Приложение 1 к Правилам оказания государственной услуги «Заключение об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействий намечаемой деятельности»

Заявление о намечаемой деятельности

1. Сведения об инициаторе намечаемой деятельности: для физического лица:

фамилия, имя, отчество (если оно указано в документе, удостоверяющем личность), адрес места жительства, индивидуальный идентификационный номер, телефон, адрес электронной почты;

для юридического лица:

ТОО «Разведка и добыча QazaqGaz», Адрес: Республика Казахстан. г. Астана, район Есиль, улица Алихан Бокейхан, здание 12, БИК HSBKKZKX, БИН 050840002757, ИИК KZ486010111000217527, АО Народный Банк Казахстана.

наименование, адрес места нахождения, бизнес-идентификационный номер, данные о первом руководителе, телефон, адрес электронной почты.

2. Общее описание видов намечаемой деятельности, и их классификация согласно приложению 1 Экологического кодекса Республики Казахстан (далее - Кодекс)

<u>Раздел 2. п.2 Недропользование пп 2.1. разведка и добыча углеводородов. Объект «ГРУППОВОЙ ТЕХНИЧЕСКИЙ ПРОЕКТ НА БУРЕНИЕ ДВУХ ОЦЕНОЧНЫХ СКВАЖИН МЕСТОРОЖДЕНИЯ АЙРАКТЫ».</u> (Подробная информация представлена в приложении 2).

3. В случаях внесения в виды деятельности существенных изменений:

описание существенных изменений в виды деятельности и (или) деятельность объектов, в отношении которых ранее была проведена оценка воздействия на окружающую среду (подпункт 3) пункта 1 статьи 65 Кодекса).

Существенных изменений в виды деятельности и деятельность объектов не предусматривается.

описание существенных изменений в виды деятельности и (или) деятельность объектов, в отношении которых ранее было выдано заключение о результатах скрининга воздействий намечаемой деятельности с выводом об отсутствии необходимости проведения оценки воздействия на окружающую среду (подпункт 4) пункта 1 статьи 65 Кодекса).

Существенных изменений в виды деятельности и деятельность объектов не предусматривается.

4. Сведения о предполагаемом месте осуществления намечаемой деятельности, обоснование выбора места и возможностях выбора других мест.

Место осуществления: месторождение Айракты. Географически оно расположено в юго-западной части песков Мойынкум, которые в рассматриваемом районе занимают междуречье Чу и Таласа, с юго-запада примыкает предгорная равнина Малого Каратау, являющегося ветвью Большого Каратау.

Ближайший населенный пункт - село Уюк находится в 70 км к югу, у р. Талас. С населенными пунктами месторождение Айракты соединяется грунтовыми дорогами, которые пригодны для движения только в летнее и морозное зимнее время. Асфальтированная шоссейная дорога соединяет областной центр Тараз с селами Акколь, Уюк и Уланбель.

На юго-западе, в 40 км, находится обустроенное месторождение Амангельды, с которым площадь работ связана грунтовой дорогой. Через месторождение проходит высоковольтная линия электропередач (ЛЭП) районного значения. Через Амангельды проходит шоссейная дорога, которая соединяет областной центр, город Тараз, с сёлами Акколь, Уюк, Уланбель.

Основанием данного «Группового технического проекта...» является «Проект разработки месторождения Айракты по состоянию на 01.07.2021г», в котором по рекомендуемому варианту 3, разработка месторождения предусматривает бурение 2 оценочных скважин ОЦ-1 и ОЦ-2

Проектная глубина вертикальных скважин 2250 м (±250 м.).

Проектный горизонт: пермский (P) и нижневизейский ($C1V \neg -A$)

Выбор других мест: Возможность выбора других мест осуществления намечаемой деятельности не предусматривается ввиду территориальной привязки проектируемых объектов.

5. Общие предполагаемые технические характеристики намечаемой деятельности, включая мощность производительность) объекта, его предполагаемые размеры, характеристику продукции.

Основными направлениями проекта являются:

• Бурение оценочных скважин №№ОЦ-1 и ОЦ-2 глубиной 2250м на месторождении «Айракты».

Основными объектами (с включенными в них подобъектами), по которым приняты решения, являются:

- Способ бурения скважины будет роторный, ВЗД.
- Для испытания (опробования) скважин будет применена установка УПА 80/120.
- Источниками энергоснабжения буровых установок при бурении и при испытании скважин являются дизельные двигатели.

(Подробная информация представлена в приложении 5).

6. Краткое описание предполагаемых технических и технологических решений для намечаемой деятельности.

Согласно заданию на проектирование и нормам РК проектом предусматриваются следующие работы:

<u>Конструкция скважин.</u> Вертикальная. Сбор отходов бурения предусматривается в шламовые емкости.

Виды работ при строительстве скважин

Строительно-монтажные работы включают:

- планировку площадки под буровое оборудование;
- рытье траншей и устройство фундаментов под блоки;
- строительство площадки под буровое оборудование.

Подготовительные работы к бурению состоят из следующих видов работ:

- стыковка технологических линий;
- проверка работоспособности оборудования.

Бурение и крепление скважин. Бурение скважин производится путем разрушения горных пород на забое скважины породоразрушающим инструментом (долотом) с транспортировкой (промывкой) выбуренной породы на земную поверхность химически обработанным буровым раствором.

Испытание скважины. После окончания процесса бурения и крепления скважины буровая установка демонтируется, и на устье скважины монтируется установка для испытания скважин УПА-80/120 или аналог.

Сжигание газа на факеле предусмотрено.

Вскрытие продуктивного пласта осуществляют методом прострела стенок колонны и затрубного цементного камня кумулятивными зарядами (перфорацией).

(Подробная информация представлена в приложении 6).

7. Предположительные сроки начала реализации намечаемой деятельности и ее завершения (включая строительство, эксплуатацию, и постутилизацию объекта).

Начало бурения 2 скважин – 1 полугодие 2025 г.

Начало эксплуатации – 2025 г.

Постутилизация – сроки постутилизации будут заложены в проекте ликвидации месторождения.

- 8. Описание видов ресурсов, необходимых для осуществления намечаемой деятельности, включая строительство, эксплуатацию и постутилизацию объектов (с указанием предполагаемых качественных и максимальных количественных характеристик, а также операций, для которых предполагается их использование):
- 1) земельных участков, их площадей, целевого назначения, предполагаемых сроков использования Недропользователем является ТОО «Разведка и добыча QazaqGaz», который имеет контракт на добычу углеводородного сырья с Министерством энергетики Республики Казахстан №5132 от 25.11.2022 г. 13.03.2023 года подписано Дополнение №1 к Контракту №5132-УВС на закрепление участка добычи и периода добычи углеводородов, на срок, равный 25 лет, т.е. до 25.11.2047 года с учетом закрепленного подготовительного периода. Площадь горного отвода 4487,1 га (44,87 кв.км). Максимальный размер отводимых во временное пользование земельных участков на период строительства буровых установок и размещения оборудования и техники для бурения скважин составит 3,5 га на скважину Проектируемые скважины находятся на контрактной территории ТОО «Разведка и добыча QazaqGaz», поэтому дополнительного отвода земель не требуется.;
 - 2) водных ресурсов с указанием:

предполагаемого источника водоснабжения (системы централизованного водоснабжения, водные объекты, используемые для нецентрализованного водоснабжения, привозная вода), сведений о наличии водоохранных зон и полос, при их отсутствии – вывод о необходимости их установления в соответствии с законодательством Республики Казахстан, а при наличии – об установленных для них запретах и ограничениях, касающихся намечаемой деятельности;

Источниками водоснабжения на месторождении является привозная вода:

- бутилированная вода питьевого качества;
- техническая вода для производственных целей.

Водоохранных зон – нет; Необходимость установления – нет.

видов водопользования (общее, специальное, обособленное), качества необходимой воды (питьевая, непитьевая);

необходимо: питьевая вода, техническая вода

объемов потребления воды: на 1 скважину хозбытовые нужды, в том числе питьевые нужды — 1202,38 м 3 /период строительства, на технические нужды 1600,6 м 3 /период;

на 2 скважины хозбытовые нужды, в том числе питьевые нужды -2404,75 M^3 /период строительства, на технические нужды 3201,2 M^3 /период;

операций, для которых планируется использование водных ресурсов: *питьевые и технические нужды при строительстве*;

Основными эмиссиями при бурении скважины являются - буровые сточные воды;

Буровые сточные воды (БСВ) — по своему составу являются многокомпонентными суспензиями, содержащими до 80% мелкодисперсных примесей, обеспечивает высокую агрегатную устойчивость. Загрязняющие вещества, содержащиеся в буровых сточных водах, подразделяются на взвешенные, растворимые органические примеси и нефтепродукты. Сливаясь с оборудования, по бетонированным желобкам БСВ стекают в шламовую емкость.

Объем образования буровых сточных вод составит на одну скважину 391,0143 м3, на 2 скважины 782,0287 м3.

3) участков недр с указанием вида и сроков права недропользования, их географические координаты

(если они известны) Географические координаты:

(specifically i corpuspin recitate tree	PAIIII			
№	СШ	ВД	СШ	ВД	
Оц_1	44°10'55.9052"N	71°25'3.7896"E	44° 10' 56.895"	71° 25' 01.115"	
Оц_2	44°10'19.9555"N	71°25'30.7562"E	44° 10' 20.945"	71° 25' 28.083"	

- 4) растительных ресурсов с указанием их видов, объемов, источников приобретения (в том числе мест их заготовки, если планируется их сбор в окружающей среде) и сроков использования, а также сведений о наличии или отсутствии зеленых насаждений в предполагаемом месте осуществления намечаемой деятельности, необходимости их вырубки или переноса, количестве зеленых насаждений, подлежащих вырубке или переносу, а также запланированных к посадке в порядке компенсации нет;
- 5) видов объектов животного мира, их частей, дериватов, полезных свойств и продуктов жизнедеятельности животных с указанием:

объемов пользования животным миром нет;

предполагаемого места пользования животным миром и вида пользования нет;

иных источников приобретения объектов животного мира, их частей, дериватов и продуктов жизнедеятельности животных *нет*;

операций, для которых планируется использование объектов животного мира нет;

6) иных ресурсов, необходимых для осуществления намечаемой деятельности (материалов, сырья, изделий, электрической и тепловой энергии) с указанием источника приобретения, объемов и сроков использования:

Грунт, ПГС, песок, щебень — объемом 125 м3 будет доставляться из местного карьера. Цемент ПЦТ— 68,937 тонн, кальцинированная сода — 0,284 тонн, каустическая сода — 0,284 тонн, утяжелитель кослоторастворимый — 28,447 (с расчетом на одну скважину,более подробное описание в Приложение) производство РК), оборудование и установки, соответствующая арматура. Все материалы ресурсов будут использоваться в процессе бурении в 2025 году, на каждую скважину сроком 272 суток.;

На период проектируемых работ сырье и материалы закупаются у специализированных организаций. Прочие материалы также будут привозиться на площадку по мере необходимости Дизельное топливо для заправки используемой техники;

Освещение на буровой площадке - Дизельная электростанция

Теплоснабжение не предусмотрено, в виду близкого расположения вахтового поселка.

- 7) риски истощения используемых природных ресурсов, обусловленные их дефицитностью, уникальностью и (или) невозобновляемостью *нет*.
- 9. Описание ожидаемых выбросов загрязняющих веществ в атмосферу: наименования загрязняющих веществ, их классы опасности, предполагаемые объемы выбросов, сведения о веществах, входящих в перечень загрязнителей, данные по которым подлежат внесению в регистр выбросов и переноса загрязнителей в соответствии с правилами ведения регистра выбросов и переноса загрязнителей, утвержденными уполномоченным органом (далее правила ведения регистра выбросов и переноса загрязнителей).

Основными загрязняющими атмосферу веществами при бурении будут являться вещества, выделяемые при проведении сварочных работ, при работе шлифовальных машин, при проведении битумных работ, при резке металла, при лакокрасочных работах, от двигателей внутреннего сгорания

(ДВС) при работе задействованного автотранспорта, строительных машин и механизмов на строительной площадке.

Учитывая характер строительного процесса, выбросы не будут постоянными, их объемы будут изменяться в соответствии со строительными операциями и сочетания используемого в каждый момент времени оборудования. Выбросы загрязняющих веществ в атмосферный воздух при бурении скважин несут кратковременный характер.

От источников загрязнения в период строительно- монтажных работ (смр), подготовительных работах, бурения и крепления скважин в атмосферу будут выделяться следующие загрязняющие вешества:

При бурении 1-ой скважины:

Железо (II, III) оксиды; 0,0156; г/с; 0,000673; т/год

Марганец и его соединения; 0,001342; г/с; 0,000058; т/год

Азота (IV) диоксид (Азота диоксид); 7,951454; г/с; 14,543023685; т/год

Азот (II) оксид (Азота оксид); 1,291756; г/с; 2,363225992; т/год

Углерод; 0,902267; г/с; 0,961301538; т/год Сера диоксид; 1,454639; г/с; 3,29392095; т/год Сероводород; 0,010026; г/с; 0,0047025815; т/год Углерод оксид; 10,68204; г/с; 14,015564549; т/год

Фтористые газообразные соединения ; 0,001094; г/с; 0,00004725; т/год Фториды неорганические плохо растворимые - ; 0,00481; г/с; 0,000208; т/год

Метан; 0,110276; г/с; 0,035729365; т/год

Смесь углеводородов предельных C1-C5; 0,055276; г/с; 3,6393556; т/год Смесь углеводородов предельных C6-C1; 0,02133; г/с; 0,0920704; т/год

Бензол; 0,000129; г/с; 0,000428; т/год

Диметилбензол; 4,07Е-05; г/с; 0,0001346; т/год Метилбензол (349); 8,13Е-05; г/с; 0,0002692; т/год Бенз/а/пирен; 1,1Е-05; г/с; 0,000024002; т/год Формальдегид; 0,110496; г/с; 0,204588031; т/год

Масло минеральное нефтяное; 0,003; г/с; 0,00000420812; т/год

Алканы С12-19; 2,699655; г/с; 4,945409946; т/год

Пыль неорганическая, содержащая двуокись кремния в %: 70-20; 12,68204; г/с; 0,2949282; т/год

В С Е Г О - 37,99737 г/с, 44,3956671 тонн/год;

ОТ 2 СКВАЖИН СОСТАВИТ - 75,9947388 г/с, 88,7913342 тонн/год

Загрязняющие вещества относятся к следующим классам опасности:

1 класс опасности – бенз/а/пирен;

- 2 класс опасности азота диоксид, марганец и его соединения, сероводород, фтористые газообразные соединения, фториды неорганические плохо растворимые. Формальдегид;
 - 3 класс опасности азота оксид, углерод, сера диоксид, пыль неорганическая, железо оксиды;

4 класс опасности - углерод оксид, алканы с12-19.

Из выбрасываемых загрязняющих веществ в соответствии с Правилами ведения регистра выбросов и переноса загрязнителей: азота диоксид, серы диоксид, фториды неорганические, углерода оксид, углеводороды, взвешенные частицы, входят в перечень загрязнителей, данные по которым подлежат внесению в Регистр переноса загрязнителей.

(Подробная информация представлена в приложении 9).

10. Описание сбросов загрязняющих веществ: наименования загрязняющих веществ, их классы опасности, предполагаемые объемы сбросов, сведения о веществах, входящих в перечень загрязнителей, данные по которым подлежат внесению в регистр выбросов и переноса загрязнителей в соответствии с правилами ведения регистра выбросов и переноса загрязнителей:

нет

11. Описание отходов, управление которыми относится к намечаемой деятельности: наименования отходов, их виды, предполагаемые объемы, операции, в результате которых они образуются, сведения о наличии или отсутствии возможности превышения пороговых значений, установленных для переноса отходов правилами ведения регистра выбросов и переноса загрязнителей.

Бурение скважин будет сопровождаться образованием различных отходов.

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления при строительстве одной скв., тонн/год	Лимит накопления при строительстве 2 скв., тонн/год
Всего		448,6917	897,3835

в т. ч. отходов производства		445,8879	891,7758
отходов потребления		2,8038	5,6076
	Опасные отходы	I	
Буровой шлам		210,5343	421,0687
Буровой раствор		232,4091	464,8183
Отработанные масла		0,2728	0,5457
Промасленная ветошь		0,0254	0,0508
Использованная тара		2,5453	5,0905
	Не опасные отход	Ш	
Металлолом		0,1000	0,2000
Огарки сварочных электродов		0,0009	0,0019
Коммунальные отходы		2,8038	3,6156

Примечание:

Приведенное количество и перечень отходов, при реализации проектных решений являются предварительными. Более точные объемы отходов могут быть представлены в «Программе управления отходами».

- 12. Перечень разрешений, наличие которых предположительно потребуется для осуществления намечаемой деятельности, и государственных органов, в чью компетенцию входит выдача таких разрешений Экологическое разрешение, Департамент экологии по Жамбылской области, Министерство экологии РК, Департамент Комитета промышленной безопасности Министерства по чрезвычайным ситуациям Республики Казахстан по Жамбылской области
- 13. Краткое описание текущего состояния компонентов окружающей среды на территории и (или) в акватории, на которых предполагается осуществление намечаемой деятельности, в сравнении с экологическими нормативами или целевыми показателями качества окружающей среды, а при их отсутствии с гигиеническими нормативами; результаты фоновых исследований, если таковые имеются у инициатора; вывод о необходимости или отсутствии необходимости проведения полевых исследований (при отсутствии или недостаточности результатов фоновых исследований, наличии в предполагаемом месте осуществления намечаемой деятельности объектов, воздействие которых на окружающую среду не изучено или изучено недостаточно, включая объекты исторических загрязнений, бывшие военные полигоны и другие объекты) на предприятии проводится мониторинг состояния окружающей среды.

Современное состояние атмосферного воздуха.

Максимально-разовые концентрации загрязняющих веществ по всем анализируемым веществам находятся в допустимых пределах и не превышают санитарно-гигиенические нормы предельно-допустимых концентраций (ПДК м. р.).

Современное состояние почвенного покрова.

