная площадка на складе для хранения нефтепродуктов
5	Отработанные аккумуляторы	16 06 05*	Образуются по истечении срока годности аккумуляторов, как источников низковоль-тного электроснабжения.	жидкое	HP14 экотоксичность	Выработка своего ресурса во время эксплуатации аккумуляторов	С18 свинец; соединения свинца.	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	Металлическая емкость 0,2 м³ Отдельно забетонированная площадка на складе для хранения нефтепродуктов

	Не опасные отходы								
6	Металлолом	17 04 07	Смешанные металлы	Твердое	не обладает опасными свойства	Обработка металлических деталей	металлические куски, детали (Fe2O3 – 88,43 %, Al2O3 – 4,29 %) Железа оксид, железо (III) оксид, сажа (углерод; углерод черный)	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	Металлический контейнер 3,5 м³ на складе временного хранения
7	Медицинские отходы.	18 01 04	использованные разовые инструменты, медицинские перчатки, перевязочные материалы, боксы для накопления медицинских отходов	Твердое	HP14 экотоксичност	-	-	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	Специальный контейнер для сбора медицинских отходов, установленный в медпункт в вахтовом поселке
8	Огарки сварочных электродов	12 01 13	Отходы сварки	Твердое	не обладает опасными свойства	Проведение сварочных работ	металлические куски, детали (Fe2O3 – 88,43 %, Al2O3 – 4,29 %)	Временное складирование отходов не более 6 месяцев с учетом того, что количество отходов не будет превышать объемы емкостей накопления	Металлический контейнер 0,1 м³ на складе временного хранения на территории промплощадки
9	Коммунальные отходы (ТБО)	20 03 01	Смешанные коммунальные отходы	Твердое	не обладает опасными свойства	Жизнедеятельн ость персонала, приготовление и употребление пищи	24%	В летний период 1 раз в 3 дня, в зимний период 1 раз в 5 дней.	Металлический контейнер 0,8м³ - 4 шт на бетонированной площадке на территории бур.площадок. Предусмотрена отдельная сортировка отходов ТБО: макулатура (бумага), пластиковые бутылки и тара, стекло и др.

Таблица 9.1.3 - Лимиты накопления отходов при строительстве эксплуатационных скважин на 2024-2026гг

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления от 1 скв, тонн/год	Лимит накопления от 3-х скв, тонн/год
1	2	3	
Всего	-	383,1153	1149,3459
в т.ч. отходов производства	-	378,5923	1135,7769
отходов потребления	-	4,523	13,569
	Опасные отход	Ы	
Буровой шлам	-	166,6	499,8
Отработанный буровой раствор	-	201,74	605,22
Отработанные масла	-	7,95	23,85
Использованная тара		0,09	0,27
Промасленная ветошь	-	0,1905	0,5715
	Неопасные отхо	ды	
Металлолом	-	2.02	6.06
Огарки сварочных электродов	-	0,0018	0,0054
Твердо бытовые отходы (ТБО)	-	4,523	13,569
	Зеркальные		
-	-	-	-

Таблица 9.1.4 -Лимиты накопления отходов, при эксплуатации месторождения Жанбыршы

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год			
1	2	3			
Всего	-	7,46235			
в т.ч. отходов производства	-	4,08735			
отходов потребления	-	3,375			
	Опасные отходы				
Промасленная ветошь	-	0,0952			
Отработанные масла	-	1,98			
Отработанные аккумуляторы		0,0078			
	Неопасные отходы				
Твердо бытовые отходы	-	3,375			
Металлолом		0,5			
Огарки сварочных электродов	-	0,00135			
Строительные отходы		1			
Отработанная бочка тара	-	0,5			
Медицинские отходы	-	0,003			
Зеркальные					
-	-	-			

Таблица 9.1.5 - Лимиты накопления отходов, при испытании скважин на период доразведки

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления от 1 скв, тонн/год	Лимит накопления от 3-х скв, тонн/год			
1	2	3	4			
Всего	-	6,9988	20,9964			
в т.ч. отходов производства	-	3,0778	9,2334			
отходов потребления	-	3,921	11,763			
	Опасные отходы					
Отработанные масла	-	2,232	6,696			
Промасленная ветошь	-	0,254	0,762			
Использованная тара		0,09	0,27			
	Неопасные отходы					
Металлолом	-	0,5	1,5			
Огарки сварочных электродов	-	0,0018	0,0054			
Твердо бытовые отходы (ТБО)		3,921	11,763			
Зеркальные						
-	-	-				

9.2. Программа управления отходами

Учет и движение отходов производства и потребления на производственных объектах ТОО «ТМГО» в целом и на каждом отдельном его производственном участке должны регламентироватся экологическими нормативными документами и положениями «Программы управления отходами для объектов ТОО «ТМГО».

Все образующиеся в процессе деятельности объектов предприятия отходы в установленном порядке должны собираться, размещаться в местах временного складирования, транспортируются по договору в специализированные организации на утилизацию или на переработку. Временное складирование отходов производится строго в специализированных местах, в емкостях и на специализированных площадках, что снижает или полностью исключает загрязнение компонентов окружающей среды.

Все образующиеся в процессе деятельности объектов предприятия отходы в установленном порядке должны собираться, размещаться в местах временного складирования, транспортироваться по договору в специализированные организации на утилизацию или на переработку. Временное складирование отходов производится строго в специализированных местах, в емкостях и на специализированных площадках, что снижает или полностью исключает загрязнение компонентов окружающей среды.

Согласно статье 331 ЭК РК от 2 января 2021 года № 400-VI, субъекты предпринимательства, являющиеся образователями отходов, несут ответственность за обеспечение надлежащего управления такими отходами с момента их образования до момента передачи во владение лицам, осуществляющим операции по восстановлению или удалению отходов на основании лицензии.

Специализированные компании должны иметь лицензии на выполнение работ и оказание услуг в области охраны окружающей среды по соответствующему подвиду деятельности (выполнения работ (оказания услуг) по переработке, обезвреживанию,

утилизации и (или) уничтожению опасных отходов) (ст.336 ЭК РК от 2 января 2021 года № 400- VI).

Транспортировка отходов осуществляется в специально оборудованном транспорте, исключающем возможность потерь по пути следования и загрязнения окружающей среды, а также обеспечивающем удобства при перегрузке.

Управление отходами — это деятельность по планированию, реализации, мониторингу и анализу мероприятий по обращению с отходами производства и потребления.

Цель Программы — заключается в достижении установленных показателей, направленных на постепенное сокращение объемов и (или) уровня опасных свойств образуемых отходов, а также отходов, находящихся в процессе обращения.

Задачи Программы — определение путей достижения поставленной цели наиболее эффективными и экономически обоснованными методами, с прогнозированием достижимых объемов (этапов) работ в рамках планового периода. Задачи направлены на снижение объемов образуемых и накопленных отходов, с учетом:

- ✓ внедрения на предприятии имеющихся в мире наилучших доступных технологий по обезвреживанию, вторичному использованию и переработке отходов;
- ✓ привлечения инвестиций в переработку и вторичное использование отходов;
- ✓ минимизации объемов отходов, вывозимых на полигоны захоронения.

Показатели Программы — количественные и (или) качественные значения, определяющие на определенных этапах ожидаемые результаты реализации комплекса мер, направленных на снижение негативного воздействия отходов производства и потребления на окружающую среду.

Показатели устанавливаются с учетом:

- ✓ всех производственных факторов;
- ✓ экологической эффективности;
- ✓ экономической целесообразности.

Показатели являются контролируемыми и проверяемыми, определяются по этапам реализации Программы.

Существующая на предприятии схема управления отходами на предприятии должна включать в себя следующие этапы технологического цикла отходов согласно требованиям ЭК РК:

Владельцы отходов - Статья 318. 1. Под владельцем отходов понимается образователь отходов или любое лицо, в чьем законном владении находятся отходы. 2. Образователем отходов признается любое лицо, в процессе осуществления деятельности которого образуются отходы (первичный образователь отходов), или любое лицо, осуществляющее обработку, смешивание или иные операции, приводящие к изменению свойств таких отходов или их состава (вторичный образователь отходов).

Накопление отходов - статья 320. пункт

- 1. Под накоплением отходов понимается временное складирование отходов в специально установленных местах в течение сроков, указанных в пункте 2 настоящей статьи, осуществляемое в процессе образования отходов или дальнейшего управления ими до момента их окончательного восстановления или удаления.
 - 2. Места накопления отходов предназначены для:
- 1) временного складирования отходов на месте образования на срок не более шести месяцев до даты их сбора (передачи специализированным организациям) или самостоятельного вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;
- 2) временного складирования неопасных отходов в процессе их сбора (в контейнерах, на перевалочных и сортировочных станциях), за исключением вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники,

на срок не более трех месяцев до даты их вывоза на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению;

3) временного складирования отходов на объекте, где данные отходы будут подвергнуты операциям по удалению или восстановлению, на срок не более шести месяцев до направления их на восстановление или удаление.

Для вышедших из эксплуатации транспортных средств и (или) самоходной сельскохозяйственной техники срок временного складирования в процессе их сбора не должен превышать шесть месяцев;

- 3. временного складирования отходов горнодобывающих и горноперерабатывающих производств, в том числе отходов металлургического и химикометаллургического производств, на месте их образования на срок не более двенадцати месяцев до даты их направления на восстановление или удаление.
- 4. Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).
- 5. Запрещается накопление отходов с превышением сроков, указанных в пункте 2 настоящей статьи, и (или) с превышением установленных лимитов накопления отходов (для объектов I и II категорий) или объемов накопления отходов, указанных в декларации о воздействии на окружающую среду (для объектов III категории).

Сбор отходов – статья 321.

