ИНДИВИДУАЛЬНЫЙ ПРЕДПРИНИМАТЕЛЬ

Байказаков Арман Жакупаргазинович Государственная лицензия МООС РК 01928Р №0042559 от 19.12.2008 г.

ОТЧЕТ О ВОЗМОЖНЫХ ВОЗДЕЙСТВИЯХ

Строительство дорог в микрорайоне «Алгабас» в Алатауском районе г. Алматы

Генеральный директор

TOO «DSY-13»

М. В. Кошелев

Индивидуальный

Предприниматель

А. Ж. Байказаков

г. Алматы, 2024 г.

АННОТАЦИЯ

Настоящий отчет о возможных воздействиях на окружающую среду (далее Отчет) выполнен с целью получения информации о влиянии на окружающую природную среду намечаемой деятельности по строительству дорог в микрорайоне «Алгабас» в Алатауском районе города Алматы.

Отчет был выполнен ИП Бйказаков А.Ж. (Лицензия МООС РК 01928Р №0042559 от 19.12.2008 г.).

Основанием для разработки Отчета являются экологический кодекс РК от 2 января 2021 года и «Инструкция по организации и проведению экологической оценки», утвержденной приказом №280 от 30.07.2021 г. Министра экологии, геологии и природных ресурсов Республики Казахстан.

На этапе описания состояния компонентов окружающей среды приведена обобщенная характеристика природной среды в районе намечаемой деятельности, рассмотрены основные направления хозяйственного использования территории и определены принципиальные позиции по оценке воздействия на окружающую среду, включающие в себя:

- 1) виды воздействия намечаемой деятельности на окружающую среду, их взаимодействие с уже существующими видами воздействия на рассматриваемой территории (типы нарушений, наименование и количество загрязнителей);
- 2) характеристику ориентировочных выбросов загрязняющих веществ в атмосферу;
- 3) основные решения по ограничению или нейтрализации отрицательных последствий от реализации намечаемой деятельности, способствующие снижению воздействия на окружающую среду.

При выполнении Отчета о возможных воздействиях на окружающую среду определены потенциально возможные изменения в компонентах окружающей среды при реали-зации намечаемой деятельности.

Оценка воздействия на окружающую среду — процесс выявления, изучения, описания и оценки на основе соответствующих исследований возможных существенных воздействий на окружающую среду при реализации намечаемой деятельности, включающий в себя стадии, предусмотренные статьей 67 Кодекса.

Организация экологической оценки включает организацию процесса выявления, изучения, описания и оценки возможных прямых и косвенных существенных воздействий (далее — существенные воздействия) реализации намечаемой и осуществляемой деятельности или разрабатываемого Документа на окружающую среду.

Для организации процесса выявления возможных существенных воздействий намечаемой деятельности на окружающую среду в ходе оценки воздействия на окружающую среду инициатор намечаемой деятельности подает в уполномоченный орган в области охраны окружающей среды заявление о намечаемой деятельности.

По результатам Заявления о намечаемой деятельности ТОО «DSY-13» было получено Заключение об определении сферы охвата оценки воздействия на окружающую среду №KZ54VWF00159721 от 30.04.2024 г., выданное РГУ «Департамент экологии по городу Алматы Комитета экологического регулирования и контроля МЭПР РК» (Приложение 1).

Качественные и количественные параметры (выбросы, сбросы, отходы производства и потребления, площади земель, отводимые во временное и постоянное пользование и так далее), полученные в результате составления Отчета о возможных воздействиях, являются ориентировочными и не подлежат утверждению в качестве нормативов на природопользование.

Согласно ст. 96 п.1 Экологического Кодекса РК Проведение общественных слушаний в процессе осуществления государственной экологической экспертизы является обязательным.

СОДЕРЖАНИЕ

1. Обзор законодательных и нормативных документов Республики Казахстан в сфере охраны окружающей среды	7				
2. Информация об объекте намечаемой деятельности	10				
2.1. Описание предполагаемого места намечаемой деятельности	10				
2.2. Состояние окружающей среды	12				
2.2.1. Основные источники загрязнения атмосферного воздуха	12				
2.2.2. Мониторинг качества атмосферного воздуха г. Алматы	12				
2.2.3. Климатическая характеристика района проведения работ	12				
2.3. Описание изменений окружающей среды, которые могут произойти	1.6				
от начала намечаемой деятельности	16				
2.4. Информация о категории земель и целях использования земель в ходе					
строительства и эксплуатации объектов, необходимых для осуществления	17				
намечаемой деятельности					
2.5. Информация о показателях объектов, необходимых для	17				
осуществления намечаемой деятельности					
2.5.1. Организация основных дорожно-строительных работ в	19				
подготовительный период.					
2.5.2. Возведение земляного полотна	19				
2.5.3. Сроки осуществления намечаемой деятельности	20				
2.5.4. Потребность в административных и санитарно-бытовых					
помещениях					
2.6. Описание планируемых к применению наилучших доступных	22				
технологий 2.7. Описание работ по постутилизации существующих зданий, строений,					
сооружений, оборудования и способов их выполнения строительных	23				
работ	23				
2.8. Информация об ожидаемых видах, характеристиках и количестве					
эмиссий в окружающую среду, иных негативных (вредных)					
антропогенных воздействиях на окружающую среду, связанных со	23				
строительством и эксплуатацией объектов для осуществления					
рассматриваемой деятельности					
2.8.1. Воздействие на водные объекты	23				
2.8.1.1. Водоснабжение и водоотведение	23				
2.8.1.2. Современное состояние поверхностных и подземных вод	25				
2.8.1.3. Мероприятия по охране и рациональному использованию водных	25				
ресурсов	23				
2.8.2. Воздействие на атмосферный воздух	26				
2.8.2.1. Анализ результатов расчета уровня загрязнения атмосферы	27				
2.8.2.2. Мероприятия по охране атмосферного воздуха	28				
2.8.2.3. Уточнение размеров санитарно-защитной зоны	28				
2.8.3. Воздействие на почвы	28				
2.8.3.1. Мероприятия по минимизации отрицательного воздействия на	29				
почвы и охрана почв	<i>L</i> 7				
2.8.4. Воздействие на недра	29				
2.8.5. Физические воздействия	30				

2.8.5.1. Вибрации и шумовые воздействия	31
2.8.5.2. Электромагнитные и тепловые воздействия	32
2.8.5.3. Радиационные воздействия	32
2.9. Информация об ожидаемых видах, характеристиках и количестве	
отходов, которые будут образованы в ходе строительства и эксплуатации	33
объектов в рамках намечаемой деятельности	
2.9.1. Предложения по управлению отходами	35
2.9.2. Мероприятия по охране компонентов окружающей среды от загрязнения отходами производства и потребления	35
3. Описание затрагиваемой территории	36
3.1. Участки, на которых могут быть обнаружены выбросы, сбросы и	36
иные негативные воздействия намечаемой деятельности на окружающую	
среду с учетом их характеристик и способности переноса в окружающую	
среду; участков извлечения природных ресурсов и захоронения отходов	27
3.2. Описание возможных вариантов осуществления намечаемой деятельности	37
4. Информация о компонентах природной среды и иных объектах,	38
которые могут быть подвержены существенным воздействиям	
намечаемой деятельности	
4.1. Жизнь и (или) здоровье людей, условия их проживания и	38
деятельности	
4.2. Биоразнообразие (в том числе растительный и животный мир,	39
генетические ресурсы, природные ареалы растений и диких животных,	
пути миграции диких животных, экосистемы)	
4.2.1. Воздействие на растительный мир	39
4.2.2. Воздействие на животный мир	43
4.3. Земли (в том числе изъятие земель), почвы (в том числе включая	46
органический состав, эрозию, уплотнение, иные формы деградации)	
4.4. Воды (в том числе гидроморфологические изменения, количество и	47
качество вод)	.,
4.5. Атмосферный воздух (в том числе нарушения экологических	4.0
нормативов его качества, целевых показателей качества, а при их	48
отсутсвии – ориентировочно безопасных уровней воздействия на него)	
4.6. Материальные активы, объекты историко-культурного наследия, ландшафты	50
5. Список литературы	52
6. Приложения	54
_	

приложения

1.	Заключение скрининга воздействия намечаемой деятельности №KZ54VWF00159721 от 30.04.2024 г., РГУ «Департамент экологии по городу Алматы КЭРК МЭиПР РК» №KZ54VWF00159721 от 30.04.2024 г.	55
2.	Постановление Акима города Алматы №3/478 о строительстве сооружений, инженерных и транспортных коммуникаций города Алматы	56
3.	Задание на проектирование «Строительство дорог в мкр. «Алгабас» в Алатауском районе»	57
4.	Архитектурно-планировочное задание (АПЗ) на проектирование №КZ30VUA0018151 от 11.02.2020 г., КГУ «Управление городского планирования и урбанистики города Алматы»	58
5.	Заключение РГП на ПХВ «Государственная вневедомственая экспертиза проектов КС и ЖКХ МИИР РК» №02—0158/20 от 22.09.2020 г. по рабочему проекту «Строительство дорог в мкр. «Алгабас» в Алатауском районе»	59
6.	Ситуационная схема проектируемых дорог	60
7.	Справка РГП «Казгидромет» о фоновых концентрациях 28.03.2024 г.	61
8.	Материалы инвентаризации и лесопатологического обследования зеленых насаждений	62
9.	Письмо КГУ «Управление зеленой экономики» №3Т-0-158 от 13.03.2020 г.	63
10.	Согласование Балхаш-Алакольской бассейновой инспекии по регулированию и использования и охране водных ресурсов №KZ01VRC00007709 от 12.06.2020 г.	64
11.	Государственная лицензия МООС РК 0198Р №0042559 от 19.12.2008 г.	65

1. Обзор законодательных и нормативных документов Республики Казахстан в сфере охраны окружающей среды.

Экологический кодекс (ЭК) Республики Казахстан от 02.01.2021 года является №400-VI. основным законодательным документом Казахстан в области охраны окружающей среды. Экологический кодекс определяет правовые, экономические и социальные основы охраны окружающей среды в интересах благополучия населения. Он призван обеспечить защиту прав человека на благоприятную для его жизни и здоровья окружающую природную среду. Экономические и социальные основы охраны окружающей природной среды в интересах настоящего и будущих поколений, отражены в Экологическом Кодексе, и направлены на организацию рационального природопользования. В случае противоречия между настоящим Кодексом и иными законами Республики Казахстан, содержащими нормы, регулирующие отношения в области охраны окружающей среды, применяются положения Экологического Кодекса.

Требования Экологического кодекса направлены на обеспечение экологической безопасности, предотвращение вредного воздействия любой хозяйственной деятельности на естественные экологические системы, сохранение биологического разнообразия и организацию рационального природопользования. В кодексе определены объекты и основные принципы охраны окружающей среды, экологические требования к хозяйственной и иной деятельности, экономические механизмы охраны окружающей среды и компетенции органов государственной власти и местного самоуправления, права и обязанности граждан и общественных организаций в области охраны окружающей среды.

При проектировании хозяйственной деятельности должны быть предусмотрены:

- соблюдение нормативов качества окружающей среды;
- обезвреживание и утилизация опасных отходов;
- использование малоотходных и безотходных технологий;
- применение эффективных мер предупреждения загрязнения окружающей среды;
- воспроизводство и рациональное использование природных ресурсов.

Финансирование и реализация проектов, по которым отсутствуют положительные заключения государственных экологической экспертизы, запрещаются.

Кроме Экологического кодекса вопросы охраны окружающей среды и здоровья населения регулируются следующими основными законами:

- Водный кодекс Республики Казахстан от 9 июля 2003 года №481 (с изменениями и дополнениями по состоянию на 01.07.2021 г.);
- Земельный кодекс Республики Казахстан от 20 июня 2003 года №442 (с изменениями и дополнениями по состоянию на 06.07.2021 г.);
- Лесной кодекс Республики Казахстан от 8 июля 2003 г. №477 (с изменениями по состоянию на 01.07.2021 г.);
- Закон Республики Казахстан «Об обязательном экологическом страховании» от 13 декабря 2005 года №93 (с изменениями по состоянию на 01.07.2021 г.);
- Закон Республики Казахстан «О разрешениях и уведомлениях» от 16 мая 2014 года №202-V (с изменениями от 04.07.2021 г.);

- Кодекс Республики Казахстан «О недрах и недропользовании» от 27 декабря 2017 года №125-VI (с изменениями по состоянию на 01.07.2021 г.);
- Закон Республики Казахстан «Об архитектурной, градостроительной и строительной деятельности в Республике Казахстан от 16 июля 2001 года №242 (с изменениями и дополнениями по состоянию на 01.07.2021 г.);
- Закон Республики Казахстан «Об особо охраняемых природных территориях» от 7 июля 2006 года №175 (с изменениями от 01.07.2021 г.);
- Закон Республики Казахстан «Об охране, воспроизводстве и использовании животного мира» от 9 июля 2004 года №593 (с изменениями и дополнениями по состоянию на 01.07.2021 г.);
- Закон Республики Казахстан «Об охране и использовании объектов историко-культурного наследия» от 26 декабря 2021 года №288-VI;
- Закон Республики Казахстан «О гражданской защите» от 11 апреля 2014 года №188-V (с изменениями и дополнениями по состоянию на 01.07.2021 г.);
- Закон Республики Казахстан «О радиационной безопасности населения» от 23 апреля 1998 г. №219 (с изменениями и дополнениями по состоянию на 25.02.2021 г.);
- Кодекс Республики Казахстан «О здоровье народа и системе здравоохранения» от 18 сентября 2009 года №193-IV (с изменениями и дополнениями по состоянию на 24.06.2021 г.).

Казахское природоохранное законодательство базируется на использовании экологических критериев, таких как предельно допустимые концентрации (ПДК) и нормативы эмиссий.

Токсичные высокотоксичные вещества, используемые строительстве и эксплуатации проектируемых объектов, а также опасные производственные процессы должны соответствовать требованиям, Экологического Кодекса Республики Казахстан, Водного кодекса Республики Казахстан, Кодекса Республики Казахстан «О здоровье народа и системе Республики здравоохранения» И законов Казахстан **O**>> техническом регулировании» от 9 ноября 2004 года, «О безопасности химической продукции» от 21 июля 2007 года (с изм. и дополнениями от 01.07.2021 г).

К нормативам эмиссий относятся: технические удельные нормативы эмиссий; нормативы предельно допустимых выбросов и сбросов загрязняющих веществ; нормативы размещения отходов производства и потребления; нормативы допустимых физических воздействий (количества тепла, уровня шума, вибрации, ионизирующего излучения и иных физических воздействий). Статус различных видов особо охраняемых территорий определен в Законе «Об особо охраняемых природных территориях» РК от 7 июля 2006 года №175 (с изменениями и дополнениями от 01.07.2021 г.).

Отношения в области использования и охраны водного фонда Республики Казахстан, к которому относятся все поверхностные и подземные воды, регулируются «Водным кодексом РК».

В соответствии с требованиями Закона Республики Казахстан «О радиационной безопасности населения» при выборе земельных участков для строительства зданий и сооружений должны проводиться исследование и оценка радиационной обстановки в целях защиты населения и персонала от влияния природных радионуклидов.

Закон РК «Об обязательном экологическом страховании» предусматривает обязательное экологическое страхование для всех экологически предприятий. Страховым случаем будет являться внезапное непредвиденное загрязнение окружающей среды, вызванное аварией, сопровождающееся сверхнормативным поступлением в окружающую среду потенциально опасных веществ и вредных физических воздействий.

Целью обязательного экологического страхования является возмещение вреда, причиненного жизни, здоровью, имуществу третьих лиц и (или) окружающей среде в результате ее аварийного загрязнения. Физические и юридические лица, осуществляющие экологически опасные виды деятельности, в обязательном порядке должны заключать договора об обязательном экологическом страховании.

Животный мир является важной составной частью природных богатств Республики Казахстан. Закон РК «Об охране, воспроизводстве и использовании животного мира» принят для того, чтобы обеспечить эффективную охрану, воспроизводство и рациональное использование животного мира. В нем определены основные требования к охране животных при осуществлении производственных процессов и эксплуатации транспортных средств. Закон определяет порядок осуществления государственного контроля охраны, воспроизводства и использования животного мира, а также меры ответственности за нарушение законодательства.

В соответствии с Экологическим кодексом, для официального утверждения любого проекта в Республике Казахстан необходимо проведение его экологической экспертизы государственным уполномоченным органом в области охраны окружающей среды.

На Государственную экологическую экспертизу представляется проектная документация с оценкой воздействия на окружающую среду с материалами обсуждения представляемых материалов с общественностью.

Общественные слушания проводятся в соответствии с «Правилами проведения общественных слушаний», утвержденных Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года №286.

B соответствии Экологическим кодексом используются охраны окружающей среды экономические механизмы регулирования природопользования, как плата за эмиссии в окружающую среду, плата за отдельными природных ресурсов, экономическое пользование видами окружающей среды, экологическое стимулирование охраны экономическая оценка ущерба, нанесенного окружающей среде и т.д.

В соответствии с Экологическим кодексом все природопользователи, осуществляющие эмиссии в окружающую среду, обязаны получить в уполномоченном органе в области охраны окружающей среды разрешение на эмиссии в окружающую среду. При этом под эмиссиями понимаются выбросы, сбросы загрязняющих веществ, размещение отходов производства и потребления в окружающей среде, вредные физические воздействия.

Объемы допустимых выбросов и сбросов, объемы отходов и нормативы физических воздействий определяются в соответствии с требованиями «Методики определения нормативов эмиссий в окружающую среду», утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63.

2. Информация об объекте намечаемой деятельности.

2.1. Описание предполагаемого места намечаемой деятельности.

Район проектирования находится на северо-западной стороне в Алатауского района города Алматы. Микрорайон находится восточнее ТЦ Апорт молл. В квадрате с южной стороны рынок «Жибек Жолы» и проспект Райымбека, с северной стороны улица Кожабекова и Карасайский район Алматинской области, с восточной стороны огибает улица Фаризы Оргарсыновой и река Каргалы. с западной стороны п. Коксай Карасайского района Алматинской области.

Микрорайон «Алгабас» застроен преимущественно одно и двухэтажными жилыми домами с хозяйственными постройками и имеют правильную планировку. Для осуществления транспортной связи микрорайона «Алгабас» можно выехать на следующие магистральные улицы проспект Рыскулова, проспект Райымбека, улица Монки би.

Река Каргалы. Длина реки Каргалы составляет 57 км, площадь водосбора 98 км². Имеет 15 мелких притоков родникового питания общей длиной 27 км. Ширина русла 5-10 м, глубина 0,3-0,5 м, в паводковый период до 1 м. Средний многолетний расход воды 0,65 м3/сек у микрорайона Карагайлы Наурызбайского района города Алматы.

Бассейн Каргалинки расположен в среднегорной и низкогорной зонах западной части Заилийского Алатау. Склоны долины в среднем течении имеют крутизну 40-60 градусов. В бассейне Каргалинки имеются 2 пруда общей площадью водного зеркала 0,03 км² Вода реки используется для орошения и водоснабжения. В местах пересечения реки с автомобильными трассами Алматы-Каскелен, Алматы-Шамалган и железной дороги Алматы — Москва построены мосты. Сегодня санитарное состояние реки оценивается как неудовлетворительное. Сточные воды, арычная сеть и поверхностный водоотвод данным рабочим проектом не предусматривают слив воды в реку Каргалы.

Река Каргалы протекает по направлению с юга на север. По микрорайону «Алгабас» река протекает восточнее улицы Фаризы Онгарсыновой от проспекта Райымбека до улицы Баршын, далее проходит между улицами Бес Арыс и Несибе. На всем протяжении вдоль и по микрорайону, река укреплена с обоих сторон, и имеет четкое русло.

Существующая дорожная одежда и земляное полотно.

При проведении полевых работ установлено, что дорожная одежда на проектируемых улицах практически отсутствует, только на некоторых участках дорожная одежда представлена покрытием из песчано-гравийной смеси, периодически подсыпаемой местными жителями, а также покрытие из бывшего в употреблении отработанного асфальтобетона.

Тротуары отсутствуют.

Покрытие на всем протяжении имеет дефекты. Наиболее характерными дефектами являются частые глубокие поперечные и косые трещины, реже продольные, местами глубокая колейность более 20 см, частая ямочность, кромочность, небольшая волнистость, просадки, латки. При обследовании земполотна и покрытия пучинобразования не выявлены.

Для выравнивания местности повсеместно все улицы покрыты насыпными галечниковым грунтами с валунами до 10%, строительным, бытовым мусором для выравнивания местности и без аварийного проезда транспорта.

Состояние покрытия не удовлетворительное, (после строительных работ) местами с поверхности сильно загрязненное, не выдержано по толщине, отсутствует ровность, ямочность. Толщина насыпного грунта 0,2-1,8м. Тротуары повсеместно отсутствуют.

ПАСПОРТ РАБОЧЕГО ПРОЕКТА НА СТРОИТЕЛЬСТВО АВТОМОБИЛЬНОЙ ДОРОГИ

Заказчик: КГУ "Управление городской мобильности города Алматы"

Генеральный Проектировщик: ТОО КазНИиПИ«Дортранс»

Проектировщик: TOO «Саулет - SKB»

Источник финансирования: Местонахождение дороги:

Республиканский бюджет

г. Алматы, мкр. Алгабас

Наименование проекта:

Строительство дорог в мкр. «Алгабас», в Алатауском районе города Алматы Исходные данные: Задание КГУ "Управление городской

мобильности города Алматы" Инженерно-геодезические изыскания, выполненные TOO «Subtune Geo Inform» в 2019г.

Инженерно-геологические изыскания, выполненные

ТОО "КАЗГЕОСФЕРА" в 2019г.

Обозначение

№137/ДТР**-**ВОР.2

№137/ДТР-ПОС

Технико-экономичес	кие по	оказатели
Строительная длина (протяженность)	М	31018,608
Категория дорог: основной проезд	М	15245,293
второстепенный проезд	М	14862,255
тротуар	М	152,046
IV-B	М	759,014
Количество полос движения и ширина		
проезжей части: основной проезд	М	2x3.0 ; 2x2.7
второстепенный проезд	М	1x3.5
Ширина тротуара	М	1.0 ;1.5.
IV-B	М	4.5
Тип дорожной одежды		капитальный,
тип дорожной одежды		покрытие из м/з а/б
Водоотвод с проезжей части лотками	М	9136,00
Ливневая канализация	М	2660,00

Проект разработан в соответствии с действующими государственными строительными нормами, правилами и техническим заданием на проектирование

Главный инженер проекта

Маркевичус Д.А.

	Паспорт проекта		
TOM 1	Общая пояснительная записка	№137/ДТР-ПЗ	H
Книга 1	Общая пояснительная записка	№137/ДТР-ПЗ.1	L
Книга 2	Исходные данные и материалы согласования	№137/ДТР-ПЗ.2	
TOM 2	Дорожная часть. Чертежи	№137/ДТР-АД	\vdash
Книга 1	Основные строительные решения	№137/ДТР-АД.1	
Книга 2	Поперечные профили земляного полотна	№137/ДТР-АД.2	Г
Книга 3	Обустройство и обстановка	№137/ДТР-АД.3	L
Книга 4	Благоустройство и озеленение	№137/ДТР-АД.4	
ТОМ 3	Наружное освещение и электроснабжение	№137/ДТР-ЭН	H
TOM 4	Защита и переустройство инженерных сетей		L
Книга 1	Наружные электрические сети	№137/ДТР-ЭС	
Книга 2	Сети связи	№137/ДТР-СС	_
Книга 3	Газовые сети	№137/ДТР-ГСН	1
TOM 5	Оценка воздействия на окружающаю среду	№137/ДТР-ОВОС	_
ТОМ 6	Сводная ведомость объемов работ		_
Книга 1	Сводная ведомость объемов работ	№137/ДТР-ВОР.1	

Трилагаемые ведомости к сводной ведомости

Проект организации строительства

Сметная документация

Наименование

Продолжительность строительства 21 мес.
Климатическая зона-IV
_

Дополнительные сведения

Грунт-суглинок легкий пылеватый

Тип местности по увлажнению - I, II

Сейсмичность 9 баллов

№	Наименование показателей	Единица	Количество
п/п		измерения	
1	Протяженность (общая)	метров	31 018,608
2	Ширина проезжей части	метров	6.0 /5,4/ 3.5
3	Общая стоимость строительства	тысяч тенге	3 974 204,688
	в том числе:		
	- строительно-монтажные работы	тысяч тенге	3 301 716,695
	- оборудование	тысяч тенге	27 254,451
	- прочие затраты	тысяч тенге	645 233,542
4	Продолжительность строительства	месяцев	21

2.2. Состояние окружающей среды.

2.2.1. Основные источники загрязнения атмосферного воздуха.

Основными источниками загрязнения атмосферного воздуха в Алматы являются выбросы загрязняющих веществ автомобильным транспортом и устаревшие технологии многих производств, например ТЭЦ. Из-за загрязнения в атмосферном воздухе накапливается присутствие оксида углерода, он не может ощущаться человеком по запаху либо цвету, но способен создавать дефицит кислорода в тканях тел человека, что может вызвать головную боль, головокружение, тошноту, потерю сознания, а наличие в воздухе диоксида азота при взаимодействии с углеродами выхлопных газов способствуют образованию фотохимического тумана - смога. Основная задача по восстановлению здорового экологического климата Алматы и для его решения, необходимы наиболее эффективные, продуманные и реально воплотимые проекты и программы, которые могли быть направлены на восстановление, сохранение и поддержание экологического состояния нашего города.

2.2.2. Мониторинг качества атмосферного воздуха г. Алматы

Системный Мониторинг экологического состояния воздушного бассейна г. Алматы осуществляется РГП на ПХВ «Казгидромет» на 5 стационарных постах (ПНЗ) ручного отбора проб и 11 автоматических постах наблюдений.

Измеряются концентрации взвешенных веществ, взвешенных частиц РМ-2,5, взвешенных частиц РМ-10, диоксида серы, оксида углерода, диоксида азота, оксида азота, фенола и формальдегида. Уровень загрязнения атмосферного воздуха города за последние годы несколько стабилизировался, но остается высоким.

По данным РГП на ПХВ «Казгидромет», за 2022 год атмосферный воздух в целом характеризуется высоким уровнем загрязнения.

За 2022 год по городу зафиксированы превышения более 1 ПДКм.р.: по взвешенным веществам -272, взвешенным частицам РМ-2,5 -180, взвешенным частицам РМ-10 -479, диоксиду серы -754, оксиду углерода -1794, диоксиду азота -3390, оксиду азота -586 случаев. Случаев экстремально высокого загрязнения в 2022 году не наблюдалось.

2.2.3. Климатическая характеристика района проведения работ

Климат города Алматы отмечается большой контрастностью. Резко ослабленный ветровой режим, загрязнения воздушного бассейна являются характерными особенностями района. Явление туманов, свойственные зимнему ериоду, способствуют возникновению тяжелых форм смогов.

Характеристика климата г. Алматы дана на основании анализа данных «Справочника по климату СССР», вып.18, Л. 1968, «Научно прикладного климатического справочника Казахстана», Алматы, 1980 и СНиП РК 2.04-01-2001 «Строительная климатология» 2001 по метеорологическим станциям (МС) Алматы, ГМО, Алматы, аэропорт.

Как правило, климатические условия района формируются под влиянием четырех основных факторов: удаленность от Атлантического океана, приток прямой солнечной радиации, особенности атмосферной циркуляции, свойства подстилающей поверхности.

Проектируемый район расположен в западной части г. Алматы. Особенность климата Алматы определяется тем, что он удален от морей и океанов и размещен в узкой природной зоне, располагающейся между высокогорными вершинами Заилийского Алатау и равнинами пустыни Мойынкум. В связи с этим здесь на довольно близких расстояниях изменяются практически все климатические параметры. Для учета этих изменений на территории проектируемого района использовались метод введения поправок к данным опорных МС в зависимости от особенностей орографии, разработанный профессором архитектуры Ф.Л.Серебровским.

Для температуры воздуха города Алматы области характерна климатическая зональность, которая проявляется в разнице температур в различных частях города. Так в северных районах, наиболее удаленных от гор, наблюдаются более континентальные температуры с меньшим количеством осадков, чем в южной части, прилегающей к горам.

Континентальность климата проявляется в температурном режиме: знойное сухое лето, особенно на севере района, сменяется холодной, иногда с резкими морозами малоснежной зимой. Средние среднесуточные амплитуды температуры воздуха в северной части, несколько больше, чем в южной и изменяются от 11-190 до 9-120.

Температурный режим. Годовая амплитуда средней температуры воздуха колеблется от 36,8°C – в северной части до 27°C – в предгорной зоне.

В области наиболее жаркие дни отмечаются в июле, среднемесячная температура составляет 23.8° С, амплитуда среднесуточных температур летом составляет $10\text{-}12^{\circ}$ С. Жаркая погода, когда среднесуточная температура превышает $+15^{\circ}$ С, устанавливается в начале мая и сохраняется до середины сентября.

Холодный период длится с ноября по февраль, среднесуточные температуры в этот период изменяются от +3.0 до -2.8°C. Температура воздуха самого холодного месяца января составляет минус 4.7°C.

Ветровой режим. Рельеф местности с выраженным уклоном с юга на север, от высоких горных хребтов в сторону равнины определяет неравномерное распределение воздушных масс по территории города.

Распространение горных ветров от подошвы хребта достигает 32 км, а долинные ветры до 45 км. Наибольшее значение для самоочищения атмосферы имеет катабатический сток горного холодного воздуха, обеспечивающий основной воздухообмен. Существенное влияние на ветровой режим города и перераспределение скоростей ветра оказывает застройка.

Для рассматриваемой территории характерен слабый ветровой режим со среднемесячными значениями скорости ветра зимой 1,1 м/сек и 2,2 м/сек в теплое время года.

Среднемесячные скорости ветра составляют 1,6-1,7 м/сек. Преобладающими ветрами в холодный период года являются ветры, дующие с севера (повторяемость 26%), равновероятны южные и юго-западные ветры (по 16%).

В январе до 11 дней в месяц наблюдается безветренная погода. В летнее время ветровой режим более активный, чем зимой, преобладают ветры с юговостока (30%) и юга (19%). В июле регистрируется в среднем до 5 дней без ветра. По среднегодовой розе ветров наибольшая повторяемость приходится на юго-

восточные (23%) и северные ветры (21%). Всего в году в среднем отмечается на территории города до 95 дней без ветра (26%).

Режим влажности. Многолетними наблюдениями установлена неравномерность в распределении осадков. Осадки увеличиваются с севера на юг в связи с повышением местности над уровнем моря от 150-200 мм на севере рассматриваемой территории до 400-600 мм — на юге, т.к. в направлении с юга на север увеличивается общая континентальность и сухость воздуха.

Осадки распространяются неравномерно и по временам года. Больше всего их выпадает в теплое время года на территории, прилегающей к горам, на летние месяцы приходится 80% годовой суммы осадков. Самой влажной порой года является весна, когда выпадает до 50% годовой суммы, максимум осадков в годовом ходе отмечается в апреле — мае (более 100 мм осадков в месяц). В среднем за год выпадает более 670 мм осадков. Минимум выпадения осадков приходится на август-сентябрь (25-30 мм).

Влажность воздуха меняется в течение года. Средняя влажность за год составляет 62%, максимум влажности отмечается в зимние месяцы — 74-79% (ноябрь-февраль), минимальные значения отмечаются в летнее время и начало осени - 45-48% (июль-сентябрь), когда повышается.

Режим солнечной радиации. Суммарная солнечная радиация (прямая и рассеянная) имеет выраженный годовой ход и составляет за год около 7000 МДж/м², наблюдается постепенное повышение поступающей радиации от 260 МДж/м² в январе до 889 МДж/м² в июне (максимум за год) и затем понижается до 234 МДж/м² в декабре (минимум в годовом ходе).

Из-за загрязнения воздуха выхлопами загрязняющих веществ наблюдается снижение прозрачности атмосферы и уменьшение поступающего потока радиации.

Атмосферные явления. Туманы отмечаются довольно часто, за год в среднем насчитывается 47-56 дней. В холодный период возможны явления гололеда и изморози. В северной части эти явления отмечаются в меньшей степени, чем в южной. С гололедом отмечается от 2 дней на севере до 13 на юге, а с изморозью — до 25 дней.

Метели возникают при прохождении мощных атмосферных фронтов. Их появление вызывают рыхлая структура снежного покрова и сильный ветер. В Алматинской области метели отмечаются очень редко — в среднем 0,5 дня и лишь в отдельные годы до 3 дней в месяц.

Грозы сопровождаются сильными электрическими разрядами и мощными ливнями.

Электрические разряды, увеличивая содержание кислорода в воздухе, создают условия для реакций окисления, тем самым, снижая вредность промышленных выбросов. Ливневые дожди быстро вымывают эти выбросы из атмосферы, способствуя ее самоочищению. Грозы на территории анализируемого города фиксируются с февраля по ноябрь, максимально летом в г. Алматы в течение 10–17 дней.

Град - опасное метеорологическое явление, уничтожающее с/х посевы, иногда разрушающее строительные конструкции, травмирующее животных и людей, находящихся вне укрытия. Но в связи с тем, что град, как правило, сопровождается ливневыми осадками, он тоже способствует самоочищению атмосферы. Град в Алматинской области отмечается практически весь теплый

период с февраля по октябрь, но повторяемость этого явления невелика. Наибольшее количество дней с градом отмечается в начале лета. В г. Алматы оно составляет -0.4-3 дня в месяц.

Годовая сумма осадков составляет 509 мм (Алматы, АМСГ). Осадки очень неустойчивы, их годовые и месячные значения колеблются в значительных пределах.

Максимум осадков выпадает в апреле-мае, второй максимум меньший по величине — в ноябре, минимум - в августе-сентябре. Наиболее дождливым временем является весна. Летом осадки носят преимущественно ливневый характер.

Наиболее высокая относительная влажность воздуха отмечается в зимние месяцы (декабрь-февраль) и составляет 79-83%. Наименьшие значения отмечаются в июле и августе (54-53%), в отдельные годы она может уменьшаться до 30% и ниже.

Таблица 2.1. Метеорологические характеристики района

Наименование Величина						
Наименование						
Коэффициент, зависящий от стратификации атмосферы, А	<u>200</u>					
Коэффициент рельефа местности	1,2 -5,3 -8,7					
Средняя месячная темпераьура воздуха самого холодного месяца (январь)	<u>-5,3</u>					
Средняя минимальная температура воздуха самого холодного месяца	<u>-8,7</u>					
Средняя месячная температура самого жаркого месяца (июль)	<u>24,3</u>					
Средняя максимальная температура воздуха самого жаркого месяца	<u>30,1</u>					
Среднегодовая роза ветров						
<u>C</u>	<u>29</u>					
<u>CB</u> <u>B</u>	<u>18</u>					
<u>B</u>	<u>7</u>					
<u>IOB</u>	<u>12</u>					
<u>Ю</u>	<u>7</u>					
<u>IO3</u>	<u>16</u>					
<u>3</u>	<u>7</u>					
<u>HO</u> <u>HO3</u> <u>3</u> <u>C3</u>	29 18 7 12 7 16 7 4					
Среднегодовая скорость ветра	<u>2,2</u>					
Скорость ветра (по средним многолетним данным), повторяемость	<u>3,0</u>					
превышения которой составляет 5%, U*, м/с						

Уровень загрязнения атмосферного воздуха

В районе мкр. «Алгабас» в Алатауском районе г. Алматы значения фоновых концентраций контролируются фоновыми постами №№ 27, 3, 25 и представлены следующими веществами:

Вещество	Фоновые концентрации -Сф,	ПДК мг/м ³	Долей ПДК	
Danawayyyya nawaama	MΓ/M ³	0.5	0.020	
Взвешенные вещества	0,419	0,5	0,838	
Азота диоксид	0,137	0,2	0,685	
Сернистый ангидрид	0,1173	0,125	0,9384	
Углерода оксид	2,9373	5,0	0,58746	

2.3. Описание изменений окружающей среды, которые могут произойти от начала намечаемой деятельности.

В геоморфологическом отношении микрорайон «Алгабас» расположен на предгорной наклонной равнине с общим уклоном на север и расположена в пределах предгорной равнины хребта Заилийский Алатау и р. Каргалы.

Абсолютные отметки территория проектируемых дорог в пределах: 750,00–770,00 м.

Рельеф местности осложнен существующими жилыми домами и зданиями, а также подземными коммуникациями различного назначения.

По условиям рельефа местности микрорайон Алгабас относится к потенциально не подтопляемым поверхностными и подземными водами территориям.

В геологическом строении площадки строительства (уличных дорог) принимают участие отложения верхнечетвертичного возраста, представленные песками разной крупности и суглинками от твердой до текучепластичной консистенции, с прослоями песками разной крупности. Повсеместно, улицы перекрыты с поверхности насыпными грунтами с включением редким валунами до10-15%, размером до 300мм., служащие временным покрытием.

Рельеф поверхности земли имеет полого-наклонный характер с общим уклоном в северо-западном направлении.

Абсолютные отметки территория проектируемых дорог в пределах: 750,00–770,00м.

Подземные воды в период работы (август – сентябрь) не вскрыты. Однако на отдельных участках бурением были зафиксированы увлажненные грунты в основании, вода на данных участках имеет техногенное образование (технические воды) это в значительной степени зависит от нескольких факторов (утечек водопроводных сетей, использования поверхностных вод частными подворьями и хозяйствующими субъектами МСБ) и в меньшей от инфильтрации вод (атмосферные осадки) на этих участках возможно увлажнение грунтов основания в отдельные годы с амплитудой поднятия до 0,5-0,8 м.

Сейсмичность зоны строительства согласно СП РК 2.03-30-2017 в баллах по картам ОС3-2475 и ОС3-22475 составляет 9 (девять) баллов. Тип грунтовых условий площадки строительства по сейсмическим свойствам — II. Уточненная сейсмичность площадки согласно таблице 6.2 СП РК 2.03-30-2017«Строительство в сейсмических районах (зонах) Республики Казахстан» составляет 9 (девять) баллов.

Горизонтальное расчетное ускорение ag -0,633, вертикальное расчетное ускорение agv -0,570.

Проведено рекогносцировочное обследование проектируемых улиц в микрорайоне «Алгабас», суммарной протяженностью 30982,50 метров. При обследовании улиц, указанных на схеме микрорайона «Алгабас», было выявлено, что имеется старая сеть искусственных сооружений (лотков), разрушенных, не работающих и засыпанных. То есть система водоотвода отсутствует.

Местоположение города - подножье живописного северного склона Заилийского Алатау высотой 600-900м. Алатау с его богатой и разнообразной растительностью входит в городской пейзаж. Основными древесными породами, используемыми в озеленении города, являются липа мелколистная, вяз Ан- лючая

(голубая форма). Из кустарников - боярышник кроваво-красный, рябина тянь-шаньская, многие виды сирени, жасмин и другие.

В Алматы и его окрестностях зарегистрирован 141 вид птиц (полевой воробей, обыкновенный скворец, иволга, ястребиная славка, черный дрозд, южный соловей, египетская горлица, большая синица и другие) и около 50 видов млекопитающих (степной хорь, ласка, белка, суслик-песчаник, водяная крыса и другие). С целью охраны и обогащения животного мира в Алматы значительно расширяются площади древесно-кустарниковых насаждений в парках, садах и окрестностях города.

В период проведения строительных работ классифицируется следующим образом:

- масштаб территориального воздействия «локальное воздействие»: воздействие ограничено территорией строительной площадки и небольшой территорией вокруг них;
- масштаб временного воздействия «кратковременное воздействие»: ограниченно периодом строительства 21 месяц;
- интенсивность воздействия «незначительное воздействие»: изменения в природной среде не превышают существующие пределы природной изменчивости.

Оценка влияния на окружающую среду в период проведения строительных работ классифицируется как воздействие «низкой значимости», то есть при таком уровне воздействия последствия испытываются, но величина воздействия достаточна низка и находится в пределах установленных нормативов, а также компоненты окружающей среды в зоне влияния имеют кратковременную чувствительность.

2.4. Информация о категории земель и целях использования земель в ходе строительства и эксплуатации объектов, необходимых для осуществления намечаемой деятельности

Отвод земель во временное пользование предусмотрен на период строительства дороги. В площадь временного отвода входят: места проезда строительной техники, для складирования стройматериалов, внетрассовых грунтовых резервов, технологические дороги, стройплощадки, переустройство инженерных коммуникаций.

2.5. Информация о показателях объектов, необходимых для осуществления намечаемой деятельности.

Рабочий проект включает в себя строительство всего 114 улиц общей протяжённостью 31 018,608 п.м., 4 улицы делятся на 2 типа по категории улиц и дорог. Назначения улиц подразумевает собой подъезд транспортных средств к жилым, общественным зданиям, учреждениям, предприятиям и другим объектам внутри районов, микрорайонов и кварталов.

Проектируемые улицы делятся на 4 категории по 2 нормативам согласно по СП РК 3.01–101-2013 «Градостроительство. Планировка и застройка городских и сельских населенных пунктов» на 3 категории: «Основной проезд», «Второстепенный проезд», «Тротуар». Так же, по СП РК 3.03-122-2013 «Промышленный транспорт» «IV-В» «Вспомогательная автомобильная дорога и дороги невыраженным грузооборотом» — улицы предназначены для

обслуживания тепломагистральной сети 2 линии диаметром 1000 мм «Алматинской ТЭЦ-2».

Улицы делятся по следующим категориям:

- «Основной проезд» 46 улиц общей протяжённостью 15 245,293 п.м.;
- «Второстепенный проезд» 84 улицы общей длиной 14 862,255 п.м.;
- «Тротуар» 3 отдельных тротуара общей длиной 152,046 п.м.;
- «IV-В Вспомогательная автомобильная дорога» 2 дороги общей проятжённостью 759,014 п.м.

Основные технические параметры улиц приведены в таблице 2.5.

Таблица 2.5.