Почва на контролируемых участках не загрязнена химической продукцией и другими компонентами деятельности предприятия.

Концентрации загрязняющих веществ в пробах почв не превышали значений предельно допустимых концентраций (ПДК). Для характеристики современного состояния компонентов окружающей среды на месторождении Айракты использовались данные Отчета по производственному экологическому контролю за 2 квартал 2024 года. Анализ результатов показал соблюдение нормативов ПДК и следующие диапазоны концентраций загрязняющих веществ: • в атмосферном воздухе на границе СЗЗ: - диоксид азота — 0,0076-0,0103 мг/м3; - оксид азота — 0,0015-0,346 мг/м3; - оксид углерода — 0,0338-0,765 мг/м3; - углеводороды — 0,5578-0,8533 мг/м3; - диоксид серы — 0,0001-0,006 мг/м3. • в почвенном покров: - свинец отсутствует; - цинк 0,12-0,35 мг/кг; - медь 0,2-0,5 мг/кг; - марганец 0,002-0,007 мг/кг; - ртуть отсутствует - нефтепродукты 0,001-0,003 мг/кг. • в растительности: - свинец отсутствует; - цинк 0,11-0,17 мг/кг; - медь 0,2-0,5 мг/кг. максимально-разовые концентрации загрязняющих веществ не превышают предельнодопустимых концентраций (ПДКм.р.) ни по одному из определяемых ингредиентов Результаты по ПЭК находятся в допустимых пределах ПДК. Необходимость проведения дополнительных полевых исследований отсутствует ввиду результативности показателей мониторинга

^{*}нормативы размещения отходов производства не устанавливаются на те отходы, которые передаются сторонним организациям.

^{**}Передачу произвести в срок не позднее 6 месяцев с момента начала временного хранения. Места временного хранения отходов предназначены для безопасного сбора отходов в срок не более шести месяцев до их передачи третьим лицам. Экологический кодекс статья 320, пункт 2-1.

^{***} Передачу произвести в срок не позднее 3-х дней, в жаркие месяцы передачу произвести ежедневно.

состояния окружающей среды на предприятии.

Характеристика возможных форм негативного и положительного воздействий на окружающую среду в результате осуществления намечаемой деятельности, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости, предварительная оценка их существенности

Ожидаемое экологическое воздействие на окружающую среду на контрактной территории месторождения допустимо принять как: - Локальное воздействие (площадь воздействия до 1 км2 или на удалении до 100 м от линейного объекта);

- Умеренное воздействие (среда сохраняет способность к самовосстановлению);
- среднее воздействие (от 6-ти месяцев до 1 года).

Таким образом, интегральная оценка воздействия при бурении скважины на месторождении оценивается как воздействие низкой значимости. (более подробное описание приложено в приложении к данному ЗНД)

- 14. Характеристика возможных форм трансграничных воздействий на окружающую среду, их характер и ожидаемые масштабы с учетом их вероятности, продолжительности, частоты и обратимости нет.
- 15. Предлагаемые меры по предупреждению, исключению и снижению возможных форм неблагоприятного воздействия на окружающую среду, а также по устранению его последствий:
 - содержание дизельных двигателей в исправном состоянии и своевременный ремонт поршневой системы;
 - контроль безопасного движения строительной спецтехники;
 - для предотвращения повышенного загрязнения атмосферы выбросами необходимо проводить контроль на содержание выхлопных газов от дизельных двигателей на соответствие нормам и систематически регулировать аппаратуру;
 - для поддержания консистенции смазочных масел применение специальных присадок;
 - проверка готовности систем извещения об аварийной ситуации;
 - четкая организация учета водопотребления и водоотведения;
 - сбор хозяйственно-бытовых стоков в обустроенный септик, с последующим вывозом на очистные сооружения;
 - обустройство мест локального сбора и хранения отходов;
 - раздельное хранение отходов в соответственно маркированных контейнерах и емкостях;
 - предотвращение разливов ГСМ;
 - движение автотранспорта только по отведенным дорогам;
 - захоронение отходов производства и потребления на специально оборудованных полигонах;
 - запрет на вырубку кустарников и разведение костров;
 - маркировка и ограждение опасных участков;
 - создание ограждений для предотвращения попадания животных на производственные объекты;
 - запрет на охоту в районе контрактной территории;
 - разработка оптимальных маршрутов движения автотранспорта;
 - ограничение скорости движения автотранспорта и снижение интенсивности движения в ночное время на месторождении;
 - выбор соответствующего оборудования и оптимальных режимов работы.
 - 16. Описание возможных альтернатив достижения целей указанной намечаемой деятельности и вариантов ее осуществления (включая использование альтернативных технических и технологических решений и мест расположения объекта) Возможность выбора других мест осуществления намечаемой деятельности не предусматривается ввиду территориальной и технологической привязки проектируемых объектов. Основанием для строительства ГТП Айракты был Проект Разработки от 01.07.2021, в котором с учётом точки заложения и глубины скважин, были предусмотрены установки, согласно которых данный вид строительства будет экономически и технологически эффективным. Бурение осуществляется по всемирно принятым методам, которые используются не только в РК, но и зарубежом. Методы бурения применяются передовые и в настоящее время других методов бурения скважин не существует.

Приложения (документы, подтверждающие сведения, указанные в заявлении):

Руководитель инициатора намечаемой деятельности (иное уполномоченное лицо):

1 Приложение

2 ОБЩАЯ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Таблица 2.1 Основные проектные данные

	ица 2.1 Основные проектные данные	
п/п №	Наименование	Значение
1	Номера скважин, строящаяся по данному типовому проекту	№№ ОЦ-1, ОЦ-2
2	Площадь (месторождение)	Айракты
3	Расположение (суша, море)	Суша
4	Глубина Балтийского моря на точке бурения, м	-
5	Цель бурения и назначенные скважины	доизучение газоносности пермских и нижневизейских отложений
6	Проектный горизонт:	пермский (P) и нижневизейский (C_1V -A)
7	Средняя проектная глубина (от уровня моря), м по вертикали по стволу	2250 2250
8	Число объектовосвоения: в колонне: в открытом стволе	1 -
9	Вид скважины (вертикальная, наклонно-направленная, кустовая)	Вертикальная
10	Тип профиля	-
11	Азимут бурения, град	-
12	Максимальный зенитный угол, град	-
13	Максимальная интенсивность изменения зенитного угла, град/10 м	-
14	Глубина по вертикали кровли продуктивного (базисного) пласта, м	2070-2210
15	Отклонение от вертикали точки входа в кровлю продуктивного (базисного) пласта, м	-
16	Допустимое отклонение заданной точки входа в кровлю продуктивного (базисного) пласта от проектного положения (радиус круга допуска), м	50
17	Категория скважины	Оценочные
18	Способ бурения	Роторный (или верхний привод), ВЗД
19	Вид привода	Дизельэлектрический
20	Вид монтажа (первичный, повторный)	повторный
21	Максимальная масса колонны, т: обсадной бурильной	50 50
22	Тип установки для бурения	ZJ 30 или аналоги с допускаемой нагрузкой не менее 180 кН
23	Тип установки дляосвоения	УПА 80/120 грузоподёмностью не менее 80 тонн
24	Продолжительность цикла бурения скважин, сут.: в том числе:	272
	строительно-монтажные работы	6,0
	подготовительные работы к бурению	2,0
	бурение и крепление	58
	освоение всего:	206

	ГРП	6
	в эксплуатационной колонне:	200
25	Коммерческая скорость бурения, м/ст-м	1164

Таблица 2.2 Общие сведения о конструкции скважины

Название колонны	Диаметр, мм	Интервал спуска, м				
		по вертин	по вертикали		стволу	
		от (верх)	до (низ)	от (верх)	до (низ)	
1	2	3	4	5	6	
Направление	323,9	0	30	0	30	
Кондуктор	244,5	0	350	0	350	
Промежуточная колонна	177,8	0	1100	0	1100	
Эксплуатационная колонна	127	0	2250	0	2250	

Таблица 2.3 Дополнительные сведения

Мощность труборемонт- ных баз, площадок, тыс. м бурильных труб	Наличие тампонажной конторы или цеха (да, нет)	Время пребывания турбобура (электробура) на забое, %	Время механическог о бурения на воде, %	Дежурство, работа бульдозеров, автомашин на буровой, ч/сут	Форма оплаты труда буровой (сдельная, повременная, контрактная и тд)
1	2	5	6	7	8
-	По тендеру	-	-	Бульдозер – 12 часов	Контрактная

Таблица 2.4 Сведения об условиях эксплуатации скважины

Данные о способах	ные о способах эксплуатации Срок перевода Каксимальные скважины в габаритные		Коррозі вид	активность	Глубина установки	Жидко	сть за НКТ			
Название (ФОНТАННЫЙ, ШГН ЭЦН, ГАЗЛИФТНЫЙ)	перио нач: эксплуа го	ала тации,	нагнетательную от начала экс- плуатации, год	кае инструм прибој освое эксплу	ы спус- мых ментов и ров при ении и катации жины диаметр, мм	(сероводородная, сульфидная и пр.)	пластового флюида, мм/год	пакера, м	тип	плотность г/см ³
1	2	3	4	5	6	7	8	9	10	11
Фонтанный	В теч всего о эксплуа	срока	Не планируется	2250	121,7	Общая коррозия	незначи- тельная	*	Газ	0,720

Примечание: Глубина установки пакера будет уточняться в зависимости от интервала перфорации, по согласованию сНедропользователем.

з ОСНОВАНИЕ ДЛЯ ПРОЕКТИРОВАНИЯ

Таблица 3.1 Список документов, которые являются основанием для проектирования

№	Название документа (проект геолого-разведочных работ, технологические схемы (проект) разработки площадей (месторождений), задание на
пп	проектирование), номер, дата, должность, фамилия и инициалы лица, утвердившего документ
1	2
1	Проект разработки месторождения Айракты по состоянию на 01.07.2021 г.
2	Техническое задание к договору № 917144/2024/1 от 10.01.2024 г. на составление «Группового технического проекта на бурение
	эксплуатационных скважин глубиной 2250 м на месторождении Айракты»

4 ОБЩИЕ СВЕДЕНИЯ

Таблица 4.1 Сведения о районе буровых работ

Наименование	Значение
	(текст, название, величина)
1	2
Площадь (месторождение)	Айракты
Блок (номер или название)	-
Административное расположение:	
Республика	Казахстан
Область (край)	Жамбылская
Район	Мойынкумский
Год ввода, г:	
месторождения в эксплуатацию	2017
площади в бурение	1973
Расположение (суша, море)	Суша
Температура воздуха, ⁰ С	
среднегодовая	+ 15°C
наибольшая летняя	+ 40°C
наименьшая зимняя	- 30°C
Животный мир	паукообразными и парнокопытными (сайгака-
	ми, джейранами), а также волками, лисицами
	и зайцами.
Среднегодовое количество осадков, мм	180
Максимальная глубина промерзания грунта, м	0,8
Продолжительность отопительного периода в году,	180
сут.	
Продолжительность зимнего периода в году, сут.	122
Азимут преобладающего направления ветра, град	Северо-Западный.
Максимальная скорость ветра, м/с	18,0 м/с
Метеорологический пояс (при работе в море)	-
Количество штормовых дней (при работе в море)	-

Таблица 4.2 Сведения о площадке строительства буровой

Наименование	Значение (текст, названия, величина)
1	2
Рельеф местности	барханный
Состояние местности	полупустынная равнина
Толщина снежного покрова, см	30 (максимально на зиму)
Почвенного слоя	отсутствует
Растительный покров (гумус)	Ковыльно-полынная
Категория грунта	Вторая

Таблица 4.3 Размеры отводимых во временное пользование земельных участков

Назначение участка	Размер	Источник нормы отвода земель
1	2	3
Строительство буровой установки и размещение	3,5	Нормы отвода земель для
оборудования и техники для бурения эксплуатационной		нефтяных и газовых
скважины.		скважин, СН 459-74

Таблица 4.4 Источник и характеристики водо- и энергоснабжения, связи и местных стройматериалов

Название вида снабжения: (ВОДОСНАБЖЕНИЕ: для бурения, для дизелей, питьевая вода, для бытовых нужд, ЭНЕРГОСНАБЖЕНИЕ, СВЯЗЬ, МЕСТНЫЕ СТРОЙМАТЕРИАЛЫ) и т.д.	Источник заданного вида снабжения	Расстояние от источника до буровой, км	Характеристика водо и энергопривода, связи и стройматериалов
1	2	3	4
Водоснабжение:			
Техническая вода для бурения	м. Амангельды	51,5	Автотранспорт
Пресная вода: 1. Для котельной и хозбытовых нужд; 2. Для питьевых целей	п. Уланбель или г. Тараз	75 252	Автотранспорт
Энергоснабжение	Дизель	На буровой	
Местные стройматериалы:	электростанция	площадке	
а) грунт	Местный карьер	85	Автосамосвал
б) песчано-гравийная смесь	Местный карьер	85	Автосамосвал
Связь	Спутниковая, радиостанция,	-	Связь с головным офисом и представительство м

Таблица 4.5 Сведения о подъездных путях

Протяженность, км	Характер покрытия (гравийное, из лесоматериалов и т.д.)	Ширина, м	Высота насыпи, см	Характеристика дороги
1	2	3	4	5
до 5 км	Песчано-гравийная смесь	6,0	20,0	временный

Примечание: Подъездные пути будут определены во время переезда станка.

Таблица 4.6 Сведения о магистральных дорогах и водных транспортных путях

	Магистральные дор	ОГИ	Водные транспортные пути			
наличие	название	расстояние до	наличие	название	расстояние до	
(ДА, НЕТ)		буровой, км	(ДА, НЕТ)		буровой, км	
1	2	3	4	5	6	
да		252	нет	-		

Примечание: От города Тараз до месторождений Амангельды асфльтированная дорого 200 км. От м. Амангельды до скважины м.Айракты дорога с покрытией щебеночно гравино-песчаной смеси- категории IV-В.

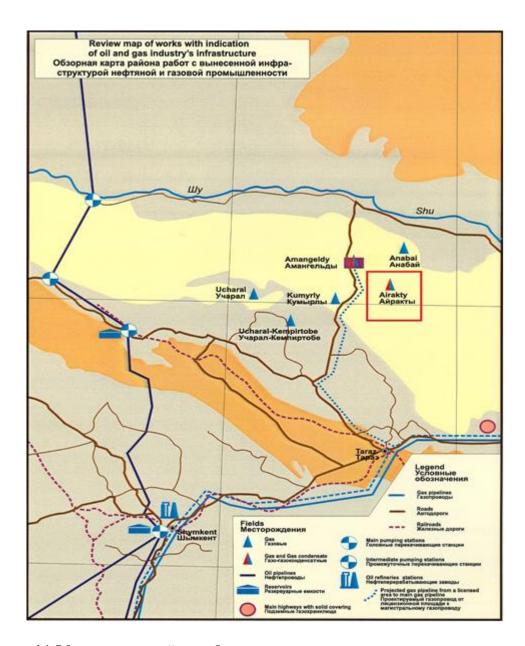


Рисунок 4.1 Обзорная карта района работ

5 КОНСТРУКЦИЯ СКВАЖИНЫ

С целью охраны недр, подземных вод и предотвращения возможных осложнений при бурении скважин предусматривается следующая конструкция:

Направление Ø 324,0 мм - цементируется до устья, устанавливается с целью предотвращения размыва устья и возникновения грифона при бурении под кондуктор, возврата восходящего потока бурового раствора из скважины в циркуляционную систему. Спускается на глубине не менее 30 м от уровня поверхонсти земли.

Кондуктор Ø 244,5 мм х 350 м - цементируется до устья. Кондуктор предусмотрен для перекрытия зоны поглощения, неустойчивых пород и водоносных горизонтов. Устье скважины после спуска кондуктора оборудуется противовыбросовым оборудованием.

Промежуточная колонна Ø 177,8 мм х 1100 м — цементируется до устья. Глубина спуска промежуточной колонны определена по условию перекрытия пластичных пород и газовых горизонтов, предотвращения гидроразрыва пород под ее башмаком при закрытии скважины в случае открытого фонтанирования газом и водой. Спускается с целью разобщения продуктивных и водоносных горизонтов, испытания объектов. Устье скважины после спуска промежуточной колонны оборудуется противовыбросовым оборудованием. Для скважины ОЦ-1 решение о необходимости дальнейшего бурения до глубины 2250 м и спуска обсадной колонны будет приниматься по результатам ГИС, ГТИ (газовый каротаж).

Эксплуатационная колонна \emptyset 127 мм х 2250 м — цементируется до устья Спускается с целью разобщения продуктивных и водоносных горизонтов, испытания объектов Для скважины ОЦ-2 решение о необходимости спуска обсадной колонны будет приниматься по результатам ГИС и испытания в открытом стволе. Возможено обсаживание ствола потайной колонной («хвостовик»).

Конструкция скважины выбрана согласно геологическим данным в соответствии с «Правилами обеспечения промышленной безопасности для опасных производственных объектов нефтяной и газовой отраслей промышленности».

Количество, глубины спуска и типоразмеры обсадных колонн определены исходя из совместимости условий бурения и безопасности работ при ликвидации возможных нефтегазоводопроявлений и освоениия скважин.

Совмещенный график давлений приведен на рис. 5.1

Обоснование необходимости спуска обсадных колонн и принятая конструкция скважины приведены в таблице 5.2, общая характеристика обсадных колонн — в таблице 5.3, в таблице 5.4 приведены технико-технологические мероприятия, которые обусловлены

горно-геологическими условиями бурения скважин. В таблице 5.5 — максимально допустимые гидродинамические давления в открытом стволе при выполнении технологических операции в процессе бурения скважин.