- 1. Под сбором отходов понимается деятельность по организованному приему отходов от физических и юридических лиц специализированными организациями в целях дальнейшего направления таких отходов на восстановление или удаление. Под накоплением отходов в процессе сбора понимается хранение отходов в специально оборудованных в соответствии с требованиями законодательства Республики Казахстан местах, в которых отходы, вывезенные с места их образования, выгружаются в целях их подготовки к дальнейшей транспортировке на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению.
- 2. Лица, осуществляющие операции по сбору отходов, обязаны обеспечить раздельный сбор отходов в соответствии с требованиями настоящего Кодекса.
- 3. Требования к раздельному сбору отходов, в том числе к видам или группам (совокупности видов) отходов, подлежащих обязательному раздельному сбору, определяются уполномоченным органом в области охраны окружающей среды в соответствии с требованиями настоящего Кодекса и с учетом технической, экономической и экологической целесообразности.
- 4. Запрещается смешивание отходов, подвергнутых раздельному сбору, на всех дальнейших этапах управления отходами.

Транспортировка отходов - статья 321.

1. Под транспортировкой отходов понимается деятельность, связанная с перемещением отходов с помощью специализированных транспортных средств между местами их образования, накопления в процессе сбора, сортировки, обработки, восстановления и (или) удаления.

Восстановление отходов - Статья 323.

Восстановлением отходов признается любая операция, направленная на сокращение объемов отходов, главным назначением которой является использование отходов для выполнения какой-либо полезной функции в целях замещения других материалов, которые в противном случае были бы использованы для выполнения указанной функции, включая вспомогательные операции по подготовке данных отходов для выполнения такой функции, осуществляемые на конкретном производственном объекте или в определенном секторе экономики.

К операциям по восстановлению отходов относятся:

1) подготовка отходов к повторному использованию;

- 2) переработка отходов;
- 3) утилизация отходов.

Удаление отходов - Статья 325. 1.

- 1. Удалением отходов признается любая, не являющаяся восстановлением операция по захоронению или уничтожению отходов, включая вспомогательные операции по подготовке отходов к захоронению или уничтожению (в том числе по их сортировке, обработке, обезвреживанию).
- 2. Захоронение отходов складирование отходов в местах, специально установленных для их безопасного хранения в течение неограниченного срока, без намерения их изъятия.
- 3. Уничтожение отходов способ удаления отходов путем термических, химических или биологических процессов, в результате применения которого существенно снижаются объем и (или) масса и изменяются физическое состояние и химический состав отходов, но который не имеет в качестве своей главной цели производство продукции или извлечение энергии.

Вспомогательные операции при управлении отходами - Статья 326.

- 1. К вспомогательным операциям относятся сортировка и обработка отходов.
- 2. Под сортировкой отходов понимаются операции по разделению отходов по их видам и (или) фракциям либо разбору отходов по их компонентам, осуществляемые отдельно или при накоплении отходов до их сбора, в процессе сбора и (или) на объектах, где отходы подвергаются операциям по восстановлению или удалению.
- 3. Под обработкой отходов понимаются операции, в процессе которых отходы подвергаются физическим, термическим, химическим или биологическим воздействиям, изменяющим характеристики отходов, в целях облегчения дальнейшего управления ими и которые осуществляются отдельно или при накоплении отходов до их сбора, в процессе сбора и (или) на объектах, где отходы подвергаются операциям по восстановлению или удалению. Под обезвреживанием отходов понимается механическая, физико-химическая или биологическая обработка отходов для уменьшения или устранения их опасных свойств.

Основополагающее экологическое требование к операциям по управлению отходами

Лица, осуществляющие операции по управлению отходами, обязаны выполнять соответствующие операции таким образом, чтобы не создавать угрозу причинения вреда жизни и (или) здоровью людей, экологического ущерба, и, в частности, без:

- 1) риска для вод, в том числе подземных, атмосферного воздуха, почв, животного и растительного мира;
- 2) отрицательного влияния на ландшафты и особо охраняемые природные территории.

Принципы государственной экологической политики в области управления отходами

- В дополнение к общим принципам, изложенным в статье 5 Экологического Кодекса, государственная экологическая политика в области управления отходами основывается на следующих специальных принципах:
 - 1) иерархии;
 - 2) близости к источнику;
 - 3) ответственности образователя отходов;
 - 4) расширенных обязательств производителей (импортеров).

Принцип иерархии

Образователи и владельцы отходов должны применять следующую иерархию мер по предотвращению образования отходов и управлению образовавшимися отходами в порядке убывания их предпочтительности в интересах охраны окружающей среды и обеспечения устойчивого развития Республики Казахстан:

- 1) предотвращение образования отходов;
- 2) подготовка отходов к повторному использованию;
- 3) переработка отходов;
- 4) утилизация отходов;
- 5) удаление отходов.

Принцип близости к источнику

Образовавшиеся отходы должны подлежать восстановлению или удалению как можно ближе к источнику их образования, если это обосновано с технической, экономической и экологической точки зрения.

Принцип ответственности образователя отходов

Субъекты предпринимательства, являющиеся образователями отходов, несут ответственность за обеспечение надлежащего управления такими отходами с момента их образования до момента передачи в соответствии с пунктом 3 статьи 339 Экологического Кодекса во владение лица, осуществляющего операции по восстановлению или удалению отходов на основании лицензии.

Принцип расширенных обязательств производителей (импортеров)

Физические и юридические лица, которые осуществляют на территории Республики Казахстан производство отдельных видов товаров по перечню, утверждаемому в соответствии с пунктом 1 статьи 386 Экологического Кодекса, или ввоз

таких товаров на территорию Республики Казахстан, несут расширенные обязательства в соответствии с Экологическим Кодексом, в том числе в целях снижения негативного воздействия таких товаров на жизнь и (или) здоровье людей и окружающую среду.

Нормирование в области управления отходами

Лимиты накопления отходов и лимиты на их захоронение устанавливаются для объектов I и II категорий на основании соответствующего экологического разрешения.

Разработка и утверждение лимитов накопления отходов и лимитов захоронения отходов, представление и контроль отчетности об управлении отходами осуществляются в соответствии с правилами, утвержденными уполномоченным органом в области охраны окружающей среды.

Операторы объектов I и (или) II категорий, а также лица, осуществляющие операции по сортировке, обработке, в том числе по обезвреживанию, восстановлению и (или) удалению отходов, обязаны разрабатывать программу управления отходами в соответствии с правилами, утвержденными уполномоченным органом в области охраны окружающей среды.

Программа управления отходами является неотъемлемой частью экологического разрешения.

Паспорт опасных отходов - Статья 343.

- 1. Паспорт опасных отходов составляется и утверждается физическими и юридическими лицами, в процессе деятельности которых образуются опасные отходы.
 - 2. Паспорт опасных отходов должен включать следующие обязательные разделы:
- 1) наименование опасных отходов и их код в соответствии классификатором отходов;
- 2) реквизиты образователя отходов: индивидуальный идентификационный номер для физического лица и бизнес-идентификационный номер для юридического лица, его место нахождения;
 - 3) место нахождения объекта, на котором образуются опасные отходы;
- 4) происхождение отходов: наименование технологического процесса, в результате которого образовались отходы, или процесса, в результате которого товар (продукция) утратил (утратила) свои потребительские свойства, с наименованием исходного товара (продукции);

перечень опасных свойств отходов;

- 5) химический состав отходов и описание опасных свойств их компонентов;
- 6) рекомендуемые способы управления отходами;
- 7) необходимые меры предосторожности при управлении отходами;
- 8) требования к транспортировке отходов и проведению погрузочно-разгрузочных работ;
- 9) меры по предупреждению и ликвидации чрезвычайных ситуаций природного и техногенного характера и их последствий, связанных с опасными отходами, в том числе во время транспортировки и проведения погрузочно-разгрузочных работ;
- 10) дополнительную информацию (иную информацию, которую сообщает образователь отходов).
- 3. Форма паспорта опасных отходов утверждается уполномоченным органом в области охраны окружающей среды, заполняется отдельно на каждый вид опасных отходов и представляется в порядке, определяемом статьей 384 ЭК, в течение трех месяцев с момента образования отходов.

Программа управления отходами - статья 335.

1. Операторы объектов I и (или) II категорий, а также лица, осуществляющие операции по сортировке, обработке, в том числе по обезвреживанию, восстановлению и (или) удалению отходов, обязаны разрабатывать программу управления отходами в соответствии с правилами, утвержденными уполномоченным органом в области охраны окружающей среды.

Программа управления отходами разрабатывается согласно Приказа Министра энергетики Республики Казахстан от 25 ноября 2014 года № 146 Об утверждении Правил разработки программы управления отходами.

План мероприятий является составной частью Программы и представляет собой комплекс организационных, экономических, научно-технических и других мероприятий, направленных на достижение цели и задач программы с указанием необходимых ресурсов, ответственных исполнителей, форм завершения и сроков исполнения.

9.3. Особенности загрязнения территории отходами производства и потребления

Влияние отходов производства и потребления на природную окружающую среду при хранении будет минимальным при условии выполнения соответствующих санитарно-эпидемиологических и экологических норм Республики Казахстан и направленных на минимизацию негативных последствий антропогенного вмешательства в окружающую среду.

Все образующиеся отходы на месторождении, при неправильном обращении, могут оказывать негативное влияние на окружающую среду.

Безопасное обращение с отходами предполагает их временное хранение в специальных помещениях, контейнерах и площадках, постоянный контроль количества отходов и своевременный вывоз на переработку или захоронение на полигоны на договорной основе.

На участке будет действовать система, включающая контроль:

- за объемом образования отходов;
- за транспортировкой отходов на участке;
- за временным хранением и отправкой на специализированные предприятия отдельных видов отходов.

На предприятии должно вестись работа по внедрению системы управления отходами, полностью соответствующей действующим нормативам РК и международным стандартам. В целях минимизации экологической опасности и предотвращения отрицательного воздействия на окружающую среду в части образования, обезвреживания, временного складирования и утилизации отходов на месторождении налажена система внутреннего и внешнего учета и слежения за движением производственных и бытовых отходов.

Влияние отходов производства и потребления на природную окружающую среду при хранении будет минимальным при условии выполнения соответствующих санитарно-эпидемиологических и экологических норм Республики Казахстан и направленных на минимизацию негативных последствий антропогенного вмешательства в окружающую среду.

Потенциальная возможность негативного воздействия отходов может проявляться в результате непредвиденных ситуаций на отдельных стадиях сбора и хранения отходов производства и потребления, или при несоблюдении технологического регламента и техники безопасности.