№№ 1111	Наименование улиц	Протяженность, м	Категория улиц по СП РК 3.01- 101-2013* СП РК 3-03- 122-2013 ПСТ РК 65- 2017	Расчетная скорость, км/час	Число полос движения, шт	Ширина полосы движения, м	Ширина проезжей части, м	Ширина тротуара, м	Наличие водоотвода по улице
1	2	3	4	5	6	7	8	9	10
1	1. Ул. Бегазы	522,76	Основной проезд	40,0	2	2,7	5,4	1,0	+
2	2. Ул. Бесинши белес	554,23	Основной проезд	40,0	2	2,7	5,4	1,0	+
3	3. Ул. Кыранкара	569,50	Основной проезд	40,0	2	2,7	5,4	1,0	+
4	4. Ул. Бесбатыр	584,96	Основной проезд	40,0	2	2,7	5,4	1,0	+
5	5. Ул. Алтынкол	549,60	Основной проезд	40,0	2	2,7	5,4	1,0	+
6	6. Ул. Кусмырын	603,90	Основной проезд	40,0	2	2,7	5,4	1,0	+
7	7. Ул. Кайсар	586,88	Основной проезд	40,0	2	2,7	5,4	1,0	+
0	0.37. A	622 00	Основной проезд	40,0	2	2,7	5,4	1,0	+
8	8. Ул. Алдияр	623,00	Второстепенный проезд	40,0	1	3,5	3,5	1,7	+
9	9. Ул. Таусогар	808,00	Основной проезд	40,0	2	2,7	5,4	-	+
10	10. Ул. Кенжекей	719,34	Основной проезд	40,0	2	3,0	6,0	1,5	+
11	11 ул. Кокпар	220,20	Второстепенный проезд	30,0	1	3,5	3,5	-	-
12	12 Ул. Амангелди	168,31	Второстепенный проезд	30,0	1	3,5	3,5	-	-

			1		ı	I		1	
13	13 пер. Огарсынова 1	244,57	Основной проезд	40,0	2	3,0	6,0	1,0	-
14	14 ул Жадигер	192,60	Основной проезд	40,0	2	3,0	6,0	1,0	-
15	15 ул Козайым 2	392,90	Основной проезд	40,0	2	3,0	6,0	1,0	-
16	16 ул Акниет	359,30	Основной проезд	40,0	2	3,0	6,0	1,0	-
17	17 ул Орактыбатыр	897,20	Основной проезд	40,0	2	3,0	6,0	1,0	+
18	18 ул пер Онгарсынова 3	371,00	Основной проезд	40,0	2	3,0	6,0	1,0	+
19	19.1 ул Сазсырнай	154,40	Второстепенный проезд	30,0	1	3,5	3,5	1,0	+
20	19.2 ул Сазсырнай	462,31	IV-B	20,0	2	2,3	4,5	-	-
21	20,1 ул пер Онгарсынова 3	122,86	Основной проезд	40,0	2	3,0	6,0	1,0	-
22	20.2 ул пер Онгарсынова 3	169,79	Второстепенный проезд	30,0	1	3,5	3,5	-	-
23	20.3 ул пер Онгарсынова 3	212,38	Второстепенный проезд	30,0	1	3,5	3,5	-	-
24	21 ул Аксенгир	363,81	Основной проезд	40,0	2	3,0	6,0	1,0	-
25	22.1 П	242.10	Основной проезд	40,0	2	3,0	6,0	1,0	-
25	22.1 ул Даулет	243,10	Второстепенный проезд	30,0	1	3,5	3,5	-	-
26	22.2 ул Даулет	162,24	Второстепенный проезд	30,0	1	3,5	3,5	-	-
27	22.3 ул Даулет	60,00	Второстепенный проезд	30,0	1	3,5	3,5	-	-
28	23.1 ул Акбопе	365,85	Основной проезд	40,0	2	3,0	6,0	1,0	-
29	23.2 ул Акбопе	22,12	Второстепенный проезд	30,0	1	3,5	3,5	-	-

30	24 ул Каражорга	660,22	Основной проезд	40,0	2	3,0	6,0	1,0	+
31	25 ул Женис	143,83	Второстепенный проезд	30,0	1	3,5	3,5	-	-
32	26.1 ул пер. Каражорга	91,98	Основной проезд	40,0	2	3,0	6,0	-	-
33	26.2 ул пер Каражорга	72,08	Второстепенный проезд	30,0	1	3,5	3,5	-	-
34	27 ул Туран	665,54	Основной проезд	40,0	2	3,0	6,0	1,0	+
35	28 ул пер Каражорга	115,23	Второстепенный проезд	30,0	1	3,5	3,5	-	-
36	29,1 ул Пер Каражорга	29,10	Второстепенный проезд	30,0	1	3,5	3,5	-	-
37	29.2 ул Пер Каражорга	65,20	Второстепенный проезд	30,0	1	3,5	3,5	-	-
38	30 ул Алдараспан	183,66	Основной проезд	40,0	2	3,0	6,0	1,0	+
39	31 ул Шубартал 1	389,05	Основной проезд	40,0	2	3,0	6,0	1,0	-
40	32 ул Шубартал 2	291,21	Второстепенный проезд	30,0	1	3,5	3,5	-	-
41	33 ул Жаухар	311,91	Основной проезд	40,0	2	3,0	6,0	1,0	+
42	34 ул Каршыга	110,72	Второстепенный проезд	30,0	1	3,5	3,5	-	-
43	35 ул Бес Арыс	104,22	Второстепенный проезд	30,0	1	3,5	3,5	-	-
44	36 ул Домалак Ана	245,18	Второстепенный проезд	30,0	1	3,5	3,5	-	-
45	37 ул Ерейментау	123,96	Второстепенный проезд	30,0	1	3,5	3,5	-	-
46	38,1 ул Беласар	52,14	Второстепенный проезд	30,0	1	3,5	3,5	-	-
47	38,2 ул Беласар	198,42	Второстепенный проезд	30,0	1	3,5	3,5	-	-

48	39 ул Дастур	404,59	Второстепенный проезд	30,0	1	3,5	3,5	-	-
49	40 ул Кетбуга жырау	139,11	Основной проезд	40,0	2	3,0	6,0	1,0	-
50	41.1 ул Алдаспан 2	180,91	Второстепенный проезд	30,0	1	3,5	3,5	-	-
51	41.2 ул Алдаспан 2	106,63	Второстепенный проезд	30,0	1	3,5	3,5	-	-
52	41.3 ул Алдаспан 2	136,84	Второстепенный проезд	30,0	1	3,5	3,5	-	-
53	41.4 переулок Алдаспан 2	36,33	Второстепенный проезд	30,0	1	3,5	3,5	-	-
54	41.5 переулок Алдаспан 2	31,27	Второстепенный проезд	30,0	1	3,5	3,5	-	-
55	42 ул Касиет	131,24	Основной проезд	40,0	2	3,0	6,0	1,0	+
56	43 ул Бабажанова	385,99	Второстепенный проезд	30,0	1	3,5	3,5	-	-
57	44 ул Керимсал	378,24	Второстепенный проезд	30,0	1	3,5	3,5	-	-
58	45 ул Балкарагай	163,72	Основной проезд	40,0	2	3,0	6,0	1,0	-
59	46 ул Калампыр	166,29	Основной проезд	40,0	2	3,0	6,0	1,0	+
60	47 ул Маржан	205,09	Основной проезд	40,0	2	3,0	6,0	1,0	-
61	48 ул	971,39	Второстепенный проезд	30,0	1	3,5	3,5	-	-
01	Мухитдинова	711,37	Основной проезд	40,0	2	3,0	6,0	1,0	-
62	49 ул Инабат	816,42	Основной проезд	40,0	2	3,0	6,0	1,0	+
63	50 ул Жана курылыс	817,65	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
64	51 ул Жана курылыс 11	796,37	Основной проезд	40,0	2	3,0	6,0	1,0	-

			Основной						
65	52 ул Бастау	148,71	проезд	40,0	2	3,0	6,0	1,0	+
66	53 ул Жана	Жана 210,91	Основной проезд	40,0	2	3,0	6,0	1,0	-
	курылыс 12	210,91	Второстепенный проезд	30,0	1	3,5	3,5	-	-
67	54 ул Жана курылыс 13	137,69	Второстепенный проезд	30,0	1	3,5	3,5	-	-
68	55 ул Жана курылыс 14	550,74	Второстепенный проезд	30,0	1	3,5	3,5	-	-
69	56 ул Жана курылыс15	623,27	Второстепенный проезд	30,0	1	3,5	3,5	-	-
70	57 ул Жана курылыс 16	631,35	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
71	58 ул Жана курылыс 17	817,69	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
72	59 ул Жана курылыс 18	802,60	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
73	60 ул Жана курылыс 19	591,86	Второстепенный проезд	30,0	1	3,5	3,5	-	-
74	61 ул Жана курылыс 20	236,77	Второстепенный проезд	30,0	1	3,5	3,5	-	-
75	62 ул Жана курылыс 21	333,74	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
76	63 ул Жана курылыс 22	251,84	Второстепенный проезд	30,0	1	3,5	3,5	-	-
77	64 ул Жана курылыс 23	111,76	Второстепенный проезд	30,0	1	3,5	3,5	1	-
78	65 ул Жана курылыс 24	110,79	Второстепенный проезд	30,0	1	3,5	3,5	-	-
79	65.1 ул Жана курылыс 24	65,54	Второстепенный проезд	30,0	1	3,5	3,5	-	-
80	66 ул Несибе	344,17	Основной проезд	40,0	2	3,0	6,0	1,0	-
81	67 ул Жанакурлыс 25	90,14	Второстепенный проезд	30,0	1	3,5	3,5	-	-

82	68 ул Жанакурлыс 26	193,37	Второстепенный проезд	30,0	1	3,5	3,5	-	-
83	69 ул Жана курылыс 27	241,81	Второстепенный проезд	30,0	1	3,5	3,5	-	-
84	70 ул Борили баирак	467,42	Основной проезд	40,0	2	2,7	5,4	1,0	+
85	71 пер Борили баирак	37,61	Второстепенный проезд	30,0	1	3,5	3,5	-	-
86	72 ул Казна	134,36	Второстепенный проезд	30,0	1	3,5	3,5	-	-
87	73 ул пер Инабат	68,68	Второстепенный проезд	30,0	1	3,5	3,5	-	-
88	74 ул Султан	281,32	Второстепенный проезд	30,0	1	3,5	3,5	-	+
89	75 ул пер Монкиби	143,03	Основной проезд	40,0	2	3,0	6,0	1,0	-
90	76 ул Жети Казына	122,35	Второстепенный проезд	30,0	1	3,5	3,5	-	+
91	77 ул Зиаткер	308,39	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
92	78 ул Перулок Зиаткер	28,26	Второстепенный проезд	30,0	1	3,5	3,5	-	+
93	79. Тротуар 1	57,18	Тротуар					1,5	+
94	80 ул Козайым	180,00	Второстепенный проезд	30,0	1	3,5	3,5	-	+
95	81 ул пер. Оракты батыр	184,67	Основной проезд	40,0	2	2,7	5,4	1,0	+
96	82 ул пер Онгарсынова	91,96	Второстепенный проезд	30,0	1	3,5	3,5	-	+
97	83 ул пер Онгарсынова 5	296,70	IV-B	20,0	2	2,3	4,5	-	-
98	84 ул пер Оракты батыр 1	42,07	Второстепенный проезд	30,0	1	3,5	3,5	-	+

99	85 ул пер Оракты батыр 2	50,12	Второстепенный проезд	30,0	1	3,5	3,5	-	+
100	86. Тротуар 2	61,06	Тротуар					1,5	+
101	87. Тротуар 3	35,00	Тротуар					1,5	+
102	88 ул пер Ерментау 1	33,75	Второстепенный проезд	30,0	1	3,5	3,5	-	-
103	89 ул пер Ерментау 2	20,00	Второстепенный проезд	30,0	1	3,5	3,5	-	-
104	90 ул пер Инабат	49,36	Второстепенный проезд	30,0	1	3,5	3,5	-	-
105	91 ул Пер Жаухар	69,46	Второстепенный проезд	30,0	1	3,5	3,5	-	-
106	92. Переулок Инабат ПК4+60	80,00	Второстепенный проезд	30,0	1	3,5	3,5	-	-
107	93 ул Пер Шубартал 1	78,89	Второстепенный проезд	30,0	1	3,5	3,5	-	-
108	94 ул пер Жаухар 2	72,36	Второстепенный проезд	30,0	1	3,5	3,5	-	-
109	95 ул Мухитдинова	40,63	Второстепенный проезд	30,0	1	3,5	3,5	-	-
110	96 ул Жанакурлыс 19	90,56	Второстепенный проезд	30,0	1	3,5	3,5	-	-
111	97ул Мухитдинова 2	73,52	Второстепенный проезд	30,0	1	3,5	3,5	-	-
112	98 ул Пер между Жана курылыс 15 и Жанакурлыс	260,20	Второстепенный проезд	30,0	1	3,5	3,5	1,0	-
	Итого:	31 018,608						50	34

2.5.1. Организация основных дорожно-строительных работ в подготовительный период.

Перед началом основных строительных работ по строительству дорог необходимо выполнить следующие подготовительные работы:

- заготовка и складирование штабелей дорожно-строительных материалов;
 - устройство технологической площадки;
 - разбивочные работы;
- демонтаж существующего обустройства (дорожных знаков, ограждения), с вывозом элементов и конструкций на свалку, на базу;
 - подготовка существующего земляного полотна (рыхление откосов);
- подготовка грунтовой поверхности в местах устройства уширения насыпи, в местах прохождения дороги по новому направлению.

На откосах существующего земляного полотна при высоте насыпи до 2.0м производится рыхление грунта на глубину 0.30м на участке 2400м.

Снятие плодородного грунта осуществляется со всех вновь используемых площадей (площадку для складирования материалов, грунтовые резервы) с размещением его в валах и последующим использованием для рекультивации.

2.5.2. Возведение земляного полотна

Поперечные профили земляного полотна разработаны в соответствии с типовым проектом серии 503-0-48.87 при соблюдении требований СП РК 3.03—101-2013*, СН РК 3.03-01-2013«Автомобильные дороги» и "Руководства по сооружению земляного полотна автомобильных дорог общего пользования" в соответствии с нормами проектирования для дорог IV технической категории. При этом учитывались: тип дорожной одежды; высота насыпи; свойства грунтов, используемых в земляном полотне; природные условия района строительства и его инженерно-геологические особенности.

В утвержденном варианте поперечных профилей имеется 12 типов поперечников в границах застройки по СП РК 3.01–101-2013* для IV дорожно-климатической зоны, уклоны проезжей части 20 ‰, уклоны тротуаров 10%.

- **Тип 1.** Ширина проезжей части -3.5 м, одна полоса движения, с устройством укреплённых обочин по типу основной дороги по 0.5м. с каждой стороны (по СП РК 3.01-101-2013*).
- **Тип 2.** Ширина проезжей части 5,4 м, две полосы движения по 2,7 м, односторонний тротуар шириной 1,0м, устройство водоотвода с одной стороны методом устройства лотков Б-3-1 и железобетонных труб диаметром 0,5 м ЗКЦ 0,5 и ЛЖК-250 (по СП РК 3.01-101-2013* и ПСТ РК 65-2017).
- **Тип 3.** Ширина проезжей части -6.0 м, две полосы движения по 3.0 м, односторонний тротуар шириной 1.0м, устройство водоотвода с одной стороны методом устройства лотков Б-3-1 и железобетонных труб диаметром 0.5 м ЗКЦ 0.5 и ЛЖК-250 (по СП РК 3.01-101-2013*).
- **Тип 4.** Ширина проезжей части -6.0 м, две полосы движения по 3.0 м, односторонний тротуар шириной 1.0 м, с устройством укреплённой обочины по типу основной дороги по 0.5м. с одной стороны (по СП РК 3.01-101-2013*).
- **Тип 5.** Ширина проезжей части -3.5 м, односторонний тротуар шириной 1,0м, одна полоса движения, с устройством укреплённой обочины по типу основной дороги по 0.5м. с одной стороны (по СП РК 3.01-101-2013*).

- **Тип 6.** Ширина проезжей части -6.0 м, две полосы движения по 3.0 м, односторонний тротуар шириной 1.5 м, устройство водоотвода, с одной стороны, методом устройства лотков 6-3-1 и железобетонных труб диаметром 0.5 м 3КЦ 0.5 и ЛЖК-250 (по СП РК 3.01-101-2013*).
- **Тип 7.** Ширина проезжей части -5,4 м, две полосы движения по 2,7м, односторонний тротуар шириной 0,75м., устройство водоотвода с одной стороны железобетонных труб диаметром 0,5 м ЗКЦ 0,5 и ЛЖК-250 (по СП РК 3.01-101-2013* и ПСТ РК 65-2017).
- **Тип 8.** Ширина проезжей части -4.5 м, две полосы движения по 2.25 м, с устройством укреплённых обочин по типу основной дороги по 0.5м. с каждой стороны (по СП РК 3.01-101-2013* и СП РК 3-03-122-2013).
- **Тип 9.** Ширина проезжей части -3,5 м, одна полоса движения, с устройством укреплённых обочин по типу основной дороги по 0.5м. с каждой стороны и устройство водоотвода с одной стороны методом устройства железобетонных труб диаметром 0,5 м ЗКЦ 0,5 и ЛЖК-250 (по СП РК 3.01-101-2013*).
- **Тип 10.** Ширина проезжей части -3.5 м, одна полоса движения, односторонний тротуар шириной 2,0 м, устройство водоотвода, с одной стороны, методом устройства лотков Б-3-1 и железобетонных труб диаметром 0,5 м ЗКЦ 0,5 и ЛЖК-250 (по СП РК 3.01-101-2013*).
- **Тип 11.** Ширина проезжей части -6.0 м, две полосы движения по 3.0 м, с устройством укреплённых обочин по типу основной дороги по 0.5м. с каждой стороны (по СП РК 3.01-101-2013*).
- **Тип 12.** Ширина проезжей части -3.5 м, одна полоса движения, с устрой ством водоотвода, с одной стороны, методом устройства лотков Б-3-1 и железобетонных труб диаметром 0.5 м ЗКЦ 0.5 и ЛЖК-250 (по СП РК 3.01-101-2013*).

Данные поперечные профили запроектированы из условий поперечного водоотвода и существующего уклона местности.

Тротуар возвышен над проезжей частью на 15см. на уровень бордюра в целях безопасности движения пешеходов. С внешней стороны тротуаров предусмотрено устройство бордюрных камней БР 100.20.8 (поребриков) для укрепления кромки тротуаров с целью более долговечного их использования и придания эстетичного вида улицам.

2.5.3. Сроки осуществления намечаемой деятельности.

Проектируемые работы по строительству дорог в мкр. «Алгабас», предусмотренные данным проектом, планируется начать в III квартале 2024 г.

Планируемый срок выполнения работ – 21 месяц.

2.5.4. Потребность в административных и санитарно-бытовых помещениях.

Здания и сооружения временных стройплощадок предусмотрены из инвентарных мобильных блок-контейнеров. Расчет требуемых административных и санитарно-бытовых помещений выполнен исходя из численности соответствующих категорий работников.

Потребность в административных и санитарно-бытовых помещениях:

No	Наименование	Назначение	Ед.изм.	Нормативный	Расчетный
п/п				показатель	показатель
1	Прорабская	Размещение ИТР	M ²	4 на 1 чел.	28
2	Бытовка	Переодевание рабочих, хранение инструмента, место отдыха бригады, звена	м ² , двойной шкаф	0,9 на 1 чел.	42,3
3	Умывальная	Санитарно- гигиеническое обслуживание	м ² , кран	0,05 на 1 чел.	2,7/3
4	Туалет	Санитарно- гигиеническое обслуживание	очко	4 на 100 чел.	1/4
5	Сушилка	Сушка спецодежды и спец. обуви	M ²	0,15 на 1 чел.	8,1
6	Медпункт	Оказание рабочим первой медицинской помощи	M ²	20 на 300-500 чел.	2

Перечень необходимых зданий, сооружений для обеспечения стройплощадки

No	Наименование сооружений	Ед.изм.	Количество
п/п			
1	Помещение охраны объекта	шт.	1
2	Площадки для складирования материалов,	шт.	1
	стоянки техники и т.п.		
3	Инвентарные склады	шт.	1
4	Площадка твердых бытовых отходов,	шт.	1
	строительных отходов с контейнерами для		
	мусора, шт.		

Санитарно-бытовые помещения для работающих размещают в границах стройплощадки в виде мобильных инвентарных зданий контейнерного типа заводского изготовления. Также, на строительной площадке предусмотрены помещения для приема пищи, душевые, комнаты отдыха и обогрева, медпункт, контейнеры для сбора твердых бытовых отходов. Раздача и прием горячего питания работников на строительной площадке предусмотрено в специальном помещении (столовой), оборудованным умывальником. Доставка питания осуществляется автотранспортом из базовой столовой к месту работ. На специально выделенное помещение (столовую) и раздаточный пункт оформляется санитарно-эпидемиологическое заключение. В помещении обогрева температура воздуха поддерживается на уровне плюс 21-25°C.

Строительная площадка в ходе строительства своевременно очищается от строительного мусора, в зимнее время от снега, в теплое время года поливается.

Сбор и удаление отходов, содержащих токсические вещества, осуществляются в закрытые контейнеры или плотные мешки, исключая ручную погрузку. Для сбора строительных отходов устанавливается контейнер для мусора объемом 8,0 м³, для бытовых отходов от жизнедеятельности строителей – контейнер объемом 1,1 м³. Контейнеры для мусора регулярно вывозятся с территории строительной площадки автотранспортом на полигон ТБО. Вывозку строительного мусора осуществлять контейнерами и оборудованными самосвалами.

На выездах со строительной площадки предусмотрено устройство систем мойки колес с установкой оборотного водоснабжения. Комплект предназначен для использования на строительных площадках, в автопарках, промышленных и других объектах для мойки колес автотранспортных средств и обеспечивает очистку воды от взвешенных веществ и нефтепродуктов для повторного использования при пропускной способности до 10-15 грузовых автомобилей в час. Система водоснабжения оборотная. После очистки вода поступает в аккумулятор (бак) чистой воды, встроенный в очистное оборудование. Из аккумулятора вода поступает в аппарат высокого давления, а из аппарата вода подается на автомобиль. После чего вода стекает в приямок. Из приямка вода забирается на очистные, где снова происходит процесс очистки воды. При зачистке отстойника сточных вод мойки автотранспорта образуется осадок очистных сооружений мойки автотранспорта. Шлам очистных сооружений накапливается в герметичной металлической закрывающейся емкости; по мере накопления передается на утилизацию спецпредприятиям.

2.6. Описание планируемых к применению наилучших доступных технологий

Рассматриваемый объект, относится к объекту III категории, согласно Заключения №KZ54VWF00159721 от 30.04.2024 г., выданное РГУ «Департамент экологии по городу Алматы Комитета экологического регулирования и контроля МЭПР РК (Приложение 1).

В ст. 113 Экологического Кодекса прописано, что области применения наилучших доступных техник определяются в приложении 3 к Кодексу. Намечаемая деятельность отсутствует в Приложении 3 к Экологическому кодексу Республики Казахстан «Перечень областей применения наилучших доступных техник».

Наилучшие доступные технологии для строительства и реконструкции автомобильных дорог не разработаны.

Следовательно, для рассматриваемого вида деятельности наилучшие доступные технологии на сегодняшний день не определены и в настоящем проекте не применяются.

2.7. Описание работ по постутилизации существующих зданий, строений, сооружений, оборудования и способов их выполнения строительных работ.

По завершению строительства объекта демонтажу подлежат все временные сооружения, возведенные на период осуществления строительных работ.

Производится уборка всех загрязнений территории, оставшихся при демонтаже временных сооружений, планировка территорий, засыпка эрозионных форм и термокарстовых просадок грунтом с аналогичными физико-химическими свойствами, восстановление системы естественного или организованного водоотвода, восстановление плодородного слоя почвы, срезка грунтов на участках, поврежденных горюче-смазочными материалами.

2.8. Информация об ожидаемых видах, характеристиках и количестве эмиссий в окружающую среду, иных негативных (вредных) антропогенных воздействиях на окружающую среду, связанных со строительством и эксплуатацией объектов для осуществления рассматриваемой деятельности

2.8.1. Воздействие на водные объекты

Воздействие проектируемого объекта на водные ресурсы обычно определяется оценкой рационального использования водных ресурсов.

В проекте приняты технологические решения, исключающие:

- нерациональное и неэкономное использование водных ресурсов;
- попадание загрязненных бытовых и производственных стоков в поверхностные и подземные воды.

2.8.1.1. Водоснабжение и водоотведение.

На период строительно-монтажных работ вода будет завозиться бутилированная, необходимо заключить договор на поставку воды. Техническое водоснабжение согласно письму №454 от 19.05.2020 года от КГУ на праве хозяйственного ведения «Алматы Тазалык» Акимата города Алматы намечено обеспечивать с водозаборного пункта по адресу улица Толе би, угол улицы Муканова. Стоимость технической воды необхоимо принять согласно действующего тарифа.

Доставка воды производится автотранспортом, соответствующим документам государственной системы санитарно-эпидемиологического нормирования.

Согласно требованиям пункта 11 Санитарных правил от 28 февраля 2015 года № 177 предусмотрен пункт мойки колес с твердым покрытием, септиком сточной воды и емкостью для забора воды при выезде автотранспорта.

При выезде автотранспортного средства со строительной площадки на центральную магистраль оборудуется пункт мойки колес, имеющий твердое покрытие со сточной ливневой канализации с септиком и емкостью для забора воды.

Продолжительность строительства составит 21 месяцев.

Согласно, ресурсной сметы техническая вода используется в количестве – 12438,77245 м3, в сутки – 19,7441 м3/сутки.

Всего на стадии строительства планируется использовать 16407,77 м3/период воды, в том числе хозбытовые - 1575,0 м3/период, питьевой — 126,0 м3/период, на мытье колес - 2268,0 м3/период, на технические нужды - 12438,77245 м3/период.

Таблица 2.8.1.

Наименование Кол-во Н		Нормы	Кол-во	Водоп	отребление	Водоо	тведение	Безвозвратное	Примечание
потребителей	работников	расхода	дней	м ³ /сут	м ³ /период	Хозбыт	Производ-	Потребление	
		воды	работы			канал-	ые	м ³ /год	
		на ед.				ия			
1	2	3	4	5	6	7	8	9	10
В период строительства дороги в мкр. «Алгабас»	100	0,002	630	0,2	126,0	126,0	-	126,0	СниП РК 4.01- 41-2006; СанПиН 3.02.002-04
В период строительства дороги в мкр. «Алгабас»	100	0,025	630	2,5	1575,0	1575,0	-	1575,0	СниП РК 4.01- 41-2006; СанПиН 3.02.002- 04
На мойку колес				3,6	2268,0	2268,0	-	-	
На технические нужды									
На технические нужды				19,7441	12438,77245	-	-	12438,77245	
Итого:				26,0441	16407,77	3969,0		14139,77	

2.8.1.2. Современное состояние поверхностных и подземных вод.

По проектируемому объекту строительство дорог в мкр. «Алгабас» в Алатауском районе протекает река Каргалы.

Река Карагайлы. Длина Каргалинки 57 км, площадь водосбора 98 км². Имеет 15 мелких притоков родникового питания общей длиной 27 км. Ширина русла 5-10 м, глубина 0,3-0,5 м, в паводковый период до 1 м. Средний многолетний расход воды 0,65 м3/сек (у поселка Карагайылы).

Бассейн Каргалинки расположен в среднегорной и низкогорной зонах западной части Заилийского Алатау. Склоны долины в среднем течении имеют крутизну 40-60 градусов. В бассейне Каргалинки имеются 2 пруда общей площадью водного зеркала 0,03 км².

Вода реки используется для орошения и водоснабжения. В местах пересечения реки с автомобильными трассами Алматы — Бишкек, Алматы-Шемолган построены мосты.

Прохождение проектных дорог проходит вдоль реки со сближением от 11 м. и до 59,3 м., пересечение проектной дороги с рекой отсутствуют.

Современное состояние качества поверхностных вод.

Государственный мониторинг качества поверхностных вод необходим для оценки пригодности данных вод к использованию в социально-экономической сфере жизнедеятельности населения и разработки мер по охране от загрязнения, а также оценки эффективности разработанных и реализованных водоохранных мероприятий и осуществляется по наблюдательной сети различных ведомств по утвержденным программам.

Имеется согласование уполномоченного органа БАБИ за №Z01VRC00007709 от 12.06.2020 г. (Приложение 10).

2.8.1.3. Мероприятия по охране и рациональному использованию водных ресурсов.

Для предотвращения загрязнения поверхностных вод устанавливаются природоохранные требования, которые должна выполнить строительная организация при производстве работ на реках. С целью предотвращения отрицательных последствий от производства работ и минимизации воздействия на биоценоз водоемов проектом предлагается следующие мероприятия:

- заправка дорожно-строительной и транспортной техники, установка временных складов ГСМ, хранение и размещение других вредных веществ, используемых при строительстве участков должны осуществляться при жестком соблюдении соответствующих норм и правил, исключающих загрязнение грунтовых вод (установка емкостей с ГСМ только на поддонах; мойка техники только в специально отведенных местах, оборудованных грязеуловителями; запрещение слива остатков ГСМ на рельеф);
- с целью удаления разливов топлива и смазочных материалов на автостоянках и местах заправки предусматривается набор адсорбентов и специальные металлические контейнеры для сбора загрязненных нефтью отходов и почв;
- химические и другие вредные вещества, жидкие и твердые отходы собирают на специально отведенных площадках, имеющих бетонное основание и водосборный приямок. Размещение емкостей с жидкими отходами дополнительно осуществляется на металлических поддонах, исключающих проливы загрязнителей;

- для обеспечения дренажа и организованного стока поверхностных ливневых и снеготалых вод формирование уклонов участка после завершения вертикальной планировки в соответствии с естественным рельефом местности;
- профилирование подъездных дорог (для недопущения застаивания поверхностных вод в пределах дорожного полотна);
- после завершения строительных работ: планировка и благоустройство территории во избежание застоя поверхностных вод и формирования эфемерных водоемов (луж, озерков, заболоченных участков).

2.8.2. Воздействие на атмосферный воздух

Как правило, в процессе строительства какого-либо объекта образуется ряд организованных и неорганизованных источников выбросов загрязняющих веществ в атмосферу.

В данном случае выбросы загрязняющих веществ в атмосферу будут производиться на стадии строительства. На этапе эксплуатации дорог в мкр. «Алгабас», выбросы загрязняющих веществ в атмосферу отсутствуют.

Источниками загрязнения атмосферного воздуха на площадке на период строительства являются: земляные работы, транспортные работы, сварочные, покрасочные работы, резка металла, шлифовка, компрессоры, битумные котлы, ДЭС.

Для поставки привозных материалов могут привлекаться малые частные фирмы. Проведение строительных работ сопровождается неизбежным техногенным воздействием на основные компоненты окружающей природной среды.

Потребность в машинах и механизмах для производства основных строительно-монтажных работ определена по выбранным методам производства работ.

Потребность в основных машинах, механизмах, инструментах представлены в таблицах 2.8.2–2.8.3.

Параметры выбросов загрязняющих веществ представлены в таблице 2.8.4.

Перечень загрязняющих веществ представлен в таблице 2.8.5.

Таблица групп суммаций представлена в таблице 2.8.6.

Таблица перечня источников, дающих наибольший вклад в уровень загрязнения представлен в таблице 2.8.7.

№ п/п	Наименование материалов	Расход	Единица измерения
1	2	3	4
	Расход строительных материалов		
1	Щебень	1851,20319	м3
2	Песок природный	320,1514	м3
3	Смеси песчано-гравийные природные	57685,4192	м3
4	Смесь щебеночно-гравийно-песчанная ЩГПС	32934,37	м3
5	Бетон тяжелый	3530,6936	м3
6	Раствор готовый кладочный	161,36557	м3
7	Смеси асфальтобетонные горячие плотные мелкозернистые	20159,7695	T
8	Смеси асфальтобетонные горячие пористые крупнозернистые	21857,11587	T
9	Битумы	254,88194	T
10	Кислород технический газообразный	481,701505	м3
11	Пропан-бутан, смесь техническая	909,8525563	КГ
12	Вода техническая	12438,77245	м3
13	Работа грунта:		
14	Грунт под насыпь	4 137	м3
15	Выемка грунта	2 825	м3
16	Разработка грунта	61654,55	м3
	Сварочные материалы		
17	Электроды, УОНИ 13/45	9,021213	T
	Покрасочные материалы		
18	Грунтовка глифталевая, ГФ-021	0,860706	T
19	Грунтовка глифталевая, ГФ-0119	0,09675	T
20	Бензин-растворитель	0,0651182	T
21	Уайт-спирит	0,26938193	T
22	Растворитель Р-4	0,0169	T
23	Растворитель N 646	0,0357	ΚΓ
24	Лак битумный БТ-577	34,16195	ΚΓ
25	Лак электроизоляционный 318	0,066	КГ
26	Эмаль ХВ-124	0,0281	T
27	Эмаль ПФ-115	2,456328	T
	Прочее		
28	Топливо дизельное из малосернистых нефтей	4,090548	Т
29	Ветошь	2,54516667	КГ
30	Мусор строительный	409,833025	Т
31	Древесные отходы	153,664	Т
32	Припои оловянно-свинцовые в чушках бессурьмянистые	0,108935	T

Таблица 2.8.3– Количество машин и механизмов в период строительства

№	Машины и механизмы
1	2
1	Автогрейдеры среднего типа, 99 кВт (135 л.с.)
2	Автопогрузчики, 5 т
3	Бульдозеры, 59 кВт (80 л.с.)
4	Бульдозеры, 79 кВт (108 л.с.)
5	Бульдозеры-рыхлители на тракторе, 79 кВт (108 л.с.)
6	Вибратор глубинный
7	Дрели электрические

Катки дорожные прицепные на пневмоколесном ходу, 25 т Катки дорожные самоходные гладкие, 8 т Катки дорожные самоходные гладкие, 13 т 10 11 Катки дорожные самоходные на пневмоколесном ходу, 16 т Катки дорожные самоходные на пневмоколесном ходу, 30 т 12 Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм.), 13 Корчеватели-собиратели с трактором, 79 кВт (108 л.с.) 14 Краны башенные, 8 т 15 Краны на автомобильном ходу, 10 т 16 17 Краны на гусеничном ходу, до 16 т Краны на гусеничном ходу, 25 т 18 19 Краны на пневмоколесном ходу, 25 т 20 Машины бурильно-крановые с глубиной бурения 1,5-3 м на тракторе 66 кВт (90 л.с.) 21 Машины поливомоечные, 6000 л 22 Машины шлифовальные угловые 23 Молотки отбойные пневматические при работе от передвижных компрессорных станций Котлы битумные передвижные, 400 л 24 25 Автогудронаторы, 3500 л 26 Гудронаторы ручные 27 Насос для нагнетания воды, содержащей твердые частицы, подача 45 м3/ч, напор 55 м 28 Пила с карбюраторным двигателем 29 Тракторы на гусеничном ходу, 79 кВт (108 л.с.) Трамбовки пневматические при работе от компрессора Катки дорожные самоходные тандемные больших типоразмеров типа катков фирмы "ВОМАG" с рабочей массой от 9,1 до 10,1 т Катки дорожные самоходные тандемные средних типоразмеров типа катков фирмы "ВОМАG" 32 с рабочей массой от 4,5 до 7,3 т Укладчики асфальтобетона средних типоразмеров фирмы "VOGELE" с шириной укладки до 6,5 33 Экскаваторы одноковшовые дизельные на гусеничном ходу, 0,65 м3 34 35 Экскаваторы на гусеничном ходу импортного производства типа "HITACHI", 1 м3 Экскаваторы на гусеничном ходу импортного производства типа "HITACHI", 1,6 м3 Автомобили бортовые, до 5 т Станки для резки арматуры 38 Погрузчики одноковшовые универсальные фронтальные пневмоколесные, 3 т

Источниками загрязнения атмосферного воздуха

Объект	Характеристика производственного процесса	Эмиссии
1	2	3
ист. загр. № 0001 –	Предназначено для подачи электроэнергии.	Азот диоксид,
<u>Передвижная</u>	Организованные выбросы.	углерод оксид, азот
электростанция до 4 кВт		оксид, диоксид
		серы, углеводороды
		С12-С19, сажа,
		бензапирен,
		формальдегид.

war agen No 0002	Протисомомом пля поможним побот	A nom www.w
ист. загр. № 0002 – <u>Компрессоры</u> передвижные	Предназначено для ремонтных работ. Организованные выбросы.	Азот диоксид, углерод оксид, азот оксид, диоксид серы, углеводороды С12-С19, сажа, бензапирен,
ист. загр. № 0003 – Передвижной битумный котел 400 л	Предназначено для подогрева битума. Организованные выбросы.	формальдегид Азот диоксид, сера диоксид, азот оксид, углерод оксид, алканы С12-С19, углерод (сажа).
ист. загр. № 6001 – Земляные работы	Разработка грунта производится в начале строительства, работа производится экскаватором. Засыпка траншей и ям производится бульдозером. Неорганизованный источник.	Пыль неорганическая- SiO ₂ (20-70%).
ист. загр. № 6002— Работа передвижных источников на территории строительной площадки	Работа передвижных источников на территории строительной площадки. Неорганизованный источник.	Пыль неорганическая- SiO_2 (20-70%), углерод оксид, диоксид серы, сажа, оксид азота, азота диоксид, алканы $C12\text{-}C19$
ист. загр. № 6003- Разгрузке инертных материалов	Производится разгрузка инертных материалов. При разгрузке в атмосферу выделяется пыль. Неорганизованный источник.	Пыль неорганическая - SiO ₂ (20-70%) выше.
ист. загр. № 6004 – Машины бурильно- крановые	Предназначено для бурения ям. Неорганизованный источник.	Пыль неорганическая - SiO ₂ (20-70%) выше.
ист. загр. № 6005 – <u>Гидроизоляция</u> ист. загр. № 6006 –	Предназначено для обмазки битумом полотна. Неорганизованный источник. Предназначено для укладки асфальтобетонного	Углеводороды C12- C19 (алканы). Углеводороды C12-
Укладка асфальтобетонного покрытия	покрытия Неорганизованный источник	С19 (алканы).
ист. загр. № 6007 – Сварочные работы	Предназначено для сварочных работ. Неорганизованный источник	Железо оксид, марганец и его соединения, фтористые газообразные соединения, фториды плохо растворимые, азота диоксид, углерод оксид, пыль неорганическая 70-20%.
ист. загр. № 6008 – Сварка полиэтиленовых труб	Предназначено для сварки полиэтиленовых труб. Неорганизованный источник	Винил хлорид, углерод оксид

ист. загр. № 6009 – Покрасочные работы	Предназначено для покраски. При строительстве будет использоваться для разметки автодороги. Неорганизованный источник.	Уайт-спирит, ксилол, бутилацетат, ацетон, толуол, бензин
ист. загр. № 6010 – Ручной элетроинструмент (шлифмашинка, болгарка)	Механическая обработка материалов. Неорганизованный выброс	Взвешенные частицы, пыль абразивная.
ист. загр. № 6011 – <u>Пост</u> газорезки, газосварки	Производится газорезка и газосварка на территории строительства объекта. Неорганизованные выбросы.	Азот диоксид, углерод оксид, железо оксид, марганец и его соединения.
ист. загр. № 6012 – Отрезной станок	Предназначено для резки арматуры. Неорганизованный выброс.	Взвешенные частицы, пыль абразивная.
ист. загр. № 6013 – Припои оловянно- свинцовые сурьмянистые и бессурьмянистые	Предназначено для пайки. Неорганизованный источник	Свинец и его соединения, олово оксид

Расчет выбросов загрязняющих веществ в атмосферу на период строительства.

Источник выделения: Передвижная дизельная электростанция до 4 кВт Источник загрязнения - Дымовая труба № 0001

Список литературы: Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004

Наименование	Обозн.	Ед.изм.	Значение
1	2	3	4
Исходные данные:			
Мощность дизельной установки	P	кВт	4,0
Температура отходящих газов	Т	С	400
Расход топлива		т/год	0,06589
Удельный расход топлива	b	г кВт/ч	198,8
Группа дизельной установки		A	
Выброс на единицу полезной работы	e	г кВт/ч	
углерода оксид		г кВт/ч	7,2
азота оксиды		г кВт/ч	10,3
углеводороды С12-С19		г кВт/ч	3,6
сажа		г кВт/ч	0,7
серы диоксид		г кВт/ч	1,1
формальдегид		г кВт/ч	0,15
бенз(а)пирен		г кВт/ч	0,000013
Выброс на кг топлива	q	г/кг	
углерода оксид		г/кг	30
азота оксиды		г/кг	43

углеводороды С12-С19	г/кг	15
сажа	г/кг	3
серы диоксид	г/кг	4,5
формальдегид	г/кг	0,6
бенз(а)пирен	г/кг	0,000055
Расчет:		
Мсек=e*P/3600		
Мвал=q*В/1000		
Примесь: 0337 Углерода оксид	г/с	0,0080
	т/год	0,0020
Примесь: 0304 Азота оксид	г/с	0,0015
	т/год	0,0023
Примесь: 0301 Азота диоксид	г/с	0,0114
	т/год	0,0028
Примесь: 2754 Углеводороды С12-С19	г/с	0,0040
	т/год	0,0010
Примесь: 0328 Сажа	г/с	0,0008
	т/год	0,0002
Примесь: 0330 Серы диоксид	г/с	0,0012
	т/год	0,0003
Примесь: 1325 Формальдегид	г/с	0,0002
	т/год	0,00004
Примесь: 0703 Бенз(а)пирен	г/с	0,00000001
	т/год	0,000000004
Объем отходящих газов		
GOΓ=8,72*10(-6)*b*P	кг/с	0,00693
gor=g0or/(1+Tor/273)	кг/м3	0,53140
QΟΓ=GΟΓ/gοΓ	м3/с	0,01305

Источник загрязнения N 0002

Источник выделения – Компрессоры передвижные

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 23.5

Эксплуатационная мощность стационарной дизельной установки P_{3} , кВт, 31

Удельный расход топлива на экспл./номин. режиме работы двигателя $\pmb{b_g}$, г/кВт*ч, 97.5

Температура отработавших газов T_{02} , K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно 1.Оценка расхода и температуры отработавших газов

Расход отработавших газов $G_{m{arrho}2}$, кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{9} * P_{9} = 8.72 * 10^{-6} * 97.5 * 31 = 0.0263562$$
 (A.3)

Удельный вес отработавших газов \mathbf{g}_{02} , кг/м³:

$$g_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 450/273) = 0.494647303$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов ${\it Q_{o2}}$, м 3 /с:

$$Q_{o2} = G_{o2} / g_{o2} = 0.0263562 / 0.494647303 = 0.053282814 \quad (A.4)$$

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального

ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000$$
 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	С	С
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (4)	0.0709556	0.8084	0	0.0709556	0.8084
0304	Азот (II) оксид(6)	0.0115303	0.131365	0	0.0115303	0.131365
0328	Углерод (593)	0.0060278	0.0705	0	0.0060278	0.0705
0330	Сера диоксид (526)	0.0094722	0.10575	0	0.0094722	0.10575
0337	Углерод оксид (594)	0.062	0.705	0	0.062	0.705
0703	Бенз/а/пирен (54)	0.0000001	0.0000013	0	0.0000001	0.0000013
1325	Формальдегид (619)	0.0012917	0.0141	0	0.0012917	0.0141
2754	Углеводороды С12-19)	0.031	0.3525	0	0.031	0.3525

Источник загрязнения N0003, Дымовая труба Источник выделения N 001, Передвижная битумный котел, 400 л

- 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной
- отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.б. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов

Тип источника выделения: Битумоплавильная установка

Время работы оборудования, ч/год, Т=840

Расчет выбросов при сжигания топлива

Вид топлива: жидкое

Марка топлива: Дизельное топливо

Зольность топлива, %(Прил. 2.1), AR = 0.025

Сернистость топлива, %(Прил. 2.1), SR = 0.3

Содержание сероводорода в топливе, % (Прил. 2.1), H2S = 0

Низшая теплота сгорания, МДж/кг(Прил. 2.1), QR=41.07

Расход топлива, т/год, ВТ=1,223541

Примесь: 0330 Сера диоксид (526)

Доля диоксида серы, связываемого летучей золой топлива, N1SO2=0.02

Валовый выброс ЗВ, т/год (3.12),

 $_M_=0.02*BT*SR*(1-N1SO2)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0,3*(1-0,02)*(1-N2SO2)+0.0188*H2S*BT=0,02*1,223541*0$

0)+0,0188*0*1,223541=0,00719

Максимальный разовый выброс ЗВ, г/с (3.14),

G=_M_*10^6/(3600*_T_)=0,00719*10^6/(3600*840)=0,00238

Примесь: 0337 Углерод оксид (594)

Потери теплоты вследствие химической неполноты сгорания топлива, %, Q3=0.5

Потери теплоты вследствие механической неполноты сгорания топлива, %, Q4=0

Коэффициент, учитывающий долю потери теплоты вследствие химической

неполноты сгорания топлива, R=0.65

Выход оксида углерода, кг/т (3.19) , CCO=Q3*R*QR=0.5*0.65*41.07=13.35

Валовый выброс, т/год (3.18),

M=0.001*CCO*BT*(1-Q4/100)=0.001*13.35***1,223541***(1-0/100)=0,01633

Максимальный разовый выброс, г/с (3.17),

 $G_{-}M_*10^6/(3600*_{T_{-}})=0,01633*10^6/(3600*840)=0,00540$

NOX=1

Выбросы оксидов азота

Производительность установки, т/час, PUST=0.5

Кол-во окислов азота, кг/1 Гдж тепла (табл. 3.5), KNO2=0.047

Коэфф. снижения выбросов азота в результате технических решений, В=0

Валовый выброс оксидов азота, т/год (ф-ла 3.15) , M=0.001*BT*QR*KNO2*(1-B)= 0.001*1,223541*41.07*0.047*(1-0)=0.00236

Максимальный разовый выброс оксидов азота, г/с,

 $G=M*10^6/(3600*_T) = 0.00236*10^6/(3600*840) = 0.00078$

Коэффициент трансформации для диоксида азота, NO2=0.8

Коэффициент трансформации для оксида азота, NO=0.13

Примесь: 0301 Азота (IV) диоксид (4)

Валовый выброс диоксида азота, т/год, $_M$ =NO2*M=0.8*0,00236=0,00189

Максимальный разовый выброс диоксида азота, Γ/c , _G_=NO2*G=0.8*0,00078=0,00062

Примесь: 0304 Азот (II) оксид (6)

Валовый выброс оксида азота, т/год , _M_=NO*M=0.13*0,000236=0,00003

Максимальный разовый выброс оксида азота, Γ/c , $_G_=NO*G=0.13*0,00078=0,00010$

Примесь: 0328 Углерод (сажа)

Коэффициент (табл. 2.1), F = 0.01

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_ = BT * AR * F = 1,223541 * 0,025 * 0,01 = 0,00031$

Выброс твердых частиц, г/с (ф-ла 2.1), Максимальный разовый выброс, г/с,

G=_M_*10^6/(_T_*3600)=0,00031*10^6/(840 *3600)=0,00010

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (4)	0,00062	0,00189
0304	Азот (II) оксид (6)	0,00010	0,00003
0330	Сера диоксид (526)	0,00238	0,00719
0337	Углерод оксид (594)	0,00540	0,01633
0328	Углерод (сажа)	0,00010	0,00031

Источник загрязнения N6001 – <u>Грунт под насыпь</u>

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Материал: Грунт

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)

Вид работ: Выемочно-погрузочные работы

Объем грунта – 4 137 м3. (ρ = 4 137*1,80 = 7446,6 тонн)

Влажность материала, %, VL = 10.0

Коэфф., учитывающий влажность материала(табл.4) , K5 = 0.1

Доля пылевой фракции в материале(табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1) , P2 = 0.02

Скорость ветра в зоне работы бульдозера(средняя), м/с, G3SR = 0,8

Коэфф. учитывающий среднюю скорость ветра(табл.2), P3SR = 1,0

Скорость ветра в зоне работы, бульдозера (максимальная), м/c, G3 = 3

Коэфф. учитывающий максимальную скорость ветра(табл.2), Р3 = 1,2

Коэффициент, учитывающий местные условия(табл.3), Р6 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5) , P5 = 0.6

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.7), В = 0.7

Количество перерабатываемой бульдозером породы, т/час, G = 3.91

Максимальный разовый выброс, г/с (8), $_G_ = P1 * P2 * P3 * K5 * P5 * P6 * B * G * 10 ^ 6 / 3600 = 0.05 * 0.02 * 1.2 * 0.1 * 0.6 * 1 * 0.7 * 3.91 * 10 ^ 6 / 3600 = 0.05474$

Валовый выброс, m/200, $_M_ = P1 * P2 * P3SR * K5 * P5 * P6 * B * G * RT = 0.05 * 0.02 * 1.2 * 0.1 * 0.6 * 1 * 0.7 * 7446.6 = 0.37531$

Итого выбросы от источника выделения:

001 Земляные работы

OOL SCHUINING	- I		
Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	0,05475	0,37531

Источник выделения N 002 – Выемка грунта

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Материал: Грунт

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)

Вид работ: Выемочно-погрузочные работы

Объем грунта – 2 825 м3. (ρ = 2825 *1,80 = 5085,0 тонн)

Влажность материала, %, VL = 10.0

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.1

Доля пылевой фракции в материале(табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), P2 = 0.02

Скорость ветра в зоне работы бульдозера(средняя), м/с, G3SR = 0.8

Коэфф. учитывающий среднюю скорость ветра(табл.2), P3SR = 1,0

Скорость ветра в зоне работы, бульдозера (максимальная), м/с, G3 = 3

Коэфф. учитывающий максимальную скорость ветра(табл.2), Р3 = 1,2

Коэффициент, учитывающий местные условия(табл.3), Р6 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), P5 = 0.6

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.7), В = 0.7

Количество перерабатываемой бульдозером породы, т/час, G = 3,91

Максимальный разовый выброс, г/с (8), $_G_ = P1 * P2 * P3 * K5 * P5 * P6 * B * G * 10 ^ 6 / 3600 = 0.05 * 0.02 * 1.2 * 0.1 * 0.6 * 1 * 0.7 * 2.67 * 10 ^ 6 / 3600 = 0.03738$

Валовый выброс, m/год, $_M_=P1*P2*P3SR*K5*P5*P6*B*G*RT=0.05*0.02*1.2*0.1*0.6*1*0.7*5085.0=0.25628$

Итого выбросы от источника выделения:

001 Земляные работы

Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	0,03738	0,25628

Источник выделения N 003 - Разработка грунта

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №13 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Материал: Грунт

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)

Вид работ: Выемочно-погрузочные работы

Объем грунта – 61654,55м3. (ρ = 61654,55 *1,80 = 110978,2 тонн)

Влажность материала, %, VL = 10.0

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.1

Доля пылевой фракции в материале(табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), P2 = 0.02

Скорость ветра в зоне работы бульдозера(средняя), м/с, G3SR = 0.8

Коэфф. учитывающий среднюю скорость ветра(табл.2), P3SR = 1,0

Скорость ветра в зоне работы, бульдозера (максимальная), м/c, G3 = 3

Коэфф. учитывающий максимальную скорость ветра(табл.2), P3 = 1.2

Коэффициент, учитывающий местные условия(табл.3), Р6 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), P5 = 0.6

Высота падения материала, м, GB = 2

Коэффициент, учитывающий высоту падения материала(табл.7), B=0.7 Количество перерабатываемой бульдозером породы, т/час, G=58,23

Максимальный разовый выброс, г/с (8), $_G_=P1*P2*P3*K5*P5*P6*B*G*10^6/3600=0,05*0,02*1,2*0,1*0,6*1*0,7*58,23*10^6/3600=0,81522$

Валовый выброс, m/год, $_M_=P1*P2*P3SR*K5*P5*P6*B*G*RT=0.05*0.02*1.2*0.1*0.6*1*0.7*110978.2=5.59330$

Итого выбросы от источника выделения:

001 Земляные работы

Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	0,81522	5,59330

Источник загрязнения N6002

Источник выделения N 001 - Выделение пыли при передвижении техники по

строительной площадке

строительной площадке			
Исходные параметры	Обозначени е	Значени е	Единица измерени я
1	2	3	4
Коэффициент учитывающий среднюю грузоподъемность			
единицы автотранспорта определяется как соотношение			
суммарной грузоподъемности всего автотранспорта на их			
общее количество	C1	1	
Коэффициент учитывающий среднюю скорость			
передвижения транспорта по площадке	C2	0,6	
Коэффициент учитывающий состояние дорог	C3	1	
Коэффициент учитывающий профиль поверхности			
материала на плотформе	C4	1,45	
Коэффициент, учитывающий скорость обдува материала	C5	1,2	
Коэффициент, учитывающий влажность поверхностного			
слоя	C6	0,1	
Коэффициент, учитывающий долю пыли уносимой в			
атмосферу	C7	0,01	
Число ходок по площадке	N	6	
Средняя протяженность одной ходки	В	0,12	КМ
Пылевыделение в атмосферу на 1 км пробега	V	1450	г
Средняя площадь платформы	P0	6	м2
Пылевыделение в единицы фактической поверхности			
материала на платформе	B2	0,004	г/м2*с
Число автотранспорта работающего на площадке	n	39	
Число часов работы в автотранспорта занятого при			
строительных работах (бульдозер, экскаватор, кран,			
самосвал и др.) в год	T	2880	час
Примесь: 2908 Пыль неорганическая: 70-20% SiO ₂			
Максимально-разовый выброс:			
Мсек =			
(C1*C2*C3*N*B*C6*C7*V)/3600*C4*C5*C6*P0*B2*n		0,16304	г/с

$M200 = M*3600*T*10^6$	1,69038	т/год

Работа двигателя автотранспорта (ист. выд. № 002)

Максимальное количество одновременно работающего автотранспорта – 39 ед.