Таблица 5.1 Глубина спуска и характеристика обсадных колонн

	5.1 Глубина спуск						-	
Номер колон ны в поряд ке спуска	Наименовани е колонны (направление, кондуктор, эксплуатацио нная колонна)	по ст скваж (уста	кины новк онны и ытый	Номина льный диаметр ствол скважин ы (долота) в интерва ле, мм	Расстоя ние от устья скважи ны до уровня подъем а цемент ного раствор а за колонн ой (от стола ротора)	Интервал установки раздельно спускаемо й части, м от до (вер (низ х))		Необходимость (причина) спуска колонны (в том числе в один прием или секциями), установки, надбавки смены или поворота секции
			_		, м			
1	2 Кондуктор Ø 244,5 мм	0	350	5 295,3	0	0	350	9
2	Промежуточна я колонна Ø 177,8 мм	0	110 0	215,9	0	0	110 0	Цементируется до устья, спускается с целью перекрытия поглощающих горизонтов, осыпей, предотвращения гидроразрыва пород в процессе ликвидации возможных нефтегазоводопроявлени й при бурении под эксплуатационную колонну. Устье скважины после спуска промежуточной колонны оборудуется противовыбросовым оборудованием.
3	Эксплуатацио нная колонна Ø 127 мм	0	225 0	146/165	0	0	225 0	Цементируется до устья, спускается с целью разобщения

				продуктивных и
				водоносных горизонтов,
				а также добычи газа.

<u>Примечание:</u> Глубины спуска обсадных труб могут быть изменены по фактический вскрытому разрезу скважины, по согласованию. Будут уточнены в программе бурения и спуска обсадных колон.

Таблица 5.2. Газоносность

Индекс стратигра фического подраздел	-	(по икал	Тип колле ктора	Состо яние		ржан о объ		ная по ость газа	іент ти в	ит, м³/сут	Плоти газок нса г/с	онде та,	я :Tb, м²
ения	от (ве рх)	до (ни 3)			H ₂ S	C O_2	Не	Относительная воздуху плотность	Коэффициент сжимаемости	Свободный дебит, газ	относительна я по воздуху	плотность при 20 °C	Д Ни
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Р1пс	810	109	поровы	газ	отс	-	0,2	-	0,82	10 7	-	-	-
		0	й				6			00*			
Csr	170	175	поровы	газ	отс	0,0	-	0,678	1,02	6 50	-	_	133
	0	0	й			6				0*			
C_1V_1	205	215	поровы	газ	отс	0,2	0,1	0,683	0,79	16	0,61	0,73	-
	0	0	й			5	53			100	2	7	

Примечание: * дебиты газа получены из скв.2 и 8 при опробовании инт.810-853м и 1769-1791м соответственно. Свойства и состав газа взяты из «Подсчета запасов…» по состоянию на 02.01.2021 г.

В 2025 – скв.№№ ОЦ - 1; ОЦ - 2

Общая продолжительность строительства 1-ой скважины составляет 272 суток.

Источниками загрязнения атмосферы в процессе строительства оценочных скважин на месторождении Айракты являются:

Строительно-монтажные работы

- Источник № 0101 Дизельный двигатель САГ Д-144-81-1;
- Источник № 6101 Бульдозер;
- Источник № 6102 Экскаватор;
- Источник № 6103 Сварочные работы;
- Источник № 6104 Емкость для масла, V=5 м3;
- Источник № 6105 Емкость дизтоплива, V=40 м3;
- Источник № 6106 Емкость отработанного масла, V=5м3.

Подготовительные работы, бурение-крепление

- Источник № 0102 Двигатель САТ 3512 (привод буровой установки);
- Источник № 0103 Двигатель Caterpiller (приод насоса)
- Источник № 0104
 Цементировочный агрегат САТ С15;
- Источник № 0105 Дизельная электростанция
- Источники №№ 6107,6108,6109,6110,6111 Ёмкость для бурового раствора, V=116,4 м³;
- Источник № 6112 Доливная ёмкость, V=20 м3;
- Источники №№ 6113-6114 Шламонакопитель, V=40 м³;
- Источник № 6115 Ваккумный дегазатор;
- Источник № 6116 Газосепаратор;
- Источник № 6117 Емкость для масла, V=5 м3;
- Источник № 6118 Емкость для дизтоплива, V=40 м3;
- Источник № 6119 Емкость отработанного масла, 5м3.

Испытание/освоение скважины

- Источник № 0106 Установка для освоения (испытания) двигатель ЯМЗ-6581;
- Источник № 0107 Цементировочный агрегат ЦА -320М ЯМЗ-236НЕ2;
- Источник № 0108 ДЭС АД-200 двигатель ЯМЗ-6503;
- Источники №№ 0109,0110,0111,0112 Насосный агрегат КТGJ70-12 двигатель САТ С15;
- Источники №№ 0113,0114 Установка смесительная МС-600 двигатель САТ 3406;
- Источник № 0115,0116,0117 Факельная установка
- Источник № 6120 Газосепаратор;
- Источник № 6121 Емкость дизтоплива, V=40 м3;
- Источник № 6122 Емкость масла, V=5 м3;
- Источник № 6123 Емкость отработанного масла, V=5м3.

Источник № 6124– ДВС передвижных источников.

Общее количество источников выбросов составляет 41 ед. Из них 17 источников – организованных, и 24 – неорганизованные источники выбросов.

СТРОИТЕЛЬНО-МОНТАЖНЫЕ РАБОТЫ (расчеты на одну скважину)

Источник загрязнения N 0101 - Дизельный двигатель САГ Д-144-81-1

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 0.0591

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 37

Удельный расход топлива на экспл./номин. режиме работы двигателя b_i , г/кBт* \mathbf{q} , 133

Температура отработавших газов T_{o2} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

 $G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 133 * 37 = 0.04291112$ (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

 $\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$ (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

 $Q_{oz} = G_{oz} / \gamma_{oz} = 0.04291112 / 0.494647303 = 0.086750943$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5
Таблица значений в	ыбросов q_{i}	г/кг.топл. ст	ационарной	дизельной у	становки до	капитальног	о ремонта
F	CO	NO	CH		000	CITO	ГП

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_2 / 3600 = 7.2 * 37 / 3600 = 0.074$

 $W_i = q_{Mi} * B_{200} = 30 * 0.0591 / 1000 = 0.001773$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (10.3 * 37 / 3600) * 0.8 = 0.084688889$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (43 * 0.0591 / 1000) * 0.8 = 0.00203304$

Примесь: 2754 Алканы С12-19

 $M_i = e_{Mi} * P_2 / 3600 = 3.6 * 37 / 3600 = 0.037$

 $W_i = q_{Mi} * B_{200} / 1000 = 15 * 0.0591 / 1000 = 0.0008865$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_2 / 3600 = 0.7 * 37 / 3600 = 0.007194444$

 $W_i = q_{Mi} * B_{200} / 1000 = 3 * 0.0591 / 1000 = 0.0001773$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_2 / 3600 = 1.1 * 37 / 3600 = 0.011305556$

 $W_i = q_{Mi} * B_{200} / 1000 = 4.5 * 0.0591 / 1000 = 0.00026595$

Примесь: 1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_2 / 3600 = 0.15 * 37 / 3600 = 0.001541667$

 $W_i = q_{Mi} * B_{200} = 0.6 * 0.0591 / 1000 = 0.00003546$

Примесь:0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_3 / 3600 = 0.000013 * 37 / 3600 = 0.000000134$

 $W_i = q_{Mi} * B_{200} = 0.000055 * 0.0591 / 1000 = 0.000000003$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.13 = (10.3 * 37 / 3600) * 0.13 = 0.013761944$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (43 * 0.0591 / 1000) * 0.13 = 0.000330369$

Итого выбросы по веществам:

		г/сек	т/год	%	г/сек	т/год
Код	Примесь	без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.084688889	0.00203304	0	0.084688889	0.00203304
0304	Азот (II) оксид	0.013761944	0.000330369	0	0.013761944	0.000330369
0328	Углерод	0.007194444	0.0001773	0	0.007194444	0.0001773
0330	Сера диоксид	0.011305556	0.00026595	0	0.011305556	0.00026595
0337	Углерод оксид	0.074	0.001773	0	0.074	0.001773
0703	Бенз/а/пирен	0.000000134	0.000000003	0	0.000000134	0.000000003
1325	Формальдегид	0.001541667	0.00003546	0	0.001541667	0.00003546
2754	Алканы С12-19	0.037	0.0008865	0	0.037	0.0008865

Источник загрязнения: 6101 - Бульдозер

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песок природный и из отсевов дробления

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.1

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.05

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), M/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 2.9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), $\mathbf{\textit{B}} = \mathbf{0.4}$

Суммарное количество перерабатываемого материала, т/час, GMAX = 242.24

Суммарное количество перерабатываемого материала, т/год, GGOD = 2394.15

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 242.24 \cdot 10^6 / 3600 \cdot (1-0.85) = 25.84$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot$

 $1.4 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 2394.15 \cdot (1-0.85) = 0.644$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 25.84

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.644 = 0.644

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.644 = 0.2576$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 25.84 = 10.34$

Итоговая таблина:

11101020	1		
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	10.34	0.2576
	кремния в %: 70-20		

Источник загрязнения: 6102 - Экскаватор

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Песок природный и из отсевов дробления

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.1

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.05

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 6

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.4

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 2.9

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 1

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 54.83

Суммарное количество перерабатываемого материала, т/год, GGOD = 346.5

Эффективность средств пылеподавления, в долях единицы, NJ = 0.85

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (I-NJ) = 0.1 \cdot 0.05 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 54.83 \cdot 10^6 / 3600 \cdot (1-0.85) = 5.85$

Валовый выброс, т/год (3.1.2), $MC = KI \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.1 \cdot 0.05 \cdot 1.4 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 346.5 \cdot (1-0.85) = 0.0931$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 5.85

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.0931 = 0.0931

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.0931 = 0.03724$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 5.85 = 2.34$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	2.34	0.03724
	кремния в %: 70-20		

Источник загрязнения: 6103 - Сварочные работы

Список литературы:

"Методика выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004) п.5.1 на единицу массы расходуемых материалов

Расход электрода, кг/год, BE = 63

Расход электродов, кг/час, BG = 5.25

марка электродов: УОНИ 13/45

Примесь: 0123 Железо (II, III) оксиды

Выброс, т/год, \underline{M} = $BE \cdot 10.69 / 10^6$ = $63 \cdot 10.69 / 10^6$ = 0.0006730

Выброс, г/с, $_G_ = BG \cdot 10.69 / 3600 = 5.25 \cdot 10.69 / 3600 = 0.0156000$

Примесь: 0143 Марганец и его соединения

Выброс, т/год, $\underline{M} = BE \cdot 0.92 / 10^6 = 63 \cdot 0.92 / 10^6 = 0.0000580$

Выброс, г/с, $_G_ = BG \cdot 0.92 / 3600 = 5.25 \cdot 0.92 / 3600 = 0.0013420$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20

Выброс, т/год, $_M_ = BE \cdot 1.4 / 10^6 = 63 \cdot 1.4 / 10^6 = 0.0000882$

Выброс, г/с, $_G_ = BG \cdot 1.4 / 3600 = 5.25 \cdot 1.4 / 3600 = 0.0020400$

Примесь: 0344 Фториды неорганические плохо растворимые

Выброс, т/год, $_M_ = BE \cdot 3.3 / 10^6 = 63 \cdot 3.3 / 10^6 = 0.0002080$

Выброс, г/с, $_G_ = BG \cdot 3.3 / 3600 = 5.25 \cdot 3.3 / 3600 = 0.0048100$

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Выброс, т/год, $_M_ = BE \cdot 0.75 / 10^6 = 63 \cdot 0.75 / 10^6 = 0.00004725$

Выброс, г/с, $_G_ = BG \cdot 0.75 / 3600 = 5.25 \cdot 0.75 / 3600 = 0.0010940$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Выброс, т/год, $\underline{M} = BE \cdot 1.5 / 10^6 = 63 \cdot 1.5 / 10^6 = 0.0000945$

Выброс, г/с, $G = BG \cdot 1.5 / 3600 = 5.25 \cdot 1.5 / 3600 = 0.0021880$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Выброс, т/год, $_M_ = BE \cdot 13.3 / 10^6 = 63 \cdot 13.3 / 10^6 = 0.0008380$

Выброс, г/с, $G = BG \cdot 13.3 / 3600 = 5.25 \cdot 13.3 / 3600 = 0.0194000$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды	0.0156	0.000673
0143	Марганец и его соединения	0.001342	0.000058
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002188	0.0000945
0337	Углерод оксид	0.0194	0.000838
0342	Фтористые газообразные соединения	0.001094	0.00004725
0344	Фториды неорганические плохо растворимые -	0.00481	0.000208
2908	Пыль неорганическая, содержащая двуокись кремния в	0.00204	0.0000882
	%: 70-20		

Источник загрязнения: 6104 - Емкость для масла, V = 5 м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, $\Gamma/M3$ (Прил. 15), CMAX = 0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.0023

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.0023

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.0023 + 0.15 \cdot 0.0023) \cdot 10^{-6} = 0.00000000069$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot$

 $(0.0023 + 0.0023) \cdot 10^{-6} = 0.00000002875$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000000007 + 0.00000000288 = 0.00000002944

Примесь: 2735 Масло минеральное нефтяное

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 100 \cdot 0.0000000294 / 100 = 0.00000002944$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.0002	0,00000002944

Источник загрязнения: 6105 - Емкость для дизтоплива, V = 40м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, r/m3 (Прил. 15), CMAX = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, *QOZ* = 0.1047

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.1047

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, $\Gamma/M3$ (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 16

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 16) / 3600 = 0.01$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 0.1047 + 1.6 \cdot 0.1047) \cdot 10^{-6} = 0.000000292$

Удельный выброс при проливах, $\Gamma/M3$, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50$

 $(0.1047 + 0.1047) \cdot 10^{-6} = 0.00000524$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000000292 + 0.00000524 = 0.00000553

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.92

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, $\Gamma/M3$ (Прил. 15), CAMOZ = 1.98

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 2.66

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.92 \cdot$

0.4 / 3600 = 0.0004356

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.98 \cdot 1.00)$

 $0.10\overline{47} + 2.66 \cdot 0.1047) \cdot 10^{-6} = 0.000000486$

Удельный выброс при проливах, $\Gamma/M3$, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (0.1047 + 0.1047) \cdot 10^{-6} = 0.00000524$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.000000486 + 0.00000524 = 0.00000573

Суммарные валовые выбросы из резервуаров и ТРК (9.2.9), M = MR + MTRK = 0.00000553 + 0.00000573 =

0.00001126

Максимальный из разовых выброс, г/с, G = 0.01

Наблюдается при закачке в резервуары

Примесь: 2754 Алканы С12-19

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.00001126 / 100 = 0.00001123$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.01 / 100 = 0.0099700$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.00001126 / 100 = 0.0000000315$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G$ / $100=0.28\cdot 0.01$ / 100=0.0000280

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000028	3.15e-8
2754	Алканы С12-19	0.00997	0.00001123

Источник загрязнения: 6106 - Емкость для отработанного масла, V = 5м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.0006

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.0006

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.0006 + 0.15 \cdot 0.0006) \cdot 10^{-6} = 0.00000000018$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot 10^{-6}$

 $(0.0006 + 0.0006) \cdot 10^{-6} = 0.00000000075$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000000002 + 0.00000000075 = 0.000000000768

Примесь: 2735 Масло минеральное нефтяное

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **100**

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 100 \cdot 0.0000000077 / 100 = 0.00000000768$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное	0.0002	0,0000000768	

ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ, БУРЕНИЕ И КРЕПЛЕНИЕ (расчеты на одну скважину)

Источник загрязнения N 0102 - Двигатель Caterpillar (привод буровой установки)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $B\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{200} , т, 93.915

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 334

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{ij} , г/кBт*ч, 202

Температура отработавших газов T_{o2} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{2} = 8.72 * 10^{-6} * 202 * 334 = 0.58832096$$
 (A.3)

Удельный вес отработавших газов **%**2, кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

 $Q_{02} = G_{02} / \gamma_{02} = 0.58832096 / 0.494647303 = 1.189374644$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

T. C							
Б	3.1	3.84	0.82857	0.14286	1.2	0.03429	3.42E-6
Группа	CO	NOx	CH	C	SO2	CH2O	ЫІ

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	13	16	3.42857	0.57143	5	0.14286	0.00002

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

		г/сек	т/год	%	г/сек	m/20d
Код	Примесь	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.285013333	1.202112	0	0.285013333	1.202112
0304	Азот (II) оксид	0.046314667	0.1953432	0	0.046314667	0.1953432
0328	Углерод	0.013254233	0.053665848	0	0.013254233	0.053665848
0330	Сера диоксид	0.111333333	0.469575	0	0.111333333	0.469575
0337	Углерод оксид	0.287611111	1.220895	0	0.287611111	1.220895
0703	Бенз/а/пирен	0.000000317	0.000001878	0	0.000000317	0.000001878
1325	Формальдегид	0.00318135	0.013416697	0	0.00318135	0.013416697
2754	Алканы С12-19	0.076872883	0.321994152	0	0.076872883	0.321994152

Источник загрязнения N 0103 - Двигатель Caterpillar (привод насосов)

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $B\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год ${\it B}_{\it 200}$, т, 103.974

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 354

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{ij} , г/кBт*ч, 211

Температура отработавших газов T_{o2} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 211 * 354 = 0.65133168$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

 $Q_{02} = G_{02} / \gamma_{02} = 0.65133168 / 0.494647303 = 1.316759793$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП	
Б	3.1	3.84	0.82857	0.14286	1.2	0.03429	3.42E-6	
Таблица значений выбросов q_{3i} г/кг. топл. стационарной дизельной установки до капитального ремонта								

 Группа
 CO
 NOx
 CH
 C
 SO2
 CH2O
 БП

 Б
 13
 16
 3.42857
 0.57143
 5
 0.14286
 0.00002

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

		г/сек	т/год	%	г/сек	т/год
Код	Примесь	без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.30208	1.3308672	0	0.30208	1.3308672
0304	Азот (II) оксид	0.049088	0.21626592	0	0.049088	0.21626592
0328	Углерод	0.0140479	0.059413863	0	0.0140479	0.059413863
0330	Сера диоксид	0.118	0.51987	0	0.118	0.51987
0337	Углерод оксид	0.304833333	1.351662	0	0.304833333	1.351662
0703	Бенз/а/пирен	0.000000336	0.000002079	0	0.000000336	0.000002079
1325	Формальдегид	0.00337185	0.014853726	0	0.00337185	0.014853726
2754	Алканы С12-19	0.08147605	0.356482137	0	0.08147605	0.356482137