В случае неправильного сбора, хранения и транспортировки всех видов отходов может наблюдаться негативное влияние на все компоненты окружающей среды: атмосферный воздух, подземные воды, почвенно-растительный покров, животный и растительный мир. Эффективная система управления отходами является одним из ключевых моментов разрабатываемых природоохранных мероприятий. Складирование, размещение, а в дальнейшем по мере накопления вывоз на договорной основе сторонними организациями на утилизацию или захоронение отходов, осуществляемых на месторождении в настоящее время и планируемых в ближайшее время, производится для сведения к минимуму негативного воздействия на окружающую среду.

Правильная организация размещения, хранения и удаления отходов максимально предотвращает загрязнения окружающей среды. Это предполагает исключение, изменение или сокращение видов работ, приводящих к загрязнению отходами почвы, атмосферы или водной среды. Планирование операций по снижению количества отходов, их повторному использованию, утилизации, регенерации создают возможность минимизации воздействия на компоненты окружающей среды.

При анализе мест централизованного временного накопления (хранения) отходов установлено, что способы хранения отходов и методы транспортировки соответствуют требованиям санитарных и экологических норм.

В компании ТОО «ТМГО» в дальнейшем будет разработан «Программы производственного экологического контроля». Мониторинг управления отходами производства и потребления предполагает разработку организационной системы отслеживания образования отходов, контроль над их сбором, хранением и утилизацией (вывозом).

Воздействие на окружающую среду отходов, которые будут образовываться в процессе проведения работ, будет сведено к минимуму при условии соблюдения правил сбора, складирования, вывоза, утилизации всех видов отходов. В целом же воздействие отходов на состояние окружающей среды может быть оценено как:

- пространственный масштаб воздействия локальный (1) площадь воздействия до 1 км² для площадных объектов или на удалении до 100 м от линейного объекта.
- временной масштаб воздействия многолетний (4) продолжительность воздействия от 3-х лет и более;
- интенсивность воздействия (обратимость изменения) умеренная (3) изменения среды превышают пределы природной изменчивости, приводят к нарушению отдельных компонентов природной среды, но среда сохраняет способность к самовосстановлению.

Таким образом, интегральная оценка составляет 12 баллов, соответственно по показателям матрицы оценки воздействия, категория значимости присваивается средняя (9-27) — изменения в среде превышают цепь естественных изменений, среда восстанавливается без посторонней помощи частично или в течение нескольких лет.

9.4. Рекомендации по обезвреживанию, утилизации и захоронению всех видов отходов

Для уменьшения вредного воздействия отходов на окружающую среду и обеспечения полного соответствия мест их централизованного временного накопления (хранения) на территории предприятия необходимо соблюдение следующих организационно-технических мероприятий:

- оборудовать площадки с твердым покрытием для установки емкостей и контейнеров для сбора отходов;
- осуществлять своевременный вывоз отходов;
- при транспортировке отходов обязательно соблюдение правил загрузки отходов в кузов и прицепы автотранспортного средства. В случае возникновения ситуации, связанной с частичным или полным выпадением перевозимых отходов, все выпавшие отходы собрать и увезти в специально отведенные места для захоронения;
- хранение строительных материалов предусматривается только на специально выделенных и оборудованных для этого площадках;
- запрещается слив любых загрязняющих веществ в воду и почву;
- сбор и удаление отходов для утилизации и вторичного использования;
- заключение договоров со специализированными организациями осуществляющие операции по восстановлению или удалению отходов на основании лицензии;
- приобретение материалов в бестарном виде или в возвратной таре;
- не смешивание отходов различных классов опасности;
- установить контроль за раздельным сбором мусора с обязательной утилизацией годных для вторичной переработки отходов;
- поддерживать в чистоте площадку для сбора мусора, своевременно проводить уборку, следить за исправностью контейнеров.
- оснащения оборудованием мусоросборниками для раздельного сбора отходов;
- запрещается сбрасывать отходы в водоемы, реки, закапывать в земле;
- сжигать отходы вне специальных печей или устройств;
- складировать в черте города или населенного пункта;
- все погрузочные и разгрузочные работы, выполняемые при складировании отходов, производить механизированным способом.

Решающим фактором, обеспечивающим снижение негативного влияния на окружающую среду отходов, размещаемых на предприятии, является процесс их утилизации. Для снижения влияния образующихся отходов на состояние окружающей среды предлагаются следующие меры:

- проведение разграничения между отходами по физико-химическим свойствам, поскольку данная работа является важным моментом в программе мероприятий по их дальнейшей переработке и удалению;
- после накопления объемов рентабельных к вывозу отправить отходы на переработку либо утилизацию.

10. ИНФОРМАЦИЯ ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ АВАРИЙ ОПАСНЫХ ПРИРОДНЫХ явлений. ХАРАКТЕРНЫХ COOTBETCTBEHHO НАМЕЧАЕМОЙ **ДЕЯТЕЛЬНОСТИ** ДЛЯ ОСУЩЕСТВЛЕНИЯ, ПРЕЛПОЛАГАЕМОГО **MECTA** возлействий возможных СУШЕСТВЕННЫХ **ВРЕЛНЫХ** ОКРУЖАЮЩУЮ СРЕДУ, СВЯЗАННЫХ С РИСКАМИ ВОЗНИКНОВЕНИЯ АВАРИЙ И ОПАСНЫХ ПРИРОДНЫХ ЯВЛЕНИЙ, С УЧЕТОМ ВОЗМОЖНОСТИ ПРОВЕДЕНИЯ МЕРОПРИЯТИЙ ПО ИХ ПРЕДОТВРАЩЕНИЮ И ЛИКВИДАЦИИ

10.1. Оценка риска возможных аварийных ситуаций и меры их предотвращения

В условиях интенсивной антропогенной деятельности, базирующейся, к сожалению, на недостаточно высоком уровне научной и технической оснащенности народного хозяйства и связанной с серьезными ошибками в технической и экологической политике, проблема экологической безопасности окружающей природной среды представляется одной из наиболее актуальных. Следует подчеркнуть, что реализация крупных народно-хозяйственных проектов, помимо достижения планируемых положительных моментов, сопровождается возникновением негативных природноантропогенных процессов, приводящих, в частности, к ухудшению качества водных и земельных ресурсов и снижению экологической устойчивости природной среды.

С развитием высоких технологий и производством высококачественной техники значительные требования предъявляются работающему персоналу на всех стадиях от ее изготовления до эксплуатации. На первое место выходит человеческий фактор, не только профессионализм работника, но и его физическое состояние, обусловленное условиями работы.

Неблагоприятные метеорологические условия работы на открытом воздухе могут отрицательно повлиять на здоровье рабочих.

В осенне-зимний период года возможны переохлаждения, случаи отморожения и даже замерзания. Случаи переохлаждения нередки и даже весной, особенно в сырую погоду.

В результате длительного воздействия солнечных лучей у работающего в летний период может быть солнечный удар. В жаркую погоду в плохо вентилируемых помещениях возможно перегревание организма.

Углеводороды при определенных концентрациях в воздухе оказывают вредное воздействия на организм человека и могут вызывать острое отравление и заболевания.

Ежегодно стихийные бедствия, возникающие в различных странах, производственные аварии на производственных объектах, коммунально-энергетических системах городов вызывают крупномасштабные разрушения, гибель людей, большие потери материальных ценностей.

Стихийные бедствия по природе возникновения и вызываемому ущербу могут быть самыми разнообразными. К ним относятся: землетрясения, извержения вулканов, наводнения, пожары, ураганы, бури, штормы.

Наиболее объективной оценкой уровня экологической безопасности антропогенной деятельности, объединяющей различные ее аспекты: технический, экономический, экологический и социальный, является оценка суммарного риска, под которым понимается вероятность возникновения и развития, неблагоприятных природнотехногенных процессов, сопровождающихся, как правило, существенными экологическими последствиями.

При этом уровень экологического риска возрастает из-за невозможности предвидеть весь комплекс неблагоприятных процессов и их развития, из-за недостаточной информации о свойствах и показателях отдельных компонентов природной среды, необходимых для построения оперативных, среднесрочных и долгосрочных прогнозов развития каждого из природно-техногенных процессов. Существенно возрастает уровень экологического риска из-за того, что практически невозможно оценить обобщенную

реакцию природной среды от суммарного воздействия отдельных видов антропогенной деятельности и способной привести к катастрофическим последствиям.

10.2. Виды аварийных ситуаций, их причины и меры их предупреждения

Проведение проектных работ в процессе разработки месторождения требует оценки экологического риска данного вида работ. Оценка экологического риска необходима для предотвращения и страхования возможных убытков и ответственности за экологические последствия аварий, которые потенциально возможны при проведении, практически, любого вида человеческой производственной деятельности.

Оценка экологического риска намечаемых проектных решений в процессе проведения проектируемых работ включает в себя рассмотрение следующих аспектов воздействия:

- комплексную оценку последствий воздействия на окружающую среду при нормальном ходе проектируемых работ;
- оценку вероятности аварийных ситуаций с учетом технического уровня оборудования;
- оценку ущерба природной среде и местному населению;
- мероприятия по предупреждению аварийных ситуаций;
- мероприятия по ликвидации последствий возможных аварийных ситуаций.

Оценка уровня экологического риска для каждого сценария аварии определяется исходя из матрицы.

В матрице по горизонтали показана вероятность (частота возникновения) аварийной ситуации, по вертикали – интенсивность воздействия на компонент окружающей среды.

Аварии, для которых характерна частота возникновения первой и второй градации, маловероятны в течение производственной деятельности предприятия.

Аварии, характеризующиеся средней и высокой вероятности, возможны в течение срока производственной деятельности.

Уровень тяжести воздействия определяется, в соответствии с методом оценки воздействия на окружающую среду, для каждого из компонентов.

Уровень экологического риска (высокий, средний и низкий) для каждого сценария определяется ячейкой на пересечении соответствующего ряда матрицы со столбцом установленной частоты возникновения аварии.

Результирующий уровень экологического риска для каждого сценария аварий определяется следующим образом:

- низкий приемлемый риск/воздействие.
- средний риск/воздействие приемлем, если соответствующим образом управляем;
- высокий риск/воздействие не приемлем.