Время работы автотранспорта с учетом коэффициента использования техники K = 0.85 составляет: T = 2880 * 0.85 = 2448 час/период.

Основными загрязняющими веществами, выбрасываемыми, в атмосферный воздух являются: диоксид азота (0301), оксид азота (0304), сернистый ангидрид (0330), оксид углерода (0337), углеводороды C12 – C19 (2754).

Расчет производится согласно «Методике расчета выбросов вредных веществ в атмосферу от автотранспортных предприятий», утвержденной Приказом Министра охраны окружающей среды от 18.04.2008 г. № 100-п.

Максимальный разовый выброс от автомобилей рассчитывается по формуле:

G = (M1 * L2 + 1.3 * M1 * L2n + Mxx * Txm) * Nk1/3600, r/cek

где:

MI - пробеговый выброс вещества автомобилем при движении по территории предприятия, г/км;

L2 - максимальный часовой пробег автомобиля без нагрузки, км;

L2n - максимальный часовой пробег автомобиля с нагрузкой, км;

Мхх - удельный выброс вещества при работе двигателя на холостом ходу, г/мин;

Тхт - максимальное время работы на холостом ходу за час, мин.

Nk1 - наибольшее количество машин данной группы, двигающихся (работающих) в течение часа.

Исходные данные:

код	Наименование	M1, г/км	L2, км	L2n, км	Mxx,	Txm,	Nk1,
в-ва	веществ	T	Í	Ĺ	г/мин	мин/час	мин/час
0337	Углерода оксид	5,1			2,8		
2754	Алканы С12- С19	0,9			0,35		
0301	Азота диоксид	2,8	2.0	2,0	0,48	_	10
0304	Оксид азота	0,46	2,0		0,08	3	10
0328	Сажа	0,25			0,03		
0330	Серы диоксид	0,45			0,09		

Максимальный разовый выброс:

код в-ва	Наименование веществ	M1 * L2	1.3 * M1 * L2n T	Mxx * Txm	Nk1	Выброс, г/сек Т
0337	Углерода оксид	10,2	13,26	14,0	39	0,4058
2754	Алканы С12- С19	1,8	2,34	1,75	39	0,0638
0301	Азота диоксид	5,6	7,28	2,4	39	0,1655
0304	Оксид азота	0,92	1,196	0,4	39	0,0273
0328	Сажа	0,5	0,65	0,15	39	0,0141
0330	Серы диоксид	0,9	1,17	0,45	39	0,0273

Валовый выброс вещества автомобилями рассчитывается по формуле:

M=A ' M1 ' Nk ' Dn ' 10-6, τ /год

где:

А - коэффициент выпуска (выезда);

Nk - общее количество автомобилей данной группы;

Dn - количество рабочих дней в расчетном периоде (теплый, холодный).

Валовый выброс:

	Иомичеромие разместр	A	Ml, г/км	Nk	Da	Выброс, т/год
код в-ва	Наименование веществ	A	T	INK	Dn	T

0337	Углерода оксид	1	5,1	39	21	0,0042
2754	Алканы С12- С19	1	0,9	39	21	0,0007
0301	Азота диоксид	1	2,8	39	21	0,0023
0304	Оксид азота	1	0,46	39	21	0,0004
0328	Сажа	1	0,25	39	21	0,0002
0330	Серы диоксид	1	0,45	39	21	0,0004

Источник выбросов № 6003 - Работы с инертными материалами на строительной площадке

Расчетная методика: Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов, Приложение №11 к Приказу МООС РК от

предприятий по производству строительных материалов, Приложение №11 к Приказу МООС РК о						
Параметры	Обозн.	Ед-цы изм	Значение			
Tupune 1 p.D.	000311	2 <u>4</u> 421 113.11	Щебень			
1	2	3	4			
Плотность материала	ρ		2,8			
Расход материала при перемещении		M^3	1851,20319			
Весовая доля пылевой фракции в материале	\mathbf{k}_1		0,02			
Доля пыли переходящая в аэрозоль	\mathbf{k}_2		0,01			
Коэф-т, учитывающий метеоусловия	\mathbf{k}_3		1,2			
Коэф-т, учитывающий местные условия	\mathbf{k}_4		1			
Коэф-т, учитывающий влажность материала	\mathbf{k}_{5}		0,6			
Коэф-т, учитывающий крупность материала	\mathbf{k}_7		0,5			
Коэф-т, при мощном залповом сбросе	k 9		0,2			
Коэф-т, учитывающий высоту пересыпки	В		0,6			
Количество разгружаемого материала	$G_{\text{\tiny Yac}}$	тонн/час	15			
	G	тонн	5183,369			
Эффективность средств пылеподавления	η	в долях ед-цы	0			
Примесь: Пыль неорганическая SiO 70-20%						
Максимальный разовый выброс						
Мсек=((k1*k2*k3*k4*k5*k7*К9*В*Gчас*10 ⁶)/3600)*(1-						
η)	г/сек		0,03600			
Валовый выброс						
Мгод=(k1*k2*k3*k4*k5*k7*K9*B*Gгод)*(1-η)	т/год		0,04478			

Источник выбросов № 6003-01 - Работы с инертными материалами на строительной площадке

	Обоз	Ед-		Значение	2
Параметры	Н.	цы изм	ЩГПС	песок	ПГС
1	2	3	4	5	6
Плотность материала	ρ		2,8	1,52	1,73
Расход материала при перемещении		\mathbf{M}^3	32934,37	320,151 4	57685,41 92
Весовая доля пылевой фракции в материале	\mathbf{k}_1		0,02	0,05	0,03
Доля пыли переходящая в аэрозоль	\mathbf{k}_2		0,01	0,02	0,04
Коэф-т, учитывающий метеоусловия	k ₃		1,2	1,2	1,2
Коэф-т, учитывающий местные условия	k_4		1	1	1
Коэф-т, учитывающий влажность материала	k ₅		0,6	0,8	0,7
Коэф-т, учитывающий крупность материала	k ₇		0,5	0,8	0,5
Коэф-т, при мощном залповом сбросе	k ₉		0,2	0,2	0,2

Коэф-т, учитывающий высоту пересыпки	В		0,6	0,5	0,5
Количество разгружаемого материала		тонн/ час	15	10	15
			92216,23		
	G	тонн	6	487	99795,8
		В			
Эффективность средств пылеподавления		долях			
	η	ед-цы	0	0	0
Примесь: Пыль неорганическая SiO 70-20%					
Максимальный разовый выброс					
Мсек=((k1*k2*k3*k4*k5*k7*K9*B*Gчас*10 ⁶)/36					
$00)*(1-\eta)$	г/сек		0,0360	0,2133	0,2100
Валовый выброс					
Мгод=(k1*k2*k3*k4*k5*k7*К9*В*Gгод)					
*(1-ŋ)	т/год		0,7968	0,0374	5,0297

Источник загрязнения - N6004 — Машины бурильные-крановые Источник выделения N 01 Расчет выбросов пыли при работе буровых машин

Список литературы: Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов, Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Расчет выбросов пыли при буровых работах

Буровой станок: СБШ-200

Общее количество работающих буровых машин данного типа, шт., N = 1

Количество одновременно работающих буровых машин данного типа, шт., N1 = 1

"Чистое" время работы одной машины данного типа, час/год, _T_ = 480

Крепость горной массы по шкале М.М.Протодьяконова: < = 4

Средняя объемная производительность буровой машины, м3/час(табл.3.4.1), V = 1.41

Тип выбуриваемой породы и ее крепость (f): Известняки, углистые сланцы, конгломераты, f<

=4

Влажность выбуриваемого материала, %, VL = 5

Коэфф., учитывающий влажность выбуриваемого материала(табл.3.1.4), K5 = 0.7

Средства пылеподавления или улавливание пыли: ВВП - водно-воздушное пылеподавление

Удельное пылевыделение с 1 м3 выбуренной породы данным типом станков в зависимости от крепости породы , кг/м3(табл.3.4.2), Q=0.6

<u>Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)</u>

Максимальный разовый выброс одной машины, г/с (3.4.4), $G = V \cdot Q \cdot K5 / 3.6 = 1.41 \cdot 0.6 \cdot 0.7 / 3.6 = 0.1645$

Разовый выброс одновременно работающих данного типа машины, г/с, $_G_ = G \cdot NI = 0.1645 \cdot 1 = 0.1645$

Валовый выброс одного машины, т/год (3.4.1), $M = V \cdot Q \cdot _T \cdot K5 \cdot 10 \text{A}^{-3} \text{E A} = 1.41 \cdot 0.6 \cdot 480$ • $0.7 \cdot 10 \text{A}^{-3} \text{E A} = 0.28426$

Валовый выброс от всех машин данного типа, т/год, $_M_=M\cdot N=0,28426\cdot 1=0,28426$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2908	Пыль неорганическая: 70-20% двуокиси	0,1645	0,28426	
	кремния (шамот, цемент, пыль цементного		0,20420	

производства	- глина,	глинист	стый с	ланец,	
доменный шл	ак, пес	сок, кли	инкер,	зола,	
кремнезем,	вола у	глей к	казахста	анских	
месторождений) (503)					

Источник загрязнения N6005

Источник выделения N 001 – Гидроизоляция

Расчетная методика: Согласно, Методики расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли, в частности от баз дорожно-строительной техники и асфальтобетонных заводов удельный» выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1 кг на 1 т готового битума, что составляет 0,1%.

Расход битума марки БН 90/10 – 254,88194 т

Расход битума итого: 0,1000 т/час

254,88194 т/год

Максимально-разовый выброс углеводородов составит:

Мсек = $0.1 * 0.001 * 10^6 * / 3600 = 0.0278$ г/сек

Валовый выброс углеводородов составит:

Mгод = 254,88194 * 0,001 = 0,25490 т/год

Итого выбросов загрязняющих веществ

Код	Помисионализа заправления в помостью	Выброс		
вещества	Наименование загрязняющего вещества	г/сек	т/период	
2754	Углеводороды предельные (С12-С19)	0,0278	0,25490	
Итого		0,0278	0,25490	

Источник выброса – 6006

Источник выделения - Укладка асфальтобетонного покрытия

Расчетная методика:

Содержание битума в асфальтобетонных смесях типа Б марки II в среднем составляет 6,5%, в горячих пористых крупнозернистых – 5,5%, в горячих высокопористых щебеночных - 4% (ГОСТ 9128-2009). Согласно, Методики расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли, в частности от баз дорожно-строительной техники и асфальтобетонных заводов удельный» выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1 кг на 1 т готового битума, что составляет 0,1%.

Наименование	Количество, т/г	Содержание битума %	Содержание битума, итого:
Смеси асфальтобетонные горячие плотные мелкозернистые	20159,7695	6,5	1310,4
Смеси асфальтобетонные горячие пористые крупнозернистые	21857,11587	5,5	1202,14
Всего:			2512,54

Максимально-разовый выброс углеводородов составит:

 $Mcek = 0.1 * 0.001 * 10^6 * / 3600 = 0.0278 \text{ r/cek}$

Валовый выброс углеводородов составит:

Mгод = 2512,54 * 0,001 = 2,51254 т/год

Итого выбросов загрязняющих веществ

Код	П	Выб	poc
вещества	Наименование загрязняющего вещества	г/сек	т/период

2754	Углеводороды предельные (С12-С19)	0,0278	2,51254
Итого		0,0278	2,51254

<u>Источник выброса – 6007</u> <u>Источник выделения – Сварочные работы.</u>

Список литературы: РНД 211.2.02.03-2004 - «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов)», Астана, 2005 г.

Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
Марка электродов: УОНИ 13/45 (Э42А)			
Расход применяемого сырья и материалов, кг/год	Вгод	9021,213000	кг/год
Фактический максимальный расход, применяемых			
сырья и материалов, с учетом дискретности работы			
оборудования, кг/час	Вчас	1,00	кг/час
Удельный показатель выброса загрязняющего	T.00		
вещества "х" на единицу массы расходуемых сырья и	K^{x}_{M}		
материалов, г/кг			
2.Расчетная формула	106		
M год $=$ B год $*K^x_M$ * M сек $=$ B час $*K^x_M$ /			
3.Расчет выбросов	5000		
эл исчет виоросов			
Примесь: 0123 Железа оксид	K_{M}^{x}	10,69	
Валовый выброс:		0,096437	т/год
Максимально-разовый выброс:		0,002969	г/c
Примесь: 0143 Марганец и его соединения	K^{x}_{M}	0,92	г/кг
Валовый выброс:		0,008300	т/год
Максимально-разовый выброс:		0,000256	г/с
Примесь: 0342 Фтористые газообразные соединения	K^{x}_{M}	0,75	г/кг
Валовый выброс:		0,006766	т/год
Максимально-разовый выброс:		0,000208	г/с
	TCY		
Примесь: 0344 Фториды плохо растворимые	K^{x}_{M}	3,3	г/кг
Валовый выброс:		0,029770	т/год
Максимально-разовый выброс:		0,000917	<i>z/c</i>
Примесь: 2908 Пыль неорганическая SiO ₂ (20-70%)	K_{M}^{x}	1,4	г/кг
Валовый выброс:	M	0,012630	m/20d
Максимально-разовый выброс:		0,000389	г/c
Transcriment pussessin estapeet		0,0000	
Примесь: 0301 Азота диоксид	K^{x}_{M}	1,5	г/кг
Валовый выброс:		0,013532	т/год
Максимально-разовый выброс:		0,000417	г/с

Примесь: 0337 Углерод оксид	K^{x}_{M}	13,3	г/кг
Валовый выброс:		0,119982	т/год
Максимально-разовый выброс:		0,003694	г/c

Источник загрязнения N6008

Источник выделения - Сварка полиэтиленовых труб

Расчетная методика: Методика расчета выбросов вредных веществ в атмосферу при работе с пластмассовыми материалами согласно приложения 5, Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө, «Об утверждении отдельных методических документов в области охраны окружающей среды».

Для водопропускных труб используются полиэтиленовые трубы.

Сварка используется для соединения стыков полипропиленовых труб. Время сварки одного стыка составляет 5 минут. Одновременно сваривается один стык.

Время проведения сварочных работ – 540 час/период.

При сваривании полиэтиленовых труб в атмосферный воздух выделяются: оксид углерода, винил хлористый.

Валовое количество загрязняющих веществ, выбрасываемых в атмосферу при сварке, определяется по формуле:

$$M_i = q_i$$
 'N, т/год,

q – удельное выделение загрязняющего вещества, на 1 сварку;

N – количество сварок в течение года.

Т - годовое время работы оборудования, часов

Оксид углерода

	q	N	Выброс	Ед. изм.
M	0,009	20	0,180	т/период

Винил хлористый

	q	N	Выброс	Ед. изм.
M	0,0039	20	0,078	т/период

Максимально - разовый выброс загрязняющих веществ, выбрасываемых в атмосферу при работе литьевой машины, определяется по формуле:

$$\mathbf{Q_i} = \frac{M_i \cdot 10^6}{T \cdot 3600}, \, \mathbf{r/ce\kappa},$$

Оксид углерода

	M	T			Выброс	Ед. изм.
Q	0,180	540	3600	1000000	0,0926	г/сек

Винил хлористый

	M	T			Выброс	Ед. изм.
Q	0,078	540	3600	1000000	0,0401	г/сек

Итого выбросов загрязняющих веществ в атмосферу при сварке полиэтиленовых труб

L'or DD	Наименование	Выбр	осы
Код ЗВ	загрязняющего вещества	г/сек	т/период
0337	Оксид углерода	0,180	0,926
0827	Винил хлористый	0,078	0,0401

Источник выброса - 6009

Источник выделения – покрасочные работы

Список литературы: РНД 211.2.02.05-2004 - «Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)», Астана-2005г.

Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валин	сом	
Марка краски: Грунтовка ГФ-021			
Расход краски	m_{ϕ}	0,860706	т/год
Максимальный часовой ой расход	$m_{\scriptscriptstyle \mathcal{M}}$	0,50	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g'_{p}*g_{\checkmark}/10^{6}, m/$ год			
$Mсе\kappa = m_{\scriptscriptstyle M} *f_p *g'_p *g_{\scriptscriptstyle M} / 10^6 *3,6, \ {\it г/сек}$			
2.2. При сушке			
M 20 ∂ = m_{ϕ} * f_p * g " $_p$ * g_x / 10^6 , m /20 ∂			
$Mce\kappa = m_{\scriptscriptstyle M} * f_p * g''_p * g_{\scriptscriptstyle X} / 10^6 * 3,6, \ {\it г/ce\kappa}$			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "x" в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_{P}	45	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g' _p	100	
Доля растворителя в $ЛКМ$, выделившегося при сушке покрытия, (%, масс.)	g" _p	100	
3.Расчет выбросов			
Примесь: Ксилол	g_x	100	%
Валовый выброс:		0,387318	т/год
Максимально-разовый выброс:		0,062500	ı/c

Источник выброса – 6009-01

Источник выделения – покрасочные работы

Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	ОМ	
Марка краски: Грунтовка ГФ-0119			
Расход краски	m_{ϕ}	0,09675	т/год
Максимальный часовой расход	$m_{\scriptscriptstyle \mathcal{M}}$	0,0100	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g'_{p}*g_{x}/10^{6}$, m /год			
$Mce\kappa = m_{\scriptscriptstyle M} * f_p * g'_p * g_{\scriptscriptstyle M} / 10^6 * 3,6, \ {\it c/ce\kappa}$			

2.2. При сушке			
$M \circ \partial = m_{\phi} * f_p * g''_p * g_{\varphi} / 10^6, m / \circ \partial$			
$Mce\kappa = m_{\scriptscriptstyle M} * f_p * g''_p * g_{\scriptscriptstyle X} / 10^6 * 3,6, \ \epsilon / ce\kappa$			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "х" в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_{p}	47	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	<i>g</i> ' _{<i>p</i>}	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g'' _p	100	
3.Расчет выбросов			
Примесь: Ксилол	g_x	100	%
Валовый выброс:		0,04547	т/год
Максимально-разовый выброс:		0,00131	г/с

<u>Источник выброса – 6009-02</u> <u>Источник выделения – покрасочные работы</u>

Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	сом	
Марка краски: Бензин-растворитель			
Расход краски	m_{ϕ}	0,0651182	т/год
Максимальный часовой расход	$m_{\scriptscriptstyle \mathcal{M}}$	0,03	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g'_{p}*g_{\gamma}/10^{6}$, m /год			
M сек $=m_{M}*f_{p}*g_{p}*g_{x}/10^{6}*3,6$, г/сек			
2.2. При сушке			
M год $=m_{\phi}*f_{p}*g"_{p}*g_{\gamma}/10^{6}, m/$ год			
$Mce\kappa = m_{\scriptscriptstyle M} * f_{\scriptscriptstyle p} * g_{\scriptscriptstyle W} / 10^6 * 3,6$, г/сек			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "x" в летучей части ЛКМ, (%	gx		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_p	100	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g' _p	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g" _p		
3.Расчет выбросов			
Примесь: Бензин	g_x	100	%

Валовый выброс:	0,06512	т/год
Максимально-разовый выброс:	0,00833	г/c

<u>Источник выброса – 6009-03</u>

Источник выделения – покрасочные работы

Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	сом	
Марка краски: Уайт-спирит			
Расход краски	m_{ϕ}	0,26938193	т/год
Максимальный часовой ой расход	$m_{\scriptscriptstyle \mathcal{M}}$	0,1000	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g'_{p}*g_{\checkmark}/10^{6}$, m /год			
$Mce\kappa = m_{\scriptscriptstyle M} *f_p *g'_p *g_{\scriptscriptstyle M}/10^6 *3,6, \ \emph{г/ce}\kappa$			
2.2. При сушке			
M 20 $\partial = m_{\phi} * f_p * g''_p * g_{\omega} / 10^6, m/$ 20 ∂			
$Mce\kappa = m_{\scriptscriptstyle M} * f_{\scriptscriptstyle p} * g_{\scriptscriptstyle W} / 10^6 * 3,6$, г/сек			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "x" в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_p	100	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g' _p	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g" _p	100	
3.Расчет выбросов			
Примесь: Уайт-спирит	g_x	100	%
Валовый выброс:		0,269380	т/год
Максимально-разовый выброс:		0,027780	г/с

Источник выброса – 6009-04

Источник выделения – покрасочные работы

Параметр	Обозн.	значение	ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валин	ком	
Марка краски: Растворитель Р-4			
Расход краски	m_{ϕ}	0,0169	т/год
Максимальный часовой расход	$m_{\scriptscriptstyle M}$	0,01	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g_{p}*g_{x}/10^{6}$, m /год			
$Mce\kappa = m_{\scriptscriptstyle M} * f_{\scriptscriptstyle p} * g'_{\scriptscriptstyle p} * g_{\scriptscriptstyle M} / 10^6 * 3,6$, г/сек			

2.2. При сушке			
$M co\partial = m_{\phi} * f_p * g''_p * g_x / 10^6, m/co\partial$			
$Mce\kappa = m_{\scriptscriptstyle M} *f_p *g''_p *g_{\scriptscriptstyle M}/10^6 *3,6, \ г/ce\kappa$			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle \mathcal{M}}$		
Содержание компонента "х" в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_p	100	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g'_p	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g'' _p		
3.Расчет выбросов			
Примесь: Ацетон	g_x	26	%
Валовый выброс:		0,004390	т/год
Максимально-разовый выброс:		0,000720	г/с
Примесь: Бутилацетат	g_x	12	%
Валовый выброс:		0,002030	т/год
Максимально-разовый выброс:		0,000330	ı/c
Примесь: Толуол	g_x	62	%
Валовый выброс:		0,010480	т/год
Максимально-разовый выброс:		0,001720	г/с

<u>Источник выброса – 6009-05</u> <u>Источник выделения – покрасочные работы</u>

Параметр	Обозн.	значение	ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	ОМ	
Марка краски: Растворитель №646			
Расход краски	m_{ϕ}	0,0357	т/год
Максимальный часовой расход	$m_{\scriptscriptstyle M}$	0,01	кг/час
2.Расчетная формула			
2.1. При окраске			
$M co\partial = m_{\phi} * f_p * g'_p * g_{\gamma} / 10^6, m/co\partial$			
$Mсе\kappa = m_{\scriptscriptstyle M} *f_p *g'_p *g_{\scriptscriptstyle N}/10^6 *3,6$, г/сек			
2.2. При сушке			
$M cod = m_{\phi} f_p *g_p *g_y / 10^6, m/cod$			
$Mсе\kappa = m_{\scriptscriptstyle M} * f_p * g''_p * g_{\scriptscriptstyle N} / 10^6 * 3,6, \ {\it c/ce} \kappa$			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "x" в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_{p}	100	

TICLE)		1	
Доля растворителя в ЛКМ, выделившегося при	g'_p		
нанесении покрытия, (%, масс.)	<i>G P</i>	100	
Доля растворителя в ЛКМ, выделившегося при сушке	g''_p	100	
покрытия, (%, масс.)	8 P		
3.Расчет выбросов			
Примесь: Ацетон	g_x	7	%
Валовый выброс:		0,002500	т/год
Максимально-разовый выброс:		0,000190	z/c
Примесь: Бутилацетат	g_x	10	%
Валовый выброс:		0,003570	т/год
Максимально-разовый выброс:		0,000280	z/c
Примесь: Толуол	g_x	50	%
Валовый выброс:		0,017850	т/год
Максимально-разовый выброс:		0,001390	z/c
Примесь: Спирт н-бутиловый	g_x	15	%
Валовый выброс:		0,005360	т/год
Максимально-разовый выброс:		0,000420	z/c
Примесь: Спирт этиловый	g_x	10	%
Валовый выброс:		0,003570	т/год
Максимально-разовый выброс:		0,000280	z/c
Примесь: Этилцеллизольв	g_x	8	%
Валовый выброс:		0,002860	т/год
Максимально-разовый выброс:		0,000220	z/c

<u>Источник выброса – 6009-06</u> <u>Источник выделения – покрасочные работы</u>

Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	гом	
Марка краски: Лак БТ-577 (лак электроизоляционный 318)			
Расход краски	m_{ϕ}	0,03423	т/год
Максимальный часовой расход	$m_{\scriptscriptstyle M}$	0,01	кг/час
2.Расчетная формула			
2.1. При окраске			
$M co\partial = m_{\phi} * f_p * g'_p * g_{\checkmark} / 10^6, m/co\partial$			
$Mсе\kappa = m_{\scriptscriptstyle M} * f_p * g'_p * g_{\scriptscriptstyle M} / 10^6 * 3,6, \ {\it c/ce}\kappa$			
2.2. При сушке			
$M cod = m_{\phi} f_p *g''_p *g_{\gamma}/10^6, m/cod$			
M сек $=m_{_{M}}*f_{_{p}}*g_{_{y}}*g_{_{x}}/10^{6}*3,6$, г/сек			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "x" в летучей части ЛКМ, (%	g_x		

Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_p	63	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g'p	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g'' _p	100	
3.Расчет выбросов			
Примесь: Уайт-спирит	g_x	42,6	%
Валовый выброс:		0,009190	т/год
Максимально-разовый выброс:		0,009660	г/c
Примесь: Ксилол	g_x	57,4	%
Валовый выброс:		0,012380	т/год
Максимально-разовый выброс:		0,013020	г/c

<u>Источник выброса – 6009-07</u>

Источник выделения – покрасочные работы

Параметр	Обозн.	значение	ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	ОМ	
Марка краски: Эмаль XB-124			
Расход краски	m_{ϕ}	0,0281	т/год
Максимальный часовой асход	$m_{\scriptscriptstyle M}$	0,001	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g'_{p}*g_{\gamma}/10^{6}$, m /год			
$Mce\kappa = m_{\scriptscriptstyle M} *f_p *g'_p *g_{\scriptscriptstyle M}/10^6 *3,6, \ {\it г/ce\kappa}$			
2.2. При сушке			
M год $=m_{\phi}*f_{p}*g"_{p}*g_{\checkmark}/10^{6}, m/$ год			
$Mce\kappa = m_{\scriptscriptstyle M} * f_{\scriptscriptstyle p} * g_{\scriptscriptstyle M} / 10^6 * 3,6, \ {\it г/ce\kappa}$			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых	100		
сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента " x " в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_p	27	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g' _p	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g" _p	100	
3.Расчет выбросов			
Примесь: Ацетон	g_x	26	%
Валовый выброс:		0,001970	т/год
Максимально-разовый выброс:		0,000020	z/c
Примесь: Бутилацетат	g_x	12	%
Валовый выброс:		0,000910	т/год
Максимально-разовый выброс:		0,000010	г/c

Примесь: Толуол	g_x	62	%
Валовый выброс:		0,004700	т/год
Максимально-разовый выброс:		0,000050	г/c

Источник выброса – 6009-08

Источник выделения – покрасочные работы

<u>источник выделения – покрасочные раоо</u> Параметр	Обозн.	Значение	Ед. изм
1	2	3	4
1. Исходные данные			
Способ окраски	кистью, валик	:ом	
Марка краски: Эмаль ПФ-115			
Расход краски	m_{ϕ}	1,656562	т/год
Максимальный часовой ой расход	$m_{\scriptscriptstyle \mathcal{M}}$	0,1000	кг/час
2.Расчетная формула			
2.1. При окраске			
M год $=m_{\phi}*f_{p}*g'_{p}*g_{\gamma}/10^{6}$, m /год			
$Mce\kappa = m_{\scriptscriptstyle M} * f_p * g'_p * g_{\scriptscriptstyle M} / 10^6 * 3,6, \ {\it c/ce\kappa}$			
2.2. При сушке			
M 20 ∂ = $m_{\phi}*f_{p}*g''_{p}*g_{\varphi}/10^{6}$, m /20 ∂			
$Mce\kappa = m_{\scriptscriptstyle M} * f_p * g''_p * g_{\scriptscriptstyle N} / 10^6 * 3,6, \ z/ce\kappa$			
Где: Расход применяемого сырья, т/год	m_{ϕ}		
Фактический максимальный расход, применяемых сырья кг/час	$m_{\scriptscriptstyle M}$		
Содержание компонента "x" в летучей части ЛКМ, (%	g_x		
Доля летучей части (растворителя) в ЛКМ, (%, масс.)	f_{p}	45	
Доля растворителя в ЛКМ, выделившегося при нанесении покрытия, (%, масс.)	g' _p	100	
Доля растворителя в ЛКМ, выделившегося при сушке покрытия, (%, масс.)	g" _p	100	
3.Расчет выбросов			
Примесь: Ксилол	g_x	50	%
Валовый выброс:		0,372730	т/год
Максимально-разовый выброс:		0,006250	г∕c
Примесь: Уайт-спирит	g_x	50	%
Валовый выброс:		0,372726	т/год
Максимально-разовый выброс:		0,006250	ı/c

Источник загрязнения N6010

Источник выделения N 001 - Ручной электроинструмент (шлифовальная машинка, болгарка)

Список литературы: Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005.

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Кругло-шлифовальные станки, с диаметром шлифовального круга - 150 мм Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_{-}T_{-}=312$

Число станков данного типа, шт., _*KOLIV*_ = 2

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2930 Пыль абразивная

Удельный выброс, г/с (табл. 1), GV = 0.013

Коэффициент гравитационного оседания (п. 5.3.2), KN = KNAB = 0.2

Валовый выброс, т/год (1),

M = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 0.2 * 0.013 * 312 * 2 / 10 ^ 6 = 0,00584

Максимальный из разовых выброс, Γ/C (2), $_G_=KN*GV*NSI=0.2*0.013*1=0.0026$

Примесь: 2902 Взвешенные вещества

Удельный выброс, г/с (табл. 1), GV = 0.02

Коэффициент гравитационного оседания (п. 5.3.2), KN = KNAB = 0.2

Валовый выброс, т/год (1),

 $M_{-} = 3600 * KN * GV * T_{-} * KOLIV_{-} / 10 ^ 6 = 3600 * 0.2 * 0.02 * 312 * 2 / 10 ^ 6 = 0,00899$

Максимальный из разовых выброс, Γ/C (2), G = KN * GV * NS1 = 0.2 * 0.02 * 1 = 0.004

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенные вещества	0.004	0,00899
2930	Пыль абразивная	0.0026	0,00584

Источник загрязнения N6011

Источник выделения N 001 - Пост газорезки, газосварки

Список литературы: Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, кг/год, B = 909,8525563

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 0.5

Газы:

Примесь: 0301 Азота диоксид

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 15

Валовый выброс, т/год (5.1), $_M_ = GIS * B / 10 ^ 6 = 15 * 909,8525563 / 10 ^ 6 = 0,01365$

Максимальный из разовых выброс, г/с (5.2), G = GIS * BMAX / 3600 = 15 * 0.5 / 3600 = 0.00208

итого:

	o•		
Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота диоксид	0,00208	0,01365

РАСЧЕТ выбросов ЗВ от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая Толщина материала, мм (табл. 4) , L=5

Способ расчета выбросов: по времени работы оборудования

Время работы одной единицы оборудования, час/год, T = 65,66

Удельное выделение сварочного аэрозоля, г/ч (табл. 4), GT = 74

в том числе:

Примесь: 0143 Марганец и его соединения

Удельное выделение, г/ч (табл. 4) , GT = 1.1

Валовый выброс 3В, т/год (6.1) , $_{M}$ = $GT * _{T} / 10 ^ 6 = 1.1 * 65,66 / 10 ^ 6 = 0,00034$

Максимальный разовый выброс 3B, г/с (6.2), $_G_ = GT / 3600 = 1.1 / 3600 = 0,00031$

Примесь: 0123 Железо оксиды

Удельное выделение, г/ч (табл. 4) , GT = 72.9

Валовый выброс 3В, т/год (6.1) , $_{M_{-}}$ = $GT * _{T_{-}} / 10 ^ 6 = 72.9 * 65,66 / 10 ^ 6 = 0,02274$

Максимальный разовый выброс 3В, г/с (6.2) , $_G_ = GT / 3600 = 72.9 / 3600 = 0,02025$

Газы:

Примесь: 0337 Углерод оксид

Удельное выделение, г/ч (табл. 4) , GT = 49.5

Валовый выброс 3В, т/год (6.1), $_{M_{-}}$ = $GT * _{T_{-}} / 10 ^ 6 = 49.5 * 65,66 / 10 ^ 6 = 0,01544$

Максимальный разовый выброс 3B, г/с (6.2), $_G_ = GT / 3600 = 49.5 / 3600 = 0,01375$

Примесь: 0301 Азота диоксид

 $\overline{\text{Удельное выделение, г/ч (табл. 4), } GT = 39$

Валовый выброс 3В, т/год (6.1), $_{M_{-}}$ = $GT * _{T_{-}} / 10 ^ 6 = 39 * 65,66 / 10 ^ 6 = 0,01217$

Максимальный разовый выброс 3B, г/с (6.2), $_G_ = GT / 3600 = 39 / 3600 = 0,01083$

итого:

Код	Примесь	Выброс г/с	Выброс т/год
0123	Железо оксиды	0,02025	0,02274
0143	Марганец и его соединения	0,00031	0,00034
0301	Азота диоксид	0,01375	0,02582
0337	Углерод оксид	0,01291	0,01544

Источник загрязнения - N6012

Источник выделения – Отрезной станок

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Отрезные станки (арматурная сталь)

Фактический годовой фонд времени работы одной единицы оборудования, ч/год,

T = 312

Число станков данного типа, шт., _*KOLIV*_ = 2

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2930 Пыль абразивная

Удельный выброс, г/с (табл. 1), GV = 0.023

Коэффициент гравитационного оседания (п. 5.3.2), KN = KNAB = 0.2

Валовый выброс, т/год (1),

 $_M_ = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 0.2 * 0.023 * 312 * 2 / 10 ^ 6 = 0,01033$

Максимальный из разовых выброс, г/с (2), $_G_=KN*GV*NS1=0.2*0.023*1=0.0046$

Примесь: 2902 Взвешенные частицы

Удельный выброс, г/с (табл. 1), GV = 0.055

Коэффициент гравитационного оседания (п. 5.3.2), KN = KNAB = 0.2

Валовый выброс, т/год (1),

 $M_{-} = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 0.2 * 0.055 * 312 * 2 / 10 ^ 6 = 0.02471$

Максимальный из разовых выброс, г/с (2) , $_G_$ = KN * GV * NS1 = 0.2 * 0.055 * 1 = 0.011

итого:

Кос	Примесь	Выброс г/с	Выброс т/год
290	2 Взвешенные частицы	0.011	0,02471
293	Пыль абразивная	0.0046	0,01033

Источник загрязнения №6013

Источник выделения: Припои оловянно-свинцовые бессурмянистые

Параметр	Обозн.	значение	ед. изм
1	2	3	4
1. Исходные данные			
Масса израсходованного припоя за год	m	108,935	кг

Время чистой пайки	t	420	час/год
Удельное выделения	q		
Свинец и его соединения		0,51	г/кг
Олово оксид		0,28	г/кг
2.Расчетная формула			
Мгод=	$q * m * 10^{-6}$		
Мсек=Мго	<i>d</i> * 106 / t *3600		
3.Расчет выбросов			
Примесь: 0184 Свинец и его соединения			
Валовый выброс:		0,00006	т/год
Максимально-разовый выброс:		0,00004	z/c
Примесь: 0168 Олово оксид			
Валовый выброс:		0,00003	т/год
Максимально-разовый выброс:		0,00002	z/c

Таблица 2.8.4. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов ПДВ

П ро из в од с тв	Цe	Источник выделения загрязняющ веществ Наименован ие	Я	Чис ло час ов раб о- ты в	Наименов ание источник а выброса вредных веществ	исто ч ник а	Выс о та исто ч ник а выб ро са,м		газо на 1	на 1 трубу,	еси из са те м- пе	точ оп ист /1- коп ли /цен пло ист ист	источ карт гоч. -го нца ин. нтра ощад - ого гочн ка	но исто к	а еме, го нца ина, оина щад ого очни	Наименов ание газоочист ных установок и мероприя тий по сокращен ию выбросов	рым произ во- дится	Коэ фф обес п газо - очис т кой, %	Средня я эксплу ат степен ь очистк и/ тах.ст еп очистк и%	Ко д ве- ще - ст ва	Наименов ание вещества	загр	ыброст язняю ещест мг/н м3	щих з	Го д дос - ти же ни я ПД
1	2	3	4	5	6	7	8	9	10	11	12		Y1 14	X2 15	Y2 16	17	18	19	20	21	22	23	24	25	26
00		Передвижная дизельная электростанц ия до 4 кВт			Дымовая труба	0001				0.1362 198		658								03	Азота (IV) диоксид (206.3	0.0028	
		7,																			Азот (II) оксид	0.0015	27.14 6	0.0023	
																				03 28	Углерод	0.0008	14.47 8	0.0002	
																					Сера диоксид	0.0012	21.71	0.0003	
																				03	Углерод оксид	0.008	144.7 78	0.002	
																				03		1e-8	0.000	4e-9	
																					Формальде гид	0.0002	3.619	0.0000 4	
																				27	Алканы	0.004	72.38	0.001	

																		C12-19		9	
Компрессоры передвижные	1		Дымовая труба	0002	0.5	0.08	11.1			658							01	диоксид	556	973	0.8084
																	04	оксид	0.0115 303	96	0.1313 65
																	28		278	15	0.0705
																	30	диоксид	722	07	0.1057 5
																	37	оксид		887	0.705
																	03	ен	001		013
																	25	гид	917	2	
																	54	C12-19		444	
Передвижной битумоплави льный котел, 400 л	1		Дымовая труба	0003	4	0.6	0.24	0.0678 586	40	653									0.0006	10.47	0.0018
																	04	оксид	0.0001		0.0000
																	28	_			0.0003
																	30	диоксид	8	2	0.0071
																	37	оксид		7	3
Разработка грунта	1	1000	Выбросы пыли	6001	2				35	648			39				08	неорганиче ская, содержаща я двуокись	0,9073		6,2248
	Передвижные Передвижной битумоплави льный котел, 400 л	Передвижной 1 битумоплави льный котел, 400 л	Передвижной 1 1260 битумоплави льный котел, 400 л	Передвижной 1 битумоплави пьный котел, 400 л 1 1000 Выбросы	Передвижной 1 битумоплави льный котел, 400 л	Передвижной 1 битумоплави льный котел, 400 л 1 1000 Выбросы 6001 2	Передвижные труба передвижные передвижные передвижной передвижной битумоплави льный котел, 400 л п передвижной передвижной битумоплави передвижной пе	Передвижные Труба	Передвижные труба 948 Передвижной битумоплави льный котел, 400 л Разработка 1 1000 Выбросы 6001 2	Передвижные труба 948 0 Передвижной 1 1260 Дымовая труба 0.6 0.24 0.0678 40 586 Разработка 1 1000 Выбросы 6001 2 35	Передвижные труба 948 0 Передвижный 1 1260 Дымовая труба 0003 4 0.6 0.24 0.0678 40 653 труба 0000 л 4 0.6 0.24 0.0678 40 653	Передвижные труба 948 0 100 9 9 1 100 Выбросы 6001 2 35 648 г. 109	Передвижные труба 948 0 100 9 100 9 100 100 9 100 100 9 100 100	передвижные труба 948 0 100 99 Передвижной 1 1260 Дымовая труба 0003 4 0.6 0.24 0.0678 40 653 - 104 0 104	Передвижные труба 948 0 100 9 9 100 9 9 100 9 9 100 9 9 100 9 9 100 9 9 100 9 9 100	передвижные труба 948 0 100 9 9 1 100 100 100 100 100 100 100	Передвижные труба 948 0 100 9 Передвижные 1 1260 Дымовая труба 0003 4 0.6 0.24 0.0678 40 653 - 104 0 0 Разработка 1 1000 Выбросы пыли 6001 2 159 109	Компрессоры передвижные 1 2520 Дымовая труба 0002 0.5 0.08 11.1 0.0557 45 658 - 0 109 9 0 01 1 200 Выбросы пыли 002 0.5 0.08 11.1 0.0557 45 658 - 0 109 9 0 03 1 200 Выбросы пыли 003 0.4 0.5 0.08 11.1 0.0557 45 86 - 0 109 9 0 0 1 200 Выбросы пыли 0003 0.5 0.08 11.1 0.06 0.24 0.0678 40 653 - 004 00 0	Компрессоры передвижные	Komпрессоры передвижные 1 2520 Дымовая труба 002 0.5 0.08 11.1 0.0557 45 658 - 948 0 100 0 0 0 3 Aэота (TV) 0.0709 0 1 диоженд 5.56 0 0 3 Aэота (TV) 0.0709 0 1 диоженд 5.56 0 0 3 Aэота (TV) 0.0709 0 0 0 0 0 0 0 0 0	Компрессоры передвижные 1 2520 Дымовая труба 002 0.5 0.08 11.1 0.0857 45 658 - 0 948 0 100 9 03 Азота (IV) 0.0709 3367. 556 973 1 2520 Дымовая труба 0 2 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00	Передвижени е автотранспор та	1	1000	Выбросы пыли	6002	2		35	644	- 114 3	26	26)3 Азота (IV))1 диоксид	0.1655	0.0023
														04 оксид	0.0273	0.0004
														03 Углерод 28	0.0141	0.0002
														03 Сера 30 диоксид	0.0273	0.0004
														03 Углерод 37 оксид	0.4058	0.0042
														27 Алканы 54 С12-19	0.0638	0.0007
														29 Пыль неорганиче ская, содержаща я двуокись кремния в %: 70-20		1.6903
00	Разгрузка инертных материалов	1	1000	Выбросы пыли	6003	2		35	757	106 2	26	26		Пыльнеорганиче ская,содержаща я двуокись кремния в %: 70-20		5.9086
00	Машины бурильные- крановые	1	100	Выбросы пыли	6004	2		35	755	- 110 1	24	24		29 Пыль неорганиче ская, содержаща я двуокись кремния в %: 70-20		0.2842
00 1	Гидроизоляц ия	1		Обмазка битума	6005	2		35	755	- 101	22	22		27 Алканы 54 С12-19	0.0278	0.2549

										8						
00	Укладка асфальтобето нного покрытия	1	100	Покрытие бетона	6006	2		35	734	- 113 5	32	32		Алканы С12-19	0.0278	2.5125
00 1	Сварочные	1	1260	Сварка	6007	2		35	750	- 898	37	37	01 23	Железо (II, III) оксиды	0.0029 69	0.0964 37
													01	Марганец и его соединени я		0.0083
														Азота (IV)		0.0135
													03	диоксид Углерод	17 0.0036	0.1199
													37	оксид	94	82
													03	Фтористые газообразн	0.0002 08	0.0067 66
														ые соединени я		
														Фториды неорганиче ские плохо растворим ые	0.0009	0.0297
														Пыль неорганиче ская, содержаща я двуокись кремния в %: 70-20	0.0003	0.0126
00	Сварка полиэтилено вых труб	1	100	Сварка труб	6008	2		35	757	- 922	27	27	03 37	Углерод оксид	0.18	0.926
													08 27	Хлорэтиле н	0.078	0.0401