Источник загрязнения № 0104 - Цементировочный агрегат Caterpillar

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $B\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{200} , т, 15.508

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 328

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 197

Температура отработавших газов $T_{\theta 2}$, K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 197 * 328 = 0.56345152$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

 $O_{02} = G_{02} / \gamma_{02} = 0.56345152 / 0.494647303 = 1.139097528$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{Mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	3.1	3.84	0.82857	0.14286	1.2	0.03429	3.42E-6

таолица значении выоросов q_{ii} тукг. топл. стационарной дизельной установки до капитального ремонта								
Группа	CO	NOx	СН	C	SO2	CH2O	БП	
Б	13	16	3.42857	0.57143	5	0.14286	0.00002	

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

		г/сек	т/год	%	г/сек	т/год
Код	Примесь	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.279893333	0.1985024	0	0.279893333	0.1985024
0304	Азот (II) оксид	0.045482667	0.03225664	0	0.045482667	0.03225664
0328	Углерод	0.013016133	0.008861736	0	0.013016133	0.008861736
0330	Сера диоксид	0.109333333	0.07754	0	0.109333333	0.07754
0337	Углерод оксид	0.282444444	0.201604	0	0.282444444	0.201604
0703	Бенз/а/пирен	0.000000312	0.00000031	0	0.000000312	0.00000031
1325	Формальдегид	0.0031242	0.002215473	0	0.0031242	0.002215473
2754	Алканы С12-19	0.075491933	0.053170264	0	0.075491933	0.053170264

Источник загрязнения N 0105 - Дизельная электростанция Caterpillar

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $B\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{200} , т, 136.082

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 470

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 208

Температура отработавших газов $T_{\theta 2}$, K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{2} = 8.72 * 10^{-6} * 208 * 470 = 0.8524672$$
 (A.3)

Удельный вес отработавших газов **%**², кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{o2} , м³/с:

$Q_{02} = G_{02} / \gamma_{02} = 0.8524672 / 0.494647303 = 1.723383904$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	3.1	3.84	0.82857	0.14286	1.2	0.03429	3.42E-6
Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта							

Группа	CO	NOx	СН	С	SO2		БП
Б	13	16	3.42857	0.57143	5	0.14286	0.00002

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{2} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

	,	г/сек	т/год	%	г/сек	т/год
Код	Примесь	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.401066667	1.7418496	0	0.401066667	1.7418496
0304	Азот (II) оксид	0.065173333	0.28305056	0	0.065173333	0.28305056
0328	Углерод	0.018651167	0.077761337	0	0.018651167	0.077761337
0330	Сера диоксид	0.156666667	0.68041	0	0.156666667	0.68041
0337	Углерод оксид	0.404722222	1.769066	0	0.404722222	1.769066
0703	Бенз/а/пирен	0.000000447	0.000002722	0	0.000000447	0.000002722
1325	Формальдегид	0.00447675	0.019440675	0	0.00447675	0.019440675
2754	Алканы С12-19	0.108174417	0.466566663	0	0.108174417	0.466566663

Источник загрязнения: 6107 - Емкость для бурового раствора, V = 116,4м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к

приказу МООС РК от 29.07.2011 №196

Выбросы от объектов очистных сооружений

Вид нефтепродукта: Сырая нефть Очистное сооружение: Пруд-отстойник

Поверхность испарения, м2, F = 48.39

Среднегодовая температура воздуха, град. С, T1 = 6

Степень укрытия поверхности испарения, %, ST = 0

Количество углеводородов, испаряющихся с 1 м2 открытой поверхности, r/m2*ч(табл.6.3), QCP = 0.1628

Коэффициент, учитывающий степень укрытия поверхности испарения (табл. 6.4), NU = 1

Максимальный разовый выброс, г/с (6.5.2), $G = NU \cdot (QCP \cdot F / 3600) = 1 \cdot (0.1628 \cdot 48.39 / 3600) = 0.00219$

Валовый выброс, т/год (6.5.1), $M = 8.76 \cdot QCP \cdot NU \cdot F \cdot 10^{-3} = 8.76 \cdot 0.1628 \cdot 1 \cdot 48.39 \cdot 10^{-3} = 0.069$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **100**

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 100 \cdot 0.00219 / 100 = 0.0021900$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 100 \cdot 0.069 / 100 = 0.0690000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.00219	0.069

Источник загрязнения: 6108 - Емкость для бурового раствора, V = 116,4м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу MOOC PK от 29.07.2011 №196

Выбросы от объектов очистных сооружений

Вид нефтепродукта: Сырая нефть

Очистное сооружение: Пруд-отстойник

Поверхность испарения, м2, F = 48.39

Среднегодовая температура воздуха, град. С, T1 = 6

Степень укрытия поверхности испарения, %, ST = 0

Количество углеводородов, испаряющихся с 1 м2 открытой поверхности, r/m2*u(табл.6.3), QCP = 0.1628

Коэффициент, учитывающий степень укрытия поверхности испарения (табл. 6.4), NU = 1

Максимальный разовый выброс, г/с (6.5.2), $G = NU \cdot (QCP \cdot F / 3600) = 1 \cdot (0.1628 \cdot 48.39 / 3600) = 0.00219$

Валовый выброс, т/год (6.5.1), $M = 8.76 \cdot QCP \cdot NU \cdot F \cdot 10^{-3} = 8.76 \cdot 0.1628 \cdot 1 \cdot 48.39 \cdot 10^{-3} = 0.069$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **100**

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.00219 / 100 = 0.0021900$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 100 \cdot 0.069 / 100 = 0.0690000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (0.00219	0.069

Источник загрязнения: 6109 - Емкость для бурового раствора, V = 116,4м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от объектов очистных сооружений

Вид нефтепродукта: Сырая нефть

Очистное сооружение: Пруд-отстойник

Поверхность испарения, м2, F = 48.39

Среднегодовая температура воздуха, град. С, T1 = 6

Степень укрытия поверхности испарения, %, ST = 0

Количество углеводородов, испаряющихся с 1 м2 открытой поверхности, r/m2*ч (табл.6.3), QCP = 0.1628

Коэффициент, учитывающий степень укрытия поверхности испарения (табл. 6.4), NU=1

Максимальный разовый выброс, г/с (6.5.2), $G = NU \cdot (QCP \cdot F / 3600) = 1 \cdot (0.1628 \cdot 48.39 / 3600) = 0.00219$

Валовый выброс, т/год (6.5.1), $M = 8.76 \cdot QCP \cdot NU \cdot F \cdot 10^{-3} = 8.76 \cdot 0.1628 \cdot 1 \cdot 48.39 \cdot 10^{-3} = 0.069$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 100

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.00219 / 100 = 0.0021900$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 100 \cdot 0.069 / 100 = 0.0690000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.00219	0.069

Источник загрязнения: 6110 - Емкость для бурового раствора, V = 116,4м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к

приказу МООС РК от 29.07.2011 №196

Выбросы от объектов очистных сооружений

Вид нефтепродукта: Сырая нефть

Очистное сооружение: Пруд-отстойник Поверхность испарения, м2, F = 48.39

Среднегодовая температура воздуха, град. С, T1 = 6

Степень укрытия поверхности испарения, %, ST = 0

Количество углеводородов, испаряющихся с 1 м2 открытой поверхности, r/m2*ч(табл.6.3), QCP = 0.1628

Коэффициент, учитывающий степень укрытия поверхности испарения (табл. 6.4), NU = 1

Максимальный разовый выброс, г/с (6.5.2), $G = NU \cdot (QCP \cdot F / 3600) = 1 \cdot (0.1628 \cdot 48.39 / 3600) = 0.00219$

Валовый выброс, т/год (6.5.1), $M = 8.76 \cdot QCP \cdot NU \cdot F \cdot 10^{-3} = 8.76 \cdot 0.1628 \cdot 1 \cdot 48.39 \cdot 10^{-3} = 0.069$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **100**

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.00219 / 100 = 0.0021900$

Валовый выброс, т/год (4.2.5), $M_{-} = CI \cdot M / 100 = 100 \cdot 0.069 / 100 = 0.0690000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.00219	0.069

Источник загрязнения: 6111 - Емкость для бурового раствора, V = 116,4м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от объектов очистных сооружений

Вид нефтепродукта: Сырая нефть

Очистное сооружение: Пруд-отстойник

Поверхность испарения, м2, F = 48.39

Среднегодовая температура воздуха, град. С, T1 = 6

Степень укрытия поверхности испарения, %, ST = 0

Количество углеводородов, испаряющихся с 1 м2 открытой поверхности, r/m2*u(табл.6.3), QCP = 0.1628

Коэффициент, учитывающий степень укрытия поверхности испарения (табл. 6.4), NU=1

Максимальный разовый выброс, г/с (6.5.2), $G = NU \cdot (QCP \cdot F / 3600) = 1 \cdot (0.1628 \cdot 48.39 / 3600) = 0.00219$

Валовый выброс, т/год (6.5.1), $M = 8.76 \cdot QCP \cdot NU \cdot F \cdot 10^{-3} = 8.76 \cdot 0.1628 \cdot 1 \cdot 48.39 \cdot 10^{-3} = 0.069$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 100

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.00219 / 100 = 0.0021900$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 100 \cdot 0.069 / 100 = 0.0690000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.00219	0.069

Источник загрязнения: 6112 - Доливная емкость, V = 20 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от объектов очистных сооружений

Вид нефтепродукта: Сырая нефть Очистное сооружение: Пруд-отстойник Поверхность испарения, м2, F = 8.31

Среднегодовая температура воздуха, град. С, T1 = 6

Степень укрытия поверхности испарения, %, ST = 0

Количество углеводородов, испаряющихся с 1 м2 открытой поверхности, $\Gamma/M2*4$ (табл.6.3), QCP = 0.1628

Коэффициент, учитывающий степень укрытия поверхности испарения(табл.6.4), NU = 1

Максимальный разовый выброс, г/с (6.5.2), $G = NU \cdot (QCP \cdot F / 3600) = 1 \cdot (0.1628 \cdot 8.31 / 3600) = 0.000376$

Валовый выброс, т/год (6.5.1), $M = 8.76 \cdot QCP \cdot NU \cdot F \cdot 10^{-3} = 8.76 \cdot 0.1628 \cdot 1 \cdot 8.31 \cdot 10^{-3} = 0.01185$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 100

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.000376 / 100 = 0.0003760$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 100 \cdot 0.01185 / 100 = 0.0118500$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.000376	0.01185

Источник загрязнения: 6113 - Шламонакопитель, V = 40 м

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от шламонакопителей (земляные амбары для мазуга)

Вид нефтепродукта: Сырая нефть

Площадь испарения поверхности, м2, F = 16.63

Норма естественной убыли в осенне-зимний период, $\kappa r/m2$ в месяц (табл. 6.5), NI = 2.16

Норма естественной убыли в весенне-летний период, $\kappa \Gamma/M2$ в месяц (табл. 6.5), N2 = 2.88

Коэффициент перевода кг/мес в г/с 2592.

Максимальный разовый выброс, г/с (6.6.1), $G = N2 \cdot F / 2592 = 2.88 \cdot 16.63 / 2592 = 0.01848$

Валовый выброс, т/год (6.6.2), $M = 6 \cdot F \cdot (NI + N2) \cdot 10^{-3} = 6 \cdot 16.63 \cdot (2.16 + 2.88) \cdot 10^{-3} = 0.061185$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.01848 / 100 = 0.0134000$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.061185 / 100 = 0.0443000$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.01848 / 100 = 0.0049500$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.061185 / 100 = 0.0164000$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.01848 / 100 = 0.0000647$

Валовый выброс, т/год (4.2.5), $\underline{M} = CI \cdot M / 100 = 0.35 \cdot 0.061185 / 100 = 0.0002140$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.01848 / 100 = 0.00004066$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.061185 / 100 = 0.0001346$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **0.11**

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G / 100 = 0.11 \cdot 0.01848 / 100 = 0.00002033$

Валовый выброс, т/год (4.2.5), $M_{-} = CI \cdot M / 100 = 0.11 \cdot 0.061185 / 100 = 0.0000673$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.0134	0.0443
0416	Смесь углеводородов предельных С6-С10	0.00495	0.0164
0602	Бензол (64)	0.0000647	0.000214
0616	Диметилбензол	0.00002033	0.0000673
0621	Метилбензол (349)	0.00004066	0.0001346

Источник загрязнения: 6114 - Шламонакопитель, V = 40 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от шламонакопителей (земляные амбары для мазута)

Вид нефтепродукта: Сырая нефть

Площадь испарения поверхности, м2, F = 16.63

Норма естественной убыли в осенне-зимний период, $\kappa \Gamma/M2$ в месяц (табл. 6.5), NI = 2.16

Норма естественной убыли в весенне-летний период, $\kappa r/m2$ в месяц (табл. 6.5), N2 = 2.88

Коэффициент перевода кг/мес в г/с 2592.

Максимальный разовый выброс, г/с (6.6.1), $G = N2 \cdot F / 2592 = 2.88 \cdot 16.63 / 2592 = 0.01848$

Валовый выброс, т/год (6.6.2), $M = 6 \cdot F \cdot (NI + N2) \cdot 10^{-3} = 6 \cdot 16.63 \cdot (2.16 + 2.88) \cdot 10^{-3} = 0.061185$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **72.46**

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.01848 / 100 = 0.0134000$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.061185 / 100 = 0.0443000$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **26.8**

Максимальный из разовых выброс, г/с (4.2.4), $_{-}G_{-} = CI \cdot G / 100 = 26.8 \cdot 0.01848 / 100 = 0.0049500$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 26.8 \cdot 0.061185 / 100 = 0.0164000$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 0.35 \cdot 0.01848 / 100 = 0.0000647$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.061185 / 100 = 0.0002140$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.01848 / 100 = 0.00004066$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.061185 / 100 = 0.0001346$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G$ / $100=0.11\cdot 0.01848$ / 100=0.00002033

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.061185 / 100 = 0.0000673$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5	0.0134	0.0443
0416	Смесь углеводородов предельных С6-С10	0.00495	0.0164
0602	Бензол (64)	0.0000647	0.000214
0616	Диметилбензол	0.00002033	0.0000673
0621	Метилбензол (349)	0.00004066	0.0001346

Источник загрязнения: 6115 - Вакуумный дегазатор

Список литературы:

"Сборник методик по расчету выбросов загрязняющих веществ в атмосферу различными производствами", Алматы, 1996г.

Большая часть вещества в аппарате находится в основном в парогазовой фазе

Давление в аппарате, гПа, P = 700

Объем аппарата, м3, V = 2.4

Средняя молярная масса паров нефтепродуктов, в зависимости

от температуры кипения (табл.5.2) г/моль, MN = 72

Средняя температура в аппарате, K, T = 298

Время работы оборудования, час, T = 1440

Суммарное количество выбросов, кг/час

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента, %, C1 = 60

Выброс, т/год, $_M_ = C1/100 \cdot N \cdot _T_/1000 = 60/100 \cdot 0.0273 \cdot 1440/1000 = 0.0235872$

Выброс, Γ/c , $_G_ = _M_ \cdot 10^6 / _T_ / 3600 = 0.0173 \cdot 10^6 / 1440 / 3600 = 0.0045500$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента, %, C2 = 40

Выброс, т/год, $_M_ = C2 / 100 \cdot N \cdot _T_ / 1000 = 40 / 100 \cdot 0.0273 \cdot 1440 / 1000 = 0.0157248$

Выброс, г/с, $_G_ = _M_ \cdot 10^6 / _T_ / 3600 = 0.01153 \cdot 10^6 / 1440 / 3600 = 0.0030300$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.00455	0,0235872
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.00303	0,0157248

Источник загрязнения: 6116 - Газосепаратор

Список литературы:

"Сборник методик по расчету выбросов загрязняющих веществ в атмосферу различными производствами", Алматы, 1996г.