10.3. Вероятность возникновения стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него

Потенциальные опасности, связанные с риском проведения разработки месторождения работ могут возникнуть в результате воздействия, как природных факторов, так и антропогенных.

Под природными факторами понимаются разрушительные явления, вызванные природноклиматическими причинами, которые не контролируются человеком. Иными словами, при возникновении природной чрезвычайной ситуации возникает опасность саморазрушения окружающей среды.

К природным факторам относятся:

- ✓ землетрясения;
- ✓ ураганные ветры;

✓ повышенные атмосферные осадки.

Согласно «Атласу природных и техногенных опасностей и рисков чрезвычайных ситуаций» площадка строительства проектируемого объекта характеризуется:

- ✓ отсутствием риска опасных гидрологических явлений (наводнения, половодья, паводка, затора, зажора, ветрового нагона, прорыва плотин, перемерзаний/пересыханий рек, способных повлиять на водоснабжение проектируемого завода);
- ✓ отсутствием риска опасных геологических и склоновых явлений (селей, обвалов, оползней, снежных лавин);
 - ✓ средним риском сильных дождей;
 - ✓ средним риском сильных ветров;
 - ✓ низким риском экстремально высоких температур;
 - ✓ средним риском экстремально низких температур;
- ✓ климатическим экстремумом «среднее многолетнее число дней в году с максимальной температурой выше 30-40°С и более»;
 - ✓ сильной степенью опустынивания;
 - ✓ отсутствием риска лесных и степных пожаров.

Вероятность возникновения землетрясения с силой 7-9 баллов, которое может привести к разрушениям зданий и сооружений, очень низкая.

Риски извержения вулканов, цунами, ураганов, бурь, смерчей отсутствуют. Характер воздействия события: одномоментный.

Таким образом, природные (естественные) факторы, представляющие угрозу проектируемым работам, характеризуются очень низкими вероятностями.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении риска, связанном с природными факторами.

Вероятность возникновения аварийных ситуаций на проектируемом заводе по причине природных воздействий следует принять несущественной, так как при проектировании зданий, сооружений и инженерных сетей завода в полной мере учитываются природно-климатические особенности района месторождения.

10.4. Вероятность возникновения неблагоприятных последствий в результате аварий, инцидентов, природных стихийных бедствий в предполагаемом месте осуществления намечаемой деятельности и вокруг него.

С учетом вероятности возникновения аварийных ситуаций одним из эффективных методов минимизации ущерба от потенциальных аварий является готовность к ним – разработка вариантов возможного развития событий при аварии и методов реагирования на них.

Для отработанных привычных видов деятельности, отличающихся сравнительно невысокой сложностью и непродолжительностью деятельности, при оценке экологического риска может быть использован количественный подход.

Экологические последствия аварийных ситуаций могут быть тяжелыми, и зависят, в первую очередь, от характера аварии.

Возникновение аварийных ситуаций в результате неуправляемых газопроявлений может привести как к прямому, так и косвенному негативному воздействию на окружающую среду.

Последствия неуправляемых газопроявлений обычно тяжелые. Кроме непосредственной опасности для персонала, аварии этого типа сопровождаются загрязнением почв прилегающих территорий, воздушного бассейна - газообразными углеводородами или продуктами их сгорания в количествах, значительно превышающих ожидаемые.

На предприятии разработаны меры по уменьшению риска аварий. Своевременное и качественное проведение осмотров, регулировок, ревизий и ремонтов оборудования и

приспособлений, при соблюдении правил безопасности и производственных инструкций, своевременном проведении инструктажей возникновение аварий практически исключено, что подтверждается данными за период существования предприятия ТОО «ТМГО».

Поскольку эксплуатация месторождения производится вдали от населенных пунктов, то воздействия на население при ликвидации скважин и технологического оборудования будут незначительными.

10.5. Все возможные неблагоприятные последствия для окружающей среды, которые могут возникнуть в результате инцидента, аварии, стихийного природного явления

Возможное воздействие на воздушную среду при аварийных ситуациях оценивается в пространственном масштабе как локальное, кратковременного действия, по величине воздействия как умеренной значимости.

Воздействие возможных аварий на водные ресурсы.

Практически работы по ликвидации носят временный характер. И соотвественно, при проведении работ возникновение аварий и их воздействие на подземные и поверхностные воды исключено.

В качестве аварийных ситуаций могут рассматриваться пожары, при которых возможно образование пожарных вод.

Воздействие возможных аварий на почвенно-растительный покров

Основные аварийные ситуации, которые могут иметь негативные последствия для почвенно-растительного покрова, связаны со следующими процессами:

- разливы химреагентов, ГСМ;
- разливы сточных вод.

Необходимо отметить, что серьезное воздействие на компоненты окружающей среды могут оказать и непосредственно ликвидационные работы по изъятию загрязненной почвы и ее утилизации. Подобные операции обычно требуют привлечения транспортных средств и техники, движение которых происходит на достаточно большой площади. В результате могут уничтожаться естественные ландшафты далеко за пределами очага загрязнения.

Воздействие на социально-экономическую среду

Аварийные ситуации могут оказать воздействие на социальные и экономические условия. Но аварийные ситуации непредсказуемы, а проектирование и будущая эксплуатация рассчитаны на сведение к минимуму возможных аварийных ситуаций. Прямого социального или экономического воздействия на представителей населения не будет в связи с удаленным расположением проектируемого объекта.

Потенциально возможные аварии маловероятны, а запланированные предупредительные и противоаварийные мероприятия позволят ликвидировать их на начальной стадии и минимизировать ущерб окружающей среде.

Негативное воздействие на здоровье населения аварийной ситуации с выбросом вредных веществ маловероятно, вероятность этой ситуации очень мала и может иметь экономические последствия, связанные с ликвидацией последствий выброса и устранением прорыва.

Основное экономическое воздействие крупных аварийных ситуаций проявится в потребности в рабочей силе и оборудовании для ликвидации аварии и ремонта нанесенных повреждений для возврата к нормальной эксплуатации.

Маловероятно, что возникнет необходимость в привлечении местной рабочей силы для ликвидации аварии в случае выброса газа, т.к. данная авария будет краткосрочной.

Возможное воздействие на социально-экономическую среду при аварийных ситуациях оценивается в пространственном масштабе как локальное, по величине воздействия как слабо отрицательное. Все вышеуказанные негативные воздействия на окружающую среду можно свести к минимуму при соблюдении технологического регламента производственного процесса, профилактического осмотра и ремонта

спецтехники, правил безопасного ведения работ и проведение природоохранных мероприятий.

10.6. Меры по предотвращению последствий инцидентов, аварий, природных стихийных бедствий, включая оповещение населения, и оценка их надежности

Предприятие осуществляет свою производственную деятельность много лет, поэтому компания имеет разработанный и утвержденный "План проведения работ по предотвращению и ликвидации аварийных ситуаций" в соответствии со следующими положениями:

- возможные аварийные ситуации при намечаемой хозяйственной деятельности;
- методы реагирования на аварийные ситуации;
- создание аварийной бригады (численность, состав, метод оповещения и т.д.);
- фазы реагирования на аварийную ситуацию.

Важнейшую роль в обеспечении безопасности рабочего персонала и охраны окружающей природной среды при проведении проектируемых работ играет система правил, нормативов, инструкций и стандартов, соблюдение которых обязательно руководителями и всеми сотрудниками.

При проведении работ необходимо уделять первоочередное внимание монтажу, проверке и техническому обслуживанию.

Во всех случаях, где это возможно, меры уменьшения вероятности аварии должны иметь приоритет над мерами уменьшения последствий аварий. Это означает, что выбор технических и организационных мер для уменьшения опасности имеет следующие приоритеты:

- меры уменьшения вероятности возникновения аварийной ситуации, включающие: меры уменьшения вероятности возникновения неполадки (отказа);
- меры уменьшения вероятности перерастания неполадки в аварийную ситуацию;
- меры уменьшения тяжести последствий аварии, которые в свою очередь имеют следующие приоритеты: меры, предусматриваемые при проектировании опасного объекта (например, выбор несущих конструкций);
- меры, относящиеся к системам противоаварийной защиты и контроля;
- меры, касающиеся организации, оснащенности и боеготовности противоаварийных служб.

Иными словами, в общем случае первоочередными мерами обеспечения безопасности являются меры предупреждения аварии.

Рекомендации по предотвращению аварийных ситуаций включают в себя следующие мероприятия:

- строгое выполнение проектных решений при проведении работ;
- обязательное соблюдение всех правил эксплуатации технологического оборудования;
- периодическое проведение инструктажей и занятий по технике безопасности;
- регулярное проведение учений по тревоге;
- контроль за наличием спасательного и защитного оборудования и умением персонала им пользоваться;
- своевременное устранение утечки во время работы механизмов;
- использование контейнеров для сбора отходов производства и потребления;
- строгое следование Проекту управления отходами, в том числе использование контейнеров для сбора отработанных масел;
- своевременное проведение профилактического осмотра и ремонта оборудования и питающих линий.

Мероприятия по охране и защите окружающей среды, предусмотренные данным проектом, полностью соответствуют экологической политике, проводимой в Республике Казахстан. Основные принципы этой политики сводятся к следующему:

- минимальное вмешательство в сложившиеся к настоящему времени природные экосистемы;
- использование новейших природосберегающих технологий;
- сведение к минимуму любых воздействий на окружающую среду в процессе проведения работ;
- полное восстановление нарушенных элементов природной среды после завершения работ.

Технические решения, предусмотренные в проекте, обеспечивают безопасность, учитывают все возможные чрезвычайные ситуации, а также мероприятия по повышению промышленной безопасности, позволяют свести вероятность появления любой аварийной ситуации к минимуму. Технологическое оборудование проектируемых объектов и всего предприятия в целом должно соответствовать требованиям действующих нормативных документов, что значительно снизит вероятность возникновения аварий.