00	Покрасочные работы	1	1260	Покраска	6009	2		35	687	- 114 0	35	35		6 Диметилбе 6 нзол	0.0830	0.8178 98
													2	6 Метилбенз 1 ол (349)	6	0.0330
													4		0.0004	0.0053 6
														0 Этанол 1 (Этиловый	0.0002	0.0035
														1 2- 9 Этоксиэтан ол	0.0002	0.0028
													1	2 Бутилацета 0 т	2	0.0065
													0	4 Пропан-2- 1 он (Ацетон)	0.0009	0.0088
													0		0.0083	0.0651
														7 Уайт- 2 спирит	0.0436	0.6512 96
00	Ручной электроинсту рмент (болгарка, шлифмашинк а)		1260	Обработка металла	6010	2		35	763	- 971	33	33	2	9 Взвешенны 2 е частицы	0.004	0.0089
														9 Пыль 0 абразивная	0.0026	0.0058
00	Пост газорезки, газосварки	1	1260	Обработка металла	6011	2		35	658	- 974	26	26	0	1 Железо (II, 3 III) оксиды	0.0202	0.0227
														1 Марганец и 3 его соединени я	0.0003	0.0003
													0	3 Азота (IV)	0.0137	0.0258

																01	диоксид	5	2	
																03	Углерод	0.0129	0.0154	
																37	оксид	1	4	
00)	Отрезной	1	1260	Обработка	6012	2		35	658	-	22	22			29	Взвешенны	0.011	0.0247	
1		станок			металла						106					02	е частицы		1	
											4									
																		0.0046	0.0103	
																30	абразивная		3	
00)	Медницкие	1	1260	Пайка	6013	2		35	658	-	26	26			01	Олово	0.0000	0.0000	
1		работы									938					68	оксид	2	3	
																01	Свинец и	0.0000	0.0000	
																84	его	4	6	
																	неорганиче			
																	ские			
																	соединени			
																	Я			

Таблица 2.8.5. - Перечень загрязняющих веществ, выбрасываемых в атмосферу

Код 3В	Наименование вещества	ПДК максим. разовая, мг/м3	азовая, суточная, безопасн. Класс выброс вещества		Выброс вещества г/с	Выброс вещества, т/год	Значение КОВ (М/ПДК)**а	Выброс вещества, усл.т/год	
1	2	3	4	5	6	7	8	9	10
	Железо (II, III) оксиды		0.04		3	0.023219	0.119177		2.979425
	Марганец и его соединения	0.01	0.001		2	0.000566	0.00864		8.64
0168	Олово оксид /в пересчете на олово/		0.02		3	0.00002	0.00003		0.0015
0184	Свинец и его неорганические соединения	0.001	0.0003		1	0.00004	0.00006		0.2
0301	Азота (IV) диоксид (Азота диоксид)	0.2	0.04		2	0.0971426	0.852442		21.31105
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.0131303	0.133695	2.2283	2.22825
0328	Углерод (Сажа, Углерод черный)	0.15	0.05		3	0.0069278	0.07101	1.4202	1.4202
0330	Сера диоксид	0.5	0.05		3	0.0130522	0.11324	2.2648	2.2648
0337	Углерод оксид	5	3		4	0.272004	1.784752	0	0.59491733
0342	Фтористые газообразные соединения	0.02	0.005		2	0.000208	0.006766	1.4817	1.3532
0344	Фториды неорганические плохо растворимые	0.2	0.03		2	0.000917	0.02977	0	0.99233333
0616	Диметилбензол	0.2			3	0.08308	0.817898	4.0895	4.08949
0621	Метилбензол (349)	0.6			3	0.00316	0.03303	0	0.05505
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001		1	0.00000011	0.000001304	1.5703	1.304
0827	Хлорэтилен		0.01		1	0.078	0.0401	10.601	4.01
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.1			3	0.00042	0.00536	0	0.0536
1061	Этанол (Этиловый спирт) (667)	5			4	0.00028	0.00357	0	0.000714
1119	2-Этоксиэтанол			0.7		0.00022	0.00286	0	0.00408571
1210	Бутилацетат	0.1			4	0.00062	0.00651	0	0.0651
1325	Формальдегид (Метаналь) (609)	0.05	0.01		2	0.0014917	0.01414	1.5689	1.414
1401	Пропан-2-он (Ацетон) (470)	0.35			4	0.00093	0.00886	0	0.02531429
2704	Бензин (нефтяной, малосернистый)	5	1.5		4	0.00833	0.06512	0	0.04341333
2752	Уайт-спирит (1294*)			1		0.04369	0.651296	0	0.651296
2754	Алканы С12-19	1			4	0.0906	3.12094	2.7852	3.12094
2902	Взвешенные частицы (116)	0.5	0.15		3	0.015	0.0337	0	0.22466667
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.3	0.1		3	1.730569	14.12077	141.2077	141.2077
2930	Пыль абразивная			0.04		0.0072	0.01617	0	0.40425
	Β С Ε Γ Ο:					2.49081771	22.059907304	242.1	198.659296

Таблица 2.8.6. – Таблица групп суммаций на существующее положение

Номер группы суммации	Код загрязняющего вещества	Наименование загрязняющего вещества
1	2	3
27	0184	Свинец и его неорганические соединения
	0330	Сера диоксид
31	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид
35	0330	Сера диоксид
	0342	Фтористые газообразные соединения
71	0342	Фтористые газообразные соединения
	0344	Фториды неорганические плохо растворимые
Пыли	2902	Взвешенные частицы (116)
	2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20
	2930	Пыль абразивная

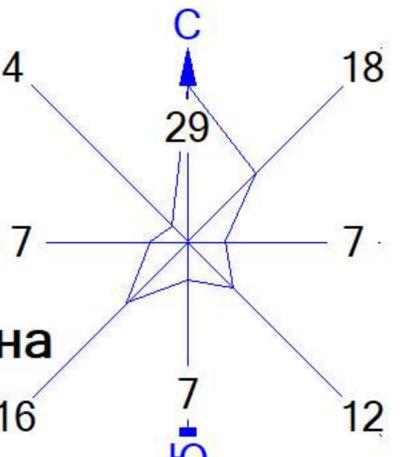
Таблица 2.8.7 – Перечень источников, дающих наибольшие вклады в уровень загрязнения

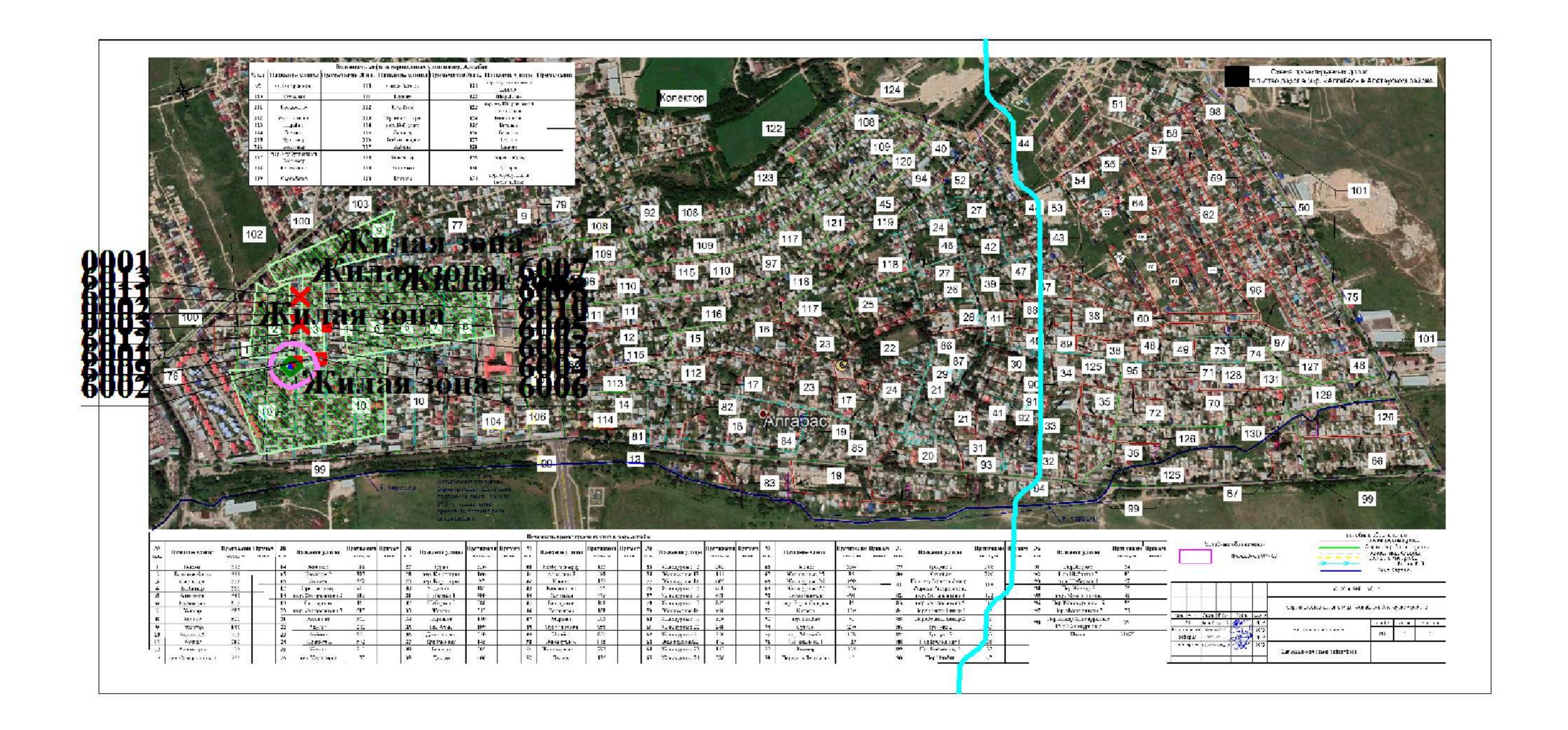
Код вещества /	Наименование	Расчетная максима концентрация (обща доля ПД)	Координа с макси приземн	Источники, дающие наибольший вклад в макс. концентрацию			Принадлежность источника		
группы суммации	вещества	в жилой зоне	на границе санитарно- защитной зоны	в жилой зоне X/Y	на грани це СЗЗ X/Y	N uct.	% ві ЖЗ	слада С33	(производство, цех, участок)
1	2	3	4	5	6	7	8	9	10
		Суп	цествующее положение						
		Загряз	зняющие веществ	a:	1		_		
0301	Азота (IV) диоксид	1.05672(0.0087)/		661/-1026		0003	99.9		
		0.21134(0.00174)							
		вклад предпр.= 0.8%							
0328	Углерод	0.16448/0.02467		661/-1026		0002			
						0001	6.5		
0330	Сера диоксид	0.05752(0.0302)/		661/-1026		0002	98.6		
		0.02876(0.0151)							
		вклад предпр.= 53%							
0337	Углерод оксид	0.45021(0.00312)/		661/-1026		0003	96.8		
		2.25107(0.0156)							
		вклад предпр.= 0.7%							Строительство
0342	Фтористые газообразные соединения	0.12905/0.00258		748/-931		6007	100		дорог в мкр. Алгабас
0344	Фториды неорганические плохо растворимые	0.06714/0.01343		748/-931		6007	100		
0616	Диметилбензол	0.05834/0.01167		702/-1117		6009	100		
0703	Бенз/а/пирен	0.38484/3.8e-6		661/-1026		0002	99.5		
0827	Хлорэтилен	0.11808/0.01181		748/-887		6008	100		
1042	Бутан-1-ол	0.05899/0.0059		702/-1117		6009	100		
1210	Бутилацетат	0.08708/0.00871		702/-1117		6009	100		
2902	Взвешенные частицы	0.20914(0.01524)/		747/-976		6010	100		
		0.10457(0.00762)							
		вклад предпр.= 7.3%							
2908	Пыль неорганическая,	0.05363/0.01609		659/-1076		6001	96.3		

	содержащая двуокись						
	кремния в %: 70-20						
2930	Пыль абразивная	0.34527/0.01381		659/-1076	601	2 100	
	Груп	пы веществ, обладающих	с эффектом комбинирован	ного вредн	юго действия		
0330	Сера диоксид				601	3 3.8	
31 0301	Азота (IV) диоксид	1.11015(0.03208) вклад предпр.= 2.9%		662/-977	000	2 81.8	
0330	Сера диоксид				000	3 15	
35 0330		0.13693(0.12905) вклад предпр.= 94%		748/-931	600	7 100	Строительство
0342	Фтористые газообразные соединения						дорог в мкр. Алгабас
71 0342	Фтористые газообразные соединения	0.19557		748/-931	600	7 100	
0344	Фториды неорганические плохо растворимые						

2.8.2.1. Анализ результатов расчета уровня загрязнения атмосферы

Для удобства проведения анализа результаты расчетов представлены таблицами максимальных концентраций. На карты рассеивания ЗВ нанесены изолинии приземных концентраций вредных веществ.

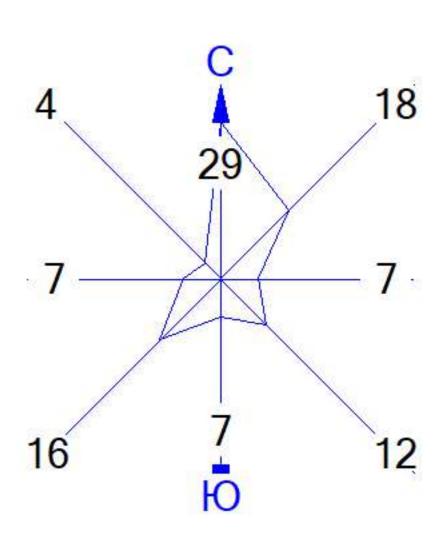

Результаты расчетов рассеивания 3B на перспективу от строящихся и проектируемых ИЗА, представлены в графическом в виде зоны загрязнения.

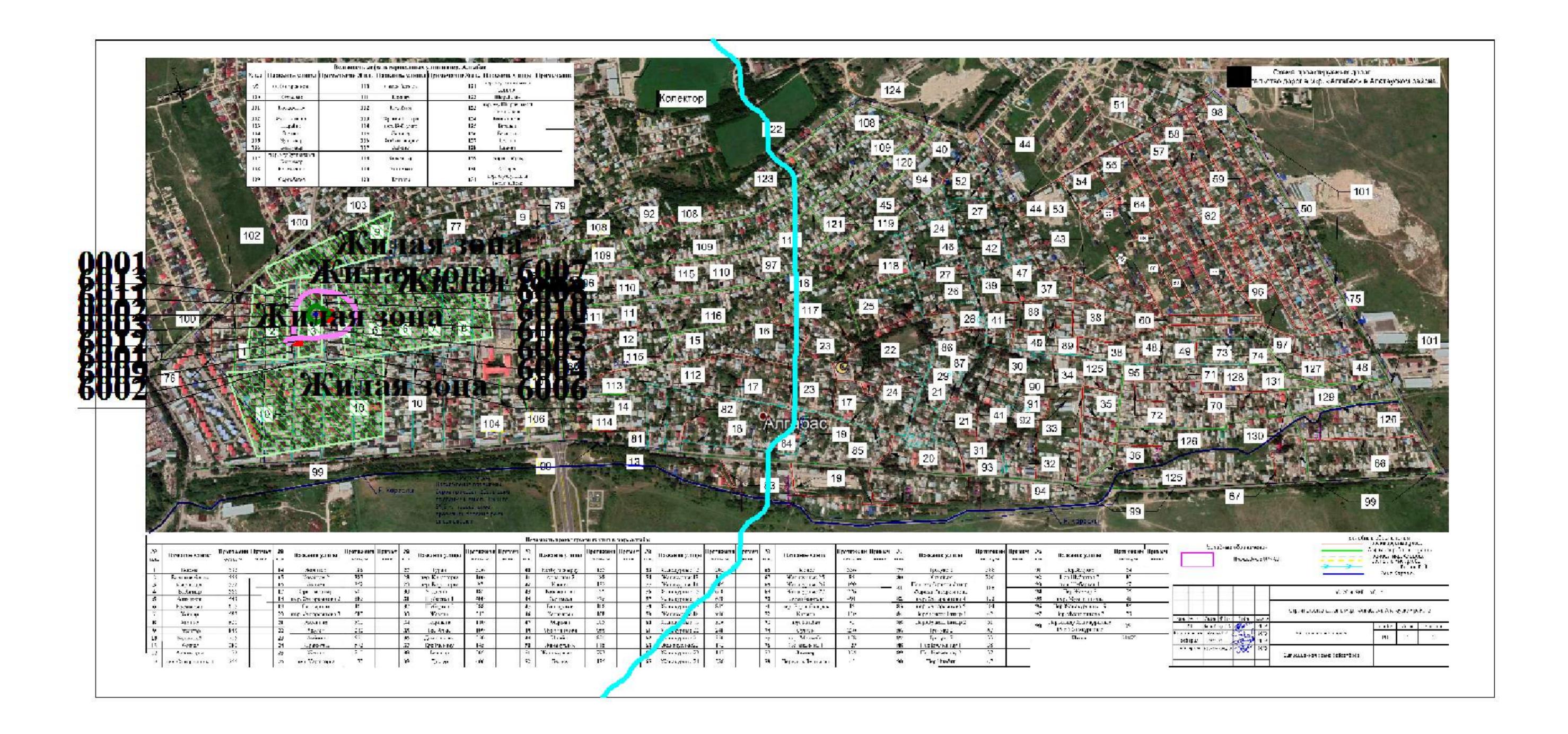

Анализ результатов расчета рассеивания выбросов ЗВ при производстве строительных работ показал, что расчетный уровень загрязнения атмосферного воздуха по всем ингредиентам, входящим в состав выбросов проектируемых источников выбросов и их суммациям, на границе жилой зоны находится в пределах установленных нормативов качества воздуха.

Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на

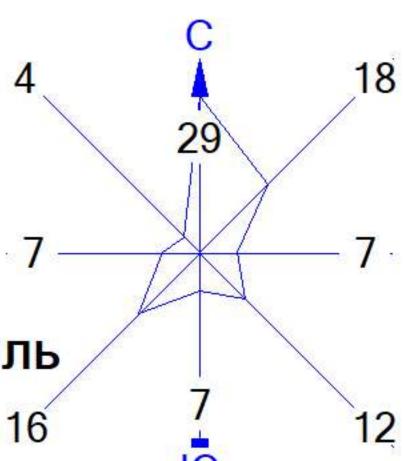


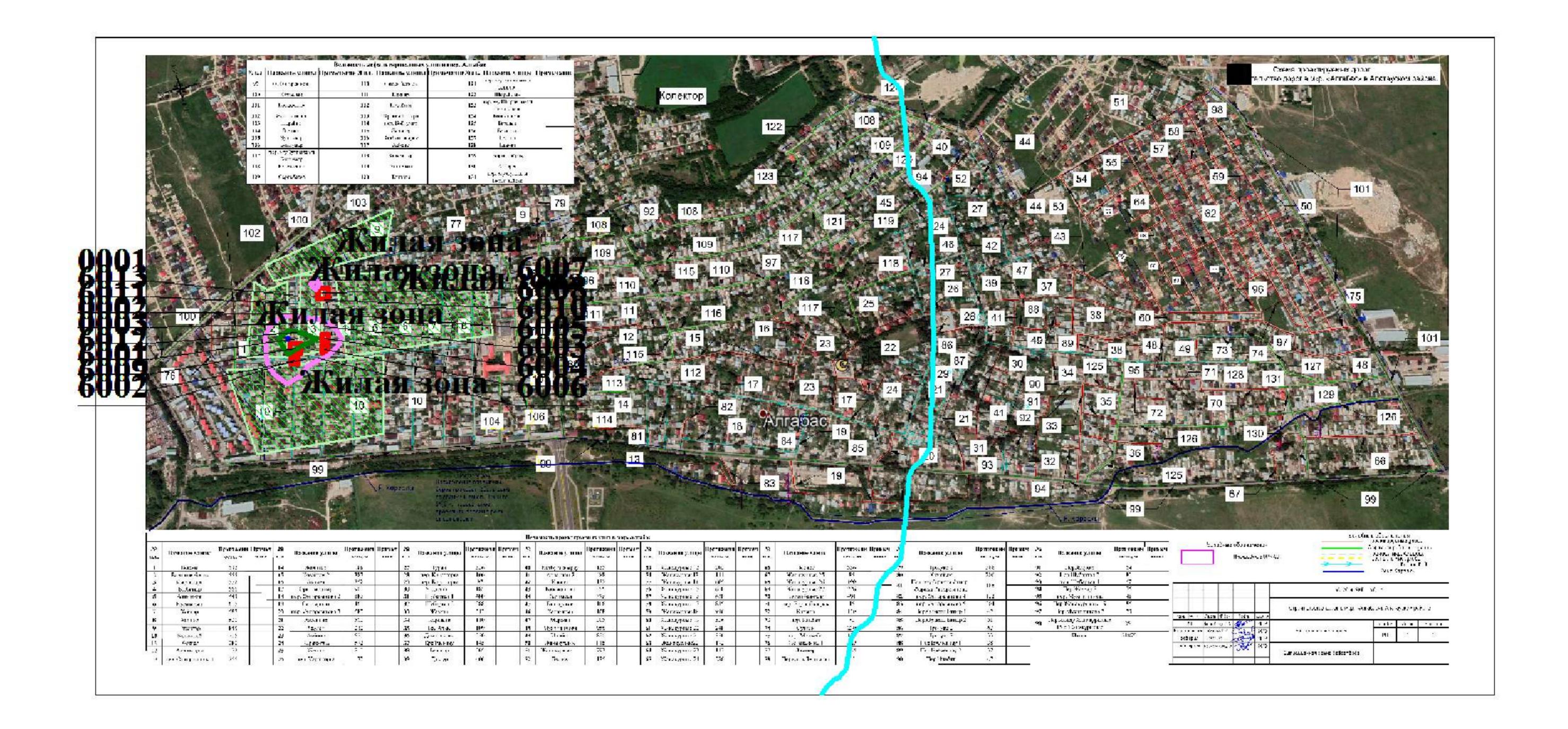


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

2902 Взвешенные частицы (116)

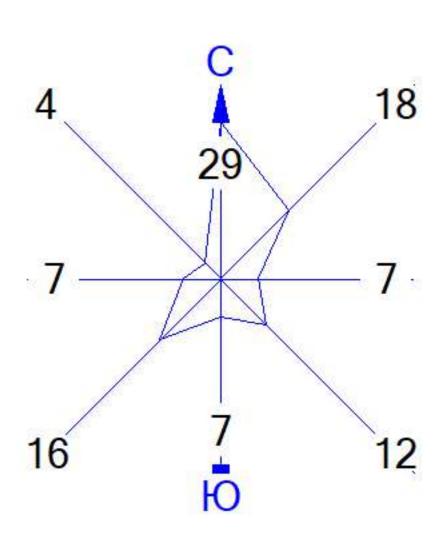


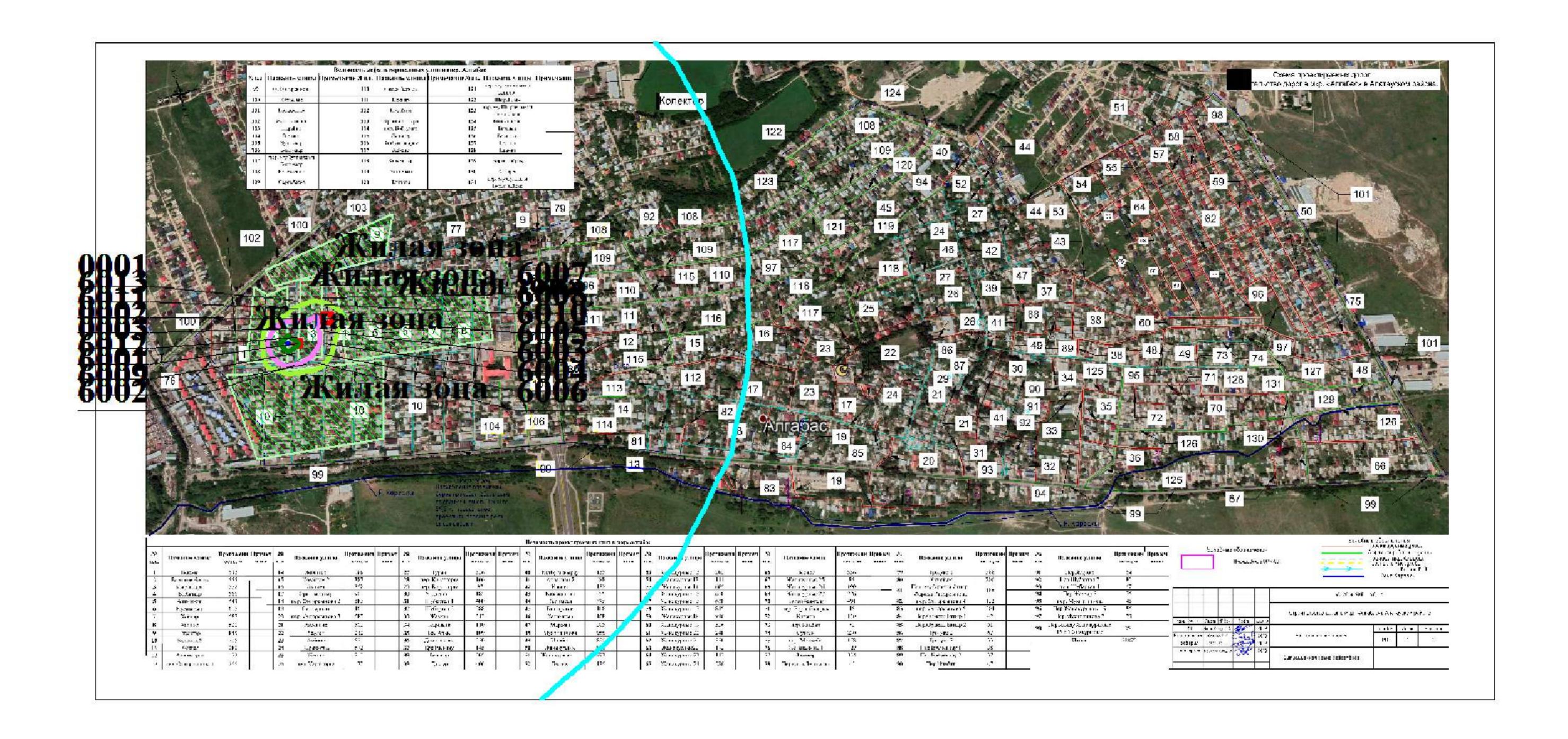


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль

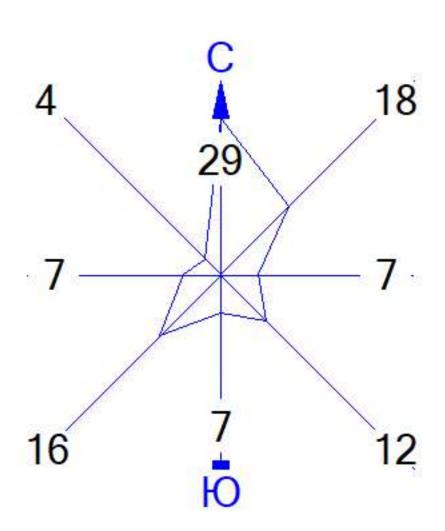


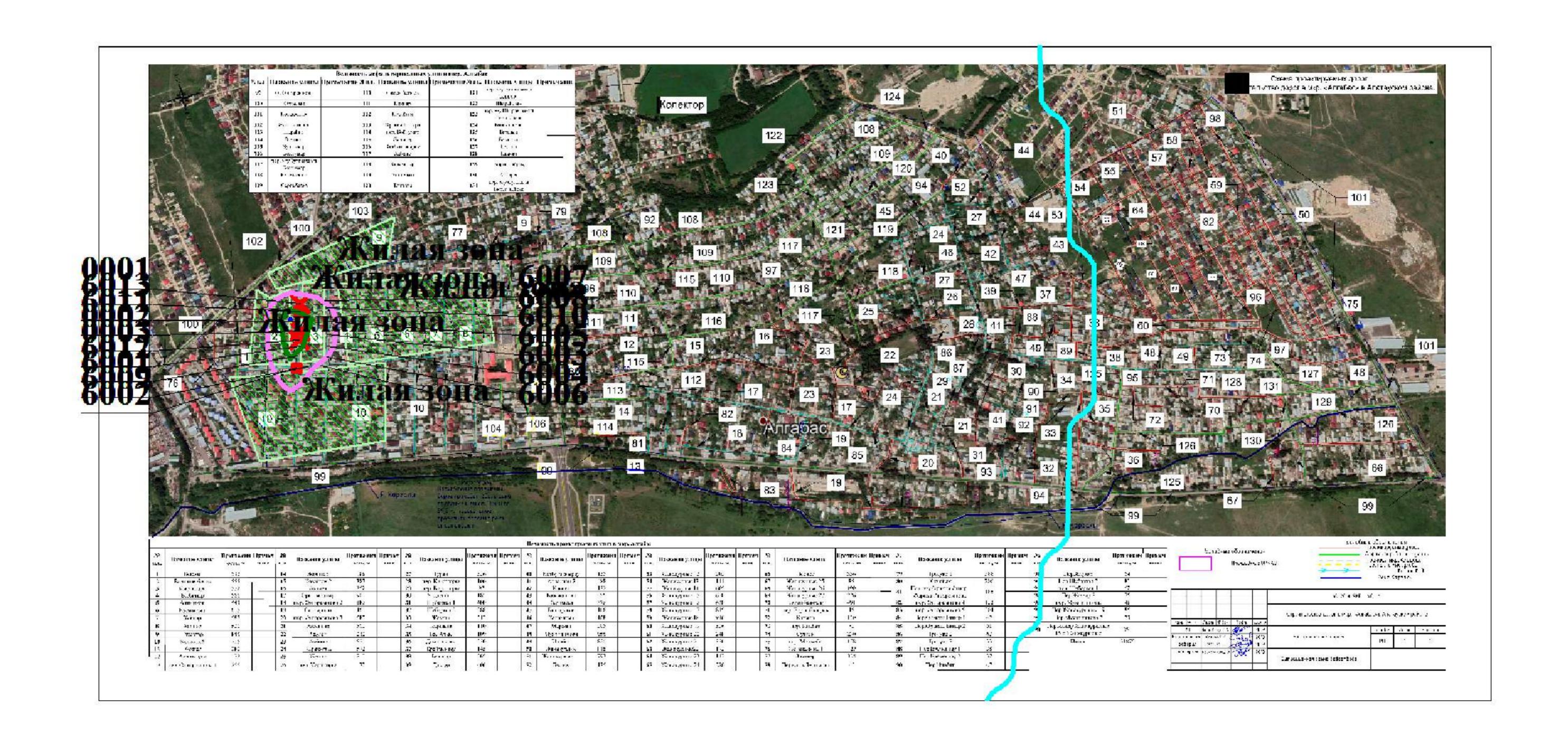


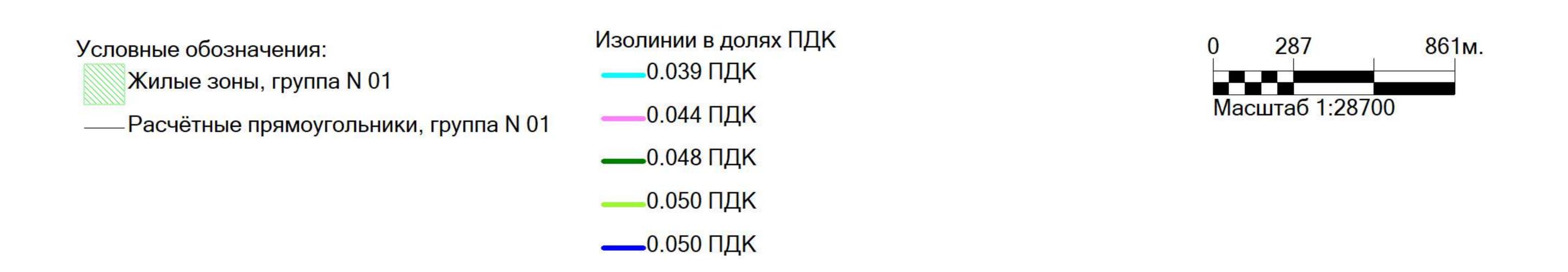
Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

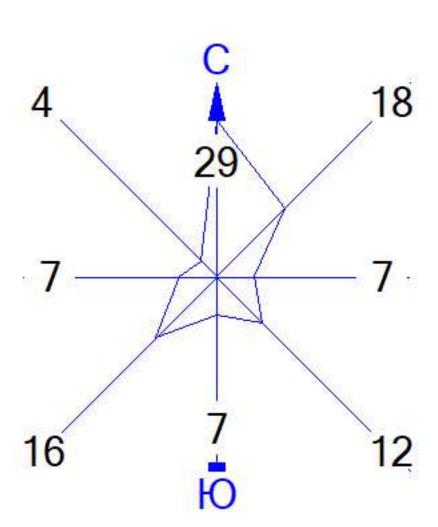


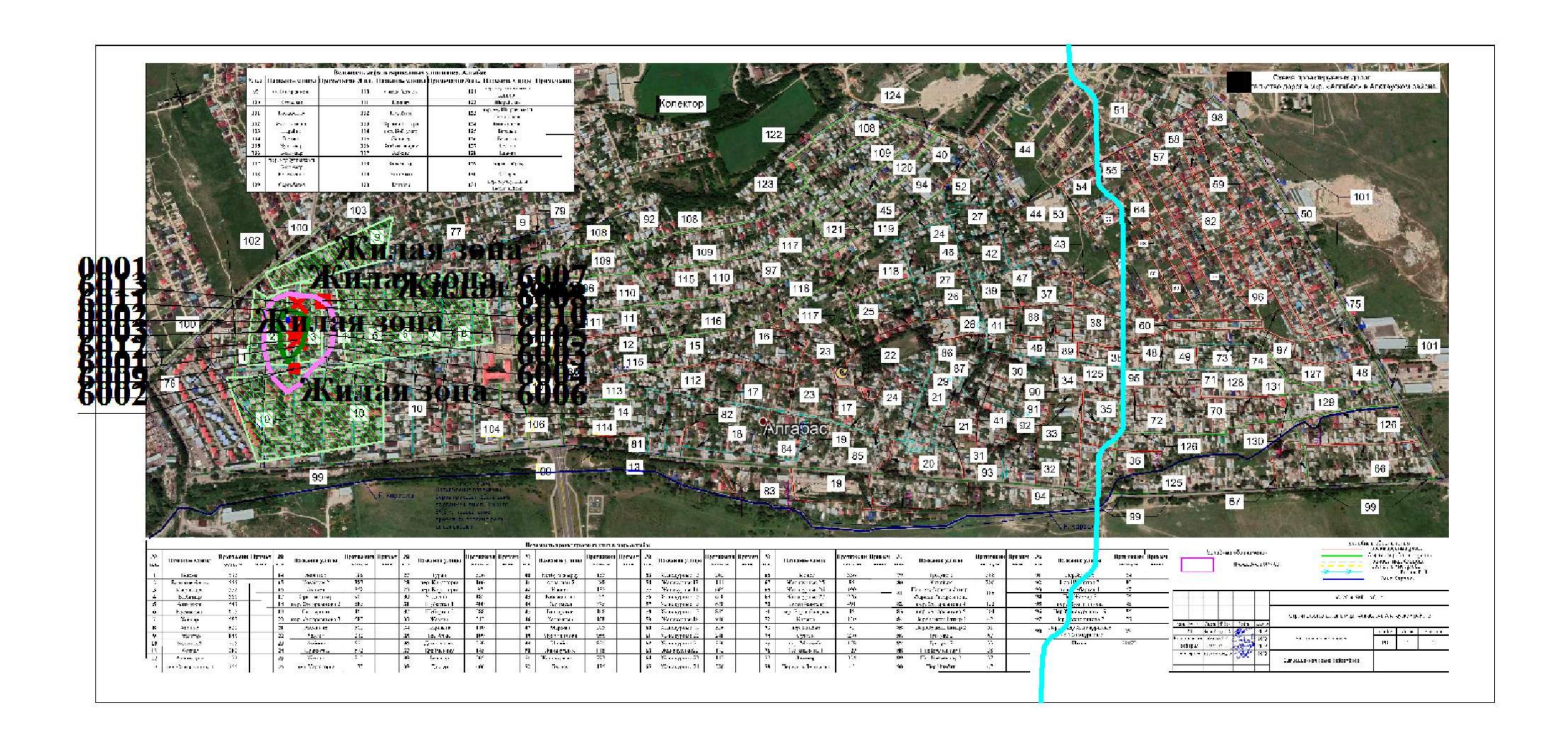




Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

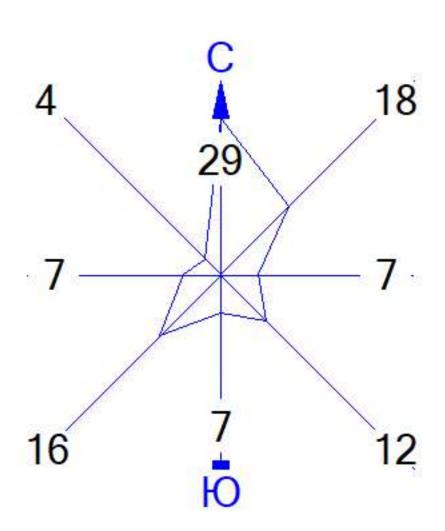
УПРЗА ЭРА v2.0 27 0184+0330

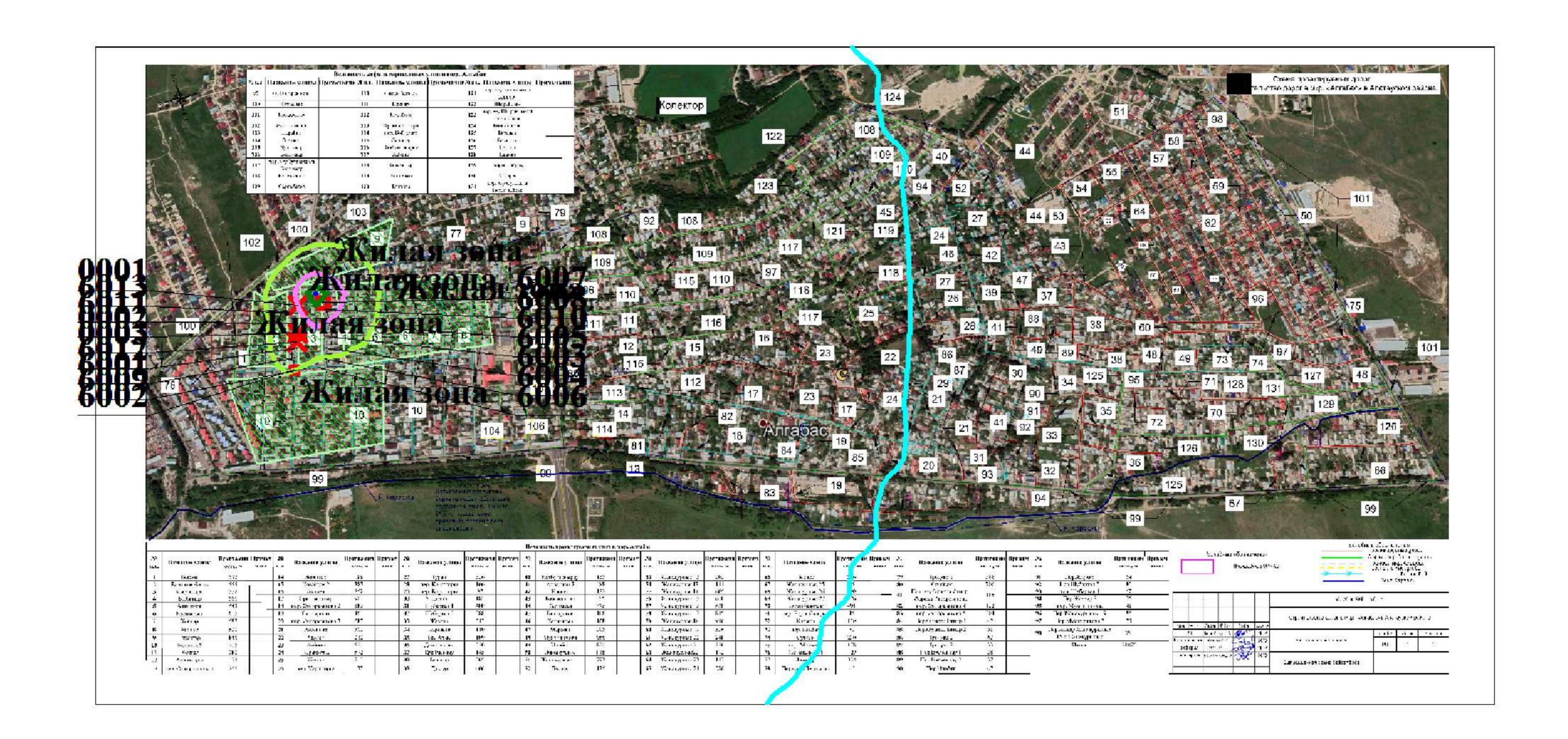




Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

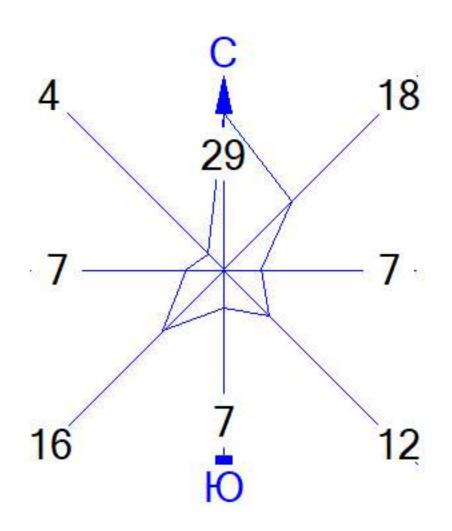
УПРЗА ЭРА v2.0 31 0301+0330

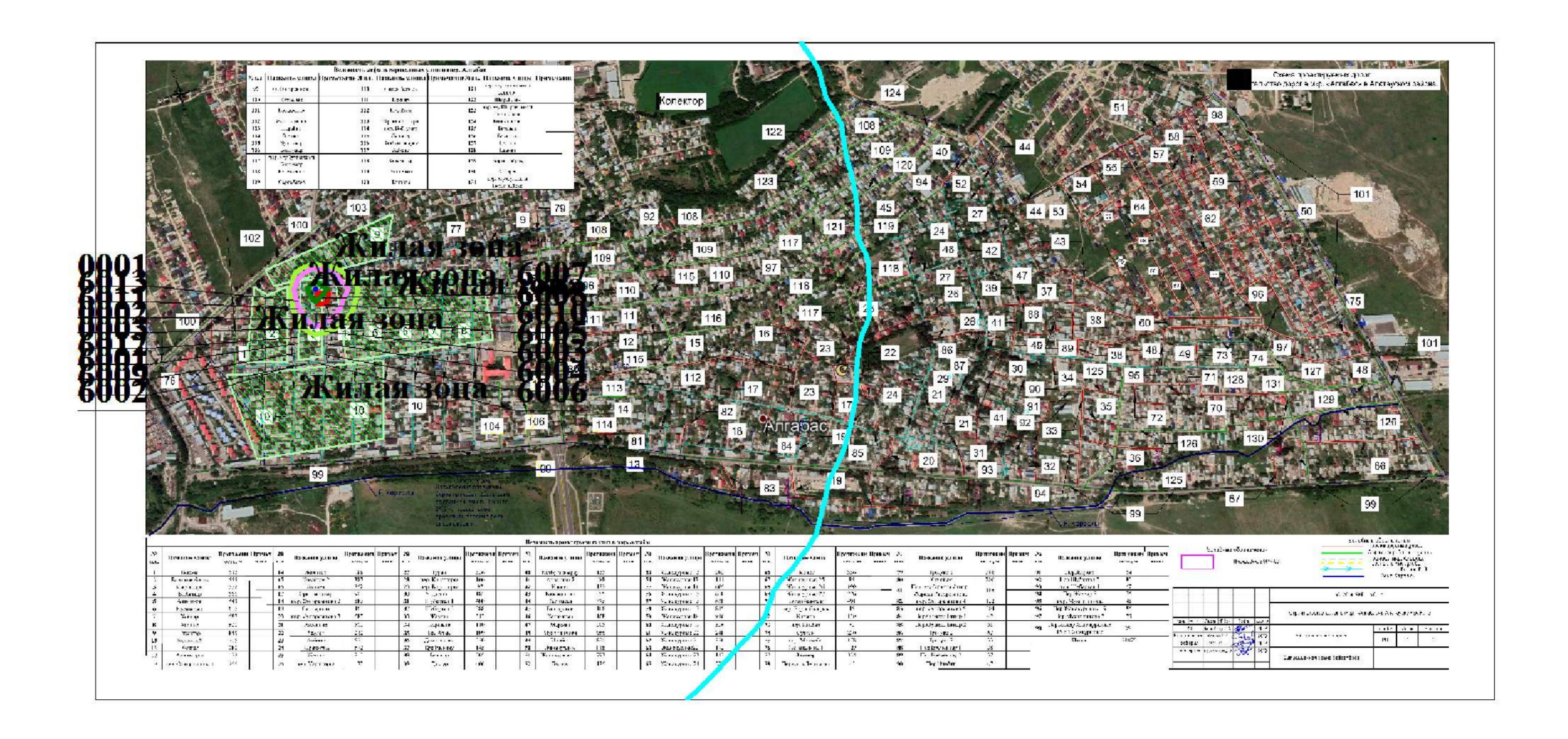




Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0 35 0330+0342

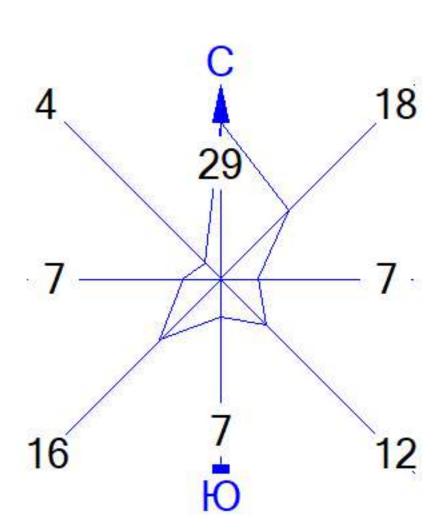


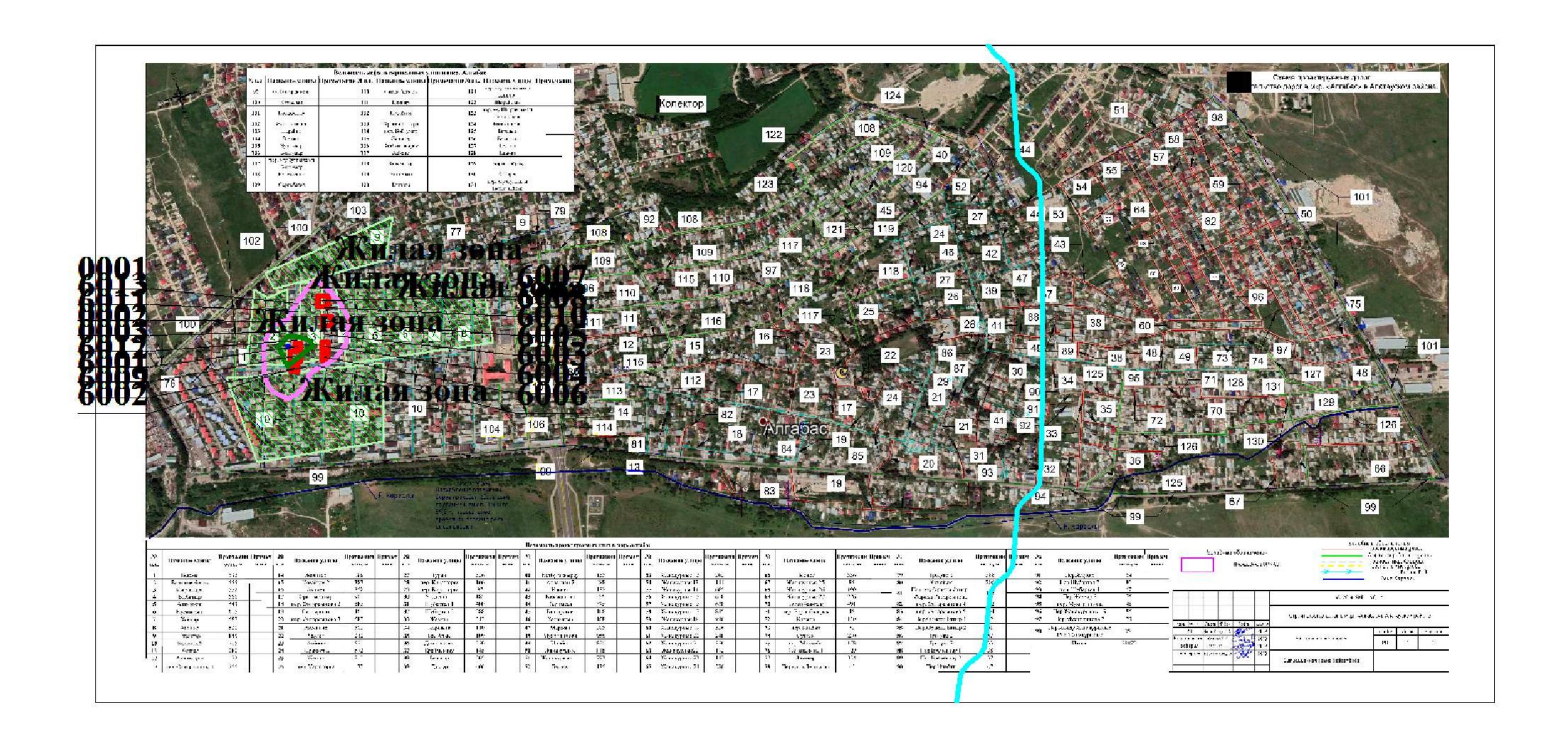


Макс концентрация 0.1287173 ПДК достигается в точке x= 722 y= -864 При опасном направлении 141° и опасной скорости ветра 0.59 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0 71 0342+0344