Большая часть вещества в аппарате находится в основном в парогазовой фазе

Давление в аппарате, г Π а, P = 3000

Объем аппарата, м3, V = 2

Средняя молярная масса паров нефтепродуктов, в зависимости

от температуры кипения (табл.5.2) г/моль, MN = 72

Средняя температура в аппарате, K, T = 298

Время работы оборудования, час, $_{T}$ = **1440**

Суммарное количество выбросов, кг/час, $N = 0.037 \cdot (P \cdot V / 1011)^{0.8} \cdot \sqrt{;MN/T} = 0.037 \cdot (3000 \cdot 2 / 1011)^{0.8} \cdot \sqrt{;MN/T}$

0.4915392 = 0.0756

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента, %, С1 = 60

Выброс, т/год, $_M_ = C1/100 \cdot N \cdot _T_/1000 = 60/100 \cdot 0.0756 \cdot 1056/1000 = 0.0479000$

Выброс, г/с, $\underline{G} = \underline{M} \cdot 10^6 / \underline{T} / 3600 = 0.0479 \cdot 10^6 / 1056 / 3600 = 0.0126000$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента, %, C2 = 40

Выброс, т/год, $_M_ = C2 / 100 \cdot N \cdot _T_ / 1000 = 40 / 100 \cdot 0.0756 \cdot 1056 / 1000 = 0.0319300$

Выброс, г/с, $_G_ = _M_ \cdot 10^6 / _T_ / 3600 = 0.03193 \cdot 10^6 / 1056 / 3600 = 0.0084000$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0126	0.0479
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0084	0.03193

Источник загрязнения: 6117 - Емкость для масла, V = 5м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), СМАХ = 0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, *QOZ* = 0.98915

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.98915

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

$0.15 \cdot 0.98915) \cdot 10^{-6} = 0.000000296745$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot$

$(0.98915 + 0.98915) \cdot 10^{-6} = 0.00001236437$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000000296745 + 0.0000123643 = 0.00001266

Примесь: 2735 Масло минеральное нефтяное

Концентрация ЗВ в парах, % масс $\overline{\text{(Прил. 14)}}$, CI = 100

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 100 \cdot 0.00001266 / 100 = 0.0000001266$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.0002	0.000001266

Источник загрязнения: 6118 - Емкость для дизтоплива, V = 40м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, r/m3 (Прил. 15), CMAX = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 174,7395

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 174,7395

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, $\Gamma/M3$ (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 16

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 16) / 3600 = 0.01$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 174,7395 + 10^{-6})$

 $1.6 \cdot 174,7395) \cdot 10^{-6} = 0.0004875$

Удельный выброс при проливах, $\Gamma/M3$, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot$

 $(174,7395 + 174,7395) \cdot 10^{-6} = 0.008736975$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0004875 + 0.008736975 = 0.00922

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.92

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, $\Gamma/M3$ (Прил. 15), CAMOZ = 1.98

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 2.66

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.92 \cdot$

0.4 / 3600 = 0.0004356

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.98 \cdot$

 $174,7395 + 2.66 \cdot 174,7395) \cdot 10^{-6} = 0.000811$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (174.7395 + 174.7395) \cdot 10^{-6} = 0.008736975$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.000811 + 0.008736975 = 0.009548

Суммарные валовые выбросы из резервуаров и ТРК (9.2.9), M = MR + MTRK = 0.00922 + 0.009548 = 0.018768

Максимальный из разовых выброс, г/с, G = 0.01

Наблюдается при закачке в резервуары

Примесь: 2754 Алканы С12-19

Концентрация ЗВ в парах, % масс(Прил. 14), СІ = 99.72

Валовый выброс, т/год (5.2.5), $_M_$ = $CI \cdot M / 100 = 99.72 \cdot 0.018768 / <math>100 = 0.018715$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G / 100 = 99.72 \cdot 0.01 / 100 = 0.0099700$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5)

 $M = CI \cdot M / 100 = 0.28 \cdot 0.018768 / 100 = 0.00005255$

Максимальный из разовых выброс, г/с (5.2.4)

 $G = CI \cdot G / 100 = 0.28 \cdot 0.01 / 100 = 0.0000280$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000028	0,00005255
2754	Алканы С12-19	0.00997	0,018715

Источник загрязнения: 6119, Емкость для отработанного масла, V = 5 м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, r/m3 (Прил. 15), CMAX = 0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.1035

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 0.1035

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.1035 + 0.15 \cdot 0.1035) \cdot 10^{-6} = 0.00000003105$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot 10^{-6}$

 $(0.1035 + 0.1035) \cdot 10^{-6} = 0.000001294$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000000311 + 0.000001294 = 0.000001325

Примесь: 2735 Масло минеральное нефтяное

Концентрация 3В в парах, % масс(Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 100 \cdot 0.000001325 / 100 = 0.000001325$

Максимальный из разовых выброс, г/с (5.2.4), $G_{-} = CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.0002	0.000001325

ПРИ ЭКСПЛУАТАЦИИ (ИСПЫТАНИЕ/ОСВОЕНИЕ) (расчеты на одну скважину)

Источник загрязнения N 0106 - Установка для освоения (испытания) двигатель ЯМЗ-6581

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 28.224

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 294

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{2} , г/кBт*ч, 200

Температура отработавших газов T_{02} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

 $G_{02} = 8.72 * 10^{-6} * b_3 * P_3 = 8.72 * 10^{-6} * 200 * 294 = 0.512736$ (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

 $\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$ (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

 $Q_{oz} = G_{oz} / \gamma_{oz} = 0.512736 / 0.494647303 = 1.036568878$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов е_{мі} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БΠ			
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5			
Tek www. average average average average and average a										

Таблица значений выбросов *q₃*і г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа

СО

NOx

CH

C

SO2

CH2O

БП

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	m/год с
	F	очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.6272	0.903168	0	0.6272	0.903168
0304	Азот (II) оксид	0.10192	0.1467648	0	0.10192	0.1467648
0328	Углерод	0.040833333	0.056448	0	0.040833333	0.056448
0330	Сера диоксид	0.098	0.14112	0	0.098	0.14112
0337	Углерод оксид	0.506333333	0.733824	0	0.506333333	0.733824
0703	Бенз/а/пирен	0.00000098	0.000001552	0	0.00000098	0.000001552
1325	Формальдегид	0.0098	0.014112	0	0.0098	0.014112
2754	Алканы С12-19	0.236833333	0.338688	0	0.236833333	0.338688

Источник загрязнения N 0107 - Цементировочный агрегат ЦА-320M ЯМЗ-236HE2

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{cod} , т, 15.981

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 169

Удельный расход топлива на экспл./номин. режиме работы двигателя b₂, г/кВт*ч, 197

Температура отработавших газов T_{o2} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_3 * P_2 = 8.72 * 10^{-6} * 197 * 169 = 0.29031496$$
 (A.3)

Удельный вес отработавших газов у₀г, кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов Q_{oz} , м³/с:

$Q_{oz} = G_{oz} / \gamma_{oz} = 0.29031496 / 0.494647303 = 0.586913056$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

1 руппа	CO	NOX	CH	C	SO2	CH2O	ы
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5
Таблица значений	выбросов q_{ii}	г/кг.топл. ст	ационарной	дизельной у	становки до	капитальног	о ремонта
Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

		г/сек	т/год	%	г/сек	т/год
Код	Примесь	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.360533333	0.511392	0	0.360533333	0.511392
0304	Азот (II) оксид	0.058586667	0.0831012	0	0.058586667	0.0831012
0328	Углерод	0.023472222	0.031962	0	0.023472222	0.031962
0330	Сера диоксид	0.056333333	0.079905	0	0.056333333	0.079905
0337	Углерод оксид	0.291055556	0.415506	0	0.291055556	0.415506
0703	Бенз/а/пирен	0.000000563	0.000000879	0	0.000000563	0.000000879
1325	Формальдегид	0.005633333	0.0079905	0	0.005633333	0.0079905
2754	Алканы С12-19	0.136138889	0.191772	0	0.136138889	0.191772

Источник загрязнения N0108 – Дизельная электростанция АД-200

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it cod}$, т, 15.981

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 169

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 197

Температура отработавших газов T_{02} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

 $G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 197 * 169 = 0.29031496$ (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 450/273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

 $Q_{02} = G_{02} / \gamma_{02} = 0.29031496 / 0.494647303 = 0.586913056$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5
Таблипа значений в	выбросов алі	г/кг.топл. ст	анионарной	лизельной у	становки ло	капитального	о ремонта

таолица значении выоросов q_{3i} тукгутопл. стационарной дизельной установки до капитального ремонта									
Группа	CO	NOx	СН	C	SO2	CH2O	БП		
Б	26	40	12	2	5	0.5	5.5E-5		

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{coo} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

		г/сек	т/год	%	г/сек	т/год
Код	Примесь	без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой

0301	Азота (IV) диоксид	0.360533333	0.511392	0	0.360533333	0.511392
0304	Азот (II) оксид	0.058586667	0.0831012	0	0.058586667	0.0831012
0328	Углерод	0.023472222	0.031962	0	0.023472222	0.031962
0330	Сера диоксид	0.056333333	0.079905	0	0.056333333	0.079905
0337	Углерод оксид	0.291055556	0.415506	0	0.291055556	0.415506
0703	Бенз/а/пирен	0.000000563	0.000000879	0	0.000000563	0.000000879
1325	Формальдегид	0.005633333	0.0079905	0	0.005633333	0.0079905
2754	Алканы С12-19	0.136138889	0.191772	0	0.136138889	0.191772

Источник загрязнения №№ 0109,0110,0111,0112 - Насосный агрегат KTGJ70-12 двигатель CAT C15

Список литературы:

1."Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год $\mathbf{\textit{B}}_{200}$, т, 5.36075

Эксплуатационная мощность стационарной дизельной установки P_{2} , кВт, 328

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{ij} , г/кВт*ч, 227

Температура отработавших газов T_{02} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 227 * 328 = 0.64925632$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.64925632 / 0.494647303 = 1.312564157$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

ı pyı	ma	CO	NOX	СН	C	302	CH2O	DH
Б		6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5
Таблица з	начений в	выбросов q_{i}	г/кг.топл. ст	ационарной	дизельной у	становки до	капитальног	о ремонта
Груг	ппа	CO	NOx	CH	C	SO2	CH2O	БП
Б		26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_2 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_3 / 3600 = 6.2 * 328 / 3600 = 0.564888889$

 $W_i = q_{Mi} * B_{200} = 26 * 5.36075 / 1000 = 0.1393795$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.8 = (9.6 * 328 / 3600) * 0.8 = 0.699733333$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (40 * 5.36075 / 1000) * 0.8 = 0.171544$

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);

Растворитель РПК-265П) (10)

 $M_i = e_{Mi} * P_3 / 3600 = 2.9 * 328 / 3600 = 0.264222222$

 $W_i = q_{Mi} * B_{200} / 1000 = 12 * 5.36075 / 1000 = 0.064329$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_9 / 3600 = 0.5 * 328 / 3600 = 0.045555556$

 $W_i = q_{Mi} * B_{200} / 1000 = 2 * 5.36075 / 1000 = 0.0107215$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_2 / 3600 = 1.2 * 328 / 3600 = 0.109333333$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 5.36075 / 1000 = 0.02680375$

Примесь: 1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_2 / 3600 = 0.12 * 328 / 3600 = 0.010933333$

 $W_i = q_{Mi} * B_{200} = 0.5 * 5.36075 / 1000 = 0.002680375$

Примесь:0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_2 / 3600 = 0.000012 * 328 / 3600 = 0.000001093$

 $W_i = q_{Mi} * B_{200} = 0.000055 * 5.36075 / 1000 = 0.000000295$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.13 = (9.6 * 328 / 3600) * 0.13 = 0.113706667$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (40 * 5.36075 / 1000) * 0.13 = 0.0278759$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.699733333	0.171544	0	0.699733333	0.171544
0304	Азот (II) оксид	0.113706667	0.0278759	0	0.113706667	0.0278759
0328	Углерод	0.04555556	0.0107215	0	0.04555556	0.0107215
0330	Сера диоксид	0.109333333	0.02680375	0	0.109333333	0.02680375
0337	Углерод оксид	0.564888889	0.1393795	0	0.564888889	0.1393795
0703	Бенз/а/пирен	0.000001093	0.000000295	0	0.000001093	0.000000295
1325	Формальдегид	0.010933333	0.002680375	0	0.010933333	0.002680375
2754	Алканы С12-19	0.264222222	0.064329	0	0.264222222	0.064329

Источник загрязнения №№0113,0114 - Установка смесительная МС-600 двигатель САТ 3406

Список литературы:

1."Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 6.32

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 420

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{ij} , г/кBт*ч, 209

Температура отработавших газов T_{oz} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

 $G_{02} = 8.72 * 10^{-6} * b_{2} * P_{3} = 8.72 * 10^{-6} * 209 * 420 = 0.7654416$ (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

 $\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 450 / 273) = 0.494647303$ (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{02} , м³/с:

 $Q_{oz} = G_{oz} / \gamma_{oz} = 0.7654416 / 0.494647303 = 1.547449254$ (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

1 аблица значений выбросов q_n г/кг. топл. стационарной дизельной установки до капитального ремонта							
Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	2 5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_2 / 3600 = 6.2 * 420 / 3600 = 0.723333333$

 $W_i = q_{Mi} * B_{200} = 26 * 6.32 / 1000 = 0.16432$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (9.6 * 420 / 3600) * 0.8 = 0.896$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (40 * 6.32 / 1000) * 0.8 = 0.20224$

Примесь: 2754 Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)

 $M_i = e_{Mi} * P_2 / 3600 = 2.9 * 420 / 3600 = 0.338333333$

 $W_i = q_{Mi} * B_{200} / 1000 = 12 * 6.32 / 1000 = 0.07584$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_2 / 3600 = 0.5 * 420 / 3600 = 0.058333333$

 $W_i = q_{Mi} * B_{200} / 1000 = 2 * 6.32 / 1000 = 0.01264$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_2 / 3600 = 1.2 * 420 / 3600 = 0.14$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 6.32 / 1000 = 0.0316$

Примесь: 1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_3 / 3600 = 0.12 * 420 / 3600 = 0.014$

 $W_i = q_{Mi} * B_{200} = 0.5 * 6.32 / 1000 = 0.00316$

Примесь:0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_2 / 3600 = 0.000012 * 420 / 3600 = 0.0000014$

 $W_i = q_{Mi} * B_{200} = 0.000055 * 6.32 / 1000 = 0.000000348$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.13 = (9.6 * 420 / 3600) * 0.13 = 0.1456$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (40 * 6.32 / 1000) * 0.13 = 0.032864$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.896	0.20224	0	0.896	0.20224
0304	Азот (II) оксид	0.1456	0.032864	0	0.1456	0.032864
0328	Углерод	0.058333333	0.01264	0	0.058333333	0.01264
0330	Сера диоксид	0.14	0.0316	0	0.14	0.0316
0337	Углерод оксид	0.723333333	0.16432	0	0.723333333	0.16432
0703	Бенз/а/пирен	0.0000014	0.000000348	0	0.0000014	0.000000348
1325	Формальдегид	0.014	0.00316	0	0.014	0.00316
2754	Алканы С12-19	0.338333333	0.07584	0	0.338333333	0.07584

Источник загрязнения: 0115 – Факельная установка ОЦ - 1

Наименование: Факельная установка на ОЦ-1

Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная смесь

Тип месторождения: бессернистое

Таблица процентного содержания составляющих смеси.

Состав смеси задавался в объемных долях.

Компонент	[%]об.	[%]мас.	Молек.мас.	Плотность
Метан(СН4)	77.59	63.4856914	16.043	0.7162
Этан(С2Н6)	6.51	9.98387041	30.07	1.3424
Пропан(СЗН8)	2.02	4.54302297	44.097	1.9686
Бутан(С4Н10)	0.69	2.04545111	58.124	2.5948
Пентан(С5Н12)	0.28	1.03035030	72.151	3.2210268
Азот(N2)	12.34	17.6321717	28.016	1.2507
Диоксид углерода(СО2)	0.57	1.27944202	44.011	1.9648

Молярная масса смеси *M*, кг/моль (прил.3,(5)): **19.6071956**

Плотность сжигаемой смеси R_o , кг/м³: 0.683

Показатель адиабаты K(23):

$$K = i = 1; \s \up 12(N ; \sum_{i=1}^{N} (K_i * [i]_o) = 1.12864$$

где (K_i) - показатель адиабаты для индивидуальных углеводородов;

 $[i]_{o}$ - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W_{36} , м/с (прил.6):

 $W_{36} = 91.5 * (K * (T_0 + 273) / M)^{0.5} = 91.5 * (1.12864 * (30 + 273) / 19.6071956)^{0.5} = 382.1311019$

где T_o - температура смеси, град.С;

Объемный расход B, м³/с: **0.123843**

Скорость истечения смеси W_{ucm} , м/с (20):

 $W_{ucm} = 4 * B / (pi * d^2) = 4 * 0.123843 / (3.141592654 * 0.259^2) = 2.350617983$

Массовый расход G, г/с (2):

 $G = 1000 * B * R_0 = 1000 * 0.123843 * 0.683 = 84.584769$

Проверка условия бессажевого горения, т.к. $W_{ucm}/W_{36} = 0.006151339 < 0.2$, горение сажевое.

2.РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси п: 0.9984

Массовое содержание углерода $[C]_{M}$, % (прил.3,(8)):

 $[i]_0$ / ((100-0) * 19.6071956) = 62.05884946

где x_i - число атомов углерода;

[нег] $_{0}$ - общее содержание негорючих примесей, %: ;

величиной [нег], можно пренебречь, т.к. ее значение не превышает 3%;

Расчет мощности выброса метана, оксида углерода, оксидов азота, сажи M_i , г/с: (1)

 $M_i = yB_i * G$

где YB_i - удельные выбросы вредных веществ, г/г;

0.8, 0.13 - коэффициенты трансформации оксидов азота в атмосфере ([2],п.2.2.4)

Код	Примесь	УВ г/г	М г/с
0337	Углерод оксид (Окись углерода, Угарный	0.02	1.69169538
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8*0.003	0.2030034
0304	Азот (II) оксид (Азота оксид) (6)	0.13*0.003	0.0329881
0410	Метан (727*)	0.0005	0.042292384
0328	Углерод (Сажа, Углерод черный) (583)	0.002	0.169169538

Мощность выброса диоксида углерода M_{co2} , г/с (6):

 $M_{co2} = 0.01 * G * (3.67 * n * [C]_M + [CO2]_M) - M_{co} - M_{ch4} - M_c = 0.01 * 84.5847690 * (3.67 * 0.9984000 * 62.0588495 + 1.2794420) - 1.6916954 - 0.0422924 - 0.1691695 = 191.5176882$

где [СО2]м - массовое содержание диоксида углерода, %;

 M_{co} - мощность выброса оксида углерода, г/с;

 M_{ch4} - мощность выброса метана, г/с;

 M_c - мощность выброса сажи, г/с;

3.РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Низшая теплота сгорания Q_{HZ} , ккал/м³ (прил.3,(1)):

$$Q_{H2} = 85.5 * [CH4]_o + 152 * [C2H6]_o + 218 * [C3H8]_o + 283 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * 77.59 + 152 * 6.51 + 218 * 2.02 + 283 * 0.69 + 349 * 0.28 + 56 * 0 = 8356.815$$

где $[CH2]_o$ - содержание метана, %;

[C2H6]₀ - содержание этана, %;

[СЗН8] $_{o}$ - содержание пропана, %;

[С4Н10] $_{o}$ - содержание бутана, %;

[C5H12]₀ - содержание пентана, %;

Доля энергии теряемая за счет излучения E (11):

$$E = 0.048 * (M)^{0.5} = 0.048 * (19.6071956)^{0.5} = 0.213$$

Объемное содержание кислорода $[O2]_o$, %:

где A_o - атомная масса кислорода;

 x_i - количество атомов кислорода;

 M_{o} - молярная масса составляющей смеси содержащая атомы кислорода;