Целью предупреждения развития возможных аварий в чрезвычайные ситуации и снижения тяжести их последствия, проектом предусмотрены:

- система противоаварийной защиты, обеспечивающая перевод технологического процесса и оборудования в безопасное состояние с целью защиты персонала, имущества и окружающей среды при возникновении аварийных ситуаций и их дальнейшем развитии в аварии;
- система автоматической пожарной сигнализации для своевременного обнаружения возгорания и задымления в защищаемых помещениях и на защищаемых наружных установках и незамедлительного принятия мер по тушению пожара;
- наличие и поддержание неприкосновенного запаса противопожарной воды, позволяющего незамедлительно приступить к пожаротушению и противопожарному охлаждению;
- наличие первичных средств пожаротушения, дающее возможность тушения возникших возгораний на ранних этапах, не допуская перерастания их в крупномасштабные пожары;
- резервное электроснабжение на случай аварийного прерывания основного электроснабжения электроприемников систем и оборудования, задействованных в мониторинге и ликвидации аварий и чрезвычайных ситуаций (оборудования КИПиА, связи, видеонаблюдения, аварийного освещения и пожарной насосной);
- пути эвакуации из зданий и сооружений и по территории месторождений, обеспечивающие безопасную эвакуацию персонала в случае развития аварии в чрезвычайную ситуацию;

11. СОСТОЯНИЕ СОЦИАЛЬНОЙ СФЕРЫ И ЭКОНОМИКА РЕГИОНА

11.1 Социально-экономические условия

Социально-экономические характеристики состояния населения, которые должны учитываться в ходе проведения проектируемых работ, классифицируется наукой – экологией человека – следующим образом: демографические характеристики, показатели, характеризующие условия трудовой деятельности и быта, отдыха, питания, водопотребления, воспроизводства и воспитания населения, его образования и поддержания высокого уровня здоровья; характеристики природных и техногенных факторов среды обитания населения.

В связи с этим в данном разделе дается обзор основных социально-экономических условий, демографические и санитарно-гигиенические условия проживания населения в районе планируемых работ на основе отчетных данных Агентства РК по статистике, областного управления статистики.

Социально-экономическая структура Кызылординской области формируется в довольно жестких природно-климатических условиях.

Кызылординская область (каз. Қызылорда облысы) образована 15 января 1938 года.

Область расположена в юго-западной части Казахстана с общей площадью 226 тыс. кв. км, что составляет 8,3% всей территории республики.

Область граничит на северо-западе с Актюбинской, на Севере с Карагандинской, на юго-востоке с Южно - Казахстанской областями, а на юге - с Республикой Узбекистан.

Область административно разделена на 7 районов и город областного подчинения Кызылорда. В области 265 поселка и села, 145 сельских и аульных округа.

Список районов с запада на восток:

- 1. Аральский район, центр город Аральск;
- 2. Казалинский район, центр посёлок городского типа Айтеке-Би;
- 3. Кармакшинский район, центр село Жосалы (Джусалы);
- 4. Жалагашский район, центр село Жалагаш (Джалагаш);
- 5. Сырдарьинский район, центр село Теренозек;
- 6. Шиелийский район, центр село Шиели (Чиили);
- 7. Жанакорганский район, центр село Жанакорган (Яныкурган);

Областным центром Кызылординской области является город Кызылорда, расположен на правом берегу реки Сырдарьи, в ее нижнем течении.

Город Кызылорда — административный, социально-экономический, научный, образовательный и культурный центр области. Этот город отличается функциональным разнообразием экономики, многосторонним потенциалом, выгодным экономико-географическим положением. Сочетание всех этих качеств делает Кызылорду локомотивом развития и генератором инноваций всей области.

Основное направление в хозяйственной деятельности Кызылординской области – добыча углеводородного сырья, производство строительных материалов, рыболовство и сельское хозяйство.

11.2 Социально-демографические положение региона

Численность населения области на 1 ноября 2022 года по текущим данным составила 831,7 тыс. человек, из них 34,6 тыс. человек приходится на казахстанских граждан г.Байконыр. По сравнению с соответствующим периодом 2021 года она увеличилась на 5,8 тыс. человек или на 0,7%.

За январь-октябрь 2022г. в области зарегистрировано 166 (за январь-октябрь 2021г. - 167) умерших младенцев в возрасте до 1 года. По сравнению с январем-октябрем 2021 года число умерших детей в возрасте до 1 года уменьшилось на 0,6%.

За январь-октябрь 2022 года коэффициент младенческой смертности составил 9,67 (8,37) случаев на 1000 родившихся.

Основной причиной младенческой смертности являются состояния, возникающие в перинатальном периоде, от которых в январе-октябре 2022 года умерло 68 (87) младенцев или 40,9% (52,1%) от общего числа смертных случаев среди младенцев. Число умерших младенцев от врожденных аномалий составило 23 (32) или 13,8% (19,2%), от инфекционных и паразитарных болезней – 18 (11) или 10,8% (6,6%), от болезней органов дыхания – 6 (3) или 3,6% (1,8%), от несчастных случаев, отравлений и травм – 1 (3) или 0,6% (1,8%).

В январе-октябре 2022г. по сравнению с январем-октябрем 2021 г. число прибывших в область увеличилось на 5,0%, а число выбывших из области на 9,1%.

Основной миграционный обмен области происходит с другими областями. Доля прибывших из областей и выбывших в области составила 29,6% и 44,7% соответственно.

Увеличилась численность мигрантов, переезжающих, в пределах области на 4,6%. При областном перемещении сальдо миграции населения остается отрицательное.

По расследованным в отчетном периоде уголовным правонарушениям в целом по области установленная сумма материального ущерба составила 2430,2 млн. тенге, из них на уголовные правонарушения против собственности приходится — 48,3%, в сфере экономической деятельности — 43,4 %

Правоохранительными органами области выявлено 1433 лиц, совершивших уголовные правонарушения (на 0,3% меньше, чем в соответствующем периоде 2021г.), привлечено к уголовной ответственности 1034 лиц, что на 11,4% больше, чем в соответствующем периоде 2021г. Из числа выявленных лиц, совершивших уголовные правонарушения, 13,3% составляли женщины (в соответствующем периоде 2021г. – 14,0%), 3,3% — выполнявшие государственные функции (3,5 %). Удельный вес лиц, ранее совершавших уголовные правонарушения, составил 41,6% (41,5%).

В среднем по области каждый пятый, совершивший уголовное правонарушение, находился в составе группы. Большую часть всех выявленных лиц, совершивших уголовные правонарушения, составили безработные -82,2% (в январе-ноябре 2021г. -81,8%).

Статистика уровня жизни

Во II квартале 2022г. среднедушевые номинальные денежные доходы населения составили 119025 тенге и увеличились по сравнению со II кварталом 2021г. на 26,1%. В реальном выражении денежные доходы населения увеличились на 11,4%.

По обследованиям домашних хозяйств, доход использованный на потребление в среднем на душу в III квартале 2022 г. составил 194,6 тыс. тенге, что на 12,8% выше, чем в предыдущем периоде прошлого года.

В III квартале 2022 г. среднедушевые денежные расходы населения составили 192,6 тыс. тенге, что на 12,9% выше, чем в предыдущем периоде прошлого года.

Статистика труда и занятости

Численность наемных работников на предприятиях (организациях) в III квартале 2022г. составила 155,3 тыс. человек, из них на крупных и средних предприятиях -104,1 тыс. человек.

В III квартале 2022 г. на крупные и средние предприятия было принято 3,4 тыс. человек. Выбыло по различным причинам 3,5 тыс. человек.

На конец отчетного периода, на крупных и средних предприятиях, число вакантных рабочих мест (требуемых работников) составило 171 единицы (0,2% к численности наемных работников).

Численность безработных, определяемая по методологии МОТ, в III квартале 2022г. по оценке составила 17,5 тыс. человек, уровень безработицы – 5,0%. На

- 01.12.2022г. официально зарегистрированы в органах занятости в качестве безработных 18,3 тыс. человек (доля зарегистрированных безработных -5,3%).
- В III квартале 2022г. среднемесячная номинальная заработная плата одного работника составила 251612 тенге, на крупных и средних предприятиях 276657 тенге.
- С 1 января 2022г. минимальная заработная плата установлена в размере 60000 тенге.

Статистика цен

Повышение цен отмечено на овощи свежие на 19,7%, яйца - на 8,9%, сыр и творог - на 4%, молочные продукты - на 3%, макаронные изделия - на 2,3%, безалкогольные напитки - на 1,8%, фрукты свежие - на 1,4%, масла и жиры - на 1,2%, алкогольные напитки и табачные изделия - на 1,1%, рыбу и морепродукты, кондитерские изделия - по 0,9%, рис - на 0,8%, муку, мясо и птица - по 0,1%. Снижение цен зафиксировано на сахар на 2,7%, гречку - на 1,8%. Прирост цен на моющие и чистящие средства составил 3%, фармацевтическую продукцию - 2,2%, твердое топливо - 1,7%, одежду и обувь - 0,7%, предметы домашнего обихода - 0,6%. Уровень цен за услуги воздушного пассажирского транспорта вырос на 7,8%, связи - на 5,3%, организацию комплексного отдыха - на 2%, отдыха и культуры - на 0,3%. Снижение цен зафиксировано за услуги железнодорожного пассажирского транспорта на 4,6%.

В сфере жилищно-коммунальных услуг тарифы снизились на отопление центральное на 2,5%. В ноябре 2022 года по сравнению с предыдущим месяцем повышение цен отмечено в горнодобывающей промышленности и разработке карьеров на 0,1%, в обрабатывающей промышленности - на 1,2%.

В ноябре 2022 г. индекс цен на сельскохозяйственную продукцию повысился на 1,4%.

В ноябре 2022 г. по сравнению с предыдущим месяцем цены повысились на 0,1%.

В ноябре 2022 г. по сравнению с предыдущим месяцем индекс оптовых продаж составил 101%.

В ноябре 2022 г. по сравнению с предыдущим месяцем тарифы на перевозку грузов автомобильным транспортом без изменений.

Национальная экономика

Валовой региональный продукт (ВРП) за январь-июнь 2022г. (по предварительным данным) составил 1009,1 млрд. тенге. Индекс реального изменения объема ВРП к соответствующему периоду 2021г. составил 101,2%.

ВРП на душу населения по области составил 1222,0 тыс. тенге.

В структуре ВРП за январь-июнь 2022 г. производство услуг составило 51,0%, производство товаров – 40,2%, налоги на продукты – 8,8%.