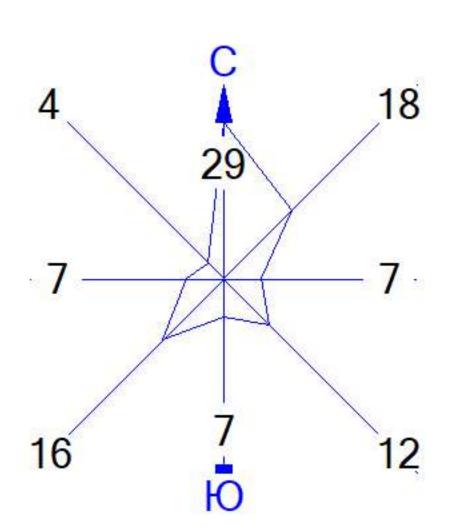


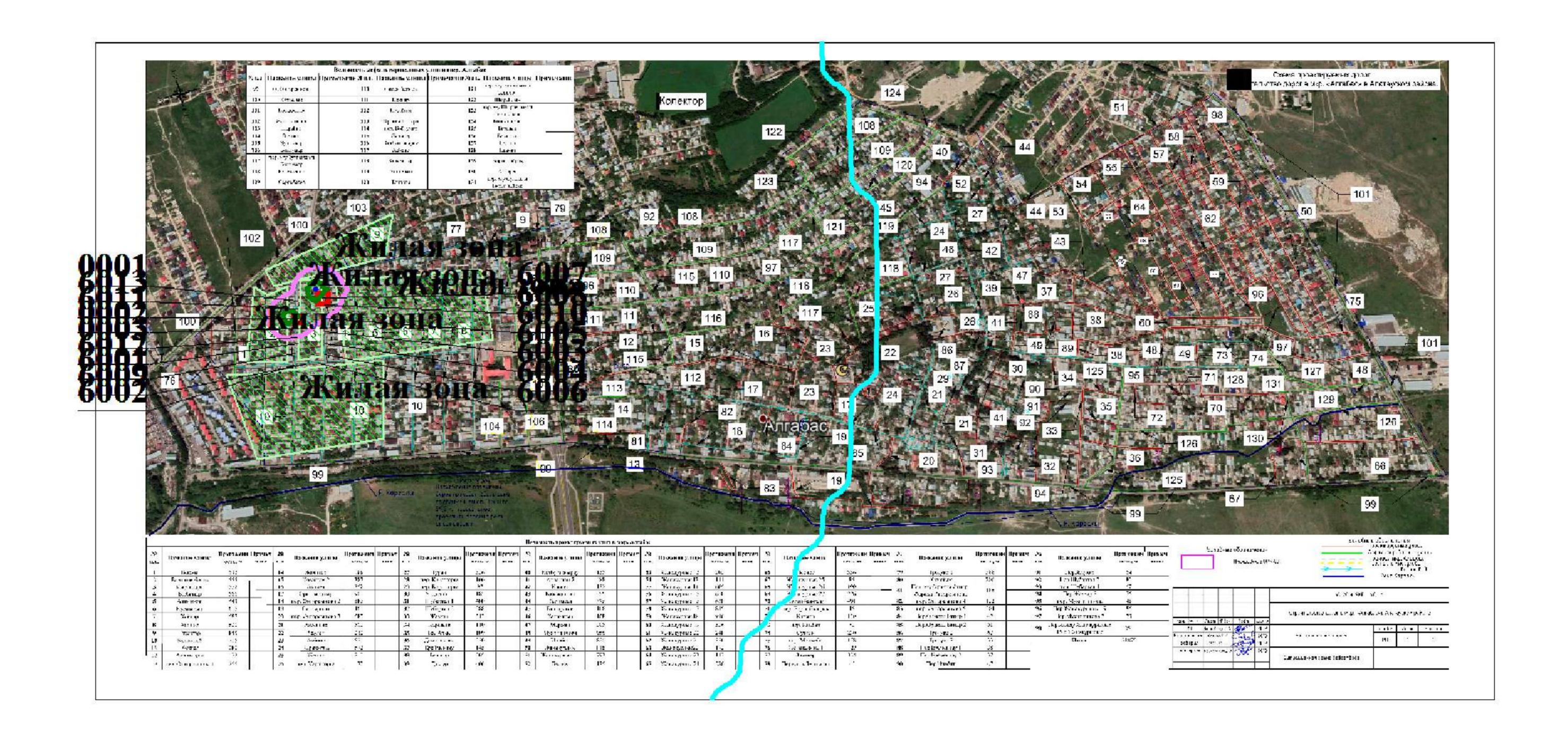

Макс концентрация 0.1764574 ПДК достигается в точке x= 722 y= -864 При опасном направлении 141° и опасной скорости ветра 0.62 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

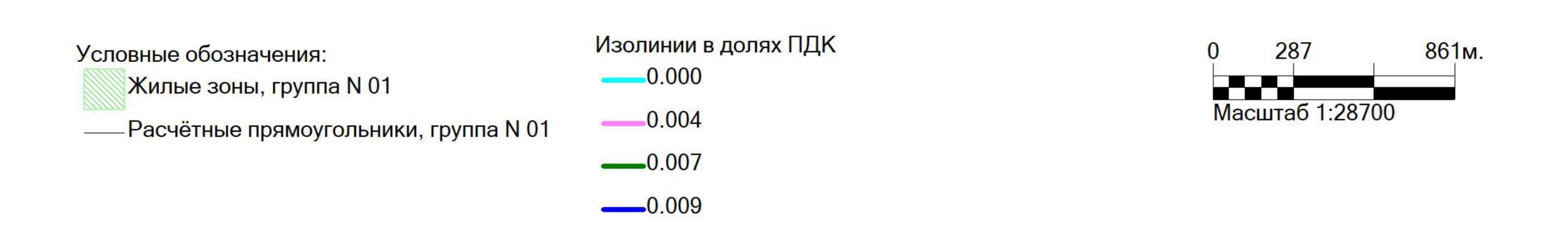
Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

_ПЛ 2902+2908+2930

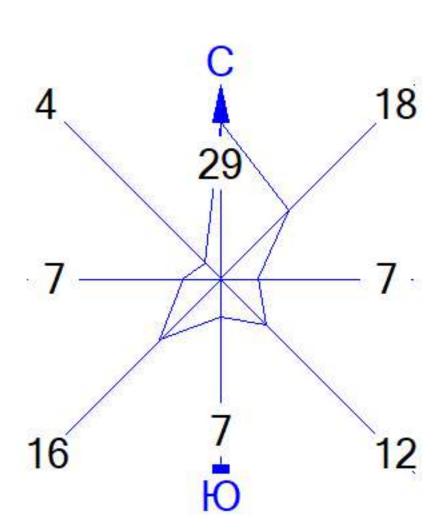


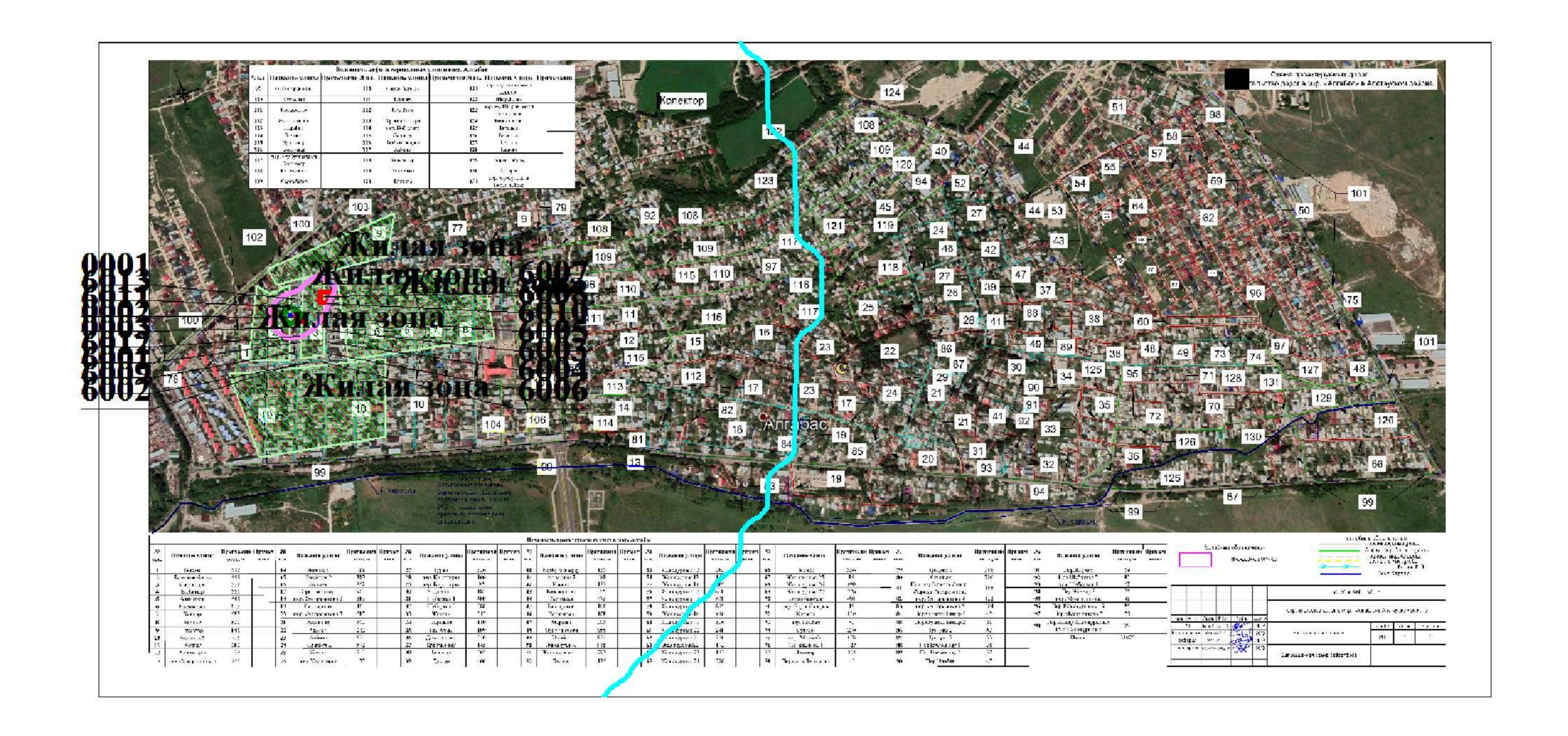



Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/

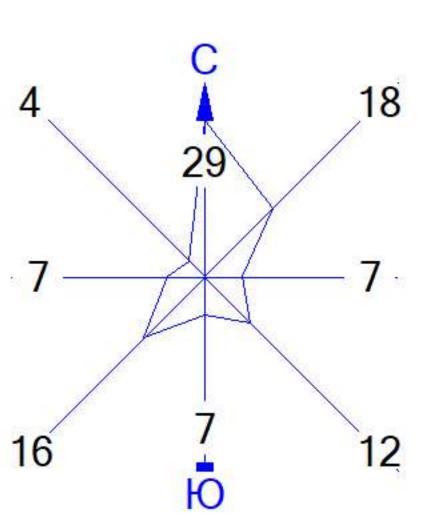


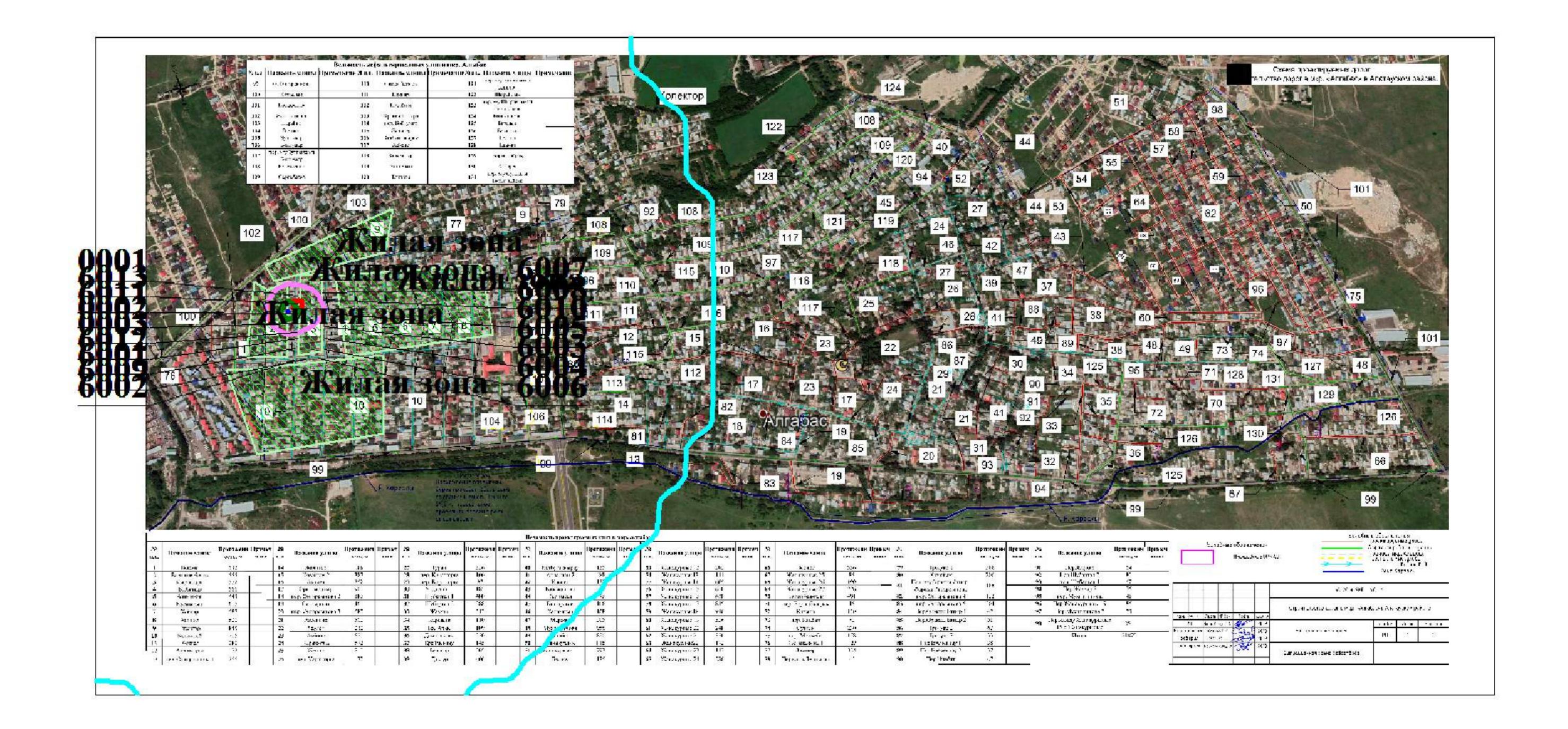


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327))

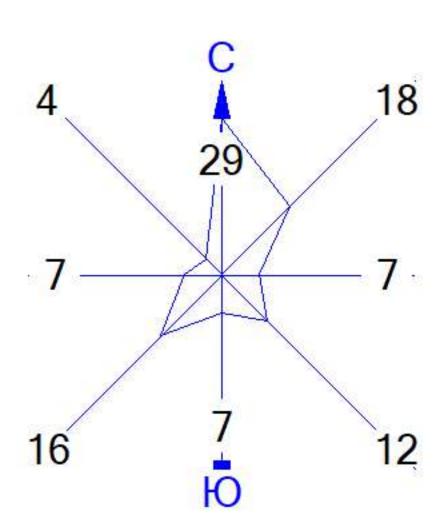


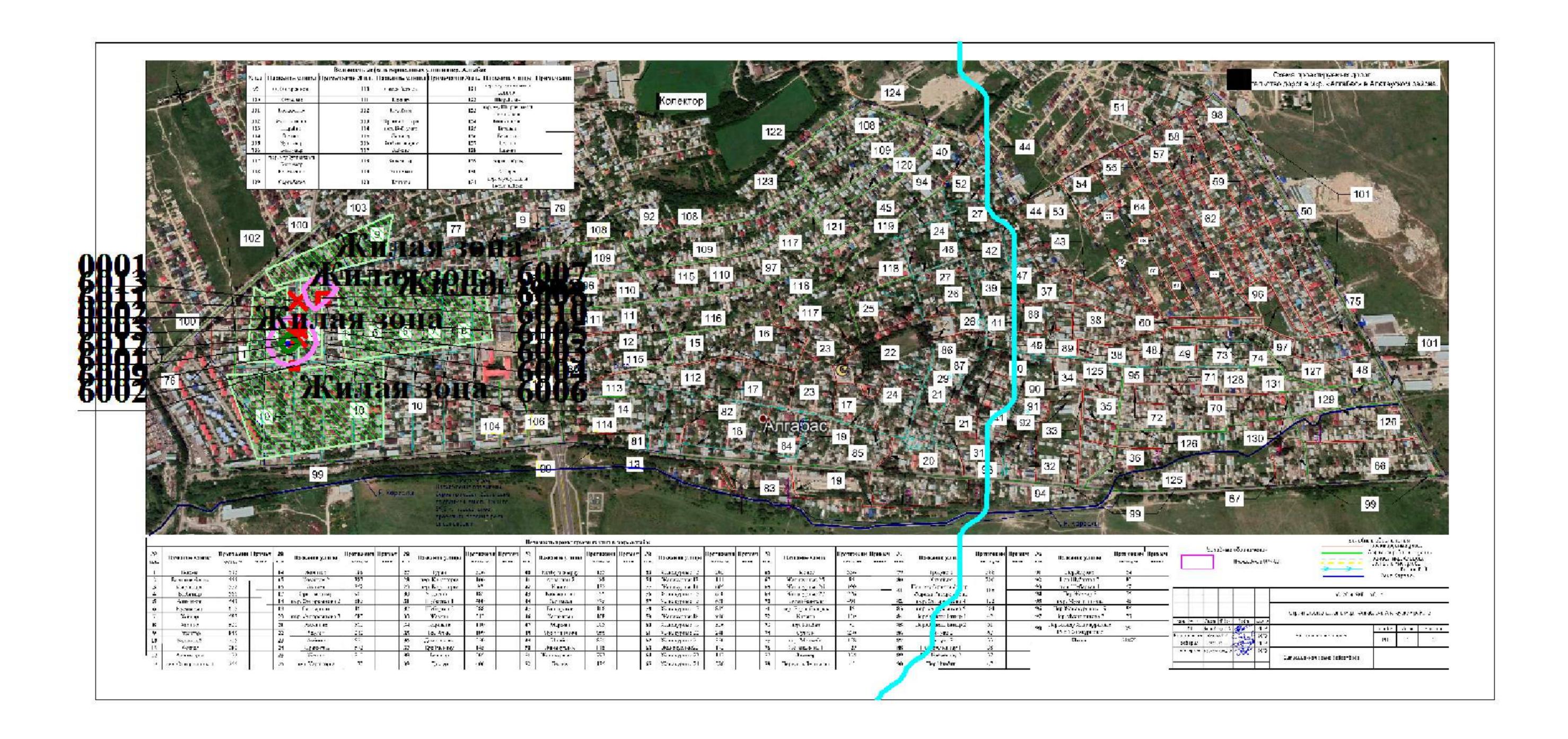


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0184 Свинец и его неорганические соединения /в пересчете на свинец/ (513))

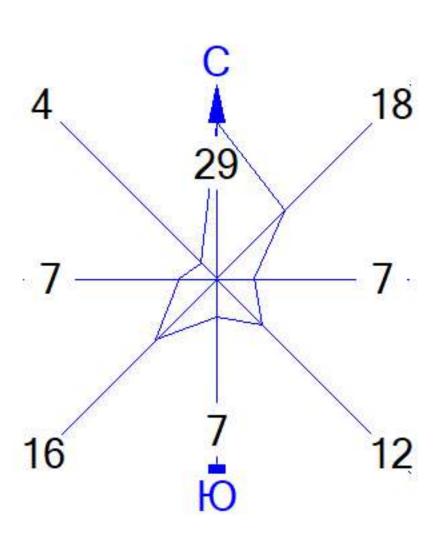


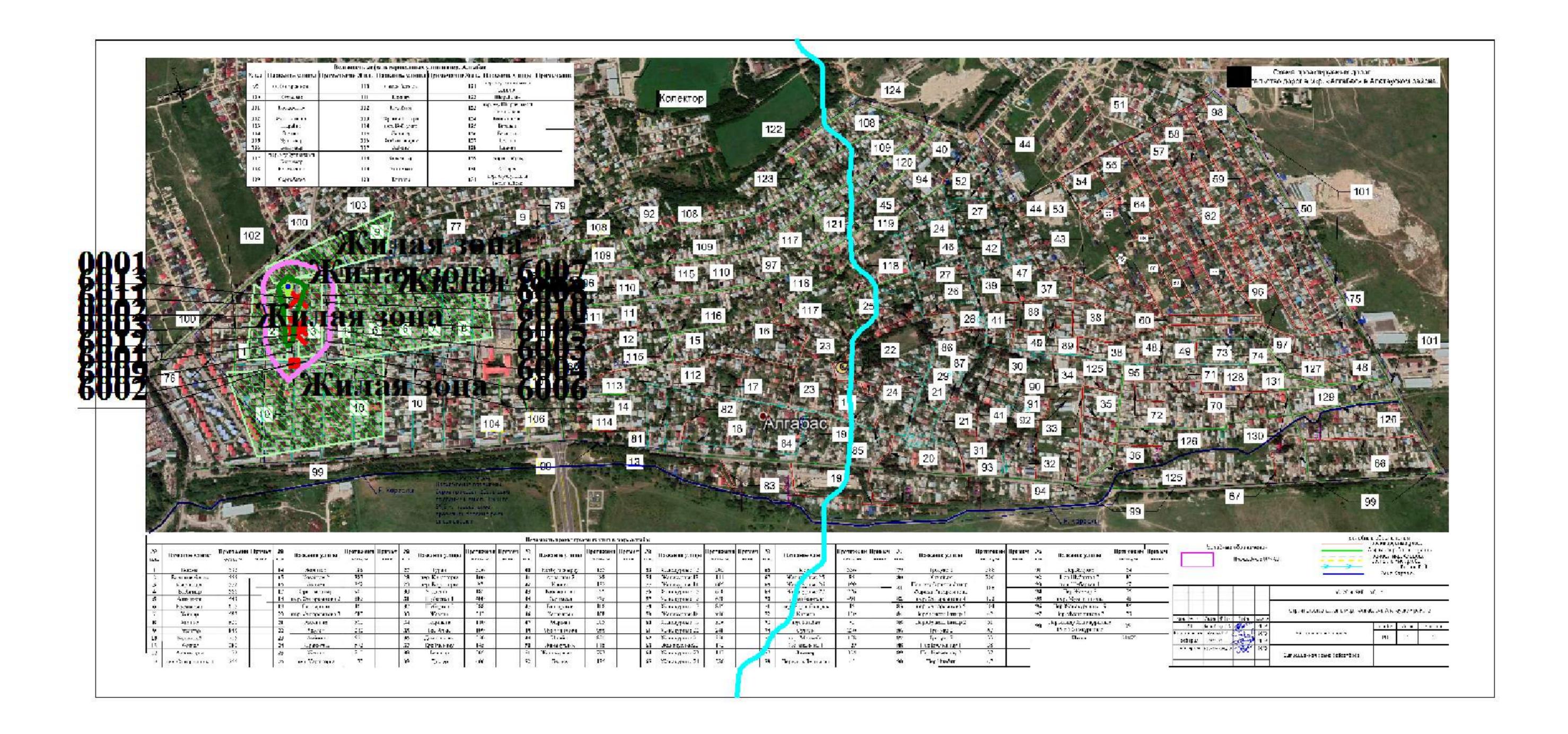


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0301 Азота (IV) диоксид (Азота диоксид) (4)

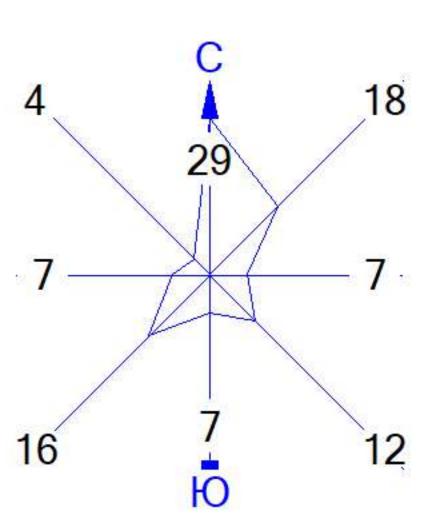


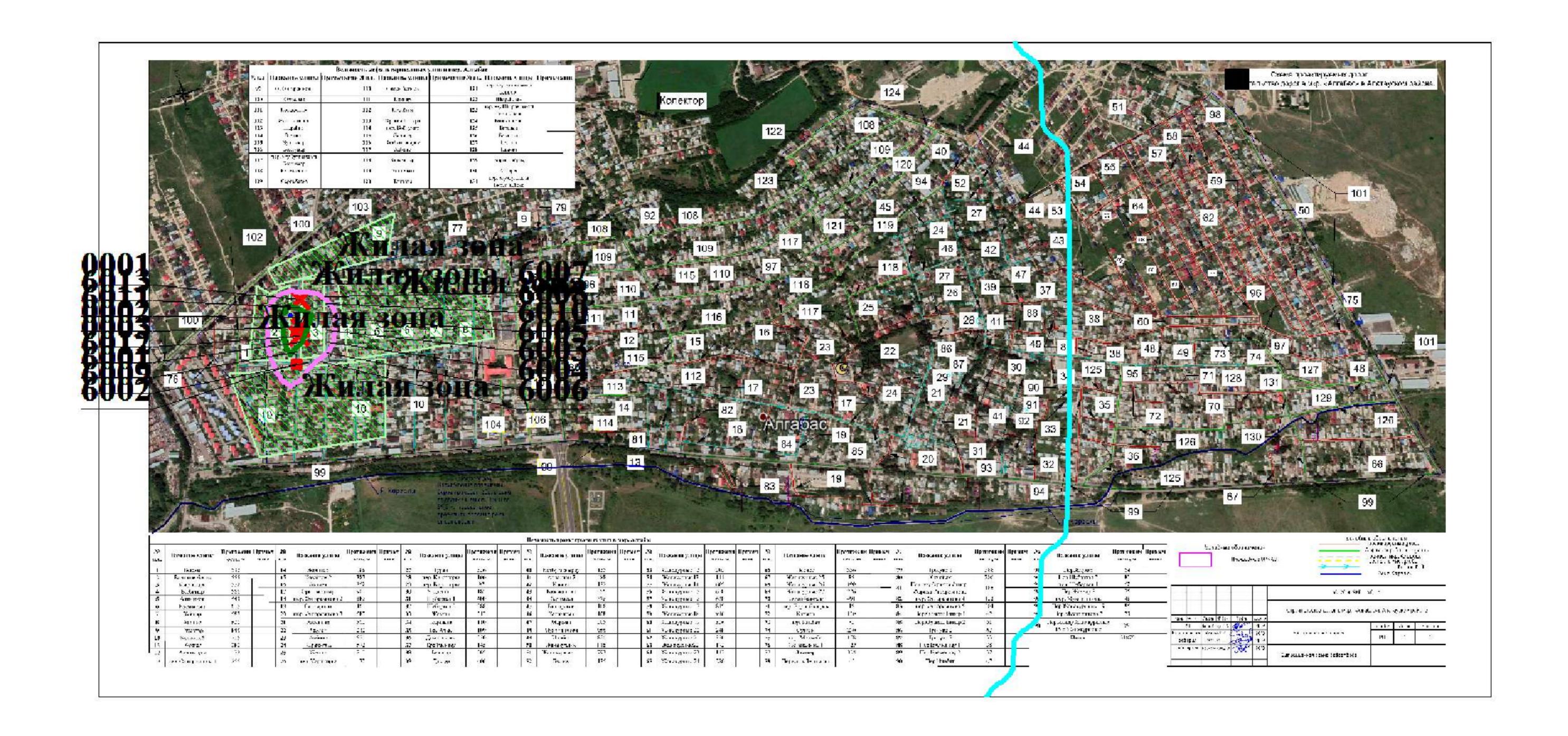


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0328 Углерод (Сажа, Углерод черный) (583)

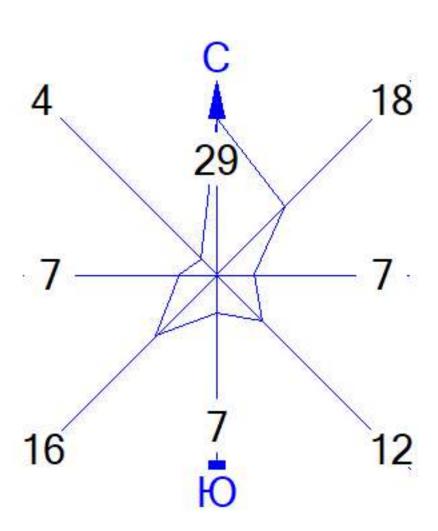


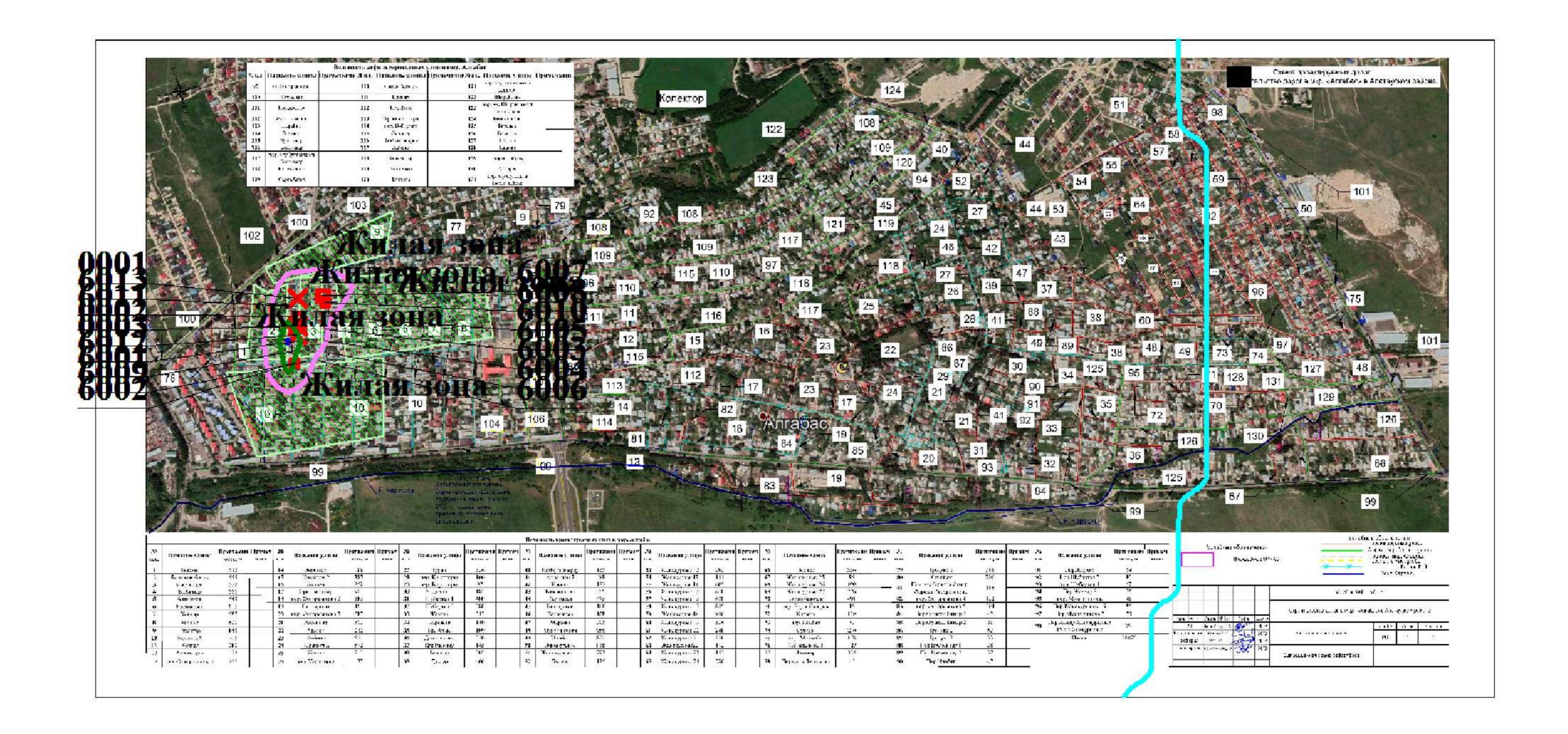

Макс концентрация 0.0523805 ПДК достигается в точке x= 622 y= -864 При опасном направлении 141° и опасной скорости ветра 2.59 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

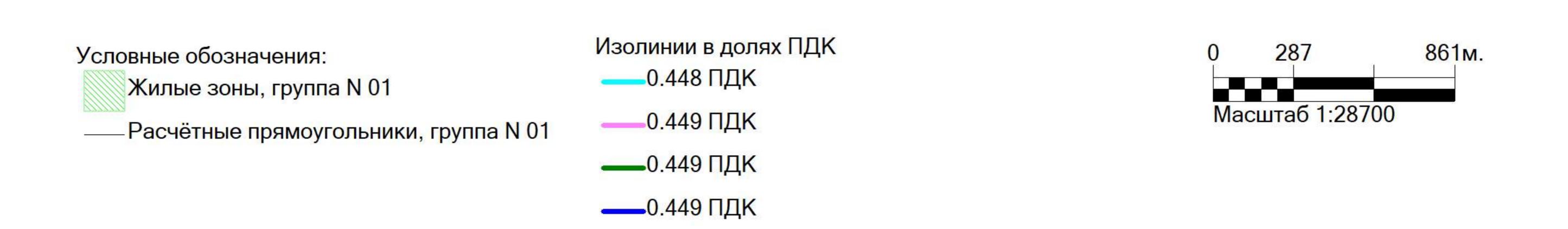
Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))

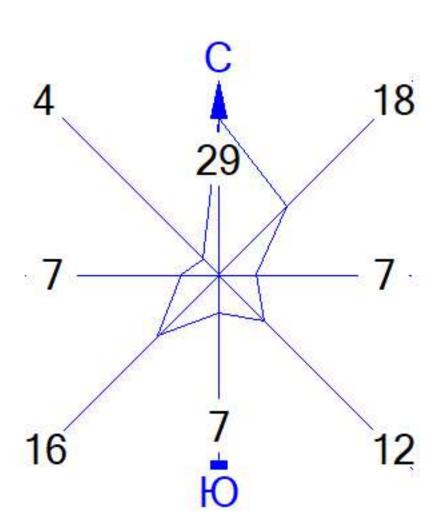


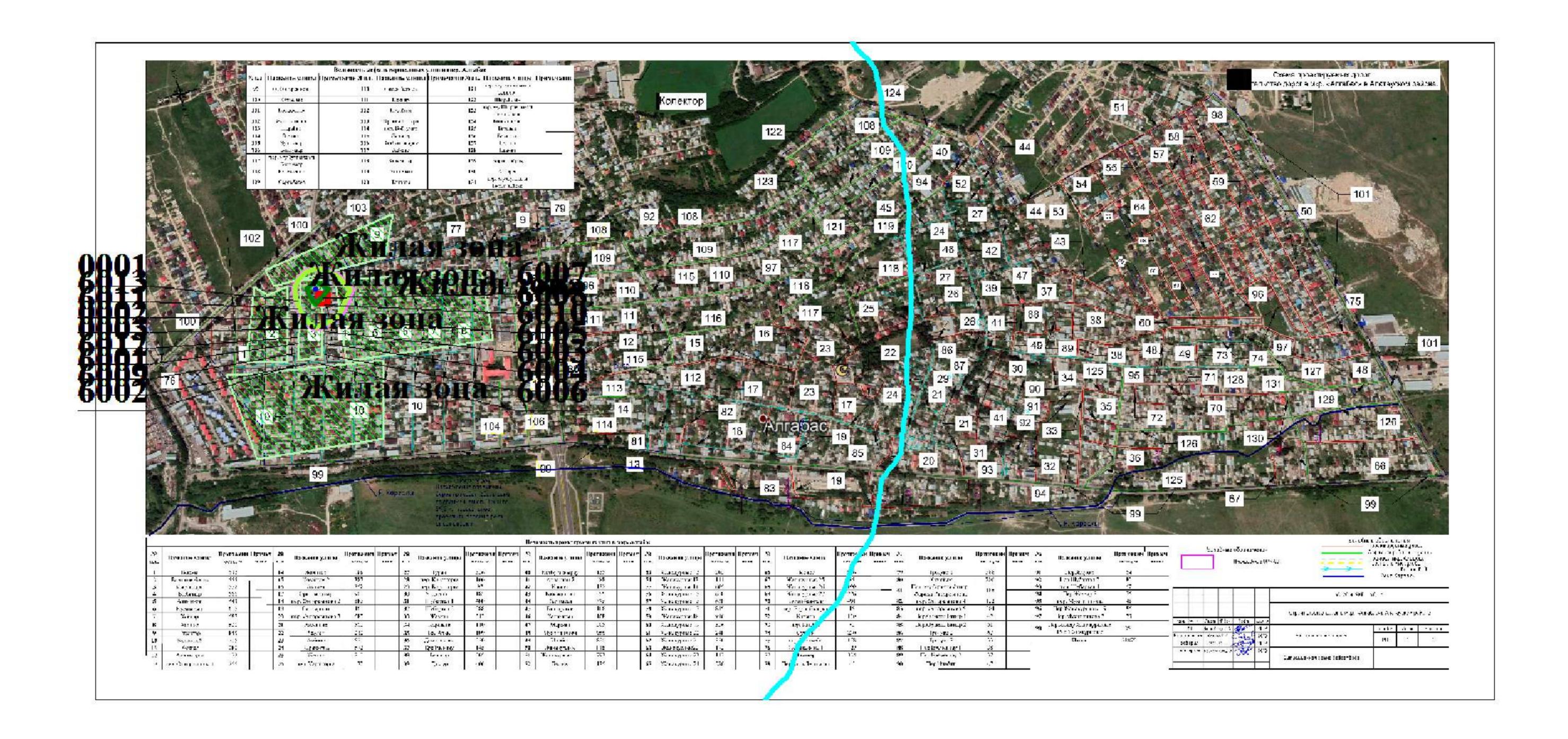

Макс концентрация 0.050046 ПДК достигается в точке x= 622 y= -964 При опасном направлении 142° и опасной скорости ветра 1.87 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0337 Углерод оксид (Окись углерода, Угарный газ) (584)

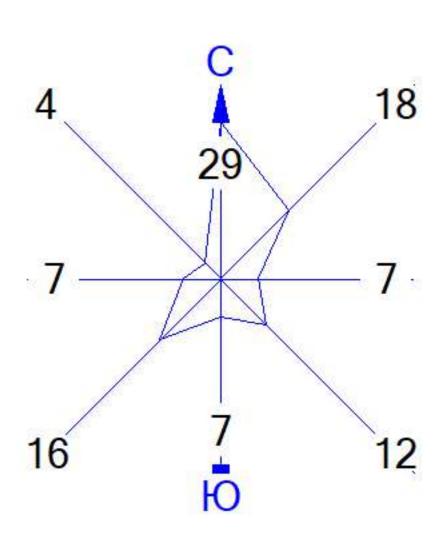


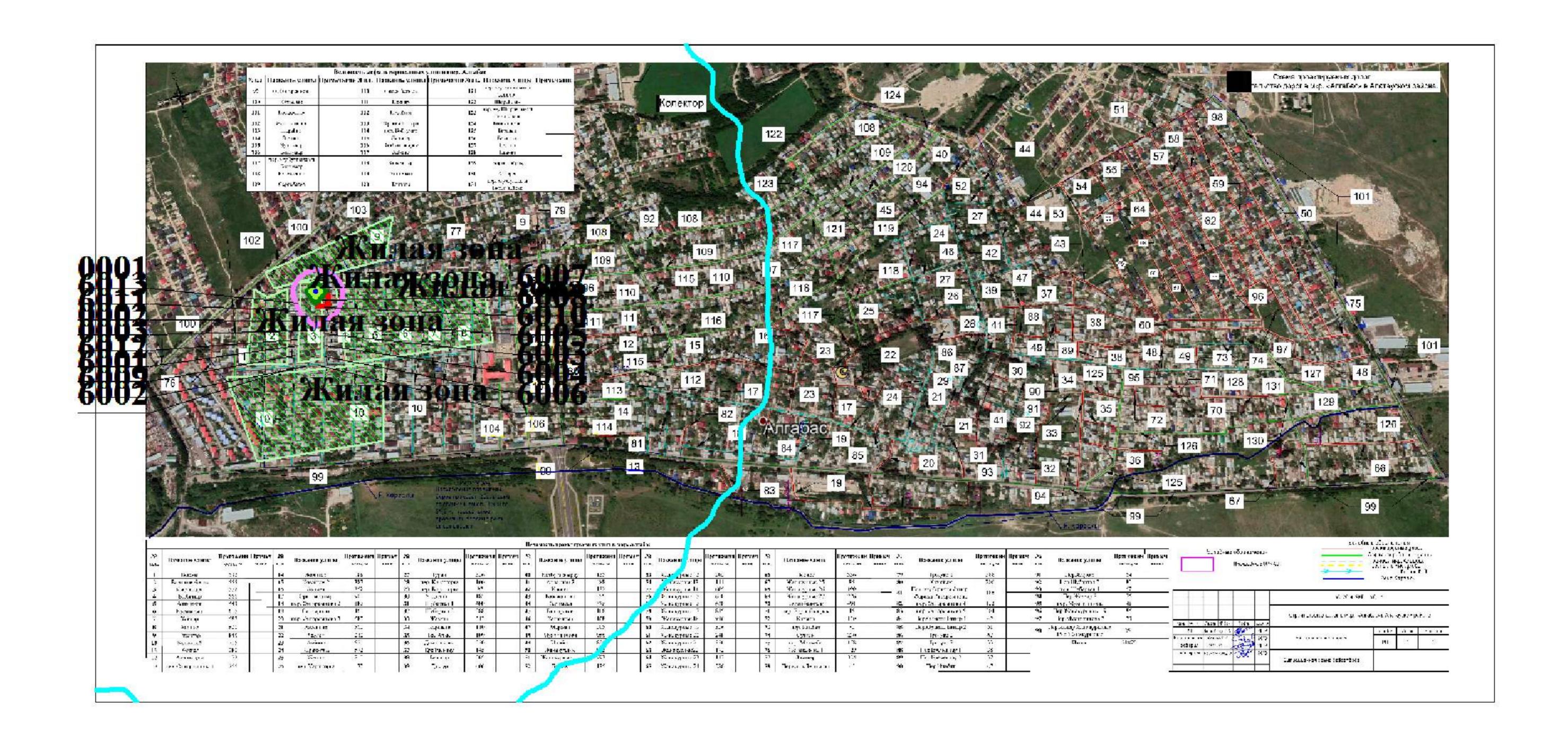


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0342 Фтористые газообразные соединения /в пересчете на фтор/ (617))