Стехиометрическое количество воздуха для сжигания 1 м 3 углеводородной смеси и природного газа V_o , м 3 /м 3 (13):

$$V_o = 0.0476 * (1.5 * [H2S]_o + i = 1;\s \cdot [V_o = 0.0476 * (1.5$$

N
1;\s\up12(N
$$;\Sigma;$$
 ((x + y / 4) * [CxHy]₀)-0.414441844) = 9.252276568

где x - число атомов углерода;

у - число атомов водорода;

Количество газовоздушной смеси, полученное при сжигании 1 м^3 углеводородной смеси и природного газа V_{nc} , $\text{м}^3/\text{м}^3$ (12):

$$V_{nc} = 1 + V_0 = 1 + 9.252276568 = 10.25227657$$

Предварительная теплоемкость газовоздушной смеси C_{nc} , ккал/(м³*град.С): **0.4**

Ориентировочное значение температуры горения T_c , град.С (10):

 $T_c = T_o + (Q_{nc}*(1-E)*n)/(V_{nc}*C_{nc}) = 30 + (8356.815*(1-0.213)*0.9984)/(10.25227657*0.4) = 1631.178641$ где T_o - температура смеси или газа, град.С;

при условие, что $1500 < = T_o < 1800$, $C_{nc} = 0.39$

Температура горения T_2 , град.С (10):

 $T_c = T_o + (Q_{nc}*(1-E)*n) / (V_{nc}*C_{nc}) = 30 + (8356.815*(1-0.213)*0.9984) / (10.25227657*0.39) = 1672.234503$ 4.РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Расход выбрасываемой в атмосферу газовоздушной смеси V_1 , м³/с (14):

 $V_1 = B * V_{nc} * (273 + T_c) / 273 = 0.123843 * 10.25227657 * (273 + 1672.234503) / 273 = 9.046927174$

Длина факела $L_{\phi H}$, м:

 $L_{\phi H} = 15 * d = 15 * 0.259 = 3.885$

Высота источника выброса вредных веществ H, м (16):

 $H = L_{\phi_H} + h_{\theta} = 3.885 + 15 = 18.885$

где h_{ϵ} - высота факельной установки от уровня земли, м;

5.РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА (W_{o})

Диаметр факела D_{ϕ} , м (29):

 $D_{\phi} = 0.14 * L_{\phi_H} + 0.49 * d = 0.14 * 3.885 + 0.49 * 0.259 = 0.67081$

Средняя скорость поступления в атмосферу газовоздушной смеси (W_o), (м/с):

 $W_o = 1.27 * V_1 / D_{\phi}^2 = 1.27 * 9.046927174 / 0.67081^2 = 25.5332301$

6.РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Валовый выброс i-ого вредного вещества рассчитывается по формуле Π_i , т/год (30):

 $\Pi_i = 0.0036 * \tau * M_i$

где τ - продолжительность работы факельной установки, ч/год: 90;

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	1.69169538	0.548109303
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.203003446	0.065773116
0304	Азот (II) оксид (Азота оксид) (6)	0.03298806	0.010688131
0410	Метан (727*)	0.042292384	0.013702733
0328	Углерод (Сажа, Углерод черный) (583)	0.169169538	0.05481093

Источник загрязнения: 0116 – Факельная установка ОЦ – 2 (1 объект)

Наименование: Факельная установка на ОЦ-1

Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная смесь

Тип месторождения: бессернистое

1.РАСЧЕТ ВСПОМОГАТЕЛЬНЫХ ПАРАМЕТРОВ

Таблица процентного содержания составляющих смеси.

Состав смеси задавался в объемных долях.

Компонент	[%]об.	[%]мас.	Молек.мас.	Плотность
Метан(СН4)	77.59	63.4856914	16.043	0.7162
Этан(С2Н6)	6.51	9.98387041	30.07	1.3424
Пропан(СЗН8)	2.02	4.54302297	44.097	1.9686
Бутан(С4Н10)	0.69	2.04545111	58.124	2.5948
Пентан(С5Н12)	0.28	1.03035030	72.151	3.2210268
Азот(N2)	12.34	17.6321717	28.016	1.2507
Диоксид углерода(СО2)	0.57	1.27944202	44.011	1.9648

Молярная масса смеси M, кг/моль (прил.3,(5)): **19.6071956**

Плотность сжигаемой смеси \mathbf{R}_o , кг/м³: 0.683

Показатель адиабаты K(23):

$$K = i = 1; \text{ sup } 12(N_i = j \sum_{i=1}^{N} (K_i * [i]_o) = 1.12864$$

где (K_i) - показатель адиабаты для индивидуальных углеводородов;

 $[i]_{o}$ - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W_{36} , м/с (прил.6):

 $W_{36} = 91.5 * (K * (T_0 + 273) / M)^{0.5} = 91.5 * (1.12864 * (30 + 273) / 19.6071956)^{0.5} = 382.1311019$

где T_o - температура смеси, град.С;

Объемный расход B, м³/с: **0.07523**

Скорость истечения смеси W_{ucm} , м/с (20):

 $W_{ucm} = 4 * B / (pi * d^2) = 4 * 0.07523 / (3.141592654 * 0.259^2) = 1.427912687$

Массовый расход G, г/с (2):

 $G = 1000 * B * R_o = 1000 * 0.07523 * 0.683 = 51.38209$

Проверка условия бессажевого горения, т.к. $W_{ucm}/W_{ze} = 0.003736709 < 0.2$, горение сажевое.

2.РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси п: 0.9984

Массовое содержание углерода $[C]_{M}$, % (прил.3,(8)):

$$[C]_{M} = 100 * 12 * i = 1; \s \parbox{N} (x_{i} * [i]_{o}) / ((100 - [hez]_{o}) * M) = 100 * 12 * i = 1; \s \parbox{v} (x_{i} * [i]_{o}) / (x_{i} * [i]_{o}) /$$

 $[i]_0$ / ((100-0) * 19.6071956) = 62.05884946

где x_i - число атомов углерода;

[нег] $_{o}$ - общее содержание негорючих примесей, %: ;

величиной [нег] о можно пренебречь, т.к. ее значение не превышает 3%;

Расчет мощности выброса метана, оксида углерода, оксидов азота, сажи M_i , г/с: (1)

 $M_i = yB_i * G$

где YB_i - удельные выбросы вредных веществ, г/г;

0.8, 0.13 - коэффициенты трансформации оксидов азота в атмосфере ([2],п.2.2.4)

Код	Примесь	УВ г/г	М г/с
0337	Углерод оксид (Окись углерода, Угарный	0.02	1.0276418
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8*0.003	0.1233170
0304	Азот (II) оксид (Азота оксид) (6)	0.13*0.003	0.0200390
0410	Метан (727*)	0.0005	0.025691045
0328	Углерод (Сажа, Углерод черный) (583)	0.002	0.10276418

Мощность выброса диоксида углерода M_{co2} , г/с (6):

 $M_{co2} = 0.01 * G * (3.67 * n * [C]_M + [CO2]_M) - M_{co} - M_{ch4} - M_c = 0.01 * 51.3820900 * (3.67 * 0.9984000 * 62.0588495 + 1.2794420) - 1.0276418 - 0.0256910 - 0.1027642 = 116.3398471$

где $[CO2]_{M}$ - массовое содержание диоксида углерода, %;

 M_{co} - мощность выброса оксида углерода, г/с;

 M_{ch4} - мощность выброса метана, г/с;

 M_c - мощность выброса сажи, г/с;

3.РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Низшая теплота сгорания Q_{HZ} , ккал/м³ (прил.3,(1)):

 $Q_{nz} = 85.5 * [CH4]_o + 152 * [C2H6]_o + 218 * [C3H8]_o + 283 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * 77.59 + 152 * 6.51 + 218 * 2.02 + 283 * 0.69 + 349 * 0.28 + 56 * 0 = 8356.815$

где [CH2]₀ - содержание метана, %;

 $[C2H6]_{o}$ - содержание этана, %;

[СЗН8] - содержание пропана, %;

[C4H10]₀ - содержание бутана, %;

[C5H12]₀ - содержание пентана, %;

Доля энергии теряемая за счет излучения E(11):

 $E = 0.048 * (M)^{0.5} = 0.048 * (19.6071956)^{0.5} = 0.213$

Объемное содержание кислорода $[02]_o$, %:

$$[O2]_o = i = 1; \text{ } \sup 12(\text{ N} ; \Sigma; \quad ([i]_o * A_o * x_i / M_o) = i = 1; \text{ } \sup 12(\text{ N} ; \Sigma; \quad ([i]_o * 16 * x_i / M_o) = 0.414441844$$

$$i = 1$$

$$i = 1$$

где A_o - атомная масса кислорода;

 x_i - количество атомов кислорода;

 \emph{M}_{o} - молярная масса составляющей смеси содержащая атомы кислорода;

Стехиометрическое количество воздуха для сжигания 1 ${\rm M}^3$ углеводородной смеси и природного газа V_o , ${\rm M}^3/{\rm M}^3$ (13):

$$V_o = 0.0476 * (1.5 * [H2S]_o + i = 1;\s \cdot [V_o = 0.0476 * (1.5$$

где x - число атомов углерода;

у - число атомов водорода;

Количество газовоздушной смеси, полученное при сжигании 1 м^3 углеводородной смеси и природного газа V_{nc} , $\text{м}^3/\text{м}^3$ (12):

$$V_{nc} = 1 + V_0 = 1 + 9.252276568 = 10.25227657$$

Предварительная теплоемкость газовоздушной смеси C_{nc} , ккал/(м³*град.С): **0.4**

Ориентировочное значение температуры горения T_2 , град.С (10):

 $T_c = T_o + (Q_{nc}*(1-E)*n) / (V_{nc}*C_{nc}) = 30 + (8356.815*(1-0.213)*0.9984) / (10.25227657*0.4) = 1631.178641$ где T_o - температура смеси или газа, град.С;

при условие, что 1500< = T_o <1800, C_{nc} = 0.39

Температура горения T_2 , град.С (10):

 $T_c = T_o + (Q_{nc} * (1-E) * n) / (V_{nc} * C_{nc}) = 30 + (8356.815 * (1-0.213) * 0.9984) / (10.25227657 * 0.39) = 1672.234503$ 4.РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Расход выбрасываемой в атмосферу газовоздушной смеси V_1 , м³/с (14):

 $V_1 = B * V_{nc} * (273 + T_c) / 273 = 0.07523 * 10.25227657 * (273 + 1672.234503) / 273 = 5.495670578$

Длина факела $L_{\phi H}$, м:

 $L_{dm} = 15 * d = 15 * 0.259 = 3.885$

Высота источника выброса вредных веществ H, м (16):

 $H = L_{\phi H} + h_{\theta} = 3.885 + 15 = 18.885$

где h_{θ} - высота факельной установки от уровня земли, м;

5.РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА (W_{o})

Диаметр факела D_{ϕ} , м (29):

 $D_{\phi} = 0.14 * L_{\phi_H} + 0.49 * d = 0.14 * 3.885 + 0.49 * 0.259 = 0.67081$

Средняя скорость поступления в атмосферу газовоздушной смеси (W_o), (м/с):

 $W_0 = 1.27 * V_1 / D_{\phi}^2 = 1.27 * 5.495670578 / 0.67081^2 = 15.51048424$

6.РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Валовый выброс і-ого вредного вещества рассчитывается по формуле Π_i , т/год (30):

 $\Pi_i = 0.0036 * \tau * M_i$

где τ - продолжительность работы факельной установки, ч/год: 90;

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	1.0276418	0.332955943
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.123317016	0.039954713
0304	Азот (II) оксид (Азота оксид) (6)	0.020039015	0.006492641
0410	Метан (727*)	0.025691045	0.008323899
0328	Углерод (Сажа, Углерод черный) (583)	0.10276418	0.033295594

Источник загрязнения: 0117 – Факельная установка ОЦ – 2 (2 объект)

Наименование: Факельная установка на ОЦ-1

Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная смесь

Тип месторождения: бессернистое

Таблица процентного содержания составляющих смеси.

Состав смеси задавался в объемных долях.

Компонент	[%]об.	[%]мас.	Молек.мас.	Плотность
Метан(СН4)	77.59	63.4856914	16.043	0.7162
Этан(С2Н6)	6.51	9.98387041	30.07	1.3424
Пропан(СЗН8)	2.02	4.54302297	44.097	1.9686
Бутан(С4Н10)	0.69	2.04545111	58.124	2.5948
Пентан(С5Н12)	0.28	1.03035030	72.151	3.2210268
Азот(N2)	12.34	17.6321717	28.016	1.2507
Диоксид углерода(СО2)	0.57	1.27944202	44.011	1.9648

Молярная масса смеси *M*, кг/моль (прил.3,(5)): **19.6071956**

Плотность сжигаемой смеси R_o , кг/м³: 0.683

Показатель адиабаты K(23):

$$K = i = 1; \s \up 12(N ; \sum; (K_i * [i]_o) = 1.12864$$

где (K_i) - показатель адиабаты для индивидуальных углеводородов;

 $[i]_{0}$ - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W_{36} , м/с (прил.6):

 $W_{36} = 91.5 * (K * (T_o + 273) / M)^{0.5} = 91.5 * (1.12864 * (30 + 273) / 19.6071956)^{0.5} = 382.1311019$

где T_o - температура смеси, град.С;

Объемный расход B, м³/с: **0.123843**

Скорость истечения смеси W_{ucm} , м/с (20):

 $W_{ucm} = 4 * B / (pi * d^2) = 4 * 0.123843 / (3.141592654 * 0.259^2) = 2.350617983$

Массовый расход G, г/с (2):

 $G = 1000 * B * R_o = 1000 * 0.123843 * 0.683 = 84.584769$

Проверка условия бессажевого горения, т.к. $W_{ucm}/W_{36} = 0.006151339 < 0.2$, горение сажевое.

2.РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси п: 0.9984

Массовое содержание углерода $[C]_{M}$, % (прил.3,(8)):

$$[C]_{M} = 100 * 12 * i = 1; \s \parbox{N} (x_{i} * [i]_{o}) / ((100 - [nee]_{o}) * M) = 100 * 12 * i = 1; \s \parbox{N} (x_{i} * [i]_{o}) / (x_{i} * [i]_{o}) /$$

 $[i]_0$ / ((100-0) * 19.6071956) = 62.05884946

где x_i - число атомов углерода;

[нег] $_{0}$ - общее содержание негорючих примесей, %: ;

величиной [нег] о можно пренебречь, т.к. ее значение не превышает 3%;

Расчет мощности выброса метана, оксида углерода, оксидов азота, сажи M_i , г/с: (1)

 $M_i = yB_i * G$

где VB_i - удельные выбросы вредных веществ, г/г;

0.8, 0.13 - коэффициенты трансформации оксидов азота в атмосфере ([2],п.2.2.4)

Код	Примесь	УВ г/г	М г/с
0337	Углерод оксид (Окись углерода, Угарный	0.02	1.69169538
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8*0.003	0.2030034
0304	Азот (II) оксид (Азота оксид) (6)	0.13*0.003	0.0329881
0410	Метан (727*)	0.0005	0.042292384
0328	Углерод (Сажа, Углерод черный) (583)	0.002	0.169169538

Мощность выброса диоксида углерода M_{co2} , г/с (6):

 $M_{co2} = 0.01 * G * (3.67 * n * [C]_M + [CO2]_M) - M_{co} - M_{ch4} - M_c = 0.01 * 84.5847690 * (3.67 * 0.9984000 * 62.0588495 + 1.2794420) - 1.6916954 - 0.0422924 - 0.1691695 = 191.5176882$

где $[CO2]_{M}$ - массовое содержание диоксида углерода, %;

 M_{co} - мощность выброса оксида углерода, г/с;

 $\it M_{ch4}$ - мощность выброса метана, г/с;

 M_c - мощность выброса сажи, г/с;

3.РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Низшая теплота сгорания Q_{H2} , ккал/м³ (прил.3,(1)):

$$Q_{HZ} = 85.5 * [CH4]_o + 152 * [C2H6]_o + 218 * [C3H8]_o + 283 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * 77.59 + 152 * 6.51 + 218 * 2.02 + 283 * 0.69 + 349 * 0.28 + 56 * 0 = 8356.815$$

где $[CH2]_o$ - содержание метана, %;

[C2H6]₀ - содержание этана, %;

[СЗН8] $_{o}$ - содержание пропана, %;

[C4H10]₀ - содержание бутана, %;

[C5H12] $_{o}$ - содержание пентана, %;

Доля энергии теряемая за счет излучения E(11):

$$E = 0.048 * (M)^{0.5} = 0.048 * (19.6071956)^{0.5} = 0.213$$

Объемное содержание кислорода $[02]_o$, %:

$$[O2]_o = i = 1; \s \sup 12(N ; \sum_{i=1}^{N} ([i]_o * A_o * x_i / M_o) = i = 1; \s \sup 12(N ; \sum_{i=1}^{N} ([i]_o * 16 * x_i / M_o) = 0.414441844$$

где $A_o\,$ - атомная масса кислорода;

 x_i - количество атомов кислорода;

 M_{o} - молярная масса составляющей смеси содержащая атомы кислорода;

Стехиометрическое количество воздуха для сжигания 1 m^3 углеводородной смеси и природного газа V_o , m^3/m^3 (13):

$$V_o = 0.0476 * (1.5 * [H2S]_o + i = 1;\s \cdot [V_o = 0.0476 * (1.5$$

1;\s\up12(N ;
$$\Sigma$$
; $((x + y / 4) * [CxHy]_0)-0.414441844) = 9.252276568$

где x - число атомов углерода;

у - число атомов водорода;

Количество газовоздушной смеси, полученное при сжигании $1~{\rm M}^3$ углеводородной смеси и природного газа V_{nc} , ${\rm M}^3/{\rm M}^3$ (12):

$$V_{nc} = 1 + V_o = 1 + 9.252276568 = 10.25227657$$

Предварительная теплоемкость газовоздушной смеси C_{nc} , ккал/(м³*град.С): 0.4

Ориентировочное значение температуры горения T_c , град.С (10):

 $T_{c} = T_{o} + (Q_{nc} * (1-E) * n) / (V_{nc} * C_{nc}) = 30 + (8356.815 * (1-0.213) * 0.9984) / (10.25227657 * 0.4) = 1631.178641$ где T_{o} - температура смеси или газа, град.С;

при условие, что $1500 < = T_o < 1800$, $C_{nc} = 0.39$

Температура горения T_{ϵ} , град.С (10):

 $T_c = T_o + (Q_{nc} * (1-E) * n) / (V_{nc} * C_{nc}) = 30 + (8356.815 * (1-0.213) * 0.9984) / (10.25227657 * 0.39) = 1672.234503$ 4.РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Расход выбрасываемой в атмосферу газовоздушной смеси V_I , м³/с (14):

 $V_1 = B * V_{nc} * (273 + T_c) / 273 = 0.123843 * 10.25227657 * (273 + 1672.234503) / 273 = 9.046927174$

Длина факела $\boldsymbol{L}_{\boldsymbol{\phi}^{\boldsymbol{\mu}}}$, м:

 $L_{\phi H} = 15 * d = 15 * 0.259 = 3.885$

Высота источника выброса вредных веществ H, м (16):

 $H = L_{\phi_H} + h_{\theta} = 3.885 + 15 = 18.885$

где h_{6} - высота факельной установки от уровня земли, м;

5.РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА (W_{o})

Диаметр факела D_{ϕ} , м (29):

 $D_{\phi} = 0.14 * L_{\phi H} + 0.49 * d = 0.14 * 3.885 + 0.49 * 0.259 = 0.67081$

Средняя скорость поступления в атмосферу газовоздушной смеси (W_o), (м/с):

 $\hat{W_0} = 1.27 * \hat{V_1}/D_{\phi}^2 = 1.27 * 9.046927174 / 0.67081^2 = 25.5332301$

6.РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Валовый выброс і-ого вредного вещества рассчитывается по формуле Π_i , т/год (30):

 $\Pi_i = 0.0036 * \tau * M_i$

где τ - продолжительность работы факельной установки, ч/год: 90;

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	1.69169538	0.548109303
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.203003446	0.065773116
0304	Азот (II) оксид (Азота оксид) (6)	0.03298806	0.010688131
0410	Метан (727*)	0.042292384	0.013702733
0328	Углерод (Сажа, Углерод черный) (583)	0.169169538	0.05481093

Источник загрязнения №6120 - Газосепаратор

Список литературы:

"Сборник методик по расчету выбросов загрязняющих веществ в атмосферу различными производствами", Алматы, 1996г.