В сфере производства товаров на сельское, лесное, рыбное хозяйство приходится 3.5% объема ВРП области, промышленность -32.5% и строительство -4.1%.

Наибольший удельный вес в объеме ВРП в сфере производства услуг занимает транспорт и складирование -12,0% и образование -10,0%.

Преобладающими источниками инвестиций в январе-ноябре 2022г. остаются собственные средства хозяйствующих субъектов, объем которых составил 205347 млн. тенге. Инвестиционные вложения, направ-ленные на работы по строительству и капитальному ремонту зданий и сооружений составили 254029 млн. тенге. Значительная доля инвестиций в основной капитал приходится на горнодобывающую промышленность и разработку карьеров (25%), операции с недвижимым имуществом (21,8%), транспорт и складирование (18,8%). Объем инвестиционных вложений малых предприятий составил 242625 млн.тенге. В ноябре 2022г. по сравнению с предыдущим месяцем наблюдается небольшое увеличение количества юридических лиц.

С начала года наибольшее количество юридических лиц зарегистрировано в строительстве, доля ко-торых на 1 декабря 2022 г. составила 21,5%, на втором месте оптовая и розничная торговля (включая ремонт автомобилей и мотоциклов) - (16,6%), на

третьем - образование (12,1%). В совокупности доля этих трех видов деятельности составляет 50,2% всех зарегистрированных юридических лиц.

Из 11288 зарегистрированных юридических лиц 8959 (79,4%) являются действующими, из которых 4779 (53,3%) считаются активными, т.е. занимающиеся экономической деятельностью, 1170 (13,1%) — еще не активные (вновь зарегистрированные) и 3010 (33,6%) считаются временно не активными, т.е. в данный момент простаивают по различным причинам.

Торговля

Объем розничной торговли за январь-ноябрь 2022 г. составил 337867,7 млн. тенге или 102% к уровню соответствующего периода 2021 года.

Розничная реализация товаров торгующими предприятиями увеличилась на 1,9%, индивидуальными предпринимателями, в том числе торгующими на рынках увеличилась на 2,1% по сравнению с январем-ноябрем 2021 г.

На 1 декабря 2022 г. объем товарных запасов торговых предприятий (по отчитавшимся прдприятиям) в розничной торговле составил 16858,4 млн. тенге, в днях торговли – 42 дня.

Доля продовольственных товаров в общем объеме розничной торговли составляет 31,1%, непродовольственных товаров — 68,9%. Объем реализации продовольственных товаров за январь-ноябрь 2022г. составил 105053,9 млн. тенге.

Оборот оптовой торговли за январь-ноябрь 2022 г. составил 216114,2 млн. тенге или 102,7% к уровню соответствующего периода предыдущего года. В структуре оптовой торговли продовольственные товары составили 38,9%, а непродовольственные товары и продукция производственно-технического назначения — 61,1%.

Реальный сектор экономики

Валовый выпуск продукции (услуг) сельского, лесного и рыбного хозяйства в январе-ноябре 2022 г. составил 171377 млн. тенге, в том числе растениеводства — 109419 млн. тенге, животноводства — 58405,3 млн. тенге.

В январе-ноябре 2022 г. промышленной продукции произведено на 941585 млн. тенге, в том числе в горнодобывающей и обрабатывающей отраслях — соответственно на 673070 и 216738 млн. тенге, снабжение электроэнергией, газом, паром, горячей водой и кондиционированным воздухом на 42470 млн. тенге, в водоснабжение; сбор, обработка и удаление отходов, деятельность по ликвидации загрязнений — на 9308 млн. тенге.

Наибольший объем строительных работ выполнен на строительстве передаточных устройств (27446 млн. тенге), дорог и автомагистралей (21107 млн. тенге), жилых зданий (14395 млн. тенге).

Объем выполненных строительных работ (услуг) по капитальному ремонту увеличился на 41%, текущему ремонту — на 23,3%, строительно-монтажным работам - на 19,4%.

В январе-ноябре 2022 года на строительство жилья было направлено 74059 млн. тенге. В общем объеме инвестиций в основной капитал, доля освоенных средств в жилищное строительство составила 21,1%.

Основным источником финансирования жилищного строительства являются собственные средства застройщиков.

Общая площадь введенных в эксплуатацию жилых домов составила 604022 кв.м, индекс физического объема введенного жилья к соответствующему периоду прошлого года составил 106,4%.

Средние фактические затраты на строительство 1 кв. метра общей площади жилых домов, включая жилые дома построенные населением составили 95,4 тыс. тенге.

В ноябре 2022 года по сравнению с соответствующим месяцем предыдущего года грузооборот возрос на 7,2%, за счет увеличения грузопотока на автомобильном транспорте.

Пассажирооборот в ноябре 2022 года по сравнению с соответствущим месяцем предыдущего года снизился на 27,9%, за счет уменьшения пассажиропотоков на автомобильном транспорте.

ИФО по услугам связи в ноябре 2022 года по сравнению с октябрем 2021 года составил 99,2%. Значительную долю в общем объеме услуг связи занимают услуги сети Интернет, удельный вес его составил 49,1% от общего объема.

По данным Статистического бизнес-регистра наибольшее количество действующих индивидуальных предпринимателей сосредоточено в г.Кызылорда (53,7%) от общего количества, Аральском (9,1%), Казалинском (8,5%) районах.

При этом, значительное количество действующих крестьянских или фермерских хозяйств зафиксировано в Жанакорганском (18,4%), Шиелийском (15,3%) районах и г.а.Кызылорды (17%).

Финансовая система

Расходы на производство и реализацию продукции предприятий во II квартале 2022г. составили 157834,7 млн. тенге, из них доля производственных расходов -54,1%, непроизводственных -45,9%.

На 1 июля 2022г. задолженность по оплате труда на предприятиях области составила 2085,1 млн. тенге и уменьшилась по сравнению с 1 июлем 2021 г. на 10,2%.

11.3 Санитарно-эпидемиологическая обстановка региона

В марте 2020 года на территории республики Казахстан были зарегистрированы первые случаи коронавирусной инфекции COVID-19.

По данным межведомственной комиссии (МВК), по состоянию на 25.07.2022 г., в Казахстане число подтвержденных случаев заражения COVID-19 в стране составило 1 333 547 случаев. С начала пандемии от COVID-19 выздоровели 1 301 086 человек, умерло – 13 665 человек.

На 25 июля 2022 года в Казахстане I компонентом провакцинировано 9 545 704 человек. II компонентом 9 326 883 человек.

Для предотвращения распространения заболевания с 16 марта до 11 мая 2020 года в РК был введен режим ЧП. После снятия режима ЧП были введены карантинные меры.

В настоящее время тестирование проводится по эпидемиологическим показаниям, с профилактической целью и в рамках эпиднадзора. Согласно Постановлению Главного государственного санитарного врача лабораторному обследованию подлежат:

- больные и вирусоносители;
- больные ОРВИ, гриппом, пневмониями;
- лица, контактные с больными;
- лица, госпитализируемые в стационары и медико-социальные учреждения;
- медработники;
- призывники.

В целях реализации поручения Главы государства с 2021 года начата вакцинация против коронавирусной инфекции. Для проведения вакцинации против коронавирусной инфекции на территории области функционируют прививочные пункты.

По состоянию на 24.07.2022 г. в Кызылординской области против коронавирусной инфекции 1 компонентом вакцинировано 430 094 человек, 2 компонентом — 424 812 человек.

В Кызылординской области наибольшее распространение среди зарегистрированных инфекционных заболеваний получили острые инфекции верхних дыхательных путей — 26746 (в соответствующем периоде 2021 года - 27349) случаев на 100 тыс. населения, коронавирусная инфекция (COVID-19) — 6403 (15913) случаев, острые кишечные инфекции — 1764 (824) и туберкулез органов дыхания — 392 (327) случаев.

В ноябре 2022 года наибольшее распространение получили такие инфекционные заболевания, как острая инфекция верхних дыхательных путей неуточненная — 3670 зарегистрированных случая, функциональная диарея — 330 случаев.

За ноябрь 2022г. в области зарегистрировано 51 случаев заболевания коронавирусной инфекцией (COVID-19) вирус идентифицированный, из них 23 случая в сельской местности.

В виду сложившейся ситуации в мире основными правилами санитарных норм и противоэпидемическими мероприятиями являются:

- вакшинация
- носить маски и перчатки, мыть руки;
- соблюдать дистанцию 1-1,5 м;
- избегать посещения мест массового скопления; не здороваться, не обниматься при встрече;
- участие в проведении профилактических и противоэпидемических мероприятий, включая прививки, по планам территориальной СЭС;
- исключение охоты на представителей потенциальных переносчиков чумы;
- организация санитарного просвещения по номенклатуре вопросов профилактики особо опасных инфекций;
- немедленное реагирование на каждый сомнительный случай заболевания (недомогания) с установлением причинно-следственной связи с эпизоотией среди грызунов с информированием органов Госсанэпиднадзора и областного штаба по чрезвычайным ситуациям;
- наличие запаса средств профилактики на объектах строительства и разработки;
- обеспечение немедленной (в первые часы) эвакуации больного с подозрением на особо опасную инфекцию.

12. КОМПЛЕКСНАЯ ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ ПРОЕКТИРУЕМЫХ РАБОТ

12.1. Оценка воздействия на окружающую среду при нормальном (без аварий) режиме реализации проектных решений

Воздействия на окружающую среду могут быть разделены на технологически обусловленные и не обусловленные. Технологически обусловленные - это воздействия, объективно возникающие вследствие производства работ, протекания технологических процессов и формирования техногенных потоков веществ. Среди технологически обусловленных воздействий могут быть выделены следующие группы ведущих факторов при реализации проектных решений:

- 1. Изъятие земель для размещения технологического оборудования. Изъятие угодий из использования может происходить, также, опосредованно, вследствие потери ими своей ценности при их загрязнении и деградации;
- 2. Нарушения почвенно-растительного покрова возникают при транспортировке оборудования и продуктов нефтедобычи;
- 3. Возможны аварийные сбросы на почвогрунты различного рода загрязнителей, основными из которых являются углеводородное сырье, сточные воды, ГСМ;
- 4. Выбросы в атмосферу от ряда организованных и неорганизованных стационарных источников. Источниками выбросов в атмосферу при проведении работ на проектируемой территории являются двигателей внутреннего сгорания буровых установок, резервуары для нефти, насосы для откачки нефти, скважины, факел. Выбросы в атмосферу при нормальных режимах работы, от неорганизованных и организованных источников, в силу ограниченной интенсивности выбросов и их пространственной разобщенности не должны создавать высоких приземных концентраций;
- 5. Сточные воды образуются как в процессе работ, так и систем обеспечения жизнедеятельности. Сброс в поверхностные водоемы отсутствует;
- 6. При производственной деятельности и в полевом лагере происходит образование и накопление производственных и твердых бытовых отходов. Отходы производства и потребления собираются в специальные емкости и вывозятся сторонним организациям на договорной основе.