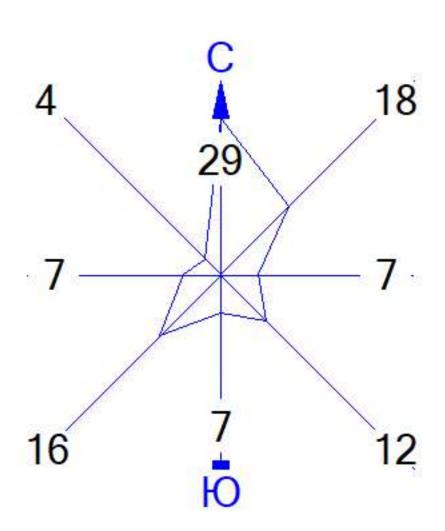


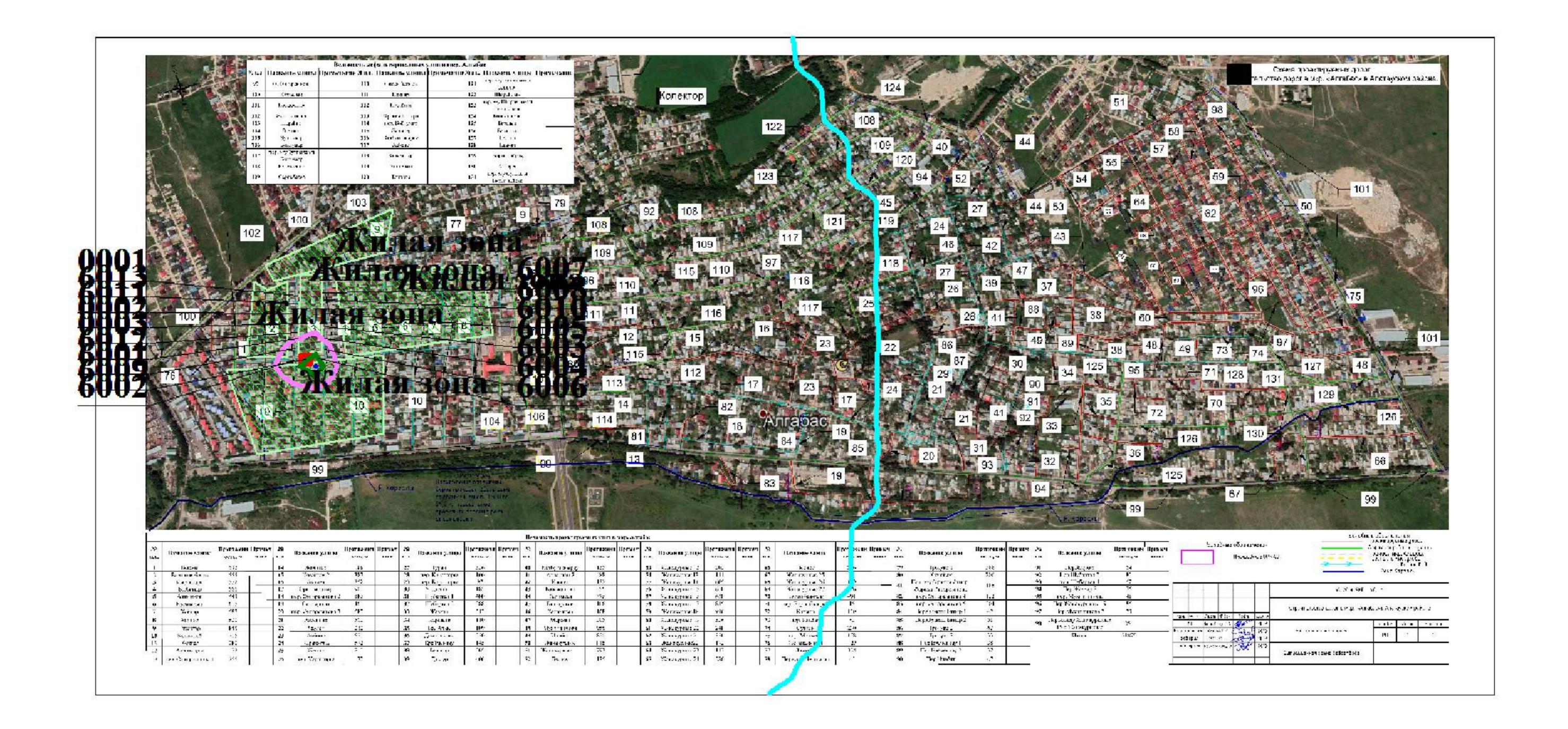

Макс концентрация 0.1208374 ПДК достигается в точке x= 722 y= -864 При опасном направлении 141° и опасной скорости ветра 0.59 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0344 Фториды неорганические плохо растворимые

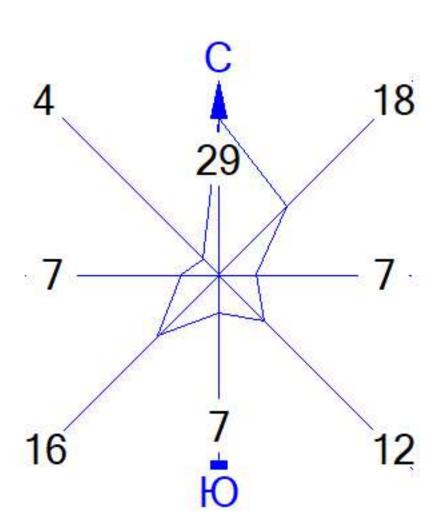


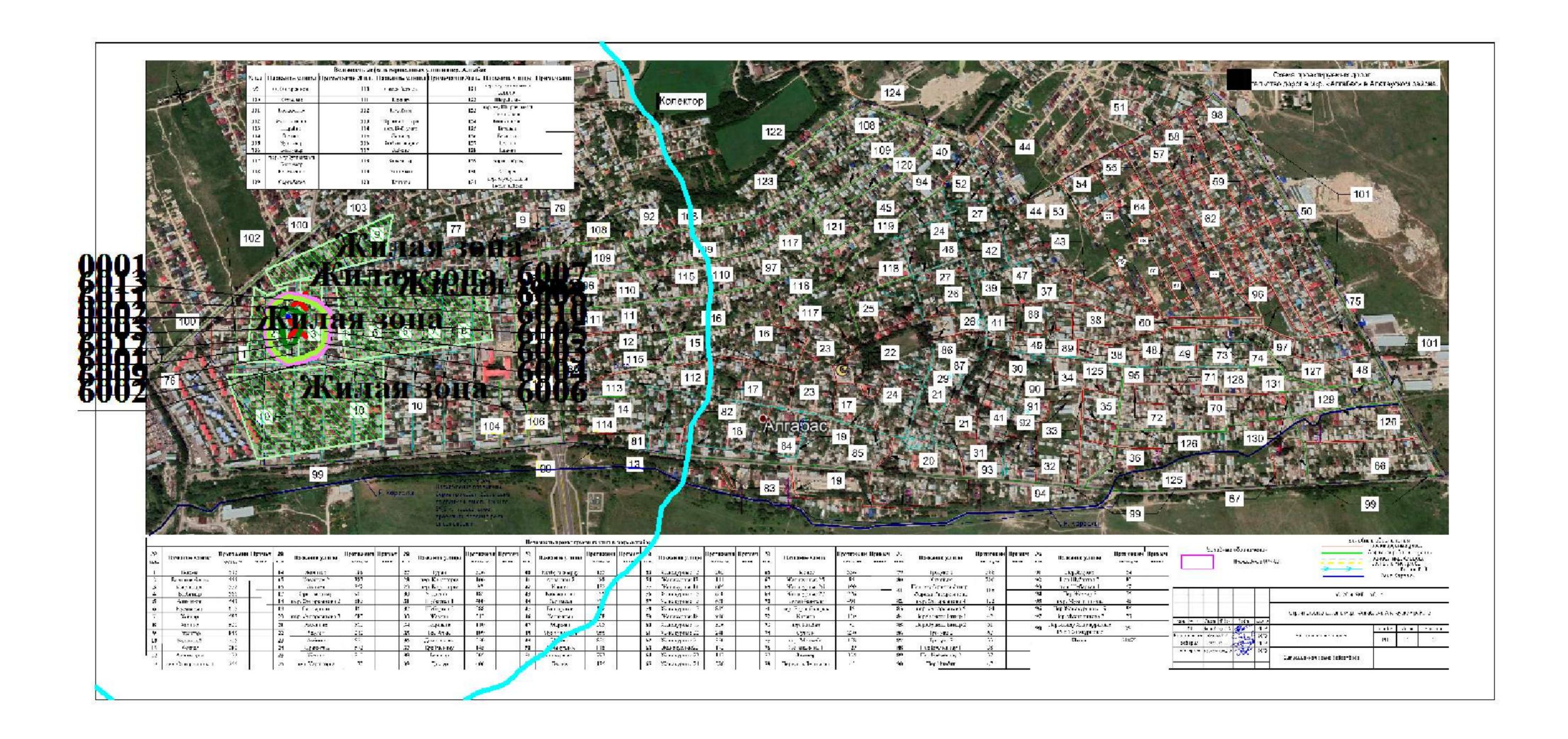

Макс концентрация 0.056493 ПДК достигается в точке x= 722 y= -864 При опасном направлении 141° и опасной скорости ветра 0.72 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

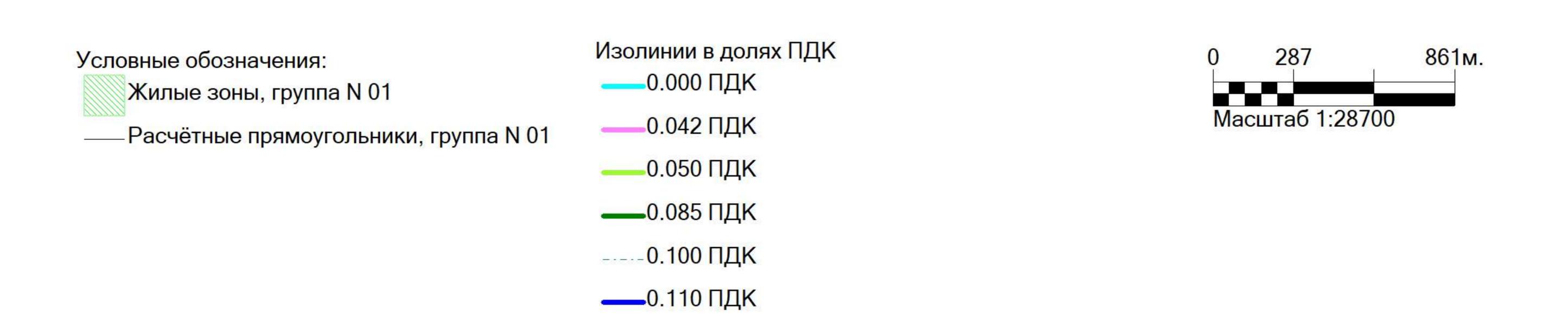
Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

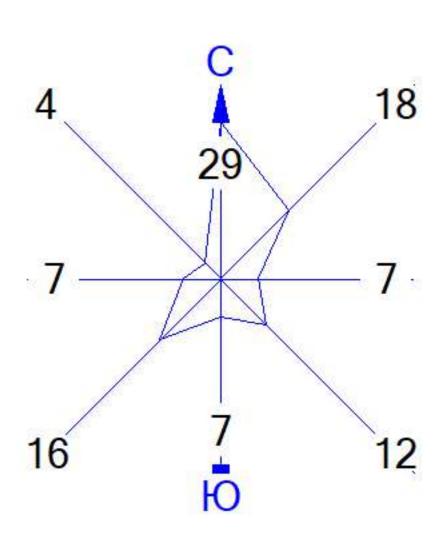


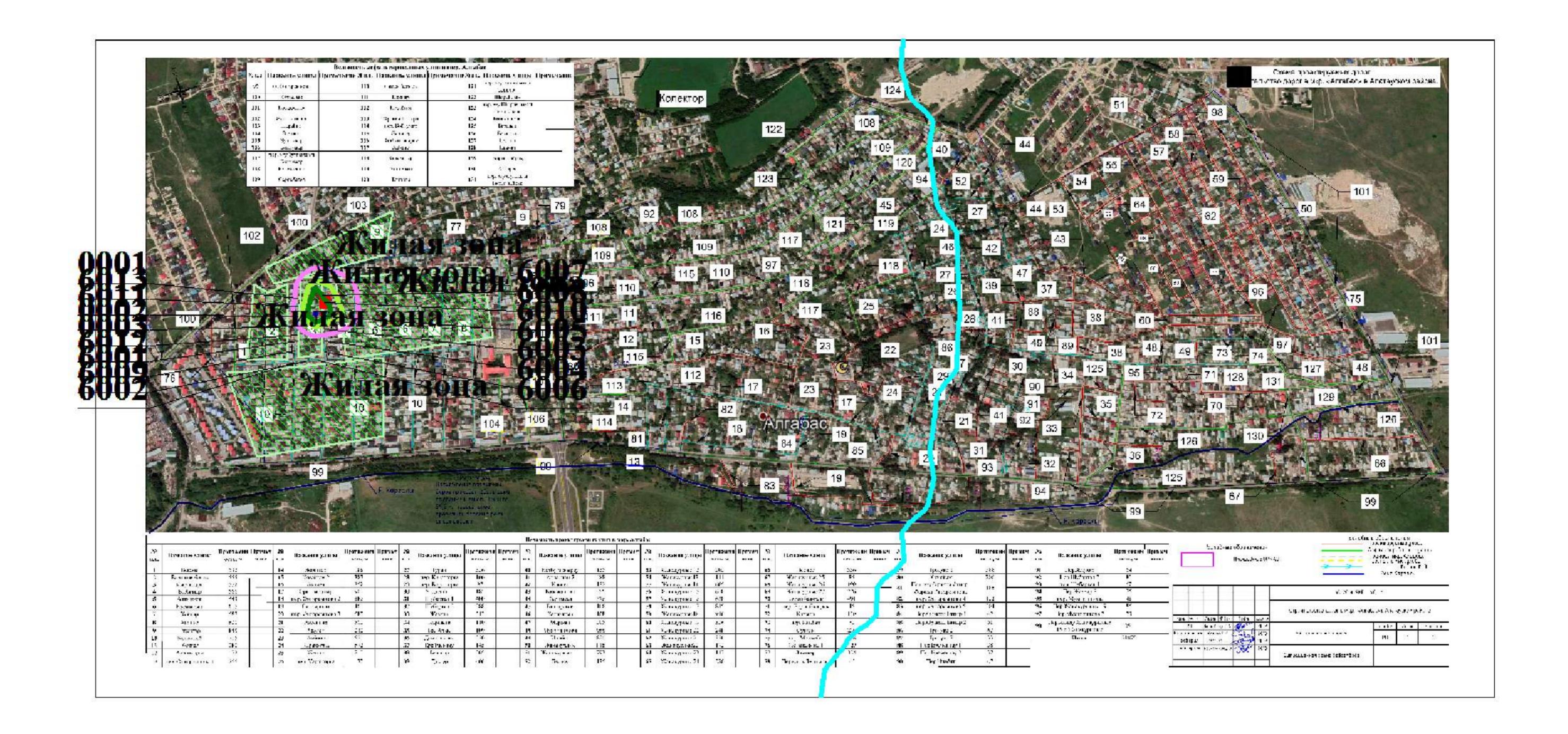



Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0703 Бенз/а/пирен (3,4-Бензпирен) (54)

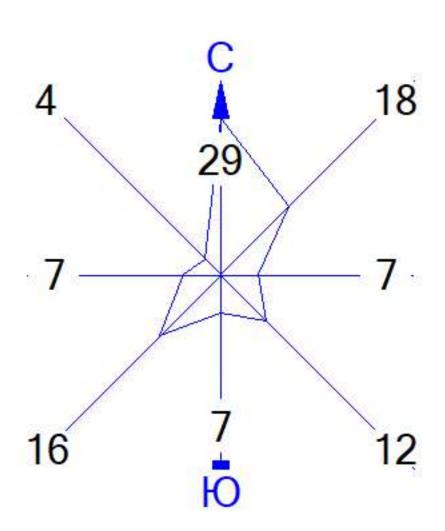


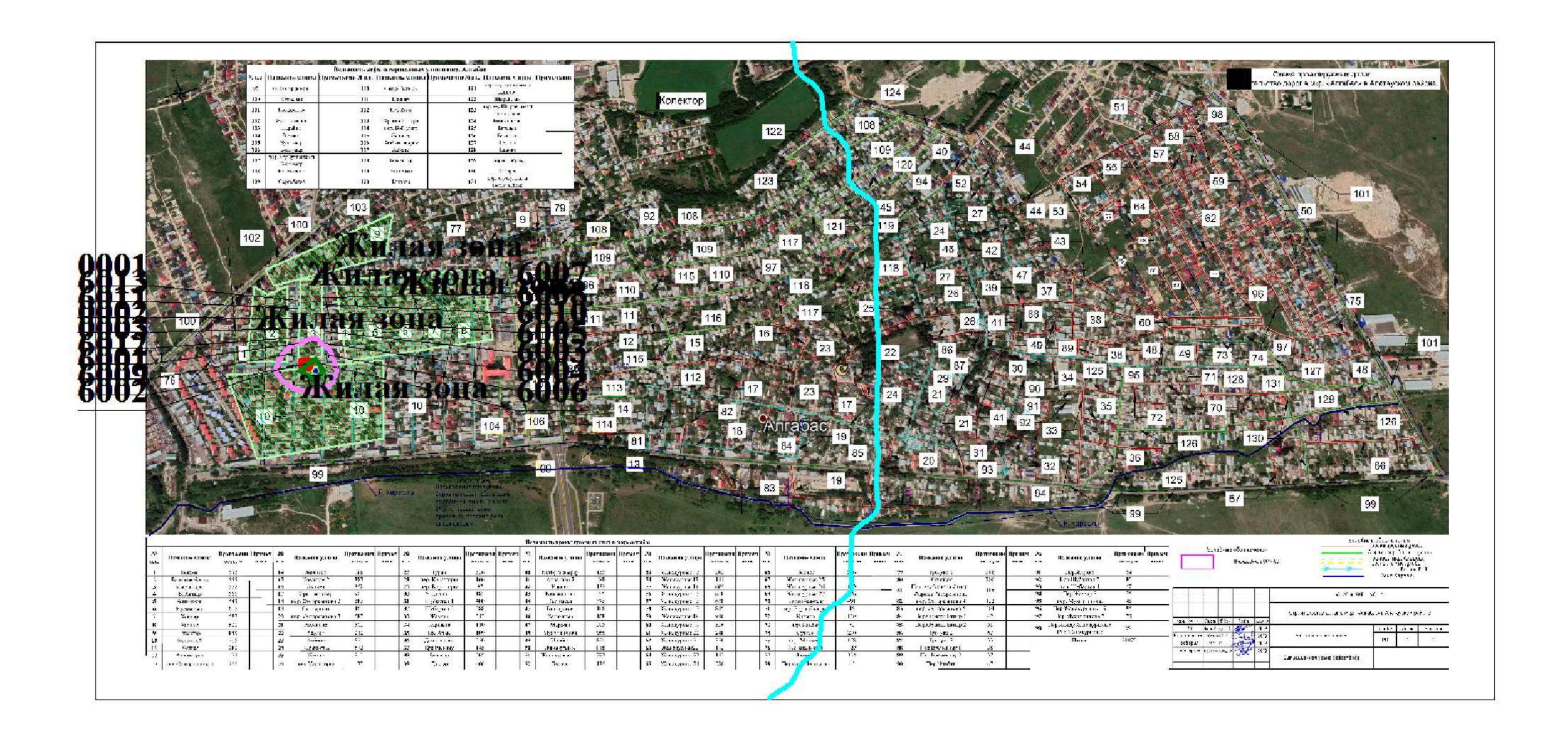

Макс концентрация 0.1101619 ПДК достигается в точке x= 622 y= -964 При опасном направлении 141° и опасной скорости ветра 2.52 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

0827 Хлорэтилен (Винилхлорид, Этиленхлорид) (646)

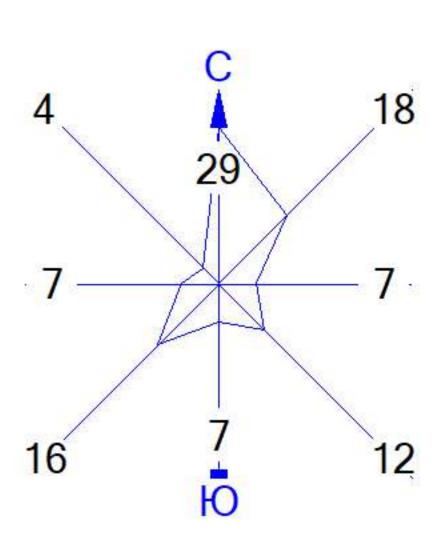


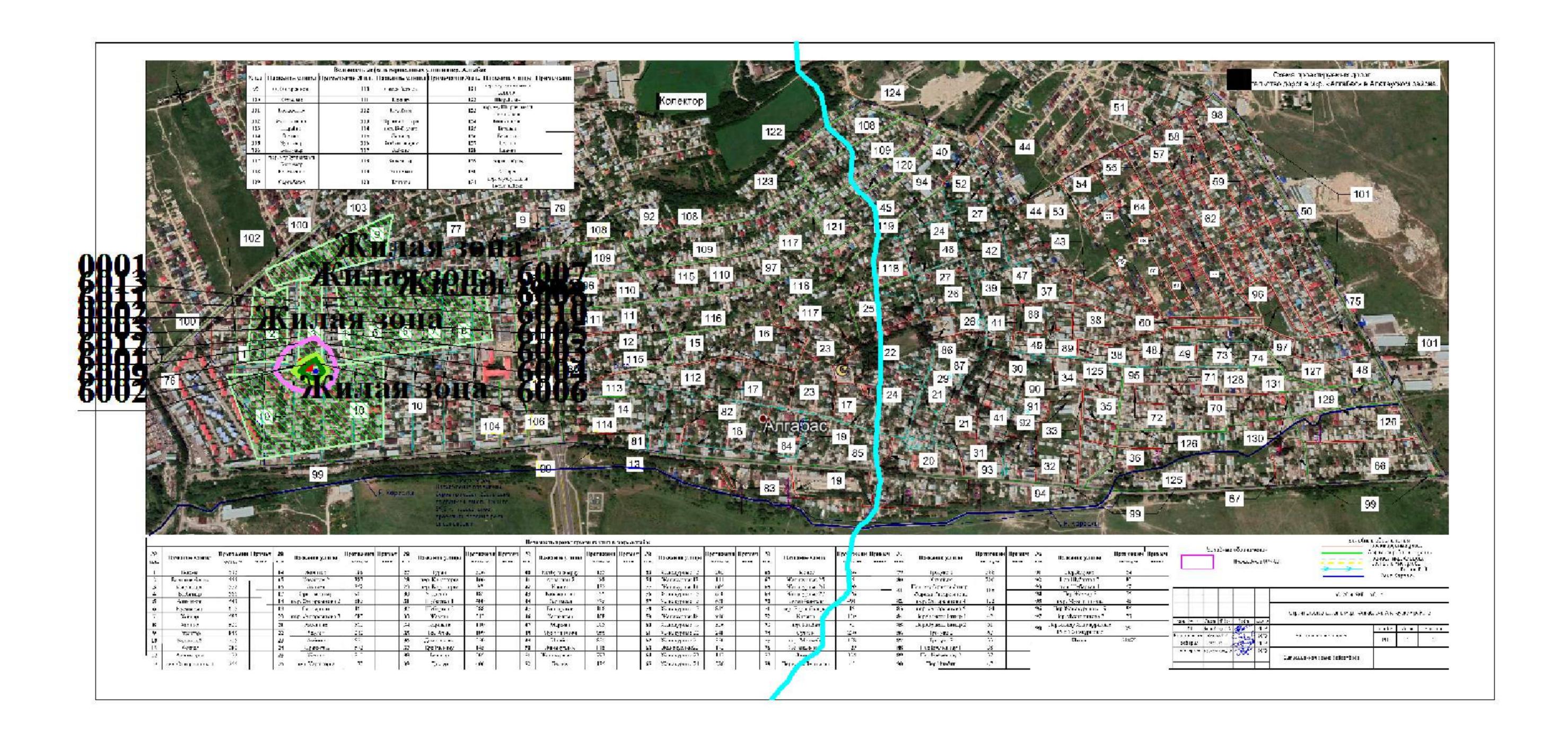

Макс концентрация 0.078877 ПДК достигается в точке x= 722 y= -964 При опасном направлении 40° и опасной скорости ветра 0.7 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

1042 Бутан-1-ол (Бутиловый спирт) (102)

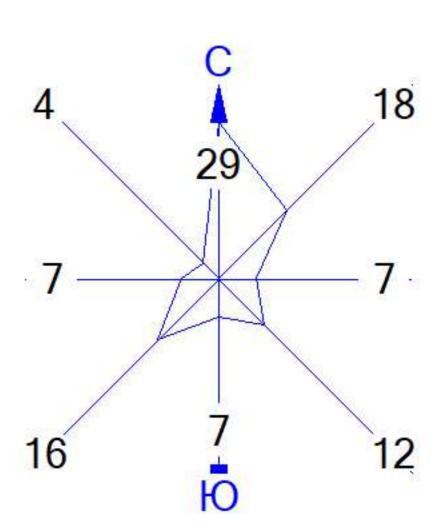


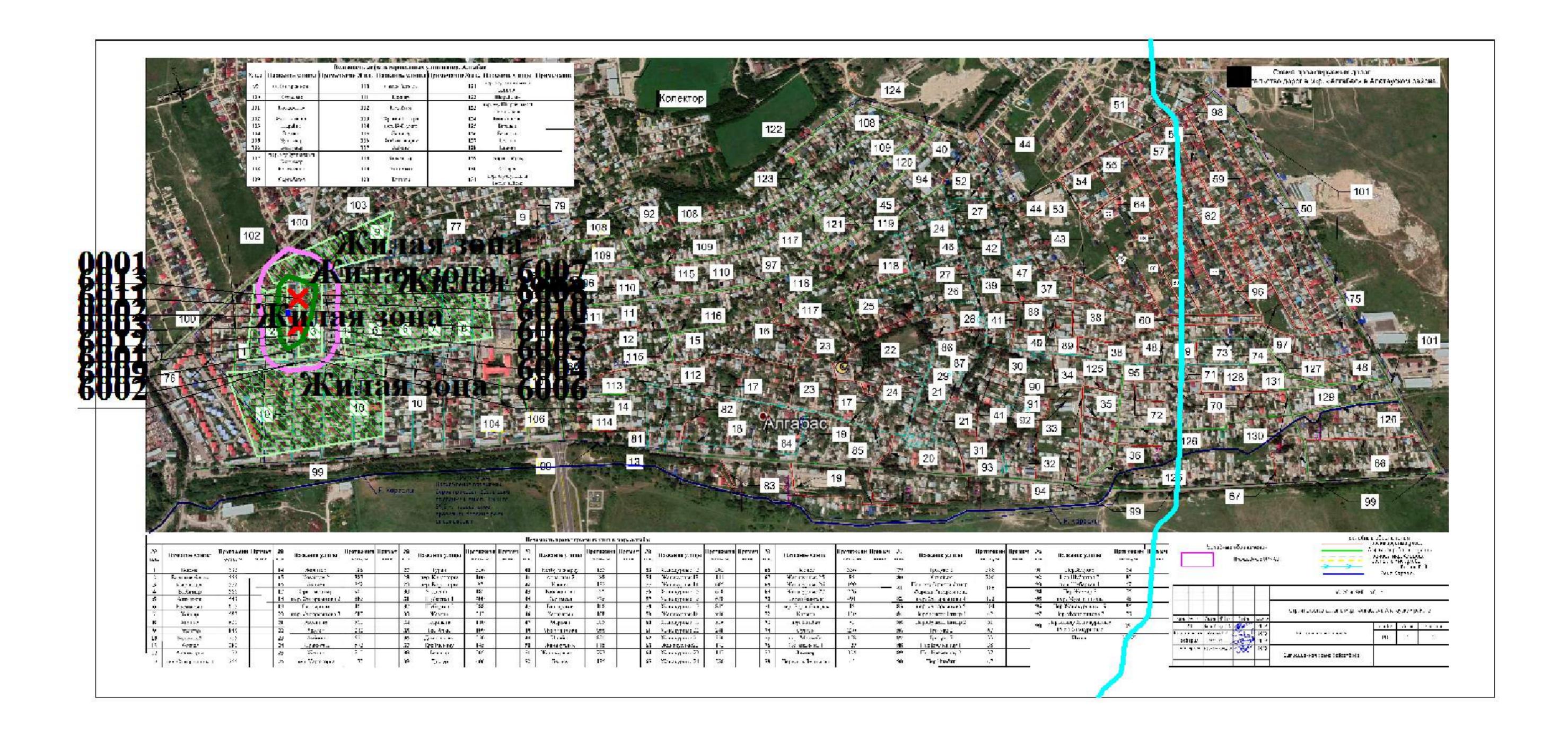


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

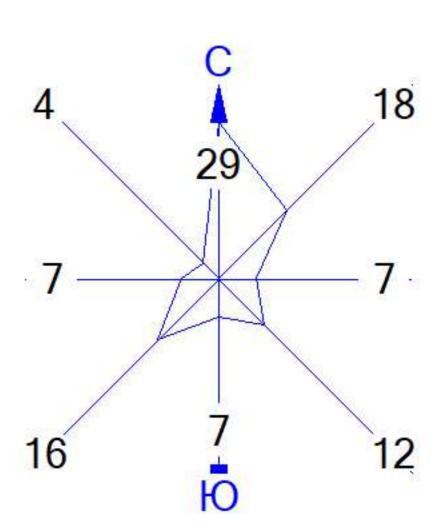


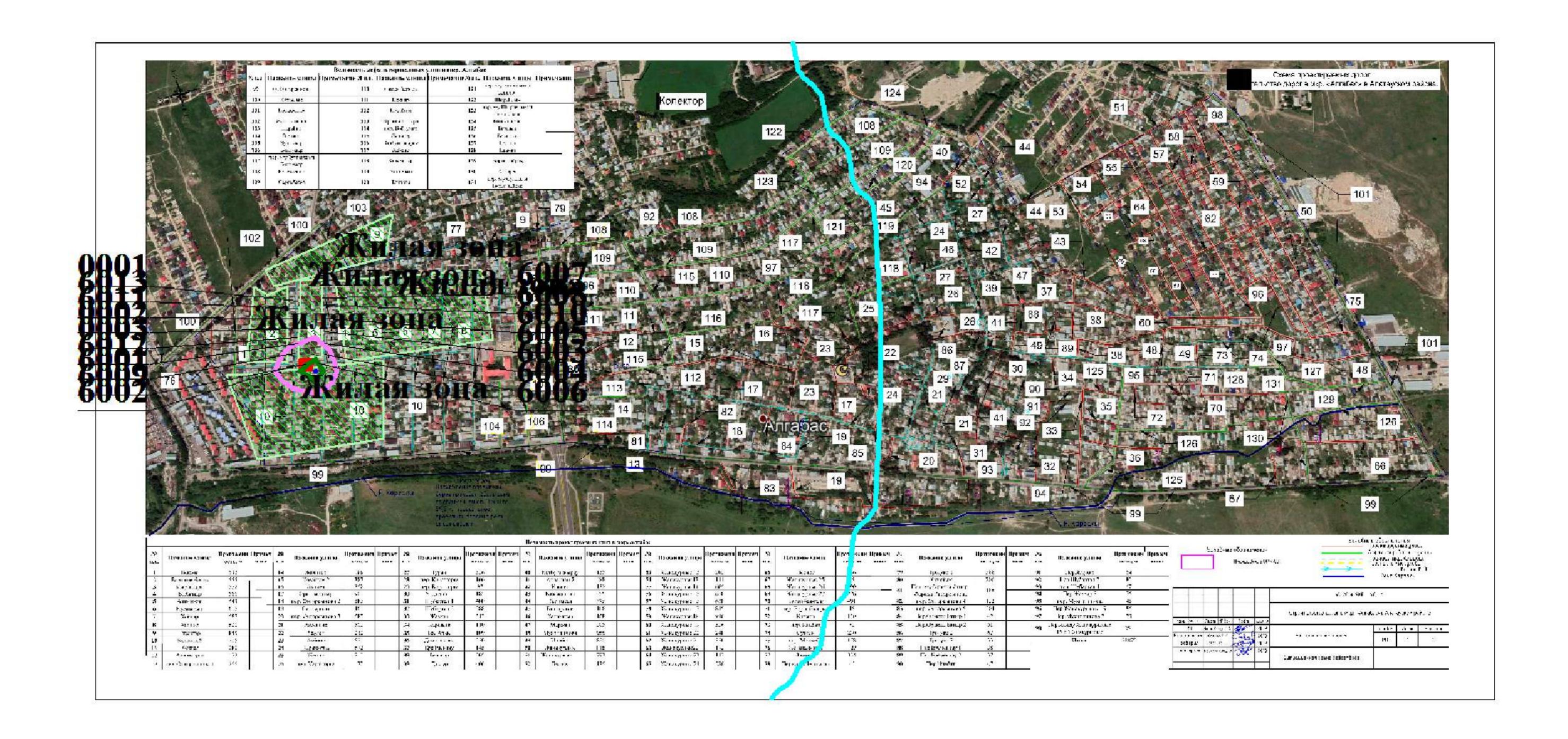


Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

1325 Формальдегид (Метаналь) (609)




Макс концентрация 0.02359 ПДК достигается в точке x= 622 y= -964 При опасном направлении 141° и опасной скорости ветра 1.93 м/с Расчетный прямоугольник № 1, ширина 5100 м, высота 2400 м, шаг расчетной сетки 100 м, количество расчетных точек 52*25 Расчёт на существующее положение.

Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2

УПРЗА ЭРА v2.0

1401 Пропан-2-он (Ацетон) (470)

2.8.2.2. Мероприятия по охране атмосферного воздуха

- тщательня а технологическая регламентация проведения работ;
- обучение персонала правилам техники безопасности, пожарной безопасности и соблюдению правил эксплуатации при выполнении работ;
- регулярные технические осмотры оборудования, замена неисправных материалов и оборудования;
- применение материалов и оборудования, обеспечивающих надежность эксплуатации;
 - использование исправной техники;
 - проведение работ по пылеподавлению.

2.8.2.3. Уточнение размеров санитарно-защитной зоны

При реализации проекта строительства дорог в мкр. «Алгабас», воздействие на окружающую среду будет происходить при проведении строительных работ (относительно кратковременно).

Класс опасности и санитарно-защитная зона проектом для работ по строительству дорог не предусматривается, так как рассматриваемая деятельность является не классифицируемой, согласно Приказа и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека».

2.8.3. Воздействие на почвы

В результате антропогенного воздействия на рассматриваемой территории сформировался специфический тип почв, называемых общим техногенным покровом.

Общий техногенный покров включает в себя земли с нарушенным почвенным покровом, занятых жилыми постройками, административными зданиями, промышленными объектами, дорогами, площадями и т.д., т.е. земли, служащие лишь базисом для различных сооружений.

К землям с функционирующим почвенным покровом относятся прибрежные территории вдоль русел рек. Здесь сформировалась разновидность темно-каштановых карбонатных маломощных среднесуглинистых почв.

Деградация почв в результате техногенного воздействия проявляется в виде линейных (трубопроводы и пр.) нарушений и характеризуется, как правило, полным уничтожением почвенного покрова с разрушением исходного микро- и нанорельефа и образованием техногенного рельефа положительных (насыпи, валы) и отрицательных (выемки, траншеи) форм, сопровождаемым техногенной турбацией (потеря горизонтальной стратификации, перемешивание субстратов разных горизонтов), денудацией (формирование почв с неполным или укороченным профилем) и погребением почв извлеченными на поверхность подстилающими породами.

Условные обозначения:

		Типы почв:								
1	TC									
1	лК3	Предгорные темнокаштановые								
2	" " С _к Л	Солончаки луговые								
3	X X X	Плотые кристаллические породы								
4	А лг	Пойменные луговые								
5	***	Лессы, лессовидные породы								
6	Ψ	Солончаки								
7	Ψ	Солончаки луговые								
8	Сл	Лугово-сероземные								
9	Лг	Луговые								
10	Гк	Горные каштановые								
11	$\Gamma_{\mathbf{q}} + \Gamma_{\mathbf{q}^{\mathbf{B}} + \mathbf{o}\Pi}$	Горные черноземы выщелоченные и оподзоленные								
12	$\Gamma_{\text{лт}} + \Gamma_{\text{д}} + \Gamma_{\text{ст}}$	Горно-лесные темноцветные, горно-дерновые (лесолуговые), горно-степные ксероморфные								

Рис. 8 – Почвенная карта Алматинской области (фрагмент)

Основание земляного полотна:

Основанием земляного полотна при строительстве уличных дорог будут служить:

- ИГЭ 1-Строительный и бытовой мусор, (насыпной) отсыпанные стихийно, но достаточно планомерно, разнородного состава.
- ИГЭ 2-Суглинки от твердой до тугопластичной консистенции, от темновато-серого до желтовато-серого цвета, с линзами песка мощностью до 0,2м.
- $И\Gamma Э$ 3-Суглинки текучепластичной консистенции, желтовато-серого цвета, с линзами песка мощностью до 0.2м.
 - ИГЭ 4-Песок средний, зеленовато-серого цвета, средней плотности, слабовлажный.

ИГЭ 5-Песок крупный слабовлажный, средней плотности.

Подземные воды обладают слабоагрессивные и неагрессивные по отношению к бетонам марки W4 по водонепроницаемости на шлакопортландцементе.

Содержание сульфатов достигает 288,2 мг/л.

Содержание хлоридов превышает 212,6 мг/л.

Площадка строительства:

Площадка строительства сложена из суглинков с прослоями песков, от твердой до текучепластичной консистенции, песками разной крупности и насыпным гравийным грунтом.

Тип местности по характеру и степени увлажнения - 2: (ул. Шоссейная 1, переулок Шоссейная), (съезд с ул. Северное кольцо 1), (переулок ул. Биянху 1), (съезд с ул. Северное кольцо 2), (ул. Шоссейная 2), (переулок ул. Уйгурская 2), (ул. 3-й Городокомплекс), (ул. Головацкого).

Тип местности по характеру и степени увлажнения - 1: (переулок Аптечная), (переулок ул. Бедигулова), (переулок ул. Садовая), (переулок ул. Биянху 2), (ул. Дунганская), (переулок ул. Дунганская), (ул. Сайран), (переулок ул. Уйгурская 1), (переулок ул. Сайран), (ул. Хангельды батыра), (переулок ул. Жансугурова 1), (ул. Акжелкен), (переулок ул. 3-й Городокомплекс), (переулок ул. Жансугурова 2), (переулок ул. Тайконыр), (ул. Нурлы), (ул. Градокомплексная).

На участках, где тип местности по характеру и степени увлажнения -2, в основании земляного полотна с повышенным увлажнением в отдельные периоды года. Это пески крупные, суглинки тяжелые – от твердой до текучепластичной консистенции с близким залеганием грунтовых вод. Коэффициент уплотнения составляет 1.12-1.21. Средний коэффициент -1.17. Плотность скелета грунта при стандартном уплотнении 1,82гр/см³, при оптимальной влажности 17.0%, на участках с 2 типом местности. При строительстве необходимо произвести замену грунта на глубину не менее 0,5м- крупным дренирующим грунтом с «Карьера Аксай».

На участках с 1 типом местности природная влажность выше оптимальной на 10-12%. Плотность грунтов основания земляного полотна в норме. С поверхности все улицы перекрыты насыпным гравийным грунтом с валунами до 10 - 15%, размером до 300мм., материал загрязненный. Этот слой в настоящее время служит временным покрытием для безаварийного проезда автотранспорта.

В пределах притрассовой полосы выделен 4 инженерно-геологических элементов, характеристики физических свойств приведены в инженерно – геологическом отчете.

Коррозионная активность грунтов:

- · к углеродистой стали от средней до высокой (удельное электрическое сопротивление грунта составляет 12 49 Ом*м);
 - к свинцовой оболочке кабелей средняя;
 - к алюминиевой оболочке кабелей: по хлор-иону от средней до высокой,
 - по водородному показателю рН средняя.

Степень агрессивного воздействия грунтов на бетонные и железобетонные конструкции:

По содержанию сульфатов:

- для бетонов на портландцементе слабоагрессивные;
- для бетонов на сульфатостойких цементах неагрессивные;
- Для бетонов марок W4, W6, W8 на портландцементе с добавками и шлакопортландцементе неагрессивные.
 - По содержанию хлоридов для всех марок бетонов неагрессивные.
 - · По суммарному содержанию солей (0,096-0,1094 %) грунты незасоленные.

2.8.3.1. Мероприятия по минимизации отрицательного воздействия на почвы и охрана почв.

Основные усилия по охране земель направлены на снижение прямых и косвенных воздействий. Для уменьшения прямых воздействий с целью сохранения растительности необходимо обязательное соблюдение границ территории, отведенной под разработку, обеспечение рабочих мест и производственных площадок инвентарными контейнерами для бытовых и строительных отходов. Слив горюче-смазочных материалов производить в специально отведенных для этого местах.

При движении техники необходимо максимально использовать существующие дороги с твердым покрытием. Почвенно-растительный слой используется для укрепления земляного полотна. После формирования земляного полотна происходит надвижка ПРС на земляное полотно и посев семян многолетних трав.

Кроме того, снятие плодородного грунта осуществляется со всех вновь используе-мых площадей (площадку для складирования материалов, грунтовые резервы) с размеще-нием его в валах и последующим использованием для рекультивации.

2.8.4. Воздействие на недра.

В период строительства основными источники (факторами) воздействия при строительстве проектируемых объектов на недра будут являться:

- 1. Отвод (изъятие) земель под запланированные работы;
- 2. Механические нарушения почв;
- 3. Нарушения естественных форм рельефа;
- 4. Стимулирование ветровой эрозии;
- 5. Загрязнение транспортными, строительными и отходами от жизнедеятельности рабочего персонала.

Основное воздействие на геологическую среду при строительстве объектов будет связано с механическими нарушениями грунтов в пределах размещения производственных объектов. Земляные работы будут проводиться на естественных ненарушенных участках, поэтому воздействие будет значимое.

Механические нарушения

Воздействие на геологическую среду будет незначительным по интенсивности, так как не вызовет изменения в структуре недр, продолжительным по времени и локальным по масштабу.

Одним из видов воздействия на геологическую среду в этот период будут являться работы по рытью котлованов, снятие ПРС под строительства. В результате чего, будет изменена структура грунтов.

Земляные работы по строительству объектов будет связано с нарушением целостности поверхностного слоя земли общей площадью менее 10%.

Планируемые земляные работы, в силу их локального воздействия не окажут заметного воздействия на геологические структуры, так как, в основном, будут проводиться в чехле осадочных пород, перекрывающем коренные породы. Механические нарушения поверхностного слоя будут связаны, главным образом, с поверхностным слоем на отдельных участках размещения объектов.

Согласно принятым проектным решениям, в период проведения строительных работ производится сбор и утилизация всех видов отходов, согласно

требованиям РК, что минимизирует их возможное воздействие на дневную поверхность.

Воздействие на геологическую среду будет незначительным по интенсивности, так как не вызовет изменения в структуре недр, непродолжительным по времени строительством и ограниченным по масштабу.

Основные факторы и оценка их воздействия на геологическую среду, недра

и подземные воды при штатном режиме деятельности приведены в таблице.

	, <u>' ' </u>	, , ,		· · · · · · · · · · · · · · · · · · ·
Вид	Пространственный	Временный	Интенсивность	Значимость,
воздействия	масштаб, балл	масштаб, балл	воздействия,	баллы
			балл	
1	2	3	4	5
Работы,	Ограниченное	Продолжительное	Слабое	Средней
связанные с	(площадью	(до 2-х лет)	2	значимости
работой	строительства)	3		9
строительной	2			
техники				
Механические	Локальное	Продолжительное	Умеренное	Средней
нарушения	(площадь	(до 2-х лет)	3	значимости
	воздействия-	3		9
	площадь			
	строительства)			
	1			

2.8.5. Физические воздействия

Оценка воздействия физических факторов разработана согласно требованиям санитарным правилам «Гигиенические нормативы к физическим факторам, оказывающим воздействие на человека» утвержденным приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года №169.

Строительный период

Технологические процессы при строительстве дорог являются источником интенсивного шума, который может отрицательно повлиять на здоровье человека.

Интенсивность шума от дорожно-строительной техники и механизмов зависит от типа техники и оборудования, вида привода, режима работы и расстояния от места строительных работ до жилой зоны. Особенно сильный шум создается при работе бульдозеров, вибраторов, компрессоров, экскаваторов, дизельных грузовиков. Шум, образующийся в ходе строительных работ, носит временный и локальный характер, но все же может являться раздражительным воздействием.

Согласно ГОСТ 12.1.003–83 «Шум» установлены нормы уровня шума ПДУ 70-80 дБА. Зоны с уровнем шума выше 80 дБА должны быть обозначены знаками безопасности. Для обеспечениядопустимых уровней шума, планом строительных работ должно исключаться выполнение работ вночное время. Для звукоизоляции двигателей дорожных машин следует применять защитные кожухии капоты с многослойными покрытиями из резины, поролона.

Такие мероприятия могут снизить уровень шума на 5 дБА.

Вывод. Строительный период:

Ввиду общей изолированности территории проекта можно сделать вывод, что будет ограниченноевоздействие шума на жилые дома или чувствительные зоны.

Из опыта и профессионального суждения, можно предсказать, что уровень шума будет ниже уровня, рекомендованного в нормативных документах, упомянутых выше. Из-за строительства незначительно увеличится интенсивность транспортного потока по существующей дороге и на подъездных и примыкающих дорогах, ведущих к проектной трассе.

На существующей трассе маловероятно, что строительная техника значительно повлияет наинтенсивность транспортного поток и уровень шума близ поселков. Тем не менее, подрядчик долженбудет провести замеры уровней шума до начала любых работ и затем проводить регулярный мониторинг уровней шума во время строительства. На второстепенных дорогах пересекаемых.