Большая часть вещества в аппарате находится в основном в парогазовой фазе

Давление в аппарате, г Π а, P = 3000

Объем аппарата, м3, V = 2

Средняя молярная масса паров нефтепродуктов, в зависимости

от температуры кипения (табл.5.2) г/моль, MN = 72

Средняя температура в аппарате, K, T = 298

Время работы оборудования, час, $_{T_{-}}$ = **4944**

Суммарное количество выбросов, кг/час

 $N = 0.037 \cdot (P \cdot V / 1011)^{0.8} \cdot \sqrt{\frac{1011}{3}} = 0.037 \cdot (3000 \cdot 2 / 1011)^{0.8} \cdot 0.4915392 = 0.0756$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента, %, C1 = 60

Выброс, т/год

 $M = C1/100 \cdot N \cdot _T / 1000 = 60/100 \cdot 0.0756 \cdot 4944/1000 = 0.2242598$

Выброс, г/с

 $G = M_{\cdot} 10^{6} / T_{\cdot} 3600 = 0.2242598 \cdot 10^{6} / 4944 / 3600 = 0.0126000$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента, %, C2 = 40

Выброс, т/год, $_M_$ = C2 / $100 \cdot N \cdot _T_$ / 1000 = 40 / $100 \cdot 0.0756 \cdot 4944$ / 1000 = 0.1495066

Выброс, г/с, $_G_ = _M_ \cdot 10^6 / _T_ / 3600 = 0,1495066 \cdot 10^6 / 4944 / 3600 = 0.0084000$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0126	0,02242598
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0084	0,1495066

Источник загрязнения №6121 - Емкость для масла, V = 5 m3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, $\Gamma/M3$ (Прил. 15), CMAX = 0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.1704

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, OVL = 0.1704

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.1704 + 0.15)$

 $\cdot 0.1704) \cdot 10^{-6} = 0.0000000511$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot 10^{-6}$

 $(0.1704 + 0.1704) \cdot 10^{-6} = 0.00000213$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000000511 + 0.00000213 = 0.00000218

Примесь: 2735 Масло минеральное нефтяное

Концентрация 3В в парах, % масс(Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 100 \cdot 0.00000218 / 100 = 0.00000218$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.0002	0.00000218

Источник загрязнения N_{2} Емкость для дизтоплива, V = 40 м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), СМАХ = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, *QOZ* = 154,626

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 154,626

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, $\Gamma/M3$ (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 16

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 16) / 3600 = 0.01$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 154,626 + 1.6 \cdot 154,626) \cdot 10^{-6} = 0.000431$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot$

 $(154,626+154,626) \cdot 10^{-6} = 0.00313$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000431 + 0.00313 = 0.0081623

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.92

Концентрация паров нефтепродукта при заполнении

баков автомащин в осенне-зимний период, $\Gamma/M3$ (Прил. 15), CAMOZ = 1.98

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 2.66

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающих

выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 3.92 \cdot$

0.4 / 3600 = 0.0004356

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (1.98 \cdot 1.00)$

$154,626 + 2.66 \cdot 154,626) \cdot 10^{-6} = 0.000717$

Удельный выброс при проливах, $\Gamma/M3$, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (154,626 + 154,626) \cdot 10^{-6} = 0.0077313$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.000717 + 0.0077313 = 0.0084483

Суммарные валовые выбросы из резервуаров и ТРК (9.2.9), M = MR + MTRK = 0.0081623 + 0.0084483 =

0.0166106

Максимальный из разовых выброс, г/с, G = 0.01

Наблюдается при закачке в резервуары

Примесь: 2754 Алканы С12-19

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 99.72 \cdot 0.0166106 / 100 = 0.01656$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G / 100 = 99.72 \cdot 0.01 / 100 = 0.0099700$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.0166106/100=0.00465$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.01 / 100 = 0.0000280$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000028	0.00465
2754	Алканы С12-19	0.00997	0.01656

Источник загрязнения N_26123 - Емкость для отработанного масла, V = 5м3

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 0.0426

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, OVL = 0.0426

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $\hat{GR} = (\hat{CMAX} \cdot \hat{VSL}) / 3600 = (0.24 \cdot 3) / 3600 = 0.0002$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 0.0426 + 0.15 \cdot 0.0426) \cdot 10^{-6} = 0.00000001278$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot 10^{-6}$

$(0.0426 + 0.0426) \cdot 10^{-6} = 0.000000533$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000000128 + 0.000000533 = 0.000000546

Примесь: 2735 Масло минеральное нефтяное

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 100 Валовый выброс, т/год (5.2.5) $M = CI \cdot M / 100 = 100 \cdot 0.000000546 / 100 = 0.000000546$ Максимальный из разовых выброс, г/с (5.2.4) $G = CI \cdot G / 100 = 100 \cdot 0.0002 / 100 = 0.0002000$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.0002	0.00000546

Код 3В	Наименование загрязняющего вещества	ЭНК , мг/м 3	ПДКм. р, мг/м3	ПДКс.с ., мг/м3	ОБУ В, мг/м3	Класс опаснос ти ЗВ	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
012	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,0156	0,000673	0,016825
014	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,001342	0,000058	0,058
030	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	7,9514541 28	14,54302368 5	363,57559
030	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	1,2917557 48	2,363225992	39,387099 9
032 8	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,9022671 34	0,961301538	19,226030 8
033	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	1,4546388 87	3,29392095	65,878419
033	Сероводород (Дигидросульфид) (518)		0,008			2	0,010026	0,004702581	0,5878226
033 7	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	10,682043 67	14,01556454 9	4,6718548
034	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,001094	0,00004725	0,00945
034	Фториды неорганические плохо растворимые - (алюминия		0,2	0,03		2	0,00481	0,000208	0,0069333

i i	1 -	1			i				51
	фторид, кальция								
	фторид, натрия								
	гексафторалюми								
	нат) (Фториды								
	неорганические								
	плохо								
	растворимые /в								
	пересчете на								
	фтор/) (615)								
041	Метан (727*)				50		0,1102758	0,035729365	0,0007145
	Meran (727°)				30			0,033729303	0,000/143
0					70		13	2 (2025)	9
041	Смесь				50		0,055276	3,6393556	0,0727871
5	углеводородов								1
	предельных С1-								
	C5 (1502*)								
041	Смесь				30		0,02133	0,0920704	0,0030690
6	углеводородов								1
	предельных С6-								
	C10 (1503*)								
060	Бензол (64)		0,3	0,1		2	0,0001294	0,000428	0,00428
2	DCH3031 (04)		0,5	0,1		2	0,0001274	0,000420	0,00420
	Диметилбензол		0.2			3	0.0000406	0.0001246	0.000672
061	, ,		0,2			3	0,0000406	0,0001346	0,000673
6	(смесь о-, м-, п-						6		
	изомеров) (203)								
062	Метилбензол		0,6			3	0,0000813	0,0002692	0,0004486
1	(349)						2		7
070	Бенз/а/пирен			0,0000		1	0,0000110	0,000024002	24,002
3	(3,4-Бензпирен)			01			24	•	ŕ
	(54)			01					
132	Формальдегид		0,05	0,01		2	0,1104958	0,204588031	20,458803
5	(Метаналь) (609)		0,03	0,01		_	15	0,201300031	20,130003
273	Масло				0,05		0,003	0,000004208	0,0000841
					0,03		0,003		
5	минеральное							12	6
	нефтяное								
	(веретенное,								
	машинное,								
	цилиндровое и								
	др.) (716*)								
275	Алканы С12-19 /в		1			4	2,6996552	4,945409946	4,9454099
4	пересчете на С/						81	,	5
	(Углеводороды						01		3
	предельные С12-								
	С19 (в пересчете								
	на С);								
	Растворитель								
	РПК-265П) (10)								
290	Пыль		0,3	0,1		3	12,68204	0,2949282	2,949282
8	неорганическая,								
	содержащая								
	двуокись						1		
	кремния в %: 70-								
	хремния в 70. 70- 20 (шамот,						1		
	цемент, пыль						1		
	цементного								
	производства -						1		
	глина, глинистый								
	сланец,						1		
	доменный шлак,						1		
	песок, клинкер,						1		
	зола, кремнезем,								
	зола углей						1		
	1101011		l l	Į.			<u>i</u>		

казахстанских месторождений) (494)					
ВСЕГО:			37,997366	44,3956671	545,85557
			88		92

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Пр ои з- во дс тв о	Цеx	Источн выделе загрязнян вещес Наимен ование	ния ощих тв Кол ичес тво, шт.	Ч ис ло ча со в ра бо ты в го ду	Наим енова ние источ ника выбр оса вред ных веще ств	Но мер ист очн ика выб рос ов на кар те-схе ме	Вы сот а ист очн ика выб рос ов, м	Ди ам етр уст ья тр уб ы, м	Ск оро сть, м/с (Т = 293 .15 K, P= 101 .3 кП а)	объ емн ый рас ход, м3/ с (Т = 293. 15 К, Р= 101. 3 кПа)	те м пе - ра ту ра см ес и, о С	ис кар точ ни /1- кого лип ни	точного от	ист ни X 2	на дам. То ница ней по гоч ка / инна а при а а по поч ка / инна а при ка инна гоч ка / инна а при ка инна гоч ка	Наим енова ние газоо чист ных устан овок, тип и меро прия тия по сокра щени ю выбр осов	Вещ еств о, по кото рому прои звод ится газоо чист ка	Коэ фф и- цие нт обе спе чен- нос ти газо - очи стк ой, %	Сред неэкс плуа-тацио нная степе нь очист ки/ макси мальн ая степе нь очист ки, %	Ко д ве ще ств а	Наимен ование вещест ва	загр:	мг/ нм 3	щего ва т/го д	Г од до ст и- ж ен ия Н Д В
1	2	3	4	5	6	7	8	9	10	11	12	3 Ілог	4 цадк	5 ca 1	6	17	18	19	20	21	22	23	24	25	26
00		Сварочн ый	1	12		010 1	2	0,1	11, 05	0,08 675	17 7	7 3	3 8							030	Азота (IV)	0,0 846	16 09,	0,00 203	

	агрегат				09	5	4	ĺ			1	диокси	889	17	304	
	1											Д		1		
												(Азота				
												диокси				
												д) (4)				
											030	Азот	0,0	26	0,00	
											4	(II)	137	1,4	033	
												оксид	619	9	037	
												(Азота				
												оксид)				
												(6)				
										-	032	Углеро	0,0	13	0,00	
											032	Д	071	6,7	017	
												(Сажа,	944	01	73	
												Углеро		-		
												Д				
												черный				
) (583)				
										•	033	Cepa	0,0	21	0,00	
											0	диокси	113	4,8	026	
												Д	056	17	595	
												(Ангид				
												рид				
												сернист				
												ый,				
												Сернис				
												тый газ,				
												Cepa				
												(IV)				
												оксид)				
										_		(516)				
											033	Углеро	0,0	14	0,00	
											7	д оксид	74	06,	177	
												(Окись		07	3	
												углерод		2		
												a,				
												Угарны				
												й газ)				
											0.50	(584)	4.5	0.0	2.00	
											070	Бенз/а/	1,3	0,0	3,00	
											3	пирен	4E-	03	E-	

														132	(3,4- Бензпи рен) (54) Формал ьдегид (Метан	0,0 015 417	29, 29 3	0,00 003 546	
														275	аль) (609) Алканы	0,0	70	0,00	
														4	С12-19 /в пересче те на С/ (Углево дороды предель ные С12- С19 (в пересче те на С); Раствор итель РПК- 265П) (10)	37	3,0 36	088 65	
00 2	Двигате ль Саterpill аг (привод буровой установ	13 92	010 2	2	0,1	510	1,18 937 46	45 0	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,2 850 133	63 4,6 32	1,20 211 2	
	ки)													030	Азот (II) оксид (Азота оксид) (6)	0,0 463 147	10 3,1 28	0,19 534 32	

										032 8	Углеро д (Сажа, Углеро д черный) (583)	0,0 132 542	29, 51 3	0,05 366 585	
										033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1 113 333	24 7,9 03	0,46 957 5	
										033	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,2 876 111	64 0,4 17	1,22 089 5	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	3,1 7E- 07	0,0 00 7	1,87 8E- 06	
										132	Формал ьдегид (Метан аль) (609)	0,0 031 814	7,0 84	0,01 341 67	

															275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,0 768 729	17 1,1 71	0,32 199 415	
00 2	Двигате ль Caterpill ar (привод насосов)	1	13 92	010	2	0,1	510 ,55	1,31 675 98	17 7	7 4 5	3 8 5				030	Азота (IV) диокси д (Азота диокси д) (4)	0,3 020 8	37 8,1 51	1,33 086 72	
															030	Азот (II) оксид (Азота оксид) (6)	0,0 490 88	61, 45	0,21 626 592	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 140 479	17, 58 6	0,05 941 386	

										033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1 18	14 7,7 15	0,51 987	
										033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,3 048 333	38 1,5 98	1,35 166 2	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	3,3 6E- 07	0,0 00 4	2,07 9E- 06	
										132	Формал ьдегид (Метан аль) (609)	0,0 033 719	4,2	373	
										275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные	0,0 814 761	10 1,9 94	0,35 648 214	

																С12- С19 (в пересче те на С); Раствор итель РПК- 265П) (10)				
00 2	Цемент ировочн ый агрегат Caterpill ar	1	24 0	010 4	2	0,1	510 ,55	1,13 909 75	17 7	7 5 0	3 8 5				030	Азота (IV) диокси д (Азота диокси д) (4)	0,2 798 933	40 5,0 25	0,19 850 24	
															030 4	Азот (II) оксид (Азота оксид) (6)	0,0 454 827	65, 81 7	0,03 225 664	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 130 161	18, 83 5	0,00 886 174	
															033	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV)	0,1 093 333	15 8,2 13	0,07 754	

										оксид) (516)				
									033 7	(Окись углерод а, Угарны й газ) (584)	0,2 824 444	40 8,7 16	0,20 160 4	
									070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	3,1 2E- 07	0,0 00 5	0,00 000 031	
									132 5	Формал ьдегид (Метан аль) (609)	0,0 031 242	4,5 21	0,00 221 547	<u> </u>
									275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П)	0,0 754 919	10 9,2 42	0,05 317 026	

00 2	Дизельн ая электро станция Caterpill ar	1	13 92	010 5	2	0,1	510 ,55	1,72 338 39	17 7	7 5 5	3 8 5				030	Азота (IV) диокси д (Азота диокси д) (4)	0,4 010 667	38 3,6 05	1,74 184 96	
															030	Азот (II) оксид (Азота оксид) (6)	0,0 651 733	62, 33 6	0,28 305 056	
															032 8	Углеро д (Сажа, Углеро д черный) (583)	0,0 186 512	17, 83 9	776 134	
															033	диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1 566 667	14 9,8 46	041	
															033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,4 047 222	38 7,1 02	1,76 906 6	

																070 3	Бенз/а/ пирен (3,4- Бензпи рен) (54)	4,4 7E- 07	0,0 00 4	2,72 2E- 06	
																132	Формал ьдегид (Метан аль) (609)	0,0 044 768	4,2 82	0,01 944 068	
																275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,1 081 744	10 3,4 65	0,46 656 666	
00 3	ка 00 я (1 Н	Установ ка для освоени испыта ния)дви гателя	1	20	010 6	2	0,1	510	4,00 553 06	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,6 272	25 8,1 05	0,90 316 8	
		HM3- 5581														030 4	Азот (II) оксид (Азота	0,1 019 2	41, 94 2	0,14 676 48	

										032	оксид) (6) Углеро	0,0	16,	0,05	
										8	д (Сажа, Углеро д черный) (583)	408 333	80 4	644 8	
										033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,0 98	40, 32 9	0,14 112	
										033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,5 063 333	20 8,3 66	0,73 382 4	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	9,8 E- 07	0,0 00 4	1,55 2E- 06	
										132	Формал ьдегид (Метан аль) (609)	0,0 098	4,0	0,01 411 2	