Технологически не обусловленные воздействия связаны с различного рода отступлениями от проектных решений и экологически неграмотным поведением персонала, в процессе производственной деятельности в штатных ситуациях, а также при авариях.

Значительные последствия могут быть вызваны бесконтрольным проездом техники вне отведенных дорог и неконтролируемым расширением зон землеотвода.

Перечисленные выше и иные негативные дополнительные источники и факторы воздействия на компоненты окружающей среды, основные природоохранные мероприятия обобщены в таблице 12.1.

Таблица 12.1 – Источники и факторы воздействия на компоненты окружающей среды, и основные мероприятия по их снижению

Компоненты окружающей среды	Факторы воздействия на окружающую среду	Мероприятия по снижению отрицательного техногенного воздействия на окружающую среду
Атмосфера	Работа основного и	Профилактика и контроль оборудования.
	вспомогательного	Использование противовыбросового
	оборудования. Шумовые	оборудования. Контроль за состоянием
	воздействия.	атмосферного воздуха.
Водные	Возможное аварийное	Искусственное повышение рельефа до
ресурсы	загрязнение вод.	незатопляемых планировочных отметок.
		Аккумуляция, регулирование, отвод

		поверхностных сбросных и дренажных вод с затопленных, временно затопляемых, орошаемых территорий и низинных нарушенных земель. Перехват поверхностных вод, поступающих с сопредельных территорий, осуществляется нагорными канавами, которые проходят выше защищаемой территории
Недра	Термоэрозия. Просадки. Грифонообразование. Внутрипластовые перетоки флюида	Изоляция водоносных горизонтов. Герметичность подземного и наземного оборудования. Тщательное планирование размещения различных сооружений.
Ландшафты	Изъятие земель. Механические нарушения. Возникновение техногенных форм рельефа. Оврагообразование и эрозия.	Оптимизация размещения площадок и прочих объектов. Рекультивация земель. Запрет на движение транспорта вне дорог
Почвенно- растительный покров	Нарушение и загрязнение почвенно-растительного слоя. Уничтожение травяного покрова. Тепловое и электромагнитное воздействие. Иссушение.	Создание системы контроля за состоянием почв. Профилактика и ликвидация аварийных разливов. Запрет на движение транспорта вне дорог.
Растительность	Уничтожение травяного покрова. Химическое, тепловое и электромагнитное воздействие. Иссушение.	Противопожарные мероприятия. Запрет на движение транспорта вне дорог.
Животный мир	Незначительное уменьшение площади обитания. Фактор беспокойства. Шум от работающих механизмов.	Разработка строго согласованных маршрутов передвижения техники, не пересекающих миграционные пути животных. Строительство специальных ограждений. Обустройство мест на размещение отходов. Создание маркировок на объектах и сооружениях.

Для объективной комплексной оценки воздействия на окружающую среду на проектный период на месторождении надо классифицировать величину воздействия на каждый компонент окружающей среды в отдельности, используя три основных показателя – пространственного и временного масштабов воздействия и его величины (интенсивности).

Используемые критерии оценки основаны на рекомендациях действующих методологических разработок (представлены в разделе 1 данного проекта) с учетом уровня принятых технологических решений реализации проекта и особенностей природных и климатических условий.

На основе покомпонентной оценки воздействия на окружающую среду путем комплексирования ранее полученных уровней воздействия, в соответствии с изложенными методиками, выполнена интегральная оценка намечаемой деятельности.

Матрица воздействия реализации проекта на природную среду на месторождении Жанбыршы сведена в таблицу 12.2.

Таблица 12.2 - Комплексная оценка воздействия на компоненты окружающей среды при реализации проектных решений на месторождении Жанбыршы

Компоненты	Категории воздействия, балл			Категория
окружающей среды	пространственный масштаб	временный масштаб	интенсивность	значимости
атмосферный воздух	локальное (1)	продолжительное (3)	слабое (2)	Средняя (6)
подземные воды	локальное (1)	продолжительное (3)	слабое (2)	Средняя (6)
геологическая среда	локальное (1)	продолжительное (3)	Слабое (2)	Средняя (6)
почва	локальное (1)	продолжительное (3)	слабое (2)	Средняя (6)
животный мир	локальное (1)	продолжительное (3)	умеренное (3)	Средняя (9)
растительность	локальное (1)	продолжительное (3)	умеренное (3)	Средняя (9)
отходы	точечный (1)	продолжительное (3)	умеренное (3)	Средняя (9)
Итого:	-	-	-	Средняя (9)

Для определения комплексной оценки воздействия на компоненты окружающей среды находим среднее значение от покомпонентного балла категории значимости. Как следует и приведенной матрицы, интегральное воздействие (среднее значение) при реализации проектных решений на месторождении Жанбыршы составляет 9 балла, что соответствует среднему уровню воздействия на компоненты окружающей среды.

Изменения в окружающей среде превышает цепь естественных изменений, среда восстанавливается без посторонней помощи частично или в течение нескольких лет.

Таким образом, реализация проектных решений на месторождении Жанбыршы при соблюдении норм технической и экологической безопасности, проведении технологических и природоохранных мероприятий не приведет к значительным изменениям в компонентах окружающей среды, и не повлияет на абиотические и биотические связи территории расположения месторождении.

12.2. Оценка воздействия объекта на социально-экономическую среду

Основным показателем состояния изменений социально-экономической среды может считаться уровень жизни населения, который состоит из набора признаков, отражающих реально выражаемые в количественном отношении показатели и вытекающие из них экономические последствия.

Основные компоненты социально-экономической среды, которые будут подвергаться тем или иным воздействиям на месторождении Хаиыркелды Юго-Западный представлены в таблице 12.3.

Компоненты социально- экономической среды	Характеристика воздействия на социально-экономическую среды	Мероприятия по снижению отрицательного техногенного воздействия на социально-экономическую среду
Трудовая занятость	Дополнительные рабочие места	Положительное воздействие
Доходы и уровень жизни населения	Увеличение доходов населения, увеличение покупательской способности, повышение уровня и качества жизни, развитие инфраструктуры	Положительное воздействие
Здоровье населения	Профессиональные заболевания	Соблюдение правил техники безопасности и охраны труда
Демографическая ситуация	Приток молодежи	Положительное воздействие

Образование и научно- техническая сфера	Потребность в Квалифицированных специалистах, улучшение качества знаний	Положительное воздействие
Рекреационные ресурсы	-	
Памятники истории и культуры	«Случайные археологические находки»	Положительное воздействие
Экономическое развитие территории	Инвестиционная привлекательность региона, экономический и промышленный потенциал региона, поступление налоговых поступлений в местный бюджет	Положительное воздействие
Наземный транспорт	Дополнительные средства из местного бюджета для финансирования ремонта и строительства дорог	Положительное воздействие
Землепользование	Изъятие во временное пользование и частную собственность земель сельскохозяйственного назначения	Оптимизация размещения площадок и прочих объектов. Рекультивация земель.
Сельское хозяйство	Изъятие во временное пользование и частную собственность земель сельскохозяйственного назначения	Оптимизация размещения площадок и прочих объектов. Рекультивация земель.
Внешнеэкономическая деятельность	Экономический и промышленный потенциал региона, инвестиционная привлекательность региона	Положительное воздействие

Производственная деятельность в рамках реализации проекта будет осуществляться в пределах Кызылординской области и может повлечь за собой изменение социальных условий региона как в сторону улучшения благ и увеличения выгод местного населения в сферах экономики, просвещения, здравоохранения и других, так и сторону ухудшения социальной и экологической ситуации в результате непредвиденных неблагоприятных последствий аварийных ситуаций. Однако вероятность возникновения аварийных ситуаций незначительна.

В целом, проектируемые работы согласно интегральной оценки по каждому из вариантов разработки внесут *среднее отрицательное воздействие по некоторым компонентам, и от средних до высоких положительных изменений* в социально-экономическую сферу региона в зависимости от компонента.

возлействий возможных **НЕОБРАТИМЫХ** HA **13.** ОЦЕНКА **НЕОБХОДИМОСТИ** ОКРУЖАЮЩУЮ СРЕДУ И ОБОСНОВАНИЕ ВЫПОЛНЕНИЯ ОПЕРАЦИЙ, ВЛЕКУЩИХ ТАКИЕ ВОЗДЕЙСТВИЯ, В ТОМ СРАВНИТЕЛЬНЫЙ **АНАЛИЗ** ПОТЕРЬ \mathbf{OT} **НЕОБРАТИМЫХ** ВОЗДЕЙСТВИЙ И ВЫГОДЫ ОТ ОПЕРАЦИЙ, ВЫЗЫВАЮЩИХ ЭТИ ПОТЕРИ, В ЭКОЛОГИЧЕСКОМ, КУЛЬТУРНОМ, ЭКОНОМИЧЕСКОМ И СОЦИАЛЬНОМ КОНТЕКСТАХ

Сравнительный анализ потерь от необратимых воздействий и выгоды от операций, вызывающих эти потери в экологическом, культурном и социальном контекстах.

Характеристика возможных форм негативного воздействия на окружающую среду:

1. Воздействие на состояние воздушного бассейна в период работ объекта может происходить путем поступления загрязняющих веществ, образующихся при проведении работ по вскрытию и отработки запасов полезного ископаемого — буровые и взрывные работы, выемочно-погрузочные работы, а также при работе двигателей горной спецтехники и автотранспорта, пыления породных отвалов.