Эксплуатационный период:

Наибольшее влияние на уровень шума оказывают транспортные факторы: интенсивность движения, типы машин, скорость движения, эксплуатационное состояние автомобилей, транспортно-эксплуатационное состояние автодороги. Источниками шума на автомобиле являются двигатель и шины. К самым шумным относятся тяжелые грузовые высоких классов.

Предельно-допустимые уровни шума (ПДУ) шума — это уровень фактора, который при ежедневнойработе (в течение всего рабочего стажа) не должен вызывать заболеваний или отклонений всостоянии здоровья в процессе работы или в отдельные сроки жизни настоящего и последующего поколений.

Допустимые значения максимальных уровней шума, создаваемыми автомобильным транспортом, приняты в соответствии с вышеуказанными нормативами - 70 дБА.

Выводы по эксплуатационному периоду:

При эксплуатационном периоде прогнозируемое воздействие шума на жилые или чувствительные зоны будет минимальным, и при необходимости, может быть уменьшено за счет инженерных приспособлений, таких как, шумозащитные барьеры, зеленые насаждения и элементы ландшафта.

2.8.5.1. Вибрации и шумовые воздействия

В соответствии с «Гигиеническими нормативами к физическим факторам, оказыва-ющим воздействие на человека», утвержденными приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года №169 и ГОСТ 12.1.003–83 «СС БТ. Шум. Общие требования безопасности» уровни шумов не должны превышать допустимых значений, а именно:

- постоянные рабочие места в производственных помещениях на расстоянии 1 м от рабочего оборудования < 80дб;
 - рабочая комната < 60дб.

Основными источниками шума являются бульдозеры, автосамосвалы, экскаваторы и другая строительная техника. Для снижения уровня шума предусматриваются следующие мероприятия:

- применяемые установки имеют уровни шумов, не превышающие допустимых значений;
 - оборудование покрывается тепловой изоляцией, снижающей уровень шума;
 - использование персоналом СИЗ, в том числе вкладышей «Беруши».

Снижение звукового давления от оборудования помимо этих мероприятий осуществляется путем повышения звукоизоляционных свойств ограждающих конструкций.

Временной интервал расчета: с 07.00 до 23.00ч

Фон не учитываетс	Среднегеометричес кая частота, Гц	коор	одинаты р точе	асчетных к	Мах уровен	Нормати в, дБ(А)	Превыш е-ние,	Уровен ь
я; Норматив: с 7 до 23 ч.	300 000 000 000 000 000 000 000 000 000	X, Y, м Z, м м (высота)		ь, ∂Б(А)		∂ <i>Б(A)</i>	фона, дБ(А)	
1	31,5 Гц	467	-341	1,5	92	79	13	-
2	63 Гц	467	-341	1,5	92	63	29	-
3	125 Гц	467	-341	1,5	90	52	38	-
4	250 Гц	467	-341	1,5	85	45	40	-
5	500 Гц	467	-341	1,5	80	39	41	-
6	1000 Гц	467	-341	1,5	76	35	41	-
7	2000 Гц	467	-341	1,5	73	32	41	48
8	4000 Гц	467	-341	1,5	67	30	37	
9	8000 Гц	467	-341	1,5	61	28	33	43
10	Экв. уровень	467	-341	1,5	83	40	43	. 2

Расчетные уровни шума

Параметры расчетного прямоугольника

0.61306326		100000000000000000000000000000000000000															
Nº	Х	Υ	Шир	Дли	Шаг	Узл											
	цент	цент	ина,	на,	, M	ОВ											
	pa,	pa,	M	М	66												
	М	М															
						17*											
_ 1	567	-391	1600	900	100	10										46	
Y ,M								4	5	6	7	8	9				
V,™								6	6	6	6	6	6	10	11	12	13
X, _M	-233	-133	-33	67	167	267	367	7	7	7	7	7	7	67	67	67	67
								4	4	3	3	3	3				
59	34	35	36	37	38	39	40	0	0	9	8	8	7	36	35	34	33
								4	4	4	4	3	3				
-41	34	35	37	38	39	41	42	2	2	1	0	9	8	37	35	34	33
								4	4	4	4	4	4				
-141	35	36	37	39	41	43	45	6	5	3	2	3	1	38	36	34	33
								5	4	4	4	4	4				
-241	35	36	38	40	42	45	49	2	9	5	3	9	2	38	36	35	33
i de l'arcette	42,0,22,12			44000	124.02404	111111111111111111111111111111111111111	in the same of the	9	5	4	4	4	4				
-341	35	36	38	40	42	46	52	2	2	6	3	2	0	38	36	35	33
SE 1996	2000000		2000000	750000	870-F-1	0.07456	90.5	5	4	4	4	4	3	in the second second	222	000000	e e e e e e e e e e e e e e e e e e e
-441	35	36	38	40	42	45	49	2	9	5	2	0	9	37	36	34	33

I	Î	Ĭ	Ĩ	Î	Ì	Î	Ī	4	4	4	4	3	3				ĺ
-541	35	36	37	39	41	43	45	6	5	3	1	9	8	36	35	34	33
								4	4	4	4	3	3	i i			
-641	34	35	37	38	39	41	42	2	2	1	0	8	7	36	35	34	33
								4	4	3	3	3	3				
-741	34	35	36	37	38	39	40	0	0	9	8	7	6	35	34	33	32
								3	3	3	3	3	3				
-841	33	34	35	36	37	37	38	8	8	7	7	6	5	34	34	33	32

дб(A) - воздействие характеризуется
как допустимое
дб(A) - превышение
допустимого уровня шума мене

e= боле

е

РАСЧЕТ УРОВНЕЙ ШУМА

Объект: *Расчетная зона: по прямоугольнику* Таблица 1. **Характеристики источников** шума

1. [ИШ0002] УАЗ 469 (Х), Легковой автомобиль при работе двигателя на холостом ходу

Тип: точечный. Характер шума: широкополосный, постоянный. Время работы: 07.00-23.00

Коорд	инаты	Высота.								
источн	источника, м									
X_s	Y_s	Z_s								
351	-374	0								

Дистан	Φ	W	Уро	Уровни звуковой мощности, дБ, на среднегеометрических								Кор	Ma
ция	фактор	про					частот	ax				p.	X.
замера,	направ	CT.										уров	ypo
M	-	угол										**	В.,
	леннос		31,5	63Γ	125	250	500	1000	2000	4000	8000	дБА	дБА
	ти		Гц	ц	Γц	Гц	Гц	Гц	Гц	Гц	Гц		
	l	4p	82	82	74	72	66	65	62	51	47	63	

Источник информации: СНиП II-12-77 Каталог шумовых характеристик технологического оборудования

2. [ИШ0003] ГАЗ 53А (М), Легковой автомобиль при работе двигателя на максимальных оборотах

Тип: точечный. Характер шума: широкополосный, постоянный. Время работы: 07.00-23.00

Коорд	инаты	Высота.						
источн	источника, м							
X_s	X_s Y_s							
467	-342	0						

Дистан	Φ	W	Уро	Уровни звуковой мощности, дБ, на среднегеометрических								Кор	Ma
ция	фактор	про					частот	ax				p.	X.
замера,	направ	CT.										уров	ypo
M	-	угол										**	В.,
	леннос		31,5	63Г	125	250	500	1000	2000	4000	8000	дБА	дБА
	ти		Гц	Ц	Гц	Гц	Гц	Гц	Гц	Гц	Гц		
	l	4p	100	100	98	93	88	84	81	75	69	87	

Источник информации: СНиП II-12-77 Каталог шумовых характеристик технологического оборудования

3. [ИШ0004] ГАЗ-24 (М), Легковой автомобиль при работе двигателя на максимальных оборотах

Тип: точечный. Характер шума: широкополосный, постоянный. Время работы: 07.00-23.00

		1 +						
Коорд	инаты	Высота,						
источн	источника, м							
X_s	Y_s	Z_s						
613	-283	0						

Дистан	Φ	W	Уро	Уровни звуковой мощности, дБ, на среднегеометрических								Кор	Ma
ция	фактор	про					частот	ax				p.	X.
замера,	направ	CT.										уров	ypo
M	-	угол										••	В.,
	леннос		31,5	63Г	125	250	500	1000	2000	4000	8000	дБА	дБА
	ти		Гц	Ц	Гц	Гц	Гц	Гц	Гц	Гц	Гц		
	1	4p	79	79	80	75	71	68	66	61	51	76	·

Источник информации: СНиП II-12-77 Каталог шумовых характеристик технологического оборудования

4. [ИШ0005] ЛИАЗ-677 (М), Автобус при работе двигателя на максимальных оборотах

Тип: точечный. Характер шума: широкополосный, постоянный. Время работы: 07.00-23.00

Коорд	инаты	Высота,							
источн	источника, м								
l									
X_s	Y_s	Z_s							
887	-215	0							

Дистан	Ф	W	Уро	Уровни звуковой мощности, дБ, на среднегеометрических										
ция	фактор	про		частотах										
замера,	направ	CT.										уров	ypo	
M	-	угол										**	В.,	
	леннос		31,5	63Γ	125	250	500	1000	2000	4000	8000	дБА	дБА	
	ти		Гц	ц	Гц	Гц	Гц	Гц	Гц	Гц	Гц			
	1	4p	87	87	86	86	84	85	81	76	73	87		

Источник информации: СНиП II-12-77 Каталог шумовых характеристик технологического оборудования

2. Расчеты уровней шума по расчетному прямоугольнику (РП).

Время воздействия шума: 07.00 - 23.00

ч,

Поверхность земли: a=0,1 твердая поверхность (асфальт, бетон)

Параметры

Таблица 2.1. **РП**

Ко	Х центра,	Ү центра,	Длина, м	Ширина,				
Д	М	M		M	Шаг, м	Узлов	Высота, м	Примечание
001	567	-391	1600	900	100	17 x 10	1,5	

Норматив допустимого шума на

Таблица 2.2. территории

	Уровни звуковой мощности, дБ, на среднегеометрических											Ma
Помоточно воможний или дорождомий	Время	Время частотах								ив,	X.	
Назначение помещений или территорий	суток, час	31,5	63Г	125	250	500	1000	2000	4000	8000	уров	ypo
		Гц	ц	Гц	Гц	Гц	Гц	Гц	Гц	Гц		

											 дБА	в., дБА
10. Жилые комнаты квартир	с 7 до 23 ч.	79	63	52	45	39	35	32	30	28	40	55

Источник информации: СН РК 2.04-03-2011 "Защита от шума"

Расчетные уровни

Таблица 2.3. шума

		координа	гы расчетны	іх точек, м		Уровни звуковой мощности, дБ, на среднегеометрических										Ma
	Идентиф	* h				частотах										X.
№	и-катор			_	Основной вклад источниками*										уров	ypo
	PT			Z_{pr}		31,5	63Г	125	250	500	1000	2000	4000	8000		В.,
<u> </u>		Хрт	Y _{рт}	(высота)		Гц	Ц	Гц	Гц	Гц	Гц	Гц	Гц	Гц	дБА	дБА
1	PT001	-233	59	0	ИШ0003-22дБА, ИШ0005-12дБА	34	34	31	26	20	14	5			22	
	Нет превышений нормативов						-	٠	•	•	•	-	-	-	•	•
2	PT002	-133	59	0	ИШ0003-23дБА, ИШ0005-14дБА	35	35	32	27	21	16	7			23	
	Нет превышений нормативов					-	-	٠	•	•	-	-	-	-	•	•
3	PT003	-33	59	0	ИШ0003-24дБА, ИШ0005-15дБА	36	36	33	28	22	17	10			25	
	Нет превышений нормативов					-	-	•	-	•	-	-	-	-	-	-
4	PT004	67	59	0	ИШ0003-25дБА, ИШ0005-17дБА	37	37	35	29	24	19	12			26	
					Нет превышений нормативов	-	-	-	-	ı	-	-	-	-	-	-
5	PT005	167	59	0	ИШ0003-27дБА, ИШ0005-18дБА	38	38	36	30	25	20	14	I		27	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	1	-
6	PT006	267	59	0	ИШ0003-28дБА, ИШ0005-20дБА	39	39	37	32	26	22	15	3		29	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
7	PT007	367	59	0	ИШ0003-29дБА, ИШ0005-21дБА	40	40	37	32	27	23	17	5		30	
	Нет превышений нормативов					-	-	-	-	-	-	-	-	-	-	-
8	PT008	467	59	0	ИШ0003-29дБА, ИШ0005-23дБА	40	40	38	33	28	24	18	7		30	
	Нет превышений нормативов				-	-	-	-	-	-	-	-	-	-	-	
9	PT009	567	59	0	ИШ0003-29дБА, ИШ0005-25дБА	40	40	38	33	28	25	19	8		30	

					Нет превышений нормативов	_	Ι -	I -	_	_	_	_	_	_	_	_]
10	PT010	667	59	0	ИШ0003-28дБА, ИШ0005-27дБА	39	39	37	32	28	25	19	10		31	
				ı	Нет превышений нормативов	_	-	_	_	_	_	_	_	_	_	_
11	PT011	767	59	0	ИШ0005-29дБА, ИШ0003-27дБА	38	38	36	32	28	26	21	11	1	31	
			<u> </u>	l	Нет превышений нормативов	-	-	-	-	-	-	-	-	_	-	-
12	PT012	867	59	0	ИШ0005-30дБА, ИШ0003-25дБА	38	38	36	32	28	27	21	12	3	31	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
13	PT013	967	59	0	ИШ0005-29дБА, ИШ0003-24дБА	37	37	35	31	27	26	21	12	2	31	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
14	PT014	1067	59	0	ИШ0005-28дБА, ИШ0003-23дБА	36	36	33	30	26	25	19	10		29	
<u>'</u>			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
15	PT015	1167	59	0	ИШ0005-26дБА, ИШ0003-22дБА	35	35	32	28	24	23	17	7		27	
'			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
16	PT016	1267	59	0	ИШ0005-24дБА, ИШ0003-21дБА	34	34	31	27	23	21	14	3		26	
1			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	•
17	PT017	1367	59	0	ИШ0005-22дБА, ИШ0003-20дБА	33	33	30	26	21	19	12			24	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
18	PT018	-233	-41	0	ИШ0003-22дБА, ИШ0005-13дБА	34	34	32	26	20	15	6			23	
,			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	•
19	PT019	-133	-41	0	ИШ0003-24дБА, ИШ0005-14дБА	35	35	33	28	22	16	9			24	
•			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
20	PT020	-33	-41	0	ИШ0003-25дБА, ИШ0005-16дБА	37	37	34	29	23	18	11			26	
•			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
21	PT021	67	-41	0	ИШ0003-27дБА, ИШ0005-17дБА	38	38	36	30	25	20	13	1		27	
•					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
22	PT022	167	-41	0	ИШ0003-28дБА, ИШ0005-19дБА	39	39	37	32	26	22	16	4		29	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
23	PT023	267	-41	0	ИШ0003-30дБА, ИШ0005-20дБА	41	41	39	33	28	24	18	7		31	
					Нет превышений нормативов	-	-	-	-	-	•	-	-	•	-	-
24	PT024	367	-4 1	0	ИШ0003-31дБА, ИШ0005-22дБА	42	42	40	35	29	25	20	9		32	

					Нет превышений нормативов	-	-	-	-	-	-	-	_	-	-	-
25	PT025	467	-41	0	ИШ0003-32дБА, ИШ0005-24дБА	42	42	40	35	30	26	21	11		33	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
26	PT026	567	-41	0	ИШ0003-31дБА, ИШ0005-27дБА	42	42	40	35	30	27	21	12		33	
		•		•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
27	PT027	667	-41	0	ИШ0003-30дБА, ИШ0005-29дБА	41	41	39	34	30	28	22	13	2	33	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
28	PT028	767	-4 1	0	ИШ0005-32дБА, ИШ0003-28дБА	40	40	38	34	31	30	24	16	8	34	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
29	PT029	867	-41	0	ИШ0005-34дБА, ИШ0003-27дБА	39	39	37	35	31	31	26	19	12	35	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
30	PT030	967	-41	0	ИШ0005-33дБА, ИШ0003-25дБА	38	38	36	34	30	30	25	18	10	34	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
31	PT031	1067	-41	0	ИШ0005-31дБА, ИШ0003-24дБА	37	37	35	32	28	28	22	14	5	31	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
32	PT032	1167	-41	0	ИШ0005-28дБА, ИШ0003-22дБА	35	35	33	30	26	25	19	10		29	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
33	PT033	1267	-41	0	ИШ0005-25дБА, ИШ0003-21дБА	34	34	32	28	24	22	16	5		27	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
34	PT034	1367	-41	0	ИШ0005-23дБА, ИШ0003-20дБА	33	33	31	26	22	20	13	I		25	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
35	PT035	-233	-141	0	ИШ0003-23дБА	35	35	32	27	21	15	7			23	
		•		•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
36	PT036	-133	-141	0	ИШ0003-24дБА, ИШ0005-14дБА	36	36	33	28	22	17	10			25	
		•		•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
37	PT037	-33	-141	0	ИШ0003-26дБА	37	37	35	30	24	19	12			26	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
38	PT038	67	-141	0	ИШ0003-28дБА	39	39	37	31	26	21	15	3		28	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
39	PT039	167	-141	0	ИШ0003-30дБА	41	41	39	33	28	23	18	7		30	
		1	1	1		·				L	ı			ı		

					Uот провенномий повестно		I						I			
40	DT0.40	0.07	141		Нет превышений нормативов	- 42	-	- 41	26	-	-	- 21	-		-	-
40	PT040	267	-141	0	ИШ0003-32дБА	43	43	41	36	30	26	21	11		33	
			_		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
41	PT041	367	-141	0	ИШ0003-35дБА	45	45	43	38	32	28	24	15	3	35	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
42	PT042	467	-141	0	ИШ0003-36дБА	46	4 6	44	39	34	29	25	16	5	36	
	•	•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
43	PT043	567	-141	0	ИШ0003-35дБА, ИШ0005-28дБА	45	45	43	38	33	29	25	16	3	36	
	•	•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
44	PT044	667	-141	0	ИШ0003-32дБА, ИШ0005-31дБА	43	43	41	37	32	30	25	17	6	35	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
45	PT045	767	-141	0	ИШ0005-36дБА, ИШ0003-30дБА	42	42	40	37	34	33	29	22	15	37	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
46	PT046	867	-141	0	ИШ0005-42дБА	43	43	42	41	38	39	34	28	23	42	
		I	1	1	Превышение нормативов:	-	-	-	-	-	4	2	-	•	2	-
47	PT047	967	-141	0	ИШ0005-39дБА	41	41	39	38	35	35	31	24	19	39	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
48	PT048	1067	-141	0	ИШ0005-33дБА, ИШ0003-24дБА	38	38	36	33	30	30	25	17	10	34	
		I	1	.	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
49	PT049	1167	-141	0	ИШ0005-29дБА, ИШ0003-23дБА	36	36	34	30	27	26	20	12	2	30	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
50	PT050	1267	-141	0	ИШ0005-26дБА, ИШ0003-21дБА	34	34	32	28	24	23	17	7		27	
			1		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
51	PT051	1367	-141	0	ИШ0005-24дБА, ИШ0003-20дБА	33	33	31	27	22	21	14	2		25	
		l	<u> </u>	<u> </u>	Нет превышений нормативов	-	-	_	-	-	-	-	-	-	-	-
52	PT052	-233	-241	0	ИШ0003-23дБА	35	35	32	27	21	16	7			24	
	l	ı	<u> </u>	ı	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
5 3	PT053	-133	-241	0	ИШ0003-25дБА	36	36	34	29	23	17	10			25	
		1	1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
54	PT054	-33	-241	0	ИШ0003-27дБА	38	38	35	30	25	20	13			27	
					<u> </u>		L		l .					l		I

					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
55	PT055	67	-241	0	ИШ0003-29дБА	40	40	37	32	27	22	16	5		29	
		l			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
56	PT056	167	-241	0	ИШ0003-31дБА	42	42	40	35	29	25	19	9		32	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
57	PT057	267	-241	0	ИШ0003-35дБА	45	45	43	38	32	28	23	14	3	35	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
58	PT058	367	-241	0	ИШ0003-39дБА	49	49	47	42	36	32	28	20	11	39	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
59	PT059	467	-241	0	ИШ0003-42дБА	52	52	50	45	40	35	32	24	16	42	
			•	•	Превышение нормативов:	-	-	-	-	1	-	-	-	-	2	-
60	PT060	567	-241	0	ИШ0003-39дБА, ИШ0004-30дБА	49	49	47	42	37	33	29	22	12	40	
'		I			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
61	PT061	667	-241	0	ИШ0003-35дБА, ИШ0005-32дБА, ИШ0004-29дБА	45	45	44	39	34	32	27	20	10	37	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
62	PT062	767	-241	0	ИШ0005-38дБА, ИШ0003-31дБА	43	43	41	38	35	35	30	23	17	39	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
63	PT063	867	-241	0	ИШ0005-50дБА	49	49	48	48	45	46	42	37	33	50	
				•	Превышение нормативов:	-	-	-	3	6	11	10	7	5	10	-
64	PT064	967	-241	0	ИШ0005-41дБА	42	42	41	40	37	38	33	27	22	41	
				•	Превышение нормативов:	-	-	-	-	-	3	ı	-	-	ı	-
65	PT065	1067	-241	0	ИШ0005-34дБА, ИШ0003-25дБА	38	38	36	34	31	31	26	18	11	34	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
66	PT066	1167	-241	0	ИШ0005-29дБА, ИШ0003-23дБА	36	36	34	31	27	26	21	12	2	30	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
67	PT067	1267	-241	0	ИШ0005-26дБА, ИШ0003-22дБА	35	35	32	29	25	23	17	7		28	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
68	PT068	1367	-241	0	ИШ0005-24дБА, ИШ0003-20дБА	33	33	31	27	23	21	14	3		25	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

73 PT073 167 -341 0 ИШ0003-32дБА 42 42 40 35 30 25 20 10 32																	
70 РТ070	69	PT069	-233	-341	0	ИШ0003-23дБА	35	35	33	27	21	16	7			24	
Het превышений нормативов			•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
PT071	70	PT070	-133	-341	0	ИШ0003-25дБА	36	36	34	29	23	18	10			25	
Het превышений нормативов			•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
72 РТ072 67 -341 0 ИПП0003-29дБА 40 40 38 32 27 22 16 5 29 Нет превышений нормативов - <td< td=""><td>71</td><td>PT071</td><td>-33</td><td>-341</td><td>0</td><td>ИШ0003-27дБА</td><td>38</td><td>38</td><td>36</td><td>30</td><td>25</td><td>20</td><td>13</td><td>I</td><td></td><td>27</td><td></td></td<>	71	PT071	-33	-341	0	ИШ0003-27дБА	38	38	36	30	25	20	13	I		27	
Нет превышений нормативов			•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
73 РТ073 167 -341 0 НШ0003-32дБА 42 42 40 35 30 25 20 10 32	72	PT072	67	-341	0	ИШ0003-29дБА	40	40	38	32	27	22	16	5		29	
Het превышений нормативов - - - - - - - - -			•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
74 РТ074 267 -341 0 ИШ0003-36дБА 46 46 44 39 33 29 25 16 5 36 Нет превышений нормативов - <td< td=""><td>73</td><td>PT073</td><td>167</td><td>-341</td><td>0</td><td>ИШ0003-32дБА</td><td>42</td><td>42</td><td>40</td><td>35</td><td>30</td><td>25</td><td>20</td><td>10</td><td></td><td>32</td><td></td></td<>	73	PT073	167	-341	0	ИШ0003-32дБА	42	42	40	35	30	25	20	10		32	
Het превышений нормативов				•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
75 РТ075 367 -341 0 ИШ0003-42дБА 52 52 50 45 40 36 32 25 16 43 Превышение нормативов: 1 1 1 1 3 - 3 Превышение нормативов: 13 29 38 40 41 41 41 37 33 43 Третот 567 -341 0 ИШ0003-42дБА 52 52 50 45 40 36 32 25 16 43 Третот 567 -341 0 ИШ0003-32дБА 52 52 50 45 40 36 32 25 16 43 Третот 667 -341 0 ИШ0003-34дБА, ИШ0003-31дБА, ИШ0003-31дБА 46 46 44 39 35 31 27 19 9 37 Нет превышений нормативов	74	PT074	267	-341	0	ИШ0003-36дБА	46	46	44	39	33	29	25	16	5	36	
Превышение нормативов - - - 1 1 - - 3				•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
76 РТ076 467 -341 0 ИШ0003-83дБА 92 92 90 85 80 76 73 67 61 83 Превышение нормативов: 13 29 38 40 41 41 41 37 33 43 Превышение нормативов: 1 1 1 2 2 78 РТ078 667 -341 0 ИШ0003-36дБА, ИШ0005-31дБА, ИН 46 46 44 39 35 31 27 19 9 37 Нет превышений нормативов	75	PT075	367	-341	0	ИШ0003-42дБА	52	52	50	45	40	36	32	25	16	43	
Превышение нормативов: 13 29 38 40 41 41 41 37 33 43 43 77 РТ077 567 -341 0 ИШ0003-42дБА 52 52 50 45 40 36 32 25 16 43				•	•	Превышение нормативов:	-	-	-	-	l	1	-	-	-	3	-
77 РТ077 567 -341 0 ИШ0003-42дБА 52 52 50 45 40 36 32 25 16 43 Превышение нормативов:	7 6	PT076	467	-341	0	ИШ0003-83дБА	92	92	90	85	80	76	7 3	67	61	83	
Превышение нормативов 1 1 1 2				•	•	Превышение нормативов:	13	29	38	40	41	41	41	37	33	43	-
78 РТ078 667 -341 0 ИШ0003-36дБА, ИШ0005-31дБА, ИП 46 46 44 39 35 31 27 19 9 37 Нет превышений нормативов - <t< td=""><td>77</td><td>PT077</td><td>567</td><td>-341</td><td>0</td><td>ИШ0003-42дБА</td><td>52</td><td>52</td><td>50</td><td>45</td><td>40</td><td>36</td><td>32</td><td>25</td><td>16</td><td>43</td><td></td></t<>	77	PT077	567	-341	0	ИШ0003-42дБА	52	52	50	45	40	36	32	25	16	43	
МІШ0004-28дБА			•	•	•	Превышение нормативов:	-	-	-	-	l	1	-	-	-	2	-
79 РТ079 767 -341 0 ИШ0005-34дБА, ИШ0003-32дБА 43 43 41 37 33 32 27 19 12 36 Нет превышений нормативов - </td <td>78</td> <td>PT078</td> <td>667</td> <td>-341</td> <td>0</td> <td></td> <td>46</td> <td>46</td> <td>44</td> <td>39</td> <td>35</td> <td>31</td> <td>27</td> <td>19</td> <td>9</td> <td>37</td> <td></td>	78	PT078	667	-341	0		4 6	4 6	44	39	35	31	27	19	9	37	
Нет превышений нормативов -			•	•	•	Нет превышений нормативов	-	-	-	•	•	•	-	-	•	•	-
80 РТ080 867 -341 0 ИШ0005-37дБА, ИШ0003-29дБА 42 42 40 37 34 34 29 23 17 38 Нет превышений нормативов - </td <td>79</td> <td>PT079</td> <td>767</td> <td>-341</td> <td>0</td> <td>ИШ0005-34дБА, ИШ0003-32дБА</td> <td>43</td> <td>43</td> <td>41</td> <td>37</td> <td>33</td> <td>32</td> <td>27</td> <td>19</td> <td>12</td> <td>36</td> <td></td>	79	PT079	767	-341	0	ИШ0005-34дБА, ИШ0003-32дБА	43	43	41	37	33	32	27	19	12	36	
Нет превышений нормативов -					•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
81 РТ081 967 -341 0 ИШ0005-36дБА, ИШ0003-27дБА 40 40 38 36 33 33 28 21 14 36 Нет превышений нормативов - </td <td>80</td> <td>PT080</td> <td>867</td> <td>-341</td> <td>0</td> <td>ИШ0005-37дБА, ИШ0003-29дБА</td> <td>42</td> <td>42</td> <td>40</td> <td>37</td> <td>34</td> <td>34</td> <td>29</td> <td>23</td> <td>17</td> <td>38</td> <td></td>	80	PT080	867	-341	0	ИШ0005-37дБА, ИШ0003-29дБА	42	42	40	37	34	34	29	23	17	38	
Нет превышений нормативов -					•	Нет превышений нормативов	-	-	-	-	•	-	-	-	-	-	-
82 РТ082 1067 -341 0 ИШ0005-32дБА, ИШ0003-25дБА 38 38 36 33 29 29 24 16 7 33 Нет превышений нормативов - - - - - - - - - - - -	81	PT081	967	-341	0	ИШ0005-36дБА, ИШ0003-27дБА	40	40	38	36	33	33	28	21	14	36	
Нет превышений нормативов						Нет превышений нормативов	-	-	-	1	1	-	-	-	ı	ı	-
	82	PT082	1067	-341	0	ИШ0005-32дБА, ИШ0003-25дБА	38	38	36	33	29	29	24	16	7	33	
83 РТ083 1167 -341 0 ИШ0005-29дБА, ИШ0003-23дБА 36 36 34 30 27 26 20 11 30								-	-	-	-	-	-	-	-	-	-
	83	PT083	1167	-341	0	ИШ0005-29дБА, ИШ0003-23дБА	36	36	34	30	27	26	20	11		30	

					Нет превышений нормативов	-	-	-	-	-	-	-	_	-	_	_
84	PT084	1267	-341	0	ИШ0005-26дБА, ИШ0003-22дБА	35	35	32	28	24	23	16	6		27	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
85	PT085	1367	-341	0	ИШ0005-23дБА, ИШ0003-21дБА	33	33	31	2 7	22	20	13	2		25	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
86	PT086	-233	-441	0	ИШ0003-23дБА	35	35	32	2 7	21	16	7			24	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
87	PT087	-133	-441	0	ИШ0003-25дБА	36	36	34	29	23	17	10			25	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
88	PT088	-33	-441	0	ИШ0003-27дБА	38	38	35	30	25	19	13			27	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
89	PT089	67	-441	0	ИШ0003-29дБА	40	40	37	32	27	22	16	5		29	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
90	PT090	167	-441	0	ИШ0003-31дБА	42	42	40	35	29	25	19	9		32	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
91	PT091	267	-441	0	ИШ0003-35дБА	45	45	43	38	32	28	24	14	3	35	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
92	PT092	367	-441	0	ИШ0003-39дБА	49	49	47	42	37	32	29	21	11	39	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
93	PT093	467	-441	0	ИШ0003-42дБА	52	52	50	45	40	35	32	25	16	42	
			•		Превышение нормативов:	-	-	-	-	I	-	-	-	-	2	-
94	PT094	567	-441	0	ИШ0003-39дБА	49	49	47	42	37	33	29	21	11	39	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
95	PT095	667	-441	0	ИШ0003-35дБА, ИШ0005-28дБА	45	45	43	38	33	30	25	16	3	36	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	_	-
96	PT096	767	-441	0	ИШ0003-31дБА, ИШ0005-30дБА	42	42	40	36	31	29	24	15	4	34	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	_	-
97	PT097	867	-441	0	ИШ0005-32дБА, ИШ0003-29дБА	40	40	38	34	30	29	24	16	7	34	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
98	PT098	967	-441	0	ИШ0005-31дБА, ИШ0003-27дБА	39	39	37	33	29	28	23	15	6	32	
				1										L		

					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	_
99	PT099	1067	-441	0	ИШ0005-29дБА, ИШ0003-25дБА	37	37	35	31	27	26	21	12	2	31	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
100	PT100	1167	-441	0	ИШ0005-27дБА, ИШ0003-23дБА	36	36	33	30	25	24	18	8		28	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
101	PT101	1267	-441	0	ИШ0005-25дБА, ИШ0003-22дБА	34	34	32	28	24	22	15	4		26	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
102	PT102	1367	-441	0	ИШ0005-22дБА, ИШ0003-20дБА	33	33	31	27	22	20	12	1		25	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
103	PT103	-233	-541	0	ИШ0003-23дБА	35	35	32	27	21	15	7			23	
		•		•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
104	PT104	-133	-541	0	ИШ0003-24дБА	36	36	33	28	22	17	9			25	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
105	PT105	-33	-541	0	ИШ0003-26дБА	37	37	35	30	24	19	12			26	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
106	PT106	67	-541	0	ИШ0003-28дБА	39	39	37	31	26	21	15	3		28	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
107	PT107	167	-541	0	ИШ0003-30дБА	41	41	39	33	28	23	18	7		30	
,			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
108	PT108	267	-541	0	ИШ0003-32дБА	43	43	41	36	30	26	21	I 1		33	
•			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
109	PT109	367	-541	0	ИШ0003-35дБА	45	45	43	38	32	28	24	15	3	35	
•			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
110	PT110	467	-541	0	ИШ0003-36дБА	46	46	44	39	33	29	25	16	5	36	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
111	PT111	567	-541	0	ИШ0003-35дБА	45	45	43	38	33	28	24	15	3	35	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
112	PT112	667	-541	0	ИШ0003-32дБА, ИШ0005-26дБА	43	43	41	36	31	2 7	22	12		33	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
113	PT113	767	-541	0	ИШ0003-30дБА, ИШ0005-27дБА	41	41	39	34	29	26	21	11		32	
		•	•	•			•						•			

					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
114	PT114	867	-541	0	ИШ0003-28дБА, ИШ0005-28дБА	39	39	37	33	28	26	20	11		31	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
115	PT115	967	-541	0	ИШ0005-28дБА, ИШ0003-26дБА	38	38	36	31	27	25	19	9		30	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
116	PT116	1067	-541	0	ИШ0005-26дБА, ИШ0003-24дБА	36	36	34	30	26	24	18	7		29	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
117	PT117	1167	-541	0	ИШ0005-25дБА, ИШ0003-23дБА	35	35	33	29	24	22	16	5		27	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
118	PT118	1267	-541	0	ИШ0005-23дБА, ИШ0003-22дБА	34	34	32	27	23	21	13	2		25	
		•	•	•	Нет превышений нормативов	-	-	-	•	•	-	-	-	-	-	-
119	PT119	1367	-541	0	ИШ0005-21дБА, ИШ0003-20дБА	33	33	31	26	21	19	11			24	
				•	Нет превышений нормативов	•	-	•	•		-	-	-	•	-	-
120	PT120	-233	-641	0	ИШ0003-22дБА	34	34	32	26	20	15	6			23	
				•	Нет превышений нормативов	•	-	•	•	•	-	-	-	•	-	-
121	PT121	-133	-641	0	ИШ0003-24дБА	35	35	33	28	22	16	8			24	
					Нет превышений нормативов	•	-	-	•	•	•	-	-	•	-	-
122	PT122	-33	-641	0	ИШ0003-25дБА	37	37	34	29	23	18	11			26	
					Нет превышений нормативов	•	-	•	•	•	•	-	-	•	-	-
123	PT123	67	-641	0	ИШ0003-27дБА	38	38	36	30	25	20	13	I		27	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
124	PT124	167	-641	0	ИШ0003-28дБА	39	39	37	32	26	22	16	4		29	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
125	PT125	267	-641	0	ИШ0003-30дБА	41	41	39	33	28	23	18	7		30	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
126	PT126	367	-641	0	ИШ0003-31дБА	42	42	40	35	29	25	19	9		32	
					Нет превышений нормативов	-	-	•	ı	-	•	-	-	-	-	-
127	PT127	467	-641	0	ИШ0003-32дБА	42	42	40	35	30	25	20	10		32	
					Нет превышений нормативов	-	-	-		•	•	•	-	•	-	-
128	PT128	567	-641	0	ИШ0003-31дБА, ИШ0005-22дБА	42	4 2	40	35	29	25	20	10		32	

					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
129	PT129	667	-641	0	ИШ0003-30дБА, ИШ0005-24дБА	41	41	39	34	29	25	19	8		31	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
130	PT130	767	-641	0	ИШ0003-28дБА, ИШ0005-25дБА	40	40	37	32	27	24	18	7		30	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
131	PT131	867	-641	0	ИШ0003-27дБА, ИШ0005-25дБА	38	38	36	31	26	24	17	6		29	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
132	PT132	967	-641	0	ИШ0003-25дБА, ИШ0005-25дБА	37	37	35	30	25	23	16	5		28	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
133	PT133	1067	-641	0	ИШ0005-24дБА, ИШ0003-24дБА	36	36	33	29	24	22	15	3		27	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
134	PT134	1167	-641	0	ИШ0005-23дБА, ИШ0003-22дБА	35	35	32	28	23	21	13	1		26	
'		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
135	PT135	1267	-641	0	ИШ0005-22дБА, ИШ0003-21дБА	34	34	31	27	22	19	12			24	
·		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
136	PT136	1367	-641	0	ИШ0005-20дБА, ИШ0003-20дБА	33	33	30	26	21	18	10			23	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
137	PT137	-233	-741	0	ИШ0003-22дБА	34	34	31	26	20	14	5			22	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
138	PT138	-133	-741	0	ИШ0003-23дБА	35	35	32	27	21	15	7			23	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
139	PT139	-33	-741	0	ИШ0003-24дБА	36	36	33	28	22	17	9			25	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
140	PT140	67	-741	0	ИШ0003-25дБА	37	37	35	29	24	18	11			26	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
141	PT141	167	-741	0	ИШ0003-27дБА	38	38	36	30	25	20	13	1		27	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
142	PT142	267	-741	0	ИШ0003-28дБА	39	39	37	31	26	21	15	3		28	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
143	PT143	367	-741	0	ИШ0003-29дБА	40	40	37	32	27	22	16	5		29	
-																

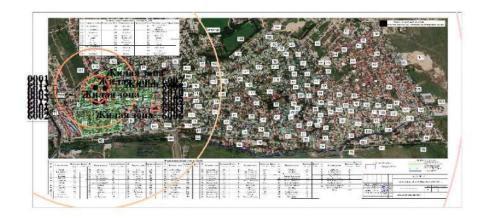
												1				
					Нет превышений нормативов	-	-	-	_	-	_	-	-	-	-	-
144	PT144	467	-741	0	ИШ0003-29дБА, ИШ0005-20дБА	40	40	38	33	27	23	17	5		30	
					Нет превышений нормативов	ı	-	-	ı	-	ı	-	-	-	ı	-
145	PT145	567	-741	0	ИШ0003-29дБА, ИШ0005-21дБА	40	40	37	32	27	23	17	5		29	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
146	PT146	667	-741	0	ИШ0003-28дБА, ИШ0005-22дБА	39	39	37	32	26	22	16	3		29	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
147	PT147	767	-741	0	ИШ0003-27дБА, ИШ0005-22дБА	38	38	36	31	26	22	15	4		28	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
148	PT148	867	-741	0	ИШ0003-25дБА, ИШ0005-23дБА	37	37	35	30	25	21	15	1		27	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
149	PT149	967	-741	0	ИШ0003-24дБА, ИШ0005-22дБА	36	36	34	29	24	21	14	1		27	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
150	PT150	1067	-741	0	ИШ0003-23дБА, ИШ0005-22дБА	35	35	33	28	23	20	13			26	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
151	PT151	1167	-741	0	ИШ0003-22дБА, ИШ0005-21дБА	34	34	32	27	22	19	11			25	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
152	PT152	1267	-741	0	ИШ0003-21дБА, ИШ0005-20дБА	33	33	31	26	21	18	10			23	
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
153	PT153	1367	-741	0	ИШ0003-20дБА, ИШ0005-19дБА	32	32	30	25	20	17	8			22	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
154	PT154	-233	-841	0	ИШ0003-21дБА	33	33	31	25	19	13	4			22	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
155	PT155	-133	-841	0	ИШ0003-22дБА	34	34	32	26	20	14	6			23	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
156	PT156	-33	-841	0	ИШ0003-23дБА	35	35	32	27	21	16	7			24	
		-	-	-	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	- 1
157	PT157	67	-841	0	ИШ0003-24дБА, ИШ0005-14дБА	36	36	33	28	22	17	10			25	
		-		-	Нет превышений нормативов	-	-	-	-	-	•	-	-	-	-	-
158	PT158	167	-841	0	ИШ0003-25дБА, ИШ0005-15дБА	37	37	34	29	23	18	11			26	
-				1	ı											

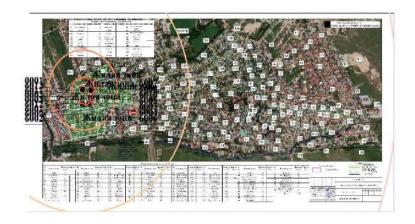
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
159	PT159	267	-841	0	ИШ0003-26дБА, ИШ0005-16дБА	37	37	35	30	24	19	12			27	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
160	PT160	367	-841	0	ИШ0003-27дБА, ИШ0005-17дБА	38	38	35	30	25	20	13			27	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
161	PT161	467	-841	0	ИШ0003-27дБА, ИШ0005-18дБА	38	38	36	31	25	20	14	1		27	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
162	PT162	567	-841	0	ИШ0003-27дБА, ИШ0005-19дБА	38	38	36	30	25	20	14			27	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
163	PT163	667	-841	0	ИШ0003-26дБА, ИШ0005-20дБА	37	37	35	30	25	20	13			27	
				•	Нет превышений нормативов	-	-	-	-	•	-	-	-	•	-	-
164	PT164	767	-841	0	ИШ0003-25дБА, ИШ0005-20дБА	37	37	34	29	24	20	13			26	
			•	•	Нет превышений нормативов	-	-	-	-	•	-	-	-	•	-	-
165	PT165	867	-841	0	ИШ0003-24дБА, ИШ0005-21дБА	36	36	34	29	23	20	12			26	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
166	PT166	967	-841	0	ИШ0003-23дБА, ИШ0005-20дБА	35	35	33	28	23	19	11			25	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
167	PT167	1067	-841	0	ИШ0003-22дБА, ИШ0005-20дБА	34	34	32	27	22	18	10			24	
			•	•	Нет превышений нормативов	-	-	-	-	•	-	-	-	•	-	-
168	PT168	1167	-841	0	ИШ0003-21дБА, ИШ0005-19дБА	34	34	31	26	21	17	9			23	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
169	PT169	1267	-841	0	ИШ0003-20дБА, ИШ0005-19дБА	33	33	30	25	20	16	8			22	
					Нет превышений нормативов	-	-	-	-	-	-	•	-	-	-	-
170	PT170	1367	-841	0	ИШ0003-19дБА, ИШ0005-18дБА	32	32	29	24	19	15	7			22	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

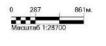
У источников, вносящих основной вклад звуковому давлению в расчетной точке $Lmax - Li \le 10$ дEA.

Таблица 2.4. Расчетные максимальные уровни шума по октавным полосам частот

No	Среднегеометрическая частота. Ги	Координаты расчетных	Норматив.	Примечание
7,12	среднегометрическая частота, т ц	точек, м	дБ(А)	


		х	Y	Z (высота)	Мах значение, дБ(A)		Требуемое снижение. дБ(A)	
1	31,5 Гц	467	-341	1,5	92	79	13	
2	63 Гц	467	-341	1,5	92	63	29	
3	125 Гц	467	-341	1,5	90	52	38	
4	250 Гц	467	-341	1,5	85	45	40	
5	500 Гц	467	-341	1,5	80	39	41	
6	1000 Гц	467	-341	1,5	76	35	41	
7	2000 Гц	467	-341	1,5	73	32	4 1	
8	4000 Гц	467	-341	1,5	67	30	37	
9	8000 Гц	467	-341	1,5	61	28	33	
10	Экв. уровень	467	-341	1,5	83	40	43	
11	Мах. уровень	•	-	-	•	55	-	


Город: 019 г.Алматы Алатауский район Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2 ПК ЭРА v2.0, Модель: Расчет уровней шума N001 Уровень шума на среднегеометрической частоте 31,5 Гц


Город: 019 г.Алматы Алатауский район Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2 ПК ЭРА v2.0, Модель: Расчет уровней шума N002 Уровень шума на среднегеометрической частоте 63 Гц

Город : 019 г.Алматы Алатауский район Объект : 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2 ГК ЭРА v2.0, Модель: Расчет уровней шума N003 Уровень шума на среднегеометрической частоте 125 Гц

Город: 019 г.Алматы Алатауский район Объект: 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2 ГК ЭРА v2.0, Модель: Расчет уровней шума N004 Уровень шума на среднегеометрической частоте 250 Гц

Город : 019 г.Алматы Алатауский район Объект : 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2 ГIK ЭРА v2.0, Модель: Расчет уровней шуме N009 Уровень шума на среднегеометрической частоте 8000 Гц

Город : 019 г.Алматы Алатауский район Объект : 0002 Строительство дорог в мкр.Алгабас рассеивание Вар.№ 2 ПК ЗРА v2.0, Модель: Расчет уровней шума N010 Экв. уровень шума

	Type Type		00 00	9 (V d)	SI.
91 2	American American	neur ville			
	Marchael and				
100 11		3 2 20 1	1 1 10 1 1 1 100 1		700

Макс уровень шума 26.23 дБ достигается в точке х= 822 у= -864 Росчетный примоугольник № 1, широне 5100 м. высота 2400 м, шат расчетной сетки 100 м, количество расчетных точьк 52°25 Росчет на существующее положения. Макс уровень шума 52.97 дБ(A) достигается в точке х= 822. у= -864. Расметный примоутольник № 1, шерина 5100 м, высота 2400 м, шег расчетной сетки 100 м, количество расчетных точек 52°25. Расчётно существующее положение.

2.8.5.2. Электромагнитные и тепловые воздействия

В процессе строительства объекта создание электромагнитных полей высоких ча-стот, а также теплового воздействия не ожидается. При строительстве объекта должны предусматриваться меры по максимальному ограничению ультразвука, передающегося контактным путем, как в источнике его образования (конструктивными и технологическими мерами), так и по пути распространения (средствами виброизоляции и вибропоглоще-ния). При этом рекомендуется применять:

- дистанционное управление для исключения воздействия на работающих при контактной передаче;
- блокировку, т.е. автоматическое отключение оборудования, приборов при вы-полнении вспомогательных операций;
- приспособления для удержания источника ультразвука или обрабатываемой детали.

Ультразвуковые указатели и датчики, удерживаемые руками оператора, должны иметь форму, обеспечивающую минимальное напряжение мышц, удобное для работы расположение и соответствовать требованиям технической эстетики. Следует исключить возможность контактной передачи ультразвука другим частям тела, кроме ног. Конструкция оборудования должна исключать возможность охлаждения рук работающего. Поверхность оборудования и приборов в местах контакта с руками должна иметь коэффициент теплопроводности не более 0,5 Вт/м град.