															275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,2 368 333	97, 46 1	0,33 868 8	
00 3	Цемент ировочн ый агрегат ЯМЗ- 6581	1	20	010 7	2	0,1	510	0,58 691 31	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,3 605 333	10 12, 56 2	0,51 139 2	
															030	Азот (II) оксид (Азота оксид) (6)	0,0 585 867	16 4,5 41	0,08 310 12	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 234 722	65, 92 2	0,03 196 2	

										033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,0 563 333	15 8,2 13	0,07 990 5	
										033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,2 910 556	81 7,4 33	0,41 550 6	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	5,6 3E- 07	0,0 02	8,79 E- 07	
										132 5	Формал ьдегид (Метан аль) (609)	0,0 056 333	15, 82 1	0,00 799 05	
										275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные	0,1 361 389	38 2,3 48	0,19 177 2	

																С12- С19 (в пересче те на С); Раствор итель РПК- 265П) (10)				
00 3	Дизельн ая электро станция АД-200	1	20 6	010	2	0,1	510	0,82 354 34	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,4 885 333	97 7,8 17	7,39 084 8	
															030	Азот (II) оксид (Азота оксид) (6)	0,0 793 867	15 8,8 95	1,20 101 28	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 318 056	63, 66	0,46 192 8	
															033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV)	0,0 763 333	15 2,7 84	1,15 482	

											оксид) (516)				
										033 7	(Окись углерод а, Угарны й газ) (584)	0,3 943 889	78 9,3 84	6,00 506 4	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	7,6 3E- 07	0,0	1,27 03E -05	
										132	Формал ьдегид (Метан аль) (609)	0,0 076 333	15, 27 8	0,11 548 2	
										275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12- С19 (в пересче те на С); Раствор итель РПК- 265П) (10)	0,1 844 722	36 9,2 28	2,77 156 8	

3	Насосн ый агрегат КТGJ70 -12 двигате ль САТ	1	3	9	2	0,1	510	1,31 256 42	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,6 997 333	87 8,7 43	0,17 154 4	
	C15														030	Азот (II) оксид (Азота оксид) (6)	0,1 137 067	14 2,7 96	787 59	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 455 556	57, 21	072 15	
															033	диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1 093 333	13 7,3 04	680 375	
															033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,5 648 889	70 9,4 02	0,13 937 95	

															070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	1,0 93E -06	0,0 01	2,95 E- 07	
															132	Формал ьдегид (Метан аль) (609)	0,0 109 333	13, 73	0,00 268 038	
															275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,2 642 222	33 1,8 17	0,06 432 9	
00 3	Насосн ый агрегат КТСЈ70 -12 двигате ль САТ	1	3	011	2	0,1	510	1,31 256 42	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,6 997 333	87 8,7 43	0,17 154 4	
	C15														030	Азот (II) оксид (Азота	0,1 137 067	14 2,7 96	0,02 787 59	

											оксид) (6)				
										032	Углеро	0,0	57,	0,01	
										8	Д	455	21	072	
											(Сажа,	556		15	
											Углеро				
											д черный				
) (583)				
									Ē	033	Cepa	0,1	13	0,02	
										0	диокси	093	7,3	680	
											Д	333	04	375	
											(Ангид				
											рид				
											сернист ый,				
											ыи, Сернис				
											тый газ,				
											Cepa				
											(IV)				
											оксид)				
									-	000	(516)	0.7	70	0.10	_
										033	Углеро	0,5 648	70 9,4	0,13 937	
										/	д оксид (Окись	889	02	95	
											углерод	007	02		
											a,				
											а, Угарны				
											й газ)				
									-	0=0	(584)	1.0	0.0	207	
										070	Бенз/а/	1,0	0,0	2,95	
										3	пирен (3,4-	93E -06	01	E- 07	
											(3,4- Бензпи	-00		07	
											рен)				
											(54)				
										132 5	Формал	0,0	13,	0,00	
										5	ьдегид	109	73	268	
											(Метан	333		038	
											аль) (600)				
											(609)				

															275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,2 642 222	33 1,8 17	0,06 432 9	
00 3	Насосн ый агрегат КТGJ70 -12 двигате ль САТ	1	3	011	2	0,1	510	1,31 256 42	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,6 997 333	87 8,7 43	0,17 154 4	
	C15														030	Азот (II) оксид (Азота оксид) (6)	0,1 137 067	14 2,7 96	0,02 787 59	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 455 556	57, 21	0,01 072 15	

										033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1 093 333	13 7,3 04	0,02 680 375	
										033	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,5 648 889	70 9,4 02	0,13 937 95	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	1,0 93E -06	0,0	2,95 E- 07	
										132	Формал ьдегид (Метан аль) (609)	0,0 109 333	13, 73	0,00 268 038	
										275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные	0,2 642 222	33 1,8 17	0,06 432 9	

																С12- С19 (в пересче те на С); Раствор итель РПК- 265П) (10)				
00 3	Насосн ый агрегат КТСЈ70 -12 двигате ль САТ	1	3	011 2	2	0,1	510	1,31 256 42	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,6 997 333	87 8,7 43	0,17 154 4	
	C15														030	Азот (II) оксид (Азота оксид) (6)	0,1 137 067	14 2,7 96	0,02 787 59	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,0 455 556	57, 21	0,01 072 15	
															033	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV)	0,1 093 333	13 7,3 04	0,02 680 375	

											оксид) (516)				1
										033 7	(Окись углерод а, Угарны й газ) (584)	0,5 648 889	70 9,4 02	0,13 937 95	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	1,0 93E -06	0,0 01	2,95 E- 07	
										132	Формал ьдегид (Метан аль) (609)	0,0 109 333	13, 73	0,00 268 038	
										275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,2 642 222	33 1,8 17	0,06 432 9	

3	Устано ка смесит льная МС - 600	3	011	2	0,1	510	1,54 744 93	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,8 96	95 4,4 24	0,20 224	
														030	Азот (II) оксид (Азота оксид) (6)	0,1 456	15 5,0 94	0,03 286 4	
														032	Углеро д (Сажа, Углеро д черный) (583)	0,0 583 333	62, 13 7	0,01 264	
														033	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1	14 9,1 29	0,03 16	
														033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,7 233 333	77 0,4 99	0,16 432	

															070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	0,0 000 014	0,0 01	3,48 E- 07	
															132	Формал ьдегид (Метан аль) (609)	0,0 14	14, 91 3	0,00 316	
															275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,3 383 333	36 0,3 95	0,07 584	
00 3	Установ ка смесите льная МС - 600	1	3	011 4	2	0,1	510	1,54 744 93	17 7	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,8 96	95 4,4 24	0,20 224	
															030	Азот (II) оксид (Азота	0,1 456	15 5,0 94	0,03 286 4	

											оксид) (6)				
										032 8	Углеро д (Сажа, Углеро д черный) (583)	0,0 583 333	62, 13 7	0,01 264	
										033 0	Сера диокси д (Ангид рид сернист ый, Сернис тый газ, Сера (IV) оксид) (516)	0,1	14 9,1 29	0,03 16	
										033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,7 233 333	77 0,4 99	0,16 432	
										070	Бенз/а/ пирен (3,4- Бензпи рен) (54)	0,0 000 014	0,0 01	3,48 E- 07	
										132	Формал ьдегид (Метан аль) (609)	0,0 14	14, 91 3	0,00 316	

															275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (В пересче те на С); Раствор итель РПК-265П) (10)	0,3 383 333	36 0,3 95	0,07 584	
00 3	Факельн ая установ ка на ОЦ-1	1	90	011 5	18, 9	0,6 71	25, 53	9,04 692 72	16 72 ,2	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	0,2 030 034	15 9,8 84	0,06 577 312	
															030	Азот (II) оксид (Азота оксид) (6)	0,0 329 881	25, 98 1	0,01 068 813	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,1 691 695	13 3,2 36	0,05 481 093	
															033	Углеро д оксид	1,6 916	13 32,	0,54 810	

															041 0	(Окись углерод а, Угарны й газ) (584) Метан (727*)	0,0 422	36 3 33, 30	93 0,01 370	
00 3	Факельн ая установ ка на ОЦ-1	1	90	011 6	18,	0,6 71	15, 51	5,49 567 06	16 72 ,2	7 4 1	3 8 0				030	Азота (IV) диокси д (Азота диокси д) (4)	924 0,1 233 17	9 15 9,8 84	273 0,03 995 471	
															030 4	Азот (II) оксид (Азота оксид) (6)	0,0 200 39	25, 98 1	0,00 649 264	
															032	Углеро д (Сажа, Углеро д черный) (583)	0,1 027 642	13 3,2 36	0,03 329 559	
															033 7	Углеро д оксид (Окись углерод а, Угарны й газ)	1,0 276 418	13 32, 36 3	0,33 295 594	
															041	(584) Метан (727*)	0,0 256 91	33, 30 9	0,00 832 39	

00 3	Факельн ая установ ка на ОЦ-2 (2 объект)	1	90	011 7	18, 9	0,6 71	25, 53	9,04 692 72	16 72 ,2	7 4 1	3 8 0					030	Азота (IV) диокси д (Азота диокси д) (4)	0,2 030 034	15 9,8 84	0,06 577 312	
																030 4	Азот (II) оксид (Азота оксид) (6)	0,0 329 881	25, 98 1	0,01 068 813	
																032 8	Углеро д (Сажа, Углеро д черный) (583)	0,1 691 695	13 3,2 36	0,05 481 093	
																033 7	Углеро д оксид (Окись углерод а, Угарны й газ) (584)	1,6 916 954	13 32, 36 3	0,54 810 93	
																041	Метан (727*)	0,0 422 924	33, 30 9	0,01 370 273	
00 1	Бульдоз ер	1	9, 88	610	2				30	7 1 1	3 8 8	2 8	3 0			290 8	Пыль неорган ическая , содерж ащая двуокис ь кремни я в %:	10, 34		0,25 76	

															70-20 (шамот, цемент, пыль цемент ного произво дства - глина, глинист ый сланец, доменн ый шлак, песок, клинке р, зола, кремнез ем, зола углей казахст анских местор ождени й) (494)			
00 1	тор	1	6, 31	610 2	2		30	7 1 1	3 8 8	2 8	3 0			290 8	Пыль неорган ическая , содерж ащая двуокис ь кремни я в %: 70-20 (шамот, цемент, пыль цемент	2,3 4	0,03 724	

														ного произво дства - глина, глинист ый сланец, доменн ый шлак, песок, клинке р, зола, кремнез ем, зола углей казахст анских местор ождени й) (494)			
00 1	Сварочн ые работы	12	610 3	2		30	7 1 1	3 8 8	2 8	3 0			012 3	Железо (II, III) оксиды (в пересче те на железо) (диЖел езо триокси д, Железа оксид) (274) Марган ец и его соедине ния (в пересче те на	0,0 156 0,0 013 42	0,00 067 3	

										030	марган ца (IV) оксид) (327) Азота (IV) диокси д (Азота диокси	0,0 021 88		0,00	
										033	д) (4) Углеро д оксид (Окись углерод а, Угарны й газ) (584)	0,0 194	C	0,00	
										034	Фторис тые газообр азные соедине ния /в пересче те на фтор/ (617)	0,0 010 94		0,00 004 725	
										034	Фторид ы неорган ические плохо раствор имые - (алюми ния фторид, кальция фторид,	0,0 048 1		0,00 020 8	

											натрия гексафт оралюм инат) (Фтори ды неорган ические плохо раствор имые /в пересче те на фтор/) (615)			
										290 8	Пыль неорган ическая , содерж ащая двуокис ь кремни я в %: 70-20 (шамот, цемент, пыль цемент ного произво дства - глина, глинист ый сланец, доменн ый шлак, песок,	0,0 020 4	0,00 008 82	

															клинке р, зола, кремнез ем, зола углей казахст анских местор ождени й) (494)			
00	Емкость для масла	1	14 4	610 4	2		30	6 9 1	3 5 7	9	7			273 5	Масло минера льное нефтян ое (верете нное, машинн ое, цилинд ровое и др.) (716*)	0,0	2,94 E- 08	
00	Емкость для дизтопл ива	1	14 4	610 5	2		30	7 0 6	3 5 8	1 2	1 3			033 3 275 4	Серово дород (Дигид росуль фид) (518) Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в	0,0 000 28 0,0 097	3,15 E- 08 0,00 001 123	

															те на С); Раствор итель РПК- 265П) (10)			
00	Емкость для отработ анного масла	1	14 4	610	2		30	7 2 3	3 5 6	9	8			273 5	Масло минера льное нефтян ое (верете нное, машинн ое, цилинд ровое и др.) (716*)	0,0 002	7,68 E- 09	
00 2	Емкость для буровог о раствор а, V=116,4 м3	1	14 40	610 7	2		30	7 5 0	3 8 0	8	6			041 5	Смесь углевод ородов предель ных C1-C5 (1502*)	0,0 021 9	0,69	
00 2	Емкость для буровог о раствор а, V=116,4 м3	1	14 40	610	2		30	7 4 5	3 8 0	8	6			041 5	Смесь углевод ородов предель ных C1-C5 (1502*)	0,0 021 9	0,69	
00 2	Емкость для буровог о раствор	1	14 40	610 9	2		30	7 3 5	3 8 0	8	6			041 5	Смесь углевод ородов предель ных	0,0 021 9	0,69	

	а, V=116,4 м3														C1-C5 (1502*)			
00 2	Емкость для буровог о раствор а, V=116,4 м3	1	14 40	611	2		30	7 2 5	3 8 0	8	6			041 5	Смесь углевод ородов предель ных С1-С5 (1502*)	0,0 021 9	(0,69
00 2	Емкость для буровог о раствор а, V=116,4 м3	1	14 40	611	2		30	7 1 5	3 8 0	8	6			041 5	Смесь углевод ородов предель ных С1-С5 (1502*)	0,0 021 9	(0,69
00 2	Доливна я емкость, V=20 м3	1	14 40	611 2	2		30	7 1 5	3 8 0	7	5			041 5	Смесь углевод ородов предель ных С1-С5 (1502*)	0,0 003 76		0,01 185
00 2	Шламон акопите ль, V=40 м3	1	14 40	611	2		30	7 1 5	3 8 0	5	7			041 5	Смесь углевод ородов предель ных С1-С5 (1502*)	0,0 134		0,04 43
														041 6	Смесь углевод ородов предель ных С6-С10 (1503*) Бензол	0,0 049 5		0,01 64 0,00

														2	(64)	000 647		021 4	
														061 6	Димети лбензол (смесь	2,0 33E -05		0,00 006 73	
															о-, м-, п- изомер ов)				
															(203)				
														062 1	Метилб ензол	4,0 66E		0,00	
00 2	Шламон акопите ль, V=40 м3	1	14 40	611	2		30	7 1 5	3 8 0	5	7			041 5	(349) Смесь углевод ородов предель ных С1-С5 (1502*)	-05 0,0 134		46 0,04 43	
														041 6	Смесь углевод ородов предель ных С6-С10 (1503*)	0,0 049 5		0,01 64	
														060	Бензол (64)	0,0 000 647	(0,00 021 4	
														061 6	Димети лбензол (смесь о-, м-,	2,0 33E -05		0,00 006 73	
															п- изомер ов)				
														062	(203) Метилб ензол (349)	4,0 66E -05	(0,00 013 46	

00 2	Вакуум ный дегазато р	1	14 40	611 5	2		30	7 1 5	3 8 0	5	7			041 5	Смесь углевод ородов предель ных С1-С5 (1502*)	0,0 045 5	0,02 358 72	
														041 6	Смесь углевод ородов предель ных С6-С10 (1503*)	0,0 030 3	0,01 572 48	
00 2	Газосен аратор	1	14 40	611	2		30	7 1 5	3 8 0	5	7			041 5	Смесь углевод ородов предель ных С1-С5 (1502*)	0,0 126	0,06 531 84	
														6	Смесь углевод ородов предель ных С6-С10 (1503*)	0,0 084	0,04 354 56	
00 2	Емкость для масла, V=5 м3	1	14 40	611 7	2		30	7 1 5	3 8 0	5	7			273 5	Масло минера льное нефтян ое (верете нное, машинн ое, цилинд ровое и др.) (716*)	0,0 002	0,00 000 012	

00 2	Емкость для дизтопл ива, V=40 м3	1	14 40	611	2		30	7 1 5	3 8 0	5	7			033	Серово дород (Дигид росуль фид) (518)	0,0 000 28	0,00 005 255	
														275 4	Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,0 099 7	0,01 871 5	
00 2	Емкость для отработ анного масла, V=5 м3	1	14 40	611	2		30	7 1 5	3 8 0	5	7			273 5	Масло минера льное нефтян ое (верете нное, машинн ое, цилинд ровое и др.) (716*)	0,0 002	1,32 5E- 06	
00 3	Газосеп аратор	1	49 44	612 0	2		30	7 9 4	3 8 0	6	8							

00 3	Емкость для масла, V=5 м3	1	49 44	612	2		30	7 1 5	3 8 0	5	7			273 5	Масло минера льное нефтян ое (верете нное, машинн ое, цилинд ровое и др.) (716*)	0,0 002	0,00 000 218	
00 3	Емкость для дизтопл ива, V=40 м3	1	49 44	612 2	2		30	7 1 5	3 8 0	5	7			033 3 275 4	Серово дород (Дигид росуль фид) (518) Алканы С12-19 /в пересче те на С/ (Углево дороды предель ные С12-С19 (в пересче те на С); Раствор итель РПК-265П) (10)	0,0 099 7 0,0 099 7	0,00 465 0,01 656	
00 3	Емкость для отработ	1	49 44	612	2		30	7 1 5	3 8 0	5	7			273 5	Масло минера льное	0,0 002	5,46 E- 07	

\cap	$\overline{}$
ч	_
_	_

анного масла,								нефтян ое				
V=5 _M 3								(верете				
								нное,				
								машинн				
								oe,				
								цилинд				
								ровое и				
								др.)				
								(716*)				
									37,	4	4,3	
									997		956	
									367	(671	