Масштаб воздействия - в пределах границ.

2. Физические факторы воздействия. Источником шумового воздействия является шум, создаваемый при работе используемой техники и оборудования.

Возникающий при работе техники шум, по характеру спектра относится к широкополосному шуму, уровень звука которого непрерывно изменяется во времени и является эпизодическим процессом.

3. Воздействие на земельные ресурсы и почвенно-растительный покров. Воздействие на земельные ресурсы осуществляться не будет, ввиду отсутствия изъятия земель. Производственная деятельность будет осуществляться на участке с использованием существующих породных отвалов.

Масштаб воздействия - в пределах существующего земельного отвода.

4. Воздействие на животный мир. Животный мир не подвержен видовому изменению, соответственно воздействие на животный мир не происходит.

Масштаб воздействия – временной, на период отработки месторождения.

5. Воздействие отходов на окружающую среду. Система управления отходами, образующиеся в процессе отработки запасов месторождения, налажена. Практически все виды отходов будут передаваться специализированным организациям на договорной основе.

Масштаб воздействия – временный, на период отработки месторождения.

Положительные формы воздействия, представлены следующими видами:

- 1. Изучение и оценка целесообразности проведения в последующих работ по добыче углеводородного сырья.
- 2. Создание и сохранение рабочих мест (занятость населения). Создание рабочих мест основа основ социально-экономического развития, при этом положительный эффект от их создания измеряется далеко не только заработной платой. Рабочие места это также сокращение уровня бедности, нормальное функционирование городов, а кроме того создание перспектив развития. По мере создания новых рабочих мест, общество процветает, поскольку создаются благоприятные условия для всестороннего развития всех членов общества, что в свою очередь, снижает социальную напряженность. Политика в области охраны окружающей среды не должна стать препятствием для создания рабочих мест.
- 3. Поступление налоговых платежей в региональный бюджет. Налоговые платежи являются важной составляющей в формировании государственного бюджета, за счет которого формируется большая часть доходов от населения, приобретаются крупные объемы продукции, создаются госрезервы. Стабильное поступление налоговых платежей для формирования бюджета имеют особую важность для всех сфер экономической жизни.

- 4. На территории проведения работ зарегистрированных памятников историко-культурного наследия не имеется.
- 5. Территория проведения работ находится за пределами земель государственного лесного фонда и особо охраняемых природных территорий.

Площадка карьера и породных отвалов располагается на значительном расстоянии от поверхностных водотоков, вне водоохранных зон. Сброс стоков в природные водные объекты исключен. Изъятия водных ресурсов из природных объектов не требуется.

14. ЦЕЛИ, МАСШТАБЫ И СРОКИ ПРОВЕДЕНИЯ ПОСЛЕПРОЕКТНОГО АНАЛИЗА, ТРЕБОВАНИЯ К ЕГО СОДЕРЖАНИЮ, СРОКИ ПРЕДСТАВЛЕНИЯ ОТЧЕТОВ О ПОСЛЕПРОЕКТНОМ АНАЛИЗЕ УПОЛНОМОЧЕННОМУ ОРГАНУ

Согласно Экологическому кодексу республики Казахстан (Статья 67. Стадии оценки воздействия на окружающую среду) послепроектный послепроектный анализ фактических воздействий при реализации намечаемой деятельности является последней стадией проведения оценки воздействия на окружающую среду.

В соответствии со Статьей 78 ЭК РК послепроектный анализ фактических воздействий при реализации намечаемой деятельности (далее – послепроектный анализ) будет проведен составителем отчета о возможных воздействиях.

Цель проведения послепроектного анализа - подтверждение соответствия реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам проведения оценки воздействия на окружающую среду.

Сроки проведения послепроектного анализа - послепроектный анализ будет начат не ранее чем через двенадцать месяцев и завершен не позднее чем через восемнадцать месяцев после начала эксплуатации соответствующего объекта, оказывающего негативное воздействие на окружающую среду.

Не позднее срока, указанного выше, составитель отчета о возможных воздействиях подготавливает и подписывает заключение по результатам послепроектного анализа, в котором делается вывод о соответствии или несоответствии реализованной намечаемой деятельности отчету о возможных воздействиях и заключению по результатам оценки воздействия на окружающую среду. В случае выявления несоответствий в заключении по результатам послепроектного анализа приводится подробное описание таких несоответствий.

Составитель направляет подписанное заключение по результатам послепроектного анализа оператору соответствующего объекта и в уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты подписания заключения по результатам послепроектного анализа.

Уполномоченный орган в области охраны окружающей среды в течение двух рабочих дней с даты получения заключения по результатам послепроектного анализа размещает его на официальном интернет ресурсе.

Порядок проведения послепроектного анализа и форма заключения по результатам послепроектного анализа определяются и утверждаются уполномоченным органом в области охраны окружающей среды.

Получение уполномоченным органом в области охраны окружающей среды заключения по результатам послепроектного анализа является основанием для проведения профилактического контроля без посещения субъекта (объекта) контроля.

14. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ЭКОЛОГИЧЕСКОЙ ИНФОРМАЦИИ, ИСПОЛЬЗОВАННОЙ ПРИ СОСТАВЛЕНИИ ОТЧЕТА О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года №400-VI
- 2. Водный кодекс Республики Казахстан от 9 июля 2003 года № 481-II (с изменениями и дополнениями по состоянию на 25.01.2021г.);
- 3. Земельный кодекс Республики Казахстан от 20 июня 2003 года № 442-II (с изменениями и дополнениями по состоянию на 02.01.2021 г.);
- 4. Закон Республики Казахстан от 13 декабря 2005 года № 93-III «Об обязательном экологическом страховании» (с изменениями и дополнениями по состоянию на 01.01.2020 г.);
- 5. Закон Республики Казахстан от 16 мая 2014 года № 202-V «О разрешениях и уведомлениях» (с изменениями и дополнениями по состоянию на 01.01.2021 г.);
- 6. Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI «О недрах и недропользовании» (с изменениями и дополнениями по состоянию на 02.01.2021 г.
- 7. РНД 211.2.02.02-97 «Рекомендациями по оформлению и содержанию проекта нормативов ПДВ для предприятий»;
- 8. РНД 211.2.02.03-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)»;
- 9. РНД 211.2.02.04-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок»;
- 10. РНД 211.2.02.09-2004 «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров»;
- 11. РД 52.04.52-95 Мероприятия в период НМУ.
- 12. «Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения». Приказ Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 174;
- 13. Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека. Приказ и.о Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.
- 14. Санитарные правила «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» № ҚР ДСМ-331/2020 от 25 декабря 2020 года;
- 15. Санитарно-эпидемиологические требования к технологическим и сопутствующим объектам и сооружениям, осуществляющим нефтяные операции» №236 от 20.03.2015 г.
- 16. Инструкция по организации и проведению экологической оценки, №280 от 30.07.2021г. и Экологическим Кодексом РК от 2 января 2021 года № 400-VI.
- 17. Методика определения нормативов эмиссий в окружающую среду, Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63;

ПРИЛОЖЕНИЕ 1. РАСЧЕТЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ ЭКСПЛУАТАЦИИ МЕСТОРОЖДЕНИЯ ЖАНБЫРШЫ

ПРИЛОЖЕНИЕ 3. ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ НА ПРИРОДООХРАННОЕ ПРОЕКТИРОВАНИЕ

15017632

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

01.10.2015 года 01784Р

Выдана Товарищество с ограниченной ответственностью "Казахский научно -исследова тельский геологоразведочный неф тяной институт"

Республика Казахстан, Атырауская область, Атырау Г.А., г.Атырау, Айтеке би , дом № 43 А., БИН: 991240001478

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес -идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

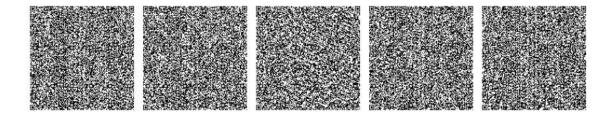
Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

Лицензиар Комитет экологического регулирования, контроля и государственной инспекции в нефтегазовом комплексе.

Министерство энергетики Республики Казахстан. (полное наименование лицензиара)

Руководитель ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ


(уполномоченное лицо)

(фамилия, имя, отчество (в случае наличия)

Дата первичной выдачи <u>14.07.2007</u>

Срок действия лицензии

Место выдачи <u>г.Астана</u>

15017632 Страница 1 из 1

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии 01784Р

Дата выдачи лицензии 01.10.2015 год

Подвид(ы) лицензируемого вида деятельности:

- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казах стан «О разрешениях и уведомпениях»)

Лицензиат

Товарищество с ограниченной ответственностью "Казахский научноисследовательский геологоразведочный нефтяной институт"

Республика Казахстан, Атырауская область, Атырау Г.А., г.Атырау, Айтеке би , дом № 43 А., БИН: 991240001478

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица – в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в спучае напичия), индивидуальный идентификационный номер физического лица)

Производственная база

(местонахождение)

Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

Лицензиар

Комитет экологического регулирования, контроля и государственной инспекции в нефтегазовом комплексе. Министерство энергетики Республики Казахстан.

(полное наименование органа, выдавшего приложение к лицензии)

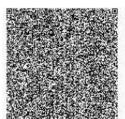
(фамилия, имя, отчество (в случае наличия)

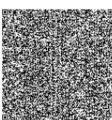
Руководитель (уполномоченное лицо)

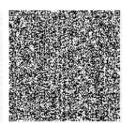
ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ

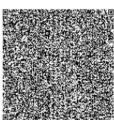
Номер приложения

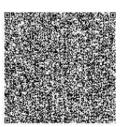
Срок действия


001


Дата выдачи


01.10.2015


приложения


Место выдачи г. Астана

Осы жұқыт «Винстронды жұқыт және э көстрондысырар жылуқолғанды түр жылы Қазақстан Республикасының 2003 жылығы 7 экастронды байының 1 тарманын сайнас жағы талымынының жағылы бірдек, Данный докристи солласы переспу1 станыс 7 ЭРК от 7 келари 2003 года "Об электронович докристине электроновизадыры айында байының 1 тарман жағын ж