2.8.5.3. Радиационные воздействия

Радиоактивным загрязнением считается превышение концентраций санитарно-гигиенических природных радионуклидов сверх установленных нормативов предельно-допустимых концентраций (ПДК) в окружающей среде (почве, воде, воздухе) или предельно-допустимых уровней (ПДУ) излучения, а также сверхнормативное содержание радиоактивных элементов в строительных материалах, на поверхности технологического оборудования и в отходах промышленных производств. Радиационная безопасность обеспечивается соблюдением действующих Гигиенических нормативов «Санитарно-эпидемиологические требования обеспечению радиационной безопасности» (утверждены приказом Министра национальной экономики Республики Казахстан от 27 февраля 2015 года № 155), Санитарных правил «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» (утверждены приказом и.о. Министра национальной экономики Республики Казахстан от 27 марта 2015 года № 261), Санитарных правил «Санитарно-эпидемиологические требования к радиационноопасным объектам» (утверждены приказом и.о. Министра национальной экономики Республики Казахстан от 27 марта 2015 года № 260), ОСП-72/87 «Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений» и других республиканских и отраслевых нормативных документов.

Основные требования радиационной безопасности предусматривают:

- исключение всякого необоснованного облучения населения и производственного персонала предприятий;
 - не превышение установленных предельных доз радиоактивного облучения;
 - снижение дозы облучения до возможно низкого уровня.

Радиационная обстановка.

Воздействия на радиационную обстановку при строительстве дорог в мкр. «Алгабас» не оказывается.

2.9. Информация об ожидаемых видах, характеристиках и количестве отходов, которые будут образованы в ходе строительства и эксплуатации объектов в рамках намечаемой деятельности.

Загрязнение окружающей среды различными видами отходов является одной из значимых проблем для городских и сельских поселений.

Проблема экологической опасности отходов остро стоит перед государством. Эта опасность затрагивает все стадии обращения с отходами, начиная с их сбора и транспортировки и заканчивая подготовкой к использованию утильных компонентов, а также уничтожением или захоронением неиспользуемых фракций.

В процессе проведения работ по строительству будут образовываться в основном, твердые бытовые отходы потребления, строительные отходы, огарки сварочных электродов, промасленная ветошь, тара из-под ЛКМ.

Для складирования ТБО, образующихся в процессе строительных работ будут предусмотрены временные специальные площадки с твердым покрытием и контейнеры. По мере накопления строительные отходы и твердые бытовые отходы будут транспортироваться на полигон.

Временное хранение отходов на территории промплощадки будет осуществляться в соответствии с нормами обращения с отходами, установленными ЭК РК и Санитарными правилами «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления» (Приказ и.о. Министра здравоохранения Республики Казахстан от 25 де-кабря 2020 года № КР ДСМ-331/2020).

При своевременной организации вывоза образующихся бытовых воздействие отходов на окружающую среду отсутствует.

Основными моментами экологической безопасности, соблюдения которых следует придерживаться при любом производстве, являются:

- исключение образования экологически опасных видов отходов путем перехода на использование других веществ, материалов, технологий;
- предупреждение образования отдельных видов отходов и уменьшение объемов образования других;
- организация максимально возможного вторичного использования образующихся отходов по прямому назначению и других целей;
- снижение негативного воздействия отходов на компоненты окружающей среды при хранении, транспортировке и захоронении отходов.

В случае неправильного сбора, хранения, транспортировки всех видов планируемых отходов может наблюдаться негативное влияние на все компоненты экологической системы:

- почвенно-растительный покров;
- животный и растительный мир;
- атмосферный воздух;
- поверхностные и подземные воды.

Все образующие в процессе производства строительных работ отходы сортируются, временно хранятся на площадке строительства (не более 6 месяцев) в закрытых контейнерах, затем утилизируются специализированным предприятием по договору.

Определение уровня опасности и кодировка отходов производятся на основании Классификатора отходов, утвержденного Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.

На период строительства образуются следующие отходы:

- 1. Смешанные коммунальные отходы (твердые бытовые отходы);
- 2. Смеси бетона, кирпича, черепицы и керамики (Строительные отходы);
- 3. Отходы сварки;
- 4. Отходы красок и лаков, содержащие органические растворители или другие опасные вещества (Жестяные банки от ЛКМ);
- 5. Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами (Ветошь);
 - 6. Опилки, стружка, обрезки, дерево, ДСП и фанеры (Девесные отходы).

Таблица 2.9. Свеления об отходах на период строительства дорог в мкр. «Алгабас»

Наименование отходов	Образование, т/пер.стр.	Размещение, т/пер.стр.	Передача сторонним организациям*, т/пер.стр.
1	2	3	4
Bcero	577,824955	-	577,824955
в т.ч. отходов производства	564,879755	-	564,879755
отходов потребления	12,9452	-	12,9452
0	пасные отходы		
Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами (Ветошь)	0,003232	-	0,003232
Отходы красок и лаков, содержащие органические растворители или другие опасные вещества (Жестяные банки от ЛКМ)	1,24418	-	1,24418
Bcero:	1,247412		1,247412
He	опасные отходы		•
Смешанные коммунальные отходы (ТБО)	12,9452	-	12,9452
Смеси бетона, кирпича, черепицы и керамики (Строительные отходы)	409,833025	-	409,833025
Отходы сварки	0,135318	-	0,135318
Опилки, стружка, обрезки, дерево, ДСП и фанеры (Девесные отходы)	153,664		153,664
Всего:	576,577543		576,577543

Примечание*: временное хранение на территории производственной площадки не более шести месяцев.

2.9.1. Предложения по управлению отходами

Весь объем отходов, образующийся при строительстве, будет передан на основе договоров в специализированные организации, имеющие разрешительные документы на их захоронение, переработку и утилизацию.

Тара ЛКМ накапливается в контейнере для временного хранения в течение не более 6-и месяцев до вывоза на переработку (утилизацию) специализированной организацией.

Промасленная ветошь накапливается в контейнере для временного хранения в течение не более 6-и месяцев до вывоза на переработку (утилизацию) специализированной организацией.

Огарки сварочных электродов хранятся на площадке временного складирования в течение не более 6-и месяцев до вывоза на переработку специализированной организацией.

Строительные отходы и отходы демонтажа включают отходы бетона, обрывки и лом пластмассы, отходы древесины, отходы металла, которые раздельно накапливаются на площадке временного хранения с твердым покрытием в течение не более 6-и месяцев (до вывоза на переработку (утилизацию)) специализированной организацией.

2.9.2. Мероприятия по охране компонентов окружающей среды от загрязнения отходами производства и потребления

Ввиду того, что все образующиеся отходы во время строительства планируется передавать специализированным предприятиям для дальнейшей утилизации или переработки, влияние отходов на окружающую среду следует рассматривать только от мест временного хранения отходов на строительной площадке.

Оборудованные на территории контейнеры для хранения отходов должны иметь все необходимые технические приспособления для предотвращения возможного загрязнения отходами окружающей среды. На площадках должно быть установлено достаточное количество контейнеров, специально приспособленных для тех или иных видов отходов. Большинство контейнеров должны иметь крышки, что исключает разнос отходов ветром, их переполнение и попадание атмосферных осадков.

Выводы: при условии соблюдения правил экологической безопасности при сборе, временном хранении, сортировке и передаче сторонним организациям для дальнейшей утилизации отходов, воздействие отходов в местах временного хранения на окружающую среду незначительно. Выполнение соответствующих санитарно-гигиенических и экологических норм при сборе, временном хранении, сортировке отходов на территории строительной площадки полностью исключает их негативное влияние на окружающую среду.

3. Описание затрагиваемой территории

Намечаемая деятельность затрагивает территорию Алатауского района города Алматы.

Алатауский район (каз. *Алатау ауданы*) — административнотерриториальная единица города Алма-Аты. Образован в 2008 году.

В 1993-м году Алатауский район был присоединён к Ауэзовскому району и расширил его с южной стороны. В 2008 году вновь созданный Алатауский район появился в результате разукрупнения Ауэзовского района, отделившего от него, его часть севернее проспекта Рыскулова. Административный центр района находится в микрорайоне Шанырак. Географически одноимённые районы (Алатауский до 1993-го и после 2008-го) находятся в разных местах.

Алатауский район продолжает свое устойчивое развитие. Проводимая работа по развитию всей инфраструктуры и социальной поддержке жителей положительно оценивается местным населением.

Сегодня Алатауский район состоит из 23 микрорайонов, площадью 10.5 га, 15% от общей площади города, то есть второе место среди районов. Численность населения 311 700 тыс. человек, что составляет 15,7% от населения города. Это третий по численности населения район.

Темп роста населения за последний год в 2 раза выше среднего показателя по г. Алматы. Причинами, влияющими на рост численности населения города, являются естественный прирост и миграция населения.

В рамках развития района на ближайшую перспективу были проведены комплексные градостроительные исследования, анализ его инфраструктур, социологический анализ, направленные на выявление настроений и потребности населения района.

План охватывает все основные направления развития района, в том числе экономику, социальную сферу, общественную безопасность, благоустройство и инженерную инфраструктуру.

Вместе с тем, охватывают некоторые проектные решения Генерального плана, стратегий «Алматы-2050», Комплексный план «Новый Алматы» на 2020-2024 гг., межрегиональный план по развитию алматинской агломерации до 2030 года и включает в себя все предложения с учетом пожелания и потребности населения, то есть ориентирован на решение конкретных проблем, имеющих место в районе.

3.1. Участки, на которых могут быть обнаружены выбросы, сбросы и иные негативные воздействия намечаемой деятельности на окружающую среду с учетом их характеристик и способности переноса в окружающую среду; участков извлечения природных ресурсов и захоронения отходов

Воздействие намечаемой деятельности ожидается только на период строительства дорог в мкр. «Алгабас». Величина воздействия приведена в разделе 2.8.2. Воздействие на атмосферный воздух, данного Отчета о возможных воздействиях. Извлечение природных ресурсов не производится. Захоронение отходов не планируется. Все виды отходов образуемые на объектах на период строительства дорог в мкр. «Алгабас» подлежат передаче сторонним организациям по договору.

3.2. Описание возможных вариантов осуществления намечаемой деятельности.

Рабочий проект строительства включает в себя строительство 114 улиц общей протяжённостью 31 018,608 п.м., все улицы делятся на 3 типа по категории улиц и дорог. Назначения улиц подразумевает собой подъезд транспортных средств к жилым, общественным зданиям, учреждениям, предприятиям и другим объектам внутри районов, микрорайонов и кварталов. Проектируемые улицы делятся на 4 категории по 2 нормативам согласно по СП РК 3.01-101-2013 «Градостроительство. Планировка и застройка городских и сельских населенных пунктов» на 3 категории: «Основной проезд», «Второстепенный проезд», «Тротуар». Так же, по СП РК 3.03-122-2013 «Промышленный транспорт» «IV-В» «Вспомогательная автомобильная дорога и дороги невыраженным грузооборотом» – улицы предназначены для обслуживания тепломагистральной сети 2 линии диаметром 1000 мм «Алматинской ТЭЦ-2». Улицы делятся по следующим категориям: - «Основной проезд» 46 улиц - общей протяжённостью 15 245,293 п.м.; - «Второстепенный проезд» 84 улицы - общей длиной 14 862,255 п.м.; - «Тротуар» 3 отдельных тротуара - общей длиной 152,046 п.м.; - «IV-В - Вспомогательная автомобильная дорога» 2 дороги общей протяжённостью – 759,014 п.м.

Основанием строительства дорог в микрорайоне «Алгабас» в Алатауском районе города Алматы, является Постановление Акима города Алматы за №3/478 от 7 августа 2019 года «О строительстве сооружений, инженерных и транспортных коммуникаций города Алматы» и Техническое задание от 26 июля 2019 года выданное КГУ «Управления городской мобильности города Алматы».

Возможности выбора другого места для строительства дорог не рассматривались.

4. Информация о компонентах природной среды и иных объектах, которые могут быть подвержены существенным воздействиям намечаемой деятельности.

Строительство дорог в мкр. «Алгабас» включает в себя строительство 114 улиц общей протяжённостью 31 018,608 п.м., все улицы делятся на 3 типа по категории улиц и дорог. Назначения улиц подразумевает собой подъезд зданиям, общественным транспортных средств К жилым, учреждениям, предприятиям и другим объектам внутри районов, микрорайонов и кварталов. Проектируемые улицы делятся на 4 категории по 2 нормативам согласно по СП РК 3.01-101-2013 «Градостроительство. Планировка и застройка городских и сельских населенных пунктов» на 3 категории: «Основной проезд», «Второстепенный проезд», «Тротуар». Так же, по СП РК 3.03-122-2013 «Промышленный транспорт» «IV-В» «Вспомогательная автомобильная дорога и дороги невыраженным грузооборотом» – улицы предназначены для обслуживания тепломагистральной сети 2 линии диаметром 1000 мм «Алматинской ТЭЦ-2». Улицы делятся по следующим категориям: - «Основной проезд» 46 улиц - общей протяжённостью 15 245,293 п.м.; - «Второстепенный проезд» 84 улицы - общей длиной 14 862,255 п.м.; - «Тротуар» 3 отдельных тротуара - общей длиной 152,046 п.м.; - «IV-В -Вспомогательная автомобильная дорога» 2 дороги общей протяжённостью – 759,014 п.м.

Воздействие намечаемой деятельности на компоненты окружающей среды будет минимальным и не вызовет техногенных изменений территории.

Основными объектами природной и социально-экономичекой среды, которые могут быть подвержены воздействиям при строительстве дорог в мкр. «Алгабас» являются следующие компоненты:

Социально-экономические:

- жизнь и здоровье людей;
- условия проживания населения;
- экономические интересы сообщества;
- землепользование;
- транспортная инфраструктура;
- объекты научного и духовного значения (памятники истории и культуры, археологические объекты, заповедные территории, природные феномены). *Природные:*
- атмосферный воздух (загрязненность газами, пылью, уровень шума);
- водные ресурсы (загрязненность подземных вод);
- земельные ресурсы, почва;
- биологические ресурсы (растения, животные).

4.1. Жизнь и (или) здоровье людей, условия их проживания и деятельности.

Воздействие на местное население могут быть оказаны в связи с загрязнением атмосферного воздуха, акустическим воздействием и вибрацией, а также при вероятности возникновения аварийных ситуаций на срок проведения строительных работ.

Потенциальные опасности могут возникнуть в результате воздействия, как природных факторов, так и антропогенных. Для определения и предотвращения экологического риска будут предусмотрены:

- разработка специализированного плана аварийного реагирования по ограничению, ликвидации и устранению последствий возможной аварии;
- проведение исследований по различным сценариям развития аварийных ситуаций на различных производственных объектах;
 - обеспечение готовности систем извещения об аварийной ситуации;
- обеспечение объекта оборудованием и транспортными средствами по ограничению очага и ликвидации аварии;
 - обеспечение безопасности используемого оборудования;
- использование системы пожарной защиты, которая позволит осуществить своевременную доставку надлежащих материалов и оборудования, а также привлечение к работе необходимого персонала для устранения очага возникшего пожара на любом частке предприятия;
 - оказание первой медицинской помощи;
- обеспечение готовности обслуживающего персонала и технических средств к организованным действиям при аварийных ситуациях и предварительное планирование их действий.

Деятельность организаций и граждан, связанная с риском возникновения чрезвычайных ситуаций, подлежит обязательному страхованию.

Воздействие на здоровье работающего персонала мало, так как предельно-допустимые концентрации загрязняющих веществ в атмосфере ниже нормативных требований к рабочей зоне. Из анализа технологических проектных решений установлено, что уровень производства высокий и созданы условия для значительного облегчения труда и оздоровления производственной среды на рабочих местах.

Предполагается положительное воздействие в виде повышения качества жизни персонала, занятого при строительстве, создание новых рабочих мест и увеличение доходов персонала.

В рамках настоящего проекта приняты технические решения, отвечающие существующим санитарно-гигиеническим требованиям, требованиям безопасности и охраны труда. Строительство объекта позволит создать дополнительные рабочие места, что повлияет на занятость населения близлежащих территорий.

Социально-экономическое воздействие данного проекта оценивается как положительное.

4.2. Биоразнообразие (в том числе растительный и животный мир, генетические ресурсы, природные ареалы растений и диких животных, пути миграции диких животных, экосистемы).

4.2.1. Воздействие на растительный мир

Воздействие на растительный покров может быть оказано как прямое, так и косвенное. В ходе работ наибольшее воздействие могут оказывать факторы прямого воздействия, связанные с земляными и строительными работами и перемещением транспорта:

- механическое нарушение и прямое уничтожение растительного покрова строительной техникой и персоналом;
- возможное запыление и засыпание через атмосферу растительности и, как следствие, ухудшение условий жизнедеятельности растений;

- угнетение и уничтожение растительности в результате химического загрязнения. К факторам косвенного воздействия на растительность в период производства строительных работ можно отнести развитие экзогенных геолого-геоморфологических процессов (плоскостная и линейная эрозия, дефляция и т.д.), развитие и усиление которых будет способствовать сменам растительного покрова.

К остаточным факторам можно отнести интродукцию (акклиматизация) чуждых видов.

Кумулятивное воздействие будет связано с периодической потерей мест обитания некоторых видов растений на территориях, которые были нарушены в прошлом и при проведении работ по строительству.

Земляные работы

В процессе земляных работ (рытье траншей, разработка грунта, отвал грунта на обочину, засыпка траншей и разравнивание территории) растительность в зоне строительства будет деформирована или уничтожена. Площадь уничтожения растительности будет уточнена на последующих стадиях проектирования.

Подготовка площадок сопутствующих объектов перед строительными работами будет связана с полным уничтожением растительности. Вокруг площадок растительность будет трансформирована (зона работ строительной техники, многоразовые проезды машин, и др.).

Земляные работы, а также движение транспорта приводит к сдуванию части твердых частиц и вызывает повышенное содержание пыли в воздухе. Пыление может вызвать закупорку устичного аппарата у растений и нарушение их жизнедеятельности на физиологическом и биохимическом уровнях.

Дорожная дигрессия

Временные дороги (колеи) будут использоваться для подвоза строительных материалов.

Растительность на этих участках будет частично повреждена под колесами автотранспорта при разовом проезде транспорта и полностью нарушена при многократном проезде. Гусеничные транспортные средства, движущиеся по строительной полосе в период отсутствия снежного покрова, даже при разовом проезде полностью уничтожат всю растительность, оказавшуюся под гусеницами.

При механическом уничтожении почвенно-растительного покрова перестраивается поверхностный и грунтовый сток воды, изменяется характер снегонакопления, что изменит гидротермический режим нарушенного участка. Это в дальнейшем будет сказываться на восстановлении растительного покрова.

Наиболее чувствительными к механическим воздействиям являются крупнодерновинные злаки, стержнекорневое разнотравье, а также полукустарнички и кустарнички. На местах с уничтоженной растительностью появятся, преимущественно, низкорослые растения, перенося щие повреждение стеблей, смятие, деформацию, способные быстро и интенсивно размножаться семенным и вегетативным путем и осваивать освободившиеся пространства. Т.е. в период восстановления растительного покрова произойдет изменение состава и структуры растительности на нарушенных участках.

При проезде автотранспорта по ненарушенной территории могут быть сломаны (кустарники, полукустарники), примяты (травянистые растения), раздавлены колесами (однолетние солянки).

Дорожная дигрессия (воздействие от движения транспорта) будет развиваться при неоднократном проезде транспортных средств и техники вне дорог

с твердым покрытием. При этом площадь нарушенных территорий изменяется и увеличивается за счет возникновения дорог «спутников», сопровождающих первую колею.

Принятые меры, уменьшающие движения транспорта по не согласованным маршрутам, позволят снизить этот вид негативного воздействия. Несколько снизит этот вид воздействие на растительность наличие снежного покрова при работах в зимний период.

Таким образом, можно сказать, что по интенсивности и силе воздействия проезд вне дорог с твердым покрытием (полевые дороги и бездорожье) будет оказывать как умеренное, так и сильное воздействие на растительность.

Восстановление растительности на нарушенных участках будет происходить с различной скоростью.

Участки, подверженные незначительному воздействию, будут зарастать быстро, благодаря вегетативной подвижности основных доминирующих видов полыней и многолетних солянок. На участках полного нарушения растительного покрова процесс восстановления растянется на годы. Все основные доминирующие виды полыней и многолетних солянок (биюргун, сарсазан, кокпек, итсигек) отличаются хорошим вегетативным и семенным размножением, а также устойчивостью различной степени к механическим повреждениям. Если на прилегающих участках жизненное состояние этих видов хорошее, то они достаточно быстро займут позиции на нарушенной в результате строительства Вновь сформированные вторичные сообщества территории. характеризоваться неполночленностью растительности полный (не флористический состав, отсутствие отдельных биоморф, не упорядоченная возрастная структура и др.), а, следовательно, неустойчивой ее структурой.

Сварочно-монтажные участки

В пределах площадок расположения сварочно-монтажных участков и мобильных лагерей строителей, в случаях их расположения вне пределов населенных пунктов, естественная растительность будет полностью уничтожена. Поверхностный почвенный горизонт будет частично уплотнен, частично разбит. При производстве большого объема строительных работ может наблюдаться загрязнение почвенно-растительного покрова. Комплекс природоохранных мероприятий и план управления отходами позволят снизить до минимума загрязнение горючесмазочными материалами и бытовыми отходами. Кроме того, места временных площадок расположения сварочно-монтажных участков и мобильных лагерей строителей будут рекультивированы.

<u>Загрязнение</u>

При строительстве объекта химическое загрязнение растительного покрова будет связано с выбросами токсичных веществ с выхлопными газами, возможными утечками горючесмазочных материалов. Загрязнение может происходить при ремонтных работах, при заправке техники, неправильном хранении химреагентов и несоблюдении требований по сбору и вывозу отходов.

При правильно организованном техническом уходе и обслуживании оборудования, строительной техники и автотранспорта: заправка в специально отведенных местах, использование поддонов, выполнение запланированных требований в управлении отходами и хранении химреагентов, воздействие объекта на загрязнение почвенно-растительного покрова углеводородами и другими химическими веществами будет незначительно.

Для исключения возможного загрязнения растительного покрова отходами предусмотрен систематический сбор отходов в герметические емкости, хранение и последующая переработка отходов в специальных согласованных местах. При своевременной уборке строительных и хозяйственно-бытовых отходов их воздействие на состояние растительного покрова будет незначительным.

При работе строительной техники, автотранспорта в атмосферу выбрасывается ряд загрязняющих веществ: окислы углерода, окислы азота, углеводороды, сернистый газ, твердые частицы (сажа), тяжелые металлы.

Учитывая непродолжительный период работы техники на каждом конкретном участке, воздействие этих выбросов на растительность будет кратковременным и незначительным.

Наиболее неустойчивыми к химическому загрязнению являются влаголюбивые и тенелюбивые растения с крупным устьичным аппаратом и тонкой кутикулой. Более устойчивыми являются ксерофитные злаки (Николаевский, 1979). Суккуленты и опушенные растения (многие солянки) относятся к разряду растений, устойчивых к химическому загрязнению.

Таким образом, на растительность в пределах полосы отвода будет оказываться, в основном, сильное механическое воздействие. Существующие требования по проведению очистки территории после строительных работ, проведение рекультивационных работ позволит ускорить процесс восстановления растительности на нарушенных участках.

Была проведена инвентаризация зеленых насаждений по улицам мкр. «Алгабас» г. Алматы, входящих в рабочий проект строительства дорог.

Согласно проекту инвентаризации зеленых насаждений, было выдано следующее заключение:

В целом санитарное состояние зеленых насаждений обследованного участка удовлетворительное, значительная часть описанных деревьев не представляют декоративную ценность.

В результате проведенных работ по инвентаризации и лесопатологическому обследованию зеленых насаждений согласно схеме строительства дорог в микрорайоне «Алгабас» в Алатауском районе города Алматы.

В результате проведенной инвентаризации учтено и описано 162 шт. древесной и кустарниковой растительности и 5 шт. живой изгороди.

Возрастная характеристика насаждений, произрастающих на территории обследованного участка, из общего количества древесных пород в процентном соотношении представлены следующим образом:

- 105 экземпляров (72%) представлены молодняками;
- 24 -экземпляра (16%) средневозрастными;
- 13- экземпляра (9%) приспевающие;
- 4-экземпляров (3%) спелые растения.

Кустарниковые породы - 16 экземпляров (100%) - представлены молодняками.

Средняя высота древесных насаждений, произрастающих на территории обследованного участка, равна -4.8 м.

Средний диаметр ствола древесных пород равен – 8,5 см.

В результате проведенных работ по обследованию участка установлено, что:

```
- 129 шт. (88%) – Ослабленные (КСО-2);
```

- 17 шт. (12%) – Угнетенный (KCO-3);

Кустарниковые породы:

16 шт. (100%) - Ослабленные (КСО-2).

По результатам проведенных работ:

Определенный следующие хозяйственные мероприятия:

Вырубка -146 шт. (100%).

Кустарниковые породы:

Вырубка -16 шт. (100%).

4.2.2. Воздействие на животный мир

Во время строительства воздействие будет зависеть от резких локальных изменений почвенно-растительных условий местообитания и регионального проявления фактора беспокойства.

Работа большого количества строительной техники и персонала неизбежно приведет к временному вытеснению с территории ряда ландшафтных видов млекопитающих и птиц (хищных птиц и зверей), в том числе редких.

Основными составляющими проявления фактора беспокойства являются шум работающей техники, передвижение людей и транспортных средств, горение электрических огней.

Прокладка трубопроводов, строительство временных и постоянных сооружений и оборудования, а также объектов инфраструктуры обусловит создание новых мест обитания и размножения для синантропных видов мелких воробьиных птиц и ряда синантропных видов грызунов (прежде всего крыс).

Одновременно будут нарушены привычные места обитания. При проведении земляных работ (рытье траншей) некоторое количество млекопитающих (грызунов — песчанок, тушканчиков и т.д.), пресмыкающихся (ящериц, змей) погибнет под колесами машин и техники. Более крупные животные будут разбегаться и расселяться на безопасном расстоянии от площадки строительства.

В результате проведения работ будет нарушена территория, которая является кормовой базой и местом обитания животных. На значительной части этой территории будут уничтожены норы грызунов, гнезда птиц, убежища мелких хищников животных и т.д. Эта деятельность, может повлиять на кормовую базу, уничтожив растительность.

В полосе, шириной около 10-20 метров с внутренней стороны коридора строительства, гибель представителей пресмыкающихся и млекопитающих будет частичной (около 50%), поскольку они могут переместиться за пределы площадки.

Практически все взрослые представители фауны позвоночных, имеющие хозяйственное значение, и охраняемые виды способны переместиться за пределы коридора строительства самостоятельно, без вмешательства со стороны людей. Животные, попавшие в траншею и пострадавшие при этом — это, в основном, молодые особи или раненые и больные животные.

Планировка и эксплуатация подъездных дорог приведет к созданию новых местообитаний для норных видов грызунов (земляных валов, насыпей).

В то же время по дорогам неизбежно прямое уничтожение пресмыкающихся и мелких млекопитающих в результате движения автотранспорта. Повышенный трафик на подъездной дороге может воздействовать

на грызунов, ящериц и змей, особенно если транспортировка будет проводиться в ночное время. Однако определенно, что отдельные потери на дороге будут ниже естественного высокого колебания численности животных. Из-за производственных работ на территории не будет скопления диких животных, и, следовательно, столкновения с ними маловероятно.

Выполнить количественное определение подобных видов воздействия на научном уровне затруднительно из-за их удаленности и отсутствия видимого характера. Нагрузка часто приводит к снижению иммунитета к общим заболевания, более низкому проценту кладки яиц у птиц и рептилий, и большему количеству выкидышей у млекопитающих. Выживание потомства также снижается.

Животные проводят больше времени в попытках справиться с проблемой и, следовательно, создают еще большую нагрузку в виде дегенерации корма и вырождении.

<u>Суммарно воздействие может снизить шанс выживания и размножения</u> из-за:

- вытеснения из благоприятных экотопов;
- снижения времени на кормежку, что приводит к недостатку энергии;
- вмешательства в период спаривания;
- неудачной беременности, повышения количества выкидышей у млекопитающих;
 - снижения кладки яиц у птиц и рептилий;
- меньших кормовых ресурсов близ гнездования/лежки, что приводит к повышенному со-

перничеству между потомством птиц;

- покидание гнезд;
- повышенному числу хищников, привлекаемых проектной деятельностью.

Отдельные потенциальные взаимодействия по каждому аспекту описаны ниже.

Воздействие шумовых эффектов от деятельности строительных механизмов на животных будет возможно в течение непродолжительного периода строительных работ. Шум от движения транспорта и работы оборудования может повлиять на связи животного мира, важные для социальных взаимодействий, включая репродукцию:

- многие дневные виды, включая большинство птиц, используют звук для общения и взаимодействия друг с другом;
- многие ночные виды используют звук для определения хищников или себе подобных видов;
 - многие ночные виды используют звук для коммуникации.

Нет установленных нормативов уровня шума для животных. Исследованиями воздействия шума и искусственного света на поведение птиц и млекопитающих установлено, что они довольно быстро привыкают к новым звукам или свету и выказывают озабоченность или испуг только при возникновении нового шума, а затем через короткий промежуток времени возвращаются к своей нормальной деятельности.

Световое воздействие

Для насекомых, обитающих вокруг строительной площадки одним из значительных факторов, вызывающим гибель представителей видов жесткокрылых, чешуекрылых, двукрылых, будет искусственное освещение в

ночное время. Ночное освещение на участках проведения работ, также будет привлекать насекомых. Это в свою очередь может привлечь хищные виды. В то время, как это не скажется на работах по строительству и эксплуатации, увеличение количества хищных видов в зоне интенсивной антропогенной деятельности может привести к увеличению смертности большего числа особей.

Наибольшее беспокоящее влияние световое воздействие может оказать в переходные сезоны года на мигрирующих птиц. В результате беспокойства нарушается суточный ритм деятельности и режим питания; неблагоприятным образом меняется бюджет времени, причем значительная часть времени тратится на обеспечение безопасности. На дорогах возможны случаи гибели птиц и млекопитающих, попавших в полосу света фар. В целом локализация источников света при строительных работах будет носить локальный и не единовременный характер.

Химическое загрязнение

Загрязнение территории ГСМ при работе строительной технике может вызывать интоксикацию и гибель животных, преимущественно мелких млекопитающих, наземно гнездящихся птиц, насекомых и пресмыкающихся. Одновременно на участках строительства водных переходов достаточно высока вероятность смыва загрязняющих веществ в водоемы и водотоки, что в конечном итоге приведет к ухудшению качества воды. При соблюдении строительных норм и правил по планировке площадок, сбора и отвода ливневых и бытовых стоков, недопущениюразливов загрязняющих веществ, вероятность загрязнения водотоков сводят к минимуму. Возможность проявления этого воздействия ограничена площадками строительства.

Физическое присутствие

Физическое присутствие персонала и проведение работ скорее всего создадут дополнительное беспокойство для животного мира. Несинантропные виды будут испытывать беспокойство из-за их низкого уровня толерантности. Под воздействием в виде физического присутствия могут попасть только те животные, которые могут проникать на территории, прилегающие к участку (включая подъездную дорогу) для кормежки. Также маловероятно, что доступность корма для них окажет значительное воздействие и приведет к сильному соперничеству и высокой агрессивности.

Косвенное воздействие

Представители Фауны могут быть подвержены косвенному воздействию различных аспектов проекта, которые вытекают от потери естественной среды и прямой угрозы гибели в ходе проектных работ.

Основной дополнительный аспект данного воздействия будет включать образование новых источников пищи. Наличие пищевых отходов привлечет животных, питающихся отбросами, таких как грызуны, голуби и воробыи. Лисы, волки и хищные птицы будут привлечены высокими концентрациями добычи. Однако эти животные хорошо приспосабливаются к техногенному физическому беспокойству. Отравление маловероятно, так как животные, питающиеся отбросами, обычно очень избирательны в еде. Кроме того, предполагается, что контейнеры хранения отходов жилого лагеря будут иметь крепкие тяжелые крышки для предотвращения попадания подобных животных.

4.3. Земли (в том числе изъятие земель), почвы (в том числе включая органический состав, эрозию, уплотнение, иные формы деградации).

В процессе строительных работ воздействие на земли и почвенный покров будет связано с изъятием плодородного слоя на участках строительства зданий (подготовка фундамента), а также при укладке асфальтного покрытия.

При реализации рассматриваемого проекта необратимых негативных последствий на почвенный горизонт не ожидается.

Основными факторами воздействия на почвенный покров в результате строительно-монтажных работ будет служить захламление почвы.

Захламление — это поступление отходов твердого агрегатного состояния на поверхность почвы. Захламление физически отчуждает поверхность почвы из биокруговорота, сокращая ее полезную площадь, снижает биопродуктивность и уровень плодородия почв.

Потенциальное проявление данного воздействия может происходить в результате несанкционированного распространения твердых отходов, образующихся в процессе строительства трассы, а также бытовые отходы от жизнедеятельности рабочего персонала. Распространение производственных и бытовых отходов потенциально может происходить по всему рассматриваемому участку. Однако строгое соблюдение правил и норм сбора, хранения и утилизации мусора позволяет свести к минимуму данное неблагоприятное явление.

Воздействие на почвенный покров может проявляться при эксплуатации строительной техники и автотранспорта и выражаться в их химическом загрязнении веществами органической и неорганической природы. Воздействие будет заключаться в непосредственном поступлении в почву техногенных загрязняющих веществ — проливы на поверхность почвы топлива и горючесмазочных материалов (ГСМ).

Проявление данного процесса может происходить при нарушении правил эксплуатации строительной техники и автотранспорта. Потенциальное развитие процесса ожидается на всем рассматриваемом участке. Однако указанные прямые воздействия на почвы малы по объему и носят локальный характер.

<u>Основное негативное воздействие на геологическую среду и рельеф будет</u> оказано в период строительства и может проявиться в:

- нарушении недр;
- нарушении земной поверхности (рельефа);
- возможном загрязнение недр и земной поверхности;
- изменении физических характеристик недр и земной поверхности;
- изменении геологических процессов (в том числе проявлении неблагоприятных геологических процессов);
 - изменении визуальных свойств ландшафта.

При реализации комплекса работ, предусмотренных проектом, воздействие на геологическую среду и рельеф будет достаточно разнообразно.

Наибольшее отрицательное воздействие, в виде интенсификации процессов дефляции и эоловой аккумуляции, может произойти на территориях, сложенных песками, а также ряде локальных участков, поскольку изъятие значительных объемов грунта при проходке траншеи, планировке площадок технологических объектов вызывают изменение микрорельефа, нарушается естественное сложение верхних слоев почв. При усилении ветровой деятельности в районах работ на отвалах песчаного грунта вдоль траншей возможно развеивание грунтов.

Активизация процессов эрозии практически целиком определяется весенним снеготаянием и атмосферными осадками в теплое время года. Поскольку при строительстве могут быть вынуты достаточно значительные объемы грунта, которые будут подвергаться воздействию атмосферных осадков, возможен размыв грунта вдоль вырытых траншей (плоскостной и линейный), а также интенсификация процессов овражной эрозии.

При строительстве улицы большие территории не захватываются, однако, протяженность данных сооружений создает значительные воздействия специфического характера.

Прокладка подъездных дорог

Для технического обслуживания, аварийно-восстановительного ремонта оборудования, обеспечения перевозок вспомогательных и хозяйственных грузов, проезда машин проектируются подъездные дороги к строительным площадкам.

Район пролегания трасс обеспечен дорожно-строительными материалами, поэтому для устройства покрытия и основания используются привозные материалы. Для устройства дорожного основания и покрытия предлагается использовать материалы из существующих карьеров.

В пределах трассы объектов передвижение транспорта возможно по имеющимся проселочным дорогам, бездорожью, целине, при этом формирование сети временных дорог для подъезда может привести к изменению физических характеристик грунтов. В условиях повышенной активности ветрового режима районов трассы предприятия и при низкой противодефляционной устойчивости верхних горизонтов грунтов могут усилиться процессы дефляционного их переотложения. Развитию эрозионных процессов по дорогам препятствует крайне малое количество осадков и выположенность рельефа.

В процессе строительства и эксплуатации объекта необходимо соблюдать комплекс мерприятий по охране и защите почвенного покрова. Выполнение всех мероприятий позволит предотвратить негативное воздействие на почвенный покров от намечаемых строительно-монтажных работ.

4.4. Воды (в том числе гидроморфологические изменения, количество и качество вод).

Запланированные строительные работы на территории мкр. «Алгабас» не окажут воздействия на гидрологический режим и качество поверхностных и подземных вод, при условии соблюдения природоохранных мероприятий.

Питьевая вода и вода для производственных нужд – привозная.

Доставка воды производится автотранспортом, соответствующим документам государственной системы санитарно-эпидемиологического нормирования.

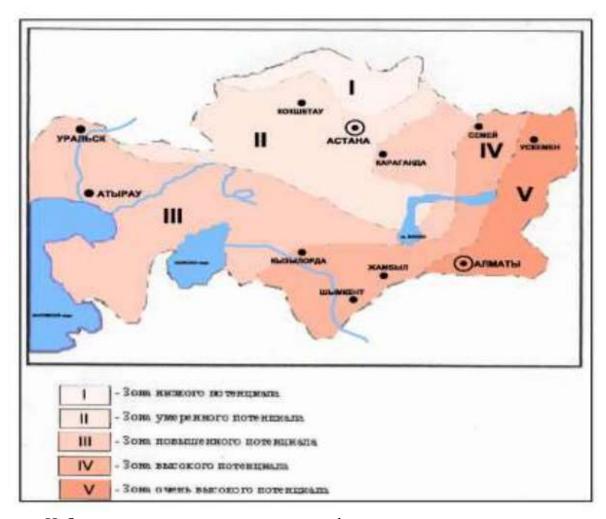
Возможными источниками потенциального воздействия на геологическую среду и подземные воды при проведении строительных работ могут являться транспорт и спецтехника.

Одним из потенциальных источников воздействия на подземные воды (их загрязнения) могут быть утечки топлива и масел в местах скопления и заправки спецтехники и автотранспорта в период полевых работ.

Проектом предусмотрены мероприятия, предотвращающие загрязнения поверхностных и подземных вод:

- организация регулярной уборки территории от строительного мусора;

- упорядочение складирование и транспортирования сыпучих и жидких материалов;
- временные стоянки автотранспорта и другой техники будут организовываться за пределами водоохраной полосы;
 - водоснабжения строительных работ осуществлять привозной водой;
 - хозяйственно-бытовые сточные воды собираются в биотуалет;
- организация специальной площадки для сбора и кратковременного хранения отходов и их своевременный вывоз;
- при возникновении аварийных ситуаций и в случае пролива ГСМ быстро реагировать и ликвидировать аварийную ситуацию и ее последствия;
- регулярный полив технической водой для пылеподавления строящихся дорог.


Эксплуатация проектируемого объекта на этой территории допустима при условии предотвращения любых возможных случаев загрязнения и засорения реки и ее водоохраной зоны. При выполнении правил ст.125 и 126 Водного Кодекса РК от 01.01.2009 г. №336 и проведения следующих мероприятий: предотвращения, засорения, истощения и загрязнения вод, выполнение установленных природоохранных мероприятий.

4.5. Атмосферный воздух (в том числе нарушения экологических нормативов его качества, целевых показателей качества, а при их отсутсвии – ориентировочно безопасных уровней воздействия на него).

РГП Казгидромет произведено районирование территории Казахстана с точки зрения установления отдельных ее районов благоприятных для самоочищения атмосферы от вредных выбросов в зависимости от метеоусловий.

Метеорологические условия, приводящие к накоплению примесей, определяют высокий потенциал и, наоборот, условия, благоприятные для рассеивания, определяют низкий потенциал ПЗА. Потенциалом загрязнения атмосферы является совокупность погодных условий, определяющих меру способности атмосферы рассеивать выбросы вредных веществ и формировать некоторый уровень концентрации примесей в приземном слое.

Согласно районированию территории РК по потенциалу загрязнения атмосферы (ПЗА) город Алматы относится ко V-ой зоне – зоне очень высокого потенциала загрязнения.

Наблюдения за загрязнением атмосферного воздуха, проводимые как составная часть государственного мониторинга окружающей среды, осуществляется государственным подразделением «Казгидромет».

Качество атмосферного воздуха, как одного из основных компонентов природной среды, является важным аспектом при оценке воздействия проектируемого объекта на окружающую среду и здоровье населения.

Факторами воздействия на объект природной среды – атмосферный воздух – являются выбросы загрязняющих веществ от стационарных и передвижных источников в период строительства и эксплуатации объектов.

Загрязненность атмосферного воздуха химическими веществами может влиять на состояние здоровья населения, на животный и растительный мир прилегающей территории.

Воздействие на атмосферный воздух намечаемой деятельности оценивается с позиции соответствия законодательным и нормативным требованиям, предъявляемым к качеству воздуха.

В качестве критерия для оценки уровня загрязнения атмосферного воздуха в проекте применялись значения максимально разовых предельно допустимых концентраций веществ в атмосферном воздухе для населенных мест, при отсутствии утвержденных значений ПДК для веществ - ориентировочно безопасные уровни воздействия (ОБУВ).

Максимально разовые ПДК относятся к 20-30 минутному интервалу времени и определяют степень кратковременного воздействия примеси на

организм человека. Значения ПДК и ОБУВ приняты на основании следующих действующих санитарно-гигиенических нормативов:

- максимально-разовые (ПДК м.р.), согласно приложению 1 к «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций» (утвержденных Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70);
- ориентировочные безопасные уровни воздействия ОБУВ, согласно Таблицы 2 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций» (утвержденных Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70).

Для веществ, которые не имеют ПДКм.р, приняты значения ориентировочно безопасных уровней загрязнения воздуха (ОБУВ).

По степени воздействия на организм человека выбрасываемые вещества подразделяются в соответствии с санитарными нормами на четыре класса опасности. Группы веществ с суммирующим эффектом воздействия приводятся в соответствии с нормативным документом РК «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций» (утвержденных Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70).

Анализ полученных результатов по расчетам величин приземных концентраций в проекте показал, что ни по одному из загрязняющих веществ превышений норм ПДК не выявлены.

Выполненные расчеты уровня загрязнения атмосферного воздуха показали возможность принятия выбросов и параметров источников выбросов в качестве предельно допустимых выбросов на срок действия разработанного проекта или до ближайшего изменения технологического режима работы, переоснащения установки, увеличения объемов работ, строительство и эксплуатация новых объектов, в результате которых произойдет изменение количественного и качественного состава выбросов, и как следствие, изменение нормативов.

4.6. Материальные активы, объекты историко-культурного наследия (в том числе архитектурные и архиологические), ландшафты.

Историко-культурное наследие, как важнейшее свидетельство исторической судьбы каждого народа, как основа и непременное условие его настоящего и будущего развития, как составная часть всей человеческой цивилизации, требует постоянной защиты от всех опасностей. Обеспечение этого в РК является гражданским долгом.

Следует отметить, что ответственность за сохранность памятников предусмотрена действующим законодательством РК. Нарушения законодательства по охране памятников истории и культуры влекут за собой установленную материальную, административную и уголовную ответственность.

Реализация данного проекта предусматривается вдали от охраняемых объектов и не затрагивает памятников, культурных ландшафтов, состоящих на учете в органах охраны памятников Комитета культуры РК, имеющих архитектурно-художественную ценность и представляющих научный интерес в изучении народного зодчества Казахстана.

В районе проектируемых дорог мкр. «Алгабас» отсутствуют объекты историко-культурного наследия (в том числе архитектурные и археологические), тем самым воздействий на материальные объекты культурного наследия в связи с намечаемой деятельностью не ожидается.

В непосредственной близости от рассматриваемой территории, особо охраняемые участки и ценные природные комплексы (заповедники-заказники, памятники природы), водопады, природные водоёмы, ценные породы деревьев, представляющие историческую, эстетическую, научную и культурную ценность, также отсутствуют.

5. Список литературы

- 1. Экологический кодекс РКот 02.01.2021 г. №400-VI 3РК.
- 2. Водный кодекс РК от 09.07.2003 г. (с изменениями и дополнениями по состоянию на 25.01.2021 г.).
- 3. Земельный кодекс РК от 20.06.2003 г. (с изменениями и дополнениями по состоянию на 16.01.2021 г.).
- 4. Кодекс Республики Казахстан от 7 июля 2020 года №360-VI «О здоровье народа и системе здравоохранения» (с изменениями по состоянию на 08.01.2021 г.).
- 5. Кодекс РК от 27 декабря 2017 года №125-VI «О недрах и недропользовании» (с изменениями и дополнениями по состоянию на 05.01.2021 г.).
- 6. Закон РК «Об охране, воспроизводстве и использовании животного мира» от 9 июля 2004 года №593-II. (с изменениями и ополнениями по состоянию на 02.01.2021 г.).
- 7. Приказ Министра Энергетики РК «Об утверждении перечня наилучших доступных технологий» от 28 ноября 2014 года №155. (с изменениями от 11.01.2021 г.).
- 8. Инструкции по организации и проведению экологической оценки, утверждена Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280.
- 9. Методические указания по проведению оценки воздействия хозяйственной деятельности на окружающую среду. Утверждены Приказом Министерства охраны окружающей среды РК от 29 октября 2010 г. №270-п.
- 10. Санитарные правила (СП) «Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения», утверждены Приказом Министра здравоохранения Республики Казахстан от 3 августа 2021 года № КР ДСМ-72.
- 11. Приказа и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека».
- 12. Перечень загрязняющих веществ, эмиссии которых подлежат экологическому нормированию. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 25 июня 2021 года № 212.
- 13. «Гигиенические нормативы к атмосферному воздуху в городских и сельских населенных пунктах», утвержденных приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года №168.
- 14. СП "Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов", утвержденные приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209.
- 15. СП РК 2.04-01-2017. «Строительная климатология» (с изменениями от 01.04.2019 г.).
- 16. Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий (приложение № 12 к приказу Министра

окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.

- 17. Методики определения нормативов эмиссий в окружающую среду. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года N 63.
- 18. Правила проведения общественных слушаний, утверждены Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 3 августа 2021 года №286
- 19. Классификатор отходов, утвержден Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.
- 20. Методика расчета лимитов накопления отходов и лимитов захоронения отходов. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 22 июня 2021 года №206.

6. Приложения